

Journal of Biotechnology 95 (2002) 109-131

www.elsevier.com/locate/jbiotec

The endoxylanases from family 11: computer analysis of protein sequences reveals important structural and phylogenetic relationships

Amalia Sapag^{a,1}, Johan Wouters^b, Christophe Lambert^b, Pablo de Ioannes^a, Jaime Eyzaguirre^{a,c,*}, Eric Depiereux^b

^a Laboratorio de Bioquímica, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile

^b Department of Biology, Facultés Universitaires Notre-Dame de la Paix, Namur, Belgium ^c Escuela de Artes Liberales, Universidad Nacional Andrés Bello, Santiago, Chile

Received 5 June 2001; received in revised form 5 November 2001; accepted 20 December 2001

Abstract

Eighty-two amino acid sequences of the catalytic domains of mature endoxylanases belonging to family 11 have been aligned using the programs MATCHBOX and CLUSTAL. The sequences range in length from 175 to 233 residues. The two glutamates acting as catalytic residues are conserved in all sequences. A very good correlation is found between the presence (at position 100) of an asparagine in the so-called 'alkaline' xylanases, or an aspartic acid in those with a more acidic pH optimum. Four boxes defining segments of highest similarity were detected; they correspond to regions of defined secondary structure: B5, B6, B8 and the carboxyl end of the alpha helix, respectively. Cysteine residues are not common in these sequences (0.7% of all residues), and disulfide bridges are not important in explaining the stability of several thermophilic xylanases. The alignment allows the classification of the enzymes in groups according to sequence similarity. Fungal and bacterial enzymes were found to form mostly separate clusters of higher similarity. © 2002 Elsevier Science B.V. All rights reserved.

Keywords: Family 11 endoxylanases; Factor analysis classification; Sequence alignment; Structural relationships

1. Introduction

* Corresponding author. Tel.: + 562-686-2664; fax: + 562-222-5515.

E-mail address: jeyzag@genes.bio.puc.cl (J. Eyzaguirre).

¹ Present address: Laboratorio de Farmacoterapia Génica, Facultad de Ciencias Químicas y Farmacéuticas, Unversidad de Chile, Santiago, Chile. Xylan, a heteroglycan, is the main constituent of plant hemicelluloses. It is composed of a linear chain of xylose residues linked by $\beta(1 \rightarrow 4)$ glycosidic bonds, with a variety of substituents, depending on its source (Joseleau et al., 1992). Biodegradation of xylan is accomplished by a complex set of enzymes generically called 'xylanases', which are produced by fungi and bacteria (Biely, 1985).

The hydrolysis of the xylan backbone is performed mainly by the action of the endoxylanases (E.C. 3.2.1.8), which liberate xylooligosaccharides of different length (Biely, 1985). A large number of endoxylanases have been described, purified, characterized and sequenced from different microorganisms (Sunna and Antranikian, 1997), and based on sequence similarities and hydrophobic cluster analysis, they have been grouped in families 10 (or F) and 11 (or G) of the glycosyl hydrolases (Gilkes et al., 1991; Henrissat and Davies, 1997). Family 10 xylanases have a catalytic domain with molecular weights in the range of 32–39 K. The structure of the catalytic domain of several family 10 xylanases has been determined by X-ray crystallography and it consists of an eightfold β/α barrel (Harris et al., 1996). These enzymes show a greater catalytic versatility than family 11 endoxylanases (Biely et al., 1997). Family 11 xylanases, on the other hand, have a much smaller catalytic domain (around 20 kDa), with an all B-strand sandwich fold structure (Himmel et al., 1997). Some enzymes of family 10 and family 11 possess, in addition, cellulose or xylan binding domains (Törrönen and Rouvinen, 1997).

The endoxylanases have been found to be useful for several different biotechnological applications (Section 3.4). Therefore, for the design and protein engineering of endoxylanases, a good knowledge of their sequence and structure is of great importance.

For this purpose, a comparative analysis of the sequences of 82 catalytic domains of family 11 glycanases has been performed in this work. The large number of sequences available allows a fine analysis of sequence similarities, with the purpose of establishing structural relationships, determine location of conserved (and possibly essential) sequences and establish phylogenetic relationships.

2. Materials and methods

Sequences were obtained from the literature and from the public databases (SwissProt, Gen-Bank and CAZy (http://afmb.cnrs-mrs.fr/ \sim pedro/CAZY/ghf.html)). The 82 sequences were aligned by the method described below.

To define conserved residues in a reliable alignment of numerous sequences of very different length and of poor similarity is not trivial (de Fays et al., 1999). Although alignments are widely used, the rate of false positive functional similarities deduced from skewed aligned positions is not easily overcome (Briffeuil et al., 1998). In this study, an original methodology has been applied to obtain reliable alignments allowing a precise delineation of the corresponding relevant residues in the different sequences, despite the fact that some sequences share a very low percentage of identity (10%).

The first step of this methodology is based on the local alignment method MATCHBOX (Depiereux and Feytmans, 1992). Default parameters were used to delineate conserved boxes (defining Predicted Structural Conserved Regions, PSCR) with an estimated level of confidence (from 1 to 9) at each position of the alignment (Depiereux et al., 1997). In this work, PSCR's are defined for reliability scores below 5 on more than 2 non-redundant sequences, which corresponds to a rate of confidence of over 90%. This ensures less than 10% of 'false positive' aligned positions, a remarkable rate at this level of low similarity.

The second step of the procedure is based on the global alignment method CLUSTAL (Higgins et al., 1992). It is used to align the regions inserted between the anchor points defined above. Thus, the final alignment obtained by this original procedure takes advantage of both approaches: MATCHBOX for definition of the boxes (PSCR's), and CLUSTAL for the multiple alignment of the segments outside the boxes.

The proposed classification of the family 11 endoxylanases is based on a principal coordinates analysis computed from a similarity matrix between the sequences (Depiereux and Feytmans, 1991). The method takes advantage of a grouping of the sequences independent of any alignment steps and thus avoids a misclassification due to misalignments. Briefly, the similarity coefficient is based on matches, for a given threshold, between short unaligned segments of the sequences compared; eigenvectors and eigenvalues are computed by matrix diagonalization, and sequences are plotted for factors 2 and 3, factor 1 being poorly discriminant. Eigenvector coordinates have been submitted to a cluster analysis, Ward's method, run on STATISTICA 4.1 (Statsoft, Inc) and plotted in an EXCEL spreadsheet.

PSCR delineation and factor analysis have been performed by the programs Align and Explore on the MATCHBOX server http://www.fundp.ac.be/ sciences/biologie/bms/matchbox_submit.shtml and global alignment on the Clustal server http:// dot.imgen.bcm.tmc.edu:9331/multi-align/Options/ clustalw.html.

3. Results and discussion

Table 1 lists the 82 enzymes used in this study. It includes 36 sequences from bacteria, 43 from fungi, 2 from protozoa and 1 from insects. Twenty-two bacterial and 8 fungal enzymes are multidomain proteins; they correspond mainly to anaerobic microorganisms. Only the sequence of the catalytic domain of the mature enzymes is considered in this analysis. The amino terminus of the mature enzymes was taken to be either the experimentally determined terminus, when reported in the literature, or the predicted terminus, determined by means of the program SIGNALP (Nielsen et al., 1997). The enzymes from Fibrobacter succinogenes, Neocallimastix frontalis and Neocallimastix patriciarum have two family 11 catalytic domains each: these domains are considered separately in the analysis. The size of the catalytic domain of the multidomain enzymes is somewhat arbitrary; in Fig. 1 the sequences belonging to these enzymes are marked with a star at the beginning and/or end to indicate this fact.

The enzymes analyzed (not considering the multidomain proteins) range in molecular mass from 19035 (*Trichoderma reesei*) to 25908 (*Clostridium acetobutylicum*), and in sequence length from 175 (*Polypastron multivesiculatum* Xyn A) to 233 amino acid residues (*C. acetobutylicum*). A shorter sequence (Xyn 4 from *Aspergillus niger*; 153 residues, accession number U39785) was not included in this study because it aligned poorly to the other sequences due to its

shorter length, although it is considered part of family 11 by CAZy.

Table 2 shows the pI's, pH and T° optima of those enzymes from the above list which have been purified and characterized. The pI values given are values measured in the laboratory; no theoretical estimations have been included. A wide range of pI values has been found: from a low of 3.5 for *Aspergillus kawachii* and *Aspergillus nidulans* to a high of > 10.25 for *Streptomyces lividans* xylanases. Bacterial enzymes show pH optima ranging from 5.5 to 7, while those from fungi show a much wider range (from pH 2.0 to 8.0), the majority having acidic pH optima.

The three-dimensional structure of family 11 endoxylanases has been determined for several enzymes, from both bacteria and fungi (Table 3). The catalytic domain folds into two β sheets (A and B) constituted mostly by antiparallel β strands and one short alpha helix and resembles a partially closed right hand (Törrönen and Rouvinen, 1997). The loop between strands B7 and B8 forms the 'thumb' and the loop linking strands B6 and B9 is the 'cord'. A great similarity is found in all these structures. Fig. 2 presents a topology diagram showing the sequence of the secondary structure elements found in these enzymes. Two glutamic acid residues have been found to be catalytically essential and are located in strands B4 and B6, respectively (Törrönen and Rouvinen, 1997).

3.1. Multiple sequence alignment

The original alignment methodology used in this work is aimed at delineating structural features shared by all the xylanase sequences included in the analysis. First, boxes obtained from the MATCHBOX alignment program have been shown to accurately outline conserved structural motifs (De Bolle et al., 1995; Vinals et al., 1995; Bertrand et al., 1997, 1998; Depiereux et al., 1997). The fact that these predicted structurally conserved regions actually reflect robust structural similarities among the endoxylanases has been checked by comparison of the three-dimensional structures of the 11 xylanases of known crystallographic structure (Table 3) using the HOMOLOGY

Table 1					
Family 11	xylanases	used	in	this	study

Organism	Protein	Gene	Accession No. (GenBank)	Catalytic domain		References
				Length ^a	MW	
Bacteria						
Aeromonas caviae	Xylanase I	xynA	D32065	183	20 212	Kubata et al. (1997)
Bacillus agaradhaerens	Xylanase		A48223	221	24 681	Sabini et al. (1999)
Bacillus circulans	XLNA	xlnA	X07723	185	20 382	Yang et al. (1988)
Bacillus pumilus	XYNA	xynA	X00660	201	22 515	Fukusaki et al. (1984)
Bacillus sp.	Xylanase Y ^b	xvn Y	S51779	200	22 201	Yu et al. (1993)
Bacillus sp.	Xylanase S	xvnS	X59058	185	20 364	Yu et al. (1993)
Bacillus sp.	Xylanase	xvnA	U51675	185	20 220	Jeong et al. (1998)
Bacillus sp. D3	Xvlanase	xvn		182	20 683	Harris et al. (1997)
Bacillus sp. 41 M-1	Xvlanase J ^b	xvnJ	AB029319	199	22 098	Nakai et al. (1994)
Bacillus	XYNA	xvnA	U15985	191	21 083	Cho and Choi (1995)
stearothermophilus			010,00		21 000	
Bacillus subtilis	Xylanase A	xvnA	M36648	185	21 451	Paice et al (1986)
Caldicellulosiruptor sp. Rt69B 1	Xylanase ^b	xynD	AF036925	199	22 158	Morris et al. (1999)
Cellulomonas fimi	XYLD ^b	xynD	X76729	198	21 451	Millward-Sadler et al.
Cellvibrio mixtus	XYLA ^b	xynA	Z48925	207	22 550	Millward-Sadler et al.
Clostridium	Xylanase B	xynB	M31726	233	25 908	Zappe et al. (1990)
acetobutylicum	Tr th	,	Diago	100	22.120	
Clostridium stercorarium	XynA ^o	xynA	D13325	193	22 130	Sakka et al. (1993)
Clostridium thermocellum	Xylanase U ^b	xynU	AF047761	204	22 842	Unpublished
Clostridium thermocellum	Xylanase V ⁶	xynV	AF047761	204	22 787	Unpublished
Clostridium thermocellum	XynA ^b	xynA	AB010958	200	22 445	Hayashi et al. (1999)
Clostridium thermocellum	XynB ^b	xynB	AB010958	200	22 365	Hayashi et al. (1999)
Dictyoglomus thermophilum	Xylanase B ^b	xynB	U76545	198	22 204	Morris et al. (1998)
Fibrobacter succinogenes	XynC (domA) ^b	xynC	U01037	234	25 530	Paradis et al. (1993)
Fibrobacter succinogenes	XynC (domB) ^b	xynC	U01037	216	24 437	Paradis et al. (1993)
Pseudomonas fluorescens	XYLE ^b	xynE	Z48927	202	22 130	Millward-Sadler et al. (1995)
Ruminococcus albus	XynA ^b	xynA	U43089	236	26 314	Unpublished
Ruminococcus flavefaciens	XYLA ^b	xynA	Z11127	221	24 346	Zhang and Flint (1992)
Ruminococcus flavefaciens	XynB ^b	xynB	Z35226	216	24 216	Zhang et al. (1994)
Ruminococcus flavefaciens	XYLD ^b	xynD	S61204	213	24 031	Flint et al. (1993)
Ruminococcus sp.	Xylanase 1 ^b	xyn1	Z49970	213	23 904	Unpublished
Streptomyces lividans	XlnB ^b	xlnB	M64552	192	21 064	Shareck et al. (1991)
Streptomyces lividans	XlnC	xlnC	M64553	191	20 715	Shareck et al. (1991)
Streptomyces sp. EC3	Xylanase	xln	X81045	191	20 931	Mazy-Servais et al. (1996)
Streptomyces sp. S38	Xylanase	xyl1	X985518	190	20 585	Georis et al. (1999)
Streptomyces sp. 36a	Xylanase			192	20 973	Nagashima et al. (1989)
Streptomyces thermoviolaceus	STX-II ^b	stx-II	D85897	190	20 738	Tsujibo et al. (1997)
Thermomonospora fusca	TfxA ^b	xynA	U01242	190	20 900	Irwin et al. (1994)
Fungi						
Ascochyta pisi	Xylanase	xvl1	Z68891	208	22 185	Lübeck et al. (1997)
Aspergillus awamori	EXLA	exlA	X78115	184	19 876	Hessing et al. (1994)

Table 1 (Continued)

Organism	Protein	Gene	Accession No. (GenBank)	Catalytic domain		References
				Length ^a	MW	
Aspergillus kawachii	Xylanase B	xvnB	P48824°	207	22 259	Unpublished
Aspergillus kawachii	XynC	xynC	D14848	184	19 876	Ito et al. (1992a)
Aspergillus nidulans	X22	xlnA	Z49892	188	20 235	Perez-González et al. (1996)
Aspergillus nidulans	X24	xlnB	Z49893	188	20 077	Perez-González et al. (1996)
Aspergillus niger	Xylanase A	xylA	A19535	184	19 890	Maat et al. (1992)
Aspergillus niger	XynNB	xynNB	D38071	188	20 069	Kinoshita et al. (1995)
Aspergillus niger	Xyn5	XYN5	U39784	195	21 143	Unpublished
Aspergillus oryzae	XynG1	xynG1	AB003085	189	20 589	Kimura et al. (1998)
Aspergillus tubigensis	XYLA	xlnA	L26988	184	19 837	de Graaff et al. (1994)
Aspergillus tubigensis	Xylanase B		A39368	207	22 240	Patent WO 9414965-A (1994)
Aureobasidium pullulans	XynA	xynA	U10298	187	20 074	Li and Ljungdahl (1994)
Chaetomium gracile	CgXA	cgxA	D49850	189	20 149	Yoshino et al. (1995)
Chaetomium gracile	CgXB	cgxB	D49851	211	22 525	Yoshino et al. (1995)
Claviceps purpurea	Xylanase	xyl1	Y16969	197	21 460	Giesbert et al. (1998)
Cochliobolus carbonum	Xyl1	XYL1	L13596	191	20 856	Apel et al. (1993)
Cochliobolus carbonum	Xyl2	XYL2	U58915	191	21 199	Apel-Birkhold and Walton (1996)
Cochliobolus carbonum	Xyl3	XYL3	U58916	183	19 858	Apel-Birkhold and Walton (1996)
Cochliobolus sativus	Xylanase	xyl2	AJ004802	212	23 658	Emami and Hack (2001)
Cryptococcus sp. S-2	Xyn-CS2	xyn-CS2	D63382	184	20 209	Iefuji et al. (1996)
Humicola insolens	Xyl1	xyl1	X76047	208	23 814	Dalboge and Heldt-Hansen (1994)
Magnaporthe grisea	XYN22	xvn22	L37529	194	21 427	Wu et al. (1995)
Neocallimastix frontalis	Xylanase 2	XYN2	S48865	212	23 933	Unpublished
Neocallimastix frontalis	XYN3 (domA) ^b	xvn3	X82266	223	24 394	Durand et al. (1996)
Neocallimastix frontalis	XYN3 (domB) ^b	xvn3	X82266	223	24 532	Durand et al. (1996)
Neocallimastix patriciarum	XYLA dom1) ^b	xvnA	X65526	226	24 941	Gilbert et al. (1992)
Neocallimastix patriciarum	XYLA (dom2) ^b	xvnA	X65526	225	24 770	Gilbert et al. (1992)
Orpinomyces strain PC-2	XvnA ^b	xvnA	U57819	225	24 810	Li et al. (1997)
Paecilomyces varioti	PVX		P81536°	194	21 365	Kumar et al. (2000)
Penicillium sp. 40	XvnA	xvnA	AB035540	190	20 713	Kimura et al. (2000)
Penicillium purpurogenum	XvnB	xvnB	Z50050	183	19 371	$D_{1}(az et al (1997))$
Pichia stinitis	Xylanase A ^b	xynB xynA	AF151379	232	26 291	Unpublished
Piromyces sp (inactive)	XYLA ^b	xynA xynA	X91858	234	25 558	Fanutti et al. (1995)
Piromyces sp. (active)	XYLAb	xynA xynA	X91858	222	24 803	Fanutti et al. (1995)
Schizophyllum commune	Xylanase A	xynA xynA	P35809°	197	20.965	Oku et al. (1993)
Thermomyces lanuginosus	XvnA	xynA xynA	U35436	206	22 614	Schlacher et al. (1996)
Trichoderma harzianum E58	820 kD Xylanase	Nymii	P48793°	190	20 690	Yaguchi et al. (1992b)
Trichoderma reesei	XYNI	xvn1	X 69574	178	19 035	Törrönen et al. (1992)
Trichoderma reesei	XYNII	xyn1 xyn2	X69573	190	20 829	Törrönen et al. (1992)
Trichoderma reesei	Xvn?	XYN2 XYN2	1124191	190	20 731	La Grange et al. (1992)
Trichoderma viride	$Xylanase II\Delta$	A 11V2	Δ 44594	190	20 759	Vaguchi et al. (1990)
Trichoderma viride	Xylanase IIB		A44595	190	20 743	Unpublished
Protozoa						
Polyplastron multivesiculatum	XYN A	xynA	AJ009828	219	25 192	Unpublished
Polyplastron multivesiculatum	Xylanase	polyX	AB011274	175	19 394	Unpublished
Insect Phaedon cochleariae	Xylanase		Y17908	200	22 070	Unpublished

^a Number of amino acid residues.

^b Multidomain protein. ^c SWISS-PROT entry.

	1 0	2 0	30 40	50	- 12 - 2
l le ca vull			- B I	- > A T D Y	
2 Ba.ag.1gh6			XIVTDNSIG	NHDGYD	.YEFWKDS
3 Ba.ci.1xnb				. A S T D Y	.WQNWTDG
4 Ba.Pu.XYNA			RTITNNEMG	N H S G Y D	.YELWKDY
5 Ba.sp.xylY			AITSNEIG	ТНДБҮД	.YEFWKDS
6 Ba.sp.xylS				. A S T D Y	.WQNWTDG
7 Ba.sp.xylA	• • • • • • • • • •			. A G T D Y	.WQNWTDG
8 Ba.D3.BDX	• • • • • • • • • •		· · · · · · · · · · · · · · · · · · ·	NTY	. WQIWIDG
9 Ba.sp.xy10	• • • • • • • • • •		AITSNEIG		WOYWTDG
10 Balsel XINA				ASTDY	. WONWTDG
12 Ca.sp.xvl			AMTETSNATG	ΤΥΡΟΥΥ	.YELWKDT
13 Ce.fi.XYLD		AAAS	PA AAAVTSNTTG	ТНОБҮГ	.YSFWTDS
14 Ce.mi.XYLA		N	TQ AQTLTNNATG	ТНИБГҮ	.YTFWKDS
15 Cl.ac.xylB ATNLNTTE	CST FSKEVLS	ΤΟΚ ΤΥΧΑΓΝΤΟ	AA PKTITSNEIG	V N G G Y D	.YELWKDY
16 Cl.st.XylA	• • • • • • • • •		GRIIYDNETG	T H G G Y D	.YELWKDY
1/ Cl.th.xyl0	••••••		DVVITSNQTG	THGGYN	. FEYWKDT
18 CI.th.xylv	• • • • • • • • • •		DVVITSNQIG	THGGIN	PEYWEDT
20 Cl.th.xvlB			. DVVITSNOTG	TGGGYN	FEYWKDT.
21 Di.th.xvlB			OT SITLTSNASG	TFDGYY	.YELWKDT
22 Fi.su.XyCA	Q	DFC SNAQ.HSG	ΩΚ VTITS.NQTG	KIGDIG	.YELWDEN
23 Fi.su.XyCB	*N GNVSGKI	DAC KDVMGHEG	KE TRTQGQNNSS	VTGNVGSSPY	HYEIWYQG
24 Ps.fl.XYLE	• • • • • • • • • •		. N AQTLSSNSTG	ΤΝΝGΓΥ	.YTFWKDS
25 Ru.al.XynA	. D SSSKKSA	DSA KADSNKDS	KN GQVFTKNARG	TSDGYD	.YELWKDK
20 KU.II.XYNA	•••••••	• • • • • • • • • • •	SAADQQTRG	NVGGYD	. ILMWNQNG
28 Ru. fl. XvnD			VIADDQQDKG	KVGGFD	. WEMWNONY
29 Ru.sp.Xyll			ADAOORG	NIGGFD	.YEMWNONG.
30 St.li.XlnB			DTVVTTNQEG	ΤΝΝGΥΥ	.YSFWTDS
31 St.li.XlnC			ATTITTNQTG	Т D . G M Y	.YSFWTDG
32 St.sp.EC3			ATTITTNQTG	Y D . G M Y	.YSFWTDG
33 St.sp.S38			DTVITTNQTG	ΤΝΝGΥΥ	.YSFWTDG
34 St.sp.36a	••••••		ATTITTNQTG	YD.GMY	.YSFWTDG
35 St.th.SIII	• • • • • • • • •		DITITSNQIG	THNGIF	VERWIDA
37 Aso pi xvl	· · · · · · · · · · · · · · · · · · ·		LT ARAGTPSSOG	THNGCF	YSWWTDG
38 As.aw.EXLA				. SAGIN	YVONYNG
39 As.ka.xylB	V P H	DSV VERSDALH	KL SERSTPSSTG	E N N G Y Y	.YSFWTDG
40 As.ka.xynC				. S A G I N	.YVQNYNG
41 As.nid.X22			S T P S S T G	WSNGYY	.YSFWTDG
42 As.nid.X24			STPSSTG	ТЅССҮҮ	.YSFWTDG
43 AS.ni.xyIA	• • • • • • • • •			. SAGIN	. I V Q N I NG
44 AS.III.AYINB	• • • • • • • • •			ENNGEL	VUONVNG
46 As.or.XvG1			ATTSSETG	TNNGYY	.YSFWTNG
47 As.tu.XYLA				. SAGIN	.YVQNYNG
48 As.tu.xylB	V P H	DSV VERSDALH	KL SERSTPSSTG	E N N G F Y	.YSFWTDG
49 Au.pu.XylA			A	G	.YVQNYNG
50 Ch.gr.CgXA			AGTPSGTG	T N N G Y F	.YSFWTDG
51 Ch.gr.CgXB	• • • • • • • • •		QTLTSSQTG	T N N G Y Y	.YSFWTDG
52 Cla.pur.Xy1	• • • • • • • • •	A P A A A	SE LMQMIPRNSC	THNCCF	WSWWSDC
54 Co.ca.Xv12			OSTPSAEG	YHNGYF	.YSWWTDG
55 Co.ca.Xy13				Q D	.YNQNYKT
56 Co.sa.xyl	APFDFL	RER DDGNATAL	LE KRQSTPSSEG	ҮНМБҮГ	.YSWWTDG
57 Cr.sp.XCS2				T G N	.YVQNYNG
58 Hu.in.Xyll	' . A P F D F V	PRDNSTA	LQ ARQVTPNAEG	WHNGYF	.YSWWSDG
59 Ma.gr.XY22	• • • • • • • • •			KHNGYY	. I SWWTDG
60 Ne.117.XY12			V K V I S . N K V G	VADGYS	YEIWLDNT
62 Ne.fr.XY3B			*T VGNGONOHKG	V N D G F S	.YEIWLDNT
63 Ne.pa.XYA1		R	LT VGNGQTQHKG	VADGYS	.YEIWLDNT
64 Ne.pa.XYA2		* к	FT VGNGQNQHKG	V N D G F S	.YEIWLDNT
65 Or.st.XynA		R	LS VGGGQNQHKG	V F D G F S	.YEIWLDNT
66 Pa.va.PVX			GTTPNSEG	W H D G Y Y	.YSWWSDG
67 Pe.sp.XynA			QTITSSQTG	ΤΝΝGΥΥ	.YSFWING
oo re.pu.xyns	• • • • • • • • •				NETSEEDSM C
70 Pi.sp.XYA1		DEC NATE FOE	DS VVSTG HDVK	KIGNID	YEOWADG
71 Pi.sp.XYA2	· · · · · · · · · · · ·	* FC STSK.HSG	2S VTETS.NKVG	SIGGVG	.YELWADS
72 Sc.co.xylA			SGTPSSTG	ТДССҮҮ	. YSWWTDG
73 Th.la.XynA		FPAGNATE	LE KRQTTPNSEG	W H D G Y Y	.YSWWSDG
74 Tr.ha.Xyl			QTIGPGTG	Y S N G Y Y	.YSYWNDG
75 Tr.re.Xyn1				. A S I N Y	. D Q N Y Q T
76 Tr.re.Xyn2	• • • • • • • • •		Q T I Q P G T G	Y N N G Y F	. Y S Y W N D G
// Tr.re.Xy2	• • • • • • • • •			INNGIF	. H SIWNDG
/0 IT.VI.XIIA				ENNGIË	. YSYWNDG
81 Po.mu.xvnA			OTFYNNAOG	OIDGLD	.YELWKDT
80 Po.mu.pol					
82 Ph.co.xyl			QKVLYNNEIG	F N N G F Y	.YAFWKDS

Fig. 1. Multiple alignment of 82 sequences of family 11 endoxylanases performed by MATCHTAL. The sequences follow the same order given in Table 1. On top of the alignment, secondary structure elements observed in the crystal structures are provided. Boxes (Predicted Structural Conserved Regions) obtained by MATCHBOX are shaded. The two catalytic Glu residues (E169 and E289 according to the numbering of the multiple alignment) are in boldface. Residue 100 (N or D, depending on the pH optimum, see text) is underlined. The putative start and/or end of the catalytic domain sequences belonging to multiple domain xylanases is indicated by a star. For abbreviations see Table 1.

7 0 8 0	90	100	1 1 0	1 2 0	1 3 0
- A 2	-> - A 3	->	B3->	N T V	 С Т Р N Р V V N
	MILNHGGTFS	AOWN NVNN	IL.FRKGKK.		TQTHQQV G
	AVNGSGGNYS	VNWSNTG N	FVVGKG.	W T T	GSPFRTI N
	MTLNNGGAFS	A G W N N I G N	A L F R K G K	KFDSTRTHHQ	LG.NISI N
	M T L N S G G T F S A V N C S C G N Y S	AQWSNVNN VNWS NTCN	ILFRKGK	KFDETQTHQQ WTT	G SPERTIN
	AVNGSGGNYS	VNWSNTGN	F V V G K G .	WTT	GSPFRTI N
	ATNGQGGNYS	V S W S N S G <u>N</u>	FVIGKG.	W Q Y	GAHNRVV N
	MTLNSGGTFS	AQWSNVNN	I L F R K G K	KFDETQTHQQ	IG.NMSI N
	AVNGPGGNIS	VIWQNIGN VNWSNTGN	F V V G K G .		GSPERTI N
	MTVDTGGRFS	CQWSNIN N	A L F R T G K	KFS. TAWNQ	LG.TVKI T
	MDLNSGGGY.	T R W S N T G N	FVAGKG.	W S T	GG.RKTV S
	MGLQAGGRYT	SQWS.NGTNN COWS NIGN	ALERKGK		GG.PKVV T L. G.NISV N
	MELNDGGTFS	COWS NIGN	A L F R K G R	KFNSDKTYQE	LG.DIVV E
	MVLKDGGAFS	CEWSNIN <u>N</u>	I L F R K G F	KYDETKRHDQ	LG.YITV T
	MVLKDGGAFS	CEWSNINN	I L F R K G F	KYDETKTHDQ	LG.YITV T
	MVLKDGGAFS	CEWSNINN CEWSNINN	I L F K K G F	KYDEIKIHDQ	LG.YITV T
	MTVYTQGRFS	CQWSNIN N	A L F R T G K	KYNQNWQS	LG.TIRI T
	ATFYSDGSMD	С N I T G A К D	Y L C R A G L	SLGSNKTYKE	LGGDMIA E
	MTFYDNGTYK	ASWNGTND	FLARVGF	KYDEKHTYEE WND	LG.PIDA Y
	MTINEGGTFS	CKWSNINN	ALFRRGK	KFDCTKTYKE	LGNISV K
Q G Q A S	MNPGAGS.FT	CSWSNIE N	FLARMGK	NYDSQKKNYK	AFGNIVL T
	MKPSAGS.FT	C S W S G I E N	FLARMGK	NYDSQKINYK	ALGDIVL S
	MNPGAGS.FT	CSWSGIEN CSWS NTEN	FLARMGK	NYDDQKKNYK	AFGDIVL T
	MNMGSGGOYS	TSWRNTGN	FVAGKG.		GGRRTV Q
	MTLNGGGSYS	ΤΩ₩ΤΝСGΝ	FVAGKG.	W S T	GDGNV R
	MTLNGGGSYS	Т Q W Т N С G N	F V A G K G .	W G N	GGRRTV R
	MNLASGGSYG	TSWTNCGN	FVAGKG.		GA RRTV N
	MNTGAGGNYS	TOWS. NTGN	FVAGKG.	WAN	GGRRTV T
	MELGPGGNYS	TSWRNTGN	F V A G K G .	W A T	GGRRTV T
	YTNGAGGSYS	V N W K T G G N	LVGGKG .	W N P	GAARTI T
GGDVT	TYDESAGTES	NYWEDGVSSD VEWS NVGN	FVGGKG		GSAKDI T
	TYDESAGTFS	MYWEDGVSSD	FVVGLG.	W T T	GSSNAI S
	YTNGAGGSYT	V Q W S N V G N	F V G G K G .	W N P	GSTRTI N
	YTNGDGGSYT	VEWTKVGN	FVGGKG.		GSSQTI S
GGDVT	YTNGDAGAYT	VEWS. NVGN	FVGGLG.	W N P	GSAODI T
	TYDESTGTFS	MYWEDGVSSD	FVVGLG.	W T T	GSSKSI T
	YTNGNGGQYS	V К W Т N С D N	FVAGKG.	W N P	GSAKTV T
	TYDESAGTFS	MYWEDGVSSD VEWS NVCN	FVVGLG. FVCCKC	WTT WNP	GSSNAL T
	TYNENAGTYS	MYWNNGVNGD	FVVGLG.	W S T	GAARSI T
	YQNGAGGSYS	V Q W Q N C G N	F V G G K G .	W N P	GAARTI N
	YTNEAGGQYS	VTWSGNGN	WVGGKG.		GSARTI N
CARAT	YSCGAGGHYD	USWGNGGN	LVGGKG.		GT ARTI T
	YTMGEGSRYS	VTWRNTG N	FVGGKG .	W N P	GSGRVI N
	QYNPTSNGYS	V T F S G A Q D	F V L G K G .	W K Q	G T T R T V K
	YTMGEGSRYS	VTWRNTGN	FVGGKG.		GTGRVI N
	YTNLEGSRYO	VRWR.NTGN	FVGGKG.	W N P	GTGRTI N
	YQNGNGGSYS	VQWQSGG N	FVGGKG.	W M P	GGSKSI T
	ATFYDDGSFS	CSFQRAKD	Y L C R S G L	SFDSTKTHKQ	IGHIYA E
	MTLGSGATEK	AEWNASVN	RGNELARRGL	DEGSQKK.GK	PITATLI G
	MTLGSGATFK	AEWN ASVN	RGNFLARRGL	DFGSQKK.AT	DYSYIGL D
	MTLGSGATFK	A E W N A A V N	RGNFLARRGL	DFGSQKK.AT	DYDYIGL D
	MTLGKGATFK	A E W S A A V N	RGNFLARRGL	DFGSTKK.AT	AYEYIGL D
	IINNSGGTTE WENCGDFTSG	KGWSTGSARD	LVGGKG. . ITFEGTFNP		G DNAKAI H
	SYNEGAGTES	MYWQQGVSND	FVVGLG.	R S T	GSSNPI T
D R L N I T R V M S Y D R W T D L V G	ELEVRELKHV	MSHRTYSLCD	LSCSTV.	L D S	NSMFSL G
	ATFYSDGSFK	CNFS.NTKD	Y L C R S G V	AFSQAKYPSE	IGHIEA E
	YONNGGGSYT	LTWS.GNNGN	LVGGKG		GAASRSI S
	YTNLEGGTYE	ISWGDGG N	LVGGKG.		GLNARAI H
	YTNGGGGSFT	V N W S N S G N	F V A G K G .	W Q P	GTKNKVI N
	Y S P S N T G . F S	VNW.NTQDD	FVVGVG.	WTT WOP	G SSAPI N
	YTNGPGGQFS	VNWSNSG N	FVGGKG.		GTKNKVI N
H G G V T	YTNGPGGQFS	V N W S N S G N	F V G G K G .	W Q P	GTKNKVI N
	YTNGPGGQFS	V N W S N S G N	FVGGKG.	W Q P	GTKNKVI N
	MTLLGGGKFS	CNWSNIN N	CLEKIGK	KWDCTKTWOO	LGTISV A
	FTLESGGRYA	GNWT.TSTN N	WVGGKG.	W N P	GNSWRTV N

140	150	160	170	180	190
- A 5 >	B	5 >	B	6 >	cord
YNAGVFA	PSGNGYLT	FYGWTSG	ALIEYYV	VDSWGTY	R P T G T Y K
NMSINYGAN	FQPNGNAYLC	VYGWTNG	PLVEYYI	VDSWGNW	R P P . G A T
YNAGVWA	PNGNGYLT	LYGWTNG	PLIEYYV	VDSWGTY	R P T G T
Y N A S F	. N P G G N S Y L C	VYGWTSG	PLAEYYI	VDSWGTY	R P T
Y G A T Y	. N P N G N S Y L T	VYGWTNG	PLVEFYI	VDSWGTW	R P P G G T P
YNAGVWA	PNGNGYLT	LYGWTNG	PLIEYYV	VDSWGTY	R P T G T Y K
YNAGVWA	PNGNGYLT	LYGWTNG	PLIEYYV	VDSWGTY	RPTGTYK
YNAGAWQ	PNGNAYLT	LYGWTNG	PLIEYYV	VDSWGSY	R P T G D Y R
Y G A T Y	. N P N G N S Y L T	VYGWTNG	PLVEFYI	VDSWGTW	RPPGGTP
YNAGIWE	PSGNGYLT	LYGWTSG	A L I E Y Y V	VDSWGTY	KPTGNIK
YNAGVWA	PNGNGILT	LYGWING	PLIEIIV	VDSWGII	REIGIIK
ISATI	. NPNGNSILC	IIGWSNG	PLVEFII	VDSWGSW	REFG
ISGQENE	SKNAILI	LIGWISR	DITEVVV	TERVICEY	NPASCSG
ISGSINVD.	OPVCNEVIC	VYCWTYC	PLVEVVT	VDSWGSW	RPPGGTS
YGCDY	NPNGNSYLC	VYGWTNG	PLVEYYT	VESWGSW	R P P G A T P
YSCNY	OPNGNSYLG	VYGWTNG	PLVEYYI	IESWGTW	R P P G A T P
Y S C N Y	. OPNGNSYLG	VYGWTNG	PLVEYYI	IESWGTW	R P P G A T P
Y S C N Y	. O P N G N S Y L G	VYGWTNG	PLVEYYI	IESWGTW	R P P G A T P
Y S C N Y	. Q P N G N S Y L G	VYGWTNG	PLVEYYI	IESWGTW	R P P G A T P
Y S A T Y	. N P N G N S Y L C	IYGWSNG	PLVEFYI	VESWGNW	R P P G
FKLVKSG	AQNVGYSYIG	IYGWMVGVSG	TPSQLVEYYV	IDNTLANDMP	G S W I G N E R
YKWSKQ	GSAGGYNYIG	IYGWTGG	PLVEYYI	VDDWFNK	PGANLLG
YSGSYGVD.	S S Q N S Y L A	LYGWTSQ	PLIEYYV	IESYGSY	N P A S C S G
Y G V D Y	. Q P D G N S Y M C	VYGWTDG	PLVEFYI	VESWGSW	R P P G A
Y D V E Y	. T P R G N S Y M C	VYGWTRG	PLMEYYI	VEGWGDW	RPPGNDG
Y D V E Y	. T P R G N S Y M C	IYGWTRG	PLMEYYI	VEGWGDWE	P P G N D G
Y D V E Y	. T P R G N S Y M C	IYGWTRG	PLMEYYI	VEGWGDWE	PPGNDG
Y D V E Y	. TPKGNSYMC	VYGWTKG	PLMEYYI	VEGWGDW	RPPGNDG
YSGSFNP	S G N A Y L A	LYGWTSG	PLVEYYI	V D N W G T Y	RPTGEIK
INGIENP	VGNGYGC	LYGWTVG	PLVEIII	VDNWGSI	RFIGIIN
YSGYFNP	SGNGIGC	LIGWISG	PLVEIII	VDNWGSI	RFIGEIR
YSGSENP	SGNAILT	LIGWTSG	PLVEIII	VENWGII	RFIGIIR
IIGWENP	SGNGIGC	LIGWISG	DIVEVI	VDNWGTY	RPTGTYK
ISGIENE	CNAVLT	LIGNSSG	DIVEVVI	VESWGTY	B P T G T Y M
VCCTVCD.	SCNSVID	VYCWTSC	PLTEYYV	VENEGTY	DPSSOAT
VSAEVSA.	SCSSSYLA	VYGWVNY	POAEYYT	VEDYGDY	N P C S S
VSGNETP.	SGNGYLS	VYGWTSG	PLIEYYI	VESYGDY	N P G S G G T
YS. AEYSAS	GSSSYLA	VYGWVNY	POAEYYI	VEDYGDY	N P C S S A T
YGGSENP	SGNGYLA	VYGWTSG	PLIEYYI	VESYGTY	N P G S G G Q
YSGSFIP	SGNGYLS	VYGWTSG	PLIEYYI	VESYGDY	N P G T A G T
YS.AEYSAS	GSSSYLA	VYGWVNY	PQAEYYI	VEDYGDY	N P C S S A T
YSGTFTP	SGNGYLS	VYGWTSG	PLIEYYI	VESYGDY	N P G S G G T
YSAQYSA	S S S S S Y L A	VYGWVSS	PQAEYYI	VEDYGDY	N P C S S
YSGEWES	NSNSYVS	LYGWTNS	PLVEYYI	VDKYGDY	D P S T G
YSAEYSA	SGSASYLA	VYGWVGS	PQAEYYI	VEDYGDY	N P C S S
YSGTFTP	SGNGYLS	VYGWTSG	PLIEYYI	VESYGDY	N P G S G G T
YSSNYQA	SGGSYLS	VYGWISG	PQAEYYI	VESYGSY	NPCGAGQ
FSGTFSP	Q G N G Y L A	IYGWTQG	PLVEYYI	VESFGTY	DPSSQAS
YTANYNP	NGNSYLA	VYGWTNG	PLIEYYV	VENFGTY	NPSTG
YSGSWQ	CNGNCYLS	VYGWTNG	PLVEYYI	VENIGNI	NP.SAGA
YSGTYNY	NGNSYLA	VIGWING	PLVEIIV	VENEGII	NDC CC
IGGAENE	QGNGILA	LYCWTAC	CKIUPVVI	ODETSGGS	G S AOG
YCCAEND		VYGWTOG	PLVEYVV	TESYGTY	NPS.SG
YCCCVND	CYSCSYON	TYGWTYS	GSLSEYYV	TDNYGGY	NPCTG.
YGGYENP.	O G N G Y L'A	VYGWTOG	PLVEYYV	IESYGTY	N P G S Q A Q
YSGTFNPV	NNGNAYLC	IYGWTNG.	PLVEYYI	LENYGEY	N P G N S A Q
FKLVKONI.	. ONVDYSYVG	IYGWTVD	PLVEFYV	VDNWLSQW	R P G D W V
YTATYRQT.	GSASGNSRLC	VYGWFSGRGV	QGVPLVEYYI	IEDWVDW	V P D A Q
YAATYKQT.	ASASGNSRLC	VYGWFSGRGL	NGVPLVEYYI	IEDWVDW	V P D A Q
YTATYRQT.	GSASGNSRLC	VYGWFSGRGV	QGVPLVEYYI	IEDWVDW	V P D A Q
YAATYKQT.	ASASGNSRLC	VYGWFSGRGL	NGVPLVEYYI	IEDWVDW	V P D A Q
YEASYRQT.	ASASGNSRLC	VYGWFSGRGV	QGVPLVEYYI	IEDWVDW	V P D A Q
FT.GVYQP.	NGTSYLS	VYGWTNG	PLVEYYI	VENFGSS	N P S S G S T
	S G N A Y L A	VYGWTSG	PLVEYYI	LEDYGDY	N P G N S M T
YSASYSA	SGGSYLA	VYGWVSG	PQAEYYV	VEAYGNY	NPCSSG.
KGWQAIS	SRQGVGAT	VYGWTRQ	PLLIEYYV	VDSWGSY	HPSNTIT
YRLVKKS	ASNVGYSYVG	VYGWTVGS	GISGVYEYYI	VDNWLSQW	REGDWVGNTK
FKLVKQN	TONVDYSYVG	IIGWTVD	PLVEFIV	VERVERV. W	REGDWV
ISGITUP	NCNOVIN	VYGWTNG	PLUEVUT	VENEGTY	DPSSGAT
FE. GVIUF.	PNCNEVIC	TYGWSNC	PLIEVYT	VENFGTY	NPSTGAT
FC COPP	VNSGTGLIS	VYGWSSG	PLVEVVT	MEDNHNY	PAOGT
FS CSYN	PNGNSYIS	VYGWSNG.	PLIEYYT	VENEGTY	N P S T G A T
ESGSYNP.	NGNSYLS	VYGWSNG.	PLIEYYI	VGNFGTY	N P S T G
FSGTYNP	NGNSYLS	VYGWSNG	PLIEYYI	VENFGTY	N P S T G
FSGTYNP.	NGNSYLS	VYGWSNG.	PLIEYYI	VENFGTY	N P S T G
Y D V D Y	. NPNGNSYLC	IYGWTNG	PLVEYYI	VESWGSW	R P P G G S P
Y N V D Y	. R P N G N S Y M C	VYGWTNG	PLIEYYI	VDSWGSW	R P P G S N S
YSGYYGIN.	EYANSYLS	LYGWTYA	PLIEYYV	VESYGSY.S.	P L N C P G

Fig. 1. (Continued)

	200	210	2 2 0	2 3 0	240	2 5 0
B	9	>	- B 8 > t	humb	B7>	
1 Ae.ca.xylI G	T V	. NSDGGTYDI	YTTMRYNAPS	IDG.TQTFPQ	YWSVRQSKRP	T G V N
2 Ba.ag.lqh6_PKGTI		. TVDGGTYDI	YETLRVNQPS	IKG.IATFKQ	YWSVRRSKRT	
3 Ba.cl.Ixnb Y K G T V		. KSDGGTYDI	YTTTRYNAPS	IDGDRTTFTQ	YWSVRQSKRP	т
4 Ba.PU.AINA GAIK.	KGTI	NUDGGTIDI	I E I I R V N Q P S	ING TATENO	I W S V R Q I K R I	s
6 Ba sp xylS G	TV	KSDGGTYDI	VTTTRYNAPS	I D G D B T T F T O	YWSVROTKRP	TGSNA
7 Ba.sp.xvlA G	T V	KSDGGTYDI	YTTTRYNAPS	IDGDNTTFTO	YWSVROSKRP	TGSNA
8 Ba.D3.BDX G	s v	. YSDGAWYDL	YHSWRYNAPS	IDG. TOTFOO	YWSVRQQKRP	T G S N
9 Ba.sp.xylJ	. KGTI	. NVDGGTYQI	YETTRYNQPS	IKG. TATFQQ	YWSVRTSKRT	S
10 Ba.st.XYNA G	T V	. N S D G G T Y D I	YTTMRYNAPS	IDG. TQTFQQ	FWSVRQSKRP	T G S N
11 Ba.su.xylA G	T V	. KSDGGTYDI	YTTTRYNAPS	IDGDRTTFTQ	YWSVRQSKRP	T G S N A
12 Ca.sp.xyl A T .	SLGTV	T.IDGATYDI	YKTTRVNQPS	IEG.TRTFDQ	YWSVRTSKRT	SG
13 Ce.fi.XYLD G	T V	T.SDGGTYDI	YRTQRVNKPS	IEGDSSTFYQ	YWSVRQQKRT	G G
14 Ce.mi.XYLA GTDY.	GSF	. QSDGATYNV	RRCQRVQQPS	IDG. TQTFYQ	I F S V R S P K K G	FGQ156
16 Cl et Yula	KGTI	TOWNDGTYFT	VETTRINUPS	IDG TATEOO	VWSVRKIKKI	s
17 Cl th xylU	KGTI	TVDGGTYEI	YETTRUNOPS	IKG TATFOO	YWSVRTSKRT	s
18 Cl.th.xvlV	KGTI	T. VDGGTYEI	YETTRVNOPS	IKG. TATFOO	YWSVRTSKRT	s
19 Cl.th.xylA	. KGTI	T.VDGGTYEI	YETTRVNQPS	IKG. TATFQQ	YWSVRTSKRT	S
20 Cl.th.xy1B	. KGTI	T.VDGGTYEI	YETTRVNQPS	IKG. TATFQQ	YWSVRTSKRT	S
21 Di.th.xylB A T .	SLGQV	T.IDGGTYDI	YRTTRVNQPS	IVG.TATFDQ	YWSVRTSKRT	SG
22 Fi.su.XyCA K	G T I	T.VDGGTYIV	YRNTRTGPAI	KNSGNVTFYQ	YFSVRTSPRD	С
23 Fi.su.XyCB Q R	. KGEF	T.VDGDTYEI	WQNTRVQQPS	IKG. TQTFPQ	YFSVRKSARS	С
24 Ps.fl.XYLE GTDY.	GSF	. Q S D G A T Y N V	RRCQRVNQPS	IDG. TQTFYQ	YFSVRNPKKG	FGNISG
25 RU. al. XYRA A E .	SLGIV	T. VDGGTYDI	IKTTRIEQPS	IDG. TRTEDQ	IWSVRQDEPT	BUNGTN
27 Ru, fl. XVpB V	NEGTA	T. IDGRTYKT	RKSMRYNOPS	IEG. TKTEPO	YWSVRTSSGS	RNNTTN
28 Ru.fl.XvpD V D	NFGTT	T. IDGKTYKT	RKSMRYNOPS	IEG. TKTFPO	YWSVRTTSGS	RNNTTN
29 Ru.sp.Xyl1 E	NKGTV	T. LNGNTYDI	RKTMRYNOPS	LDG.TATFPO	YWSVRQKSGS	Q N N T T N
30 St.li.XlnB G	T V	T.SDGGTYDI	YKTTRVNKPS	VEG.TRTFDQ	YWSVRQSKRT	G
31 St.li.XlnC G	T V	. SSDGGTYDI	YQTTRYNAPS	VEG.TKTFQQ	YWSVRQSKVT	SGS
32 St.sp.EC3 G	T V	. Y S D G G T Y D I	YKTTRYNAPS	VEG.TRTFDQ	YWSVRQSKVI	G S
33 St.sp.S38 G	т V	T.SDGGTYDV	YQTTRVNAPS	VEG. TKTFNQ	YWSVRQSKRT	G G
34 St.sp.36a G	T V	. HSDGGTYEI	YKTTRYNAPS	VEA. PAAFDN	YWSVRNSKVT	SGS
35 St.th.STIL G	T V	. YSDGGTYDI	YMTTRYNAPS	IEG.TKTENQ	YWSVRQNKRT	6
36 In.IU.IIXA G	KCSV	T ADGGTIDI	I K I I K I N A P S	IDG TOTEOO	INSAKÖSKKI	sg
38 As aw FXLA A T	SLGTV	YSDGSTYOV	CTDTRTNEPS	ITG. TSTETO	YFSVRESTRT	S G
39 As.ka.xvlB T	BGNV	SSDGSVYDI	YTATRTNAPS	IOG. TATESO	YWSVRONKRV	G G
40 As.ka.xynC SLGTV	Y	SDGSTYQV	CTDTRTNEPS	ITG.TSTFTQ	YFSVRESTRT	
41 As.nid.X22 H	. RGTV	. YSDGATYDI	YTATRYNAPS	IEG.TATFEQ	FWSVRQSKRT	G G
42 As.nid.X24 H	. QGTL	. ESDGSTYDI	YTATRENAPS	IEG.TATFTQ	FWSVRQSKRT	SG
43 As.ni.xylA SLGTV	Y	SDGSTYQV	CTDTRTNEPS	ITG.TSTFTQ	YFSVRESTRT	
44 As.ni.XynNBY	. KGTV	T.SDGSVYDI	YTATRTNAAS	IQG.TATFTQ	YWSVRQNKRV	G G
45 As.ni.Xyn5 A T .	SLGTV	. YSDGSTYQV	CTDTRRTRPS	ITG.TSTFTQ	YFSVRESTRT	SG
46 AS.OF.XYGI A T .	ELGTV	. ESDGGTIKI	IKTIKENAPS	IEG.ISTENQ	I W S V R Q S G R V	ec
47 AS.LU.AILA AI .	KGTV	TSDGSTIQV	VTATRTNAAS	LOG TATETO	VWSVRONKRV	G G G G G G G G G G G G G G G G G G G
49 Au pu XVIA SGVT	OLGTV	CSDGATYTY	YTDTRTNOPS	ITG. TSTEKO	YWSVROTKRT	S G
50 Ch.gr.CgXA K	FGTI	OODGSTYTI	AKTTRVNOPS	IEG.TSTFDO	FWSVRQNHRS	S G
51 Ch.gr.CgXB A T .	RLGSV	TT.DGSCYDI	YRTQRVNQPS	IEG.TSTFYQ	FWSVRQNKRS	G G
52 Cla.pur.Xyl Q R	. R G Q V	T.ADGSIYDI	YISTQHNQPS	I L G . T N T F H Q	YWSIRRNKRV	G G
53 Co.ca.Xyll N	. KGTV	T.SDGSSYKI	AQSTRTNQPS	IDG.TRTFQQ	YWSVRQNKRS	SG
54 Co.ca.Xyl2 AQIK.	G S F	. Q T D G G T Y N V	AVSTRYNQPS	IDG.TRTFQQ	YWSVRTQKRV	G G
55 Co.ca.Xy13 Q K	. MGQV	T.CDGSVYDI	WQHTQVNQPS	IVG. TTTFVQ	YISNRVSKRS	TGG
57 CE ap XCC2 C V T	GSF	. QTDGGTYNV	AVSTRYNQPS	IDG. TRTFQQ	IWSVRQQKKV	s
58 Hu in Xvl1 V	KGTF	YTDGDOYDT	FUSTRYNOPS	IDG. TRTFOO	YWSIRKNKRV	G G
59 Ma.gr.XY22 S	RGTL	. OAAGGTYTL	HESTRVNOPS	IEG. TRTFOO	YWAIRQOKRN	S G
60 Ne.fr.xy12 GNKK.	HGDF	T. IDGAQYTV	YENTRY. GPS	IDG.DTNFKQ	YFSIRQQPRD	с
61 Ne.fr.XY3A G	R M V	T. IDGAQYKI	FQMDHT.GPT	INGGSETFKQ	YFSVRQQKRT	S
62 Ne.fr.XY3B G	K M V	T.IDGAQYKI	FQMDHT.GPT	INGGSETFKQ	YFSVRQQKRT	S
63 Ne.pa.XYA1 G	R M V	T.IDGAQYKI	FQMDHT.GPT	INGGSETFKQ	YFSVRQQKRT	S
64 Ne.pa.XYA2 G	K M V	T. IDGAQYKI	FQMDHT.GPT	INGGSETFKQ	YFSVRQQKRT	S
65 Or.st.XynA G	K M V	T. IDGAQYKI	FQMDHT.GPT	INGGNETFKQ	YFSVRQQKRT	S
66 Pa.va.PVX DLGTV		. SCDGSTYTL	GOSTRYNAPS	IDG. TOTENO	IWSVRQDKRS	
67 Pe.sp.AynA	. I K G I	SEDCETYON	CTDTPVNOPS	TTG TSTETO	FESUROGSET	S
69 Pi st XvnA G T	FVTV	KCDGGTYDI	YTAVRVNAPS	IEG.T.TETO	YWSVROSATI	OLAVIKPLTL O
70 Pi.sp.XYA1 F.	GDF	T. IDGGVYTV	YKNVNG	N L T O Y	FSLRKSERTC	
71 Pi.sp.XYA2 GNKK.	. HGDF	T.IDGAKYTV	YENTRT. GPS	IDG.NTTFKQ	YFSIRQQARD	c
72 Sc.co.xy1A H	. KGSV	T.CNGATYDI	LSTWRYNAPS	IDG.TQTFEQ	FWSVRNPKKA	PGG
73 Th.la.XynA DLGTV		. E C D G S I Y R L	GKTTRVNAPS	IDG.TQTFDQ	YWSVRQDKRT	
74 Tr.ha.Xyl KLGEV		. T S D G S V Y D I	YRTQRVNQPS	IIG.TATFYQ	YWSVRRNHRS	
75 Tr.re.Xyn1 VKGTV	****	. TSDGATYTI	WENTRVNEPS	IQG.TATFNQ	YISVRNSPR.	
76 Tr.re.Xyn2 KLGEV		. TSDGSVYDI	YRTQRVNQPS	IIG.TATFYQ	YWSVRRNHRS	
77 Tr.re.Xy2 AT.	KLGEV	T. SDGSVYDI	I KTQRVNQPS	TIG. TATEYQ	IWSVKKNHRS	8G
79 Tr vi vIIR AT	KLGEV	T. SDGSVIDI	YRTORVNOPS	LEG. TSTEVO	YWSVRRTHRS	S G
80 Po.mu.xvpA	MNTM	YVDDGOYDY	YVTDRINOPS	IDG.NTNFKO	YWSVRTOKKT	R G
81 Po.mu.pol	MGTI	NVDGGTYDI	YVTDRINOPS	IDG.TTTFKO	FWSVRTQKKT	S
82 Ph.co.xv1 GTDE.	G S F	T. SGGATYOV	RKCRRTNAPS	IIG. TQSFDQ	YFSVRTPKKG	FGQVSG

2 6 0	270	280	290	300	310	3 2 0	
- A 6 > = =	-HELIX-		B4>	A4>			
STITFS	NHVNAWPSKG	MYLG NSWS	YQVMATEGYQ	. S S G N A N V T V	W		:
SGTISVS	NHFRAWENLG	MNMGKMY	EVALTVEGYQ	. SSGSANVIS	NTLRINGNPL	STISNDESIT	L
. GSATITET	NHVNAWKSHG	MNLG SNWA	YQVMATEGYQ	. SSGSSNVIV	WIQVMAILGI	Q	•
	FUPPINESLO	MANAG NAV	EVALTVECVO	. SSGSANVAI	NULFIGN		•
	NHVN AWKGHG	MNTG SNWA	YOVIATECYO	SECSENVTV	w 1 5 1 1		
AITES	NHVNAWKSHG	MNLG. SNWA	YOVLATEGYK	SSGSSNVTV	W		
	NHVNAWGAAG	MPMG SSWS	YOVLATEGYY	. SSGYSNVTV	W		
G T I S V S	EHFRAWESLG	MNMGNMY	EVALTVEGYQ	. SSGSANVYS	NTLT *		
V S I T F S	NHVNAWRSKG	MNLG SSWA	YOVLATEGYO	. SSGRSNVTV	w		
TITFS	NHVNAWKSHG	MNLG SNWA	YQVMATEGYQ	. S S G S S N V T V	W		
т v т v т	DHFKAWAAKG	LNLGTID	QITLCVEGYQ	. S S G S A N I T Q	NTFTI*		
T I T S G	NHFDAWASKG	MNLG	YMIMATEGYQ	. S S G S S S I T V	SEGS*		
T I T T A	NHFNFWASKG	LNLGNHD	YMVLATEGYQ	. S R G S S D I T V	SEGTGG*		•
G T I S V S	KHFAAWESKG	MPLGKMH	ETAFNIEGYQ	. S S G K A D V N S	MSINIGK		٠
G T I S V T	EHFKQWERMG	MRMGKMY	EVALTVEGYQ	. S S G Y A *			
G T I S V T	EHFKAWERLG	M K M G K M Y	EVALVVEGYQ	. SSGKADVTS	MTITVGNA•.		•
G T I S V T	EHFKAWERLG	MKMGKMY	EVALVVEGYQ	. SSGKADVTS	MTITVGNA•.		•
GTISVI	ENFRAWERLG	MKMGKMI	EVALVVEGIQ	. SSGRADVIS	MIII		•
	DUFPAWANDC	INIG TID	OTTLCVECYO	SSCSANTTO	NT *		
GTINIS	EHMBOWEKMG	LTMG	EAKVLGEAGN	V. NGEVRGGH	MDFPHAKVYV	• • • • • • • • • • •	
GHIDIT	AHMKKWEELG	MKMGKMY	EAKVLVEAG				
T I T F A	NHVNFWASKG	LNLGNHN	YQVLATEGYO	. SRGSSDITV	S E *		
. IEGTISIS	KHFDAWEQVG	LTLGNMY	EVALNIEGYO	. SNGQATIYE	NELTVDGNYS	A D *	
YMKGTIDVT	KHFDAWSAAG	LDMSGTLY	EVSLNIEGYR	. SNGSANVKS	VSVTQGGS	S D N G G	
YMKDSVTVS	AHFDAWSKAG	LDMSGTLY	EVSLNIEGYR	. SNGSANVKS	I T V G G D * .		
YMKDQVSVT	KHFDAWSKAG	LDMSGTLY	EVSLNIEGYR	. SNGSANVKS	I S F D G G * .		
YMKGTISVS	KHFDAWSKAG	LDMSGTLY	EVSLNIEGYR	. S S G N A N V K A	I S F D G S I •		
G T I T T G	NHFDAWARAG	MPLGNFSY	YMIMATEGYQ	. S S G T S S I N V	G G T *		•
G T I T T G	NHFDAWARAG	MNMG QFRY	YMIMATEGYQ	. S S G S S N I T V	S G		٠
G T I T	TGNHFDAWAR	AGMNLGQFQY	YMIMATEGYQ	. SSGSSNITV	SG		•
SITAG	NHEDAWARYG	MPLG. SFNY	IMIMATEGIQ		5		•
GTITTG	NHEDAWARAG	MPLG TEN	YMILATEGYO	SSGSSNITV	GDS*		
TITAG	NHEDAWARHG	MHLG. THD.	YMIMATEGYO	. SSGSSNVTL	G T S G *		1
S V N M K	THFDAWAAKG	MKLGTHN	YQIVATEGYF	. SSGSAQITV	N C A		
T V T V A	NHFNFWAQHG	FGNSDFN	YQVMAVEAWS	. GAGSASVTI	S S		
T V T T S	NHFNAWAKLG	MNLGTHN	YQILATEGYQ		Q		•
SGTVTVA	NHFNFWAQHG	FGNSDFN	YQVMAVEAWS	. GAGSASVTI	S S		
T V T T A	NHFNAWAALG	MRLGTHN	YQIVATEGYQ	. SSGSASITV	Y		•
SVTTQ	NHFDAWSQLG	MTLGTHN	YQIVAVEGYQ	. SSGSASITV	5		•
	NHENEWAQHG	EGNSDEN	TOTUTTECVO	. GAGSASVII			•
	NHENEWACHG	FGNS NEN	YOVMAVEAWN	GVGSASVTI	\$ 5		
	NHEDAWANVG	LOLG.THN	YMILATEGYK	. SSGSATITV	E		
T V T V A	NHFNFWAHHG	FGNSDFN	YQVVAVEAWS	. GAGSASVTI	S S		
	NHFNAWAKLG	MNLGTHN	YQIVATEGYQ	. S S G S S S I T V	Q		
T V T T G	NHFAYWAKYG	F G N S Y N	FQVMPVEAFS	. GTGSASVTV	S		•
S V N V A	AHFNAWAQAG	LKLGSHN	YQIVATEGYQ	. S S G S S S I T V	S		•
S V N M A	AHFNAWAAAG	LQLGTHD	YQIVATEGYY	. SSGSATVNV	GASSDGSTGG	GSTGGGSTNV	S
	VHFNAWRSLG	MPLGTYD	YMIVATEGFR	. SSGSASITV	5		•
SVNMK	THEDAWASKG	INIG QHI	YOTVATEGIE	SECSEDIVV	NCP		•
	CHEDAWAKLG	MNLG. NOWD	YOTISTEGWG	NAAGKSOYTV	SAA		
S V N M O	NHFNAWSRYG	LNLGOHY	YOIVATEGYO	. SSGSSDIYV	ОТО		
S V N M Q	NHFNYWAQHG	FPNRNFN	YQVLAVEGFS	. GSGNANMKL	Ī S G		
S V N M Q	NHFNAWQQHG	MPLGQHY	YQVVATEGYQ	. S S G E S D I Y V	Q T H		
T V N T G	EFFQAWERAG	M R M G N H N	YMIVATEGYR	. SAGNSNINV	Q T P A		
G T I D I T	AHFEQWEKLG	M T M G K M H	EAKVLGEAGS	NNGGTSGTAD	FPFAKVYVKN		•
G H I T V S	DHFKEWAKQG	WGIGNLY	EVALNAEGWQ	. S S G I A D V T K	LDVYTTQKGS	N P A	•
GHITVS	DHFKEWAKQG	WGIGNLY	EVALNAEGWQ	. SSGVADVTL	LDVYTTPKGS	S P A •	•
GHITVS	DHFKEWAKQG	WGIGNLY	EVALNAEGWQ	. SSGIADVTK	LDVITTQKGS	8 P A P	
GHITVS	DHEKEWAKQG	WGIGNLI	EVALNAEGWQ	. SSGVADVIL	LDVITIFKGS	APR *	1
SCTVOTC	CHEDAWASAG	LNVTG DHY	YOIVATEGYE	SSGVABITV	ADVG	A. K	
GTVTTA	NHENAWAKLG	MNLG.	YOIVSTEGYE	. SSGSSTITV	S		
T V T I A	NHFNFWANDG	FGNSNFN	YQVVAVEAWS	. G T G T A S V T V	SA		
NATITETES	NHFDAWKTMT	LEAT	HSTEGYF	. S S G I T Y E Q P	Н Q P H *		
G T I D V T A	HFAQWEKLGL	KMP	EIKVLAEAGN	. T G G G C S G . S	VEIPYAKIYI	NGKDQDGKSK	G
G T I D I T	AHFEQWEKLG	M R M G K M H	EAKVLGEAGS	. T G S G T S G . T	ADFPYAKVYI	К	•
SISGTVDVQ	CHFDAWKGLG	MNLG SEHN	YQIVATEGYQ	. S S G T A T I T V	Τ		•
SGTVQTG	CHFDAWARAG	LNVNGDHY	YQIVATEGYF	. S S G Y A R I T V	ADVGNGDHYY	QIVATEGYF.	•
SGSVNTA	NHENAWASHG	LTLGTMD	TQIVAVEGYF	. SSGSASITV	SGTMDYQIVA	VEGIT	•
. TSGTVTVQ	NHENAWASLG	LALGQMN	YOTVAVEGWG	SSGSASUSV	SGTMDYOTVA	VEGYE	•
	NHENAWAQQG	LTLG. TMD	YOIVAVEGYE	. SSGSASITV	S		
SVNTA	NHENAWAOOG	LTLGTMD	YOIVAVEGYF	. SSGSASITV	S		
S V N T A	NHFNAWASHG	LTLGTMD	YQIVAVEGYF	. SSGSASITV	s		
T V H V N	HHFYNWQEMG	L K V G K V Y	EASLNIEGYQ	. SAGSATVNK	NEVVQTTEQI	GLIISSNLDE	I
G V I S V S	KHFEAWTSKG	LNLGLMY	EASLTIEGYQ	. S S G S A T V N Q	N D V T G G		•
S V N F A	DHVQYWASKG	LPLGTHA	HQIFATEGYQ	. S S G F A D I T V	5		•

-

Table 2											
Isoelectric point,	pH and	Т°	optimum	of	family	11	xylanases	of	known	sequence	;

Organism	Xylanase	pI	pH optimum	Optimum T°	Reference
Bacteria					
Aeromonas caviae	Xylanase I	7.1	7.0	55	Kubata et al. (1992)
Bacillus agradhaerens	xyl 11	8.8	n.d.	n.d.	Sabini et al. (1999)
Bacillus pumilus	XYNA	n.d.	6.5	45-60	Panbangred et al. (1983)
Bacillus sp. D3	Xylanase	7.7	6.0	75	Harris et al. (1997)
Bacillus sp. 41 M1	Xylanase J	5.5	9.0	50	Nakamura et al. (1992)
Bacillus subtilis	Xylanase A	8.9	n.d	n.d.	Paice et al. (1986)
Caldicellulosiruptor sp. Rt69B.1	Xylanase	n.d.	5.5	70	Morris et al. (1999)
Clostridium acetobutylicum	Xylanase B	8.5	5.5-6	60	Lee et al. (1987)
Clostridium stercorarium	XynA	4.5	7.0	75	Sakka et al. (1994)
Clostridium thermocellum	XynA	n.d.	6.5	65	Hayashi et al. (1999)
Dictroglomus thermophilum	Xylanase B	n.d	6.5	85	Morris et al. (1998)
Fibrobacter succinogenes	XynC	6.2	6.5	n.d.	Paradis et al. (1993)
Ruminococcus flavefaciens	XYLA	5.0	5.5	50	Flint et al. (1991)
					García-Campayo et al. (1993)
Streptomyces lividans	XlnB	8.4	6.5	55	Kluepfel et al. (1990)
Streptomyces lividans	XlnC	>10.25	6.0	57	Kluepfel et al. (1992)
Streptomyces sp. EC3	Xylanase	9.1	n.d.	n.d.	Mazy-Servais et al. (1996)
Streptomyces sp. S38	Xyl1	9.8	6.0-6.5	55-60	Georis et al. (2000)
Streptomyces thermoviolaceus	STX-II	8.0	7.0	60	Tsujibo et al. (1992)
Thermomonospora fusca	TfxA	10	7.0	n.d.	Irwin et al. (1994)
Fungi					
Aspergillus awamori	EXLA	3.7	n.d.	n.d.	Hessing et al. (1994)
Aspergillus kawachii	XynC	3.5	2.0	50	Ito et al. (1992)
Aspergillus nidulans	X22	6.4	5.5	62	Fernández-Espinar et al. (1993)
Aspergillus nidulans	X24	3.5	5.5	52	Fernández-Espinar et al. (1996)
Aspergillus niger	Xyl A (or I)	3.7	3.0	n.d.	Maat et al. (1992) Krengel and Dijkstra (1996)
Aspergillus niger	XynNB	n.d.	5.0	n.d.	Kinoshita et al. (1995)
Aspergillus tubigensis	XYLA	3.6	n.d.	n.d.	de Graaff et al. (1994)
Aureobasidium pullulans	XynA (APX II)	9.4	4.8	54	Li et al. (1993)
Cochliobolus carbonum	Xyl1	>9.3	4.0-8.0	45	Holden and Walton (1992)
Cochliobolus carbonum	Xyl2 and 3	>9.3	5.0	n.d.	Holden and Walton (1992)
Cryptococcus sp. S-2	Xyn-CS2	7.4	2.0	40	Iefuji et al. (1996)
Magnaporthe grisea	XYN22	9.7	n.d.	n.d.	Wu et al. (1995)
Paecilomyces varioti	PVX	3.9	5.5-7.0	65	Krishnamurthy and Vithayathil (1989)
Penicillium sp. 40	XynA	4.7	2.0	50	Kimura et al. (2000)
Penicillium purpurogenum	XynB	5.9	3.5	50	Belancic et al. (1995)
Schizophyllum commune	Xylanase A	4.5	5.0	50	Jurasek and Paice (1988)
Thermomyces lanuginosus	XynA	4.1	6.5	65	Gomes et al. (1993) Schlacher et al. (1996)
Trichoderma harzianum E58	20 kD xylanase	9.4	5.0	50	Wong and Saddler (1992)
Trichoderma reesei	XYNI	5.2	3.5-4	n.d.	Törrönen et al. (1992)
Trichoderma reesei	XYNII	9.0	4.5-5.5	n.d.	Törrönen et al. (1992)
Trichoderma viride	Xylanase IIA	9.3	5.0	53	Wong and Saddler (1992)

n.d.: not determined.

Organism	Protein	PDB code	References
Bacteria			
Bacillus agaradhaerens	Xylanase	1qh6	Sabini et al. (1999)
Bacillus circulans	XLNA	1xnb	Wakarchuk et al. (1994a)
Bacillus sp. D3	Xylanase ^a		Harris et al. (1997)
Dictyoglomus thermophilum	XynB ^a	1fsj	McCarthy et al. (2000)
Fungi			
Aspergillus kawachii	XynC	1bk1	Fushinobu et al. (1998)
Aspergillus niger	XylI or A	lukr	Krengel and Dijkstra (1996)
Paecilomyces varioti	Xylanase ^a	1pvx	Kumar et al. (2000)
Thermomyces lanuginosus	XynA ^a	lyna	Gruber et al. (1998)
Trichoderma harzianum E58	Xylanase	1xnd	Campbell et al. (1993)
Trichoderma reesei	XYNI	1xyn	Törrönen and Rouvinen (1995)
Trichoderma reesei	XYNII	1xyp	Törrönen et al. (1994)

Table 3 Family 11 endoxylanases of known three-dimensional structure

^a Thermophilic protein.

package (MSI, San Diego) or the FSSP program (Holm and Sander, 1996). In addition, the use of CLUSTAL to globally align the regions inserted between these anchor points allows to highlight several key residues in less conserved regions. In short, the alignment obtained on the basis of sequence similarity also reflects structural similarities among the endoxylanases.

The alignment is shown in Fig. 1. The residues are numbered on top; the numbering exceeds the length of any individual sequence since it includes all gaps assigned by the alignment. The secondary structure elements are numbered as shown in Fig. 2.

Four boxes (shaded in Fig. 1) are found along the whole set of 82 sequences and correspond to the PSCRs. Interestingly, the sequence alignment provides a pattern of aligned segments and gaps consistent with the observed secondary structure elements. Indeed, the lowest sequence homology is found in the regions between beta strands (residues 94–103 between A3 and B3; residues 111–130 between B3 and A5; residues 238–254 between B7 and A6). The region corresponding to the thumb, (between strands B7 and B8) is, however, very well conserved along all the sequences, except for *Piromyces* sp. XYLA. This last enzyme is reported to be the inactive form of the protein, in contrast to *Piromyces* sp. XYLB, the active form, that also contains the conserved segment defining the thumb region. The cord region (between B6 and B9) is also conserved. The PSCR's, in particular, correspond to secondary structure elements: box 1 to B5, box 2 to B6, box 3 to B8 and box 4 to the helix.

The amino terminal regions of the aligned sequences show no similarities in the first 30 or so residues. One sequence is particularly long in this region (*C. acetobutylicum*). One of the sequences (*P. multivesiculatum*, AB011274) starts only at residue 81, and lacks strands B1, B2 and part of A2, suggesting that B1 and B2 may not be necessary for enzymatic activity. Residue 40 is a G in 60 sequences, and is missing in 15. It belongs to B1 in the structure of *T. reesei* XYN II (Törrönen et al., 1994). Its importance is unclear, since B1 is missing totally or in part in the indicated 15 sequences.

The segment corresponding to B2 shows good similarity among the sequences. Position 52 is in most cases an aromatic residue: 63 sequences have a Y, while 14 show a W or a F. At position 55, W predominates (70 sequences), while 62 sequences have a D in position 57. Between B2 and A2, two long insertions (probably forming a loop) are found in the endoxylanases from *Penicillium* sp. and *Pichia stipitis*. 50 G's are observed in position 76 and 50 in position 77. Strand A2 shows low similarity except at position 81, where 24 Y and

35 M are found. In the loop linking A2 and A3, 61 G's are observed in position 86 and 67 in position 87, but not necessarily together in the same sequence. In A3, a highly conserved F or Y (79 sequences) is found in position 89 and 75 W in 93; in this last case, the few replacements are F or Y; only one non-conserved replacement (H) is observed in *P. stipitis*.

Residue 100 is in all cases a D (27) or N (65); as we will see below, this residue is related to the pH optimum of the enzyme. At the end of B3, G109 is present in 79 sequences (it is replaced by a K in *Bacillus agaradhaerens*) and allows a special twist to the chain (Törrönen and Rouvinen, 1997).

A5 is not present in *P. stipitis*, which shows a big gap between 110 and 144; in this sequence, B3 and B5 are probably linked by a short loop. B5

corresponds to the first box detected by MATCH-BOX, indicating a highly conserved stretch of the sequence, particularly YGW (152–154), present in all 82 enzymes. Y152 is strongly hydrogen bonded to E167; it seems to be of great functional importance since its mutation to F (in *Bacillus circulans* XLNA) leads to a totally inactive enzyme (Wakarchuk et al., 1994a). At position 150 21 Cys are present, the highest number found at a particular location in all the sequences (see below).

The next box corresponds to B6. It is preceded by a highly conserved Pro at 164 (present in 74 sequences) and Leu 165 (74 sequences). E167 is common to all sequences and corresponds to one of the catalytic residues (the nucleophile); it is followed by two highly conserved Y's (75 in position 168, replaced in the rest of the enzymes by F;

Fig. 2. Topology diagram of the family 11 endoxylanases. The residue numbering refers to that of Fig. 1. The figure is adapted from Törrönen et al. (1994).

and common to all in 169) and by two aliphatic hydrophobic residues in positions 170 and 171. Tyr 169 links both catalytic glutamates, acting as a charge stabilizing residue (Törrönen and Rouvinen, 1997), and its mutation to F in XLNA of *B. circulans* leads to a large decrease in activity (Wakarchuk et al., 1994a).

The 'cord' shows low similarity, except for a Pro (found in 70 sequences and missing in 7) in position 185. B9 is a stretch of very low similarity and varies considerably in length, but it is followed by the third high similarity box, corresponding mainly to B8. Between B9 and B8, two highly conserved residues are apparent: D204 (in 76 sequences) and G205 (in 80 sequences); this last residue is considered important in hairpin formation (Törrönen and Rouvinen, 1997). Y208 is present in all 82 sequences, R215 in 72 and N217 in 69 (this last residue is missing in 8 sequences).

The 'thumb' is well conserved; it has a consensus sequence PSIXG where X is almost any residue and the others show few and mainly homologous replacements. Pro 219 gives a twist to the strand at the beginning of the thumb. B7 is also well conserved; residue 227 is a T in 77 sequences and 228 is F in 81 cases; a consensus sequence QYWSVR can be proposed for residues 230–235 (R is replaced by K in one instance and the other residues show mainly conservative replacements).

The loop connecting B7 and A6 differs in length; the longest being in the enzyme from *P. stipitis*, which also shows the longest loop between B2 and A2. No significant similarities are apparent in A6, which is immediately followed by the helix.

The last box of high similarity comprises the carboxyl end of the α -helix and the following 6–7 residues. H262 is present in 79 sequences, W263 in 80 and G270 in 79.

B4 does not show high similarities, except for E287 (boldface in Fig. 1), a residue present in all sequences, which corresponds to the acid-base glutamate participating in catalysis, and which is followed by a highly conserved G (70 sequences). The last well defined secondary structure is A4. A highly conserved consensus sequence SSGS precedes and starts this strand.

The carboxyl terminus of the sequences is highly variable in length. The longest is found in B.

agaradhaerens and *P. multivesiculatum*, stretching 25 and 22 residues, respectively, beyond the end of A4.

3.2. Acidophily and thermostability

A number of family 11 endoxylanases have been reported to be acidophilic. It has been postulated that for xylanases that function optimally under acidic conditions, residues spatially adjacent to the acid/base catalytic glutamate influence the pH optimum (Törrönen and Rouvinen, 1995). In particular, the substitution of N100 (underlined in Fig. 1) by D shifts the pH optimum from 5.7 to 4.6, as has been demonstrated by mutational, kinetic, and structural studies of N100D in B. circulans XYLA (Joshi et al., 2000). This agrees with the mutational analysis of xylanase C of A. kawachii, in which the single substitution of Asp 100 to Asn at this key position dramatically elevates its pH optimum from 2 to 5 (Fushinobu et al., 1998). Structural studies of xylanase A (or I) from A. niger led to a similar conclusion. In the crystal structure of this enzyme of low pH optimum (Krengel and Dijkstra, 1996), Asp 100 is assigned a critical role.

An examination of the enzymes of known sequence for which the pH optimum has been determined (Table 2), shows that this correlation holds true with only one exception. The enzymes showing a pH optimum below 5 have D at position 100, while N is present in those with pH optima of 5 or more. The exception is XynC from *F. succinogenes*, an anaerobic bacterium from the rumen. This enzyme shows a pH optimum of 6.5 but has a D at position 100. This enzyme has two catalytic domains, and the pH optimum reported in Table 2 corresponds to the native enzyme; the separate domains have a pH optimum of 6.0 (Zhu et al., 1994).

In conclusion, there is a strong correlation in that the residue hydrogen bonded to the general acid/ base catalyst at position 100 is asparagine in the so-called 'alkaline' xylanases, whereas it is aspartic acid in those with a more acidic pH optimum.

Thermostability is an important issue in the properties of endoxylanases, due to their biotechnological applications, particularly in cellulose biobleaching. Of the enzymes listed in Table 2, seven of bacterial origin (*Bacillus* D3, *Caldicellu-losiruptor* sp., *Clostridium stercorarium*, *Clostridium thermocellum*, *Dictyoglomus thermophilum*, *Streptomyces thermoviolaceus* and *Thermomonospora fusca*) and two from fungi (*Paecilomyces varioti* and *Thermomyces lanuginosus*) are considered thermophilic, based on their optimal temperature and stability at high temperature. Table 3 shows that the three-dimensional structure of four of these enzymes has been determined.

Thermophilicity and thermostability may be explained by a variety of factors and structural parameters (Kumar et al., 2000). Of those, the importance of S–S bridges and aromatic 'sticky patches' can be analyzed by sequence alignment. Additional structural features potentially involved in thermal stability, such as salt bridges, aromatic interactions and entropic effects have been postulated in family 11 xylanases (Georis et al., 2000).

Cysteine residues are not very common in these enzymes. Of the total number of residues in the 82 sequences listed in Table 1, only 117 are Cys, a 0.7%. Twenty-seven of the sequences have no Cys and 14 have only one; therefore, at least half of the total possesses no disulfide bridges. The threedimensional structure shows that an S-S bridge is found in xylanase A from A. niger connecting Cys 186 to Cys 211, thus attaching the cord to the large beta-sheet (B8) (Krengel and Dijkstra, 1996). These two half-cystine residues are conserved in a few other fungal family 11 xylanases (A. kawachii, Aspergillus awamori, A. niger Xvn5, Aspergillus tubigensis, Cryptococcus sp. and Penicillium purpurogenum). The xylanases from the bacteria Cellvibrio mixtus and Pseudomonas fluorescens and of the insect Phaedon cochleariae have Cys at positions 188 and 213, which may be forming a similar bridge. The presence of this disulfide bridge may influence the stability of these proteins, although it does not give (at least to the enzymes analyzed so far) a thermophilic character.

Of the seven thermophilic xylanases listed, three have no cysteines, and the three-dimensional structure of the *Dictyoglomus thermophilus* enzyme shows no S–S bonds, although its sequence has 3 Cys. On the other hand, *T. lanuginosus* and

P. varioti xylanases, both thermophilic, do have an S–S bridge linking Cys 203 (located in B9) and Cys 261 (in the α helix). *Cochliobolus carbonum* Xyl3 and *Schizophyllum commune* XylA also possess only two Cys and in the same positions; the T° optimum of the former has not been reported, while the latter has a value of only 50 °C (Table 2). All these results suggest that S–S bridges are unlikely to be of importance in the thermophilicity of family 11 xylanases.

As pointed out by Turunen et al. (2001), thermophilicity (activity at high temperature) and thermostability do not necessarily depend on the same structural factors. They introduced a disulfide bridge plus other minor mutations in T. *reesei* XynII (C203-C261) significantly increasing the thermostability without affecting the temperature optimum. Wakarchuk et al. (1994b) have introduced an S–S bridge at the same position in *B. circulans* xylanase, obtaining similar results. Thus, the introduction of S–S bridges to enzymes may affect both properties differently.

Harris et al. (1997) propose that the Bacillus D3 xylanase (lacking S-S bridges) is stabilized 'sticky patches' between pairs of through molecules through the interaction of surface aromatic residues. These residues are Tyr 53, 78, 120, 201, 290, 295 and Trp 207 and 214. When the alignment is analyzed, it shows that Tyr 78, 120 and Trp 207 are unique to this sequence (no aromatic residues are present in those positions in the remaining 81 sequences), while Trp 214 is shared by only 1 sequence (not thermophilic) and no other aromatic residues are found in this location. The remaining four residues show no clear alignment pattern. Therefore, it can be concluded that the 'sticky patch' pattern described for the Bacillus D3 xylanase is very unique, and it is unlikely to play an important role in stabilizing the other thermophilic family 11 xylanases of known sequence.

Shibuya et al. (2000) using random gene shuffling between a mesophilic (*S. lividans* XlnB) and a thermophilic (*T. fusca* TfxA) enzyme have shown the importance of the amino terminal segment of the protein in temperature stability. However, if the first 50 residues (our numbering) of the thermophilic enzymes in this study are aligned, no

Fig. 3. Results from the factor analysis. Graphical representation of the sequences in the plane of factors 2 and 3. Each point corresponds to a sequence, the position on the plot being associated to a percentage of the total variability within the data set. Distances separating each position in the plot are directly related to the sequence homology. Groups containing mainly sequences of fungi (I, II, III, IV) are marked by filled symbols.

clear similarity pattern is observed, indicating that, again, the proposed thermostabilizing factor may be unique to the T. fusca enzyme.

3.3. Classification of the family 11 xylanases

A factor analysis (Explore subprogram of MATCHBOX) was performed in order to define groups and subgroups among the 82 sequences under study. Sequences have been represented in a three-dimensional space, each factor being associated to a percentage of the total variability between the sequences. The first factor is generally trivial, and the grouping of the sequences was performed in the plane of factors 2 and 3 (Depiereux and Feytmans, 1992). Graphical representation of the sequences in the plane of factors 2 and 3 (Fig. 3) was obtained directly from the program MATCH-BOX and represented via Excel. The distances separating each position in the plot are directly related to the sequence homology, thus allowing a

classification. Sequences close in the plane of factors 2 and 3 were grouped/clustered, leading to the classification presented in Table 4. A first clustering, based on the distance between coordinates in the plane of factors 2 and 3, led to the definition of a total of seven groups. Those groups were labeled (A, B, C, I, II, III, IV) a posteriori, on the basis of the origin (fungal or bacterial) of the sequences belonging to them. The two larger groups (I and III), were further divided into subgroups on the basis of the distance between coordinates in the plane of factors 2 and 3 within the group. Group B, although containing many sequences (13) was not divided into subgroups as the distribution of points is narrow (factor 2 comprised between -0.453 and -0.518; factor 3 comprised between 0.015 and 0.087) in comparison to the distribution of, for example, group III (-0.431 <factor 2 < -0.240; -0.236 < factor 3 < -0.161).

This method avoids affecting the sequence classification by misalignments occurring in a previous step, and represents the sequences on a plane taking into account Euclidian distance rather than hierarchical merging. The graphical representation of the eigenvectors (sequence coordinates) in the plane of factors 2 and 3 (Fig. 3) allows to classify and group the sequences by eye, since the distances separating each position in the plot are directly related to differences in the sequences. The classification obtained has been validated by a clustering (Ward method) performed on the sequence coordinates.

Interestingly, the groups obtained from the factor analysis are highly homogeneous, meaning that they mostly contain only sequences from either bacteria or fungi. It is also noteworthy that some bacterial sequences are more homologous to

Classification of family 11 xylanases based on a factor analysis

Table 4

sequences of fungal endoxylanases than to sequences of other bacteria (see for example group I).

In this work a robust classification methodology based on factor analysis, without previous sequence alignment and without reference to any phylogenetic inference is applied for the first time to classify a large set of sequences. Interestingly, the classification of xylanases presented in Table 4 compares favorably with previous classifications based on smaller sequence datasets. In particular, our results are in good agreement with the classification presented by Georis et al. (1999) deduced from a phylogenetic tree analysis on 63 sequences. According to their study, family 11 endoxylanases were subdivided into six main groups: three for

	5 5		5		
Ia	Tr.re.XYNI	II	As.ni.XylA	A	Ce.fi.XYLD
Ia	Tr.re.XYNII	II	Pe.pu.XynB	A	Th.fu.TfxA
Ia	Tr.vi.xIIA	II	As.tu.XYLA	A	St.sp.S38
Ia	Tr.vi.xIIB	II	As.ni.Xyn5	A	St.th.STII
Ia	Th.la.XynA	II	As.ka.XynC	A	St.li.XlnC
Ia	Pe.sp.XynA	II	As.aw.EXLA	A	Ba.ci.1xnb
Ia	Pa.va.1pvx	II	Au.pu.XylA	Α	St.sp.EC3
Ia	Ch.gr.CgXB			A	St.li.XlnB
Ia	Aso.pi.xyl	IIIa	Ne.fr.XY3A	A	Ba.su.xylA
Ia	As.or.XyG1	IIIa	Ne.fr.XY3B	A	Ba.sp.xylA
Ia	As.nid.X24	IIIa	Ne.pa.XYA1		
Ia	As.ka.xylB	IIIa	Ne.pa.XYA2	С	Di.th.xylB
Ia	Tr.ha.1xnd	IIIa	Orpin.XynA	С	Ru.fl.XynB
Ia	As.nid.X22			С	Ru.fl.XynD
Ia	Ma.gr.XY22	IIIb	Fi.su.XyCA	С	Ca.sp.xyl
Ia	Co.ca.Xyl1	IIIb	Fi.su.XyCB	С	Ru.sp.Xyl1
Ia	Ch.gr.CgXA	IIIb	Pi.sp.XYA1	С	Ru.fl.XynA
Ia	As.tu.xylB	IIIb	Pi.sp.XYA2		
Ia	As.ni.XynNB	IIIb	Ne.fr.xyl2	В	Ba.ag.1qh6
				В	Ru.al.XynA
Ib	Co.ca.Xyl2	IV	Co.ca.Xyl3	В	Po.mu.POX
Ib	Cla.pu.Xyl	IV	Pi.st.XynA	В	Po.mu.xylA
Ib	Co.sa.xyl			В	Cl.ac.xylB
Ib	Sc.co.xylA			В	Ba.sp.xylJ
Ib	Hu.in.Xyl1			В	Ba.sp.xylY
Ib	Ba.D3.BDX			В	Cl.th.xylV
				В	Cl.st.XylA
Ic	Ce.mi.XYLA			В	Cl.th.xylA
Ic	Ps.fl.XYLE			В	Cl.th.xylB
Ic	Ph.co.xyl			В	Cl.th.xylU
	``			В	Ba.pu.XYNA

Sequence of bacterial enzymes are in italics and enzymes produced by protozooa or insects are underlined. For abbreviations see Table 1 and Fig. 1.

fungi, two for Gram positive bacteria and one for Gram negative bacteria.

A similar subdivision is found here: groups I, II and III contain mainly fungal enzymes. The enzymes in groups I and II are mostly the 20 kDa enzymes from *Ascomyceta* and *Basidiomyceta*. Most enzymes of group I exhibit a basic pI. Those in group II show an acidic pI. Enzymes of group III are mainly produced by anaerobic fungi. Like in the classification proposed by Georis et al. (1999) two enzymes produced by *F. succinogenes* (XyCA and XyCB), an anaerobic Gram-negative bacterium, also fall in this group.

In addition to those three groups associated mainly to fungal enzymes, a fourth group that was not present in previous classifications emerges from the present factor analysis. It only contains two enzymes. One is produced by *C. carbonum* (Xyl3) and is clearly distinct from Xyl1 and Xyl2 produced by the same fungus. In the classification proposed by Georis et al. (1999), this enzyme is isolated in the unrooted phylogenetic tree. The second enzyme in group IV is produced by *P. stipitis* (XynA); this enzyme has not been included in any previous classification.

Bacterial enzymes are mainly divided into three groups (A, B, C). Group A contains mainly enzymes produced by members of the Actinomycetaceae and the Bacillaceae families, strictly aerobic Gram-positive bacteria. Groups B and C are more closely related and contain mainly enzymes from anaerobic Gram-positive bacteria, such as those from Clostridium or Ruminococcus, which usually live in the rumen. Two bacterial enzymes, XylE and XylA xylanases from *P. fluorescens* and *C. mixtus*, respectively, strictly aerobic Gram-negative bacteria, are found in subgroup Ic. In terms of sequence similarities, those two Gram-negative bacterial enzymes more closely resemble xylanases produced by fungi (group I) than other Gram-positive bacterial enzymes (e.g. groups A, B, C). They were also classified in a distinct group by Georis et al. (1999).

3.4. Biotechnological significance

Xylanases are finding an increasing number of applications, both alone and in combination with other enzymes. Among them are cellulose pulp biobleaching (Buchert et al., 1994), bread-making (Courtin et al., 1999) and saccharification of lignocellulosic biomass (Lee, 1997). These applications require enzymes capable of operating under specific and often unnatural conditions. Parameters of particular interest are thermostability and pH optimum. Biobleaching, for instance, requires thermostable and alkali-stable enzymes. Family 11 xylanases may be of particular interest in biobleaching due to their smaller size; a fact which may facilitate penetration in the cellulose fiber network.

Optimizing enzyme properties for a particular application can be achieved by random and site-directed mutagenesis. Arase et al. (1993) have achieved a significant stabilization of *Bacillus pumilus* XynA by random mutagenesis. Four heatresistant mutants were isolated, and the stabilizing mutations were found to be clustered in the N-terminal region. In three of the four mutants, a mutation of G92 to S or to D was observed. Residue 92 is located in the A3 strand, and it is always a polar or charged residue except in *B. pumilus* and *Penicillium* sp. where it is a G (Fig. 1); the introduction of an S or a D at that position may allow the formation of a stabilizing hydrogen bond.

An example of the use of site-directed mutagenesis is given by Turunen et al. (2001). They have introduced a disulfide bridge by means of the mutations S203C-N261C, thus increasing significantly the half-life of the enzyme at 65°. As shown in Fig. 1, the thermophilic xylanase from *T. lanuginosus* possesses this bridge.

It has proved difficult to manipulate the properties of an enzyme in a predictable manner (Törrönen and Rouvinen, 1997). However, for the design and protein engineering of endoxylanases with properties suitable for their different applications, a good knowledge of its sequence and structure is a necessary condition. The information and analysis presented in this publication should be useful for this purpose.

Acknowledgements

This work was financed in part by grants from DIPUC (Dirección de Investigación y Postgrado,

Pontificia Universidad Católica de Chile) and FONDECYT grants 1960241, 3950015 and 8990004 (Líneas Complementarias).

References

- Apel, P.C., Panaccione, D.G., Holden, F.R., Walton, J.D., 1993. Cloning and targeted gene disruption of XYL1, a β-1,4-xylanase gene from the maize pathogen *Cochliobolus carbonum*. Molec. Plant Microbe Interact. 6, 467–473.
- Apel-Birkhold, P.C., Walton, J.D., 1996. Cloning, disruption and expression of two endo-β 1,4-xylanase genes, XYL2 and XYL3 from *Cochliobolus carbonum*. Appl. Environ. Microbiol. 62, 4129–4135.
- Arase, A., Yomo, T., Urabe, I., Hata, Y., Katsube, Y., Okada, H., 1993. Stabilization of xylanase by random mutagenesis. FEBS Lett. 316, 123–127.
- Belancic, A., Scarpa, J., Peirano, A., Díaz, R., Steiner, J., Eyzaguirre, J., 1995. *Penicillium purpurogenum* produces several xylanases: purification and properties of two of the enzymes. J. Biotechnol. 41, 71–79.
- Bertrand, L., Vertommen, D., Depiereux, E., Hue, L., Rider, M.H., Feytmans, E., 1997. Modelling the 2-kinase domain of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase on adenylate kinase. Biochem. J. 321, 615–621 erratum appears in Biochem. J. 323 (1997) 864.
- Bertrand, L., Vertommen, D., Freeman, P.M., Wouters, J., Depiereux, E., Di Pietro, A., Hue, L., Rider, M.H., 1998. Mutagenesis of the fructose-6-phosphate-binding site in the 2-kinase domain of 6-phosphofructo-2-kinase/fructose-2,6bisphosphatase. Eur. J. Biochem. 254, 490–496.
- Biely, P., 1985. Microbial xylanolytic systems. Trends Biotechnol. 3, 286–290.
- Biely, P., Vrsanská, M., Tenkanen, M., Kluepfel, D., 1997. Endo-β-1,4-xylanase families: differences in catalytic properties. J. Biotechnol. 57, 151–166.
- Briffeuil, P., Baudoux, G., Lambert, C., De Bolle, X., Vinals, C., Feytmans, E., Depiereux, E., 1998. Comparative analysis of seven multiple protein sequence alignment servers: clues to enhance reliability of predictions. Bioinformatics 14, 357–366.
- Buchert, J., Tenkanen, M., Kantelinen, A., Viikari, L., 1994. Application of xylanases in the pulp and paper industry. Bioresource Technol. 50, 65–72.
- Campbell, R., Rose, D., Wakarchuk, W., To, R., Sung, W., Yaguchi, M., 1993. A comparison of the structures of the 20 kD xylanases from *Trichoderma harzianum* and *Bacillus circulans*. In: Suouminen, P., Reinikainen, T. (Eds.), Proceedings of the Second TRICEL Symposium on *Trichoderma reesei* Cellulases and other Hydrolases. Espoo, Finland, pp. 63–72.
- Cho, S., Choi, Y., 1995. Nucleotide sequence analysis of an endo-xylanase gene (xynA) from *Bacillus stearothermophilus*. J. Microbiol. Biotechnol. 5, 117–124.
- Courtin, C.M., Roelants, A., Delcour, J.A., 1999. Fractiona-

tion-reconstitution experiments provide insight into the role of endoxylanases in bread-making. J. Agric. Food Chem. 47, 1870–1877.

- Dalboge, H., Heldt-Hansen, H.P., 1994. A novel method for efficient expression cloning of fungal enzyme genes. Mol. Gen. Genet. 243, 253–260.
- De Bolle, X., Vinals, C., Prozzi, D., Paquet, J.-Y., Leplae, R., Depiereux, E., Vandenhaute, J., Feytmans, E., 1995. Identification of residues potentially involved in the interactions between subunits in yeast alcohol dehydrogenases. Eur. J. Biochem. 231, 214–219.
- de Fays, K., Tibor, A., Lambert, C., Vinals, C., Denoel, P., De Bolle, X., Wouters, J., Letesson, J.J., Depiereux, E., 1999.
 Structure and function prediction of the *Brucella abortus* P39 protein by comparative modeling with marginal sequence similarities. Prot. Eng. 12, 217–223.
- de Graaff, L.H., van den Broeck, H.C., van Ooijen, A.J.J., Visser, J., 1994. Regulation of the xylanase-encoding xlnA gene of *Aspergillus tubigensis*. Mol. Microbiol. 12, 479– 490.
- Depiereux, E., Feytmans, E., 1991. Simultaneous and multivariate alignment of protein sequences. Correspondence between physico-chemical profiles and structurally conserved regions (SCR's). Prot. Eng. 4, 603–613.
- Depiereux, E., Feytmans, E., 1992. MATCH-BOX: a fundamentally new algorithm for the simultaneous alignment of several protein sequences. Comp. App. Biosci. 8, 501–509.
- Depiereux, E., Baudoux, G., Briffeuil, P., Reginste, I., De Bolle, X., Vinals, C., Feytmans, E., 1997. Match-Box_ server: a multiple sequence alignment tool placing emphasis on reliability. Comp. App. Biosci. 13, 249–256.
- Díaz, R., Sapag, A., Peirano, A., Steiner, J., Eyzaguirre, J., 1997. Cloning, sequencing and expression of the cDNA of endoxylanase B from *Penicillium purpurogenum*. Gene 187, 247–251.
- Durand, R., Rascle, C., Fevre, M., 1996. Molecular characterization of xyn 3, a member of the endoxylanase multigene family of the rumen anaerobic fungus *Neocallimastix frontalis*. Curr. Genet. 30, 531–540.
- Emami, K., Hack, E., 2001. Characterization of a xylanase gene from *Cochliobolus sativus* and its expression. Mycol. Res. 105, 352–359.
- Fanutti, C., Ponyi, T., Black, G.W., Hazlewood, G.P., Gilbert, H.J., 1995. The conserved noncatalytic 40-residue sequence in cellulases and hemicellulases from anaerobic fungi functions as a protein docking domain. J. Biol. Chem. 270, 29314–29322.
- Fernández-Espinar, M.T., Piñaga, F., Sanz, P., Ramón, D., Vallés, S., 1993. Purification and characterization of a neutral endoxylanase from *Aspergillus nidulans*. FEMS Microbiol. Lett. 113, 223–228.
- Fernández-Espinar, M.T., Vallés, S., Piñaga, F., Pérez-González, J.A., Ramón, D., 1996. Construction of an Aspergillus nidulans multicopy transformant for the xlnB gene and its use in purifying the minor X₂₄ xylanase. Appl. Microbiol. Biotechnol. 45, 338–341.

- Flint, H.J., McPherson, C.A., Martin, J., 1991. Expression of two xylanase genes from the rumen cellulolytic bacterium *Ruminococcus flavefaciens* cloned in pUC13. J. Gen. Microbiol. 137, 123–129.
- Flint, H.J., Martin, J., McPherson, C.A., Daniel, A.S., Zhang, J.-X., 1993. A bifunctional enzyme with separate xylanase and β-(1,3-1,4) glucanase domains, encoded by the *xynD* gene of *Ruminococcus flavefaciens*. J. Bacteriol. 175, 2943– 2951.
- Fukusaki, E., Panbangred, W., Shinmyo, A., Okada, H., 1984. The complete nucleotide sequence of the xylanase gene (xynA) of *Bacillus pumilus*. FEBS Lett. 171, 197–201.
- Fushinobu, S., Ito, K., Konno, M., Wakagi, T., Matsuzawa, H., 1998. Crystallographic and mutational analyses of an extremely acidophilic and acid-stable xylanase: Biased distribution of acidic residues and importance of Asp 37 for catalysis at low pH. Prot. Eng. 11, 1121–1128.
- García-Campayo, V., McCrae, S., Zhang, J.-X., Flint, H.J., Wood, T.M., 1993. Mode of action, kinetic properties and physicochemical characterization of two different domains of a bifunctional $(1 \rightarrow 4)$ - β -D-xylanase from *Ruminococcus flavefaciens* expressed separately in *Escherichia coli*. Biochem. J. 296, 235–243.
- Georis, J., Giannotta, F., Lamotte-Brasseur, J., Devreese, B., van Beeumen, J., Granier, B., Frère, J.M., 1999. Sequence, overproduction and purification of the family 11 endobeta-1,4, xylanase encoded by the xyl1 gene of *Streptomyces* sp. S38. Gene 237, 123–133.
- Georis, J., de Lemos-Esteves, F., Lamotte-Brasseur, J., Bougnet, V., Devreese, B., Giannotta, F., Granier, B., Frère, J.M., 2000. An additional aromatic interaction improves the thermostability and thermophilicity of a mesophilic family 11 xylanase: structural basis and molecular study. Prot. Sci. 9, 466–475.
- Giesbert, S., Leppping, H.-B., Tenberge, K.B., Tudzynski, P., 1998. The xylanolytic system of *Claviceps purpurea*: cytological evidence for secretion of xylanases in infected rye tissue and molecular characterization of two xylanase genes. Phytopathology 88, 1020–1030.
- Gilbert, H.J., Hazlewood, G.P., Laurie, J.I., Orpin, C.G., Xue, G.P., 1992. Homologous catalytic domains in a rumen fungal xylanase: evidence for gene duplication and prokaryotic origin. Mol. Microbiol. 6, 2065–2072.
- Gilkes, N.R., Henrissat, B., Kilburn, D.G., Miller, R.C. Jr., Warren, R.A.J., 1991. Domains in microbial β-1,4-glycanases: sequence conservation, function, and enzyme families. Microbiol. Rev. 55, 303–315.
- Gomes, J., Gomes, I., Kreiner, W., Esterbauer, H., Sinner, M., Steiner, W., 1993. Production of high level of cellulase-free and thermostable xylanase by a wild strain of *Thermomyces lanuginosus* using beechwood xylan. J. Biotechnol. 30, 283–297.
- Gruber, K., Klintschar, G., Hayn, M., Schlacher, A., Steiner, W., Kratky, C., 1998. Thermophilic xylanase from *Thermomyces lanuginosus*: high-resolution X-ray structure and modeling studies. Biochemistry 37, 13475–13485.
- Harris, G.W., Jenkins, J.A., Connerton, I., Pickersgill, R.W.,

1996. Refined crystal structure of the catalytic domain of xylanase A from *Pseudomonas fluorescens* at 1.8 Å resolution. Acta Crystallog. Sec. D 52, 393–401.

- Harris, G.W., Pickersgill, R.W., Connerton, I., Debeire, P., Touzel, J.-P., Breton, C., Pérez, S., 1997. Structural basis of the properties of an industrially relevant thermophilic xylanase. Proteins 29, 77–86.
- Hayashi, H., Takehara, M., Hattori, T., Kimura, T., Karita, S., Sakka, K., Ohmiya, K., 1999. Nucleotide sequences of two contiguous and highly homologous xylanase genes *xynA* and *xynB* and characterization of XynA from *Clostridium thermocellum*. Appl. Microbiol. Biotech. 51, 348–357.
- Henrissat, B., Davies, G., 1997. Structural and sequence-based classification of glycoside hydrolases. Curr. Opin. Struct. Biol. 7, 637–644.
- Hessing, J.G.M., van Rotterdam, C.O., Verbakel, J.M.A., Roza, M., Maat, J., van Gorcom, R.F.M., van den Hondel, C.A.M.J.J., 1994. Isolation and characterization of a 1,4-β-endoxylanase gene of *Aspergillus awamori*. Curr. Genet. 26, 228–232.
- Higgins, D.G., Bleasby, A.J., Fuchs, R., 1992. CLUSTAL V: improved software for multiple sequence alignment. CABIOS 8, 189–191.
- Himmel, M.E., Karplus, P.A., Sakon, J., Adney, W.S., Baker, J.O., Thomas, S.R., 1997. Polysaccharide hydrolase folds. Diversity of structure and convergence of function. Appl. Biochem. Biotechnol. 63–65, 315–325.
- Holden, R., Walton, J.D., 1992. Xylanases from the fungal maize pathogen *Cochliobolus carbonum*. Physiol. Mol. Plant Pathol. 50, 39–47.
- Holm, L., Sander, C., 1996. Mapping the protein universe. Science 273, 595–603.
- Iefuji, H., Chino, M., Kato, M., Iimura, Y., 1996. Acid xylanase from yeast *Cryptococcus* sp. S-2: purification, characterization, cloning and sequencing. Biosci. Biotechnol. Biochem. 60, 1331–1338.
- Irwin, D., Jung, E.D., Wilson, D.B., 1994. Characterization and sequence of a *Thermomonospora fusca* xylanase. Appl. Environ. Microbiol. 60, 763–770.
- Ito, K., Ogasawara, H., Sugimoto, T., Ishikawa, T., 1992. Purification and properties of acid stable xylanases from *Aspergillus kawachii*. Biosci. Biotechnol. Biochem. 56, 547–550.
- Ito, K., Iwashita, K., Iwano, K., 1992a. Cloning and sequencing of the *xynC* genes encoding acid xylanase of *Aspergillus kawachii*. Biosci. Biotechnol. Biochem. 56, 1338–1340.
- Jeong, K.J., Lee, P.C., Park, I.Y., Kim, M.S., Kim, S.C., 1998. Molecular cloning and characterization of an endoxylanase gene of *Bacillus* sp. in *Escherichia coli*. Enzyme Microb. Technol. 22, 599–605.
- Joseleau, J.P., Comptat, J., Ruel, K., 1992. Chemical structure of xylans and their interaction in the plant cell walls. In: Visser, J., Beldman, G., Kusters-Van Someren, M.A., Voragen, A.G.J. (Eds.), Xylans and Xylanases. Elsevier, Amsterdam, pp. 1–15.

- Joshi, M.D., Sidhu, G., Pot, I., Brayer, G.D., Withers, S.G., McIntosh, L.P., 2000. Hydrogen bonding and catalysis: a novel explanation for how a single amino acid substitution can change the pH optimum of a glycosidase. J. Mol. Biol. 299, 255–279.
- Jurasek, L., Paice, M.G., 1988. Xylanase A of Schizophyllum commune. Meth. Enzymol. 160, 659–662.
- Kimura, T., Kitamoto, N., Kito, Y., Karita, S., Sakka, K., Ohmiya, K., 1998. Molecular cloning of xylanase gene xynG1 from Aspergillus oryzae KBN 616, a shoyu koji mold, and analysis of its expression. J. Ferment. Bioeng. 85, 10–16.
- Kimura, T., Ito, J., Kawano, A., Makino, T., Kondo, H., Karita, S., Sakka, K., Ohmiya, K., 2000. Purification, characterization and molecular cloning of acidophilic xylanase from *Penicillium* sp. 40. Biosci. Biotechnol. Biochem. 64, 1230–1237.
- Kinoshita, K., Takano, M., Koseki, T., Ito, K., Iwano, K., 1995. Cloning of the xynNB gene encoding xylanase B from Aspergillus niger and its expression in Aspergillus kawachii. J. Ferment. Bioeng. 79, 422–428.
- Kluepfel, D., Vats-Mehta, S., Aumont, F., Shareck, F., Morosoli, R., 1990. Purification and characterization of a new xylanase (xylanase B) produced by *Streptomyces lividans* 66. Biochem. J. 267, 45–50.
- Kluepfel, D., Daigneault, N., Morosoli, R., Shareck, F., 1992. Purification and characterization of a new xylanase (xylanase C) produced by *Streptomyces lividans*. Appl. Microbiol. Biotechnol. 36, 626–631.
- Krengel, U., Dijkstra, B.W., 1996. Three-dimensional structure of endo-1,4-β-xylanase I from *Aspergillus niger*: molecular basis for its low pH optimum. J. Mol. Biol. 263, 70–78.
- Krishnamurthy, S., Vithayathil, P.J., 1989. Purification and characterization of endo-1,4-β-xylanase from *Paecilomyces varioti* Bainier. J. Ferment. Bioeng. 67, 77–82.
- Kubata, B.K., Horitsu, H., Kawai, K., Takamizawa, K., Suzuki, T., 1992. Xylanase I of *Aeromonas caviae* ME-1 isolated from the intestine of a herbivorous insect (*Samia cynthia pryeri*). Biosci. Biotechnol. Biochem. 56, 1463– 1464.
- Kubata, B.K., Suzuki, T., Ito, Y., Naito, H., Kawai, K., Takamizawa, K., Horitsu, H., 1997. Cloning and expression of xylanase I gene (xynA) of Aeromonas caviae ME-1 in Escherichia coli. J. Ferment. Bioeng. 83, 292–295.
- Kumar, P.R., Eswaramoorthy, S., Vithayathil, P.J., Viswamitra, M.A., 2000. The tertiary structure at 1.59 Å resolution and the proposed amino acid sequence of a family-11 xylanase from the thermophilic fungus *Paecilomyces varioti* Bainier. J. Mol. Biol. 295, 581–593.
- La Grange, D.C., Pretorius, I.S., van Zyl, W.H., 1996. Expression of a *Trichoderma reesei* β-xylanase gene (XYN2) in *Saccharomyces cerevisiae*. Appl. Environ. Microbiol. 62, 1036–1044.
- Lee, J., 1997. Biological conversion of lignocellulosic biomass to ethanol. J. Biotechnol. 56, 1–24.
- Lee, S.F., Forsberg, C.W., Rattray, J.B., 1987. Purification

and characterization of two endoxylanases from *Clostridium acetobutylicum* ATCC 824. Appl. Environ. Microbiol. 53, 644–650.

- Li, X.L., Zhang, Z.Q., Dean, J.F., Eriksson, K.E., Ljungdahl, L.G., 1993. Purification and characterization of a new xylanase (APX-II) from the fungus *Aureobasidium pullulans* Y-2311-1. Appl. Environ. Microbiol. 59, 3212–3218.
- Li, X.L., Ljungdahl, L.G., 1994. Cloning, sequencing, and regulation of a xylanase gene from the fungus *Aureobasidium pullulans* Y-2311-1. Appl. Environ. Microbiol. 60, 3160–3166 published erratum in: Appl. Environ. Microbiol. 60 (1994) 4647.
- Li, X.L., Chen, H.Z., Lungdahl, L.G., 1997. Monocentric and polycentric anaerobic fungi produce structurally related cellulases and xylanases. Appl. Environ. Microbiol. 63, 628–635.
- Lübeck, P.D., Paulin, L., Degefu, Y., Lübeck, M., Alekhina, I., Bulat, S.A., Collinge, D.B., 1997. PCR cloning, DNA sequencing and phylogenetic analysis of a xylanase gene from the phytopathogenic fungus *Ascochyta pisi Lib*. Physiol. Mol. Plant. Pathol. 51, 377–389.
- Maat, J., Roza, M., Verbakel, J., Stam, H., Santos da Silva, M.J., Bosse, M., Egmond, M.R., Hagemans, M.L.D., van Gorcom, R.F.M., Hessing, J.G.M., van den Hondel, C.A.M.J.J., van Rotterdam, C.O., 1992. Xylanases and their application in bakery. In: Visser, J., Beldman, G., Kusters-Van Someren, M.A., Voragen, A.G.J. (Eds.), Xylans and Xylanases. Elsevier, Amsterdam, pp. 349–360.
- Mazy-Servais, C., Moreau, A., Gerard, C., Dusart, J., 1996. Cloning and nucleotide sequence of a xylanase-encoding gene from *Streptomyces* sp. strain EC3. DNA Sequence 6, 147–158.
- McCarthy, A.A., Morris, D.D., Bergquist, P.L., Baker, E.N., 2000. Structure of XynB, a highly thermostable β-1,4-xylanase from *Dictyoglomus thermophilum* Rt46B.1, at 1.8 Å resolution. Acta Cryst. D 56, 1366–1375.
- Millward-Sadler, S.J., Poole, D.M., Henrissat, B., Hazlewood, G.P., Clarke, J.H., Gilbert, H.J., 1994. Evidence for a general role for high-affinity non-catalytic cellulose binding domains in microbial plant cell wall hydrolases. Mol. Microbiol. 11, 375–382.
- Millward-Sadler, S.J., Davidson, K., Hazlewood, G.P., Black, G.W., Gilbert, H.J., Clarke, J.H., 1995. Novel cellulosebinding domains, NodB homologues and conserved modular architecture in xylanases from the aerobic soil bacteria *Pseudomonas fluorescens* subsp. cellulosa and Cellvibrio mixtus. Biochem. J. 312, 39–48.
- Morris, D.O., Gibbs, M.D., Chin, C.W.J., Koh, M.H., Wong, K.K.Y., Allison, R.W., Nelson, P.J., Bergquist, P.L., 1998.
 Cloning of the *xynB* gene from *Dictyoglomus thermophilum* Rt 46 B.1 and action of the gene product on kraft pulp. Appl. Environ. Microbiol. 64, 1759–1765.
- Morris, D.O., Gibbs, M.D., Ford, M., Thomas, J., Bergquist, P.L., 1999. Family 10 and 11 xylanase genes from *Caldicel-lulosiruptor* sp. strain Rt69B.1. Extremophiles 3, 103–111.

- Nagashima, M., Okumoto, Y., Okanishi, M., 1989. Nucleotide sequence of the gene of extracellular xylanase in *Strepto-myces* sp. No.36 a and construction of secretion vectors using xylanase gene. Trends Actinomycetol., 91–96.
- Nakai, R., Wakabayashi, K., Asano, T., Aono, R., Horikoshi, K., Nakamura, S., 1994. Nucleotide sequence and mutational analysis of the gene encoding the novel alkaline xylanase from alkaliphilic *Bacillus* sp. strain 41M-1. Nucleic Acids Symp. Ser. 31, 235–236.
- Nakamura, S., Aono, R., Wakabayashi, K., Horikoshi, K., 1992. Alkaline xylanase produced by newly isolated alkaliphilic *Bacillus* sp. In: Visser, J., Beldman, G., Kusters-Van Someren, M.A., Voragen, A.G.J. (Eds.), Xylans and Xylanases. Elsevier, Amsterdam, pp. 443–446.
- Nielsen, H., Engelbrecht, J., Brunak, S., von Heijne, G., 1997. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Prot. Eng. 10, 1–6.
- Oku, T., Roy, C., Watson, D.C., Wakarchuk, W., Campbell, R., Yaguchi, M., Jurasek, L., Paice, M.G., 1993. Amino acid sequence and thermostability of xylanase A from *Schizophyllum commune*. FEBS Lett. 334, 296–300.
- Paice, M.G., Bourbonnais, R., Desrochers, M., Jurasek, L., Yaguchi, M., 1986. A xylanase gene from *Bacillus subtilis*: nucleotide sequence and comparison with *Bacillus pumilus* gene. Arch. Microbiol. 144, 201–206.
- Panbangred, W., Shinmyo, A., Kinoshita, S., Okada, H., 1983. Purification and properties of endoxylanase produced by *Bacillus pumilus*. Agric. Biol. Chem. 47, 957–963.
- Paradis, F.W., Zhu, H., Krell, P.J., Phillips, J.P., Forsberg, C.W., 1993. The xynC gene from Fibrobacter succinogenes S85 codes for a xylanase with two similar catalytic domains. J. Bacteriol. 175, 7666–7672.
- Perez-González, J.A., de Graaff, L.H., Visser, J., Ramón, D., 1996. Molecular cloning and expression in *Saccharomyces cerevisiae* of two *Aspergillus nidulans* xylanase genes. Appl. Environ. Microbiol. 62, 2179–2182.
- Sabini, E., Sulzenbacher, G., Dauter, M., Dauter, Z., Jorgensen, P.L., Schülein, M., Dupont, C., Davies, G.J., Wilson, K.S., 1999. Catalysis and specificity in enzymatic glycoside hydrolysis: a ^{2,5}B conformation for the glycosylenzyme intermediate revealed by the structure of the *Bacillus agaradhaerens* family 11 xylanase. Chem. Biol. 6, 483–492.
- Sakka, K., Kojima, Y., Kondo, T., Karita, S.-I., Ohmiya, K., Shimada, K., 1993. Nucleotide sequence of the *Clostridium stercorarium xynA* gene encoding xylanase A: identification of catalytic and cellulose binding domains. Biosci. Biotechnol. Biochem. 57, 273–277.
- Sakka, K., Kojima, Y., Kondo, T., Karita, S.-I., Shimada, K., Ohmiya, K., 1994. Purification and characterization of xylanase A from *Clostridium stercorarium* F-9 and a recombinant *E. coli.* Biosci. Biotechnol. Biochem. 58, 1496– 1505.
- Schlacher, A., Holzmann, K., Hayn, M., Steiner, W., Schwab, H., 1996. Cloning and characterization of the gene from the thermostable xylanase XynA from *Thermomyces lanuginosus*. J. Biotechnol. 49, 211–218.

- Shareck, F., Roy, C., Yaguchi, M., Morosoli, R., Kluepfel, D., 1991. Sequences of three genes specifying xylanases in *Streptomyces lividans*. Gene 107, 75–82.
- Shibuya, H., Kaneko, S., Hayashi, K., 2000. Enhancement of the thermostability and hydrolytic activity of xylanase by random gene shuffling. Biochem. J. 349, 651–656.
- Sunna, A., Antranikian, G., 1997. Xylanolytic enzymes from fungi and bacteria. Crit. Rev. Biotechnol. 17, 39–67.
- Törrönen, A., Mach, R.L., Messner, R., González, R., Kalkkinen, N., Harkki, A., Kubicek, C.P., 1992. The two major xylanases from *Trichoderma reesei*: characterization of both enzymes and genes. Bio./Technol. 10, 1461–1465.
- Törrönen, A., Harkki, A., Rouvinen, J., 1994. Three-dimensional structure of endo-1,4-β-xylanase II from *Trichoderma reesei*: two conformational states in the active site. EMBO J. 13, 2493–2501.
- Törrönen, A., Rouvinen, J., 1995. Structural comparison of two major endo-1,4-xylanases from *Trichoderma reesei*. Biochemistry 34, 847–856.
- Törrönen, A., Rouvinen, J., 1997. Structural and functional properties of low molecular weight endo-1,4-β-xylanases. J. Biotechnol. 57, 137–149.
- Tsujibo, H., Miyamoto, K., Kuda, T., Minami, K., Sakamoto, T., Hasegawa, T., Inamori, Y., 1992. Purification, properties and partial amino acid sequences of thermostable xylanase from *Streptomyces thermoviolaceus* OPC-520. Appl. Environ. Microbiol. 58, 371–375.
- Tsujibo, H., Ohtsuki, T., Iio, T., Yanazaki, I., Miyamoto, K., Sugiyama, M., Inamori, Y., 1997. Cloning and sequence analysis of genes encoding xylanases and acetyl xylan esterase from *Streptomyces thermoviolaceus* OPC-520. Appl. Environ. Microbiol. 63, 661–664.
- Turunen, O., Etuaho, K., Fenel, F., Vehmaanperä, J., Wu, X., Rouvinen, J., Leisola, M., 2001. A combination of weakly stabilizing mutations with a disulfide bridge in the α-helix region of *Trichoderma reesei* endo-1,4-β-xylanase II increases the thermal stability through synergism. J. Biotechnol. 88, 37–46.
- Vinals, C., De Bolle, X., Depiereux, E., Feytmans, E., 1995. Knowledge-based modelling of the D-lactate dehydrogenase three-dimensional structure. Prot. Struc. Funct. Genet. 21, 307–318.
- Wakarchuk, W.W., Campbell, R.L., Sung, W.L., Davoodi, J., Yaguchi, M., 1994a. Mutational and crystallographic analysis of the active site residues of the *Bacillus circulans* xylanase. Protein Sci. 3, 467–475.
- Wakarchuk, W.W., Sung, W.L., Campbell, R.L., Cunningham, A., Watson, D.C., Yaguchi, M., 1994b. Thermostabilization of the *Bacillus circulans* xylanase by the introduction of disulfide bonds. Prot. Eng. 7, 1379–1386.
- Wong, K.K.Y., Saddler, J.N., 1992. *Trichoderma* xylanases, their properties and application. Crit. Rev. Biotechnol. 12, 413–435.
- Wu, S.-C., Kaufman, S., Darvill, A.G., Albersheim, P., 1995. Purification, cloning and characterization of two xylanases from *Magnaporthe grisea*, the rice blast fungus. Mol. Plant–Microbe Interact. 8, 506–514.

- Yaguchi, M., Roy, C., Ujiie, M., Watson, D.C., Wakarchuk, W., 1992a. Amino acid sequence of the low-molecular weight xylanase from *Trichoderma viride*. In: Visser, J., Beldman, G., Kusters-Van Someren, M.A., Voragen, A.G.J. (Eds.), Xylans and Xylanases. Elsevier, Amsterdam, pp. 149–154.
- Yaguchi, M., Roy, C., Watson, D.C., Rollin, F., Tan, L.U.L., Senior, D.J., Saddler, N., 1992b. The amino acid sequence of the 20KD xylanase from *Trichoderma harzianum* E58. In: Visser, J., Beldman, G., Kusters-Van Someren, M.A., Voragen, A.G.J. (Eds.), Xylans and Xylanases. Elsevier, Amsterdam, pp. 435–438.
- Yang, R.C.A., Mackenzie, C.R., Narang, S.A., 1988. Nucleotide sequence of a *Bacillus circulans* xylanase gene. Nucleic Acids Res. 16, 7187.
- Yoshino, S., Oishi, M., Moriyama, R., Kato, M., Tsukagoshi, N., 1995. Two family G xylanase genes from *Chaetomium* gracile and their expression in *Aspergillus nidulans*. Curr. Genet. 29, 73–80.
- Yu, J.H., Park, Y.S., Yum, D.Y., Kim, J.M., Kong, I.S., Bai, D.H., 1993. Nucleotide sequence and analysis of a xylanase

gene (*xynS*) from alkali-tolerant *Bacillus* sp. YA-14 and comparison with other xylanases. J. Microbiol. Biotechnol. 3, 139–145.

- Zappe, H., Jones, W.A., Woods, D.R., 1990. Nucleotide sequence of a *Clostridium acetobutylicum* P262 xylanase gene (*xynB*). Nucleic Acids Res. 18, 2179.
- Zhang, J.-X., Flint, H.J., 1992. A bifunctional xylanase encoded by the xynA gene of the rumen cellulolytic bacterium Ruminococcus flavefaciens 17 comprises two dissimilar domains linked by an asparagine/glutamine-rich sequence. Mol. Microbiol. 6, 1013–1023.
- Zhang, J.-X., Martin, J., Flint, H.J., 1994. Identification of non-catalytic conserved regions in xylanases encoded by the xynB and xynD genes of the cellulolytic rumen anaerobe Ruminococcus flavefaciens. Mol. Gen. Genet. 245, 260–264.
- Zhu, H., Paradis, F.W., Krell, P.J., Phillips, J.P., Forsberg, C.W., 1994. Enzymatic specificities and modes of action of the two catalytic domains of the XynC xylanase from *Fibrobacter succinogenes* S85. J. Bacteriol. 176, 3885–3894.