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Three-dimensional origin of Gödel spacetimes and black holes
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We construct Gödel-type black hole and particle solutions to Einstein-Maxwell theory in
2� 1 dimensions with a negative cosmological constant and a Chern-Simons term. On-shell, the
electromagnetic stress-energy tensor effectively replaces the cosmological constant by minus the
square of the topological mass and produces the stress-energy of a pressure-free perfect fluid. We
show how a particular solution is related to the original Gödel universe and analyze the solutions from
the point of view of identifications. Finally, we compute the conserved charges and work out the
thermodynamics.
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1It would be interesting to explore in detail the supersymmet-
ric properties of this action and explicitly relate it to the five-
dimensional supergravity action.

2Máximo Bañados thanks Henneaux for his suggestion to
understand these solutions as identifications on the Gödel
background.
I. INTRODUCTION

Exact solutions of higher dimensional gravity and su-
pergravity theories play a key role in the development of
string theory. Recently, a Gödel-like exact solution of five-
dimensional minimal supergravity having the maximum
number of supersymmetries has been constructed [1]. As
its four-dimensional predecessor, discovered by Gödel in
1949 [2], this solution possesses a large number of isome-
tries. It can be lifted to higher dimensions and has recently
been extensively studied as a background for string and M-
theory, see e.g. [3,4].

The Gödel-like five-dimensional solution found in [1] is
supported by an Abelian gauge field. This gauge field has
an additional Chern-Simons interaction and produces the
stress-energy tensor of a pressureless perfect fluid. Since a
Chern-Simons term can also be added in three dimensions,
it is a natural question to ask whether a Gödel-like solution
exists in three-dimensional gravity coupled to a Maxwell-
Chern-Simons field.

Actually, there is a stronger motivation to look for these
kinds of solutions of three-dimensional gravity. The reason
is that the original four-dimensional Gödel spacetime is
already effectively three dimensional, see e.g. [5]. In
fact, the metric has as direct product structure ds2

�4� �

ds2
�3� � dz

2 where ds2
�3� satisfies a purely three-dimensional

Einstein equation.
The goal of this paper is twofold. On the one hand we

will show that the three-dimensional factor ds2
�3� of the

Gödel spacetime and its generalizations [6] are exact so-
lutions of the three-dimensional Einstein-Maxwell-Chern-
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Simon theory described by the action1

I �
1

16�G

Z
d3x

� �������
�g
p

�
R�

2

l2
�

1

4
F��F

��
�

�
�
2
����A�F��

�
: (1)

The stress-energy tensor of the perfect fluid will be fully
generated by the gauge field A�, in complete analogy with
the five-dimensional results reported in [1].

Our second goal deals with Gödel particles and black
holes. Within the five-dimensional supergravity theory,
rotating black hole solutions on the Gödel background
have been investigated in [7–16]. It is then natural to ask
whether the three-dimensional Gödel spacetime ds2

�3� can
be generalized to include horizons. This is indeed the case
and a general solution will be displayed.2

Let us now briefly discuss the general structure of the
stress-energy tensor of Maxwell-Chern-Simons theory.
The original Gödel geometry is a solution of the Einstein
equations in the presence of a pressureless fluid with
energy density � and a negative cosmological constant �
such that � � �4�G�. Equivalently, it can be viewed as a
-1 © 2006 The American Physical Society
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homogeneous spacetime filled with a stiff fluid, that is,
pSF � �SF � �=2 and vanishing cosmological constant.

In �2� 1�-spacetime dimensions, an electromagnetic
field can be the source of such a fluid. To see this it is
convenient to write the stress-energy tensor in terms of the
dual field �F�,

16�GT�� � �F��F� � 1
2F

��F�g
��: (2)

In any region where the field �F� is timelike, the electro-
magnetic field behaves as a stiff fluid with

u� �
1���������������������

��F��F�
p �F�; �SF � pSF � �

�F��F�=2:

(3)

If Gödel’s geometry is going to be a solution of the
Einstein-Maxwell system, then �SF � ��F��F�=2 must
be a constant. Moreover in comoving coordinates, in which
gtt � �1, �F� must be a constant vector pointing along the
time coordinate. One can easily see that such a solution
does not exist. In fact, the Maxwell equations for this
solution,

d�F � 0; (4)

imply in these coordinates that gt�’;r� � 0 which cannot be
achieved for Gödel. If the electromagnetic field acquires a
topological mass �, however, Maxwell’s equations (4) will
be modified by the addition of the term�F. In that case, the
timelike, constant, electromagnetic field is, as we will see
below, a solution of the coupled Einstein-Maxwell-Chern-
Simons system, and the geometry is precisely that of
Gödel.

Finally, we compute the conserved charges—mass, an-
gular momentum and electric charge—for these solutions
and derive the first laws for the three-dimensional black
holes, adapted to an observer at rest with respect to the
electromagnetic fluid. We then show how to adapt this first
law in order to compare with the one for AdS black holes in
the absence of the electromagnetic fluid.
II. GÖDEL SPACETIME AND TOPOLOGICALLY
MASSIVE GRAVITOELECTRODYNAMICS

We start by reviewing the main properties, relevant to
our discussion, of the four-dimensional Gödel spacetimes
[2,6,17]. These metrics have a direct product structure
ds2
�3� � dz

2 with three-dimensional factor given by

ds2
�3� � �

�
dt�

4�

~m2 sinh2

�
~m�
2

�
d’

�
2
� d�2

�
sinh2� ~m��

~m2 d’2: (5)

The original solution discovered by Gödel corresponds to
~m2 � 2�2. Furthermore, it was pointed out in [6] that the
property of homogeneity and the causal structure of the
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Gödel solution also hold for � and ~m independent, pro-
vided that 0 	 ~m2 < 4�2, the limiting case ~m2 � 4�2

corresponding to anti-de Sitter space.
The three-dimensional metric (5) has 4 independent

Killing vectors, two obvious ones, ��1� � @t and ��2� �
@’, and two additional ones,

��3� �
2�

~m2 tanh� ~m�=2� sin’
@
@t
�

1

~m
cos’

@
@�

� coth� ~m�� sin’
@
@’

; (6)
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�

1

~m
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@
@�

� coth� ~m�� cos’
@
@’

: (7)

which span the algebra so�2; 1� 
 R. Finally, the metric (5)
satisfies the three-dimensional Einstein equations,

G�� ��2g�� � �4�2 � ~m2���t ��t ; (8)

for all values of �; ~m, and we see that � plays the role of a
negative cosmological constant.

Note that a solution ds2
�3� to Einstein’s equations in three

dimensions can be lifted to a solution in four dimensions
through the addition of a flat direction z if the additional
components of the stress-energy tensor are chosen as
T �z � 0 and T zz � g��T

�� ��2=4�G. For the solu-
tions (5), T zz � � ~m2 � 2�2�=8�G and vanishes, as it
should, for the original Gödel solution.

Our first goal is to prove that (5) can be regarded as
an exact solution to the equations of motion following
from (1).

To this end, we need to supplement (5) with a suitable
gauge field which will provide the stress-energy tensor
[right-hand side of (8)]. Consider a spherically symmetric
gauge field in the gauge Ar � 0,

A � At���dt� A’���d’: (9)

Inserting this ansatz for the gauge field into the equations
of motion associated with the action (1), and assuming that
the metric takes the form (5), one indeed finds a solution
for At and A’. Moreover, the two parameters ~m;� entering
in (5) become related to the coupling constants � and 1=l
as

� � �; ~m2 � 2
�
�2 �

1

l2

�
: (10)

With this parametrization, the Gödel sector is determined
by �2l2 � 1> 0, with �2l2 � 1 corresponding to anti-de
Sitter space. For future convenience, we shall write the
solution in terms of a new radial coordinate r defined by

r �
2

~m2 sinh2

�
~m�
2

�
: (11)
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Explicitly, the metric and gauge field are given by

ds2 � �dt2 � 4�rdtd’�
�

2r� ��2l2 � 1�
2r2

l2

�
d’2

�

�
2r� ��2l2 � 1�

2r2

l2

�
�1
dr2; (12)

A �
�������������������
�2l2 � 1

p 2r
l
d’: (13)

From now on, we always write � and ~m in terms of � and l
using (10). The general solution for A involves the addition
of arbitrary constant terms along dt and d’ in (13). At this
stage, we choose the constant in At to be zero. We will
come back to this issue when we discuss black hole solu-
tions below. A constant term in A’ is not allowed, however,
if one requires A’d’ to be regular everywhere. Indeed,
near r � 0, the spacelike surfaces of (12) are R2 in polar
coordinates, the radial coordinate r in (12) being the square
root of a standard radial coordinate over R2, and thus A’
must vanish at r � 0 because the 1-form d’ is not well
defined there.

The gauge field (13) is also invariant under the isome-
tries of (5), up to suitable gauge transformations: for each
Killing vector ��

�a� there exists a function ��a� such that

L ��a�A� � @���a� � 0: (14)

In this sense, the Killing vectors ��
�a� of (5) are lifted to

gauge parameters ���
�a�; ��a�� that leave the full gravity plus

gauge field solution invariant. The generalized Gödel met-
ric (12) together with the gauge field (13) define a back-
ground for the action (1) with four linearly independent
symmetries of this type. We shall now use these symme-
tries in order to find new solutions describing particles and
black holes (see also [18]).
III. GÖDEL PARTICLES: �2l2 > 1

We have proven in the previous section that the Gödel
metric can be regarded as an exact solution to action (1).
The associated gauge field (13) is however real only in the
range �2l2 � 1. We consider in this section the case
�2l2 > 1 and introduce particlelike objects on the back-
ground (12) by means of spacetime identifications.

A. Gödel Cosmons

Identifications in three-dimensional gravity were first
introduced by Deser, Jackiw and t’Hooft [19,20] and the
resulting objects called ‘‘cosmons.’’ In the presence of a
topologically massive electromagnetic field, cosmons liv-
ing in a Gödel background may also be constructed along
these lines.

Take the metric (12) and make the following identifica-
tion along the Killing vectors @’ and @t:
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�t; ’� � �t� 2�jm;’� 2�m�:

where m; j are real constants. If m � 1 this procedure will
turn the spatial plane into a cone. The cosmon lives in the
tip of this cone, and its mass is related to m and j (see
below). The time-helical structure given by j will provide
angular momentum.

To analyze the resulting geometry it is convenient to
pass to a different set of coordinates,

’ � ’0m t � t0 � j’0m r �
r0

m
�

j
2�

; (15)

where the above identification amounts to

’0 � ’0 � 2�n; n 2 Z: (16)

Also, the new time t0 flows ahead smoothly, that is, it does
not jump after encircling the particle. Inserting these co-
ordinates into (12), and erasing the primes, we find the new
metric

ds2 � �dt2 � 4�rdtd’

�

�
8G�r� ��2l2 � 1�

2r2

l2
�

4GJ
�

�
d’2

�

�
��2l2 � 1�

2r2

l2
� 8G�r�

4GJ
�

�
�1
dr2: (17)

For fixedm andmj, the new constants � and J are given by

4G� � m
�
1�

1� �2l2

�l2
j
�
; (18)

4GJ � �m2j
�
1�

1� �2l2

2�l2
j
�
: (19)

These constants will be shown to be related to the mass and
angular momentum, respectively.

Since under (15) ’ scales with m while r with 1=m, we
see that the r-dependent part of gauge field (13) is invariant
under (15). However, the manifold now has a nontrivial
cycle, and it is not regular at the point r � r0 invariant
under the action of the Killing vector whose orbits are used
for identifications. Explicitly, r0 � �

jm
2� which corre-

sponds to r � 0 before the shift of r in (15). This means
that one can now add a constant piece to A’. The new
gauge field becomes

A �
�
�

4GQ
�
�

�������������������
�2l2 � 1

p 2r
l

�
d’: (20)

The constant Q will be identified below as the electric
charge of the particle sitting at r � 0.

The metrics (17) only admit the 2 Killing vectors @t and
@’. Indeed, the other candidates ��3� and ��4� do not survive
as they do not commute with the Killing vector along
which the identifications are made [21].

So far we have only used the Killing vectors @=@’ and
@=@t of (5) to make identifications. Besides these Killing
-3
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vectors, the metric (5) has two other isometries defined by
the vectors (6) and (7), and one may consider identifica-
tions along them. We shall not explore this possibility in
this paper.

B. Horizons, singularities and time machines

Distinguished places of the geometry (49) may appear
on those points where either g’’ or grr vanishes. The
vanishing of g’’ indicates that g’’ changes sign and hence
closed timelike curves (CTC) appear. On the other hand,
the vanishing of grr indicates the presence of horizons, as
can readily be seen by writing (17) in ADM form.

The function g’’ in (17) is an inverted parabola, and, it
will have two zeros, say r1 and r2 whenever

2G�2 >
J��2l2 � 1�

�l2
: (21)

We must require this condition to be fulfilled in order to
have a ‘‘normal’’ region where @’ is spacelike. The bound-
ary of the normal region are two spacelike surfaces, the
velocity of light surfaces (VLS) at r � r1 and r � r2

(assume r2 > r1). These surfaces are perfectly regular as
long as gt’ � 0 there, which is indeed the case for the
metric (17), when � � 0.

On the other hand, it is direct to see from (17) that

grr � 4�2r2 � g’’: (22)

Since g’’ is positive in the normal region, there are no
horizons there and grr is positive in that region. This,
together with the fact that grr is the parabola of Fig. 1,
means that, if any, both zeros of grr are on the same side of
the normal region. The sides in which no zero of grr are
present are analog to the Gödel time machine, an un-
bounded region, free of singularities, where @’ is timelike.
If � � 0, the roots of grr are smaller than the roots of g’’.
Without loss of generality, we can restrict ourselves to this
case because the solutions parametrized by ��; J;Q� are
r

g  (r)φφ

Normal Region
Goedel Time
Machine

Velocity of light
surfaces (VLS)

Naked
Singularity

r0

Particle Time
Machine

grr(r)

FIG. 1. Gödel cosmons.
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related to those with ���; J;�Q� by the change of coor-
dinates r! �r, ’! �’.

The condition for ‘‘would be horizons’’ is

2G�2 >
J��2l2 � 1�

�l2
: (23)

As depicted in Fig. 1, once one reaches the largest root
r� � r0 of grr, the manifold comes to an end. Indeed, the
signature of the metric changes as one passes grr � 0. This
can be seen by putting the metric in ADM form [see (50)
below]. Note that in this case, given ��; J�, there is a unique
�m;mj� satisfying (18) and (19).

Using then r � r� � 	0j�r�j�
2, with r� the smallest

root of grr and 	0 � ��r� � r����
2l2 � 1��=�2l2j�r�j�,

one finds near r�,

ds2  	2
0�

2dt2 � d�2 � 4�2r2
�

�
d’�

dt
2�r�

�
2
: (24)

This means that the spacetime has a naked singularity at
r�, which is the analog of the one found in the spinning
cosmon of [19,20].

Alternatively, as proposed originally in [15] for the case
where the would be horizon is inside the time machine, one
can periodically identify time t with period 2�=	0. This
leads to having CTC’s lying everywhere, including the
normal region.
IV. GÖDEL BLACK HOLES

A. The �2l2 < 1 sector

We have shown in Sec. II that the metric (5) can be
embedded as an exact solution to the equations of motion
derived from (1). The necessary gauge field, given in (13)
is, however, real only in the range �2l2 � 1. As we men-
tioned in Sec. II, the gauge field (13) represents the most
general static spherically symmetric solution, given the
metric (5) [or, in the new radial coordinate, (12)]. This
means that if we want to find a real gauge field in the range
�2l2 < 1 we need to start with a different metric. The goal
of this section is to explore the other sector, �2l2 < 1,
where black holes will be constructed.

Starting from the metric (12) and gauge field (13) it is
easy to construct a new exact solution which will be real in
the range �2l2 < 1. Consider the following (complex)
coordinate changes3 acting on (12) and (13): ’! i’, t!
it, and r! �r. The new metric and gauge field read
3An equivalent way to do this transformation without intro-
ducing the imaginary unit is by the following sequence of
coordinate transformations (and analytic continuations) acting
on (12): t! 2t1=2, t! �t, t! 1

4 t
2, and the same for ’.

-4
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ds2 � dt2 � 4�rdtd’�
�

2r� �1� �2l2�
2r2

l2

�
d’2

�

�
��2l2 � 1�

2r2

l2
� 2r

�
�1
dr2 (25)

A �
�������������������
1� �2l2

p 2r
l
d’: (26)

Several comments are in order here. First of all, the
intermediate step of making some coordinates complex is
only a way to find a new solution. From now on, all
coordinates t; r; ’ are defined real, and, in that sense, the
fields (25) and (26) provide a new exact solution to the
action (1) which is real in the range �2l2 < 1.

Second, in the original metric (12), the coordinate ’was
constrained by the geometry to have the range 0 	 ’<
2�. This is no longer the case in the metric (25). The two-
dimensional submanifold described by the coordinates r; ’
does not have the geometry of R2 near r! 0 anymore; the
coordinate ’ is thus not constrained to be compact, and in
principle it should have the full range

�1<’<1: (27)

The reason that ’ in (25) is not constrained by the geome-
try is that the grr component of the metric (25) changes
sign as we approach r � 0. This is an indication of the
presence of a horizon, although this surface is not yet
compact.

Finally, it is worth mentioning that the metrics (25) and
(12) are real and are related by a coordinate transformation,
so that all local invariants involving the metric alone have
the same values. However, as solutions to the Einstein-
Maxwell equations, they are inequivalent. Indeed, the dif-
feomorphism and gauge invariant quantity ��F�2 � 4�1�
�2l2�=l2 changes sign when going from (12) and (13) to
(25) and (26). This is different from the pure anti-de Sitter
case where particles and black holes are obtained by iden-
tifications performed on the same background.

B. The Gödel black hole

Let us go back to (25) and note that the function grr

vanishes at r� > 0. In order to make the r � r� surface a
regular, finite area, horizon we shall use the Killing vector
@’ of (25) to identify points along the ’ coordinate. In this
case, @’ has a noncompact orbit and identifications along it
do not produce a conical singularity, but a ‘‘cylinder.’’
More generically, we may proceed in analogy with the
cosmon case and identify along a combination of both @’
and @t so that

�t; ’� � �t� 2�jm;’� 2�m�;

so that the resulting geometry will also carry angular
momentum. We again pass to a different set of coordinates,

’ � ’0m (28)
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t � t0 � j’0m (29)

r �
r0

m
�

j
2�

; (30)

so that the new angular coordinate ’0 is identified in 2�,
and the time t0 flows ahead smoothly.

The new metric reads (after erasing the primes)

ds2 � dt2 � 4�rdtd’

�

�
8G�r� �1� �2l2�

2r2

l2
�

4GJ
�

�
d’2

�

�
��2l2 � 1�

2r2

l2
� 8G�r�

4GJ
�

�
�1
dr2: (31)

As for the particles analyzed in the previous section, for
given �m;mj�, we define new constants � and J according
to

4G� � m
�
1�

1� �2l2

�l2
j
�
; (32)

4GJ � m2j
�
1�

1� �2l2

2�l2
j
�
: (33)

Again, these constants will be related below to the mass
and the angular momentum and, without loss of generality,
we can limit ourselves to the case � � 0.

In the new coordinates, the electromagnetic potential
takes the form A � A’d’, where

A’�r� � �
4GQ
�
�

�������������������
1� �2l2

p 2r
l
: (34)

The constant Q is arbitrary because, once again, the non-
trivial topology allows the addition of an arbitrary constant
in A’. It is worth stressing that, if ’ was not compact, then
m and Q would be trivial constants. It also follows that the
Killing vectors of (25) have the same form as those of (12),
but with the trigonometric functions cos�’� and sin�’�
replaced by hyperbolic ones. Again, these vectors do not
survive after the identifications.

C. Horizons, singularities and time machines

We now proceed to analyze the metric in the same way
we did in the preceding section. Again we have a condition
for having a normal region, which, in this case reads

2G�2 >
J�1� �2l2�

�l2
: (35)

The functions grr and g’’ now behave as in Fig. 2.
Note that

grr � �g’’ � 4�2r2; (36)

and therefore horizons may only exist in the normal region
of positive g’’. Note, however, that for horizons to exist
-5
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BANÃDOS, BARNICH, COMPÈRE, AND GOMBEROFF PHYSICAL REVIEW D 73, 044006 (2006)
we must require

2G�2 �
J�1� �2l2�

�l2
: (37)

If this requirement is fulfilled, we get two horizons inside
the normal region, r� � mj=�2�� and r�, which coincide
in the extremal case. The whole normal region is in fact an
ergoregion because @=@t is spacelike everywhere. Again,
for given ��; J�, one can then find a unique solution �m;mj�
satisfying Eqs. (32) and (33).

Following Carter [22], the metric and the gauge field can
be made regular at both horizons by a combined coordinate
and gauge transformation. Indeed, if

��r� � ��2l2 � 1�
2r2

l2
� 8G�r�

4GJ
�

;

the black hole metric can be written as

ds2 � �dt� 2�rd’�2 � �d’2 �
dr2

�
: (38)

The analog of ingoing Eddington-Finkelstein coordinates

are the angle ’
*
and the time t

*
defined by d’ � d’

*
�

1
� dr, dt � d t

*
� 2�r

� dr, giving the regular metric

ds2 � �d t
*
� 2�rd’

*
�2 � �d’

*2
� 2d’

*
dr: (39)

With A’�r� given by (34), the r dependent gauge trans-

formation A
*
� A� d�, where � �

R
dr A’�r�� gives the

regular potential A
*
� A’�r�d’

*
whose norm A

*2
is zero.

Outgoing Eddington-Finkelstein coordinates are defined

by d’ � �d’
*
� 1

�dr, dt � �d t
*
� 2�r

� dr. The metric

then takes also the form (39) with t
*
and ’

*
replaced by

� t
*
and �’

*
and the potential can be regularized by A

*
�

A� d�.
The null generators of the horizons are @

@t�
1

2�r�
@
@’ . The

associated ignorable coordinates which are constant on
these null generators are then given by

dt� � dt� 2�r�d’: (40)

Kruskal-type coordinates �t�; U�; V�� are obtained by
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defining

k�
dV�

V�
� d’

*
� d’�

dr
�
; (41)

k�
dU�

U�
� d’

*
� �d’�

dr
�
; (42)

where

k� �
l2

1� �2l2
1

r� � r�
:

In these coordinates, the metric is manifestly regular at the
bifurcation surfaces,

ds2 � �dt� � �k��r� r���U
�dV� � V�dU���2

�
2k��r� r��

2

r� � r�
dU�dV�; (43)

with r given implicitly by

U�V� �
�
r� r�
r� r�

�
�1
: (44)

In Kruskal coordinates, the gauge field (34) becomes

A �
k�
2

�A’�r��
U�V�

�

�������������������
1� �2l2
p

l
�r� r��

�

 �U�dV� � V�dU��: (45)

The potential can be regularized at r � r� by the trans-
formations

~A� � A� d
�
A’�r��

k�
2

ln
V�

U�

�

�
k�

�������������������
1� �2l2
p

2l
�r� r���U

�dV� � V�dU��: (46)

In the original coordinates, however, the parameters of
these transformations explicitly involve the angle ’, ~A� �
A� d�A’�r��’� and, as explicitly shown below, they
change the electric charge. In order to avoid this, one can
add a constant piece proportional to dt�, so that

A� � ~A� � d
�A’�r��

2�r�
t�
�
: (47)

In the original coordinates, the gauge parameter is now a
linear function of t alone,

A� � A� d
�A’�r��

2�r�
t
�
: (48)

According to the definition given below, such a transfor-
mation does not change the charges.

The causal structure of the Gödel black hole is displayed
in the Carter-Penrose diagram Fig. 3, where each point
represents a circle.
-6



FIG. 3. Carter-Penrose diagram of Gödel black hole.
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V. VACUUM SOLUTIONS �2l2 � 1

In the case �2l2 � 1 the gauge field vanishes and the
Gödel metric (12) reduces to the three-dimensional anti-de
Sitter space (to see this, do the coordinate transformations
’! ’� �t and 2r! r2). This means that the identifica-
tions in this case yield the usual three-dimensional black
holes, and conical singularities.

VI. THE GENERAL SOLUTION

A. Reduced equations of motion

We have seen in previous sections that the Gödel metrics
(5) and (25), as well as the corresponding quotient spaces
describing particles and black holes, can be regarded as
exact solutions to the action (1).

We have distinguished three cases according to the
values of the dimensionless quantity �2l2. Our purpose
in this section is to write a general solution which will be
valid for all values of �2l2. We shall now construct the
044006
solution by looking directly at the equations of motion. It is
useful to write a general spherically symmetric static an-
satz in the form [23,24]

ds2 �
dr2

h2 � pq
� pdt2 � 2hdtd’� qd’2; (49)

where p; q; h are functions of r only. This ansatz can also
be written in the ‘‘ADM form,’’

ds2 � �
h2 � pq

q
dt2 �

dr2

h2 � pq
� q

�
d’�

h
q
dt
�

2
:

(50)

This confirms that the function grr,

f�r� � h2�r� � p�r�q�r�; (51)

controls the existence of horizons. Note that, for all p; q; h,
the determinant of this metric is det��g� � 1. For the
gauge field, we use the radial gauge Ar � 0, and assume
that At and A’ depend only on the radial coordinate,

A � At�r�dt� A’�r�d’: (52)

In this parametrization, Einstein’s equations take the re-
markably simple form,

h00 � �A0tA
0
’ p00 � �A02t q00 � �A02’

�h2 � pq�00 � h02 � p0q0 �
4

l2
;

(53)

where primes denote radial derivatives. Maxwell’s equa-
tions reduce to

�hA0t � pA0’ � 2�At�0 � 0;

�qA0t � hA
0
’ � 2�A’�

0 � 0:
(54)

Before we write the solution to these equations, we make
some general remarks on the structure of the stress-energy
tensor associated with topologically massive electrody-
namics. As we pointed out in the introduction, we will
seek for solutions with a constant electromagnetic field �F.
Hence, we will only consider potentials A which are linear
in r. In this case, Eqs. (54) are

h0A0t � p
0A0’ � 2�A0t; q0A0t � h

0A0’ � 2�A0’: (55)

We now multiply the first by h0 and the second by p0, then
we subtract them to obtain

�h02 � p0q0�A0t � 2��h0A0t � p0A0’� � 4�2A0t:

In the last step we have used Eq. (55). This implies that, if
A0t � 0 then �h02 � p0q0� � 4�2. By properly manipulating
Eqs. (55) we see that this result is also valid if A0t � 0 but
A0’ � 0, and therefore is it true as long as the electromag-
netic field does not vanish. Now we insert this in the last
-7



FIG. 4. Sectors of the general solution.
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equation in (53), and obtain

�F��F� � q�A0t�
2 � p�A0’�

2 � 2hA0tA
0
’ �

4

l2
�1� �2l2�:

(56)

This equation tells us that, when the topological mass�2

is greater (smaller) than the negative cosmological con-
stant 1=l2, the theory only supports timelike (spacelike)
constants fields. Therefore, for the generalized Gödel
spacetimes (5), we will need a topological mass �2 >
1=l2. In the other region, the constant electromagnetic field
will describe a tachyonic perfect fluid. Anyway, as we will
see below, it is this region in which black hole solutions are
going to exist.

B. The solution

By direct computation one can check that Eqs. (53) and
(54) are satisfied by the field

p�r� � 8G� q�r� � �
4GJ
�
� 2r� 2


2

l2
r2

h�r� � �2�r At�r� �
�2l2 � 1


�l
� �

A’�r� � �
4G
�
Q� 2



l
r;

(57)

where


 �

�������������������
1� �2l2

8G�

s
: (58)

The parameters �, J andQ are integration constants with a
physical interpretation as they will be identified with mass,
angular momentum and electric charge below. The arbi-
044006
trary constant � on the other hand will be shown to be pure
gauge. For later convenience, it is however useful to keep it
along and not restrict ourselves to a particular gauge at this
stage. This will be discussed in detail in Sec. VII.

In the sector �2l2 > 1, the solution is real only for �
negative. These are the Gödel particles, i.e., the conical
singularities, discussed in Sec. III. The metric (17) is
recovered when � � �2G�2 and the change of variables
t! t=

���������������
�8G�
p

, r!
���������������
�8G�
p

r is performed. For the spe-
cial values � � �1=8G and J � 0, which correspond to
the trivial identification j � 0, m � 1 in Sec. III, the
conical singularities disappear and we are left with the
Gödel universes (12), used for the identifications produc-
ing the cosmons. Figure 4 depicts the different sectors of
the geometry in the space of parameters J, �.

When �2l2 < 1, � has to be positive. The black hole
metrics (31) of Sec. IV are recovered when � � 2G�2 and
t! t=

�����������
8G�
p

, r!
�����������
8G�
p

r. For � � 1=8G and J � 0,
they reduce to the solution (25) from which the black holes
have been obtained from nontrivial identifications.

By construction, the electromagnetic stress-energy ten-
sor for the solutions (57) takes the form

8�GT��EM �
�
�2 �

1

l2

�
g�� � 8�GT ��; (59)

T �� �
j1� �2l2j

4�Gl2
u�u�; (60)

where the unit tangent vector of the fluid is u �

�1=�
��������������
8Gj�j

p
�� @@t . For �2l2 � 1, the effect of the electro-

magnetic field can be taken into account by replacing the
original cosmological constant � 1

l2
by the effective cos-

mological constant ��2 and introducing a pressure-free
perfect, ordinary or tachyonic, fluid with energy density
j1� �2l2j=�4�Gl2�. From this point of view, the Chern-
Simons coupling transmutes into a cosmological constant.
For 1� �2l2 < 0, the fluid flows along timelike curves
while for 1� �2l2 > 0 the fluid is tachyonic.

When �2l2 � 1, the fluid disappears, the stress-energy
tensor vanishes and the solution is real for � 2 R. The
metric (57) reduces to the Bañados-Teitelboim-Zanelli
(BTZ) metric [25], as can be explicitly seen by transform-
ing to the standard frame that is nonrotating at infinity with
respect to anti-de Sitter space,

’! ’� �t; r!
r2

2
�

2GJ
�

: (61)

As will be explained in more detail below, in the rotating
frame that we have used, the energy and angular momen-
tum are � and J respectively, while they become M �
�� �J and J in the standard nonrotating frame.

Regular black holes have the range (see Fig. 5)

� � 0; � � 2�J: (62)
-8



FIG. 5. Sectors of the �2l2 � 1 solution. The BTZ mass axis
M � �� �J and the extremal solutions are explicitly indicated.
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Note that the solution still possesses a topological charge
Q. It has been discussed in more detail in [24].

When �2l2 � 1, the limit �! 0 can be taken smoothly
in the coordinates r̂ � 
r, t̂ � t=
 in which the solution
becomes

p�r̂� � 1� �2l2 q�r̂� � �
4GJ
�
�

2



r̂�

2

l2
r̂2

h�r̂� � �2�r̂ At̂�r̂� �
�2l2 � 1

�l
� �̂

A’�r̂� � �
4G
�
Q�

2

l
r̂;

(63)

where �̂ � 
� .
VII. CONSERVED CHARGES

A. Angular momentum, electric charge and energies

The charge differences between a given solution
�g��; A�� and an infinitesimally close one �g�� �
�g��; A� � �A�� are controlled by the linearized theory
around �g��; A��. The equivalence classes of conserved
n� 2-forms (here 1-forms) of the linearized theory can be
shown [26,27] to be in one-to-one correspondence with
gauge parameters ���; �� satisfying�L�g�� � 0;

L�A� � @�� � 0:
(64)

The associated on-shell closed 1-forms can be written as
[14] (see also [28–30] for the gravitational part)

k�;����g; �A�; �g; A�� � kgrav� � kem�;� � k
CS
�;�; (65)
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where

kgrav� � ��KK
� � K

K
�� � � ��; (66)

where

KK
� � dx�

�������
�g
p

16�G
����D

��� (67)

is the Komar 1-form and

� �� � dx�
�������
�g
p

16�G
�������g��D��g�� � g��D��g���:

The electromagnetic contribution is

kem�;� � ��Q
em
�;� �Q

em
��;�� � � ��em; (68)

where

Qem
�;� � dx�����

�������
�g
p

32�G
�F�����A� � ���; (69)

� ��em � dx�����

�������
�g
p

16�G
��F���A�: (70)

The Chern-Simons term contributes as

kCS�;� � dx��
�������
�g
p

8�G
�A��A�

 � ��: (71)

Finite charge differences are computed by choosing a
path 
 in parameter space joining the solution �g; A� to a
background solution � �g; �A� as

Q ��; �� �
I
S

Z


k�;����g
; �A
�; �g
; A
��; (72)

where S is a closed one-dimensional submanifold and
��g
; �A
� denotes the directional derivative of the fields
along 
 in the space of parameters. These charges only
depend on the homology class of S. They also do not
depend on the path, provided the integrability conditions
[31] dV

H
S k�;���dVg; dVA�; �g; A�� � 0 are satisfied.

For generic metrics and gauge fields of the form (57), the
general solution ��; �� of (64) is a linear combination of
�0;�1�, �� @

@’ ; 0� and �@@t ; 0�. These basis elements are
associated with infinitesimal charges as follows:I
S
k0;�1 � �Q;

I
S
k��@=�@’��;0 � �

�
J�

2G
�
Q2

�
;

I
S
k@=�@t�;0 � ��� ��Q; (73)

where the contribution proportional to �Q in
H
S k��@=�@’��;0

and
H
S k@=�@t�;0 originate from the Chern-Simons term

through (71). The conserved charges associated with
�0;�1�, �� @

@’ ; 0� are thus manifestly integrable. We
choose to associate the angular momentum to
�� @

@’ ;�
4GQ
� � so that its value be algebraically indepen-

dent of Q. If one takes as basis element �@@t ;��� instead of
-9
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� @@t ; 0�, one gets a third integrable conserved charge equal
to ��.

The integrated charges computed with respect to the
background � � 0 � J � Q and associated with
� @@t ;���, ��

@
@’ ;�

4GQ
� � and �0;�1� are the mass, the an-

gular momentum and the total electric charge, respectively,

E � �; J � J; Q � Q: (74)

Note that, even though the metric and gauge fields in (57)
become singular at the background � � 0 � J � Q, we
can see from the form (63) that this is just a coordinate
singularity.

The parameter � is pure gauge because the variation ��
is not present in the infinitesimal charges (73). Note how-
ever that � appears explicitly in the definition of the mass
by associating it with the basis element �@@t ;���. It is only
in the gauge � � 0 that the mass is associated with the
timelike Killing vector �@@t ; 0�. This definition ensures, in
particular, that the mass of the black hole does not depend
on the gauge transformations (48) needed to regularize the
potential on the bifurcation surfaces.

In order to compare with standard AdS black holes, one
has to compute the mass in the frame (61) instead of using
the rest frame for the fluid. The conserved charge E0

associated with �@=@t� �@=@’;�� � 4GQ� is now given
by

E 0 � E � �J � �� �J � M; (75)

which coincides with the conventional definition of the
mass for the BTZ black holes.

B. Horizon and first law

1. General derivation

When it exists, the outer horizon H is located at r�, the
largest positive root of f�r�. In the following, a subscript�
on a function means that it is evaluated at r�. The generator
of the horizon is given by � � @

@t�� @
@’ , where the angu-

lar velocity � of the horizon has the value

� � �"h�"q�

�������
p�
q�

s
� �

h�
q�

; (76)

where "h� denotes the sign of h�. The first law can be
derived by starting from

�E �
I
S
k@=�@t�;��

�
I
S
k�;0 ��

I
S
k��@=�@’��;���4GQ�=��

�
I
S
k�����4GQ�=���;0

�
I
H
k�;0 ���J �

�
� �

4GQ
�

�
�
�Q: (77)
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The first term on the right-hand side is computed using
standard arguments (see for example [29,32]) to give

�E �
	

8�G
�A���J ��tot

H �Q; (78)

where the total electric potential is given by

�tot
H � �H � � �

4GQ
�

�; �H � ��� � A��: (79)

The surface gravity is given by

	 �

�������������������������������������������������������� 1

2
�D�����D����

��������
s ��������H

�
jf0�j

2
���������
jq�j

p ; (80)

and the proper area by

A � 2�
���������
jq�j

q
: (81)

Note that the choice of signs in the definition of electric
charge and angular momentum were made so that the first
laws appear in the conventional form (78).

2. Explicit values and discussion

We have

f�r� � 2
�1� �2l2�

l2
r2 � 16G�

�
r�

2GJ
�

�
(82)

so that

r� �
4l2G�

1� �2l2

�
1�

����������������������������������
1�

J�1� �2l2�

�l2�

s �
: (83)

In order to explicitly verify the first law (80), we start by
showing that �tot � 0. We need to verify that

�At�r�� ��A’�r�� � � ��
4GQ
�
� 0: (84)

Using the explicit expressions for the components of A, this
equation reduces to

� �
4G�
�r�

: (85)

Taking into account � � �h�=q� together with q� �
h2
�=p�, this equality can then easily be checked using
h� � �2�r�, p� � 8G�, implying q� �
�2r2

�=�2G��. Since f0� � 4�1� �2l2�r�=l2 � 16G�,
the first law reduces to

���
4G�
�r�

�J �
�
�2l2 � 1

4Gl2
r� ��

��
2�r�
r�
�
��
�

�
;

(86)

which can be explicitly checked using (83).
In particular, the first law (78) can be evaluated in the

gauge where the potential is regular on the horizon r�.
Because the two forms (31) and (57) of the black
hole solution are related by the change of coordinates
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t! t
���������������
�8G�
p

, r! r=
���������������
�8G�
p

, the gauge (48) now cor-
responds to

At � A�t � ��A�’ : (87)

This amounts to the choice � � 4GQ
� � in (57). It follows

that �tot � � � 0 and that the vector associated with A is
proportional to � on the horizon.

The first law adapted to the energy E0 � E � �J is
obtained by changing � to �0 � �� � in (78). This
form of the first law reduces to the standard form for
three-dimensional AdS black holes (with or without topo-
logical charge) when � � �1=l.

Finally, we note that the first law (78) applies both to the
outer event horizon of a black hole in the normal region
and to the horizon at r0 of a cosmon, when time is iden-
tified with real period 2�=j	j.
044006
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