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Abstract
Modelling forecast uncertainty is a difficult task in any forecasting problem. In

weather forecasting a possible solution is the use of forecast ensembles, which

are obtained from multiple runs of numerical weather prediction models with var-

ious initial conditions and model parametrizations to provide information about

the expected uncertainty. Currently all major meteorological centres issue fore-

casts using their operational ensemble prediction systems. However, it is a gen-

eral problem that the spread of the ensemble is too small compared to

observations at specific sites resulting in under-dispersive forecasts, leading to a

lack of calibration. In order to correct this problem, various statistical calibration

techniques have been developed in the last two decades. In the present work dif-

ferent post-processing techniques were tested for calibrating nine member ensem-

ble forecasts of temperature for Santiago de Chile, obtained by the Weather

Research and Forecasting model using different planetary boundary layer and

land surface model parametrizations. In particular, the ensemble model output

statistics and Bayesian model averaging techniques were implemented and, since

the observations are characterized by large altitude differences, the estimation of

model parameters was adapted to the actual conditions at hand. Compared to the

raw ensemble, all tested post-processing approaches significantly improve the

calibration of probabilistic forecasts and the accuracy of point forecasts.

The ensemble model output statistics method using parameter estimation based

on expert clustering of stations (according to their altitudes) shows the best fore-

cast skill.

KEYWORD S

Bayesian model averaging, ensemble model output statistics, ensemble post-processing, probabilistic

forecasting, temperature forecast

1 | INTRODUCTION

The central zone of Chile, located between 32 � S and
37 � S latitude, has a semi-arid Mediterranean climate as
a result of the influence of topographic barriers and the
southeast Pacific anticyclone located over the cool Pacific

Ocean, which generates a persistent inversion layer in the
lowest few hundred metres of the atmosphere (Burger
et al., 2018). In particular, Santiago de Chile surrounded
by high mountains has its own special micro climate
making accurate weather forecasts even more
complicated.
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Obtaining reliable forecasts of surface temperature has a
large impact in many fields such as renewable energy, air
quality and radiative transfer. These forecasts are typically
produced with the help of numerical weather prediction
models, which provide predictions at high spatial and tempo-
ral resolutions. In the last few years in Chile, serious efforts
have been made in evaluating meteorological models to
improve temperature forecasts, among other variables (Cortés
and Curé, 2011; Saide et al., 2011; Pozo et al., 2016;
González and Garreaud, 2019). However, the outputs of these
numerical weather prediction models are subject to an intrin-
sic uncertainty, which for a specific region can be quantified
by running the models with different initial conditions and
parametrizations opening the door for ensemble forecasting
(Bauer et al., 2015). Currently, all major meteorological cen-
tres generate ensemble forecasts using their operational
ensemble prediction systems (EPSs). Examples are the
51 member EPSs of the European Centre for Medium-Range
Weather Forecasts (Molteni et al., 1996; Leutbecher and
Palmer, 2008) and the 30 member Consortium for Small-scale
Modelling EPSs of the German Meteorological Service
(Gebhardt et al., 2011). A general problem with many opera-
tional EPSs is that the spread of the ensemble is too small,
and the observations at specific sites often fall outside the
range of ensemble members. Such an under-dispersive fore-
cast characteristic results in a lack of calibration (see foe
example Buizza et al., 2005; Vannitsem et al., 2018).

A possible way of improving ensemble member forecasts
is the use of some form of statistical post-processing. In the
last 15 years several different statistical calibration tech-
niques have been developed (for an overview see Williams
et al., 2014; Vannitsem et al., 2018) including non-
homogeneous regression or ensemble model output statistics
(EMOS) (Gneiting et al., 2005) and ensemble BMA
(Raftery et al., 2005), a post-processing approach based on
the idea of Bayesian model averaging. Both methods pro-
vide full predictive distribution of the weather variable at
hand. The EMOS predictive distribution is specified by a
parametric distribution with parameters connected to the
ensemble members via appropriate link functions, whereas
BMA applies mixture distributions with components
corresponding to the ensemble members. Given a predictive
distribution, either its mean or its median can be considered
as point forecasts, and probabilities of various events can
also be easily calculated. EMOS and BMA models
corresponding to various weather quantities differ in the
parametric laws on which they are based. Temperature and
pressure forecasts are fitted well by a normal distribution
(Gneiting et al., 2005; Raftery et al., 2005), wind speed
requires a non-negative and skewed distribution such as
truncated normal (Thorarinsdottir and Gneiting, 2010;
Baran, 2014), log-normal (Baran and Lerch, 2015) or

gamma (Sloughter et al., 2010), whereas to calibrate accu-
mulated precipitation a discrete–continuous model with
point mass at zero is required (Sloughter et al., 2007;
Scheuerer, 2014; Scheuerer and Hamill, 2015; Baran and
Nemoda, 2016).

In the present work various post-processing models for
calibrating ensemble forecasts of temperature in Santiago
city were evaluated. The ensemble members correspond to
nine Weather Research and Forecasting (WRF) (Powers
et al., 2017) model configurations with three nested
domains. According to the best knowledge of the authors,
no studies have been published yet with the aim of improv-
ing the quality of surface temperature predictions in Chile by
statistical calibration based on ensemble post-processing
techniques. Moreover, as the results show, the location of
the ensemble domain with large altitude differences requires
some adaptation of the post-processing approach to the
actual conditions at hand.

The paper is organized as follows. A description of WRF
configurations, data from meteorological stations and their
preliminary statistical analysis is provided in Section 2.
Section 3 describes the post-processing models and applied
methods of model verification, whereas the results of the sta-
tistical post-processing are given in Section 4. Finally,
Section 5 concludes the paper with a summary of the major
findings and a discussion of possible future areas of
research.

2 | WRF CONFIGURATIONS AND
DATA DESCRIPTION

The WRF model was employed to generate nine different
simulations resulting in a nine member forecast ensemble for
surface temperature (K) for the period between October
1, 2017, and January 30, 2018. WRF model outputs during
the study period were generated at 3 hr intervals. The
corresponding verifying observations were obtained from
19 meteorological stations around Santiago city.

2.1 | WRF simulations

Three model nested domains (see Figure 1a), at 18, 6 and
2 km horizontal resolutions, were employed in the simula-
tions using version 3.7.1 of the Advanced Research WRF
core (ARW-WRF) (Skamarock et al., 2008). Results from
the highest resolution domain (d3) were used in this study
with a superficial area of 208 km × 208 km.

Data from the global final analysis (FNL) (RDA CISL
ds083.3; NCEP, 2015) were used to create the initial state
and to update the boundary conditions for the regional WRF
simulations. The FNL at 0.25� by 0.25� horizontal resolution
is available every 6 hr at 0000, 0600, 1200 and 1800 UTC
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where the 0000 UTC analysis is used to initialize the WRF
model runs. An analysis nudging was implemented in the
outer domain (d1) to provide better boundary conditions dur-
ing the simulation period. This setting cannot be used opera-
tionally but just as a research case study. However, in the
future, global forecast system (GFS) forecasts with a 3 hr
temporal resolution could be used to replace FNL to run an
operational GFS-WRF setting with 3 hr nudging. The simu-
lations included 44 vertical levels with variable resolution
between 60 and 200 m and eight levels within the first
kilometre in the vertical. The validation of raw and post-
processed ensemble forecasts was performed with the 24 hr
forecasts of each day (from 0000 to 2100 UTC). Table 1
describes the parametrizations used in each simulation.

The members differ from each other in the applied plane-
tary boundary layer (PBL) and land surface model parame-
trizations. The Mellor–Yamada–Janjic (Janji�c, 1994),
Yonsei University (Hong et al., 2006) and Mellor–Yamada
Nakanishi and Ninno 2.5 level (Nakanishi and Niino, 2006)

schemes are used to represent the PBL and surface layer pro-
cesses. The land surface processes are represented by the
five-layer (Dudhia, 1996), Noah (Chen and Dudhia, 2001)
and Pleim–Xiu (Pleim and Xiu, 2003) schemes. The rest of
the parametrizations are kept the same in all simulations.
The Kain–Fritsch (Kain, 2004) cumulus parametrization is
used to represent the convective processes in domain
1 (18 km) and the WRF single-moment 3-class (Hong et al.,
2004) scheme is used to represent microphysics processes.
Finally, to represent the long wave and short wave radiative
processes the rapid radiative transfer model (Iacono et al.,
2005) is applied.

2.2 | Station observations

Hourly mean surface temperature observations (K) every
3 hr for the period between October 1, 2017, and January
30, 2018, were obtained for 19 meteorological stations
whose descriptions are shown in Table 2 (see also

FIGURE 1 (a) Weather Research and Forecasting domain configuration domains d1, d2 and d3; (b) domain d3 with the superposed terrain
elevation (m) and the location of the 19 meteorological stations used in the study

TABLE 1 Description of the parametrization set used on each of the nine ensemble members

Member LSM Surface PBL Cumulus Microph. LW rad SW rad

1 Noah MYNN MYNN Kain-F WSM3 RRTMG RRTMG

2 Noah MYJ MYJ Kain-F WSM3 RRTMG RRTMG

3 Noah YSU YSU Kain-F WSM3 RRTMG RRTMG

4 Pleim-Xiu MYJ MYJ Kain-F WSM3 RRTMG RRTMG

5 Pleim-Xiu YSU YSU Kain-F WSM3 RRTMG RRTMG

6 5-layer MYJ MYJ Kain-F WSM3 RRTMG RRTMG

7 5-layer YSU YSU Kain-F WSM3 RRTMG RRTMG

8 5-layer MYNN MYNN Kain-F WSM3 RRTMG RRTMG

9 Pleim-Xiu MYNN MYNN Kain-F WSM3 RRTMG RRTMG

Cumulus, the convective scheme; Kain-F, Kain–Fritsch; LSM, land surface model; LW Rad and SW Rad, long wave and short wave radiation schemes; Microph.,
microphysics scheme; MYJ, Mellor–Yamada–Janjic; MYNN, Mellor–Yamada Nakanishi and Ninno; PBL, planetary boundary layer scheme; RRTMG, rapid radiative
transfer model; WSM3, Weather Research and Forecasting single-moment 3-class; YSU, Yonsei University.
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Figure 1b). The stations are managed by the Dirección Met-
eorológica de Chile, which is the government agency
responsible for managing the meteorological data (available
online at http://www.meteochile.gob) and provides opera-
tional weather forecasts in the country, and by the National
System for Air Quality (Environmental Ministry, see https://
sinca.mma.gob.cl/). It should be noted that the three stations
Las Condes (9), La Florida (4) and Chorombo Hacienda
(12) have missing values in more than 25% of their data.

2.3 | Predictive performance of the raw
ensemble

To verify the predictive performance of the raw WRF
ensemble, temperature forecasts from the nearest grid-point
to the location of each weather station were extracted from
the WRF domain d3 and compared to the corresponding
observations. As Table 2 and Figure 1b show, the topogra-
phy within the domain used in this study is very complex

TABLE 2 Geographical co-ordinates in decimal degrees and altitude (m) of monitoring stations and altitude of the nearest grid-point to the
station in the Weather Research and Forecasting (WRF) simulation

No. Station Latitude (�S) Longitude (�W) Altitude (m) WRF height (m)

1 Talagante 33.67 70.95 390 281.97

2 Puente Alto 33.59 70.59 670 667.06

3 El Bosque 33.55 70.67 580 559.47

4 La Florida 33.52 70.59 601 590.45

5 Parque O'Higgins 33.46 70.66 549 506.83

6 Pudahuel 33.44 70.75 494 462.78

7 Cerro Navia 33.43 70.73 500 466.98

8 Independencia 33.42 70.65 560 548.83

9 Las Condes 33.38 70.52 798 785.95

10 El Paico 33.71 71.01 275 222.30

11 San José Guayacán 33.61 70.35 928 1,297.73

12 Chorombo hacienda 33.53 71.23 145 126.26

13 Aguas Andinas 33.54 70.55 665 758.60

14 Lo Prado 33.46 70.95 1,068 812.29

15 Quinta Normal 33.44 70.68 534 496.49

16 San Pablo 33.44 70.75 490 461.43

17 Curacaví 33.41 71.17 208 237.14

18 Lo pinto 33.27 70.73 512 483.92

19 El Colorado 33.35 70.29 2,750 2,940.90
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FIGURE 2 Median forecast error of
the ensemble at the monitoring stations
listed in Table 2
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causing difficulties in obtaining reliable forecasts. Figure 2
provides box-plots of the median forecast error of the
ensemble for each station. The raw ensemble systematically
underestimates temperature at stations located at higher alti-
tudes (stations 9, 11, 14 and 19). This should obviously be
taken into account during the calibration process. A number
of studies have found cold biases in near-surface temperature
forecasts from the WRF model in different mountainous
regions in Chile and other parts of the world using similar
options for PBL and land surface model schemes as those
used in this study (Ruiz et al., 2010; Marín et al., 2013;
Massey et al., 2016; González and Garreaud, 2019). The
temperature underestimation may be the result of misrepre-
sentations in the real orography or the near-surface moisture
in the model (Massey et al., 2016). Table 2 indicates that the
largest differences between the real and model topography
are shown for stations 11 (360 m), 14 (256 m) and
19 (190 m). These differences can only explain parts of the
large mean bias shown for station 19. Other factors,
e.g. land-use misinterpretation, local weather phenomena but
also the choice of the station clusters, may contribute to the
bias, as demonstrated for this station as well as for stations
9 and 11, but it has not been further investigated.

As shown in Figure 3a providing the box-plots of fore-
cast errors of the individual ensemble members over all
available forecast cases, there is also some variation in the

performance of the different ensemble members. Ensemble
members 7 and 8 underperform the other seven ensemble
members as they tend to have larger forecast errors. Further-
more, the forecast error varies with forecast time, as
Figure 3b indicates. The box-plots of the diurnal evolution
of the ensemble mean forecast errors show that simulations
mainly overestimate the observed temperatures except at
1200 UTC, where they slightly underestimate it, and at 1500
UTC, where the forecasts seem to be unbiased. The depen-
dence of the bias on the validation time might be related to
the misrepresentation of the real orography in the model.
The diurnal temperature variation is strongly influenced by
solar radiation, which strongly varies in sites located in com-
plex terrain due to topographic shading and variations in
slope orientations (Zhang et al., 2018). Therefore, the time
of sunrise in those stations might be misrepresented, causing
larger errors at the above mentioned hours.

In order to get a first overview of the raw ensemble cali-
bration, the verification rank histogram can be examined
(Figure 4), which represents the histogram of ranks of vali-
dating observations with respect to the corresponding
ensemble forecasts computed for all forecast cases (see for
example Wilks, 2011, section 7.7.2). For properly calibrated
ensemble forecasts, the ranks should be uniformly distrib-
uted, which is clearly not the case in Figure 4, calling for
some form of statistical post-processing.

3 | MODELS

As mentioned in Section 1, a normal distribution is often
suitable for temperature modelling. Hence, the normal
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FIGURE 3 Forecast error (a) of the different ensemble members
for all dates and time points; (b) of the ensemble mean for different
time points for all dates
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EMOS and BMA models suggested by Gneiting et al.
(2005) and Raftery et al. (2005), respectively, were used to
calibrate the ensemble temperature forecasts from the WRF
model. In what follows, let f1, …, f9 denote the forecasts of
the nine ensemble members for a given location and time
point.

3.1 | EMOS model for temperature

The normal EMOS predictive distribution for the nine WRF
ensemble members has the form:

N a0 + a1f 1 + � � �+ a9f 9,b0 + b1S2
� � ð1Þ

where

S2≔
1
8

X9
k=1

f k− f
� �2

is the ensemble variance, with f denoting the ensemble
mean. Location parameters a02R and a1, …, a9≥ 0 and
scale parameters b0, b1≥ 0 were estimated by optimizing the
value of a proper scoring rule (see Section 3.3) over the
training data consisting of ensemble forecasts and verifying
observations from the preceding n days.

3.2 | BMA model for temperature

EMOS calibration is efficient in the case of unimodal distri-
butions. However, it cannot provide an appropriate model
for weather variables following distributions with several
modes. In such situations BMA modelling using mixture
distributions might outperform EMOS models. The normal
BMA model of Raftery et al. (2005) for calibrating tempera-
ture forecasts in this case results in a predictive probability
density function:

p xjf 1,…, f 9ð Þ≔
X9
k=1

ωk
1
σ
φ

x−β0,k−β1,kf k
σ

� �
ð2Þ

where φ denotes the probability density function of the stan-
dard normal distribution. Here each weight ωk considers the
relative performance of the corresponding kth ensemble
member fk during the training period, and the weights have

to fulfil the condition
P9

k=1ωk =1, ωk≥ 0. The linear form
β0,k+ β1,kfk of the average over each component probability
density function is responsible for the bias correction; how-
ever, cases β1,k = 1 (additive bias correction) and β0,k = 0,
β1,k = 1 (no bias correction) might also be considered. The
last two approaches might be helpful in situations where the
raw ensemble is unbiased and additional bias correction

might introduce unnecessary extra errors (see for example
Baran et al., 2014).

Similar to the EMOS approach, location parameters β0,k,
β0,1, weights ωk, k = 1, …, 9, and scale σ were estimated
using appropriate training data. Location parameters were
obtained by regressing the validating observations on the
ensemble members, whereas weights and scale were esti-
mated using a maximum likelihood approach where the like-
lihood function was maximized with the help of the
expectation maximization algorithm for mixtures (see for
example McLachlan and Krishnan, 1997). Note that BMA
modelling was performed with the help of the
ensembleBMA R package (Fraley et al., 2011), whereas
EMOS models were fitted using custom codes tailored to the
problems at hand.

3.3 | Verification scores

The aim of statistical post-processing is to maximize the
sharpness of the predictive distribution subject to calibration
(Gneiting et al., 2007), where the former refers to the con-
centration of the forecast distribution and the latter to the
consistency between predicted probabilities and observed
relative frequencies. These goals can be assessed simulta-
neously with the help of scoring rules (Gneiting and Raftery,
2007) assigning numerical values to pairs of forecast distri-
butions and validating observations. One of the most widely
used proper scoring rules in atmospheric sciences is the con-
tinuous ranked probability score (CRPS) (Gneiting and
Raftery, 2007). For a predictive cumulative distribution
function (CDF) F(y) and observation x the CRPS is
defined as:

CRPS F,xð Þ≔
ð∞
−∞

F yð Þ−1 y≥ xf g
� �2 dy=E X−xj j− 1

2
E X−X0j j

where 1H denotes the indicator of a set H, while X and X0 are
independent random variables with CDF F and finite first
moment. Note that the CRPS can be expressed in the same
units as the observation and is a negatively oriented scoring
rule, the smaller the better.

Furthermore, the calibration of a predictive distribution
can be investigated using the coverage of the (1 − α)100%,
α 2 (0,1), central prediction interval. The coverage is
defined as the proportion of validating observations located
between the lower and upper α/2 quantiles of the predictive
CDF and level α should be chosen to match the nominal
coverage of the raw ensemble, which is 80% for the nine
member ensemble at hand. As the coverage of a calibrated
predictive distribution should be around (1 − α)100%, the
suggested choice of α allows direct comparisons with the
raw ensemble.
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The improvement in calibration with respect to the raw
ensemble can also be demonstrated with the help of proba-
bility integral transform (PIT) histograms (Wilks, 2011).
The PIT is the value of the predictive CDF evaluated at the
validating observation and in the case of proper calibration it
should follow a uniform law on the [0,1] interval. Hence, the
PIT histogram is the continuous counterpart of the verifica-
tion rank histogram of the raw ensemble.

Finally, the predictive performance of point forecasts
such as the ensemble median and mean was evaluated with
the help of the mean absolute error (MAE) and the root
mean squared error (RMSE). Note that the former is optimal
for the median, whereas the latter is optimal for the mean
(Gneiting, 2011; Pinson and Hagedorn, 2012).

3.4 | Training data

The choice of appropriate training data is essential for esti-
mating the parameters of the EMOS and BMA models given
by Equations 1 and 2. In many situations, rolling training
periods are applied and there are two main approaches to
choosing forecast cases for training (Thorarinsdottir and
Gneiting, 2010). In the local approach, parameters for a
given station are estimated only from the data of that particu-
lar station. This approach usually results in a very good
model fit, provided the training period is long enough to
avoid numerical issues in parameter estimation (see for
example Hemri et al., 2014). In contrast, regional EMOS
and BMA estimate parameters using all available forecast
cases from the training period; thus, all stations in the fore-
cast domain share the same set of parameters. In this way
shorter training periods can be used, but the regional
approach is not suitable for large heterogeneous domains.
Recently, Lerch and Baran (2017) proposed a third, semi-
local approach, which combines the advantages of local and
regional forecasting. Training data for a given station are
augmented with data for stations with similar characteristics,
e.g. by clustering the stations using feature vectors deter-
mined by station climatology and/or ensemble forecast
errors during the training period. Within a given cluster a
regional parameter estimation is performed, but note that
clusters may vary as the training window slides (for more
details see Lerch and Baran, 2017). Finally, an expert clus-
tering of the monitoring stations can also be performed
based on their location or other covariates and the parame-
ters within clusters can be estimated regionally.

4 | RESULTS

In order to exclude the natural daily variation in temperature,
the EMOS and BMA calibrations of the WRF ensemble
forecasts described in Section 2.1 were performed separately

for each forecast validation time point. Since the ensemble is
composed of nine members, EMOS post-processing requires
a total of 12 parameters to be estimated, whereas for BMA
the number of free parameters is 27. The dataset at hand
covers only 122 calendar days which for both approaches
makes the local estimation of parameters impossible.
Regional estimation also requires at least a 6 day training
period (6 days × 19 stations = 114 forecast cases) for EMOS
and at least a 15 day training period (285 forecast cases) for
BMA in order to have about 10 times more forecast cases
than parameters.

The length of the optimal training period is determined
by calibrating the ensemble forecasts using training periods
of length 10, 15, …, 60 days and comparing the predictive
performance on the verification period November 30, 2017–
January 30, 2018 (62 calendar days). Figure 5 shows the
mean CRPS values of EMOS and BMA predictive distribu-
tions as functions of the training period length for all time
points. Both models have the best predictive performance at
time points 0300 and 0600 UTC, providing slightly higher
CRPS values for 0000, 0900, 1800 and 2100 UTC, whereas
the worst forecast skill corresponds to 1200 and 1500 UTC.
However, these results are partially in line with Figure 3b
and might be explained by differences in the accuracy of
ensemble forecasts for different periods of the day. Note that
the curves present their minima at day 10 and, except for the
curves corresponding to 1200 and 1500 UTC, they do not
show much variability. The MAE and RMSE values of
EMOS and BMA median and mean forecasts (not reported),
respectively, are very consistent with the CRPS and do not
change the overall picture. In many cases short training
periods are preferred, but also the minimum number of fore-
cast cases should be kept in mind for parameter estimation
and a sufficiently large training period should be selected,
which depends on the dataset and the number of stations.
For this study, a training period of 20 days was chosen for
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FIGURE 5 Mean continuous ranked probability score (CRPS) of
ensemble model output statistics (EMOS) and Bayesian model
averaging (BMA) predictive distributions for the period November
30, 2017–January 30, 2018
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calibrating the WRF forecasts (see Figure 5) as it might also
be appropriate for semi-local estimation of EMOS parame-
ters using two or three clusters of observation stations. In
this way the predictive performance of EMOS and BMA
post-processed forecasts can be tested on temperature data
from the period between October 21, 2017, and January
30, 2018 (102 calendar days).

Besides regional estimation of BMA and EMOS parame-
ters, clustering based semi-local EMOS parameter estimation
was also tested with two and three clusters and 24 features.
Half of the features are obtained as equidistant quantiles of
the climatological CDF and the other half as equidistant qua-
ntiles of the empirical CDF of the forecast error of the
ensemble mean over the training period (Lerch and Baran,
2017). However, this approach often produces very unbal-
anced cluster sizes even for two clusters. In almost 28% of
the cases, station 19 alone forms a separate cluster and the
other cluster consists of the remaining stations. In particular,
for 1800 UTC this was the case on 76 out of 102 days in the
training period. This uneven clustering is in line with the
bad ensemble forecast skill at station 19 (Figure 2). Having
a single station in a cluster means local parameter estimation
for that particular station, resulting in numerical issues in the
optimization procedure.

Instead of grouping the stations dynamically based on
feature vectors, some form of expert clustering might be

tried and, for the ensemble domain at hand (see Figure 1b),
altitude might be a reasonable covariate. The chosen altitude
regions resulting in three clusters are as follows: under
400 m (stations 1, 10, 12, 17); between 400 and 750 m (sta-
tions 2, 3, 4, 5, 6, 7, 8, 13, 15, 16, 18); above 750 m (sta-
tions 9, 11, 14, 19). Note that, at stations in the third cluster,
WRF forecasts systematically underestimate temperature
(see Figure 2 and the corresponding discussion in
Section 2.3).

In this way, for post-processing ensemble forecasts,
BMA and EMOS models with regional parameter estimation
and the EMOS model with expert clustering (EMOS-C)
were considered using a 20 day rolling training period.
Table 3 shows the mean CRPS of probabilistic forecasts, the
RMSE of mean and the MAE of median forecasts and the
coverage of 80% central prediction intervals separately for
the different time points and for the overall verification
period. Note that all post-processing approaches outperform
the raw ensemble in terms of all scores for all forecast vali-
dation time points except for the coverage at 1800 UTC;
however, even for that time point, the values are not far from
the nominal 80%. From the three competing post-processing
approaches, EMOS-C shows the best predictive performance
followed by BMA and EMOS. However, the differences
between the scores of the three post-processing approaches
are minor.

TABLE 3 Mean CRPS of probabilistic forecasts and RMSE of mean and MAE of median forecasts, and coverage of 80% central prediction
intervals

Scores Models

Forecast validation time (UTC)

Overall0000 0300 0600 0900 1200 1500 1800 2100

CRPS (K) Ensemble 1.728 1.570 1.743 1.773 2.135 1.839 1.604 1.764 1.769

EMOS 1.186 1.012 1.017 1.219 1.775 1.672 1.309 1.260 1.306

EMOS-C 1.105 0.955 0.992 1.218 1.686 1.505 1.163 1.180 1.225

BMA 1.197 1.018 1.019 1.221 1.778 1.668 1.247 1.254 1.299

RMSE (K) Ensemble 2.794 2.569 2.817 2.835 3.265 3.297 3.041 3.019 2.963

EMOS 2.092 1.791 1.808 2.156 3.121 2.988 2.418 2.228 2.370

EMOS-C 1.951 1.692 1.755 2.149 2.996 2.697 2.111 2.114 2.222

BMA 2.097 1.795 1.810 2.156 3.118 2.959 2.236 2.212 2.342

MAE (K) Ensemble 2.255 1.903 2.153 2.312 2.712 2.496 2.244 2.500 2.321

EMOS 1.683 1.417 1.437 1.729 2.557 2.367 1.828 1.788 1.850

EMOS-C 1.571 1.340 1.393 1.727 2.415 2.104 1.592 1.659 1.725

BMA 1.693 1.420 1.443 1.732 2.533 2.357 1.745 1.778 1.837

Cover (%) Ensemble 51.15 58.14 57.05 61.14 40.46 69.04 80.98 67.18 60.63

EMOS 75.63 75.56 76.36 76.66 77.30 77.59 75.37 78.36 76.60

EMOS-C 76.40 74.25 75.53 75.29 76.86 73.84 72.62 76.88 75.21

BMA 74.42 76.33 77.29 75.12 74.49 75.61 76.09 76.44 75.72

BMA, Bayesian model averaging; CRPS, continuous ranked probability score; EMOS, ensemble model output statistics; EMOS-C, EMOS with clustering; MAE, mean
absolute error; RMSE, root mean squared error.
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The statistical significance of differences between overall
mean CRPS and MAE values was investigated with the help
of the two-sided Diebold–Mariano (Diebold and Mariano,
1995) test of equal predictive performance, as this test takes

into account temporal dependence (for details of the applica-
tion see for example Baran and Lerch, 2018). Figure 6
shows the values of the Diebold–Mariano test statistics
based on the CRPS and the absolute error of the median for
all pairwise comparisons of forecasts. All calibration
methods result in significant improvement compared to the
raw ensemble; however, the forecast skill of the three post-
processing approaches does not differ significantly. This
means that, for the WRF forecasts at hand, the use of the
more complex BMA model for calibration with many
parameters does not necessarily pay off. Use of the simple
EMOS approach should be considered instead, possibly
grouping the stations in a careful way.

The same conclusions can be drawn from the overall PIT
histograms plotted in Figure 7. The improvement in calibra-
tion compared to the raw ensemble is obvious; however, all
three PIT histograms are slightly U-shaped indicating a very
small under-dispersion (see also the overall coverage values
of Table 3). Unfortunately, the Kolmogorov–Smirnov test
rejects the uniformity of the PIT values at a 5% level in all
three cases; however, the mean p values of 1,000 samples
from PIT, each of size 1,000, given in Table 4, nicely reflect
the shapes of the PIT histograms of Figure 7.

Ensemble

EMOS

EMOS−C

BMA

EnsembleEMOSEMOS−CBMA

>5.00 >5.00 >5.00 NA

0.13 0.12 NA <−5.00

0.05 NA −0.51 −3.70

NA 1.07 −0.23 <−5.00

p < 0.01

p < 0.05
p < 0.1

not signif.

p < 0.1
p < 0.05

p < 0.01

FIGURE 6 Values of the test statistics of the Diebold–Mariano
test for equal predictive performance based on the continuous ranked
probability score (upper triangle) and absolute error of the median
forecast (lower triangle). Negative/positive values indicate a superior
predictive performance of the forecast given in the row/column label,
whereas the green/red background indicates significant differences
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FIGURE 7 (a) Verification
rank histogram of the raw
ensemble, and probability integral
transform (PIT) histograms of
post-processed forecasts for the
period October 21, 2017–January
30, 2018: (b) ensemble model
output statistics (EMOS),
(c) EMOS with clustering
(EMOS-C), (d) Bayesian model
averaging (BMA)
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5 | CONCLUSIONS

Two types of statistical post-processing methods are applied
to 3 hr ensemble forecasts of near surface temperature for
Santiago de Chile produced by separate runs of the Weather
Research and Forecasting (WRF) model with nine different
configurations. One day ahead predictions for different fore-
cast validation time points are treated separately. The predic-
tive performance of the ensemble model output statistics
(EMOS) and Bayesian model averaging (BMA) models with
regional parameter estimation using a 20 day training period
is investigated. This optimal length of the training period is
a result of a detailed data analysis. Besides the regional
models, the forecast skill of an EMOS approach with param-
eter estimation based on expert clustering of observation sta-
tions using their altitude data, referred to as EMOS-C, is
also tested. Compared to the raw ensemble, all post-
processing methods for all forecast validation time points
result in a significant decrease in continuous ranked proba-
bility score (CRPS) values of probabilistic forecasts and the
mean absolute error (MAE) and root mean squared error
(RMSE) values of point forecasts. In addition, they also
yield a substantial improvement in calibration. From the
competing calibration approaches, EMOS-C produces the
smallest score values for all forecast validation time points;
however, the differences in overall mean CRPS and MAE of
post-processing models are not significant. Thus, it can be
concluded that post-processing of WRF ensemble forecasts
for temperature significantly improves the calibration of
probabilistic forecasts and accuracy of point forecasts. How-
ever, there is still space for further improvements, e.g. by
considering models including spatial dependence via state of
the art approaches such as the Markovian EMOS (Möller
et al., 2015), ensemble copula coupling (Schefzik, 2016a,
2016b) and the spatial extensions of BMA and EMOS
suggested by Feldmann et al. (2015), which appear to be
very suitable for the dataset at hand.

Currently, a number of meteorological centres run an
ensemble of global simulations several times per day to pro-
duce global weather forecasts. For example, an ensemble of
Global Forecast System forecasts is available at
0.25� × 0.25� or 27 × 27 km horizontal resolution (at the
Equator). The WRF configuration used in this study

generates weather forecasts at 2 × 2 km, which should
improve the near-surface forecasts in the region from a
global model since they cover different topographic and
land-use features that should be better represented in the
high-resolution WRF simulations. However, it would be
very interesting to apply post-processing methods such as
those used in this study to a number of Global Forecast Sys-
tem ensemble members to determine whether their perfor-
mance strongly differs from those obtained in this study.
That would help to quantify the value of high-resolution
WRF ensemble forecasts versus global forecasts in the
region.
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