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ABSTRACT Pulsed plasma discharges, such as the plasma focus, are a source of pulsed X rays, therefore it is
desirable to understand the relationship between this fast transient phenomena and the electrical variables of
the discharge. Parameters from the electrical diagnostic signals are typically used to characterize the plasma
focus discharge and for the correlations with X rays measurements via scatter plots. To further evaluate
relevant information in the electrical signals, besides the characteristic parameters, an implementation of
different types of machine learning algorithms, that included deep learning, was performed. A classification
of pulses associated with an X rays measurement, in terms of the electrical signals data as input, was
carried out. Two approaches were compared: the selection of the characteristic parameters and the use of the
entire signals so the algorithms could find additional information for the classification task. The electrical
diagnostic signals corresponded to: the voltage at the electrodes of the discharge chamber measured with
a resistive voltage divider; time variation of the circuit current measured with a Rogowski coil and an
inductive loop sensor; and the electromagnetic burst from the circuit measured with a Vivaldi antenna. The
X rays measurement corresponded to the signal obtained from a scintillator-photomultiplier. In terms of the
performance of the algorithms models in this classification problem, the results indicated that there is no
significative improvements when using the entire signal or the selection of characteristic parameters. The
best results were obtained when the following parameters were used: voltage at time of gas breakdown,
voltage at time of pinch, current at time of pinch, time derivative of current at time of pinch, time from
breakdown to pinch, and the Fast Fourier Transform of the part of the Vivaldi antenna signal related to the
pinch event.

INDEX TERMS Plasma focus, electrical diagnostic, VHF/UHF antennas, machine learning.

I. INTRODUCTION
Pulses of radiation, as well as charged and neutral parti-
cles, can be generated by different plasma configurations:
low energy X rays emission in an atmospheric pressure dis-
charge [1]; X rays and neutral particle emission from gas puff
devices [2]; highly radiant sources from laser produced plas-
mas [3]; etc. One of these configurations is the plasma focus
discharge [4]–[6], where a magnetically confined plasma is
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produced when a plasma sheath is compressed around the
z-axis on top of coaxial electrodes [7], [8]. This device has
received renewed interest due to its widespread applications
[9] and attractive compact designs achieved [10] with scal-
ing laws [11]. Nowadays some applications of plasma focus
include: pulsed source of X rays and/or neutrons [12]–[16],
the production of plasma shocks [17], [18], as ion beam
accelerator [19] and irradiation of biological cells [20].

Plasma focus discharges are based on the designs devel-
oped by Mather [4] and Filippov [5]. Of these two existing
plasma focus architectures, the Mather type is the one of
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interest in this work, having this design an anode length larger
than the anode diameter (aspect ratio > 1). The plasma focus
device consists in a capacitor bank, a switch spark-gap and a
discharge chamber [6]. The chamber is filled with a working
gas, typically hydrogen or deuterium, at low pressures in
the order of few or tens of mbar. The electrodes inside the
chamber are placed in a coaxial configuration, i.e. a center
electrode, the anode, and an outer electrode, the cathode,
which is made of metal bars. The anode is partially covered
with an insulator which is the regionwhere the gas breakdown
and formation of a current sheath occur.

The phenomena developed in the discharge process can be
explained in six stages [4], [6], [20], [21]: I, the discharge
of the capacitor bank produces the dielectric breakdown of
the gas forming a current sheath (CS) over the insulator; II,
the rundown process where the CS moves upwards along the
anode due to the magnetic force; III, the compression phase
at the end of the anode where the CS start to compress ionized
gas; IV, the pinch phase where maximum compression of the
ionized gas produces a highly dense plasma column; V, dis-
ruption of the pinch that produces an axial plasma shock [17]
and, in addition, plasma jets are emitted from the top of the
anode,VI [21]. In plasma focus devices, the pinch is typically
regarded as the phase of most interest [4], [6]. In this partic-
ular stage (IV) are achieved the conditions that allow high
energy radiation emission, such as X rays, or fusion reactions.

A diversity of methods to detect and measure the X rays
emission has been reported [4], [6], [8], from radiographic
films [12], [13], pinhole photography [22], semiconductor
detectors [23] and scintillators in combination with photo-
multiplier tubes [6], [9], [24]. The detection (or emission
measurement) of the X rays emission based on a scintillator-
photomultiplier systemwas the alternative used in this current
work.

The common electrical diagnostic consists in measuring
the time variation of circuit current with Rogowski coils
(dI/dt) [25] and the discharge chamber voltage difference
between its electrodes with fast voltage dividers. From the
electrical diagnostic signals the discharge process can be
interpreted and important parameters can be calculated. Fea-
tures such as the voltage divider value at time of pinch,
voltage induced at pinch, dI/dt value at time of pinch, circuit
current, inductance and rate of change of inductance, have
been previously used to characterize the discharge and to
correlate them with other phenomena [4], [24], [26]–[28].
Although a trend can be identified, a significant data dis-
persion is found when correlating signal parameters, such as
the voltage divider value or induced pinch voltage, with mea-
surements of a photomultipler signal peak (X rays detection)
[24] or the neutron yield [27]. In an effort to complement
the information obtained with electrical signals, the use of
antennas have been tested to remotely diagnose the device
in terms of the electromagnetic (EM) burst emitted in the
radiofrequency part of the spectrum. EM burst diagnostic has
been used either inside or outside the chamber [29]–[32].
Recently, the EMburst measurement has been correlated with

the inductive measurement [33] and with the X rays detection
using a scintillator-photomultiplier (PMT) system [34]. From
these two works, the Vivaldi antenna, originally designed to
measure the fast EM emission of partial discharges [35], has
shown promising results.

Even when working with fixed conditions for a particular
device, such as the charging voltage of the capacitor bank
and gas pressure inside the chamber, a variety of signals
are obtained from the electrical and EM diagnostics. This
diversity of signals poses the challenge of achieving good
correlations results between the electrical signals and the
photomultiplier X rays measurement. To complement the use
of characteristic parameters that electrically describes the
discharge for the correlations with other phenomena [24],
[27], the use of machine learning algorithms, in particular the
deep learning approach [36], has shown to be practical in the
field of plasma diagnostics [37], [38]. Recently, it was used
in plasma focus to infer the conditions for X rays emission
based on only the signal from a Vivaldi antenna [34].

The application of the plasma focus as a pulsed X rays
source motivates the present work [12], [13]. A hundreds
of joules plasma focus was measured using the following
electrical diagnostics: voltage between the electrodes of the
discharge chamber measured with a voltage divider, dI/dt of
the circuit current measured with a Rogowski coil and induc-
tive loop sensor, and the electromagnetic burst measured with
a Vivaldi antenna. Meanwhile, the X rays emission mea-
surement was carried out with a scintillator-photomultiplier.
Machine learning algorithms were implemented to establish
a relationship between the X rays measurement and the elec-
trical diagnostic signals. Usual machine learning algorithms
were implemented [39], such as the k-neighbors, decision
trees, random forest, gradient boost and algorithms based
on the deep learning approach [36]: perceptron multilayer
with dense layers and another with 2D convolutional lay-
ers. Two input approaches for the algorithms are presented.
First, the signal parameters commonly used for plasma focus
characterization were fed into the algorithms, i.e. a manual
feature selection approach. The second approach consists in
using the entire electrical signal (Rogowski, voltage divider,
Vivaldi and inductive loop sensor) and thus let the algorithm
to find the signal patterns that allow the relationship with
the photomultiplier signal. With this approach any a priori
bias about the selection of the characteristic parameters is
minimized.

II. METHODOLOGY
In this work, the performance of a hundred of joules plasma
focus PF-400J [14] was measured. The parameters of this
plasma focus are the following: a capacitor bank with equiv-
alent capacitance of 850 nF, an external inductance of 39
nH, an external resistance of 42 m� and a quarter period
time of approximately 291 ns. These parameters and others
that are related to the electrical characteristics of the PF-400J
are shown in Tables 4 and 5 in Annex A. The electrodes of
this plasma focus consisted of a steel anode with 13 mm of
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effective length, from top of the insulator to the top of the
anode, an insulator made of alumina with a length of 23 mm
measured from the top of the cathode plate, and no cathode
bars were used. The spark-gap connecting the capacitor bank
and the anode was filled with nitrogen at a pressure of 0.5
bar. A trigger unit was connected to the spark-gap middle
plate electrode to control and automatically switch on the
discharge. The experiment conditions for the PF-400J were
a charging voltage of the capacitor bank set to 26 kV (287 J
of stored electrostatic energy) and the discharge chamber was
filled with hydrogen at 9 mbar.

Typical electrical diagnostics of plasma focus discharges
were used: a Rogowski coil wrapped around one return
connection from the electrodes (inside the chamber) to one
capacitor and a compact voltage divider between anode and
ground (close to the discharge region). The electromagnetic
burst from the discharge wasmeasured with a Vivaldi antenna
[33]–[35]. In addition, an inductive loop sensor (ILS) was
also used to measure the dI/dt of the circuit current. The
objective of this sensor was twofold: to trigger the oscillo-
scope that recorded the Vivaldi antenna signal, as it will be
explained later, and to test its capability to predict the X rays
emission. This sensor was first used for the measurement of
the partial discharge phenomena [40] and was introduced as
an alternative to the Rogowski coil, see the details of the
sensor in [41].

The hard X rays spectrum in the PF-400J is characterized
by emitting photons with energies ranging from a few keV to
a few hundred keV, with an average absorbed dose per shot of
2.4mGy. Detailed information on radiation and applications
can be found in the references [13], [20], [42]. The X rays
emission measurement was carried out using an assembly
of scintillator plastic and photomultiplier tube (SCPMT).
The scintillator is a BC-408 (Bicron) plastic scintillator(SC)
in direct contact with a Hamamatsu photomultiplier (PMT)
model R1828-01. The whole system was housed in a 5mm
thick aluminum casing, which limits the system response to
X ray photons of energies higher than 20 keV. The photomul-
tiplier detectors measure a photocurrent proportional (linear
region) to the light intensity from a plastic scintillator that
reacts to X rays photons. Thus, for the ultra-short X rays
pulses emitted by the generator, the time dependence of the
phototube output signal appears as a single pulse containing
the piled up signals of the light photons from the scintillator,
not able to distinguish individual pulses. A 1.4 kV voltage
bias was set to satisfy that PMT pulse signals were below the
threshold of 500mA for at most 5%maximum deviation from
linearity.

The layout of the experimental setup is shown in Fig. 1a
and an image of the setup is shown in Fig. 1b. The Vivaldi
antenna was placed at 0.25 m from the resistors that allow
control over the spark-gap switch. The ILS was placed at
2 mm from one return connection from the chamber to one
capacitor. Two SC-PMT were placed side by side at 0.54 m
from the anode and with their center aligned with the axis
of the anode. A 4 mm Pb sheet was put on front of one

SC-PMT. This setup was initially conceived to test if the X
rays measurements could be qualitatively classified in terms
of energy. Assuming that both SC-PMT received the same
number of X rays photons from the discharge process, the
blocked SC-PMT produced a lower pulse signal with respect
to the unblocked SC-PMT. Thus, besides to the number of
photons measured by the unblocked SC-PMT, it was believed
that the blocked SC-PMT could provide a sub-classification
in terms of the number of high energy photons that passed
the Pb 4 mm barrier, which in this case corresponds to a
cut-off energy 250 keV. In section III the results of these
classification are discussed in more detail.

The signals were recorded with two separated devices.
One, a Tektronix TDS 648A oscilloscope (bandwidth of
1 GHz and sampling rate of 5 GSamples/s) was used to record
the Rogowski coil, voltage divider and both SC-PMT sig-
nals. The other, a NI-PXIe 5185 oscilloscope (bandwidth of
3GHz, sampling rate of 6.25GSamples/s and 8 bits of vertical
resolution) was used to record the Vivaldi antenna and the
inductive loop sensor (ILS) signals. Attenuators were used for
each signal to keep the voltage at the allowed peak and root
mean square (rms) values of the respective channels in each
oscilloscope. Two measurement campaigns at the experiment
conditions mentioned above were taken, summing up for a
total of 959 discharges adequately recorded for the analysis.

The analysis of the measurement signals, as it is explained
in the following sections, was done according to the work-
flow shown in Fig. 2. The main difference between the two
approaches presented in this work is the feature extraction
process: in the first approach the selection of signal param-
eters, typically used to characterize the plasma focus dis-
charges, is done by selecting certain features of the signal;
in the second approach, the entire signal is the input for the
algorithm, without a previous selection of features.

III. RESULTS
First, the X rays signal processing is presented. The nor-
malized signal standard deviation (R) was chosen as the
parameter representative of each X rays detection signal.
Histograms of the R from both SC-PMT signals are shown.
Then, the approach based on the selection of characteristic
parameters of the discharge, using machine learning algo-
rithms to classify them in terms of the R values, is presented.
The other approach that uses the entire signal of the sensors,
i.e. without a previous selection of parameters, is shown at
the end of this section.

The parameters or signals that are processed by the
machine learning algorithms need to be in a same value scale.
The value range of ±1 is typically used [37], [38]. This is
called the normalization process and it is detailed in AnnexA.
The machine learning algorithms structures and other details
of them are shown in Annex B.

A. X RAYS SIGNALS
The signal from both SC-PMT were analysed in terms of
the normalized standard deviation value R with the same
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FIGURE 1. Experimental setup: (a) schematic and (b) real electrical sensors location.

FIGURE 2. Workflow for the signal analysis.

procedure as in [34], i.e. signal standard deviation S given
by equation 1 and using the value SBase to normalize it,
equation 2. In equation 1, fi is the sampled signal, f the
average value and N the total number of samples. The signal
representation using the standard deviation was preferred
because it takes into account the deviation from the aver-
age value, which in these pulse signals is approximately the

no-pulse level.

S =

√√√√ 1
N − 1

N∑
i=1

(fi − f )2 (1)

R =
S

SBase
(2)
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FIGURE 3. R values histograms: (a) unblocked SC-PMT and (b) blocked SC-PMT with a 4 mm Pb sheet in the front.

The SBase values were 0.0196 for the unblocked SC-PMT and
0.0019 for the blocked SC-PMT, and they corresponded to
the minimum S found in each signals data set, so normalized
values were in the range R ≥ 1. The numerical scales of the
two SC-PMTs signals were different because the unblocked
SC-PMT yielded a lower intensity signal, so it was expected
that the lower S minimum value from the blocked SC-PMT
produced higher normalization values than the unblocked
ones.

Fig. 3 shows the histograms of the R values. For the
PF-400J, the emission of low intensity values (low R values)
was clearly more frequent than the higher emissions that can
be obtained. This can be seen in Fig. 3a and,more notoriously,
in Fig. 3b for the blocked SC-PMT.

To record the largest PMT pulses that can be measured
from the discharge, the oscilloscope channels associated with
the PMT signals weremaintained at a fixed volt/div setting, so
the resolution of very low pulses was insufficient and a very
large number of very low emission pulses, compared to the
maximum ones, was obtained. This can explain the prominent
peaks from the histograms. The methodology to record the
pulses can be improved in the future with additional channels
with different vertical scale settings to increase the resolution
when measuring the low emission pulses.

The R values associated to the X rays measurement were
distributed in greater numbers towards low emission values,
which is analogous to behaviour of the neutron yield reported
by Bures et al. [27]. This distribution of values imposed
a challenge for the machine learning algorithms that were
implemented because it meant that the data for the training
process were inherently biased. The classification of the R
values obtained better results and was more flexible to sort
out the biased R values behaviour than a regression, i.e. to
find a non linear function whose output is a predicted real
value [39], although this latter alternative has more physical
sense in this context [38]. Given the discussion above, the
classification problem of the R values was considered in this
work continuing the framework established in [34].

FIGURE 4. Scatter plot, R value unblocked SC-PMT versus voltage divider
value at time of pinch. In red color the mean value ± one standard
deviation of each grouped discharges spaced at 2 kV from 2 to 22 kV.

Fig. 4 is presented to briefly show the difficulties that arise
when correlating a signal parameter of the electrical signals,
commonly the voltage divider value at time of pinch, with
other measurement of non electrical variables, such as the
SC-PMT measurement of the X rays emission. The value of
the voltage divider, related to the voltage induced at the pinch
[24], has been typically chosen for correlations with X rays
because it has the interpretation of being responsible for the
acceleration of electrons from the plasma column into the
anode or, at least, have some relationship with other complex
phenomena that are responsible of this such as the plasma
instabilities [6].

High data dispersion has been found in this type of corre-
lations in other investigations such as Bures et al. [27] and
Bargaglia et al. [24]. From Fig. 4, note that the highest pulse
signals of the PMTwere achieved at values between 10-14 kV
rather than the highest voltage divider values in the range of
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TABLE 1. R value classification for the unblocked SC-PMT signals.

FIGURE 5. Relationship between both SC-PMTs in terms of the proposed
R values classifications in Table 1: (A) Very low emission, (B) Low
emission, (C) Medium emission and (D) High emission.

16-20 kV. It can be also mentioned that low R values were
obtained in almost the entire value range of these voltages.

In Fig. 4 it is observed high dispersion with no clear
trend. Only when considering mean values of grouped data
(red points representing mean values) using bins of 2 kV,
a trend was observed with the expected high dispersion.
A relationship between voltage at pinch and the PMT signal
is somewhat hidden in the data dispersion. It was believed
prior to the conception of this experiment that, alongside
the voltage at time of pinch, other parameters could help
in establishing a relationship with the X rays measurement
as well, thus the need of machine learning algorithms to
find different combinations of parameters for determining a
relationship.

The classification problemwas addressed establishing four
R values categories: A, B, C and D, in increasing order
of value, see Table 1. By inspection, it was found that for
the unblocked SC-PMT a limit of R = 1.2 could be used
to separate very low emission discharges, compared to the
highest ones, with almost negligible or no PMT pulse in their
signals. The rest of the data was separated in equal groups.
By doing this almost equally sized classification groups were
achieved for the better of the training process of the machine
learning algorithms.

The R values from the blocked SC-PMT were not used
for the machine learning algorithms in the subsequent results
in this work. The incorporation of categories based on
this blocked SC-PMT measurement produced unbalanced

classification groups in terms of the other unblocked SC-PMT
and thus, were not suitable for the machine learning analysis
carried out. In any case, Fig. 5 is also presented to show the
relationship that can be observed between the R values from
both SC-PMTs. Note that class A and B do not have noto-
rious pulse emission that passed through the 4 mm Pb sheet,
although class B discharges had a visible unblocked SC-PMT
signal. Classes C and D obtained increasing R values from
both SC-PMTs signals.

B. CHARACTERISTIC PLASMA FOCUS PARAMETER
SELECTION
Values that can be obtained or calculated from the Rogowski
coil and voltage divider signals had been used to establish
correlations with diagnostics related to high energy and fre-
quency phenomena. This is the case when a correlation with
the photomultiplier signals were attempted. As mentioned
before, the voltage divider value, or the associated induced
pinch voltage, was previously used in these kind of correla-
tions for either X rays measurements with PMT or neutron
yields [4], [24], [43]. It has been determined that the fast
z-pinch developed in plasma focus devices depends on other
variables as well [6]. To complement the information given by
the voltage divider at time of pinch, other signal parameters
with physical interpretation were included in this analysis.
Fig. 6 shows all the signals recorded from one discharge.
Signals parameters of interest are highlighted. Assuming that
the pinch detection is simultaneous in both inductive sensors,
Rogowski and ILS, the signals from both oscilloscope were
adjusted to the same time frame.

The dielectric breakdown of the working gas has been
identified to be crucial for the proper formation of the current
sheath (CS) responsible for the pinch effect [4], [6] and is
still a topic of both experimental and theoretical research [44].
Examples of the electrical measurement of the gas breakdown
and the initial phases in plasma focus are found in [45], [46].
In this work, the gas breakdown stage was represented by
the voltage divider value at time of the gas breakdown Vb.
The time of gas breakdown and the value of the voltage
divider was determined by considering the time when the
abrupt fall in the voltage divider signal was observed and the
corresponding rise of the Rogowski coil di/dt > 0 occurred.

Time to pinch had been previously indicated as an impor-
tant parameter considered for the design of plasma focus
devices because proper time is needed for the CS to reach
the focus position, at the same time as the the discharge
current reaches the maximum value. This is fundamental to
ensure that the maximum magnetic energy is stored before
its conversion to kinetic energy in the compression and pinch
phases [4], [6]. The parameter tbp was used as a measurement
taken from the gas breakdown time recorded in the voltage
divider until the pinch time observed in the Rogowski coil.
Discrepancies of about a few ns can be expected due to the
uncertainty in the measurement of the cable length from both
sensors.
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FIGURE 6. Example of the recorded signals from one discharge:
(a) Rogowski in blue, voltage divider in red; (b) ILS in blue, Vivaldi in red
and (c) SC-PMT signals, unblocked in blue and blocked in red. Parameters
of interest are shown in the figure.

Circuit current parameters have been used for correlations
with scintillator-photomultiplier measurements [24] and for
describing the scaling laws for the neutron yield of plasma
focus [11], [27], [43]. Both current Ip and rate of change of
current İp at time of pinch were included in this analysis.

Vivaldi transients information were also included. Antenna
signals parameters correlations are typically used in the
form of time or frequency domain parameters. In this work,
the signal energy parameter was calculated for both main
transients that can be associated with the gas breakdown
Eb and the pinch effect Ep [33]. Moreover, the frequency
information was included, in a separate analysis instead of
the signal energy parameters, in the form of the Fast Fourier
Transform (FFT) calculation from the pinch transient as it
was used in [33].

The task of the machine learning algorithms was to search
combinations of the parameters mentioned above in terms of
discharges examples (training set), to make a prediction (or
inference) of the R value class afterwards. Equations 3 and
4 show the two alternatives implemented for the selection of
characteristic parameters of the discharge. F corresponds to
the non lineal function that allows the mapping into the R
value categories. Note that this function F is the model learnt
automatically by the machine learning algorithms.

class = F(Vb,Vp, tbp, Ip, İp,Eb,Ep) (3)

class = F(Vb,Vp, tbp, Ip, İp,FFT ) (4)

In all the machine learning algorithms implemented,
from the total of 959 discharges, 80% of them were
used in training the algorithms and the rest 20% in test-
ing their prediction capabilities (validation set). Forty real-
izations of the training process were carried out. Both
the training and validation sets were randomly selected
in each realization. Misclassifications due to overfitting
might be present, although the overfitting should be min-
imum since the optional settings of the machine learn-
ing codes were chosen accordingly, see the details in the
Annex B.

To interpret the categorical classification as a binary prob-
lem is of interest since is important to check if, despite
a misclassification, the parameters and signal information
can distinguish conditions for X rays emission (not class A)
from the conditions that do not produce emission (class A).
The classification results were evaluated in terms of the
following metrics: full identification FI, the class identi-
fication accuracy; partial identification PI, ability to dis-
criminate between good and bad conditions for X rays
emission; false positive FP, incorrect prediction of good
conditions; and false negative FN, incorrect prediction of bad
conditions.

To complement the information of the performance met-
rics, the probability of achieving the full identification by
mere chance was included, denoted by G. This probability
was calculated with a binomial distribution that takes into
account the number of correct full identification predictions
k , the total of the validation set (n = 192 discharges) and a
probability of 0.25 chance to guess one of the four classes
[34], see equation 5.

G = P(k|n, p = 0.25) =
(
n
k

)(1
4

)k(3
4

)n−k
(5)

The binary classification, was evaluated by the following
metrics [34], [39], [47]: accuracy, fraction of correct binary
classification predictions over the total test cases; precision,
the fraction of true positives (correct emission prediction)
over the total of announced emission cases; recall, fraction
of true positives over all the emission cases; specificity, true
negative (correct prediction of no emission) over all the non
emission cases, and F1 score the harmonic average between
precision and recall.

For the characteristic parameter selection the most
interesting results, see Table 2, were obtained when the
Vivaldi information was represented with the FFT of the
transient associatedwith the pinch, see equation 4. The results
for the input as specifiedwith the another parameter selection,
equation 3, are presented in the Annex V. Of all the metrics
employed the G, accuracy and F1 score are highlighted in
cyan color. Also, the overall better results of the perceptron
multilayer are highlighted in red. First, note that the G values
were below 1% so the chances of the algorithms randomly
guessing the classification are low. The accuracy and F1
metrics of the perceptron multilayer were higher, with respect
to the rest of algorithms.
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TABLE 2. Categorical and binary classification metrics, in %, for the characteristic parameter selection, see equation 4.

TABLE 3. Categorical and binary classification metrics, in %, for the Vivaldi antenna signal as input.

C. ENTIRE SIGNAL ANALYSIS APPROACH
For this approach, the algorithmswere the same except for the
change of the deep learning structure, from a perceptron mul-
tilayer with dense layers to a perceptron multilayer with 2D
convolutional layers, i.e. a 2D convolutional neural network
(CNN), see Annex B for details. The task to identify impor-
tant values from the signals relied only on the algorithms. The
idea was to minimize a priori bias towards particular parts of
the signals such as the case of the characteristic parameter
selection.

All four signals were used at this stage of the analysis.
As example, the results of Vivaldi signal using this approach
are shown in Table 3. In Annex V are shown the rest of the
results: voltage divider in Table 8, Rogowski coil in Table 9
and ILS in Table 10. Note that in this approach the gradient
boost and 2D CNN algorithms achieved the best accuracy
and F1 score results with also a random guessing probability
G below 1%. The voltage divider, ILS and Vivaldi achieved
overall the best accuracy and F1 metrics using this approach,
i.e. identification of emission cases. In contrast, the Rogowski
coil achieved slightly below accuracy and F1 score, but with
higher specificity metric, i.e. identification of no emission
cases.

IV. DISCUSSION
Usually the scatter plots are interpreted in terms of grouped
data [27], [28]. In the scatter plot shown in Fig. 4

(section III-A), that represents the X rays measurement in
terms of the voltage divider value at time of pinch, a voltage
range (bins of 2 kV) described a certain range of R values.
There is an implicit classification in terms of the voltage, so
the approach of addressing the correlations as a classification
instead of a regression analysis is consistent with the statis-
tical treatment found in the before mentioned plasma focus
studies. Choosing a higher number of classes would be ideal
and closer to describe the data in amore continuouslymanner.
For machine learning algorithms a significative number of
discharge examples are needed to train them, ideally with
equal or similar number of examples of each class. This was
shown to be an issue for the R values obtained from the
plasma focus since their distribution was notoriously biased
towards low emissions (see Fig. 3) in comparison to the max-
imum values that can be detected, i.e. optimum conditions
for a high number of X rays photons to be produced. As it is
recommended for machine learning algorithms with unbal-
anced data, a larger measurement campaign can overcome
the issue of low representation of the greatest SC-PMT sig-
nals obtained, but it would be an inefficient method because
low PMT signals would be still being recorded. Also, it is
not known how the X rays yield efficiency behaves as the
number of discharges of the device increases, for instance, the
deterioration of a plasma focus can be estimated in terms of
the Rogowski coil and voltage divider capability to detect the
pinch [48], i.e. signal features that are used to infer the pinch
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change when the number of discharges increases. A number
of discharges in the order of a thousand seems reasonably as
other statistical studies, like Bures et al. [27], have reported
a similar number of discharges for a device with energy in a
similar order of magnitude as the PF-400J.

The selection of characteristic parameters from the diag-
nostic electrical signals allowed the algorithms to learn pat-
terns and with the resulting model, a non linear function,
make predictions of the R value class. The results between
algorithms could be regarded as similar, so a consistent pat-
tern was identified by them. R value classes were properly
identified in some cases with low random guessing probabil-
ity (G value). In the cases whose class could not be identified
at least it was determined whether the emission was achieved
or not. False positives and false negatives cases were also
obtained.

By analysing Fig. 4 it can be observed that false negatives
can be expected from the description based on the voltage
divider value at pinch time (one of the characteristic param-
eters), since it showed a diversity of PMT pulses in a wide
range of voltages. It is believed that this dispersion confuses
the algorithms and thus the model learnt by them. A high
false positive are not expected by looking to the description
of Fig. 4 alone, so the information of the other parameters
helped in the identification of the pattern, but at a cost of
producing false positive predictions. The best metrics results
of both parameter selection and entire signal analysis (dis-
cussed below), see the highlighted G probability, accuracy
and F1 score in Table 2, were achieved using the following
parameters: voltage divider at time of pinch, voltage divider
at time of breakdown, current at time of pinch, time derivative
of current at time of pinch, time from breakdown to pinch and
the FFT of the Vivaldi antenna transient associated with the
pinch.

In the approach that uses the entire electrical signals as
input for the algorithms, a random guessing probability G
higher than 1% was obtained for the algorithms k-neighbors
and decision trees, indicating that those algorithms are not
suitable for this approach. Considering the rest of the algo-
rithms, the 2D CNN had the best accuracy and F1 met-
ric results excepting the case when using the Rogowski
coil signal. For the next discussion only the 2D CNN
results are considered even in the Rogowski coil case whose
results were similar to both the random forest and gradient
boost algorithms. See the highlighted columns (red color) in
Tables 8, 9, 10 and 3.

The prediction of the emission yielded similar accuracy
and F1 metrics for the 2D CNN using the information from
the voltage divider, ILS and Vivaldi antenna signals. On the
other hand, the 2DCNN using the Rogowski coil as input per-
formed better at the prediction of no emission (specificity).
The results of each signal were similar to the selection of
parameters in equation 3 (see the results in Table 7), although
they were below the other selection of parameters in equation
4, see Table 2.

The 2D CNN with the voltage divider signal as input,
was expected to have high performance metrics because this
signal is a measure of the voltage rise associated with the
accelerated electrons during the pinch phase, that produce
X rays upon striking the anode [6]. The 2D CNN using the
other signals as input had similar metrics as the 2D CNN
using the voltage divider signal, so it can be said that indirect
information are carried by the other electric diagnostic signals
as well. Typical correlations of electrical signal parameters
with higher energy phenomena, X rays [24] or neutrons [27],
had been carried out as scatter plot descriptions. In particular,
values related to the pinch such as voltage divider at time of
pinch or the current value at time of pinch had been employed
for that description. Despite the Vivaldi antenna signal not
having a feature like the dip or voltage spike, the 2D CNN
could find a pattern for the inference of the X rays emission
that achieved similar performance metrics than the typical
diagnostics. The comparison of the antenna results and the
typical diagnostics suggest that not only the mentioned signal
features, the dip for instance, can be used to infer the X
rays emission. As described in [31], [34], [49], the high
frequency oscillations, frequently labeled as electromagnetic
noise, carry information of the discharge process. Note that
the ILS being not shielded can record a mix of inductive mea-
surement and radiated components from the circuit [33], and
also an inference could be carried out. It is highlighted that
both ILS and Vivaldi have no direct connection to the device
in comparison to the voltage divider and Rogowski coils, so
the fact that a remote/non invasive diagnostic can be applied
to diagnose a plasma focus represents an opportunity in small
devices where the size restriction imposes a challenge to build
sensors fast enough to measure the transients.

The accuracy, F1 and specificity metrics obtained in both
approaches reflect the difficulty of predicting the emission
based solely in the electrical signals utilized. Although the
gradient boost and deep learning algorithms made an infer-
ence of the emission with better metrics with respect the other
algorithms, the model they learnt incurred in a significant
number of false negatives and positives. A mediocre no emis-
sion identification rate was obtained, i.e. specificity at best
of around 40-60 %. So, there is some information about the
process that the diagnostic signals employed could not detect.

V. CONCLUSION
Machine learning algorithms were implemented to infer the
emission measurement of X rays from a plasma focus using
the information in the electric diagnostic signals: voltage
between electrodes measured with a voltage divider, circuit
dI/dt measured independently with a Rogowski coil and an
inductive loop sensor, and the electromagnetic burst mea-
sured with a Vivaldi antenna. The standard deviation of the
signal from the X rays detector, a scintillator-photomultiplier,
was used to classify different discharges determining whether
they have good conditions for the emission of X rays or not.
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Two approaches for the input of the machine learning
algorithms were tested. In the first one a selection of signal
features from the electrical diagnostics that have a physical
interpretation was carried out. The second one was letting
the algorithms find a pattern from the entire signals without a
previous selection. No significant differences were obtained
in the inference of the X rays emission, when comparing
selected parameters with machine learning analyses.

This result becomes very relevant: it shows that the histor-
ically selected features from the electrical signals in plasma
focus discharges, are describing most of the physical phe-
nomena related to the X rays emission. Had the machine
learning analyses of the electrical signals given a better result
in the performance metrics, it would indicate that some phys-
ical phenomena was hidden inside the complex data.

The best performance metrics of the X rays inference were
obtained using the deep learning algorithm and using the
following parameters: the voltage divider value at time of
gas breakdown and at time of pinch, Rogowski value dI/dt
and current at time of pinch, time from breakdown to pinch
and the fast Fourier transform of the transient detected with
a Vivaldi antenna associated to the pinch. This indicates
that the information from correlation descriptions carried out
with single parameters, such as voltage divider value at time
of pinch, can be complemented with a set of parameters
from other diagnostic signals. The inductive loop sensor and
Vivaldi antenna as alternative sensors to the typical voltage
divider and Rogowski coil, showed that a remote diagnostic
can be used to infer the X rays emission with performance
metrics as good as the ones obtainedwith the typical electrical
diagnostics. The emitted electromagnetic burst, both near and
far field radiated components, emitted by the circuit due to the
plasma dynamic inside the discharge chamber, thus carries
information that can be complementary to the inference of
the X rays emission.

Future research on this subject considers exploring the use
of autoencoders in order to find relevant physical information
[50] that has beenmissed by themachine learning algorithms,
enabling a better understanding of the physical processes
involved in X rays emission from pulsed plasma discharges.

APPENDIXES
APPENDIX A SIGNAL NORMALIZATION
The normalization process was carried out to keep different
physical quantities in the same range of values. Parameters for
the first approach, subsection III-B, were mapped to the range
≈ 1. For the second approach, subsection III-C, the range
was ≈ ±1 because the signals consisted of both positive and
negative values.

The values from the short circuit characterization of the
PF-400J were used for calculating base parameters for the
normalization. Other normalization methods can be found in
the literature, for example a more statistical approach in [37].

The short circuit measurement was carried out by bridging
the anode, at the length of the insulator, with the cathode plate
(ground). The values from this measurement are shown in

TABLE 4. Short circuit parameters.

Table 4. Five consecutive discharges were made at the charg-
ing voltage of 26 kV (same as the experiment condition). This
measurement was carried out recording the Rogowski coil,
voltage divider and inductive loop sensor (ILS) signals with
the TDS 648A oscilloscope. It was decided to use a different
normalization for the Rogowski and ILS signals, although
the differences from this short circuit characterization were
negligible. Note that only Rogowski coil parameters were
used in the first approach in subsection III-B. The values
from the Table 4 are just the short circuit parameters using
the Rogowski coil information.

The base for the normalization was chosen in terms of the
charging voltage of 26 kV and values that can be calculated
from expressions to model the short circuited plasma focus
device as a simple RLC series circuit. The base values are
indicated in Table 5. Note that only the normalization of quan-
tities related to the Vivaldi antenna signal did not have a base
associated to the short circuit characterization. It was difficult
to find a general normalization for the antenna signal because
its values can change depending on the distance and relative
position since the Vivaldi is a directional antenna. For each
parameter that was calculated for the Vivaldi antenna, a nor-
malization to keep its values in the range ≈ ±1 was carried
out separately. For the description of the single machine PF-
400J this method was enough, but for future cross validation
tests with other devices a careful revision of this procedure
has to be done.

The normalization was as follows, see Table 5: voltage
related parameters (Vp and Vb) and voltage divider signal by
Vbase; Rogowski coil parameters and signal by İbase; circuit
current parameter by Ibase; time to breakdown tbp by tT/4;
energy of the transient related to the gas breakdown in the
Vivaldi signal by EbaseB; energy of the transient related to the
pinch in the Vivaldi signal by EbaseP; the entire Vivaldi signal
by Antennabase; and the entire ILS signal by İILS base. The
FFT associatedwith the transient due to pinch that is observed
in the Vivaldi antenna was calculated from the normalized
Vivaldi signal and had to be re-escalated by the highest FFT
calculation found. This re-escalation had to be carried out
because otherwise the FFT values were about two orders of
magnitude smaller than the other electric parameters and thus
less comparable to these quantities.

APPENDIX B MACHINE LEARNING ALGORITHMS
Five machine learning algorithms were used to analyse the
data: k-neighbors, decision trees, random forest, gradient
boost and deep learning. The latter was implemented as a
perceptron multilayer in the first manual feature selection
approach III-B, and as a 2D convolutional neural network for
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TABLE 5. Base values for the normalization.

TABLE 6. Optional settings for the algorithms implemented with scikit-learn toolkit.

TABLE 7. Categorical and binary classification metrics, in %, for the characteristic parameter selection, see equation 3.

TABLE 8. Categorical and binary classification metrics, in %, for the voltage divider signal as input.

the second approach III-C. To be interpreted as a 2D matrix,
the recorded 1D signals were reshaped into a square matrix.
A 1D CNN was tested, since 1D signals are the raw data
from the sensors, but its results were not as satisfactory as
the ones obtained with the 2D CNN. It is worth mentioning
that the concatenation of signals was also tested to evalu-
ate if the simultaneous information of the signals improved
results, but it did not achieved better results compared to both
methods presented in this work, so that approach ended up

confusing the algorithms. In particular for the deep learning
algorithm, by modifying the current structure of the 2D CNN
or by allowing an input of three layers (similar to a RGB
image), better performance results could be achieved using
the concatenation of signals. However, the implementation
of other deep learning structures was outside the aim of this
work. All algorithms, except the deep learning ones, were
implemented in Python using the scikit-learn package [51].
Optional settings of these algorithms are shown in Table 6.
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TABLE 9. Categorical and binary classification metrics, in %, for the Rogowski coil signal as input.

FIGURE 7. Deep learning structures: (a) perceptron multilayer and (b) 2D convolutional network.

The deep learning algorithms were implemented in Python
using the Keras [52] framework with the Tensorflow back-
end [53]. The structure of the perceptron multilayer is shown
in Fig. 7a and the 2D convolutional neural network in 7b.
The convolutional neural network had the same structure as
reported by Avaria et al. [34] due to the good results that
it achieved. For that reason details concerning the structure
development can be found in that work.

The length of the signals fed to the algorithms was
5625 samples, i.e. 900 ns of signal using the PXI oscil-
loscope (6.25 GSamples/s). To match the number of sam-
ples per signal recorded with the TDS 648A oscilloscope
(5 GSamples/s), besides the normalization, for the voltage
divider andRogowski coil signals a zero paddingwas applied.

Thus, for the second approach, the input for the algorithms
(deep learning not included) were 1× 5625 vectors, whereas
for the 2DCNN (deep learning) were 75×75 squarematrices,
i.e. the vector was reshaped.

The computational cost per realization was determined by
the time needed to complete the training process. The second
approach obtained larger training times in each algorithm
run than the first approach because the former one had to
analyse the entire signal instead of a smaller set of param-
eters. For instance, the training times for the deep learning
implementations, which had better performance metrics in
the second approach than the other algorithms, were about
5.9 and 2.4 times larger than the training times using the first
approach according to equation 3 and 4, respectively. In terms
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TABLE 10. Categorical and binary classification metrics, in %, for the ILS signal as input.

of the absolute training time this values was, on average and
considering each signal as input, approximately 58 seconds
for each realization.

APPENDIX C RESULTS DETAILS
The rest of the machine learning results are shown as follows:
Table 7 according to the parameters of equation 3, voltage
divider signal in Table 8, Rogowski coil signal in Table 9 and
ILS signal in Table 10.
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