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Abstract
We present a novel approach to represent ecological systems using reaction networks, and 
show how a particular framework called chemical organization theory (COT) sheds new 
light on the longstanding complexity–stability debate. Namely, COT provides a novel con-
ceptual landscape plenty of analytic tools to explore the interplay between structure and 
stability of ecological systems. Given a large set of species and their interactions, COT 
identifies, in a computationally feasible way, each and every sub-collection of species that 
is closed and self-maintaining. These sub-collections, called organizations, correspond to 
the groups of species that can survive together (co-exist) in the long-term. Thus, the set 
of organizations contains all the stable regimes that can possibly happen in the dynamics 
of the ecological system. From here, we propose to conceive the notion of stability from 
the properties of the organizations, and thus apply the vast knowledge on the stability of 
reaction networks to the complexity–stability debate. As an example of the potential of 
COT to introduce new mathematical tools, we show that the set of organizations can be 
equipped with suitable joint and meet operators, and that for certain ecological systems the 
organizational structure is a non-boolean lattice, providing in this way an unexpected con-
nection between logico-algebraic structures, popular in the foundations of quantum theory, 
and ecology.
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1  Introduction

The decline of the Earths biodiversity is a threat to the ecosystems in the planet. Ecologi-
cal systems are faced with species extinctions and invasions and one fundamental question 
is how systems vary when they suffer these changes (Finke and Denno 2004). In particu-
lar, a major problem in theoretical ecology is to resolve how ecosystem features such as 
resilience, resistance, robustness, or in wider terms, stability respond to changes in species 
diversity, richness, connectivity, or in wider terms, complexity. From an abstract perspec-
tive, an ecosystem consists of a large and diverse group of species interacting in a common 
space in different ways. The dynamics of these interactions describe the evolution, stability, 
and resilience of the ecosystem (Pimm 1984). The fathers of ecology regarded as obvious 
the fact that more entangled ecosystems would be more stable. However, early mathemati-
cal models proven that diversity and stability can be anticorrelated for large networks (May 
1972). From here, a myriad of studies have supported the two opposite views. This con-
troversy became known as the Complexity–Stability problem, or the Complexity–Stability 
debate (May 1973).

Recently, some of the most prominent figures around the Complexity–Stability debate 
have concluded that radically novel approaches are required to understand how different 
types of ecological interactions develop multi-dimensional architectures that lead to stable 
ecosystems. For example, in Donohue et al. (2016) they claim:

We assess the scientific and policy literature and show that this disconnect is one 
consequence of an inconsistent and one-dimensional approach that ecologists have 
taken to both disturbances and stability. This has led to confused communication of 
the nature of stability and the level of our insight into it. Disturbances and stability 
are multidimensional. Our understanding of them is not.

Reaction networks are the paradigmatic language of biochemical modeling. A reaction 
network consists of a collection of components whose interactions are determined by con-
sumption and production rules among the components (Lacroix et al. 2008). Recently, the 
language of reaction networks has been applied beyond biochemstry. When viewed as an 
abstract language, reaction networks represent systems whose basic interactions consist of 
‘ the consumption of a collection of entities producing a partially or totally new collec-
tion of entities as a result’. Thus the dynamics can be seen as ‘collective transformations’. 
Therefore, is we assume these entities of being of a not-biochemical nature, the scope of 
application of reaction networks is immense. Indeed, reaction networks have been applied 
to model the exchange of economic goods (Dittrich and Winter 2005), the influence of 
political decisions (Dittrich and Winter 2008), the evolution of cooperation (Veloz et al. 
2014), other game-theoretical situations (Velegol et al. 2018), and have been recently pro-
posed as a modeling framework for situations of multidisciplinary nature in environmental 
sciences (Veloz 2013), and systems theory (Veloz and Razeto-Barry 2017a). Hence, we 
propose that reaction networks is an interesting paradigm to represent ecological interac-
tions and ecosystems, and that can be a potential solution to the requests made by the eco-
logical community concerning the complexity–stability debate. Namely, we aim at

•	 Characterizing the features of current modeling languages applied to the Complexity–
Stability debate to understand why these languages have not been successful in provid-
ing conclusive results.
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•	 Introducing the language of reaction networks for modeling ecological systems, and a 
particular framework called Chemical Organization Theory (COT) (Dittrich and Sper-
oni Di Fenizio 2007) to study the Complexity–Stability problem

•	 Showing an example of the potential of COT to study the Complexity–Stability prob-
lem with novel mathematical tools.

The article is organized as follows: In Sect. 2 we overview the mathematical approaches 
most commonly used to model ecological systems, and identify their strengths and weak-
nesses in relation to the Complexity–Stablity debate. In Sect.  4 we introduce the reac-
tion network formalism, COT, and how it can be applied to model ecosystems. In Sect. 5 
we discuss the potential of COT to study the Complexity–Stability debate in a way that 
not only overcomes the difficulties encountered with other modeling languages, but also 
enriches the debate by introducing novel mathematical tools. In Sect. 6 we show that the 
structure of stable states of an ecological system modeled using COT is in some cases a 
non-distributive lattice, establishing thus an unexpected link between the Complexity–Sta-
bility debate and quantum theory.

2 � Modeling Ecosystems

There are three fundamental representational languages for the mathematical modeling of 
ecosystems: dynamical systems, Networks, and Agent based models.

Dynamical systems (Strogatz 2014) provide a suitable framework to accurately model 
the interactions of a group of species. Indeed, one is able to represent the interactions at a 
mechanistic level, i.e. considering the specific manner in which the species interact [e.g. 
Lotka–Volterra systems (Chen and Zhou 2003)]. In regards to the Complexity–Stability 
debate this language is interesting as it is possible to compute the dynamical evolution, and 
it is possible to apply the theory of dynamical systems, rich in analytic tools, to link the 
structure and stability of the system (May 1973). However, even moderately small dynami-
cal systems generate extremely complicated equations that are virtually impossible to solve 
analytically, and very expensive to simulate computationally, and asymptotic methods are 
hard to analyze due to the large number of parameters involved. Thus, despite the elegance 
and precision of this framework, it is often inadequate to study complex ecosystems that 
involve large groups of diverse species.

An alternative approach is to represent interactions between species as links in a net-
work. For example, two species can be connected by a link if one species preys on the other 
[these networks are known as food-webs (Pimm 1982)]. In this way, an ecological system 
is represented by a network of ecological interactions (Montoya et al. 2006). Research on 
the relationship between the architecture of the network and the community stability has 
shown that, whereas high connectance and nestedness promote stability and increases spe-
cies richness in communities made up exclusively of mutualistic interactions, the stability 
of trophic networks is higher in modular and weakly connected architectures (Dunne et al. 
2002; Kondoh 2003; Thébault and Fontaine 2010). Therefore, there seems to be that the 
structure that promotes stability in an ecological network depends strongly on the type of 
interaction that is being considered. For a comprehensive and updated review on technical 
results that relate complexity and stability for the most studied types of interaction (depre-
dation, mutualism and competition) see (Landi et al. 2018).
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Studies applying the network framework to ecology have improved our knowledge of 
the interplay between complexity and stability. However, networks cannot address the fact 
that natural communities are composed of different interaction types that operate simul-
taneously (Fontaine et  al. 2011). Empirical work has started to address methodologies 
that can incorporate different interaction types into a broader ecological network context 
(Melián et al. 2009; Olff et al. 2009). These empirical studies, and recent theoretical analy-
sis (GarcíaCallejas et al. 2018; Lurgi et al. 2016), have opened up a new theoretical chal-
lenge in complexity–stability research. For example, since networks represent interactions 
as valued links, either positive or negative depending on how interactions affects the spe-
cies linked, it is not clear how to value different kinds of positive or negative interactions. 
Another important problem is that networks can not provide a mechanistic description of 
how species interact, and consider only two-species interaction, while in some ecological 
interactions other species not considered in the link can play a contextual role.

There are some attempts to improve the network modeling to overcome these difficul-
ties, but it seems to be a very hard problem. For example, in Pilosof et al. (2017) they pre-
sent a generalized version of the network-based modeling, called multi-layered framework, 
where different types of links represent different types of interactions, so they encompass 
multiple ecological interactions. In fact, this is the most advanced network-based theoreti-
cal framework available in the literature to our understanding. However, they accept solid 
drawbacks:

One challenge is to define the meaning, and measure the values, of inter-layer edges, 
and the choice of definition can itself play a significant role in the analyses... Further-
more, intralayer and interlayer edges can represent ecological processes at different 
scales, and it is not always clear how to define the relative weight of interlayer edges 
with respect to intralayer edges...In ecology, this issue remains completely uncharted 
territory...
We also note that different types of interactions can also involve different ‘currencies. 
For example, pollination is measured differently than dispersal, and it is important to 
consider discrepancies in the scales of the two edge types...

Another alternative to model ecological systems is via agent-based models. In an agent-
based model, a set of agents is defined, and a set of behavioral rules are defined for each 
type of agent in each of its possible states (Janssen and Ostrom 2006). These models gener-
ally are applied to determine spatial dynamical patterns (Grimm et al. 2005). In this sense, 
agent-based models are very interesting because it is possible to represent complex inter-
action mechanisms by means of a collection of behavioral rules, that once applied alto-
gether (either sequentially or in parallel) represent the complex interaction, and one is also 
able to compute the dynamical evolution over space and time without much computational 
effort. However, there is no theoretical framework to study how structural properties of the 
rules in the model lead to stable configurations in the long-term, i.e. analytic methods to 
study the Complexity–Stability debate in agent-based models are poor. The usual strategy 
to gather knowledge about the stability of a system is to simulate the system under differ-
ent configurations and then infer properties from the outputs of the simulation (Jopp et al. 
2010). The problem with the latter strategy is that when we consider a system containing a 
large number of species and interactions, the number of parameters that one has to control 
becomes too large. Therefore, performing enough simulations to establish results about the 
stability of a large system is unfeasible in this approach.

In Table 1 we summarize the features of each of the modeling frameworks reviewed in 
this section.
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3 � Reaction Networks and the Modeling Ecological Interactions

A reaction network is defined by a pair (M,R) , where M = {a, b, c,…} is a set of molecu-
lar species, and R ⊆ Pm(M) × Pm(M) is their set of reactions, where Pm(M) denotes the 
set of multisets of M . For example, in the reaction network of Fig. 1, reaction r1 = a → 2a 
represents a self-reproduction process of species a, reaction r2 = a + c → c represents the 
destruction of species a out of the interaction of species a and c, and r4 = b + c → b + 2c 
represents the production of species c catalized by b.

Note that, contrary to traditional network approaches which represent different eco-
logical interactions by different types of links, reaction networks represent ecological 

Table 1   Modeling languages applied to the complexity–stability debate

The first column specifies the modeling language, the second and third columns specify the feasible amount 
of species and interactions that the language is able to incorporate respectively. The fourth column specify 
if the language directly or indirectly incorporates dynamical evolution. The fifth row specifies if the lan-
guage allows for a mechanistic description of the interactions and the sixth column specifies if the language 
is rich or poor in analytic tools

CS reps. Specs. Interacts. Dyn. Evo. Mechanisms Analytic tools

Dyn. Eqs. Few Few Direct Yes Rich
Networks Many Few Indirect No Rich
Agent-based Many Many Direct Partial Poor

Table 2   Basic representation 
of ecological interactions in 
terms of reaction networks. In 
this simplified version, the first 
five ecological interactions are 
represented by a single reaction

The last row contains two reactions that representing competition 
between two species for a resource

Reaction Ecological interaction

prey + predator → 2predator Depredation
host + hosted → 2hosted Parasitism
host + hosted → host + 2hosted Comensalism
host + hosted → host Amensalism
Coop

1
+ Coop

2
→ 2Coop

1
+ 2Coop

2
Mutualism

c
1
+ res → 2c

1
 ; c

2
+ res → 2c

2
Competition

Fig. 1   Example of a reactions network, and its induced hierarchy of organizations
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interactions by specifying combinations of inputs that produce combinations of outputs. 
These inputs and outputs can be ecological species, resources, or also more abstract enti-
ties such as conditions for certain interactions to occur. Therefore, ecological interactions 
can be represented by means of interaction mechanisms represented by the reactions. This 
opens up the possibility to incorporate multiple entities and multiple types of interactions 
at once. In Table 2 we represent examples of reactions representing the most common eco-
logical interactions.

The case of competition in Table 2 is interesting because it illustrates in a very sim-
ple way that certain interaction mechanisms cannot be described by a single reaction. The 
mechanism describing an ecological interaction is in general represented by a reaction 
network. For example, we can provide a more detailed account of a possible mechanism 
underlying the mutualistic interaction in Table 2, assuming that the two species Coop1 and 
Coop2 create resources res1 and res2 respectively, that facilitate the other species’ survival. 
This relation occurs for example between mychorrizae and plants (Harley 1959). In this 
case, mycorrhizae Coop1 feeds from the roots res2 of the plant Coop2 , and produces myce-
lium res1 , which in turn increments the absorption capacities of Coop2 . We can model this 
mutualistic relation by the set of reactions

Note that other aspects such as the energy consumption, reproduction and death of 
mychorrizae, or pollination of plants are not specified in this simplified model. However, 
the reaction network model can be extended to not only provide such specification, but 
also to incorporate additional resources or species involved in finer grained descriptions of 
the interactions. Therefore, multiple ecological interactions can be specified with as much 
detail as needed, and integrated in a single reaction network representing the ecosystem.

If we consider a realistic ecosystem model using reaction networks, we consider a reac-
tion network with hundreds or thousands of species and interactions. Although from a reac-
tion network it is possible to build a continuous, discrete and stochastic dynamical system 
that would allow to compute the evolution of the system, this dynamical approach is either 
computationally very expensive or have too many parameters to be studied analytically. In 
this sense the dynamical approach to study reaction networks falls in the same problems 
we encountered with differential equations and agent-based models in Sect. 2. Therefore, 
in order to apply reaction networks to the Complexity–Stability problem we need to find an 
alternative way to relate structure and dynamical stability.

4 � Chemical Organization Theory

Chemical Organization Theory (COT) (Dittrich and Speroni Di Fenizio 2007) is a bio-
chemical inspired formalism whose aim is to study complex reaction networks. The inter-
esting feature about COT is that it provides an elegant characterization of all the system’s 
possible stable states. These states are put in correspondence with sets of species that hold 
particular properties, called organizations.

(1)

Coop2 → Coop2 + res2 (Plant grow roots)

Coop1 → Coop1 + res1 (Mychorrizea produces mycelium)

Coop2 + res1 → 2Coop2 (Mycelium foster the growth of plants)

Coop1 + res2 → 2Coop1 (Roots foster the growth of mychorrizea).
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An organization denotes a set of interacting species that are able to co-exist in the long 
term. This means that, although the system is constantly creating and destroying its own 
components, the complete set of species remains invariant because what disappears in one 
reaction is recreated by another, and no qualitatively new components are added. Interest-
ingly, the set of organizations, called the organizational structure, forms a hierarchy where 
organizations at higher levels contain organizations of the lower levels (see Fig. 1).

This notion of organization is close to the definition of autopoiesis, a concept that Matu-
rana and Varela introduced to characterize living organisms (Razeto-Barry 2012; Varela 
et al. 1974). As such, organizations were introduced as a simple model for the origin of 
life out of interlocking cycles of chemical reactions (Gil et al. 2009), and as a generaliza-
tion of the well-studied notion autocatalytic set (Hordijk et al. 2010, 2018). COT has been 
primarily used to analyze dynamical properties of chemical reaction networks, with a focus 
on the emergence of stable systems. The first examples were models of virus dynamics 
(Matsumaru et al. 2006), and the chemistry of a planetary atmosphere (Centler and Dittrich 
2007). A related application domain is the modeling of metabolic networks such as the 
bacterium E. Coli (Centler et  al. 2007), and of genomic networks such as mitotic spin-
dle assembly checkpoint (Kreyssig et al. 2012). Also various structural analysis connecting 
different approaches to metabolic, regulatory, and genomic networks have been developed 
(Contreras et al. 2011; Kaleta et al. 2006, 2008).

Let (M,R) be a reaction network and consider a set of species X ⊆ M . Note that some 
of the reactions in R may require species not included in X. Hence, the set RX of reactions 
that can be triggered by the species in X is in general smaller than R . Hence, COT con-
cerns with the sub-reaction networks (X,RX) contained in the network (M,R) . In particu-
lar, the formal definition of an organization is derived from two characteristics about the 
stability of network (X,RX):

1.	 Closure: the resources produced by the reactions in RX are already in the starting set X. 
This means that no new molecules are added to X by triggering the reactions in RX:

2.	 Self-maintenance: all the reactions in RX can operate at positive rates such that no 
reactant is consumed more than what is produced.1

The set X is an organization if and only if is closed and self-maintaining. Therefore, organi-
zations are dynamically invariant: no resources are added (closure) and no resources are 
removed (self-maintenance).

For example, at the lower level of the hierarchy representing the organizational struc-
ture shown in Fig. 1, we find that the sets {a} and {b} are organizations. While the former 
triggers r1 , and thus any reaction process2 where r1 occurs at a larger or equal rate than r4 
makes it self-maintaining, the latter does not trigger any reaction, and hence it is trivially 
closed and self-maintaining (a non-reactive organization). At the next level of organiza-
tions, we only encounter the set {b, c} which is self-maintaining when the rate of r3 is larger 
or equal than the rate of r5.

From a technical perspective, it has been proven that the vast majority of stable regimes 
of a continuous dynamical system described by reaction networks, including fixed points 
(Dittrich and Speroni Di Fenizio 2007), and higher dimensional attractors such as periodic 

1  We omit the mathematical formulation of this property for simplicity.
2  This is known in reaction network modeling as a flux vector. A flux vector is an specification of the rela-
tive rates of occurrence of reactions in the network.
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orbits and limit cycles (Peter and Dittrich 2011), correspond to organizations. Similar 
results can be obtained for the case of a discrete dynamical system (Kreyssig et al. 2014), 
and methods to rule out organizations that are dynamically unfeasible have also been devel-
oped (Peter et al. 2011).

Therefore, COT characterizes the long-term dynamics of a reaction network as a process 
consisting of ‘movements between organizations’ triggered by external perturbations. The 
perturbation, when understood as a slight change of state (in the dynamical systems sense), 
can cause that the stable regime leaves its basin of attraction, and thus the system will 
evolve towards another element of the organizational structure (Matsumaru et  al. 2006). 
Moreover, for structural perturbations, i.e. addition or elimination of novel species or inter-
actions, COT also allows for an elegant representation of the dynamical change. When a 
structural perturbation occurs the organizational structure itself is modified. A decomposi-
tion theorem for organization allows to identify the parts of the organizational structure 
that are affected by the structural perturbation, and thus different algorithms have proved 
that computing the organizational structure is feasible for reactions networks of hundreds 
or even thousands of species (Florian et al. 2008; Veloz and Razeto-Barry 2017b; Veloz 
et al. 2019).

Consider for example the network of Fig. 1 and the set {a, b, c} . If an external perturba-
tion eliminates all the species of type b from the system, we remain with the set {a, c} . 
However, this set is not an organization. Namely, {a, c} is closed but not self-maintaining 
because c is consumed by reaction r6 but there is no way to recover species c lost in r6 
through the activable reactions of {a, c} . Hence, the set of species {a, c} will in the long-
term evolve to the organization {a} or to {�} (depending on the rates of r1 and r4 ). Anal-
ogously, if we remove all the species of type c from {a, b, c} , the system evolves in the 
long-term to the set {a} or {�} . Finally, if we remove all the species of type a, the system 
remains at its perturbed configuration because {b, c} is an organization (when the rate of r3 
is larger than the rate of r5).

5 � COT and the Complexity–Stability Debate

Reaction networks allow to develop mechanistic models of the interactions found in an 
ecosystem at any desired level of specification. These interactions can next be integrated in 
a reaction network model of the ecosystem. Since the reaction network modeling an eco-
system is going to be too large to be analyzed by dynamical systems’ methods, we propose 
that COT provides a novel perspective to understand the dynamics of an ecological system. 
COT focuses on identifying collections of species (and resources) within our “ecological 
universe” whose structure allows them to function as a sustainable module (organization) 
with respect to the rest of the ecological universe. In this way one shifts the attention from 
“what are the conditions that make a certain community to be stable?” to “given an eco-
logical universe, what are the subsystems that form sustainable communities?”.

This change in perspective can be tremendously useful to study the Complexity–Stabil-
ity when we think of large reaction networks that incorporate diverse types of interactions. 
In particular, since organizations at the higher levels of the hierarchy can be understood 
as combinations of organizations at lower levels, COT relates the recursive structure of 
organizations to the stability of the reaction network. For example, in Veloz and Razeto-
Barry (2017b) it is shown that organizations function in dynamically independent mod-
ules, and some of these modules are more fragile to perturbations than others, while in 
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Veloz et al. (2019) it is found that the dynamical analysis of a certain organizations can be 
disregarded because their dynamical properties can be obtained from the dynamics of the 
smaller organizations that are contained in them. In this vein, complexity indicators such 
as synergy and non-decomposability have been developed to better understand those cases. 
Therefore, COT provides an interesting conceptual landscape to describe relation between 
complexity and stability by analyzing the inner structure of organizations and the proper-
ties of the organizational structure. In addition, there is a vast literature relating structural 
properties of reaction networks to their dynamical stability beyond COT. Other areas in 
the reaction network research such as flux-balance analysis (Orth et al. 2010), elementary 
modes (Schuster et  al. 1999), metabolic cuts (Lacroix et  al. 2008), and several methods 
imported from other areas such as Petri-net research (Heiner et al. 2008) can also be incor-
porated to study the Complexity–Stability debate.

In Table 3 we summarize the features of reaction networks as a language for modeling 
ecological interactions and studying the Complexity–Stability debate following the same 
schemata of Table 1

The COT approach to the Complexity–Stability debate takes the organizational struc-
ture, and the structure of organizations themselves, as the starting point to study the rela-
tion between complexity and stability. Hence, the organizational structure represents the 
collection of possible stable states to which the system can arrive in the long-term. These 
states are abstractions of the phase space, as there is no direct determination of the exact 
point or trajectory that the stable regime will occupy in the long-term dynamics. This 
abstract notion of stable state is indeed equivalent to the notion of subspace of a phase 
space (Dittrich and Speroni Di Fenizio 2007). Hence, COT identifies all the subspaces 
where stable regimes can be found, and equivalently, it discards all the subspaces of the 
phase space where stable regimes cannot be found.

From this abstract notion of state, we can think in the sentence “the system will evolve 
towards a certain organization” as a proposition in the logical sense. In the next section 
we will show how this perspective shows an interesting connection between the Complex-
ity–Stability debate and quantum theory.

6 � COT and Non‑classical Ecological Structures

In the early times of quantum theory, Birkhoff and Von Neumann realized that in a theory 
whose states are represented in a phase space, the subsets of the phase space play the role 
of propositions, and that in this sense, set inclusion corresponds to logical implication at 
the level of propositions. In their own words (Birkhoff and Von Neumann 1936):

...in any physical theory involving a phase-space, the experimental propositions con-
cerning a system Ω correspond to a family of subsets of its phase-space Σ , in such a 
way that “x implies y” (x and y being any two experimental propositions) means that 
the subset of Σ corresponding to x is contained set-theoretically in the subset cor-

Table 3   Reaction networks and COT applied to the complexity–stability debate

CS reps. Specs. Interacts. Dyn. Evo Mechanisms Analytic tools

RN + COT Many Many Indirect Yes Rich
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responding to y. This hypothesis clearly is important in proportion as relationships 
of implication exist between experimental propositions corresponding to subsets of 
different observation-spaces...
...Thus we see that the properties of logical implication are indistinguishable from 
those of set-inclusion, and that therefore it is algebraically reasonable to try to cor-
relate physical qualities with subsets of phase-space...
...a system in which the relation “x implies y” is written x ⊂ y , is usually called a 
“partially ordered system,” and thus our first postulate concerning propositonal cal-
culi is that the physical qualities attributable to any physical system form a partially 
ordered system.

The latter paragraphs started the logico-algebraic approach to quantum theory, based 
in order-theoretical structures, principally in the theory of lattices (Garg 2015). The lat-
tice approach to quantum theory has provided very important results and insights in the 
axiomatization of quantum theory, as well in its relation to epistemology and logic (Aerts 
2002; Mackey 2013; Piron 1976; Birkhoff and Von Neumann 1936).

In order to relate the latter ideas to COT, note that the organizational structure is a logi-
cal implication structure in this sense. Larger organizations contain smaller organizations, 
and thus the organizational structure can be seen as a partially ordered system. Moreover, 
it is possible to introduce certain operators known as ‘joint’ and ‘meet’ (which are a sort 
of generalization of the union and intersection), and the resulting structure is (for certain 
classes of reaction networks) a lattice (Dittrich and Speroni Di Fenizio 2007; Speroni di 
Fenizio 2015).

Let (M,R) be a reaction network, O its the organizational structure, X ⊆ M , and GO(X) 
the smallest organization containing X. The operator GO is called ‘generated organization’, 
and for certain networks it can be proven that for each set X its generated organization is 
unique (Dittrich and Speroni Di Fenizio 2007). For simplicity we will assume that GO(X) 
is unique for all X. Let the join ∨ and meet ∧ operators be defined by X∨Y = GO(X ∪ Y) , 
and X∧Y = GO(X ∩ Y) . Imposing a few extra axioms such that X∨Y  and X∧Y  always exist 
and are unique, one can assert that (O,∨,∧) is a lattice. For simplicity, we will assume we 
are dealing with networks following those axioms, and refer to Veloz (2010) for technical 
aspects concerning how to determine in which classes of networks its organizational struc-
ture forms a lattice. From here, it is is possible to establish properties about the structure of 
the lattice of organizations in the same way than Birkhoff and Von Neumann did for quan-
tum systems, i.e. linking structure with logic. There is a huge amount of literature devoted 
to the axioms that a lattice has to hold in order to relate it to a particular logical structure 
(Mackey 2013; Piron 1976). However, it is well known that distributivity is one of the cru-
cial properties to discern whether or not the propositional structure obtained from a lattice 
represents a classical-logical structure. Namely, a lattice is distributive if and only if for 
any three elements X, Y, Z in O we have that

Non-distributive lattices correspond thus to propositional systems that do not conform 
with the rules of classical logic, and it has been proven that the truth valuations of such 
propositions cannot be represented by means of a classical probabilistic scheme (Beltra-
metti and Maczyński 1995). It is not the aim of this article to dig deeper into the rela-
tion between non-distributivity and classical or quantum logic. However, it is important 
to mention that non-distributivity is understood as a footprint of contextuality in quantum 
theory (Svozil 2009). Contextuality in quantum theory reflects the impossibility to obtain a 

(2)X∨(Y∧Z) = (X∨Y)∧(X∨Z)
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coherent global description of the system, as the results obtained for one measurement can 
contradict global assumptions obtained about the system from other measurements. In our 
case, a measurement corresponds to identify whether a certain group of species is able to 
survive in the long-run (is an organization), and contextuality in this case can be intuitively 
understood because the long-term survival of the group of species under consideration is 
not independent to the other species in its environment, and thus the survival of the group 
of species is in many cases sensitive to its context. We will explain this idea with a simple 
example.

In Fig.  2 we show a reaction network model of an ecological system. Following the 
interactions described in Table 2 we see that s1 and s2 can depredate each other, s3 is in 
comensalistic relation with s1 but depredates (or parasites) s2 , while s4 is able to self-repli-
cate and produces harm to s1 without having any benefit (amensalism).3

The organizational structure4 in Fig.  2 is one of the prototypical non-distributive lat-
tices, known as N5 . In fact, note that

The non-distributivity of this reaction network is explained by the fact that s1 , when 
considered as part of X, its growth is dependent on the growth of s2 . In fact, the self-main-
tainance of X its conditioned to maximal production zero for both s1 and s2 (like a zero-sum 
game). However, when s1 is considered as part of Y, its maximal production is in principle 
unbounded (due to r3 ), and thus its growth is not limited by the growth of any other spe-
cies. Then, s1 cannot self-maintain when considered as part of X interacting with Z (due to 
reaction r6 ), but when s1 is considered as part of Y interacting with Z we have that s1 can 
self-maintain. Indeed, GO(Y∨Z) = M . Therefore, the survival of s1 is contextual to which 

(3)
X∨(Y∧Z) = X∨GO(Y ∩ Z) = X∨� = X, and

(X∨Y)∧(X∨Z) = GO(X ∪ Y)∧GO(X ∪ Z) = Y∧Z = �.

Fig. 2   Example of a reaction network, and its induced non-distributive organizational structure

3  The ecological model we present in Fig. 2 might be a little unrealistic for an ecologist. However, it is 
important to note that this example aims at obtaining a non-distributive organizational structure for the 
smallest possible system. It is possible to find non-distributive organizational structures following only the 
interactions depicted in Table 2, but using a larger number of species and interactions.
4  Non-reactive organizations such as {s

1
} and {s

2
} are omitted for simplicity
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group is considered to be part of. It is worth mentioning that we are not the first to iden-
tify contextuality in biological models (Aerts et al. 2010, 2014; Melkikh and Khrennikov 
2015; Real et al. 2016). However, to our knowledge this is the first logico-algebraic relation 
between ecological systems and quantum structures based on reaction networks.

7 � Conclusion

We introduced the language of reaction networks in ecology and proposed COT as an 
potential candidate to dilucidate the Complexity–Stability debate. Reaction networks rep-
resent situations among entities whose dynamical evolution can be understood as collec-
tive transformations of species. Intuitively, ecological systems are this type of situations. 
In particular, food webs represent the collective transformation of biomass among species, 
and other interactions can also be represented in a similar way (Table 1). Moreover, com-
plex interaction mechanisms can be represented by means of reaction networks (see Eq. 1 
for an example). Since reaction network models of realistic ecosystems involve a large 
number of species and reactions, standard dynamical approaches in reaction networks are 
inadequate. For this reason, we propose COT as a potentially fruitful approach. In COT it 
is possible to obtain an elegant abstract and hierarchical dynamical landscape that accounts 
for the subsystems that are able to co-exist as independent modules (organizations). The 
internal structure of these subsystems can be studied from various mathematical perspec-
tives, opening the possibility to apply results from computational biochemistry, systems 
biology, and others, thus enriching the toolkit with which the relation between structure 
and stability has been studied up to now. In particular, we presented an example of how 
the organizational structure can be seen as a logico-algebraic structure. The latter example 
opens up the possibility to explore the Complexity–Stability problem applying techniques 
from quantum theory that have been unprecedently applied in ecology.

For future work, several lines of research can be developed. First, it is important to 
explore the modeling of complex ecological interactions by means of mechanisms and 
how the data collected by ecologists can be translated to reaction networks. It is interesting 
that the interaction mechanisms are in the end narratives about how species and resources 
interact. Therefore, ecologists need to work together to provide unified views on the mecha-
nisms explaining how species interact. An attempt in this vein is a model of endosymbiotic 
interactions incorporating different representation layers (Veloz and Flores 2019). Second, 
it is necessary to develop measures of stability indicators such as resilience, robustness, 
adaptivity and so in the language of reaction networks. In Veloz and Razeto-Barry (2017b) 
and Heylighen et  al. (2015) some ideas have been advanced in this respect. Third, it is 
important to extend COT to represent ecological interactions in space. This can be done 
extending the reaction network formalism to incorporate compartments (Fellermann and 
Cardelli 2014; Peter et al. 2011). Fourth, it is extremely important to build a common data-
framework to represent mechanistic ecological interactions. We believe that one can lever-
age from notational schemes such as SBML for this purpose (Hucka et al. 2003). In this 
sense, we could have in the future a database of reaction networks representing the differ-
ent ecological interactions mechanisms that occur among every possible group of species, 
so we can build and analyze models integrating the relevant species and interactions of our 
purpose (similar to how metabolic reaction networks are analyzed today).
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In summary, we believe that the application of reaction networks and COT to study 
large ecosystems has the potential to become an extremely important method to advance 
in the understanding between complexity and stability in ecology, and might even revo-
lutionize the methodologies and understanding of general complex systems.
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