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a b s t r a c t

In previous papers of the authors, a new formulation for isothermal flow of gas mixtures with given
constant composition in a transportation network including usual devices has been introduced and
solved. However, in real networks, different gas qualities are introduced from different entry points. In
this case, it is important to track the quality along the network over time and therefore a multi-species
model has to be used. The main objective of the present paper is to introduce a model allowing us to
simulate the evolution of the gas composition, at each point in the network and over time, and then to
couple it with the flow model. The model for tracking the gas composition consists of a system of first
order partial differential equations, one per pipe and per species, which are coupled together at the
nodes by imposing the mass conservation equation for each species. It is important to notice that the
coupling condition at the nodes guarantees that the numerical scheme conserves the mass of each
species along the time. In order to validate the overall methodology, it is applied to a test case on a real
network. Numerical results show good agreement with measurements.
© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Reducing greenhouse gas emissions is a high priority objective
in recent years, as these emissions have a negative impact on
climate change. In the year 2020, oil continues to hold the largest
share of the energy mix (31.2%). Coal is the second largest, ac-
counting for 27.2% of total primary energy consumption, a slight
increase from 27.1% in 2019. The share of both natural gas and re-
newables rose to record highs of 24.7% and 5.7%, respectively, [1].
The way of energy production is being directed towards reducing
the consumption of fossil fuels with the use of clean and renewable
energies such as wind and solar energy. The growth of the world
capacity to generate electricity from solar panels, wind turbines
and other renewable technologies is on course to accelerate over
the coming years. Despite rising costs for key materials used to
make solar panels and wind turbines, additions of new renewable
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power capacity are forecast to rise from almost 300 GW in 2021
until around 460 GW in 2026 [2].

Currently, one of the specific decisions under study is to produce
hydrogen (perhaps from renewable electricity) as well as biogas,
and mix them with natural gas in a proportion to be determined.
The resulting mixture would be transported using existing natural
gas networks. In these circumstances, the numerical simulation of
the composition of the mixture along the networks and, more
importantly, at the delivery points, becomes a very helpful tool in
the management of gas networks, in particular because the gas is
sold for its energy content based on tariff conditions [3] and energy
content is directly related to composition [4e7].

In order to calculate the transported energy, several research
articles, and some commercial software like OLGA and PIPESIM
(Schlumberger company), Synergi Gas modules (DNV company)
and PipelineStudio (EMERSON) are being devoted to the simulation
of multi-species gas flow in order to track the quality of the gas in
terms of gas composition or specific energy. Having good accuracy
in gas quality monitoring allows us to increase the reliability of the
amount of energy sold and reduce the number of metering devices
and their calibration used to calculate the customer's bill [8].
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Nomenclature

FEM Finite Element Method
FVM Finite Volume Method
PDAE Partial Differential-Algebraic Equation
FCV Flow Control Valve
PCV Pressure Control Valve
f frictionfactor
M number of finite elements
t time, s
Dti time-step size corresponding to i, s
T length of the time interval of simulation, s
s time, s
r density, kg/m3

e roughness of pipe, m
u velocity, m/s
q mass flow rate per unit area (or mass flux), kg/m2s
Fi function of time in boundary conditions
p pressure, Pa
E specific total energy, J/kg
pc critical pressure, Pa
a isothermal sound speed in gas, m/sec
R gas constant, J/(kgK)
Xi molar fraction
Mi molar mass of i-th species, kg/mol
Q mass flow rate, kg/s
j pipe number
A Incidence matrix
li Lagrange multiplier corresponding to pressure at

node i, Pa
NSE Number of sub-elemets
h Viscosity of gas mixture

N number of Nodes
E number of Edges
m connectivity matrix
x coordinate along the pipe, m
D diameter, m
L length of pipe, m
g gravity acceleration, m/s2

h height of the pipe at the x cross-section
z heat transfer coeffient, W/m2K
q gas absolute temperature, K
qext exterior temperature, K
Z compressibility factor
Re Reynoldsnumber
rIC initial density along the pipe, kg/m3

qIC initial mass flux along the pipe, kg/m2s
QIC initial mass flow rate along the pipe, kg/s
j test function for the weak formulation
Pl space of polynomials of degree l
qc critical temperature, K
P1 space of polynomials of degree one
kek1 L1 -norm for calculating the errors
a, b, g coefficient of time weighted average for time

discretization
Yi mass fraction
M molar mas of mixture, kg/mol
F new function which is defined as the integration of Q

over the time, kg
Sj area of the cross-section of the j-th pipe, m2

u transposed of a matrix
ci emisson or consumption at node i, kg/s
cik;n k-th species at time step n, and consumption node i
iik;n k-th species at time step n, and emission node i
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These research articles can be classified into several groups.
Some authors, as [9,10], derive the governing equations directly in
terms of the energy content and use them to simulate steady-state
situations.

More recent studies consider a gas mixture with different types
of boundary conditions like volumetric flow rate [11e13] or mass
flow rate [14,15]. In Refs. [16,17] a mixture including hydrogen is
considered. However, in these studies, the gas composition remains
constant over time which is not a realistic situation because very
often there are several gas inputs with different qualities.

In other papers, as [18e22], the Wobbe index and the calorific
value are used to assess the gas quality. However, on the one hand
gas quality in the transportation network always changes over time
and, on the other hand, the developing and growing gas markets
need to simulate gas quality with high precision which, in general,
cannot be achieved with traditional methods. Hence, some recent
research has been specifically focused on transient models for
tracking gas composition [8,23e25] rather than specific energy. In
Refs. [8,23], a single pipeline has been modelled and an implicit
centered finite difference scheme has been used for numerical so-
lution. In the former, the energy flowwas also solved alongwith the
governing model for tracking gas composition while, in the latter,
only the gas composition trackingwas considered. In Ref. [8], a non-
isothermal gas flow model in a pipeline is considered. The species
equations are coupled and solved simultaneously with the
2

governing flow equations. The authors considered three examples,
two of them are used for validating with field data and assessing
the model accuracy, which is affected by the calorific value and the
flow rate gradients. The third one illustrates the effect of hydrogen
injection in the pipeline. The results show that variable gas quality
has a remarkable effect on the pipeline system. They highlight that
the operation of power to gas (P2G) plants, the natural gas sched-
uling, and the operational planning of the transmission systems
should be considered as a single unit. Consequently, all kind of
energy introduced into transmission systems is expected to be
synchronized with other sectors. However, they returned to the
traditional way of tracking the gas composition and, in Ref. [23],
two different methods are compared. The first one is a moving grid
method (batch tracking), and the second one is an implicit back-
ward difference method. These methods were applied to simulate
an onshore Polish and an offshore Norwegian gas transportation
pipes. The differences between the simulated and measured com-
positions were studied. The errors were less than 2.0% and were
sensitive to flow variations. The results illustrate that, unlike the
moving grid method which conserves the shape of the composition
variation, the implicit method loses some of the finer details of
tracked gas composition because of numerical diffusion. It should
bementioned that in the batch trackingmethod, only one-direction
gas flow is considered along each pipe. Hence, those cases where
the velocity may have different signs in the same pipe cannot be



A. Bermúdez and M. Shabani Energy 247 (2022) 123459
solved. However, in the present study, thanks to the use of the
method of characteristic we have avoided this limitation as the flow
direction can change inside a pipe. They also stated that the dif-
ference in simulation time between the two gas tracking methods
is small. Furthermore, in the aforementioned onshore pipeline, a
comparison of the calculation time between simulating or not
simulating the gas composition shows a difference of the order of
20%. We also note that neither of these two studies is used to track
gas composition in a full network.

In [24], numerical simulation of transient composition was
developed for non-isothermal natural gas transmission networks.
Flow and composition tracking were solved separately by an
explicit first-order upwind finite volume scheme. The solution
procedure includes three steps: transient flow simulation, transient
composition simulation, and calculation of quality parameters. To
validate and show the performance of their method, the authors
solved several cases including blending a small amount of hydrogen
(under 3% mass fraction) into natural gas. Comparison of their re-
sults with measurements showed good agreement. They
mentioned that the gas composition tracking is a very difficult
problem and that up to now the variation of natural gas quality is
represented by higher calorific value (HCV) and Wobbe index.
Hence, they also present their results in these parameters. Unlike
that study, in the present paper we have tracked the gas compo-
sition over time and our tests compare this composition (in terms
of mass fraction of species) with measurements. In addition, they
also stated that blending hydrogen in natural gas inside a network
is a complicated issue and that their method should be used care-
fully. On the other hand, it should also be mentioned that their
method produces quite numerical diffusion [26].

Finally, in Ref. [25], the full multi-species Euler equations are
solved by using finite volume discretizations and approximate
Riemann solvers. While numerical results clearly show first order of
accuracy and good stability properties, mass is not exactly
conserved; instead its conservation is only achieved up to the first
order of accuracy.

In previous papers, the authors have introduced and then solved
by using finite element methods, a new formulation for isothermal
gas flow in transportation networks [27,28], including usual devices
as compressors or valves, [29]. In these papers, a given uniform
composition of the gas has been assumed. Thus, going a step
further, the main objective of the present paper is to deal with the
more general case in which the gas has a variable composition
throughout the network and over time. This makes it necessary to
couple the flow equations with the transport equations for species.
The whole model would allow us to track the composition of gas in
a real transportation network involving different qualities of gas.

For the numerical solution, unlike what is done in most papers
on the subject (an exception is the recent and interesting reference
[24] cited above), we propose a segregated method solving the gas
flow equations and the species transport equations separately. We
note that this way of solving the complete model allows us to
consider different numerical methods and also different meshes to
solve each of the two sets of governing equations. In doing so, a
high precision in the numerical solution has been achieved by
choosing a second order finite element method for the flow equa-
tions on a coarse mesh and a first order characteristics method for
the species equation on a finer mesh. This strategy enable us to
3

obtain accurate results for the gas species equation without
significantly increasing the overall computational cost, as we use a
coarser mesh to solve the flow equations, which are the most
expensive part of the model. It should be noted that the method of
characteristics exhibits less diffusion compared to other upwind
methods [24]. as mentioned, for instance, in Ref. [26].

Importantly, as we have previously shown in Ref. [28], our
proposed finite element method for the flow equations conserves
exactly the mass of the total gas mixture at the nodes of the
network in the case of uniform gas composition. Similarly, the
method proposed in the present paper has the interesting property
of conserving the mass of each species at the discrete level. We
emphasize that the importance of mass conservation becomes
apparent, for instance, when it is needed to compute the line-pack
(i.e., the total energy of the gas contained in the whole network at
any particular time) or the amount of energy sold at the delivery
nodes of the network.

Another practical interesting feature of our method is the
following. We have compared the results obtained when the gas
properties that depend on composition are updated in the flow
equation at every time step in two different ways: from the
composition at each mesh point of the pipe, or from the average
composition throughout the whole pipe. In real cases, both results
are similar but the second choice significantly reduces the
computing time. Thus, the proposed method enables long-term
simulations of real gas networks in a short time, which opens the
door to solve practical problems of control and dynamic
optimization.

The outline of the paper is as follows. In Section 2, the full
mathematical model for multi-species gas flow in a pipe is
described. In Subsection 2.1 the governing flow equations for a pipe
are simplified from several assumptions and these simplified
equations are then rewritten in an equivalent form involving only
one equation with an unknown function. Also, some closure re-
lations for the model are defined in Subsection 2.2. The model for
the flow throughout the transmission network is recalled in Section
3 after which the model for gas composition tracking is introduced.
In Section 4, numerical methods for solving flow and species
equations are given and then some related issues are discussed. The
last Section 5 is devoted to presenting numerical results for two test
problems: the first is a non-trivial fairly standard academic test on
the species transport equation. The second deals with a small real
network for which experimental measurements are available. Both
tests allow us to validate the methodology. Finally, some conclu-
sions are drawn from the present study. A research flow chart of the
present study is shown in Fig. 1.
2. Modelling multi-species gas flow in a pipe

2.1. Governing equations

The dynamic behavior of gas flow in a pipe as shown in Fig. 2 can
be described by the standard compressible Euler equations with
some additional terms to model viscous friction and gravity force
(see, for instance Ref. [30]).

Moreover, if we are concerned with the transport of a physical
quantity like the gas composition (e.g., themass fraction of species),
the one-dimensional transport equation must be solved in addition



Fig. 1. Research flow chart of the present study.

A. Bermúdez and M. Shabani Energy 247 (2022) 123459
to the governing flow equations [23,24,29]. Summarizing, the
wholemodel to simulatemulti-species flow in a pipe consists of the
system of partial differential equations (1)e(4) and equation of
state (5) below:

vr

vt
ðx; tÞ þ vðruÞ

vx
ðx; tÞ ¼ 0; (1)
vðruÞ
vt

ðx; tÞ þ
v
�
ru2 þ p

�
vx

ðx; tÞ ¼ � f
2D

rðx; tÞuðx; tÞuðx; tÞ � grðx; tÞ dh
dx

ðxÞ (2)

vðrEÞ
vt

ðx; tÞ þ vððrE þ pÞu Þ
vx

ðx; tÞ ¼ �4z
2D

ðqextðx; tÞ � qðx; tÞ Þ � grðx; tÞuðx; tÞ dh
dx

ðxÞ; (3)
vðrYkÞ
vt

þ vðrYkuÞ
vx

¼ 0; k ¼ 1;…;Nc: (4)
4

p ¼ Zðp; qÞrRq; (5)

where in equations (1) and (2), r, u, p are mass density, mass-
averaged axial velocity, and pressure, respectively. Besides, g is
the gravity acceleration, D is the diameter of the pipe, and f is the
friction factor on the wall. Fields E, q, and z in equation (3) refer to
specific total energy, absolute temperature and heat transfer coef-
ficient, respectively. Mass fraction of the k-th species is denoted by
Yk. Finally, in the equation of state (5), Z is the compressibility factor.

Usually, some reasonable assumptions have been considered in
the simulation of real gas networks [27,31e40]. In the present
study, the two following ones are chosen:

H1. The gas temperature along the pipe as a function of x and t is
known so the energy equation is not needed.

H2. The convective term is neglected in the momentum equation.
This can be done as far as the Mach number is small, which is a
plausible assumption in gas transportation networks.

From these assumptions, equations (1)e(3) can be simplified to
(see Refs. [27e29]),

rtðx; tÞ þ qxðx; tÞ ¼ 0; (6)

qtðx; tÞ þ
�
a2ðx; tÞrðx; tÞ

�
x
þ f

�
Reðx; tÞ; eD

�
2D

qðx; tÞqðx; tÞ
rðx; tÞ

þ rðx; tÞghx
¼ 0 (7)

where q ¼ ru is the mass flux (kg/(m2 s)) and the other notations
have been previously established. Function a (x, t) is defined by

aðx; tÞd
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Zðpðx; tÞ; qðx; tÞÞRqðx; tÞ

q
ðm=sÞ: (8)

Now, by introducing a new unknown as proposed in Ref. [27],
namely,

Fjðx; tÞ ¼
ðt
0

Qjðx; sÞds; (9)
where Qj (x, s)dSjqj (x, s) is the mass flow rate (kg/s) at the cross-
section of the j-th pipe located at x and at time t, the above equa-
tions can be rewritten as a single second-order partial differential
equation in time and space:



Fig. 2. Geometry and approximation of gravity term.
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1

Sj
Fj
ttðx; tÞ �

1

Sj

��
aj
�2ðx; tÞFj

xðx; tÞ
�
x
ðx; tÞ

þ
f
�
Rejðx; tÞ; e

j

Dj

!

2Dj

1

Sj
Fj
tðx; tÞFj

tðx; tÞ
SjrjICðxÞ � Fj

xðx; tÞ

�1

Sj
gFj

xðx; tÞhjx ¼ �rjICðxÞgh
j
x

�
��

aj
�2ðx; tÞrjICðxÞ

�
x
:

(10)

We notice that this formulation only includes one unknown

function per pipe, namely Fjðx; tÞ, from which the primitive phys-
ical magnitudes, that is, density, pressure, and gas velocity can be
easily computed by post-processing this function (see again [27]).
2.2. Closure relations

In order to solve the above equations, some additional infor-
mation is needed. It consists of four so-called closure relations:

CR1. The compressibility factor of real gas is computed by using
the Papay's formula [41]:

Zðp; qÞ ¼ 1� 3:52pre�2:26 qr þ 0:274p2r e
�1:878 qr (11)

where pr and qr are the reduced pressure and temperature,
respectively, that is,
5

pr ¼ p
pc
; qr ¼ q

qc
;

being pc the critical pressure and qc the critical temperature of the
gas which depend upon composition through the Kay's formulas,

qc ¼
XNC

i¼1
Xiqc;i; pc ¼

XNC

i¼1
Xipc;i:

In these formulas, Xi denotes the molar fraction of the i-th species
of the gas mixture and qc,i and pc,i are its critical temperature and
pressure, respectively. Let us recall that

Xi ¼
M
Mi

Yi; i ¼ 1;…;Nc;

where M is the molar mass (kg/mol) of the gas mixture and Mi is
the molar mass of the i-th species. We recall thatM depends on the
gas composition through the formula

M ¼
�XNC

i¼1

Yi
Mi

��1

:

CR2. The friction factor is obtained from the roughness of the
pipe e and the Reynolds number by using, for instance, the
following formula (see Ref. [42]):

f ¼ 1:613
	
ln
�
0:234

� e
D

�1:100 7 � 60:525
Re1:110 5 þ

56:291
Re1:071 2

�
�2

;

(12)

where, as usual, the Reynolds number is defined as
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Re ¼ ruD
h

:

CR3. The dynamic viscosity of the gas is a function of temper-
ature and density (or pressure) which, in turn, depends on gas
composition. The Yang's relation [43] is used to calculate the gas
viscosity:

h ¼ hB
ffiffiffiffiffi
qr

p
exp

�
6þ ðAb þ AkqrÞrur

qr

�
; (13)

where

hB ¼ BMsqrt and Msqrt ¼
XNC

i¼1
Xi

ffiffiffiffiffiffiffiffi
Mi

p
;

being qr, and rr the reduced temperature and density, respectively.
The other parameters are B ¼ 3.142, 6 ¼ � 0.551, Ak ¼ 0.172,
Ab ¼ 0.621 and u ¼ 1.273.

CR4. Finally, R is the specific gas constant, that is, R ¼ R
M, being

R ¼ 8:314 J/(Kmol) the universal gas constant.
3. Modelling multi-species gas flow in a transportation
network

3.1. The flow equations

In this section, the topology of the gas network is taken into
account by using a directed graph with N nodes and E edges. We
recall the definition of the incidence matrix, A ¼ (aij) (see, for
instance Ref. [28]):

aij ¼
8<
:

þ1 if node i is the first node of edge j
�1 if node i is the second node of edge j
0 otherwise

where i ¼ 1, …, N and j ¼ 1, …, E.
By splitting the incidence matrix A into its positive and negative

parts, A ¼ Aþ � A�, the total mass conservation at the i-th node can
be written as

XE

j¼1
aþij Q

jð0; tÞ �
XE

j¼1
a�ij Q

jðLj; tÞ ¼ ciðtÞ; i ¼ 1;…;N;

(14)

where ci(t) denotes the exchanged mass flow rate (kg/s) with the
exterior of the network at the i-th node. For the sake of simplicity
and compactness in notation, the mass conservation at nodes (14)
is rewritten in vector form,

AþQ ð0; tÞ � A�Q ðL; tÞ ¼ cðtÞ; (15)

where Q denotes the E-dimensional vector with components Qj.
The mass conservation equations at nodes will be called first
6

kind nodal boundary conditions. The vector of nodal pressures
(notice that pressure is a common magnitude for all edges meeting
at each particular node) will be denoted by lðtÞ2RN and called the
second kind nodal boundary conditions. By using the incidence ma-
trix we can write

pð0; tÞ ¼ ðAþÞulðtÞ; (16)

pðL; tÞ ¼ ðA�ÞulðtÞ (17)

and also,

lðtÞ ¼ B�1ðAþpð0; tÞ þ A�pðL; tÞÞ; (18)

where B is a diagonal matrix giving the number of pipes that join at
the i-th node:

Biid
����AjeE�

i
; i ¼ 1;…;N;

with |A| ¼ Aþ þ A�.
We notice that either pressure, li(t), or mass flow rate

exchanged with the exterior, ci(t), must be given as nodal boundary
data at each node i.

In order to solve the system of one-dimensional nonlinear wave-
like equation (10), together with the above defined nodal boundary
conditions, a finite element method has been introduced in Ref. [28].

Remark 3.1. Let us notice that, after solving equations (10) with
the nodal boundary conditions, the physical magnitudes of interest,
namely, density, pressure and mass flow rate can be computed (see
Ref. [27]) after which the velocity is obtained as

uðx; tÞ ¼ qðx; tÞ
rðx; tÞ: (19)

3.2. The gas species equations

In order to compute the gas composition along the network,
equation (4) have to be solved for all edges together with initial and
boundary conditions. Since they are first order equations, a
boundary condition is needed only at input flow nodes of the edge,
i.e., at x ¼ 0, if Qj (0, t) > 0 and at x ¼ Lj if Qj (Lj, t) < 0. Moreover, at
each node several pipes may meet. At any time t, some of them
transport incoming flow to the node and the rest of them transport
outgoing flow from the node. It is assumed that, at any time t, an
instantaneous perfect mixing of the incoming flows at the node
takes place in such a way that the gas composition is the same for
all the outgoing pipes from the node. Let us denote by cikðtÞ the
mass fraction of the k-th species leaving node i at time t. Then, we
need to solve the following initial-boundary value problems:

v
�
rjYj

k

�
vt

þ
v
�
rjujYj

k

�
vx

¼ 0; ðx; tÞ2
h
0; Lj

i
� ½0; T �; (20)
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Yj
kðx;0Þ ¼ Yj

k;ICðxÞ; x2
h
0; Lj

i
;

(21)

Yj
kð0; tÞ ¼ ððAþÞuckðtÞÞj; t2½0; T �; if Qjð0; tÞ>0 (22)

and
Yj
kðLj; tÞ ¼ ððA�ÞuckðtÞÞj; t2½0; T�; if QjðLj; tÞ<0;

(23)

where ckðtÞ ¼
�
c1kðtÞ;…;cNk ðtÞ

�u
.

We notice that, by using the total mass conservation equation
(6), it can be easily seen that equation (20) can be written in their
(equivalent) non-conservative forms,

vYj
k

vt
þ uj

vYj
k

vx
¼ 0; ðx; tÞ2½0; Lj� � ½0; T �; (24)

which are the ones we are going to solve numerically.
In addition to equation (14) for total mass conservation at the

nodes, we need to include themass conservation equations for each
species, to be called the third kind nodal boundary conditions. These
boundary conditions will allow us to compute the mass fraction of
the k-th species leaving node i at time t, that is, the unknowns cikðtÞ
previously introduced. Notice that, if the flow exchanged with the
exterior of the network through node i at time t, ci(t), is positive (i.e.,
the gas enters the network from outside), then the composition of
this incoming gas must be given as a nodal data of the third kind: let
us denote by iikðtÞ the mass fraction of the k-th species. Then, for
i ¼ 1, …, N we have either

þ
XE
j¼1

Aþ
ij

��
Qjð0; tÞ

�þ
cikðtÞ �

�
Qjð0; tÞ

��
Yj
kð0; tÞ

�

�
XE
j¼1

A�
ij

��
Qj

�
Lj; t

��þ
Yj
k

�
Lj; t

�
�
�
Qj

�
Lj; t

���
cikðtÞ

�

¼ ciðtÞiikðtÞ; if ciðtÞ>0
�
emission node

�

or

þ
XE
j¼1

Aþ
ij

��
Qjð0; tÞ

�þ
cikðtÞ �

�
Qjð0; tÞ

��
Yj
kð0; tÞ

�

�
XE
j¼1

A�
ij

��
Qj

�
Lj; t

��þ
Yj
k

�
Lj; t

�
�
�
Qj

�
Lj; t

���
cikðtÞ

�

¼ ciðtÞcikðtÞ; if ciðtÞ<0 ðconsumption nodeÞ:

Let us also recall that, by definition of Fj, the mass flow rates at the
ends of the j-th pipe are given by
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Qjð0; tÞ ¼ Fj
tð0; tÞ and Qj

�
Lj; t

�
¼ Fj

t

�
Lj; t

�
:

Therefore, the above equations can also be written as

þ
XE
j¼1

Aþ
ij

��
Fj
tð0; tÞ

�þ
cikðtÞ �

�
Fj
tð0; tÞ

��
Yj
kð0; tÞ

�

�
XE
j¼1

A�
ij

��
Fj
t

�
Lj; t

��þ
Yj
k

�
Lj; t

�
�
�
Fj
t

�
Lj; t

���
cikðtÞ

�

¼ ciðtÞiikðtÞ; if ciðtÞ>0 ðemission nodeÞ;

(25)

or

þ
XE
j¼1

Aþ
ij

��
Fj
tð0; tÞ

�þ
cikðtÞ �

�
Fj
tð0; tÞ

��
Yj
kð0; tÞ

�

�
XE
j¼1

A�
ij

��
Fj
t

�
Lj; t

��þ
Yj
k

�
Lj; t

�
�
�
Fj
t

�
Lj; t

���
cikðtÞ

�

¼ ciðtÞcikðtÞ; if ciðtÞ<0 ðconsumption nodeÞ

(26)
4. Numerical solution

4.1. Flow equations: finite element method

In this subsection, we shortly summarize the methods intro-
duced in Ref. [28] for the numerical solution of the flow equations.
Firstly, let us introduce a mesh of the time interval [0, T]. Given a
natural numberM, let 0¼ t0 < t1 <… < tM, with tn ¼ nDt, n¼ 0,…M
and Dt ¼ T/M.

The time derivatives of Fj are approximated by second-order
central difference formulas while their first derivatives with
respect to x are computed from a weighted average involving the
values ofFj at three consecutive time steps, with weights a, b and g.
With the aim of having second-order of accuracy both in time and
in space, a and g should be chosen to have the same value. In
particular, by taking a ¼ g ¼ 0.25 and b ¼ 0.5 the method will be
stable for linear problems independently of Dt and the truncation
error will be minimized (see Ref. [44]). Theweak formulation of the
semi-discrete in time approximate problem is the following (see
Ref. [28] for further details):

At step n 2 {0, …, M � 1}, we compute approximations of F(x,

tnþ1) and lF (tnþ1), to be called Fnþ1(x) and lFnþ1, satisfying

for all jj, j ¼ 1, …, P and wF2RF , with



XE
j¼1

ðLj
0

1

Sj
Fj
nþ1ðxÞ � 2Fj

nðxÞ þ Fj
n�1ðxÞ

Dt2
jjðxÞdx

þ
XE
j¼1

ðLj
0

1

Sj

�
aj
�2
n
ðxÞ d

dx

"
aFj

nþ1ðxÞ þ bFj
nðxÞ þ gFj

n�1ðxÞ
aþ bþ g

#
jj
xðxÞdx

þ
XE
j¼1

ðLj
0

f jnðxÞ
2Dj

1

Sj

Fj
nþ1ðxÞ � Fj

n�1ðxÞ
2Dt

Fj
nþ1ðxÞ � Fj

n�1ðxÞ
2Dt

rjICðxÞSj �
d
dx

"
aFj

nþ1ðxÞ þ bFj
nðxÞ þ gFj

n�1ðxÞ
aþ bþ g

#jjðxÞdx

�
XE
j¼1

ðLj
0

1

Sj
d
dx

"
aFj

nþ1ðxÞ þ bFj
nðxÞ þ gFj

n�1ðxÞ
aþ bþ g

#
ghjðxÞjjðxÞdx

¼ �
XE
j¼1

ðLj
0

rjICðxÞgh
j
xðxÞjðxÞdxþ

XE
j¼1

ðLj
0

�
aj
�2
n
ðxÞrjICðxÞjj

xðxÞdx

þlPðtnÞ,PðAþjð0Þ � A�jðLÞÞ þ
�
alFnþ1 þ blFn þ glFn�1

�
,FðAþjð0Þ � A�jðLÞÞ;

(27)

F
�
Aþ

�
Fnþ1ð0Þ �Fn�1ð0Þ

2Dt

�
� A�

�
Fnþ1ðLÞ �Fn�1ðLÞ

2Dt

��
,wF ¼ cFðtnÞ,wF ; (28)
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ajnðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z
�
pjnðxÞ; qjðx; tnÞ

�
RjnðxÞqjðx; tnÞ

r
; (29)

where

RjnðxÞ ¼
R

Mj
nðxÞ

; with
1

Mj
nðxÞ

¼
XNc

i¼1

Yj
nðxÞ
Mi

;

and pjnðxÞ is the solution of the non-linear numerical equation

pjnðxÞ ¼ Z
�
pjnðxÞ; qjðx; tnÞ

�
rjnðxÞRjnðxÞqjðx; tnÞ; x2½0; Lj�; (30)

being

rjnðxÞ ¼ rjICðxÞ �
1
Sj
Fj
n;xðxÞ:

The last equation comes from the definition of the new un-
known Fj. Moreover, we notice that, if Papay's formula (11) is used
for Z then (30) is a polynomial equation of second degree. Hence,

pjnðxÞ can be computed by a simple explicit formula before starting

step n, sinceFn is known from the previous time step. Then, ðajÞ2nðxÞ
is calculated from (29).

We also notice that step number n runs from n ¼ 0 to M � 1,
where tM ¼ T. For n¼ 0 we need two initial conditions:F0 andF�1,
which are defined by

F0 ¼ 0 and F�1 ¼ F1 � 2DtQ IC ; (31)

with Qj
IC ¼ SjqjIC , and lF0, l

F
�1 given, respectively, by (see (18))
8

lF0d
�
C�1ðAþpICð0Þ þ A�pICðLÞÞ

�
(32)

and

lF�1d
�
C�1ðAþp�1ð0Þ þ A�p�1ðLÞÞ

��
: (33)

In order to solve the semidiscrete problem (27),(28), a finite
element method has been introduced in Ref. [28]. Thus, the prob-
lem becomes equivalent to a finite-dimensional system of
nonlinear equations that can be solved by using iterative Newton-
likemethods. As usual, the numerical solution of the full discretized

problemwill be denoted byFj
n;h, where h denotes the spatial mesh-

size.

Remark 4.1. Notice that, after solving the previous discrete
problem, approximations of the physical magnitudes of interest can
be obtained. Firstly, density and mass flow rate are computed by

rjn;h ¼ rIC � 1
S

d
dx

2
4aFj

nþ1;h þ bFj
n;h þ gFj

n�1;h

aþ bþ g

3
5; (34)

qjn;h ¼ 1
S
Fnþ1;h �Fn�1;h

2Dt
; (35)

and then velocity by
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ujn;h ¼ qn;h
rn;h

: (36)

It is worth noticing that this velocity field is, in general, a globally
discontinuous function that is rational on each interval of the finite
element mesh. In particular, if the polynomial degree of the finite

element space is one, then ujn;h is a globally discontinuous piece-

wise linear function along pipe number j, because density rn,h is
piecewise constant.
4.2. Species equations: method of characteristics

Each time step of the numerical method consists of two stages.
The first one has been described above. Its goal is to compute finite

element approximations of functions Fj
nþ1ðxÞ and then, as a post-

processing, to get approximations of density, mass flow rate, ve-
locity, and pressure, at time tn. In particular, after this first stage we
know the velocity at time tn given by (36).

The second stage consists in the computation of the mass frac-

tions of species at time tnþ1, namely, Yj
k;nþ1; k ¼ 1;…;Nc. For this

purpose a full discretization (in time and in space) of (20)-(23) has
to be introduced. We emphasize that the spatial mesh to solve
these equations needs not to be the same as the finite element
mesh for the flow equations. In practice, the latter will be much
coarser than the former.

We also need to compute the outgoingmass fractions of the k-th
component at the i-th node, cik; i ¼ 1;…;N; k ¼ 1;…;Nc, involved in
(20)-(23), by including discrete approximations of equations (25)
and (26) into the system, namely.
cik;n ¼
0
@XE

j¼1

Aþ
ij

�
Fj
nþ1ð0Þ �Fj

n�1ð0Þ
�þ þ

XE
j¼1

A�
ij

�
Fj
nþ1

�
Lj
�
� Fj

n�1

�
Lj

�
0
@XE

j¼1

Aþ
ij

�
Fj
nþ1ð0Þ �Fj

n�1ð0Þ
��

Yj
k;nð0Þ þ

XE
j¼1

A�
ij

�
Fj
nþ1

�
Lj
�
�

cik;n ¼
0
@XE

j¼1

Aþ
ij

�
Fj
nþ1ð0Þ �Fj

n�1ð0Þ
�þ þ

XE
j¼1

A�
ij

�
Fj
nþ1

�
Lj
�
� Fj

n�1

�
Lj

�
0
@XE

j¼1

Aþ
ij

�
Fj
nþ1ð0Þ � Fj

n�1ð0Þ
��

Yj
k;nð0Þ þ

XE
j¼1

A�
ij

�
Fj
nþ1

�
Lj
�
�
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� if ci (tn) > 0 (emission node)

cik;n
XE
j¼1

Aþ
ij

�
Fj
nþ1ð0Þ �Fj

n�1ð0Þ
�þ

�
XE
j¼1

Aþ
ij

�
Fj
nþ1ð0Þ �Fj

n�1ð0Þ
��

Yj
k;nð0Þ

�
XE
j¼1

A�
ij

�
Fj
nþ1

�
Lj
�
�Fj

n�1

�
Lj
��þ

Yj
k;n

�
Lj
�

þ cik;n
XE
j¼1

A�
ij

�
Fj
nþ1

�
Lj
�
�Fj

n�1

�
Lj
��� ¼ 2DtciðtnÞiik;n;

(37)
� if ci (tn) < 0 (consumption node)

cik;n
XE
j¼1

Aþ
ij

�
Fj
nþ1ð0Þ �Fj

n�1ð0Þ
�þ

�
XE
j¼1

Aþ
ij

�
Fj
nþ1ð0Þ �Fj

n�1ð0Þ
��

Yj
k;nð0Þ

�
XE
j¼1

A�
ij

�
Fj
nþ1

�
Lj
�
�Fj

n�1

�
Lj
��þ

Yj
k;n

�
Lj
�

þ cik;n
XE
j¼1

A�
ij

�
Fj
nþ1

�
Lj
�
�Fj

n�1

�
Lj
��� ¼ 2DtciðtnÞcik;n;

(38)

where i ¼ 1, …, N.
We notice that, in both cases, the third kind nodal boundary

condition can be easily obtained. Indeed.

� if ci (tn) > 0 (emission node)
���1A�1

Fj
n�1

�
Lj
��þ

Yj
k;n

�
Lj
�
þ 2DtciðtnÞiik;n

�
; i ¼ 1;…;N;

(39)
� if ci (tn) < 0 (consumption node)
��� � 2DtciðtnÞ
1
A�1

Fj
n�1

�
Lj
��þ

Yj
k;n

�
Lj
��

; i ¼ 1;…;N:

(40)
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The two cases (39) and (40) can be summarized in the following
equation:
cik;n ¼
0
@XE

j¼1

Aþ
ij

�
Fj
nþ1ð0Þ �Fj

n�1ð0Þ
�þ þ

XE
j¼1

A�
ij

�
Fj
nþ1

�
Lj
�
� Fj

n�1

�
Lj
��� � 2DtciðtnÞð1� xÞ

1
A�1

�
0
@XE

j¼1

Aþ
ij

�
Fj
nþ1ð0Þ � Fj

n�1ð0Þ
��

Yj
k;nð0Þ þ

XE
j¼1

A�
ij

�
Fj
nþ1

�
Lj
�
� Fj

n�1

�
Lj
��þ

Yj
k;n

�
Lj
�
þ 2DtciðtnÞiik;nx

�
i ¼ 1;…;N;

(41)
where. x ¼
�
1 if ciðtnÞ>0 ðemission nodeÞ;
0 if ciðtnÞ<0 ðconsumption nodeÞ:

Notice that, in the previous equation, the term under the inverse
represents the sum of the outgoing mass flow rates from the i-th
node. If this number was null, the above computations could not be
done. Let us analyze this case. Firstly, we observe that this number
is non-negative because all of the terms involved in the sum are
non-negative. As a consequence, it can be null if and only if all of
them are null. From the mass conservation equation, we easily
deduce that the i-th node has to be a stagnation point of the flow at
the considered time tn. In particular, ci (tn) has to be null and hence
the described situation is incompatible with either a non-null
consumption or a non-null emission, which is intuitive.

Now, a numerical scheme to solve the mass conservation
equations of species is introduced. Firstly, the finite element mesh
of the j-th pipe used to solve the flow equations is considered.

Denote by xjm; m ¼ 0;…;NSEj the mesh points of the j-th pipe.
With the aim of increasing the accuracy, each finite element is split
again into several sub-elements, say NSE. Then, by using the
method of characteristics the species equations can be solved for
this refined mesh [45]. More details can be found in Appendix A. It
is worth mentioning that this method has less diffusion than other
first order upwind methods [26].

In order to compute the gas velocity appearing in the transport

equations at mesh-point xjm, the following formula is used (see
Remark 4.1). Then, this velocity can be easily interpolated over the
sub-elements of the finer mesh.
ujn;m ¼ 1

2DtSj
Fj
nþ1ðx

j
mÞ � Fj

n�1ðx
j
mÞ

rICðxjmÞ � 1
.
Sj
�
aðFj

nþ1Þxðx
j
mÞ þ bðFj

nÞxðxjmÞ þ gðFj
n�1Þxðx

j
mÞ

�.
ðaþ bþ gÞ

; n ¼ 0;…;M; m ¼ 0;…;NSEj (42)
4.3. The overall numerical method

Notice that the flow equation and the gas species equations are
coupled because, on the one hand, a (x, t) defined in (8) depends on
composition and, on the other hand, gas velocity u (x, t) appears in
the species transport equations (see Fig. 2). Let us recall that, for
numerical solution, the flow equations are discretized at time tn in
10
order to compute Fj
nþ1 [28,29]. Hence, the value of function a (x, t)

(see (8)) should be previously determined by using the mass frac-
tions of species at time tn which, indeed, have been already
computed. This is the first stage of the n-th time step. In the second
stage of the same time step, we compute mass fraction approxi-
mations at time tnþ1 by using the gas velocity at time tn interpolated
along sub-elements. Thus, the flow and species equations are
separately solved at each time step, leading to a segregated nu-
merical method. As mentioned before, an interesting consequence
is that different meshes for solving the flow and gas species
equations are allowed which is an important feature of the overall
method, improving its performance in terms of computing time
versus accuracy. Fig. 3 shows a flowchart of the whole numerical
method.

After computing the gas composition at time tnþ1, the gas
properties are updated and the next time step begins. It should be
noticed that two different forms of gas properties calculation have
been implemented. In the first one, the gas properties along the
pipes are calculated on each element and sub-element. In the
second one, the average composition along each pipe is first
calculated and then the gas properties corresponding to this
average are used along the whole pipe. Numerical experiments
show that the latter reduces the computational cost without
significantly affecting the accuracy.

5. Numerical experiments

For computer implementation of the introduced numerical
methods, a program in Fortran language has been written from
scratch.

In order to validate this program and the overall methodology,
two test cases are addressed in this paper. The goal of the first one is
to check the performance of the characteristics method imple-
mentation used to solve the species equations. In the second one, a
small real network has been considered for which pressure, mass
flow rate, and gas composition at the nodes have been experi-
mentally measured.



Fig. 3. Flowchart of the overall numerical method.
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5.1. Case 1. solving advection equation

As it was mentioned in Section 3.2, in order to compute the gas
composition along the network, equation (4) have to be solved for
all pipes together with initial and boundary conditions. In this
subsection, with the objective of evaluating the quality of the nu-
merical solution of these equations, a problem with a given non-
constant velocity along a pipe and discontinuous boundary condi-
tions with respect to the initial condition is considered. After
comparing the numerical results with the exact solution, the orders
of accuracy in time and space have been calculated. For this pur-
pose, the L1-norm is used to compute the errors. More precisely, the
error is computed as a discrete version of the double integral space
and time,

kek1 ¼
ðT
0

ðL
0

jWNumerical �WExact jdxdt: (43)

We consider the following initial-boundary value problem:

vW
vt

þ uðx; tÞ vW
vx

¼ 0 cðx; tÞ2½0; L� � ½0; T �; (44)

Wð0; tÞ ¼ WR ct2½0; T �; if uð0; tÞ>0; (45)
11
WðL; tÞ ¼ WL ct2½0; T �; if uðL; tÞ<0; (46)

Wðx;0Þ ¼ WICðxÞ cx2½0; L�: (47)

The exact solution of (44)-(47) is

Wðx; tÞ ¼ WICðXðx; tÞÞ cðx; tÞ2½0; L� � ½0; T �; (48)

where X (x, t) denotes the position at initial time of the particle that
is located at point x at time t. It will be calculated following the
characteristics lines (trajectories), as shown in Fig. 4.

In the simulation program for gas composition tracking, we have
used a linear interpolation of the velocity along the sub-elements.
Accordingly, in this test case, a given continuous linear velocity
on each half of the pipe with respective positive and negative
values has been considered (see Fig. 4). More precisely, L ¼ 1 and

uðx; tÞ ¼
(
a1xþ b1 if 0< x< x*;

a2xþ b2 if x* < x<1;

with x* ¼ 0.5.
We know that the equation of the characteristic line passing

through point x0 at initial time t0 is x ¼ X (x0, t), with X (x0, t)
satisfying the initial-value problem



Fig. 4. Velocity along the pipe.
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dXðx0; tÞ
dt

¼ uðXðx0; tÞ; tÞ; (49)

Xðx0; t0Þ ¼ x0: (50)

The exact solution of this problem can be easily obtained:
If 0 < x < x*, then

ðx
x0

dx
a1xþ b1

¼
ðt
t0

dt; (51)

and hence

Xðx0; tÞ ¼
a1x0 þ b1
a1ea1t

� b1
a1

: (52)

In a similar way if x* < x < 1, then

ðx
x0

dx
a2xþ b2

¼
ðt
t0

dt; (53)

and hence

Xðx0; tÞ ¼
a2x0 þ b2
a2ea2t

� b2
a2

: (54)

Therefore, the exact solution W is given by

Wðx; tÞ ¼

8>>>>>>>>>><
>>>>>>>>>>:

WL if 0< x<
b1
a1

ðea1t � 1Þ;

WIC if
b1
a1

ðea1t � 1Þ � x � 1� b2
a2

ðea2t � 1Þ;

WR if 1� b2
a2

ðea2t � 1Þ< x<1;

(55)

and hence has two jump discontinuities in the spatial variable x, at
any time.
12
Now, let us take a1 ¼ � 0.8, b1 ¼ 0.4, a2 ¼ � 0.4, b2 ¼ 0.2 (see
Fig. 4), and initial and boundary conditions given by WIC ¼ 0.50,
WL ¼ 1.0 and WR ¼ 0.0. The numerical results for Dt ¼ 0.02 s, 200
meshes and sub-mesh refinements corresponding to NSEn ¼ 2n,
n ¼ 0, 1, 2, 3 are presented in Fig. 5.

FunctionW (., t) is plotted versus the longitudinal position in the
pipe at several time instants: t¼ 1, 2, 3, and 4 s. It should be noticed
that, since the velocity is positive (respectively, negative) on the left
half (respectively, on the right half) of the pipe, boundary condi-
tions need to be given at the two ends, which propagate towards
the center of the pipe. It is also clear that the propagation ofW over
time is different in the two pipe halves because the velocity is not
symmetric in size about the midpoint x* ¼ 0.5.

The L1-norm of the error corresponding to different meshes and
times are presented in Tables 1 and 3. Besides, Tables 2 and 4 show
the orders of accuracy in time and space, respectively. To calculate
the order of accuracy in space, the L1-norm of the error for several
meshes has been computed by considering a small time step.
Similarly, for the order of accuracy in time, a small spatial mesh-size
is taken and then the L1-norm is computed for several time steps.
As expected, these tables show that both orders of accuracy for time
and space discretizations are close to 1.
5.2. Case 2. a real transportation network

The second test concerns a small real network included in the
Spanish gas transportation network. For this network, pressure,
energy flow rate and mass fractions of gas species are measured
experimentally at some nodes. The network contains 11 nodes:
nodes 2 and 7 are structural nodes (exchanged mass flow rate with
the outside is null) so there are not measurements for them.

The schematic topology of the network is given in Fig. 6 and the
height along the pipes, h(x), can be seen in Figs. 7e9. Table 5 shows
the topological and geometrical data of the network. Input data for
numerical simulation as well as the list of species in the gasmixture
are given in Tables 6 and 7, respectively.

Measurements of pressure and energy flow rates at nodes are
known for 19 days. Additionally, the gas composition at nodes 1, 5,
and 10 are also available. For validation purposes, the input/output
mass flow rates, ci(t), are given at all nodes except at node 1 where
pressure is prescribed. Next, the mass flow rate at node 1 and
pressure at the rest of the nodes are computed with our method



Fig. 5. Numerical results for different sub-meshes and times.

Table 1
L1 -norm for Mesh ¼ 500 and different sub-meshes, and Dt ¼ 10�2.

NSE1 ¼ 1 NSE2 ¼ 2 NSE3 ¼ 4

L1 -norm 0.02223 0.01081 0.00544

Table 2
Order of accuracy in space and Dt ¼ 10�2.

logðENSE1 =ENSE2 Þ=logð2Þ logðENSE2 =ENSE3 Þ=logð2Þ
W 1.04 0.99

Table 3
L1 -norm for different time step and Mesh ¼ 1000, sub-mesh ¼ 8.

Dt1 ¼ 0.500 Dt2 ¼ 0.250 Dt3 ¼ 0.125

L1 -norm 0.0726 0.0383 0.0195

Table 4
Order of accuracy in space for Mesh ¼ 1000, and sub-mesh ¼ 8.

logðEDt1 =EDt2 Þ=logð2Þ logðEDt2 =EDt3 Þ=logð2Þ
W 0.922 0.973
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and then compared with their respective measurements over time.
Moreover, the mass fraction of species along the time are given at
node 1, as it is the input node. After calculations, a comparison
between the numerical and the measured mass fractions at con-
sumption nodes 5 and 10 are shown.

The prescribed pressure at node 1 over time is shown in Fig. 10,
while the flow rates in GWh/d that are imposed at all other nodes
can be seen in Figs. 11 and 12.

It should be mentioned that, in the general implementation, the
nodal boundary condition for the mass fractions of species is
instantaneously switched on or off according to the sign of the flow
13
rate at the node as follows: if the energy flow rate is zero or
negative, the gas composition does not affect the solution because
the gas does not enter the network through this node. Hence, it is
switched off. The mass fractions of the three dominant gas species
at node 1 are plotted in Figs. 13e15.

Before showing the numerical results, let us make some general
remarks about this test:

1. The flow rate at nodes are given in GWh/d (energy flow rate) but
the data of the governing flow equation are mass flow rates in
kg/s. Hence, according to the calculated nodal gas composition
at each time step, the conversion factor is calculated and then
the energy flow rate is converted to kg/s.

2. As mentioned above, the flow equation and the gas species
equations are solved separately. This gives us the possibility to
consider different meshes for flow and species equations which
leads to have more accurate results from the gas species equa-
tion without increasing the overall computational cost, as a
rather coarse mesh for solving the flow equation can be used.

3. The results corresponding to the two forms of computing the
gas properties at each time step, described above, are identified
by -Var and -Avr. Recall that they refer, respectively, to variable
gas properties and average gas properties along the pipes.

4. The code has run in a system with an Intel(R) Core(TM) i7-
8565U @ 1.8 GHz processor with 16.00 Gb RAM and 8 Mb cache
but only one core has been used. The real run-time for the
simulation of 19 days (456 h) is around 75 s. The real run-times
for different choices of the number of sub-elements are given in
Table 8. From this table, one can deduce that the dominant run
time is mainly devoted to solve the flow equation. In fact,
increasing the number of sub-element improves the accuracy
but the computational time does not increase significantly. This
interesting feature confirms the ability of the present method to
simulate real-time operations in gas transportation networks
with high accuracy and low computational cost.

5. Regarding error analysis of this second test case, let us introduce
the relative L1-like norm by



Fig. 6. Topology of the real network.

Fig. 7. Height of pipes #4, #5, and #6. Fig. 8. Height of pipes #1, #3, #7, #8, and #10.
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kek1;rel ¼
ðT
0

�����N Numerical �N Experimental

N Experimental

�����dt: (56)

Then, the average relative error is defined as a discrete version of
(56). More precisely,

eN 
1;rel ¼

1
M

XM�1

0

�����N Numerical �N Experimental

N Experimental

�����: (57)

Now, numerical results are shown and analyzed. Figs. 16e20
14
show the variation of pressure along the time at nodes 4, 6, 8, 9,
and 10, respectively. These nodes are selected from different parts
of the network and have zero or negative consumption (either
structural or output nodes). One can see that, in general, the nu-
merical results obtained with the presented method are in good
agreement with the experimental data. There is some discrepancy
between the numerical results and the experimental data over
some small time intervals but, based on the good agreement in
other intervals, it is likely due to errors inmeasurement devices and
procedures. It should be mentioned that, in particular, the energy
flow rate at node 1 is not very accurate but it is worth mentioning
that the energy flow rate is not directly measured. In fact, it is



Fig. 9. Height of pipes #2 and #9.

Table 5
Pipe data for the real network.

Pipe Inlet Node Outlet Node Diameter (in) Length (km) Roughness (mm)

1 1 2 30 9.99 0.010
2 2 3 26 23.448 0.00001
3 3 4 16 2.163 0.010
4 4 5 20 18.842 0.010
5 5 6 26 30.431 0.010
6 6 7 16 15.680 0.00001
7 7 8 10 4.702 0.00001
8 8 9 10 0.8 0.010
9 7 10 16 20.300 0.010
10 10 11 16 4.070 0.010

Table 6
Data for the second test.

Parameter Notation Value Unit

Temperature q 11.0 0C
Simulation time T 456 h (hour)
Time step Dt 30 s (second)
Element size Dx 4000 m (meter)

Table 7
Species in the gas mixture.

Components CH4 C2H4 C3H8 C4H10 C5H12 N2 CO2
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computed from other variables which include the mass fractions of
species. Another point that can be deduced from the figures is that
increasing the number of sub-elements to solve the species equa-
tions does not lead to significant changes in the computed nodal
pressures.

The mass fractions of the three dominant gas species at nodes 5
and 10 are shown in Figs. 21e26. In order to track these mass
15
fractions, several numbers of sub-elements to create the mesh and
solve the species equations have been used. A comparison of the
numerical results with the experimental data for different number
of sub-elements can be seen in Fig. 27. The conclusion is that as the
number of sub-elements increases, the gas composition is
computed more accurately. More precisely, taking the number of
sub-elements equal to 20, the computed gas composition is in good
agreement with the experimental data. Also, unlike many numer-
ical methods, our method can easily capture the sharp variation in
the gas composition.

Notice that, as shown in Figs. 21e26, the tracked gas composi-
tion by the present numerical method is congruent with the
measured data. In Figs. 21e23 and Figs. 24e26, the variation of the
three dominant species at nodes 5 and 10, is shown. The small
differences are likely due to errors in gas species measurements at
the input and/or output nodes. In particular, the discrepancy be-
tween numerical results and measurements observed in Fig. 23
seems to be caused by errors in species measurements. In gen-
eral, the gas composition at the consumption nodes is not only a
function of the gas composition at the input nodes, but also de-
pends on the existing stored gas in the network. The delivery of the
gas from emission nodes to consumption nodes will be influenced
by the distance and the velocity of the gas within the pipes over
time. In the present case, the gas is only introduced at node 1 and
therefore the gas at the consumption nodes should have the same
composition as the gas at the emission node with some delay. This
delay is related to the gas velocity and also to the existing gas inside
the network at initial time. However, as it can be seen in Fig. 23, the
measured mass fraction of C3H8 at node 5 is not in the same range
as themeasuredmass fraction of C3H8 in the gas introduced at node
1 (see Fig. 15). As illustrated in Fig. 28, in contrast to measurements,
the numerical results are quite reasonable and coherent. Fig. 29
shows the comparison between the measured mass fraction of
C3H8 in the gas delivered at node 10, and the numerical results.
Unlike node 5, the measurements and numerical results at node 10
agreewell and also with themass fraction of C3H8 at node 1. Finally,
Fig. 30 showsmass conservation of the first three dominant species
at nodes 2, 3, and 7. It can be seen that, as expected, species are
conserved at nodes up to computer precision. It is important to
highlight that, unlike the flow equation, an explicit method is used
to solve the species equations. Therefore, we cannot consider a very
large time step for thewhole numerical method. On the other hand,
in the present computations the characteristic curves are linearly
approximated so the scheme is only first order accurate. However, it



Fig. 10. Boundary condition: measured pressure at node 1.

Fig. 11. Boundary condition: measured energy flow rate at nodes 3,4, 8, and 9.

Fig. 12. Boundary condition: measured energy flow rate at nodes 5, 6, 10, and 11.
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Fig. 13. Boundary condition: measured %CH4 at node 1.

Fig. 14. Boundary condition: measured %C2H6 at node 1.

Fig. 15. Boundary condition: measured %C3H8 at node 1.
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Table 8
Real run time for the experimental case.

Experiment time: 19 days Dt ¼ 30 s Run time (seconds)

Number of sub elements Dx ¼ 4000 m

1 x 69
10 x74.5
20 x76
40 x77

Fig. 16. Comparison of numerical results with measurements: pressure at node 4.

Fig. 17. Comparison of numerical results with measurements: pressure at node 6.
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should be noticed that, by considering second-order interpolation
this could be improved. Moreover, compared to many numerical
methods, the method of characteristics has the ability to capture
the sharp variation in the gas composition without spurious
oscillations.

Finally, in Tables 9 and 10, the average relative error with respect
to the experimental data of pressure and mass fractions of species
18
are presented. As shown in Table 9, the average relative error of the
pressure for all selected nodes is between 0.45 and 0.85% (%). Even
more, maybe the average relative error is below these values
because in some intervals the pressure measurements seem not to
be quite accurate. Moreover, Table 10 shows that the average
relative error of the three dominant species at nodes 5 and 10 is
between 0.15 and 1.5% (%) depending on the number of sub-
elements (NSE). As mentioned above, it can be seen that more ac-
curate results are obtained for gas composition by increasing the
number of sub-elements. On the other hand, the average relative
error for C3H8 at node 5 is around 8%. As discussed for Figs. 23 and
28, and compared to other tracked species, the measurement
seems to include some errors. This fact could explain why the
average relative error is considerably higher than for other species.



Fig. 18. Comparison of numerical results with measurements: pressure at node 8.

Fig. 19. Comparison of numerical results with measurement of pressure at node 9.

Fig. 20. Comparison of numerical results with measurements: pressure at node 10.
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Fig. 21. Comparison of numerical results with measurement of %CH4 at node 5.

Fig. 22. Comparison of numerical results with measurements: %C2H6 at node 5.

Fig. 23. Comparison of numerical results with measurements: %C3H8 at node 5.
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Fig. 24. Comparison of numerical results with measurements: %CH4 at node 10.

Fig. 25. Comparison of numerical results with measurements: %C2H6 at node 10.

Fig. 26. Comparison of numerical results with measurements: %C3H8 at node 10.
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Fig. 27. Comparison of numerical results with measurement: %C3H8 between hours 384 and 432.

Fig. 28. Comparison of numerical results with measurements: %C3H8 at nodes 1 and 5.

Fig. 29. Comparison of numerical results with measurements: %C3H8 at nodes 1 and 10.
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Fig. 30. Mass conservation of the dominant species at some selective nodes.

Table 9
Relative error of the computed pressure with respect to experimental data (%).

NSE Node 4 Node 6 Node 8 Node 9 Node 10

Avr-1 0.8432 0.4801 0.4781 0.5491 0.4925
Avr-10 0.8430 0.4801 0.4785 0.5494 0.4922
Avr-20 0.8431 0.4801 0.4785 0.5494 0.4922
Avr-40 0.8429 0.4801 0.4786 0.5495 0.4921
Var-40 0.7305 0.5667 0.5840 0.8178 0.6511

Table 10
Relative error of the mass fractions of species with respect to experimental data (%).

NSE Node 5 Node 10

CH4 C2H6 C3H8 CH4 C2H6 C3H8

Avr-1 0.1149 1.7831 8.1728 0.1746 2.5269 2.7890
Avr-10 0.0742 0.9446 7.9344 0.1212 1.6435 1.6230
Avr-20 0.0706 0.8573 7.9006 0.1182 1.5795 1.5387
Avr-40 0.0697 0.8281 7.8854 0.1206 1.5903 1.5455
Var-40 0.0695 0.8215 7.8906 0.1201 1.5875 1.5452
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6. Conclusions

In this research, a method has been introduced to track gas
composition in a transportation network. It is a natural comple-
ment to a method proposed in previous articles by the authors to
simulate the flow of a gas mixture with a given constant compo-
sition. Unlike most of the references on the subject, a segregated
method has been developed that solves the flow and species
equations separately. Thanks to the weak coupling, two different
numerical methods can be used, as well as two different meshes.
More precisely, a second-order finite element method was chosen
for the flow equation on a coarse mesh and a first-order charac-
teristic method for the species equation on a finer mesh. This is an
interesting feature of the method because accurate results can be
obtained for monitoring gas composition without increasing the
overall computational cost. Another important property of the
proposed method is that it conserves exactly the mass of species. It
is alsoworthmentioning that themethod of characteristics that has
been used to solve the species transport equations has less diffusion
than other first-order windward methods. In order to evaluate the
performance of the method, two test cases have been addressed.
23
The first case is used to check the quality of the numerical solution
of the species transport equation, and the second refers to a small
real network in which the pressure, the energy flow and the
composition of the mixture have been experimentally measured.
From the second test case it can be deduced that the numerical
results agree well with measurements and even reveal certain
possible inconsistencies in the measurements.

Two drawbacks of our study could be raised. First, unlike the
flow equation, we have used an explicit first-order characteristic
method to solve the species equations. In this way, the character-
istic line passing through each point is approximated linearly so we
cannot take a very large time step for the whole numerical method.
It should be noted that, by considering second-order interpolated
points, we could improve this feature.

Second, a limitation of our study is that temperature must be
given, since the energy equation is not included in the model. But,
in general, this is not a practical problem because most gas trans-
portation networks are underground and therefore the tempera-
ture can be accurately estimated. In any case, the inclusion of the
energy equation in the model and the subsequent numerical so-
lution can be done with a similar methodology to the equations for
mass fractions of species; it will be the subject of a forthcoming
study.

We conclude that the proposed method allows simulating real
gas transportation networks with enough accuracy and low
computational cost, which opens the door to consider practical
control and dynamic optimization problems. It should be
mentioned that within the framework of the energy transition, one
of the recent interests is injection and transport of hydrogen, bio-
methane or bio-gas in natural gas networks. In this context, nu-
merical simulation of real networks with several gas inputs of
different qualities is an important issue that can be addressed with
the methodology presented in this article.

Credit author statement

Alfredo Bermudez: Conceptualization, Methodology, Writing.
Mohsen Shabani: Methodology, Software, Validation, Data Cura-
tion, Writing.

Declaration of competing interest

The authors declare that they have no known competing



A. Bermúdez and M. Shabani Energy 247 (2022) 123459
financial interests or personal relationships that could have
appeared to influence the work reported in this paper.
Acknowledgment

Both authors acknowledge the support from the company
Reganosa. The first author has been partially supported by ERDF
and Xunta de Galicia (Spain) under grant ED431C 2021/15 and by
Ministerio de Economía y Competitividad (Spain) and ERDF under
research project MTM2017-86459-R.
Appendix A. Numerical Solution of the Transport Equation:
Method of Characteristics

In this appendix, we describe a method of characteristics to
solve the transport equations (see, for instance Ref. [45]). Let us
consider the initial-boundary value problem for the transport
equation

vY
vt

ðx; tÞ þ uðx; tÞ vY
vx

ðx; tÞ ¼ f ðx; tÞ in ð0; LÞ � ½0; T�; (A.1)

Yð0; tÞ ¼ YleftðtÞ if uð0; tÞ>0; (A.2)

YðL; tÞ ¼ YrightðtÞ if uðL; tÞ<0; (A.3)

Yðx;0Þ ¼ Y0ðxÞ in ð0; LÞ: (A.4)

The main remark is that the sum of the left-hand terms of (A.1) is
the material (or total) derivative with respect to time of Y, to be
denoted DY

Dt ðx;tÞ. Indeed, let us consider the motion with velocity u.
More precisely, let us denote by t / X (x, t) the trajectory of this
motion starting at point x at time t. In other words, X (x, t) is the
position at time t of the material point that occupies position x at
time t. For each x, t / X (x, t) is the solution of the initial-value
problem

dX
dt

ðx; tÞ ¼ uðXðx; tÞ; tÞ; (A.5)

Xðx; tÞ ¼ x; (A.6)

and we have,

DY
Dt

ðx; tÞ ¼ dY
dt

ðXðx; tÞ; tÞ ¼ vY
vt

ðx; tÞ þ uðx; tÞ vY
vx

ðx; tÞ:

Therefore, (A.1) can be rewritten as

dY
dt

ðXðx; tÞ; tÞ ¼ f ðXðt; ðx; tÞÞ; t Þ

This equality means that along the trajectory through point (x, t),

YðXðx; t2Þ; t2Þ ¼YðXðx; t1Þ; t1Þ

þ
ðt2
t1

f ðXðx; sÞ; sÞ ds c t1 < t2:

and by taking t2 ¼ t,
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Yðx; tÞ ¼ YðXðx; t1Þ; t1Þ þ
ðt
t1

f ðXðx; sÞ; sÞ ds:

Now, choosing t ¼ tnþ1 and t1 ¼ tn we get

Yðx; tnþ1Þ ¼ YðXðx; tnÞ; tnÞ þ
ðtnþ1

tn

f ðXðx; sÞ; sÞ ds

Therefore, if X (x, s) for s 2 [tn, tnþ1], and the integral on the right-
hand side could be exactly computed, then Y (x, tnþ1) would also be
exactly computed from the previous formula. However, in general
one cannot solve the equation of trajectories exactly so, in practice,
Y (x, tnþ1) has to be approximated by a function Ynþ1(x). For
instance,

Ynþ1ðxÞ ¼ YnðXDtðx; tnÞÞ þ Dt
f ðx; tnþ1Þ þ f ðXDtðx; tnÞ; tnÞ

2
;

where XDtððx; tnÞÞ is an approximation of Xððx; tnÞÞ given, for
example, by the explicit Euler scheme:

XDtðx; tnÞdx� Dtuðx; tnÞ:

In practice, we are interested in the value of Y at the mesh-points of
an interval [0, L], say xm, so we use spatial interpolation to compute

the terms YnðXDtðxm; tnÞÞ and
R tnþ1
tn f ðXDtðxm; sÞ; sÞ ds.

Summarizing, we proceed as follows:

� If XDt (xm, tn) � 0 we use the left boundary condition,

YnðXDtðxm; tnÞÞ ¼ YleftðtnÞ:
� Similarly, if XDt (xm, tn) � L we use the right boundary condition

YnðXDtðxm; tnÞÞ ¼ YrightðtnÞ:
� If point XDt (xm, tn) belongs to the interval ½xm1 ;xm2 �3ð0;LÞ, then

XDtðxm; tnÞÞ ¼ axm1 þ ð1� aÞxm2 ;

for some a 2 [0, 1], and then we take the interpolation

YnðXDtðxm; tnÞÞ ¼ aYnðxm1Þ þ ð1� aÞYnðxm2Þ:
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