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a b s t r a c t 

Different types of synchronization states are found when non-linear chemical oscillators are embedded 

into an active medium that interconnects the oscillators but also contributes to the system dynamics. 

Using different theoretical tools, we approach this problem in order to describe the transition between 

two such synchronized states. Bifurcation and continuation analysis provide a full description of the pa- 

rameter space. Phase approximation modeling allows the calculation of the oscillator periods and the 

bifurcation point. 
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. Introduction 

Chemical oscillatory behavior is evidence of complex, highly 

onlinear dynamics, and is ubiquitous in nature [1,2] . In many 

ases, sub-units exhibiting oscillatory behavior couple together in 

arge assemblies giving rise to a collective behavior of which a par- 

icularly important phenomenon is synchronization. Synchroniza- 

ion plays important roles in multiple biological and technical set- 

ings, for instance in the synchronized flashing of fireflies [3] , in 

ardiac pace-makers [4–6] , in yeast cells [7] , the firing of neu- 

ons [8] , in arrays of Josephson junctions [9] and semiconductor 

asers [10] among numerous other examples. 

Given its ubiquity, the mechanism involved in synchronization 

as been the subject of rigorous study through both analytical con- 

iderations (phase models based on the Kuramoto-family of mod- 

ls [11,12] ) as well as experimental realizations including cou- 

led electrochemical oscillators and reactors [13] . Of particular 

ote are populations of catalyst-loaded oscillatory beads. A typi- 

al setup consists of a large number of beads in which the oscil- 

atory Belousov–Zhabotinsky (BZ) reaction takes place [14] . These 
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eads are immersed in a well-stirred active medium which acts 

s coupling between the population [15] , with oscillations being 

riggered by the contact of the beads with the medium. Several 

nteresting dynamical behaviors have been reproduced in this set- 

ing including phase synchronization [16] , quorum sensing [14] and 

mplitude entrainment. 

Most studies carried out this far focus on the behavior of the 

eads while treating the active medium as just a mean to cou- 

le them, while ignoring its role as a potential oscillator in itself. 

ecently, however, a relatively new synchronization phenomenon 

as reported in numerical and experimental investigations, where 

he beads as well as the active medium are driven into a common 

igh amplitude, low-frequency super-synchronized state of oscilla- 

ions [17] . Interestingly, this occurred in the strong coupling limit, 

here previously the only reported state was that of oscillator 

eath [14] . Beyond an experimental setting, this phenomenon has 

ractical relevance, being similar to exotic states of synchronization 

s found in Interictal Epileptogenic Discharges, a known neuro- 

athology [18,19] , and temperature mediated synchronization of 

he chirping of crickets [20] . Qualitative arguments and numerical 

nalysis suggested the presence of higher harmonics [17] in the 

oupling function between the beads and the medium, although 

he precise forms were never presented. 
nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

https://doi.org/10.1016/j.chaos.2021.110809
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2021.110809&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:alberto.perez.munuzuri@usc.es
https://doi.org/10.1016/j.chaos.2021.110809
http://creativecommons.org/licenses/by-nc-nd/4.0/


D. García-Selfa, G. Ghoshal, C. Bick et al. Chaos, Solitons and Fractals 145 (2021) 110809 

n

c

a

c

t

t

c

c

c

c

o

h

l

t

t

t

i

t

l  

p

n

l

o

w

b

m

t

a

i

i

d

2

E

c

s

t  

T

t  

w

⎧⎪⎨
⎪⎩
w

t

f

t

t

t

t

t

ε
[

a

r

F

o⎧⎪⎪⎪⎨
⎪⎪⎪⎩
w

b

i

c

c

c

b

s

o

l

i

i

i

t

e  

{  

n

s⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
w

S

s

n

F

i  

t

r  

s

e

d

d  

c

T

t

w

t

fi

t

s

s

F

p  
In this paper, we fill this gap, by shedding light on the dy- 

amical mechanisms behind this super-synchronized state of os- 

illations between the beads and the medium. In our theoretical 

pproach, we consider a reduced system with two interacting os- 

illators, the collection of beads (that are synchronized a priori 

hrough standard coupling) and the active medium itself. The ac- 

ive medium is catalyst free and always coupled to all other os- 

illators. This reduced approach enables us to uncover the bifur- 

ation structure for the system, across most of its known dynami- 

al states. Reducing the dynamics to a set of phase equations, we 

alculate for the first time the period of oscillations for this ex- 

tic state [12,21] . In addition, we present the precise form for the 

igher-harmonics in the coupling function between the two oscil- 

atory systems. 

The paper is organized as follows. In Section 2 we introduce 

he model equations with the needed simplifications and present 

he obtained state space diagram using bifurcation and continua- 

ion analysis (in this paper, we use the term space state diagram 

nstead of phase diagram , as usually used in dynamical systems 

heory, in order to avoid confusions with the phase of the oscil- 

ators following [12] ). Finally, in Section 3 , we use the phase ap-

roximation model to study the transition between the synchro- 

ized and the super-synchronized states (mobbing states), calcu- 

ating interaction functions, the periods of the oscillations in both 

f the states and the Fourier expansion of the interaction functions 

here we can see how the Fourier modes change in the transition 

etween the synchronized and the super-synchronized states. The 

anuscript concludes with a section presenting the conclusions of 

his work. 

This manuscript points out the importance of an active medium 

s the means to couple oscillators. In fact, the active connect- 

ng medium introduces a great variety of non-trivial behav- 

ors that cannot be described nor understood without its active 

ynamics. 

. Dynamic study: Bifurcation and continuation analysis 

We consider a system of n beads coupled chemical oscillators. 

ach oscillator is a resin bead loaded with the catalyst of the os- 

illatory BZ reaction. These beads are immersed in a surrounding 

olution containing all the chemicals of the BZ reaction except for 

he catalysts that it is in only present on the surface of the beads.

he reactor is a continuously stirred tank [14,17] . 

This system can be described by the following set of differen- 

ial equations. The dynamics of bead i ∈ { 1 , . . . , n beads } is described

ith the 3-variable Oregonator model [14,17] given by 

 

 

 

 

 

ε ∂x i (t) 
∂t 

= x i (t) ( 1 − x i (t) ) + y i ( t) ( q − x i (t) ) − K ex ( x i ( t) − x s (t) ) 

ε′ ∂y i (t) 
∂t 

= 2 hz i (t) − y i (t) ( q + x i (t) ) − K ex ( y i (t) − y s (t) ) 

∂z i (t) 
∂t 

= x i (t) − z i (t) 

(1) 

here x i , y i and z i are the dimensionless variables representing 

he concentrations of activator, inhibitor, and catalyst, respectively 

or bead i . The quantities x s , y s are the dimensionless concentra- 

ions of activator and inhibitor in the surrounding solution (ac- 

ive medium), respectively. Note that the system is well-stirred and 

he concentration at any location of the surrounding medium is 

he same. The parameter K ex is the exchange rate constant be- 

ween the beads and the surrounding solution. The parameters ε, 
′ , q and h are related to reaction rates and initial concentrations 

17] . 

Since the surrounding solution (catalyst-free BZ reaction) inter- 

cts with all beads by exchanging activator and inhibitor in the 

eactor, it formally plays the role of coupling between the beads. 
2 
or a well-stirred tank reactor, the dynamics of the concentrations 

f activator and inhibitor in the surrounding solution are given by 

 

 

 

 

 

 

 

 

 

ε ∂x s (t) 
∂t 

= x s (t) ( 1 − x s (t) ) + y s ( t) ( q − x s (t) ) 

+ 

〈 V 〉 n 
V s 

K ex 

n beads ∑ 

i =1 

( x i (t) − x s (t) ) 

ε′ ∂y s (t) 
∂t 

= −y s (t) ( q + x s (t) ) + 

〈 V 〉 n 
V s 

K ex 

n beads ∑ 

i =1 

( y i ( t) − y s (t) ) 

(2) 

here the parameter 〈 V 〉 n represents the average volume of the 

eads and the parameter V s is the total volume of the surround- 

ng solution. Note that although the surrounding solution does not 

ontain catalyst by itself, it does contain the beads that have the 

atalyst incorporated. Thus, the surrounding solution under these 

ircunstances can potentially exhibit oscillations. 

In the following, we will focus in understanding the transition 

etween the synchronized state to the mobbing state, i.e., the tran- 

ition from the state characterized for all the chemical oscillators 

scillating synchronous to the state in which all the beads oscil- 

ate in synchrony and with the surrounding medium also oscillat- 

ng with the same amplitude and frequency. 

Given that the transitions of interest require all beads to be 

n a synchronized state, we consider that all oscillators, exclud- 

ng the active medium, are identical and, thus, we can consider 

he synchronization manifold where the state of all oscillators is 

qual. Specifically, we assume that x i = x b , y i = y b , z i = z b for all i ∈
 1 , . . . , n beads } (the index b denotes a bead). Thus, on the synchro-

ization manifold, the model (1),(2) reduce to the five-dimensional 

ystem 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ε ∂x b (t) 
∂t 

= x b (t) ( 1 − x b (t) ) + y b ( t) ( q − x b (t) ) 

−K ex ( x b (t) − x s (t) ) 

ε′ ∂y b (t) 
∂t 

= 2 hz b (t) − y b (t) ( q + x b (t) ) − K ex ( y b (t) − y s (t) ) 

∂z b (t) 
∂t 

= x b (t) − z b (t) 

ε ∂x s (t) 
∂t 

= x s (t) ( 1 − x s (t) ) + y s ( t) ( q − x s (t) ) 

+ ρK ex ( x b (t) − x s (t) ) 

ε′ ∂y s (t) 
∂t 

= −y s (t) ( q + x s (t) ) + ρK ex ( y b ( t) − y s ( t) ) 

(3) 

ith ρ = n beads 
〈 V 〉 n 

V s 
is the density of the system. 

tate space diagram 

For the five-dimensional simplified system, we obtain the state 

pace diagram using continuation and bifurcation analysis of dy- 

amical systems software ( Matcont [22] and AUTO [23] ). In 

ig. 1 we show the state space diagrams obtained with the model 

n Eq. (3) . Fig. 1 a displays all the observed behaviors as a func-

ion of the exchange rate constant between the beads and the sur- 

ounding medium ( K ex ) and the density of beads ( ρ). As a first ob-

ervation it is noteworthy that the same behaviors observed both 

xperimentally and numerically are also observed with the same 

istribution on the state space diagram [17] . The same bifurcation 

iagram is plotted in Fig. 1 b in a 3D perspective where the verti-

al axis corresponds with the value of the variable x b for the beads. 

his new representation reveals the details of the different bifurca- 

ions involved in the transitions analyzed. In both representations 

e observe, the generalized Hopf bifurcation point ( GH) separating 

he two branches of supercritical Hopf bifurcation ( H −), where the 

rst Lyapunov coefficient is negative, and subcritical Hopf bifurca- 

ion ( H + ), where the first Lyapunov coefficient is positive, and the 

addle-node bifurcation of periodic orbits ( LP C curve), where the 

ystem has a unique non-hyperbolic limit cycle with the nontrivial 

loquet multiplier +1 . On the other hand, coincident with the GH

oint, we have a cusp point of cycles ( C P C ) as this bifurcation sepa-
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Fig. 1. State space diagram. (a) Different behaviors observed in the system when K ex and ρ are varied. (b) Same state space diagram but in a three-dimensional perspective 

with the value os x b at the stationary is plotted in the vertical axis. 

Fig. 2. (a) Limit cycles corresponding to the transitions from equilibrium point A (oscillation death) in point A to super-synchronized state in point B passing through the 

synchronized state (between the supercritical Hopf bifurcation, H, and the saddle-node bifurcations of periodic orbits, LPC). Dashed green line A-B corresponding to that 

shown in Fig. 1 a. (b) Frequencies corresponding to these transitions. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 
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ates the supercritical behavior from the subcritical one. This sim- 

lified model captures the dynamics of the system that was de- 

cribed in Figure 2-d of [17] . Note that, since all the beads are

dentical by construction in our system, the non-synchronization 

hase shown in [17] does not appear. 

In Fig. 2 a we observe periodic orbits in the transitions from 

quilibrium (this state is the equivalent to the oscillations death 

n the complete ( 3 × n beads + 2 )-dimensional model) in point A to

he super-synchronized state in point B, passing through the su- 

ercritical Hopf H and the saddle-node bifurcations of periodic or- 

its LP C. Note that the rapid change of the limit cycle is a Canard

xplosion that arises even in the simple Oregonator model [24–26] . 

e also observe a drastic decrease in frequency in the Canard ex- 

losion in Fig. 2 b. Thus, the Canard explosion observed in a simple 

regonator can also be observed in the synchronized population of 

regonators coupled via the active medium. 

. Phase approximation model 

In the following, we use phase approximation in order to ob- 

ain the periods of the beads in the synchronized and super- 

ynchronized phases. Given an oscillating system, its state is de- 

cribed by its position along its limit cycle (its phase). If we 

ave two uncoupled oscillators, their phases lie on a torus. If the 

wo oscillators have stable limit cycles and they are weakly cou- 

led, the torus persists and we can describe their state by their 

hases [12,21] . 
3 
heoretical model 

Consider two oscillators coupled through an interaction func- 

ion G i such that the dynamics are given by 

d X 1 (t) 
dt 

= F ( X 1 ) + K G 1 ( X 1 , X 2 ) 
d X 2 (t) 

dt 
= F ( X 2 ) + K G 2 ( X 1 , X 2 ) 

(4) 

f the coupling strength K is small, the dynamics can be reduced 

o a phase description, that is, the state of each oscillator is deter- 

ined by a phase variable θi , i ∈ { 1 , 2 } on the circle which evolves

ccording to 

dθ1 (t) 
dt 

= ω 1 + KH 1 (θ2 − θ1 ) 

dθ2 (t) 
dt 

= ω 2 + KH 2 (θ1 − θ2 ) 
(5) 

here ω i are the intrinsic frequencies of the oscillators and H i (φ) 

re the phase interaction functions (that depend only on the phase 

ifference φ = θ2 − θ1 ). The phase interaction function is computed 

y averaging %beginwidetext 

 i (φ) = 

1 

T 

∫ T 

0 

Z (t) · G i ( X 0 (t + φ) , X 0 (t)) dt 

= 

1 

2 π

∫ 2 π

0 

Z (ϕ) · G i ( X 0 (ϕ + φ) , X 0 (ϕ )) dϕ (6) 

here X 0 (t) is stable limit cycle, Z (t) is the adjoin or phase re- 

ponse curve (PRC)—the phase shift function obtained when the 

ystem that lies on its limit cycle is infinitesimally perturbed—and 

denotes the scalar product of vectors. Both Z (θ ) and H (φ) can be 
i 
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Fig. 3. Phase response curves (PRC) for one bead with ρ = 1 . 2 . Chemical parame- 

ters set used: q = 0 . 002 , ε = 0 . 01 , ε ′ = 0 . 015 , h = 0 . 70 . 

Fig. 4. Two cases of H 1 (φ) with density ρ = 1 . 2 corresponding to (a) synchronized 

state with K ex = 0 . 033 and (b) super-synchronized state with K ex = 0 . 077 . Note the 

remarkable difference in scale on the y -axis of both figures. 

d  

n

t

d

btained numerically using XPPAUTO [23] . For a theoretical deriva- 

ion of the PRC by means of the adjoint method and the average 

ethod for calculation of the interaction function, see [12] . 

pplication to our problem 

The problem considered, consists on a bead (all the ini- 

ial beads, with density ρ, are considered to be completely 

ynchronized-) uncoupled to the rest of the system (the surround- 

ng solution). Note that we are assuming that all the beads are al- 

eady in a synchronized state and, thus, can be represented by one 

ingle set of equations as in previous section. This system will be 

umerically solved using the above mentioned software. The equa- 

ions describing two identical copies of the system are 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

∂x b i 
(t) 

∂t 
= 

1 
ε

(
x b i (t) 

(
1 − x b i (t) 

)
+ y b i ( t) 

(
q − x b i (t) 

))
∂y b i 

(t) 

∂t 
= 

1 
ε′ 
(
2 hz b i (t) − y b i (t) 

(
q + x b i (t) 

))
∂z b i 

(t) 

∂t 
= x b i (t) − z b i (t) 

∂x s i (t) 

∂t 
= 

1 
ε ( x s i (t) ( 1 − x s i (t) ) + y s i ( t) ( q − x s i (t) ) 

+ ρK ex 

(
x b i (t) − x s i (t) 

))
∂y s i (t) 

∂t 
= 

1 
ε′ 
(
−y s i (t) ( q + x s i (t) ) + ρK ex 

(
y b i ( t) − y s i ( t) 

))

(7) 

ith i = 1 , 2 . For the set of parameters in the oscillatory regime as

escribed above, the beads and the surrounding solution of each 

opy oscillate with a natural frequency ω 0 . 

We now couple the two systems by coupling the beads of one 

ystem to the solution of the second system. Specifically, we couple 

he bead of system i = 1 with the surrounding solution of system 

 = 2 using 

 1 = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

− 1 
ε

(
x b 1 − x s 2 

)
− 1 

ε′ 
(
y b 1 − y s 2 

)
0 

0 

0 

⎤ 

⎥ ⎥ ⎥ ⎦ 

(8) 

nd with a coupling strength K = 

K ex 
2 ( 1+ ρ) 

. This allows us to derive a

hase description if the coupling strength K is small. For simplicity, 

e absorb the coupling strength into the coupling function H i so 

hat the phase of oscillator 1 evolves according to 

dθ1 (t) 

dt 
= ω 0 + H 1 (θ2 − θ1 ) . (9) 

Now, we can calculate the periods of the oscillators in both 

ynchronized and super-synchronized states and compare the full 

onlinear model and the phase approximation. For the phase dy- 

amics we know that the beads and the surrounding solution os- 

illate in phase, φ0 = 0 = 2 π, with frequency 
 and period T = 

2 π



o that 

dθ1 (t) 

dt 
= 
 = 

2 π

T 
= ω 0 + H 1 (0) (10) 

or the full nonlinear system, the model chemical parameters were 

et 

 = 0 . 002 , ε = 0 . 01 , ε′ = 0 . 015 , h = 0 . 70 (11)

he control parameters considered for the analysis are the chemi- 

al exchange rate K ex and the density of beads in the medium ρ . 

he components of the PRC Z (θ ) ) for one bead with a density 

= 1 . 2 are shown in Fig. 3 . 

Interaction functions ( H 1 (φ) ) in the synchronized and super- 

ynchronized states and density ρ = 1 . 2 are shown in Fig. 4 . 

The phase approximation yields a good description of the pe- 

iod of the collective oscillation as parameters are varied. The cal- 

ulated periods for each value of K ex obtained via numerical in- 

egration and by using the phase approximation model (10) with 
4 
ensity ρ = 1 . 2 are shown in Fig. 5 . A transition from synchro-

ized to super-synchronized phase is seen, with a discontinuity in 

he period and the interaction function caused by the bifurcation 

escribed between limit cycles of different nature. 
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Fig. 5. Periods of the oscillators in function of K ex with density ρ = 1 . 2 . The dis- 

continuity in period shows the transition from synchronized to super-synchronized 

states. 

Fig. 6. Fourier coefficients (sine-cosine serie). Due to the different nature of the 

limit cycles in the states of synchronization and super-synchronization, we have 

different modes in the function of interaction in these states. 
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ourier expansion 

The qualitative change in the oscillation in the transition be- 

ween the synchronized and super-synchronized states can also be 

een in the change of interaction function of the phase reduction. 

ndeed, the changes in the phase interaction function are an indi- 

ator of the underlying bifurcations [27] . To illustrate this effect in 

he chemical oscillator system, we expand the interaction function 

n Fourier series, and to understand how the Fourier modes change 

s the system parameters are varied. 

We can expand the interaction function into a sine-cosine 

ourier series (in the supplementary information a exponen- 

ial Fourier series expansion is presented showing equivalent 

esults), 

 1 (φ) = 

a 0 
2 

+ 

∞ ∑ 

k =1 

[ a k cos ( kφ) + b k sin ( kφ) ] (12) 

In Fig. 6 , we show the coefficients obtained for each value of K ex 

 H 1 (φ) calculated with the method referred above for each value 

f K ex ). 
5 
We can see that in the synchronized state: 

 1 (φ) ∼ a 0 
2 

+ a 1 cos ( φ) + b 1 sin ( φ) , (13) 

nd the values of the coefficients hardly vary, except in the vicin- 

ty of the transition between synchronized and super-synchronized 

tates. 

On the other hand, in the super-synchronized state we have 

igher harmonics and the value of the coefficients varies consid- 

rably for a wide range of values of K ex : 

 1 (φ) ∼ a 0 
2 

+ a 1 cos ( φ) + b 1 sin ( φ) + a 2 cos ( 2 φ) 

+ b 2 sin ( 2 φ) + a 3 cos ( 3 φ) + b 3 sin ( 3 φ) (14) 

. Conclusions 

In this manuscript, we considered the problem of synchroniza- 

ion between oscillators embedded into an active medium. This 

ype of system has shown to exhibit more than one state of syn- 

hronization. The chosen system is constituted by a set of chemi- 

al oscillators immersed into a chemical solution that provides the 

hysical medium to interact but also adds dynamics to the total 

ystem. This system has been shown to synergetically produce a 

ifferent synchronization state (supersynchronization) that was not 

ccessible for each of the two main components of the problem 

external medium or the beads). 

Using continuation and bifurcation analysis, we reconstructed 

he experimental and numerical parameter space previously re- 

orted in [17] . Three different states of synchronization are found; 

scillation death, synchronization and mobbing state (super- 

ynchronization) and the transitions between each other analyzed 

rom a bifurcation analysis point of view. Note that in the five- 

imensional simplified model used, the oscillation death corre- 

pondes with a steady state of the system, synchronization is a 

ormal oscillatory behavior and supersynchronized state is demon- 

trated as a different state of oscillation. 

In order to calculate the periods exhibited by the oscillators in 

ach state, a phase approximation model was considered reproduc- 

ng with good accuracy the previous results reported both in ex- 

eriments and in numerical simulations as well as the discontinu- 

ty that signals the transition between synchronization to mobbing 

tate. 

Finally, we have proved that the discontinuity in the periods 

nd the interaction function in the transition from synchronized 

o super-synchronized states is caused by the bifurcation described 

etween limit cycles of different nature. This was possible to un- 

erstand considering that the active medium is an oscillator al- 

hough with a different nature (the medium does not have a cat- 

lyst per se although the catalyst is included into the beads that 

re immersed in the medium and, thus, needs the activity of the 

eads to oscillate). 

The results of this analysis can extrapolate to different systems 

s far as the connective medium plays an active role in the dy- 

amics of the system showing the generality of the phenomenon 

escribed. This type of system is found in different fields in Nature 

ncluding neuronal processes involving the glia [28] , as glial cells 

nd neurons have ionic channels that allow them to oscillate but 

nly neurons possess synaptic connections and have the ability to 

scillate by themselves. 
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