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27002 Lugo, Spain   

A R T I C L E  I N F O   

Keywords: 
Even-aged forest management 
Land and timber value 
Forest regulation 
Continuous optimization 
Gradient-based optimization 
Pareto frontier 

A B S T R A C T   

In this study we present several multi-objective models for forest harvest scheduling in forest with single-species, 
even-aged stands using a continuous formulation. We seek to maximize economic profitability and even-flow of 
timber harvest volume, both for the first rotation and for the regulated forest. For that, we design new metrics 
that allow working with continuous decision variables, namely, the harvest time of each stand. Unlike traditional 
combinatorial formulations, this avoids dividing the planning horizon into periods and simulating alternative 
management prescriptions before the optimization process. We propose to combine a scalarization technique 
(weighting method) with a gradient-type algorithm (L-BFGS-B) to obtain the Pareto frontier of the problem, 
which graphically shows the relationships (trade-offs) between objectives, and helps the decision makers to 
choose a suitable weighting for each objective. We compare this approach with the widely used in forestry multi- 
objective evolutionary algorithm NSGA-II. We analyze the model in a Eucalyptus globulus Labill. forest of Galicia 
(NW Spain). The continuous formulation proves robust in forests with different structures and provides better 
results than the traditional combinatorial approach. For problem solving, our proposal shows a clear advantage 
over the evolutionary algorithm in terms of computational time (efficiency), being of the order of 65 times faster 
for both continuous and discrete formulations.   

1. Introduction 

The core of forest management planning is deciding the silvicultural 
prescription that should be applied to each stand to best meet the ob
jectives of the forest owners. In traditional harvest scheduling, it implies 
to set where, when and how much to cut (Ware and Clutter, 1971). Many 
models have been used to formulate this basic problem. The most 
frequent approach (Başkent, 2001; Kurttila, 2001; Pukkala, 2019) has 
conceptually subdivided it into two computation stages: one for gener
ating alternative management prescriptions for each stand, and other for 
selecting the combination of management prescriptions that best meets 
the objectives established for the forest while satisfying the possible 
restrictions. This approach has been formulated within the linear pro
gramming (e.g., Johnson and Scheurman, 1977), binary linear pro
gramming (e.g., McDill et al., 2002), and non-linear integer 
programming (e.g., Boston and Bettinger, 1999) frameworks. An 

alternative to avoid having to divide the problem into two stages is to 
work with continuous (non-discrete) decision variables. This approach is 
very interesting, since it does not require the temporal discretization, 
but it is less common, possibly because a rigorous mathematical study 
must be done to design a numerical method that provides a solution 
effectively and efficiently. Within this continuous-time approach, we 
can highlight the studies of Heaps (1984, 2015), who used optimal 
control theory to formulate and study the harvest scheduling problem 
under suitable hypothesis; Roise (1990), who proposed a non-linear 
programming formulation; and, more recently, the previous work of 
the authors of this study (González-González et al., 2021), who studied 
the problem in a multi-objective framework considering economic and 
volume control objectives. This latter paper includes some equivalences 
and transformations between different formulations of the forest harvest 
scheduling problem. 

From an economic point of view, the best management plan of a 
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forest would be the sum of the optimal plans at the stand level. Never
theless, in some cases forest managers face the problem of providing a 
reasonably steady and continuous flow of products due to economic, 
environmental or social issues (Diaz-Balteiro and Romero, 2008). In 
fact, the aim of traditional forest regulation procedures was to achieve a 
“target forest” structure that would provide an even flow of products in 
perpetuity. Although the achievement of this ideal forest may be desir
able, in most situations it will generally be preferable to dynamically 
manage the forest with intermediate structures between the optima at 
stand level and a perfect regulation (Ware and Clutter, 1971; Clutter 
et al., 1983, pp. 238–239). This makes the design of forest management 
plans a difficult task that may be approached within the framework of 
multi-objective optimization (Kangas and Pukkala, 1992), as long as 
there is only one decision maker. Problems with more decision makers 
with generally different interests are studied by game theory (Ungur
eanu, 2018, pp. 3–4). Examples of this type of problems in forestry can 
be found in Paradis et al. (2018). 

The objectives of a multi-objective optimization problem (MOP) in 
the context of forest management are generally related to economic (e. 
g., maximize net present value or minimize costs), temporal (e.g., even- 
flow of timber harvested over time) or spatial (e.g., maximum area of 
adjacent units treated, minimum old-growth forest area) concerns 
(Murray, 1999). In a cooperative situation (Ungureanu, 2018, Section 
1.1), e.g., when there is only one rational decision maker, solving a MOP 
implies to choose a satisfactory solution within the set of non-dominated 
feasible solutions, generally known as Pareto optimal solutions or effi
cient solutions. A satisfactory solution is the best compromise solution 
for the preferences of the decision maker. These preferences may be 
articulated prior to the analysis (therefore avoiding the generation of the 
set of efficient solutions; e.g., when the MOP is reformulated into a 
single objective problem through weights or/and treating some objec
tives as constraints), after it (which requires to obtain the complete set, 
also known as Pareto frontier), or interactively in a progressive way 
(trying to reduce the set) (Miettinen, 1998, pp. 61–65). 

In recent papers, Arias-Rodil et al. (2017) and Gonzáez-González 
et al. (2020) presented rigorous mathematical analyses of two contin
uous metrics for measuring, respectively, land expectation value (LEV) 
and even flow (EF) of timber harvested using even-aged management. 
Later, González-González et al. (2021) appropriately modified these 
metrics to deal with the harvest scheduling problem of a forest, 
considering land and timber value (LTV) as the economic metric in 
which future rotations are based on economically optimal management 
prescriptions at stand level. These modifications included a new way to 
estimate the planning horizon in an automatic manner, and the possi
bility that a stand is harvested several times. The combination of these 
new metrics lead to a non-linear bi-objective model which could be 
efficiently solved by using gradient-type techniques. 

In this work we go one step further on the continuous-time approach 
of the harvest scheduling problem, and focus on the concept of the 
regulated forest, which is one of the most widely used objectives in 
forest level planning. Based on the ideas developed in previous works, 
we present a new metric to measure forest regulation, and we adapt the 
previous ones introduced by the authors for measuring LTV and EF 
(González-González et al., 2021) to the hypothesis that must be assumed 
when looking for a regulated structure. The new metric has some simi
larities with the EF metric, but the aim pursued by both is different: the 
latter seeks to obtain a regular flow of timber during the planning ho
rizon, while the first tries to achieve a forest structure that provides a 
constant flow of timber in perpetuity, cutting all the stands in the 
economically optimal rotation for forest level regulation. The main 
novelties of this manuscript are:  

- A new metric is presented to measure the deviation from the fully 
regulated forest, and the continuous LTV and EF metrics are adapted 
to the needs of looking for a regulated forest. Gradient type methods 
are tested for optimizing these three metrics simultaneously.  

- The bi-objective problem (economic vs. regulation) is formulated 
with continuous variables. In addition, the classic discrete formula
tion of this problem is obtained simply by adding constraints to the 
continuous formulation. The fact that the continuous formulation 
provides better results that the discrete one is verified on a real case 
study.  

- The new metric proposed to deal with the concept of regulated forest 
is also used in the classic discrete formulation and the results ob
tained are analyzed.  

- A three-objective problem (LTV-EF-regulation) is formulated and 
solved to generate a complete 3D Pareto frontier.  

- The compatibility between EF and regulation is studied. 

The rest of the paper is organized as follows. In Section 2, the new 
metric is detailed in a suitable mathematical framework, and the forest 
planning problem is formulated by means of novel MOPs, which are 
studied considering only one rational decision maker, by proposing a 
numerical method to obtain their Pareto-optimal frontiers. The effi
ciency and accuracy of the numerical method is shown in Section 3, 
where the model implementations over a Eucalyptus globulus Labill. 
showcase area are presented and discussed. Finally, the most interesting 
conclusions are summarized in Section 4. 

2. Methods 

In this section we detail a mathematical model designed to be a 
useful tool in harvest scheduling, one of the most frequent forest man
agement planning problems. First, we establish starting hypotheses and 
introduce the notation used, next give rigorous definitions of some 
important (classical and original) concepts, and finally formulate the 
problem in the framework of multi-objective optimization and show 
how it can be solved successfully. 

2.1. Starting hypotheses and notation 

Consider a forest consisting of ns stands. For each stand j, we assume 
to know its age at inventory (tj0, in years), area (Aj, in hectares), and 
measurements at age tj0 of the following state variables: dominant height 
(Hj

0, in meters, defined as the mean height of the dominant trees), 
number of trees (Nj

0, in a per hectare basis), and stand basal area (Gj
0, in 

m2/ha, defined as the total cross-sectional area of all stems in a stand 
measured at breast height). We also assume that, from these values, for 
each stand we know smooth functions hj, nj, and gj which provide, for 
every age t > 0, estimates of those state variables. That is, the state 
variables are given by Hj(t) = hj(tj0,Hj

0, t), Nj(t) = nj(tj0,Nj
0, t) and Gj(t) =

gj(tj0,Gj
0, t). Finally, we also accept to know smooth functions vj(H,N,G) 

giving the total stand volume (in m3/ha) in terms of the stand state 
variables. 

To avoid confusion, it is important to distinguish between stand age, 
denoted by t, and the time from the beginning of the planning horizon 
(inventory), which is denoted by y. Both are given in years, and if the age 
of a stand at inventory is t0, then y = t − t0. The ultimate objective of 
forest planning is to determine the management prescription that will be 
applied to each stand. In this study, to alleviate notation, we seek only 
the times of clearcutting from inventory, that is, the decision vector y =
(y1,…,yns) ∈ℝns. Obviously, finding y is equivalent to finding t = y + t0. 
From now on, we will give the definitions in terms of y or t depending on 
how it is more appropriate. For instance, if stand j is clearcut at time yj 
(when it is tj = yj + tj0 years old), the timber volume is given by Vj(yj) =
vj(H(tj),N(tj),G(tj)). On the contrary, present values of revenues and 
management costs if stand j is clearcut at age tj will be denoted by 
functions Rj(tj) and Cj(tj), respectively, which are also defined from the 
state variables. 
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2.2. Main definitions 

To correctly formulate the problem we must previously define some 
important concepts. 

2.2.1. Land expectation value 
The land expectation value (LEV, Faustmann, 1849) is one of the 

most important financial concepts in timberland management, as it al
lows to adequately compare even-aged stand management alternatives 
of different rotation ages. For a given stand j, the LEV can be defined as 
the present value, per unit area, of the projected costs and revenues from 
an infinite series of identical even-aged forest rotations, starting initially 
from bare land (Bettinger et al., 2009, pp. 40–42). If we assume a real 
interest rate of r ∈ (0,1], then it is given by 

JLEV
j

(
tj
)
=

(1 + r)tj
(
Rj
(
tj
)
− Cj

(
tj
) )

(1 + r)tj − 1
(1) 

The LEV of the forest is the sum of the LEV of all stands, that is, 

JLEV(t) =
∑ns

j=1
JLEV

j

(
tj
)

(2) 

From a mathematical point of view, it should be noted that function 
JLEV has the same smooth properties as functions hj, nj, gj, and vj (Arias- 
Rodil et al., 2017). 

2.2.2. Optimal rotation at stand-level 
Taking the LEV as indicator of profits, the optimal economic rotation 

for an individual stand j is given by the age of clearcutting corresponding 
to the solution of the problem 

maximize JLEV
j

(
tj
)

subject to tj ≥ 0,
(3)  

which is denoted by tj. This optimal rotation is generally known in the 
forest economics literature as “Faustmann formula”, although this 
author only proposed Eq. (1) and did not maximize it (Cairns, 2017). 
The vector t = (t1,…, tns ) is named optimal rotation vector at stand- 
level. 

2.2.3. Optimal rotation for the regulated forest 
The regulated forest is a simplistic concept of an ideal forest with a 

relatively steady-state structure which provides an even, sustained flow 
of desired forest outcomes over time (Davis et al., 2001, p. 93). In even- 
aged management, it implies to use the same clearcutting age for all the 
stands and, if the primary objective is to maximize forest profitability, 
the optimal rotation for the regulated forest is the one that maximizes 
the LEV of the entire forest (Hoganson and McDill, 1993). It is given by 
the solution of the problem 

maximize
∑ns

j=1
JLEV

j (t)

subject to t ≥ 0,
(4)  

and hereinafter will be denoted by R. 

2.2.4. Land and timber value 
The land and timber value (LTV) is a generalization of the LEV which 

gives the value of a piece of forest land with an existing stand of trees, 
whatever its stage of development. It is useful for determining when the 
existing stand should be harvested. The LTV of stand j is the sum of the 
present value of the projected costs and revenues for the remainder of 
the current rotation, plus the present value of the LEV which accounts 
for all future rotations of timber that will be grown on the land (Clutter 
et al., 1983, pp. 226–228). Let pj (in €/m3) be the expected stumpage 
price. Then, for each yj ≥ 0:  

(i) If we assume that next rotations will be based on the optimal 
rotation for the individual stand j, the LTV is given by 

JLTV
j

(
yj
)
=

pjVj
(
yj
)
+ JLEV

j

(
tj
)

(1 + r)yj
(5)    

(ii) If we assume that next rotations will be based on the optimal 
rotation for the regulated forest, the LTV is given by 

JLTV
j

(
yj
)
=

pjVj
(
yj
)
+ JLEV

j (R)
(1 + r)yj

. (6) 

In both cases, the LTV of the forest is the sum of the LTV of all stands, 
that is, 

JLTV(y) =
∑ns

j=1
JLTV

j

(
yj
)
.

As with JLEV, the regularity of JLTV is given by the properties of 
functions hj, nj, gj, and vj, and we can assume that it is smooth enough. 

2.2.5. Regulation metric 
If the primary goal is to obtain commercial timber outcomes, then we 

could think of a regulated forest as that with all stands harvested at the 
age of R years and producing a perfect even flow (EF) of timber volume 
in perpetuity, which implies that the harvest rate for the next R years (i. 
e., after the transition period from the unregulated structure to the 
regulated condition) is constant. Looking for the regulated forest, it is 
necessary to define a function (hereinafter the regulation metric) which 
provides, for every admissible planning strategy y, the degree of 
achievement of that objective. With this aim we consider:  

- The minimum harvest age for each stand, lj > 0 (years), which leads 
to the constraint tj ≥ lj.  

- The instant a ≥ 0 (years) when harvests can begin in the forest. This 
value is given by the first stand which can be harvested: it will be 
zero if any stand can be harvested now, otherwise it will be the 
minimum of the differences lj − tj0. Specifically: 

a =

⎧
⎨

⎩

min
j=1,…,ns

{
lj − t0

j

}
if lj − t0

j ≥ 0, ∀j = 1,…, ns,

0 otherwise.

- The set of admissible planning strategies Yad ⊂ ℝns, given by 

Yad =
{

y ∈ ℝns , such that max
{

0, lj − t0
j

}
≤ yj ≤ a+R ,∀j = 1,…, ns

}
.

- The goal harvest rate for the regulated forest, mR. The current 
planning horizon (where the management prescriptions are chosen) 
is [a,a + R], but to measure how the forest is regulated we must 
check the EF for the next planning horizon ([a + R,a + 2R]), 
assuming that the second harvest is done when the stand is R years 
old. The total harvest volume is 

∑
j=1

nsVj(R) and, if a constant harvest 
rate is required, it must be 

mR =

∑ns

j=1
Vj(R)

R
. (7)    

- The real harvest rate for the next planning horizon ([a + R,a + 2R]). 
At the beginning of that next planning horizon (a + R), the age of 
stand j will be a + R − yj and, consequently, the time from inventory 

J.M. González-González et al.                                                                                                                                                                                                               



Forest Policy and Economics 136 (2022) 102687

4

to the second clearcutting of stand j is yj + R. Assuming instant 
harvests, the real harvest rate must be written in terms of the Dirac's 
delta function δ(y) (Oldham et al., 2009, Ch. 9). Specifically, for the 
period [a + R,a + 2R], it is given by (see Fig. 1) 

∂Vn

∂y
(y, y) =

∑ns

j=1
Vj(R)δ

(
y −

(
yj +R

) )
y ∈ [a+R, a+ 2R]. (8)    

- A function given the real volume harvested for the next planning 
horizon (Vn) and a function given the desired harvested volume for 
each rotation of the regulated forest (VR). The Dirac delta is not a 
function in the traditional sense, so the comparison between (8) and 
the constant function for the period [a + R,a + 2R] given by (7) is not 
appropriate. Instead of comparing harvest rates, it is more suitable to 
compare those volumes, which are obtained by integrating those 
expressions (7) and (8): 

VR(y, y) =
∫ y

a+R
mR dτ = mR(y − (a+R) ), y ∈ [a+R, a+ 2R], (9)  

Vn(y, y) =
∫ y

a+R

∂Vn

∂τ (y, τ)dτ =
∑ns

j=1
Vj(R)H

(
y −

(
yj +R

) )
, y

∈ [a+R, a+ 2R], (10)  

where H(y) is the Heaviside step function (Oldham et al., 2009, Ch. 9). 
The definition of a regulated forest given at the beginning of this 

section suggests that, at the end of the first planning horizon, a forest 
will be more regulated the more closely functions VR(y, .) and Vn(y, .) 
resemble each other. Following Gonzáez-González et al. (2020), in this 
work we propose the distance associated to the L2 norm to measure the 
similarity of these two functions, and establish the definition that, given 
a planning strategy y ∈ Yad, the regulation metric associated with that 
strategy is the value of 

JR(y) = −

∫ a+2R

a+R

(
Vn(y, y) − VR( y , y)

)2dy  

where the minus sign in the definition is included precisely so that a 
higher value of JR(y) corresponds to a greater similarity of the function 
Vn(y, .) to the goal function VR(y, .), which is what is meant by a higher 
regulation. 

Function JR has not the same smooth properties as JLEV or JLTV, 
although it is continuous and has continuous derivatives in almost all 
points. The explicit expression of its gradient can be obtained in a way 
similar to that of Gonzáez-González et al. (2020). 

2.3. Multi-objective optimization problems (MOPs) 

Initially, the forest management planning problem we are dealing 
with consists of selecting the set of silvicultural treatments to be applied 
to each stand (i.e., to determine y ∈ Yad) to obtain maximum profit
ability (i.e., to maximize JLTV) with the highest regulation possible (i.e., 
to maximize JR). Therefore, this problem may be formulated as the 
following MOP: 

maximize J(y) =
(
JR(y) , JLTV(y)

)

subject to y ∈ Yad , (11)  

where function JLTV must be calculated assuming that next rotations will 
be based on the optimal rotation for the regulated forest R (by using Eq. 
(6)). 

The idea is simple but, unfortunately, both objectives are in conflict 
and, consequently, it will not be possible to find an ideal (or perfect) 
element yI ∈ Yad maximizing them simultaneously. Problem (11) must 
be studied assuming only one rational decision maker, by examining 
some distinguished elements of the admissible set (the non-dominated 
ones). Such vectors are those for which none of the objectives can be 
improved without a deterioration of the other, and are generally known 

Fig. 1. Example of harvest rate (top) and volume harvested (bottom). The grey solid lines represent real instant harvests (top, Eq. (8)) and real volumes harvested 
(bottom, Eq. (10)), while the black dashed lines represent the goal harvest rate function (top, Eq. (7)) and the goal volume harvested function (bottom, Eq. (9)). 
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as Pareto optimal solutions or efficient solutions (for a more formal 
definition see, for instance, Miettinen, 1998, pp. 11, 19). The corre
sponding objective vector is also known as Pareto optimal, while the set 
of these objective vectors is known as Pareto frontier (see Fig. 2). 

From a mathematical point of view, MOP (11) is considered to be 
solved when the Pareto optimal set is found. However, what is desired in 
practice is to select a satisfactory solution among all the efficient solu
tions, for which we must know the preferences of the decision maker. 
The techniques for articulating these preferences in multi-objective 
optimization can be classified in (Miettinen, 1998, pp. 61–65): a priori 
methods (the decision maker first acts clearly establishing his prefer
ences), a posteriori methods (all efficient solutions to the problem are 
sought, so that the decision maker chooses, among all of them, the one 
that suits him best), and interactive methods (based on the preferences 
indicated by the decision maker, one goes from one efficient solution to 
another, until one is achieved that, in addition to being efficient, is 

Fig. 2. Example of an admissible set Yad ⊂ ℝ3 and the corresponding image set 
J(Yad) ⊂ ℝ2, where the Pareto frontier is highlighted. 

Fig. 3. Results for the real forest: normalized Pareto frontiers obtained for the continuous formulation with the weighting method + L-BFGS-B (points obtained with 
equally spaced weights over the Normalized-JLTV axis) and with NSGA-II (top), and comparison between real and goal volumes for the second rotation corresponding 
to the numbered points (bottom). 
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satisfactory). In Section 2.4 we propose an a posteriori method to draw 
the Pareto frontier of the problem as the basic tool in forest planning. 

Although it may be obvious, it should be noted that any requirement 
known in advance (other than the minimum thresholds for the objec
tives JLTV and JR) must be present in the formulation phase of the model, 
and not in the subsequent decision-making process (made from the 

Pareto frontier obtained). These requirements mean that MOP (11) must 
be modified (generally including new constrictions), causing a new 
Pareto frontier from which decision-making must be carried out. An 
example of this situation is the traditional combinatorial approach of, 
first, simulating alternative management prescriptions for each stand 
(collected in a discrete set Ω) and, second, using combinatorial 

Fig. 4. Results for the simulated young forest: normalized Pareto frontiers obtained for the continuous formulation with the weighting method + L-BFGS-B (points 
obtained with equally spaced weights over the Normalized-JLTV axis) and with NSGA-II (top), and comparison between real and goal volumes for the second rotation 
corresponding to the numbered points (bottom). 

Table 1 
Payoff tables for the case studies. Row i displays the values of all the objective functions calculated at the point where the ith-objective obtained its maximum.   

Real forest Simulated young forest 

Objective JLTV JR JEF JLTV JR JEF 

JLTV 1,134,430 − 778,540,270 − 1,547,349,136 548,181 − 270,743,037 − 313,203,983 
JR 1,037,008 ¡344,447 − 20,157,105 519,864 ¡344,402 − 39,573,139 
JEF 1,047,370 − 7,524,763 ¡1,566,503 504,651 − 73,675,692 ¡433,047  
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optimization to seek the optimal prescriptions in these sets (Pukkala, 
2019). In that case, MOP (11) must be replaced by 

maximize J(y) =
(
JR(y) , JLTV(y)

)

subject to y ∈ Yad,

yj ∈ Ω,

(12)  

and the decision-making process must be carried out based on the Pareto 
frontier of this new problem. 

On the other hand, MOP (11) must also be modified if the objectives 
of the landowner change. For example, if there is also interest in 
maximizing the even flow (EF) for the current planning horizon, the 
problem must be completed with a new function (JEF) measuring the 
achievement of this objective (Kao and Brodie, 1979, analyzed a prob
lem with similar objectives by goal programming). In this case, the MOP 
to solve is 

maximize J(y) =
(
JR(y) , JEF(y) ,JLTV(y)

)

subject to y ∈ Yad, (13)  

where JEF is defined as in González-González et al. (2021), replacing the 
automatically computed planning horizon by the fixed planning horizon 
[a,a + R]. 

2.4. Numerical solution 

The first step is to solve problem (3), which provides the optimal 
management prescription for each stand y =

(
y1,…, yns

)
, and problem 

(4), which indicates the optimal rotation for the regulated forest R. 
These values are used to obtain the bounds of the set of admissible 
planning strategies. Additionally, R is also used to calculate the desired 
harvest rates and, in turn, functions JR and JEF, as well as the land and 
timber value function JLTV. Because of the regularity properties of the 
functions involved, both problems can be solved by any gradient-type 
method. In this work we used the L-BFGS-B algorithm (Zhu et al., 
1997) implemented in the free and open-source Python library SciPy 1.0 
(Virtanen et al., 2020). 

To take advantage of the regularity properties of the JLTV, JR and JEF 

functions, we propose to convert MOPs (11) and (13) into differentiable 
single-objective problems (SOPs) using an scalarization technique and to 
solve them with a gradient-type method combined with a random multi- 

start if local minima are detected. In this study, to obtain the Pareto 
frontier, we used the weighting method (Miettinen, 1998, pp. 78–85) 
and, again, the L-BFGS-B algorithm. For the results presented in the next 
section, we took equally spaced weights and, using the ideal objective 
vector (that obtained by maximizing each of the objective functions 
individually subject to the constraints of the problem) and the approx
imate nadir objective vector estimated from a payoff table (Miettinen, 
1998, pp. 15–19), we normalized the objective functions so that their 
objective values were of approximately the same magnitude. 

The multi-objective optimization problem (12) was formulated using 
the traditional combinatorial approach in which the planning horizon 
[a,a + R] is divided into P periods of Δ = R/P years, and only one 
harvest instant (the middle of the period) is assumed for each period. In 
this case the harvest instants are ci = a + (i − 1/2)Δ, and the discrete set 
is given by Ω = {a + Δ/2,…,a + R − Δ/2}. These additional constraints 
prevent the use of gradient-based techniques and, therefore, we solved 
MOP (12) using the evolutionary algorithm NSGA-II (Deb et al., 2002), 
widely used in multi-objective optimization, which gradually ap
proaches a well-distributed set of Pareto optimal solutions across the 
Pareto frontier and can be applied to continuous as well as to combi
natorial search spaces (Emmerich and Deutz, 2018). Specifically, we 
used the implementation of this algorithm in the Python library Inspyred 
1.0 (Tonda, 2020), with appropriate mutation and recombination op
erators for integer representation (Eiben and Smith, 2015, pp. 52–56). 
Finally, we also used the NSGA-II algorithm to check the numerical 
method proposed above for solving continuous MOPs (11) and (13). 

3. Results and discussion 

For testing the usefulness of our approach, we used the real forest of 
Eucalyptus globulus Labill. in the municipality of Xove (Galicia, NW 
Spain) of the case study analyzed by González-González et al. (2021). It 
comprises ns = 51 stands and assumes that none of them can be cut 
before they are 5 years old (lj = 5). Additionally, we considered imme
diate regeneration after clearcutting with a constant plantation density 
of 1333 trees/ha for all stands, and that there are no changes on site 
quality (site index). The inventory data and the transition functions of a 
dynamic growth model appropriate for the species (García-Villabrille, 
2015) were used for computing the state variables and outcomes (for 
details, see González-González et al., 2021). After solving problem (4), 
we obtained an optimal rotation for the regulated forest of R = 13.1 
years. To further test our approach in a forest with a different structure, 
we also used these data for simulating a hypothetical forest (hereinafter 
the simulated young forest) with 51 stands of the same species, area and 
site index, but all at one-year age. 

For MOP (11), the results corresponding to the real forest of the case 
study and to the simulated young forest are presented, respectively, in 
Figs. 3 and 4. They show the Pareto frontiers obtained with the 
weighting method + L-BFGS-B and with the NSGA-II algorithm. The 
corresponding payoff tables used for scaling the problems as described 
in previous section are collected in Table 1. Additionally, these figures 
also exhibit the real volume harvested for the first rotation and the 
comparison between real and goal volumes for the second rotation 
corresponding to all (ten) Pareto optima obtained with the first of these 
two approaches. In view of these results, it can be highlighted that:  

● Both methods, although using different techniques, provide the same 
Pareto fronts, which warrants the appropriateness of our approach.  

● The continuous approach works well for forests with very different 
stand structures, as suggested from the results of the real forest 
(which has young and mature stands of different ages) and the 
simulated young forest (in which all stands are 1-year old).  

● Figs. 3 and 4 are very useful for the decision-making process, as they 
allow to graphically analyze the trade-offs between objectives:  

- In the top graphs, the normalized-JLTV is JLTV/JLTV(y*), i.e., the LTV 
divided by its best value. This way of proceeding allows an intuitive 
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Fig. 5. Pareto frontiers obtained with NSGA-II for continuous and combina
torial formulations of different number of periods keeping the same planning 
horizon for the real forest. 
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comparison of the different optimal management strategies: for the 
real forest, there was a reduction of about 8.5% in LTV between the 
best solutions from the economic and regulation perspectives (points 
1 and 10 in the Pareto front, respectively), while for the simulated 
young forest it was of only 5.2%; intermediate solutions can also be 
analyzed in the same manner.  

- The regulation metric has not such an easy interpretation in terms of 
numerical values, but the grey area of the bottom graphs of the fig
ures clearly indicates the achievement of the regulation objective as 
well as the moment in which the clearcuts are done. Additionally, 
these graphs also show the total volume harvested of each Pareto 
optimum, which deserves a separate analysis for each forest: in the 
real one, it is higher for the first rotation than for the regulated 
condition due to its current structure towards mature stands, while 
for the simulated young forest it is slightly lower in most cases 
(except for the Pareto optima with higher weights of JLTV) because of 
its initial structure of young stands. 

As shown, the results of problem (11) reveal the cost of regulation 
assuming that next rotations will be based on the optimal rotation for the 
regulated forest R (a low cost corresponds to a highly regulated forest at 

the beginning of planning). Nevertheless, the real cost of regulation 
should be measured in terms of lost net discounted returns compared to 
managing all stands indefinitely following their Faustmann rotation (i. 
e., tj) to maximize financial returns (Hoganson and McDill, 1993). The 
objectives implicit in regulation may be inappropriate for many land
owners, and current management decisions should not generally be 
controlled by a long-term forest structure objective because of, among 
other reasons, highly probably changes in markets, technology, prices, 
and costs (Ware and Clutter, 1971). Nevertheless, the results of the 
regulated forest can serve as a baseline against which to compare 
alternative management scenarios. This role may become more impor
tant as interest in sustainable forest management increases. (Davis et al., 
2001, pp. 435–436). 

Regarding MOP (12), which considers the combinatorial formulation 
with different number of periods keeping the same planning horizon, 
Fig. 5 shows the Pareto frontiers of the real forest obtained with NSGA- 
II. As expected, the continuous formulation (MOP (11)) provided better 
results than the combinatorial one, since the latter implies additional 
constraints given by the discrete set Ω. Besides, the continuous formu
lation is much faster to solve when gradient-type methods are used. For 
example, for the real forest, computation times for the weighting 
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method + L-BFGS-B were of the order of 65 times faster than for NSGA-II 
(for both continuous and discrete formulations). This ratio is expected to 
increase as the dimension of the problem (number of stands) increases 
(González-González et al., 2021). To graphically analyze the goodness of 
the new JR metric, the left column of Fig. 6 shows the real and goal 
volumes corresponding to the best points for regulation, i.e., those 
which maximize function JR (that measures the even flow in the second 
rotation). The right column shows, for these same points, the equivalent 
volume harvested per period. It can be seen that maximizing JR leads to 
small variations in the volume harvested between periods, that is, good 
results with the classic ways of measuring even flow in combinatorial 

formulations (e.g., Kao and Brodie, 1979; Brumelle et al., 1998; Duch
eyne et al., 2004). 

Finally, with respect to MOP (13), Figs. 7 and 8 show the 3D Pareto 
frontier for the real and the simulated young forests, respectively, which 
provide all the information necessary to choose a compromise solution 
and may help decision makers with unclear priorities (Diaz-Balteiro 
et al., 2009). To improve the understanding of the trade-off information 
it is also useful to look at the Pareto frontier in a pairwise comparison of 
objectives (Couture et al., 2021), which can be seen projected in each 
plane (i.e., JR − JEF, JR − JLTV, and JEF − JLTV) of the aforementioned 
figures. The analysis of these frontiers shows a certain compatibility 
between objectives JR and JEF, which is more evident in the real forest 
because it is mainly formed by mature stands, which are in a rather slow 
growth phase. This compatibility can also be observed in Figs. 3 and 4, 
which indicate that when we increase the weight of the regulation 
objective JR, we indirectly obtain a better even flow in the first rotation 
(values of JEFR closer to zero). This MOP (13) is more interesting for the 
planning process of young-stand forests, in which the best solutions for 
JEF during the first rotation are clearly in conflict with those that 
maximize JR for forest level regulation. 

As we have seen, if two or three objectives are involved, it is advis
able to obtain the Pareto frontier to graphically analyze the relationships 
(trade-offs) between objectives, helping the decision makers (forest 
owners and/or forest managers) to choose a suitable weighting for each 
objective (e.g., Pascual, 2021). For problems with more objectives, 
despite a posteriori techniques combined with special visualization 
methods can be used (e.g., Borges et al., 2014), the rationale for 
approximating of the whole Pareto frontier is questionable (Alvarez- 
Vázquez et al., 2015), and interactive techniques (e.g., Diaz-Balteiro, 
1998) may be more appropriate. 

Although the case study analyzed is located in Galicia (NW Spain), 
the proposed models can be applied to the management of any forest 
consisting of single-species, even-aged stands for which there exist 
differentiable stand growth models and in which the optimization ob
jectives are related to economic and even-flow aspects. In the specific 
case of this region and for the species used, Eucalyptus globulus, most 
harvest scheduling plans are based on the area control method, which 
aims to achieve a regulated forest after the first rotation (Davis et al., 
2001, pp. 528–529), although without relying on any mathematical 
model for its optimization (Diaz-Balteiro et al., 2009). Another approach 
used to optimize the planning of these stands within the multi-criteria 
framework has been goal programming (e.g., Bertomeu et al., 2009; 
Diaz-Balteiro et al., 2009; Giménez et al., 2013). 

The specific improvements of our proposal with respect to the har
vest scheduling methods commonly applied to this type of stands are: (i) 
it uses continuous decision variables for which it is not necessary to 
simulate in advance the silvicultural programs potentially applicable to 
each stand, (ii) it makes possible to use gradient-based methods for 
numerical resolution, which have shown to be more efficient, effective 
and robust than heuristic techniques (González-González et al., 2021), 
and (iii) the preferences of the decision maker are incorporated into the 
process after optimization, who benefits from the trade-off information 
between objectives to select the satisfactory solution. This model could 
be completed with two very relevant aspects in harvest scheduling: the 
consideration of spatial restrictions (Murray, 1999) and clustering. The 
latter could be desirable for reducing both road entry and maintenance 
costs. In addition, if the harvests are clustered, more interior forests are 
preserved in the landscape (Öhman and Lämås, 2003). 

4. Conclusions 

We present several multi-objective models for forest harvest sched
uling in single-species, even-aged stands using a continuous formula
tion. We seek to maximize economic profitability and even-flow of 
timber harvest volume, both for the first rotation and for the regulated 
forest. For that, we have designed new metrics that allow working with 

Fig. 7. Normalized 3D Pareto frontier obtained with the weighting method +
L-BFGS-B with a continuous formulation for the real forest. 

Fig. 8. Normalized 3D Pareto frontier obtained with the weighting method +
L-BFGS-B with a continuous formulation for the simulated young forest. 
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continuous decision variables. To obtain the Pareto frontier, we propose 
to combine an scalarization technique (weighting method) with a 
gradient-type algorithm (L-BFGS-B), which we compare with the widely 
used in forestry multi-objective evolutionary algorithm NSGA-II. The 
main conclusions of this study are:  

● Our proposal has been shown to be very effective, providing results 
at least as good as to those obtained with the evolutionary algorithm. 
Besides, in terms of efficiency, the use of the gradient-based algo
rithm has required much less computing time to obtain the complete 
Pareto frontier. This difference could be extended considering that 
our approach is easily parallelizable, which could take advantage of 
the potential of multi-core processors.  

● In this work, the classical combinatorial formulation is obtained by 
adding additional constraints to the continuous model. This gua
rantees that the results of the latter are always better, as has been 
shown in the case study of a real E. globulus forest.  

● The proposed metric to measure regularity, designed to work with 
continuous formulations, has been shown to be similar to the tradi
tional metrics used in combinatorial problems. Planning strategies 
that maximize the new metric also lead to constant flows of products 
by period in the regulated forest.  

● The graphical display of trade-off information between objectives 
using the Pareto frontier allows an a posteriori articulation of pref
erences in an intuitive way, therefore being a very interesting tool for 
the decision making process in forest planning.  

● In a previous study we formulated a continuous model to maximize 
economic profitability and even-flow of timber harvested for a given 
planning horizon, which did not require to set management pre
scriptions in advance and avoided the division of the planning ho
rizon into periods. In this study we show how this formulation can be 
extended to more objectives, specifically we deal with the problem of 
forest regulation. More sophisticated objectives and constraints can 
also be incorporated into the model, such as those that consider the 
spatial location of the harvests, which is being analyzed in an 
ongoing research. 

Author statement 

All authors have contributed similarly in research planning, analysis, 
and writing of the manuscript. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements 

The authors are grateful to the editor and two anonymous reviewers 
for their helpful comments and suggestions. 

References 

Alvarez-Vázquez, L.J., García-Chan, N., Martínez, A., Vázquez-Méndez, M.E., 2015. An 
application of interactive multi-criteria optimization to air pollution control. 
Optimization 64 (6), 1367–1380. 

Arias-Rodil, M., Diéguez-Aranda, U., Vázquez-Méndez, M.E., 2017. A differentiable 
optimization model for the management of single-species, even-aged stands. Can. J. 
For. Res. 47 (4), 506–514. 
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