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Abstract
⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄

The general framework of this dissertation is the theory of non-associative algebras.
We tackle diverse problems regarding restricted Lie algebras and superalgebras, cen-
tral extensions of different classes of algebras and crossed modules of Lie superal-
gebras. Namely, we study the relationships between the structural properties of a re-
stricted Lie algebra and those of its lattice of restricted subalgebras; we define a non-
abelian tensor product for restricted Lie superalgebras and for graded ideal crossed
submodules of a crossed module of Lie superalgebras, and explore their properties
from structural, categorical and homological points of view; we employ central ex-
tensions to classify nilpotent bicommutative algebras; and we compute central exten-
sions of the associative null-filiform algebras and of axial algebras. Also, we include
a final chapter devoted to compare the two main methods (Rabinowitsch’s trick and
saturation) to introduce negative conditions in the standard procedures of the theory
of automated proving and discovery.
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Introduction
⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄

The theory of non-associative algebras has experienced a huge development in the
XXth century, partially due to its connections with geometry, physics, biology and
other areas of mathematics and science. By an algebra (A, ⋅) over a field 𝐹 , we un-
derstand a vector space A over 𝐹 together with a bilinear operation ⋅∶ A × A → A,
which is usually called product and denoted by juxtaposition rather than by ⋅. If a
basis {𝑒𝑖}𝑖∈𝐼 of A is fixed, the coefficients 𝑐𝑘𝑖𝑗 of the products 𝑒𝑖𝑒𝑗 with respect to such
basis are called structural constants. Algebras can also be considered over unital
commutative rings.

This general notion of an algebra turns out to be too wide to lead to interesting
structural results. Therefore, it is customary to focus on different classes, or varieties,
defined by imposing different polynomial conditions on the bilinear operation. In-
deed, if we identify a finite-dimensional algebra structure over ℂ with its 𝑛3 structural
constants with respect to a given basis, the varieties of non-associative algebras form
actual geometric varieties in ℂ𝑛3 with respect to the Zariski topology.

Some of the varieties which have been studied the most throughout this last cen-
tury are associative algebras, Lie algebras, Jordan algebras, alternative algebras and
Malcev algebras, but there are many more, such as binary Lie, non-commutative Jor-
dan, left- or right-alternative, Leibniz, Novikov or bicommutative algebras, among
others. These varieties share some common properties that allow to pose similar prob-
lems about them; however, the answers to these questions can be rather different, de-
pending on the diverse behaviours of the varieties under the same general conditions.
One of these challenges is the classification problem: to give a list of algebras or of
families of algebras, pairwise non-isomorphic, such that any algebra in the variety is
isomorphic to one of them. Complete classifications are hard to obtain, so it is typical
to focus on algebras of small dimensions or satisfying additional properties. Varieties
can also be classified from a geometric point of view, namely finding the irreducible
components of the corresponding geometric varieties.
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The theory of non-associative algebras also studies algebras with some additional
structure such as restricted Lie algebras over fields of positive characteristic, Clifford
algebras, vertex operator algebras, superalgebras or crossed modules of algebras; or
which are not defined by polynomial identities, such as genetic algebras or axial al-
gebras. These types of algebras do not form a proper variety in the sense introduced
beforehand, but many of the typical methods and problems from the varieties con-
text are still applicable. Apart from the classification problem (from an algebraic
approach) mentioned above, they admit a representation theory and provide a suit-
able framework to study other problems also shared by different algebraic structures,
such as developing homological and cohomological theories or relating the properties
of an object to those of the lattice of its subobjects.

Structure of the thesis
This memory is structured in three blocks or parts, each of them dealing with

different types of non-associative algebras. The first Part I is reserved to restricted
Lie algebras and superalgebras, and the second Part II is concerned with central ex-
tensions of algebras. The last Part III is partially devoted to crossed modules of Lie
superalgebras, although we have included some other contents which lack a direct
relation with the rest of the manuscript. We also include a short preliminary chapter
revising some basic concepts of category theory which will be needed further on.

On the other hand, regarding the problems addressed, this dissertation is organ-
ised around three cornerstones, namely, the classification problem of different types of
algebras, the relationship between restricted Lie algebras and their lattice of restricted
subalgebras, and diverse generalisations of the non-abelian tensor product of Lie al-
gebras. The contents regarding the classification problem lie entirely in Part II, and
the study of the lattice of restricted subalgebras of restricted Lie algebras, in Part I.
Regarding the tensor products, they are divided into Part I and Part III.

The structure of each part will be specified in its own introduction.
We include here a short comment about the notation. While for algebras in general

we will be employing the notationA (and variants likeB), and denoting the product by
juxtaposition, for restricted Lie (super)algebras and Lie superalgebras we will prefer
to use the notation 𝐿 (and variants like 𝑀 or 𝑇 ), and to denote the product by a
bracket [ , ] as it is usual in the literature. Furthermore, when we will be dealing with
Lie superalgebras defined over rings instead of fields, we will employ𝑀 (and variants
like 𝑁) to denote them.

Although we have tried to keep them as uniform as possible, there may be other
differences in the notations through the different chapters.
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Hypotheses and objectives
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This thesis has the following hypotheses and objectives.

H1 The lattice of subalgebras of a Lie algebra was extensively studied in the last
decades of the past century, but interest then waned because only few Lie al-
gebras satisfied the prescribed properties under study. One of the reasons of
this situation is that every one-dimensional subspace is a subalgebra. However,
a one-dimensional subspace of a restricted Lie algebra is not necessarily a re-
stricted subalgebra, what makes the study of lattices of restricted subalgebras
of restricted Lie algebras potentially more interesting.

O1 To study restricted Lie algebras whose lattice of restricted subalgebras satisfies
some prescribed properties, namely, it is distributive, Boolean, atomistic, dually
atomistic, upper semimodular or lower semimodular.

H2 Non-abelian tensor products have been introduced in the categories of Lie al-
gebras, restricted Lie algebras and Lie superalgebras, and have been used to
characterise universal central extensions of perfect objects in such categories.

O2 To introduce a non-abelian tensor product in the category of restricted Lie su-
peralgebras and to relate it to universal central extensions of restricted Lie su-
peralgebras.

H3 The algebraic and geometric classifications of a number of varieties of non-
associative algebras, such as Lie, associative, Jordan, Malcev or Leibniz, has
been an interesting and active research area in the last years.

O3 To determine all the four-dimensional nilpotent bicommutative algebras over
ℂ up to isomorphism, as well as the one-generated nilpotent bicommutative

xxiii



algebras of dimensions 5 and 6 overℂ. Also, to find the irreducible components
of the variety of four-dimensional nilpotent bicommutative algebras over ℂ.

H4 There are not non-trivial associative central extensions of the associative null-
filiform algebra 𝜇𝑛0, but it does admit non-trivial bicommutative central exten-
sions.

O4 To determine the central extensions of the null-filiform associative algebra 𝜇𝑛0in the varieties of left-commutative (and right-commutative), bicommutative,
left-alternative (and right-alternative), left-symmetric (and right-symmetric),
assosymmetric, Jordan and Novikov algebras.

H5 Axial algebras were introduced in 2015 and have been extensively studied since,
partially due to their connection to vertex operator algebras and the Monster.
The classification of such algebras is an open problem.

O5 To describe a method for constructing new axial algebras as central extensions
of another given axial algebra.

H6 The non-abelian tensor products in the context of crossed modules of Lie alge-
bras have been defined and studied for two arbitrary abelian crossed modules
and two ideal crossed submodules of a given crossed module.

O6 To introduce the non-abelian tensor and exterior products of two graded ideal
crossed submodules of a crossed module of Lie superalgebras, and to relate
them with the homology of crossed modules of Lie superalgebras.

H7 Whitehead’s quadratic functor for modules proved to be a useful tool to study
the non-abelian tensor and exterior products of Lie algebras and of ideal crossed
submodules of a crossed module of Lie algebras. We introduced a version for
supermodules in the context of the study of the non-abelian tensor and exte-
rior products of graded ideal crossed submodules of a crossed module of Lie
superalgebras.

O7 To study the properties of Whitehead’s quadratic functor for supermodules and
for abelian crossed modules of Lie superalgebras.

H8 In the algebraic-geometry-based theory of automated proving and discovery,
there exist two main procedures for including negative conditions, namely Ra-
binowitsch’s trick and saturation.
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O8 To compare the methods of Rabinowitsch’s trick and saturation for introducing
negative theses and negative hypotheses in the standard procedures for auto-
mated proving of geometric theorems.
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Methodology
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This thesis has followed the classic methodology in basic research in mathematics.
Some standard tasks in this type of research are proposals for definitions, conjectures
of results that generalise others already known, or which can be compared with them,
and the search for new examples that are significant enough or have important applica-
tions in other areas of mathematics. To do so, it is necessary to carry out a preliminary
and comprehensive study of the topics to be addressed, and it is also very convenient
to get in contact with experts of other universities. Finally, the use of computers to
perform symbolic calculations was an essential tool in different parts of the thesis.
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In this preliminary chapter, we include some categorical notions which require some
knowledge on the subject and will be useful for Chapter 2 and Chapter 6.

Let 𝐂 be a semiabelian category [130]. First of all, we recall two absolute con-
cepts: the centre of an object, in the sense of [118], and the Higgins commutator of
two normal subobjects, from [113, 169].

Let 𝐴, 𝐵 and 𝐶 be objects in 𝐂. Given two coterminal morphisms 𝑓 ∶ 𝐴 →
𝐶 and 𝑔∶ 𝐵 → 𝐶 , we say that they commute when there exists another morphism
ℎ∶ 𝐴 × 𝐵 → 𝐶 such that the following diagram is commutative:

𝐴
𝑖𝐴 //

𝑓 ""

𝐴 × 𝐵

ℎ
��

𝐵.
𝑖𝐵oo

𝑔
{{

𝐶

A subobject𝑍 of𝐴 is said to be central when there exists a monomorphism 𝑓 ∶ 𝑍 →
𝐴 commuting with the identity id𝐴, and the centre 𝑍(𝐴) of 𝐴 is the maximal central
subobject.

Suppose now that 𝐵 and 𝐶 are subobjects of 𝐴, and consider 𝑘∶ 𝐵 ⋄𝐶 → 𝐵 +𝐶
the kernel of the canonical morphism from the coproduct into the product 𝐵 + 𝐶 →
𝐵 × 𝐶 . The Higgins commutator [𝐵,𝐶] is defined to be the subobject of 𝐴 making
commutative the diagram

𝐵 ⋄ 𝐶 𝑘 //

��

𝐵 + 𝐶

��
[𝐵,𝐶] // 𝐴.

Now, we recall the definition of a Birkhoff subcategory of 𝐂, and present some
other notions which are relative to a particular Birkhoff subcategory.

1
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A Birkhoff subcategory 𝐁 of 𝐂 is a full and reflective subcategory closed under
subobjects and quotient objects.

Fix a Birkhoff subcategory 𝐁, and denote the inclusion functor by 𝜄, and the reflec-
tor functor by 𝐛. We say that an object 𝐴 is perfect if 𝐛(𝐴) = 0, where 0 denotes the
zero object in 𝐂. Also, let us recall from [77, 78] the concept of the one-dimensional
relative commutator [𝐴,𝐴]𝐁 of𝐴, defined to be the kernel of the unit of the adjunction
𝜄 ⊢ 𝐛.

The following definitions will be also necessary for the development of Chapter 2
and Chapter 6. An extension in C is a regular epimorphism. Following the theory
in [129], we distinguish trivial, normal and central extensions. An extension𝜓 ∶ 𝐵 →
𝐴 is trivial if the induced square

𝐵
𝜓 //

��

𝐴

��
𝐛(𝐵)

𝐛(𝜓)
// 𝐛(𝐴)

is a pullback; it is normal if one of the projections in the kernel pair is trivial; and it is
central if there exists another extension 𝜙∶ 𝐶 → 𝐴 such that the pullback 𝜙∗(𝜓) of
𝜓 along 𝜙 is trivial. In our semiabelian context, the concepts of normal and central
extension are equivalent.

The most usual Birkhoff subcategory is that of the abelian objects, i.e. those
objects which can be endowed with the structure of an internal abelian group. It is
commonly denoted by 𝐀𝐛. The reflector functor 𝐛 receives the name of abelianisa-
tion functor, and is denoted by ( )ab. In this case, the relative commutator [𝐴,𝐴]𝐀𝐛
coincides with the Higgins commutator [𝐴,𝐴], and we find also a practical charac-
terisation of central extensions: an extension 𝜓 ∶ 𝐵 → 𝐴 is central if and only if
ker 𝜓 ⊆ 𝑍(𝐵).

Finally, let us comment that the central extensions in C (relative to any Birkhoff
subcategory) form another category, whose morphisms are exactly the morphisms in
C, 𝜃∶ 𝐵 → 𝐶 , making commutative the diagram

𝐵 𝜃 //

𝜓 ��

𝐶

𝜙��
𝐴

.

A central extension𝜓 is said to be universal if it is the initial object in the category
of central extensions, i.e. if given another central extension 𝜙, there exists one and



Categorical preliminaries 3

only one morphism 𝜃 between them. From the definition, it is clear that the universal
central extension is unique up to isomorphisms.
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Part I

Restricted Lie (super)algebras
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The theory of Lie algebras was initiated by Sophus Lie at the end of the XIXth century
in connection with the study of Lie groups. For this reason, the first ground field
considered were the complex numbers, and the first techniques employed were mostly
analytical. At some point, a turn into algebraic methods led to the extension of the
theory to Lie algebras over arbitrary fields of characteristic zero. One of the most
celebrated results in this theory is the complete classification of real and complex
finite-dimensional semisimple Lie algebras, given by Killing and E. Cartan. Also,
Lie algebras over fields of characteristic zero present an important connection with
group theory, not only by means of Lie groups but also through free groups [162] and
also algebraic groups [55], and with other areas of science, especially with physics.

The origins of the theory of Lie algebras over fields of positive characteristic, or
modular Lie algebras, can be traced back to some time before 1937, with the discov-
ery by Witt of a simple modular Lie algebra which behaved very differently from the
known algebras in characteristic zero. In 1939, Zassenhaus [236] generalised Witt’s
example, giving rise to the class of modular Lie algebras today known as Zassen-
haus algebras. Since then, many mathematicians worked towards the obtention of a
classification of simple algebras, and also on a more general study of this new field.

However, few of the classical methods for characteristic 0, both structural and
from representation theory, are transferable to the modular case. One of the most
powerful tools, the Killing form, is no longer useful in characteristic 𝑝 > 0; most
of the results on semisimple algebras are not true for the modular theory; there is
no analogue of Lie’s theorem on solvable Lie algebras (except in particular cases);
Weyl’s theorem of complete reducibility of semisimple algebras does not hold; there
is no suitable Jordan-Chevalley decomposition of elements, etc. Moreover, and from
a perhaps more conceptual point of view, the lack of a connection with group theory
makes harder the understanding of modular Lie algebras.

7



8 Introduction

A partial solution for these problems is given by restricted Lie algebras, introduced
by Jacobson as early as in 1937 [124]. Namely, a restricted Lie algebra 𝐿 over a field
𝐹 of characteristic 𝑝 > 0 is a Lie algebra endowed with a 𝑝-map [𝑝] ∶ 𝐿 → 𝐿
which abstracts the properties of the 𝑝-power in associative algebras, i.e. such that
the following conditions are satisfied:

(𝜆𝑥)[𝑝] = 𝜆𝑝𝑥[𝑝],

(𝑥 + 𝑦)[𝑝] = 𝑥[𝑝] + 𝑦[𝑝] +
𝑝−1
∑

𝑖=1
𝑠𝑖(𝑥, 𝑦),

ad(𝑥[𝑝])(𝑦) = ad𝑝(𝑥)(𝑦)

for all 𝑥, 𝑦 ∈ 𝐿, 𝜆 ∈ 𝐹 , and where ad𝑝−1(𝑥⊗𝑡+𝑦⊗1)(𝑥⊗1) =
∑𝑝−1
𝑖=1 𝑖𝑠𝑖(𝑥, 𝑦)⊗𝑡

𝑖−1

in 𝐿⊗𝐹 𝐹 [𝑡].
In fact, Jacobson introduced first the term “restrictable” for those Lie algebras

admitting a 𝑝-map; later, he preferred to employ the term “restricted” for such algebras
together with a fixed 𝑝-map.

Restricted Lie algebras appear naturally from associative algebras and in the alge-
bras of derivations. They do present a straightforward connection with linear algebraic
groups; indeed, the Lie algebras of those groups are canonically endowed with a 𝑝-
map. Also, restricted Lie algebras allow to recover, in a certain way, results from the
non-modular theory as the Jordan-Chevalley decomposition of their elements [204],
and they provide a nicer frame than ordinary Lie algebras for developing new tech-
niques and subtle arguments over fields of positive characteristic.

Finite-dimensional simple restricted Lie algebras over algebraically closed fields
of characteristic 𝑝 > 7 were completely classified by Block and Wilson [27], giving a
(partial) affirmative answer to the Kostrikin-Šafarevič conjecture [155] on simple re-
stricted Lie algebras over algebraically closed fields of characteristic 𝑝 > 5. This clas-
sification proved to be a fundamental tool in Strade and Wilson’s generalisation [214]
to simple Lie algebras over algebraically closed fields of characteristic 𝑝 > 7, not nec-
essarily restricted. For the sake of completeness, we indicate that the classification
of finite-dimensional modular simple Lie algebras over algebraically closed fields has
been extended to characteristic 𝑝 > 3 by Premet and Strade [190].

This first part includes two chapters. The first Chapter 1 combines the contents
of the article [168], a joint work with Nicola Maletesta and Salvatore Siciliano, with
some work in progress with Salvatore Siciliano and David Towers. In particular, re-
stricted Lie algebras having a distributive and Boolean lattice of restricted subalgebras
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are characterised, and other properties of this lattice, such as being atomistic and du-
ally atomistic, lower semimodular and upper semimodular, are studied for restricted
Lie algebras over algebraically closed fields. Additionally, restricted Lie algebras over
algebraically closed fields whose restricted subalgebras are restricted quasi-ideals are
also investigated. On the other hand, in the second Chapter 2 we turn our attention
to restricted Lie superalgebras, and combine the algebraic techniques with some cat-
egory theory to define a non-abelian tensor product of restricted Lie superalgebras,
as well as to study its relation with the universal central extensions in this category.
This chapter collects some work in progress with Manuel Ladra.

The structure of each chapter will be described in its own introduction.
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On the subalgebra lattice of a restricted
Lie algebra

⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄

In this chapter, we study the lattice of restricted subalgebras of a restricted Lie al-
gebra. In particular, we consider those algebras in which this lattice is distributive,
Boolean, dually atomistic, lower or upper semimodular, or in which every restricted
subalgebra is a restricted quasi-ideal. The fact that there are one-dimensional subal-
gebras which are not restricted results in some of these conditions being weaker than
for the corresponding conditions in the non-restricted case.

Introduction

The relationship between the structure of a group and that of its lattice of subgroups is
highly developed and has attracted the attention of many leading algebraists (see e.g.
the monograph [202] or the survey [185]). According to Schmidt [202], the origin
of the subject can be traced back to Dedekind, who studied the lattice of ideals in a
ring of algebraic integers; he discovered and used the modular identity, which is also
called the Dedekind law, in his calculation of ideals. However, the actual beginnings
of the study of subgroup lattices date from around 1930. One of the first remarkable
achievements in this context was Ore’s characterisation of groups with distributive
subgroup lattices as the locally cyclic groups [183]. Since then modularity, distribu-
tivity and lattice conditions related to them have been studied in a number of contexts.
The lattice of submodules of a module over a ring is modular, and hence so is the lat-
tice of subgroups of an abelian group. The lattice of normal subgroups of a group is
also modular, but the lattice of all subgroups is not in general [122, 123]. The lattice

11
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of ideals of a ring is also modular. The distributivity of the lattice of submodules of
a module has been investigated in [46,212,218], and of the lattice of (right) ideals of
a ring, or of different types of non-associative algebras, in [37, 131, 170, 218].

The study of the subalgebra and ideal lattices of a finite-dimensional Lie algebra
was popular in the second half of the last century, especially in the 1980’s and in the
90’s (see, for example, [13, 18, 24, 33, 92–95, 100, 154, 160, 216, 217, 220–223]), but
interest then waned. The likely reason is that most of the conditions under investiga-
tion were too strong and so few algebras satisfied them; a paradigmatic example of
this is the characterisation of Lie algebras having a distributive lattice of subalgebras
in [154, Theorem 2.1]. However, the lattice of restricted subalgebras of a restricted
Lie algebra is fundamentally different; for example, not every element spans a one-
dimensional restricted subalgebra. Thus, one could expect more interesting results to
hold for restricted algebras and, as we shall see, this is indeed the case.

This chapter is organised as follows. In Section 1.1 we fix some notation and
terminology and introduce some results that are needed later. In Section 1.2 we first
establish when 𝐿 has exactly two restricted subalgebras. Next, we provide a char-
acterisation of restricted Lie algebras that have a distributive or Boolean lattice of
restricted subalgebras, and also study some particular cases. Throughout most of the
rest of the chapter, we will be assuming that the algebras have finite dimension and
that the ground field is algebraically closed. In Section 1.3 we study restricted Lie
algebras that are atomistic and dually atomistic. It turns out that they are more abun-
dant than in the non-restricted case. We then investigate those restricted Lie algebras
all of whose subalgebras (not necessarily restricted) are intersections of maximals.
The objective in Section 1.4 is to study restricted Lie algebras 𝐿 in which every re-
stricted subalgebra is a restricted quasi-ideal. We characterise nilpotent restricted Lie
algebras satisfying this condition over perfect fields of characteristic different from
2. Section 1.5 then goes on to consider 𝐽 -algebras and lower semimodular restricted
Lie algebras, concepts which turn out to be equivalent if the algebra is solvable. The
final Section 1.6 is devoted to studying upper semimodular restricted Lie algebras. It
is shown that these algebras are either almost abelian or nilpotent of class at most 2
and that every restricted subalgebra is a restricted quasi-ideal.

Throughout this chapter, 𝐹 will denote a field of characteristic 𝑝 > 0, unless
otherwise stated. All the Lie algebras and restricted Lie algebras will be assumed
to be over 𝐹 . Unless in Section 1.2, throughout the rest of the paper all algebras
are supposed to be finite-dimensional. Unless in Section 1.2, throughout the rest of
the paper all algebras are supposed finite-dimensional. We will denote algebra direct
sums by ⊕, and direct sums of the vector space structure alone, by +̇.



1.1 Preliminaries 13

1.1 Preliminaries

Here we fix some notation and terminology and introduce some results that will be
needed later. Let 𝐿 be a Lie algebra over a field 𝐹 of arbitrary characteristic. We
denote by [𝐿,𝐿] the derived subalgebra of 𝐿. As usual, the derived series for 𝐿 is
defined inductively by 𝐿(0) = 𝐿, 𝐿(𝑘+1) = [𝐿(𝑘), 𝐿(𝑘)] for 𝑘 ≥ 0, 𝐿(∞) = ∩𝑘≥0𝐿(𝑘); 𝐿
is solvable if 𝐿(∞) = 0. Similarly, the lower central series is defined inductively by
𝐿1 = 𝐿, 𝐿𝑘+1 = [𝐿𝑘, 𝐿] for 𝑘 ≥ 1; 𝐿 is nilpotent if 𝐿𝑘 = 0 for some 𝑘 ≥ 1. Also, 𝐿
is said to be supersolvable if it admits a complete flag made up of ideals of 𝐿, that is,
there exists a chain

0 = 𝐿0 ⊊ 𝐿1 ⊊⋯ ⊊ 𝐿𝑛 = 𝐿

of ideals of 𝐿 such that dim𝐿𝑗 = 𝑗 for every 0 ≤ 𝑗 ≤ 𝑛. The centre of 𝐿 is denoted
by 𝑍(𝐿), and 𝐶𝐵(𝐴) = {𝑥 ∈ 𝐵∶ [𝑥,𝐴] = 0} denotes the centraliser in a subalgebra
𝐵 of another subalgebra 𝐴. Also, the ascending central series is defined inductively
by 𝐶1(𝐿) = 𝑍(𝐿), 𝐶𝑛+1(𝐿) = {𝑥 ∈ 𝐿∶ [𝑥, 𝐿] ⊆ 𝐶𝑛(𝐿)}. The nilradical 𝑁(𝐿) is
defined to be the maximal nilpotent ideal, and the solvable radical, denoted by 𝑅(𝐿),
is defined to be the maximal solvable ideal. For every 𝑥 ∈ 𝐿, the adjoint map of 𝑥
is defined by ad𝑥∶ 𝐿 → 𝐿, 𝑎 ↦ [𝑥, 𝑎]. If 𝑋 is a subalgebra of 𝐿, then the largest
ideal of 𝐿 contained in 𝑋 is called the core of 𝐿 and is denoted by 𝑋𝐿. The Frattini
subalgebra 𝐹 (𝐿) of𝐿 is the intersection of all maximal subalgebras of𝐿; the Frattini
ideal of 𝐿 is 𝜙(𝐿) = 𝐹 (𝐿)𝐿. The abelian socle, 𝐴𝑠𝑜𝑐(𝐿), is the sum of the minimal
abelian ideals of 𝐿.

We say that𝐿 is dually atomistic if every proper subalgebra of𝐿 is an intersection
of maximal subalgebras of 𝐿. It is called almost abelian if it contains an abelian
ideal of codimension 1, on which it acts by scalar multiplications. Scheiderer proved
in [201] that, over a field of characteristic zero, every dually atomistic Lie algebra is
abelian, almost abelian or simple. In his proof, he used some easy results, stated for
Lie algebras over a field of characteristic zero but which are valid over any field. We
state them here for the sake of convenience.
Lemma 1.1.1. Let 𝐿 be a dually atomistic Lie algebra over any field. Then:

(i) For any maximal subalgebra 𝑀 of 𝐿, 𝑀 ∩𝑁(𝐿) is an ideal of 𝐿;

(ii) 𝑁(𝐿) is abelian and every subspace of 𝑁(𝐿) is an ideal of 𝐿; and

(iii) 𝑅(𝐿) is abelian or almost abelian.
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Now we establish a slightly weaker version of Scheiderer’s result which is valid
over any field.
Proposition 1.1.2. If𝐿 is a dually atomistic Lie algebra over any field then𝐿 is either
abelian, almost abelian or semisimple.

Proof. Let𝐿 be dually atomistic and suppose that𝐿 is not semisimple. Then, it holds
that 𝐴𝑠𝑜𝑐(𝐿) ≠ 0 and 𝐿 splits over 𝐴𝑠𝑜𝑐(𝐿), by [215, Theorem 7.3]. Furthermore,
the minimal abelian ideals of 𝐿 are one-dimensional by Lemma 1.1.1(ii), so we can
write𝐿 = (𝐹𝑎1⊕…⊕𝐹𝑎𝑛)+̇𝐵, where 𝐹𝑎𝑖 is a minimal ideal of𝐿 for each 1 ≤ 𝑖 ≤ 𝑛,
𝐵 is a subalgebra of 𝐿, and 𝑛 ≥ 1.

Let 𝑀 be a maximal subalgebra of 𝐿 with 𝑎1 ∉ 𝑀 . We shall show that 𝐿(∞) ⊆
𝑀 . Now 𝐿 = 𝐹𝑎1 +𝑀 , so 𝑀 has codimension 1 in 𝐿. It follows that 𝐿∕𝑀𝐿 is
as described in [12, Theorems 3.1 and 3.2]. Also, [𝐹𝑎1,𝑀𝐿] ⊆ 𝐹𝑎1 ∩𝑀 = 0. We
consider the three cases given in [12, Theorem 3.1] separately.

Case (a): Here 𝐿∕𝑀𝐿 is one-dimensional, so 𝑀 =𝑀𝐿 and 𝐿2 ⊆ 𝑀 .
Case (b): Here 𝐿∕𝑀𝐿 is two-dimensional, so 𝐿 = 𝐹𝑎1 + 𝐹𝑚 + 𝑀𝐿 where

𝑚 ∈𝑀 ⧵𝑀𝐿. Now 𝐿2 ⊆ 𝐹𝑎1 +𝑀𝐿 and 𝐿(2) ⊆ 𝑀𝐿 ⊆ 𝑀 .
Case (c): Here 𝐿∕𝑀𝐿 ≃ 𝐿𝑚(Γ). If 𝑚 is odd then 𝐿𝑚(Γ) is simple. But (𝐹𝑎1 +

𝑀𝐿)∕𝑀𝐿 is a one-dimensional ideal of 𝐿∕𝑀𝐿, which is a contradiction. Hence 𝑚 is
even, in which case 𝐿𝑚(Γ) = 𝐹𝑥+𝐿𝑚(Γ)2, where 𝐿𝑚(Γ)2 is simple. Put 𝐿∕𝑀𝐿 = 𝐿̄,
and so on. Then 𝐿̄ = 𝐹𝑎1 ⊕ 𝐿̄2 and [𝐿̄, 𝑎1] = 0̄; that is, [𝐿, 𝑎1] ⊆ 𝑀𝐿, whence
𝐿2 ⊆ 𝑀 .

In any case we have established that, for any maximal subalgebra 𝑀 of 𝐿, either
𝑎1 ∈𝑀 or𝐿(∞) ⊆ 𝑀 . Suppose that𝐿(∞) ≠ 0. Then𝐿(∞) ≠ 𝐹𝑎1 (since (𝐹𝑎1)2 = 0),
so there is an element 𝑥 ∈ 𝐿(∞) ⧵ 𝐹𝑎1. Let 𝑀 be a maximal subalgebra containing
𝑥 + 𝑎1. Then either 𝑎1 ∈𝑀 or 𝐿(∞) ⊆ 𝑀 . In each case, 𝐹𝑥 + 𝐹𝑎1 ⊆ 𝑀 . It follows
that 𝐹 (𝑥+𝑎1) cannot be an intersection of maximal subalgebras of𝐿, a contradiction.
Hence, 𝐿(∞) = 0 and 𝐿 is solvable. The result now follows from Lemma 1.1.1(iii).

We shall need the following result due to Grunewald, Kunyavskii, Nikolova and
Plotkin for 𝑝 > 5. However, the same proof works for 𝑝 > 3 by using the Corollary
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in page 180 of [210]. Alexander Premet has pointed out that the result is also valid
for 𝑝 = 3, but that it relies on results that have not yet been published, so we omit this
case.
Lemma 1.1.3. Every simple Lie algebra 𝐿 over an algebraically closed field 𝐹 of
characteristic 𝑝 > 3 contains a subalgebra 𝑋 with a quotient isomorphic to 𝔰𝔩(2, 𝐹 ).

Proof. The proof is the same as for [106, Lemma 3.2] with the reference to [228, Part
II, Corollary 1.4] replaced by [210, page 180, Corollary].

In what follows we shall be studying the lattice of restricted subalgebras of a re-
stricted Lie algebra. From now on, the characteristic of the ground field 𝐹 will be
assumed to be 𝑝 > 0.

If 𝐿 is a restricted Lie algebra, we introduce as “restricted analogues” of earlier
concepts, 𝐹𝑝(𝐿), the Frattini 𝑝-subalgebra of 𝐿, to be the intersection of the maximal
restricted subalgebras of 𝐿, and 𝜙𝑝(𝐿), the Frattini 𝑝-ideal of 𝐿, to be the largest
restricted ideal of 𝐿 which is contained in 𝐹𝑝(𝐿). The abelian 𝑝-socle, 𝐴𝑝𝑠𝑜𝑐(𝐿), is
the sum of the minimal abelian restricted ideals of 𝐿.

Moreover, if𝑆 is a subset of𝐿, then we use the symbol ⟨𝑆⟩𝑝 for the restricted sub-
algebra generated by𝑆, and we put𝑆[𝑝] = ⟨𝑥[𝑝]| 𝑥 ∈ 𝑆⟩𝑝. Following Hochschild [115],
we say that 𝐿 is strongly abelian if 𝐿 is abelian and 𝐿[𝑝] = 0.

An element 𝑥 of 𝐿 is said to be 𝑝-algebraic if ⟨𝑥[𝑝]⟩𝑝 is finite-dimensional. More-
over, 𝑥 is said to be semisimple if 𝑥 ∈ ⟨𝑥[𝑝]⟩𝑝 and toral if 𝑥[𝑝] = 𝑥. An abelian
restricted Lie algebra consisting of semisimple elements is called a torus. An ele-
ment 𝑥 of 𝐿 is said to be 𝑝-nilpotent if 𝑥[𝑝]𝑛 = 0 for some 𝑛 > 0, and 𝐿 is said to be
𝑝-nil if it consists of 𝑝-nilpotent elements. In particular, 𝐿 is said to be 𝑝-nilpotent if
there exists 𝑛 > 0 such that 𝑥[𝑝]𝑛 = 0 for every 𝑥 ∈ 𝐿. By Engel’s Theorem, it is easy
to see that every finite-dimensional 𝑝-nil restricted Lie algebra is 𝑝-nilpotent but, in
general, this can fail in the infinite-dimensional case.

We say that 𝐿 is cyclic if 𝐿 = ⟨𝑥⟩𝑝 for some 𝑥 ∈ 𝐿. In particular, if the gener-
ator 𝑥 is 𝑝-nilpotent, then 𝐿 is called nilcyclic. Moreover, 𝐿 is called locally finite-
dimensional (locally cyclic, respectively) if every finitely generated restricted subal-
gebra of 𝐿 is finite-dimensional (cyclic, respectively).

Note that, up to isomorphism, for every non-negative integer 𝑛 there exists a
unique nilcyclic restricted Lie algebra 𝐶𝑛 of dimension 𝑛 over 𝐹 . Every 𝐶𝑛 embeds
into 𝐶𝑛+1, and {𝐶𝑛}𝑛≥0 with these inclusions forms a direct system. We will consider
the direct limit

𝐶∞ = lim
←←←←←←←←←←→

𝐶𝑛.
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Note that 𝐶∞ has an 𝐹 -basis consisting of elements 𝑥0, 𝑥1,… such that 𝑥[𝑝]0 = 0 and
𝑥[𝑝]𝑖 = 𝑥𝑖−1 for every 𝑖 > 0. Clearly, 𝐶∞ is the analogue of a Prüfer 𝑝-group in the
context of restricted Lie algebras.

For a field𝐹 of characteristic 𝑝 > 0we will denote by𝐹 [𝑡, 𝜎] the skew polynomial
ring over 𝐹 in the indeterminate 𝑡 with respect to the Frobenius endomorphism 𝜎 of
𝐹 . Thus 𝐹 [𝑡, 𝜎] is the ring consisting of all polynomials 𝑓 =

∑

𝑖≥0 𝜆𝑖𝑡
𝑖 with respect to

the usual sum and multiplication defined by the condition 𝑡 ⋅𝜆 = 𝜆𝑝𝑡 for every 𝜆 ∈ 𝐹 .
We recall that this ring is a principal left ideal domain, and it is also a principal right
ideal domain in the case when 𝐹 is perfect (see e.g. [126, Section 3.1]). As observed
by Jacobson in [127, Section V.8], the study of 𝐹 [𝑡, 𝜎] and its modules turns out to be
a natural tool for several questions concerning abelian restricted Lie algebras.

For a restricted Lie algebra 𝐿, we denote by ((𝐿),∨,∧) its lattice of restricted
subalgebras. Of course, for every 𝑋, 𝑌 ∈ (𝐿) one has that 𝑋 ∧ 𝑌 = 𝑋 ∩ 𝑌 and
𝑋 ∨ 𝑌 is the restricted subalgebra generated by 𝑋 and 𝑌 , ⟨𝑋, 𝑌 ⟩𝑝. We will say that
the restricted Lie algebra𝐿 satisfies a certain lattice-theoretic property whenever such
property is satisfied by the lattice (𝐿).

1.2 Distributive and Boolean restricted Lie algebras

Let 𝐿 be a restricted Lie algebra. In our first result, which will be used later, we
establish when (𝐿) is the two-elements lattice (in other words, 𝐿 has no non-zero
proper restricted subalgebras).
Proposition 1.2.1. A restricted Lie algebra 𝐿 ≠ 0 has no non-zero proper restricted
subalgebras if and only if 𝐿 ≃ ∕⟨𝑓 ⟩𝑝, where  = ⟨𝑥⟩𝑝 is a free cyclic restricted
Lie algebra and 𝑓 =

∑

𝑖≥0 𝜆𝑖𝑥
[𝑝]𝑖 is an element of  such that 𝑓 =

∑

𝑖≥0 𝜆𝑖𝑡
𝑖 is an

irreducible element of the ring 𝐹 [𝑡, 𝜎].

Proof. Assume first that 𝐿 does not have any non-zero proper restricted subalgebras.
Then, for every non-zero element 𝑦 of𝐿we must have𝐿 = ⟨𝑦⟩𝑝, hence𝐿 is cyclic. As
a consequence, 𝐿 is isomorphic to ∕⟨𝑓 ⟩𝑝 for some 𝑓 =

∑

𝑖≥0 𝜆𝑖𝑥
[𝑝]𝑖 ∈ . Note that

𝑓 ≠ 0, as the free cyclic restricted Lie algebra obviously contains non-zero proper
restricted subalgebras. Now, as 𝐿 is abelian we can regard it as a left module over
𝐹 [𝑡, 𝜎] with respect to the action defined by the condition 𝑡 ∗ 𝑎 = 𝑎[𝑝] for every 𝑎 ∈ 𝐿.
Note that (𝐿) coincides with the lattice of 𝐹 [𝑡, 𝜎]-submodules of 𝐿. Moreover, the
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annihilator ann(𝑥) of the element 𝑥 is given by the left ideal of 𝐹 [𝑡, 𝜎] generated by
𝑓 =

∑

𝑖≥0 𝜆𝑖𝑡
𝑖, and𝐿 is isomorphic as a left 𝐹 [𝑡, 𝜎]-module to 𝐹 [𝑡, 𝜎]∕ann(𝑥). There-

fore, as such a module cannot be simple if 𝑓 = 𝑔ℎ for some non-constant elements
𝑔, ℎ of 𝐹 [𝑡, 𝜎], we conclude that 𝑓 is an irreducible skew polynomial.

For the converse observe that, as 𝐹 [𝑡, 𝜎] is a left principal ideal domain and 𝑓
is irreducible, ∕⟨𝑓⟩𝑝 is a simple 𝐹 [𝑡, 𝜎]-module. In view of the correspondence
between the 𝐹 [𝑡, 𝜎]-submodules and restricted subalgebras of𝐿, this yields the result.

Remark 1.2.2. It is worth observing that Proposition 1.2.1 provides a description of
the composition factors of finite-dimensional solvable restricted Lie algebras. More-
over, in the statement of Proposition 1.2.1 one has that 𝐿 is either one-dimensional
strongly abelian or a cyclic torus corresponding to whether 𝜆0 = 0 or 𝜆0 ≠ 0, re-
spectively. However, again by Proposition 1.2.1, the converse is not true, because it
is possible for a cyclic torus to contain non-zero proper restricted subalgebras.

In some cases, the statement of Proposition 1.2.1 takes a particularly simple form.
For instance, if the ground field of 𝐿 is the field 𝐹𝑝 with 𝑝 elements, then 𝐹 [𝑡, 𝜎] is
nothing more than an ordinary polynomial ring. Furthermore, if 𝐹 is algebraically
closed, then by combining Proposition 1.2.1, Remark 1.2.2 and [213, Chapter 2, The-
orem 3.6(2)] we conclude that 𝐿 has no non-zero proper restricted subalgebras if and
only if dim𝐿 = 1.

Let 𝐿 be an ordinary Lie algebra over a field of characteristic 𝑝 > 0. For the
definition of the minimal 𝑝-envelope of 𝐿 we refer the reader to [213, Section 2.5].
Another consequence of Proposition 1.2.1 is the following result.

Corollary 1.2.3. A restricted Lie algebra 𝐿 ≠ 0 has no non-zero proper restricted
ideals if and only if one of the following conditions hold:

1. 𝐿 is the minimal 𝑝-envelope of a simple Lie algebra;

2. 𝐿 ≃ ∕⟨𝑓 ⟩𝑝, where  = ⟨𝑥⟩𝑝 is a free cyclic restricted Lie algebra and 𝑓 =
∑

𝑖≥0 𝜆𝑖𝑥
[𝑝]𝑖 is an element of  such that 𝑓 =

∑

𝑖≥0 𝜆𝑖𝑡
𝑖 is an irreducible element

of the ring 𝐹 [𝑡, 𝜎].
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Proof. The claim follows from [27, p. 116] (see also [82, Lemma 6.3]) in the non-
abelian case and from Proposition 1.2.1 in the abelian one.

We say that a restricted Lie algebra 𝐿 is distributive if, for every 𝑋, 𝑌 ,𝑍 ⊆ 𝐿
restricted subalgebras, one has

⟨𝑋, 𝑌 ∩𝑍⟩𝑝 = ⟨𝑋, 𝑌 ⟩𝑝 ∩ ⟨𝑋,𝑍⟩𝑝,

or, equivalently,
𝑋 ∩ ⟨𝑌 ,𝑍⟩𝑝 = ⟨𝑋 ∩ 𝑌 ,𝑋 ∩𝑍⟩𝑝.

Recall that this just means that the lattice (,∨,∧) is distributive in the usual sense. By
a well-known theorem of Birkhoff (cf. [105, Section II.1, Theorem 1]), a lattice turns
out to be distributive if and only if it does not contain the pentagon or the diamond as
a sublattice.

Now we study when a restricted Lie algebra is distributive. By a classical theorem
of Ore [183], a group 𝐺 has a distributive lattice of subgroups if and only if 𝐺 is
locally cyclic. One might expect that the natural analogue of this result also holds in
the setting of restricted Lie algebras. However, the next example shows that this is
not the case.

Example 1.2.4. Let 𝐿 = 𝐹𝑥 ⊕ 𝐹𝑦 be the abelian restricted Lie algebra with 𝑝-map
defined by 𝑥[𝑝] = 𝑦 and 𝑦[𝑝] = 𝑥. Obviously, 𝐿 is cyclic. On the other hand, 𝐿 has
𝑝+ 1 distinct restricted subalgebras of dimension 1 given by ⟨𝑥+ 𝜁𝑖𝑦⟩𝑝, where 𝜁𝑖 is a
(𝑝 + 1)th root of unity for every 𝑖 = 1, 2,… , 𝑝 + 1. In particular, (𝐿) contains the
diamond as a sublattice, and therefore (𝐿) is not distributive by [105, Section II.1,
Theorem 1].

Distributive restricted Lie algebras are characterised in the following result:

Theorem 1.2.5. A restricted Lie algebra 𝐿 is distributive if and only if 𝐿 is abelian
and, for every restricted subalgebra 𝐻 of 𝐿, 𝐿∕𝐻 does not contain distinct isomor-
phic minimal restricted subalgebras.

Proof. Assume first that 𝐿 is distributive and let 𝑥, 𝑦 ∈ 𝐿. One has ⟨𝑥 + 𝑦⟩𝑝 ∨
⟨𝑥⟩𝑝 = ⟨𝑥, 𝑦⟩𝑝 = ⟨𝑥+ 𝑦⟩𝑝 ∨ ⟨𝑦⟩𝑝 and so the distributivity of 𝐿 implies that ⟨𝑥+ 𝑦⟩𝑝 ∨
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(

⟨𝑥⟩𝑝 ∩ ⟨𝑦⟩𝑝
)

= ⟨𝑥, 𝑦⟩𝑝. It follows that
⟨𝑥, 𝑦⟩𝑝

⟨𝑥⟩𝑝 ∩ ⟨𝑦⟩𝑝
≃

⟨𝑥 + 𝑦⟩𝑝
⟨𝑥⟩𝑝 ∩ ⟨𝑦⟩𝑝 ∩ ⟨𝑥 + 𝑦⟩𝑝

is cyclic. Moreover, as ⟨𝑥⟩𝑝 ∩ ⟨𝑦⟩𝑝 is clearly contained in the centre of ⟨𝑥, 𝑦⟩𝑝, we
conclude that ⟨𝑥, 𝑦⟩𝑝 is abelian. Therefore, as in the proof of Proposition 1.2.1 we
can regard 𝐿 as a left 𝐹 [𝑡, 𝜎]-module of 𝐿. Recall that the restricted subalgebras of
𝐿 coincide with the 𝐹 [𝑡, 𝜎]-submodules of 𝐿. Moreover, it is easily seen that two re-
stricted subalgebras𝐻1 and𝐻2 of𝐿 are isomorphic if and only if they are isomorphic
as 𝐹 [𝑡, 𝜎]-submodules. By [46, Theorem 1], the 𝐹 [𝑡, 𝜎]-module 𝐿 has a distributive
lattice of submodules if and only if, for every submodule 𝐻 , the quotient 𝐿∕𝐻 does
not have contain two isomorphic simple submodules. From this the necessity part
follows at once.

Conversely, as 𝐿 is abelian we can regard it as a left 𝐹 [𝑡, 𝜎]-module. For what
was observed in the first part, for every 𝐹 [𝑡, 𝜎]-module 𝐻 of 𝐿 we have that 𝐿∕𝐻
does not contain distinct isomorphic simple submodules. Therefore [46, Theorem 1]
ensures that the lattice of 𝐹 [𝑡, 𝜎]-submodules of 𝐿 is distributive, which is equivalent
to say that (𝐿) is distributive, which completes the proof.

Note that Theorem 1.2.5 together with [83, Theorem 2.4] yield that not every
artinian restricted Lie algebra of finite representation type has a distributive lattice
of subalgebras, contrary to the situation of the lattice of ideals of artinian associative
algebras (cf. [188, Section 6.7]).
Corollary 1.2.6. Let 𝐿 be a distributive restricted Lie algebra over a perfect field.
Then, 𝐿 is locally cyclic. Furthermore, if 𝐹 = 𝐹𝑝, then the converse is also true.

Proof. By Theorem 1.2.5, 𝐿 is abelian. If 𝐻 is a finitely generated restricted subal-
gebra of𝐿, then in view of [15, Section 4.3, Theorem 3.1] we have𝐻 = ⟨𝑥1⟩𝑝⊕⋯⊕
⟨𝑥𝑛⟩𝑝 for some elements 𝑥1,… , 𝑥𝑛 ∈ 𝐿. Let us show that𝐻 is cyclic by induction on
𝑛. Let 𝑛 > 1, as otherwise the claim is trivial. By the induction hypothesis we have
⟨𝑥1⟩𝑝 ⊕⋯⊕ ⟨𝑥𝑛−1⟩𝑝 = ⟨𝑦⟩𝑝 for a suitable 𝑦 ∈ 𝐿. Since 𝐿 is distributive, the same
argument used in the first part of the proof of Theorem 1.2.5 yields 𝐻 ≃ ⟨𝑦 + 𝑥𝑛⟩𝑝,
which completes the inductive step.
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Now, assume that 𝐹 = 𝐹𝑝 and 𝐿 is locally cyclic. Then 𝐿 is abelian and so it
can be regarded 𝐿 as a left 𝐹 [𝑡, 𝜎]-module. Notice that in this case 𝐹 [𝑡, 𝜎] is just
the ordinary polynomial ring 𝐹𝑝[𝑡]. Let 𝐴,𝐵, 𝐶 ∈ (𝐿). We need only to show
that (𝐴 + 𝐵) ∩ (𝐴 + 𝐶) ⊆ 𝐴 + (𝐵 ∩ 𝐶), as the other inclusion is trivially true. Let
𝑥 ∈ (𝐴 + 𝐵) ∩ (𝐴 + 𝐶). Then 𝑥 = 𝑎1 + 𝑏 = 𝑎2 + 𝑐 for some 𝑎1, 𝑎2 ∈ 𝐴, 𝑏 ∈ 𝐵 and
𝑐 ∈ 𝐶 . Since 𝐿 is locally cyclic, there exists 𝑦 ∈ 𝐿 such that ⟨𝑎1, 𝑎2, 𝑏, 𝑐⟩𝑝 = ⟨𝑦⟩𝑝. It
follows that

⟨𝑦⟩𝑝 =
(

𝐴 ∩ ⟨𝑦⟩𝑝
)

+
(

𝐵 ∩ ⟨𝑦⟩𝑝
)

=
(

𝐴 ∩ ⟨𝑦⟩𝑝
)

+
(

𝐶 ∩ ⟨𝑦⟩𝑝
)

. (1.2.1)

If 𝐴∩ ⟨𝑦⟩𝑝 = 0, then 𝑎1 = 𝑎2 = 0 and 𝑥 ∈ 𝐵 ∩𝐶 . On the other hand, if 𝐵 ∩ ⟨𝑦⟩𝑝 = 0,
then 𝑥 = 𝑎1 ∈ 𝐴 and, analogously, if 𝐶 ∩ ⟨𝑦⟩𝑝 = 0, then 𝑥 = 𝑎2 ∈ 𝐴. Thus we may
assume that 𝐴, 𝐵 and 𝐶 meet ⟨𝑦⟩𝑝 non-trivially. Consider ⟨𝑦⟩𝑝 as a left module over
the ring 𝐹𝑝[𝑡]∕ann(𝑦). As the class of cyclic restricted subalgebras is closed under
restricted subalgebras, there exist 𝑓, 𝑔, ℎ ∈ 𝐹𝑝[𝑡]∕ann(𝑦) such that

𝐴 ∩ ⟨𝑦⟩𝑝 = ⟨𝑓 ∗ 𝑦⟩𝑝, 𝐵 ∩ ⟨𝑦⟩𝑝 = ⟨𝑔 ∗ 𝑦⟩𝑝, 𝐶 ∩ ⟨𝑦⟩𝑝 = ⟨ℎ ∗ 𝑦⟩𝑝.

Since 𝐹𝑝[𝑡]∕ann(𝑦) is a commutative principal ideal domain, by relation (1.2.1) we
see that gcd(𝑓, 𝑔) = gcd(𝑓, ℎ) = 1 and so gcd(𝑓, 𝑔ℎ) = 1. Therefore there exist
𝜉, 𝜁 ∈ 𝐹𝑝[𝑡]∕ann(𝑦) such that 𝜉𝑓 + 𝜁𝑔ℎ = 1. Note that (𝑔ℎ) ∗ 𝑦 = (ℎ𝑔) ∗ 𝑦 ∈
𝐵 ∩ 𝐶 ∩ ⟨𝑦⟩𝑝. As a consequence, we get

𝑦 = (𝜉𝑓 + 𝜁𝑔ℎ) ∗ 𝑦 ∈
(

𝐴 ∩ ⟨𝑦⟩𝑝
)

+
(

𝐵 ∩ 𝐶 ∩ ⟨𝑦⟩𝑝
)

⊆ 𝐴 + (𝐵 ∩ 𝐶) .

Therefore 𝑥 ∈ ⟨𝑦⟩𝑝 ⊆ 𝐴 + (𝐵 ∩ 𝐶), which completes the proof.
Remark 1.2.7. In view of Example 1.2.4, the second part of Corollary 1.2.4 does not
hold when 𝐹 is an arbitrary perfect field of characteristic 𝑝 > 0.

We now deal with finite-dimensional 𝑝-nilpotent restricted Lie algebras. We have
the following result:
Theorem 1.2.8. Let𝐿 be a finite-dimensional 𝑝-nilpotent restricted Lie algebra. Then
the following conditions are equivalent:
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1. 𝐿 is distributive;

2. the lattice of restricted subalgebras of 𝐿 is a chain;

3. 𝐿 is nilcyclic.

Proof. Suppose first that the lattice of restricted subalgebras of 𝐿 is distributive.
By [164, Corollary 5.2(ii)] we have 𝜙𝑝(𝐿) = [𝐿,𝐿] + 𝐿[𝑝]. It follows that 𝐿∕𝜙𝑝(𝐿)
is strongly abelian and so every vector subspace of it is a restricted subalgebra. Con-
sequently, as the lattice of subalgebras of 𝐿∕𝜙𝑝(𝐿) is distributive, we must have
dim𝐿∕𝜙𝑝(𝐿) ≤ 1. Let 𝑠 ∈ 𝐿, 𝑠 ∉ 𝜙𝑝(𝐿). As the image of 𝑠 in 𝐿∕𝜙𝑝(𝐿) spans
𝐿∕𝜙𝑝(𝐿), it follows from [199, Lemma 3.1(2)] that 𝑠 generates𝐿 as a restricted ideal.
As 𝐿 is abelian (by Theorem 1.2.5), we conclude that 𝐿 is nilcyclic.

Now suppose that 𝐿 is nilcyclic and let 𝑥 be a generator of 𝐿. If 𝑛 is the minimal
integer such that 𝑥[𝑝]𝑛 = 0, then the restricted subalgebras of𝐿 are of the form ⟨𝑥[𝑝]𝑖⟩𝑝
for 𝑖 = 0, 1,… , 𝑛. In particular, the lattice of restricted subalgebras of 𝐿 is a chain
and so distributive, which completes the proof.

In the next result we consider 𝑝-nil restricted Lie algebras of arbitrary dimension.
We will prove that, up to isomorphism, the only infinite-dimensional 𝑝-nil restricted
Lie algebra with a distributive lattice of restricted subalgebras is 𝐶∞.
Corollary 1.2.9. Let 𝐿 be a 𝑝-nil restricted Lie algebra. Then 𝐿 is distributive if and
only if it is either nilcyclic or isomorphic to 𝐶∞.

Proof. By Theorem 1.2.8 the claim holds when 𝐿 is finite-dimensional. Suppose
then that𝐿 has infinite dimension. The condition is clearly sufficient, as the restricted
subalgebras are given by the chain 0 = 𝐶0 ⊊ 𝐶1 ⊊ 𝐶2 ⊊⋯ ⊊ 𝐶∞.

Conversely, suppose that 𝐿 is distributive. By Theorem 1.2.5 we have that 𝐿
is abelian and so, as it is 𝑝-nil, if 𝐻 is a finitely generated restricted subalgebra of
𝐿, then 𝐻 is 𝑝-nilpotent and has finite dimension 𝑛. Now, by Theorem 1.2.8, 𝐻 is
nilcyclic, and moreover, by Theorem 1.2.5, 𝐻 is the unique restricted subalgebra of
𝐿 of dimension 𝑛. This implies that 𝐿 ≃ 𝐶∞, and the claim follows at once.

For restricted Lie algebras defined over algebraically closed fields we have the
following result:
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Theorem 1.2.10. Let 𝐿 be a restricted Lie algebra over an algebraically closed field.
Then𝐿 is distributive if and only it is isomorphic to a restricted subalgebra of 𝑇 ⊕𝐶∞,
where 𝑇 is a one-dimensional torus.

Proof. Assume first that 𝐿 is distributive. We can suppose that 𝐿 is not 𝑝-nil, oth-
erwise the assertion immediately follows from Corollary 1.2.9. By Theorem 1.2.5
we know that 𝐿 is abelian, therefore the semisimple elements of 𝐿 form a torus 𝑇
(see [213, Chapter 2, Proposition 3.3(3)]) and the 𝑝-nilpotent elements form a 𝑝-nil
restricted subalgebra 𝑃 . We claim that every element of 𝐿 is 𝑝-algebraic. Suppose
to the contrary that there is an element ℎ ∈ 𝐿 that is not 𝑝-algebraic. Then ℎ gen-
erates a free restricted subalgebra 𝐻 . Since 𝐻∕⟨ℎ[𝑝]2 − ℎ⟩𝑝 is isomorphic to the
restricted Lie algebra of Example 1.2.4, we deduce that its lattice of restricted sub-
algebra is not distributive, a contradiction. As a consequence, by [213, Chapter 2,
Theorem 3.5], for every 𝑥 ∈ 𝐿 we can consider its Jordan-Chevalley decomposition,
i.e., 𝑥 = 𝑥𝑠 + 𝑥𝑛, where 𝑥𝑠 is semisimple, 𝑥𝑛 is 𝑝-nilpotent, and [𝑥𝑠, 𝑥𝑛] = 0. This
shows that 𝐿 = 𝑇 ⊕ 𝑃 . Suppose, if possible, that there exist two 𝐹 -linearly inde-
pendent elements 𝑥1 and 𝑥2 of 𝑇 . Since 𝐹 is algebraically closed, by [213, Chapter
2, Theorem 3.6] the finite-dimensional torus ⟨𝑥1, 𝑥2⟩𝑝 has a basis consisting of toral
elements. In particular, 𝐿 contains two distinct isomorphic minimal restricted subal-
gebras. This contradicts Theorem 1.2.5, and thus 𝑇 is one-dimensional. Moreover,
by Corollary 1.2.9 we have that 𝑃 is either nilcyclic or isomorphic to 𝐶∞. In any case,
𝐿 is isomorphic to a restricted subalgebra of 𝑇 ⊕ 𝐶∞.

Let us prove sufficiency. Since sublattices of a distributive lattice are again dis-
tributive, it is enough to prove that  (

𝑇 ⊕ 𝐶∞
) is distributive. Also, as 𝑇 ⊕ 𝐶∞ is

abelian, in view of Theorem 1.2.5 it suffices to show that for every restricted subal-
gebra 𝐻 of 𝑇 ⊕ 𝐶∞, (𝑇 ⊕ 𝐶∞

)

∕𝐻 does not contain distinct isomorphic minimal
restricted subalgebras. Suppose first that 𝐻 ⊈ 𝐶∞. As the ground field is alge-
braically closed, by [213, Chapter 2, Theorem 3.6(2)] we have 𝑇 = 𝐹𝑦 with 𝑦[𝑝] = 𝑦.
Let ℎ ∈ 𝐻 , ℎ ∉ 𝐶∞. Then we can write ℎ = 𝜆𝑦+ 𝜇𝑐 for some 𝑐 ∈ 𝐶∞ and 𝜆, 𝜇 ∈ 𝐹
with 𝜆 ≠ 0. For a sufficiently large 𝑛 we have ℎ[𝑝]𝑛 = 𝜆𝑝𝑛𝑦, which shows that both 𝑦
and 𝑐 are in 𝐻 . This entails that 𝐻 is of the form 𝐻 = 𝑇 ⊕ 𝑃 for some restricted
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subalgebra 𝑃 of 𝐶∞. It follows that (𝑇 ⊕ 𝐶∞
)

∕𝐻 is either zero or isomorphic to
𝐶∞, so it does not contain distinct isomorphic (minimal) restricted subalgebras. Now
suppose 𝐻 ⊆ 𝐶∞. Then (

𝑇 ⊕ 𝐶∞
)

∕𝐻 is either isomorphic to 𝑇 or to 𝑇 ⊕ 𝐶∞. In
the former case, the only restricted subalgebras are zero and 𝑇 . On the other hand,
for what we have proved above, the restricted subalgebras of 𝑇 ⊕ 𝐶∞ are either re-
stricted subalgebras of 𝐶∞ or of the form 𝑇 ⊕ 𝑃 for some restricted subalgebra 𝑃 of
𝐶∞. Since these restricted subalgebras are pairwise non-isomorphic, this completes
the proof.

A restricted Lie algebra 𝐿 is called complemented if for every restricted sub-
algebra 𝑋 there exists another restricted subalgebra 𝑌 such that 𝑋 ∩ 𝑌 = 0 and
⟨𝑋, 𝑌 ⟩𝑝 = 𝐿. The algebra 𝐿 is said to be Boolean if it is both distributive and com-
plemented.

Another consequence of Theorem 1.2.5 yields a characterisation of Boolean re-
stricted Lie algebras.

Corollary 1.2.11. A restricted Lie algebra 𝐿 is Boolean if and only 𝐿 ≃ ⊕𝐼∈𝐼 ,
where  is a family of pairwise non-isomorphic restricted Lie algebras each having
no non-zero proper restricted subalgebras.

Proof. Let us suppose first that 𝐿 is Boolean. By Theorem 1.2.5 we know that 𝐿 is
abelian, and therefore 𝐿 can be regarded as a left 𝐹 [𝑡, 𝜎]-module. As the restricted
subalgebras of 𝐿 are exactly the 𝐹 [𝑡, 𝜎]-submodules and 𝐿 is complemented, it fol-
lows that 𝐿 is a semisimple left 𝐹 [𝑡, 𝜎]-module. Hence 𝐿 is isomorphic to a direct
sum of restricted Lie algebras having no non-zero proper restricted subalgebras, and
by Theorem 1.2.5 these are pairwise non-isomorphic.

Now let us prove the converse. Notice that𝐿 is abelian, and thus it can be regarded
as a left 𝐹 [𝑡, 𝜎]-module. The hypothesis forces that such a module is semisimple.
Hence 𝐿 is complemented. Moreover, as the restricted Lie algebras in  are pairwise
non-isomorphic, every restricted subalgebra 𝐻 of ⊕𝐼∈𝐼 is of the form 𝐻 = ⊕𝐼∈𝐼
for some  ⊆  . Therefore 𝐿∕𝐻 does not contain distinct isomorphic minimal re-
stricted subalgebras and Theorem 1.2.5 allows to conclude that 𝐿 is Boolean, which
completes the proof.
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Remark 1.2.12. Let 𝐿 be a restricted Lie algebra. By the previous result and Propo-
sition 1.2.1 we deduce that 𝐿 is Boolean if and only if it is a direct sum of a family
of restricted Lie algebras of the form ∕⟨𝑓𝑖 ∗ 𝑥⟩𝑝, where  is a free restricted Lie
algebra generated by the element 𝑥 and {𝑓𝑖| 𝑖 ∈ 𝐼} is a family of irreducible skew
polynomials that are pairwise non-similar in the sense of [126, Section 3.4].

1.3 Dually atomistic restricted Lie algebras

We say that a restricted Lie algebra𝐿 is dually atomistic if every restricted subalgebra
of 𝐿 is an intersection of maximal restricted subalgebras of 𝐿. It is easy to see that if
𝐿 is dually atomistic then so is every factor algebra of 𝐿, and if 𝐿 is dually atomistic
then it is 𝜙𝑝-free.
Lemma 1.3.1. Let 𝐿 be a dually atomistic restricted Lie algebra. Then:

(i) 𝑁(𝐿) is abelian;

(ii) 𝑀 ∩ 𝑁(𝐿) is a restricted ideal of 𝐿 for every maximal restricted subalgebra
𝑀 of 𝐿; and

(iii) for every subspace 𝑆 of 𝑁(𝐿), ⟨𝑆⟩𝑝 is a restricted ideal of 𝐿.

Proof. (i) 𝑁(𝐿)2 ⊆ 𝜙𝑝(𝐿) = 0 by [215, Theorem 6.5] and [164, Theorem 3.5].
(ii) The result is clear if 𝑁(𝐿) ⊆ 𝑀 , so suppose that 𝑁(𝐿) ⊈ 𝑀 . Then 𝐿 =

𝑁(𝐿) +𝑀 and

[𝐿,𝑁(𝐿) ∩𝑀] = [𝑁(𝐿) +𝑀,𝑁(𝐿) ∩𝑀]

⊆ 𝑁(𝐿)2 +𝑁(𝐿) ∩𝑀2 ⊆ 𝑁(𝐿) ∩𝑀,

using (i).
(iii) By (i), every subspace of 𝑁(𝐿) is a subalgebra of 𝐿. Let 𝑆 be any subspace

of 𝑁(𝐿). Then

⟨𝑆⟩𝑝 = ⟨𝑆⟩𝑝 ∩𝑁(𝐿) =

(

⋂

𝑀∈
𝑀

)

∩𝑁(𝐿) =
⋂

𝑀∈
(𝑀 ∩𝑁(𝐿)),
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where  is the set consisting of all maximal restricted subalgebras of 𝐿 containing
⟨𝑆⟩𝑝. Therefore, ⟨𝑆⟩𝑝 is an intersection of restricted ideals of 𝐿, by (ii), and so is
itself a restricted ideal of 𝐿.
Proposition 1.3.2. Let 𝐿 be a dually atomistic restricted Lie algebra over an alge-
braically closed field 𝐹 . Then 𝐿 is solvable or semisimple.

Proof. Suppose that 𝐿 is not semisimple. Then 𝐿 = 𝑁(𝐿)+̇𝐵 = 𝐴1 ⊕⋯⊕𝐴𝑛+̇𝐵,
where 𝐵 is a restricted subalgebra of 𝐿 and 𝐴1⊕⋯⊕𝐴𝑛 = 𝐴𝑝𝑠𝑜𝑐(𝐿) ≠ 0, by [164,
Theorems 3.4 and 4.2]. If 𝐵 = 0, 𝐿 is nilpotent and we are done. Assume therefore
that 𝐵 ≠ 0.

Suppose first that 𝑁(𝐿) = 𝑍(𝐿). Then, 𝐿 = 𝑍(𝐿)⊕ 𝐵 and 𝐿2 ⊆ 𝐵. Then we
must have that 𝑁(𝐿) = 𝑅(𝐿), for, otherwise, there is a minimal ideal 𝐴∕𝑁(𝐿) of
𝐿∕𝑁(𝐿) with 𝐴 ⊆ 𝑅(𝐿). But 𝐴 is nilpotent, which is a contradiction. Thus, 𝐵 is
semisimple and 𝑍(𝐿) ≠ 0. Let 𝑀 be a maximal restricted subalgebra of 𝐿. If 𝑍(𝐿)
is not contained in 𝑀 then 𝑀 + 𝑍(𝐿) is a restricted subalgebra properly containing
𝑀 , so 𝐿 =𝑀 +𝑍(𝐿) and ⟨𝐵2

⟩𝑝 = ⟨𝐿2
⟩𝑝 ⊆ 𝑀 , since 𝐿2 ⊆ 𝑀 and 𝑀 is restricted.

Hence, either 𝑍(𝐿) or ⟨𝐵2
⟩𝑝 is inside 𝑀 .

Let 𝑧 ∈ 𝑍(𝐿) and 𝑏 ∈ ⟨𝐵2
⟩𝑝, and let 𝑀 be a maximal restricted subalgebra

containing ⟨𝑧 + 𝑏⟩𝑝. Then 𝑧, 𝑏 ∈ 𝑀 , so we must have ⟨𝑧⟩𝑝 + ⟨𝑏⟩𝑝 = ⟨𝑧 + 𝑏⟩𝑝.
But then 𝑏 =

∑𝑛
𝑖=0 𝜆𝑖(𝑏

[𝑝]𝑖 + 𝑧[𝑝]𝑖), so 𝑏 =
∑𝑛
𝑖=0 𝜆𝑖𝑏

[𝑝]𝑖 and ∑𝑛
𝑖=0 𝜆𝑖𝑧

[𝑝]𝑖 = 0. If 𝑏
is not semisimple, then 𝜆0 = 1 which implies that 𝑧 is semisimple, from the second
sum. This must hold for every choice of 𝑧 ∈ 𝑍(𝐿), so 𝑍(𝐿) is a toral subalgebra
of 𝐿, by [213, Chapter 2, Theorem 3.10]. A similar argument shows that if 𝑧 is not
semisimple then every 𝑏 must be, in which case ⟨𝐵2

⟩𝑝 is a torus of 𝐿. Hence, either
𝑍(𝐿) or ⟨𝐵2

⟩𝑝 is toral. In the latter case, ⟨𝐵2
⟩𝑝 is abelian, contradicting the fact that

𝐵 is semisimple. In the former case, both 𝑍(𝐿) and ⟨𝐵2
⟩𝑝 have a toral element: 𝑧

and 𝑏, say. But then ⟨𝑧⟩𝑝 + ⟨𝑏⟩𝑝 = 𝐹𝑧 + 𝐹𝑏 ≠ 𝐹 (𝑧 + 𝑏) = ⟨𝑧 + 𝑏⟩𝑝, a contradiction.
Therefore, suppose that𝑁(𝐿) ≠ 𝑍(𝐿). Then there is a minimal restricted ideal𝐴

with𝐴 ⊆ 𝑁(𝐿) and𝐴∩𝑍(𝐿) = 0. Moreover, if 𝑎 ∈ 𝐴, we have that 𝑎[𝑝] ∈ 𝐴∩𝑍(𝐿),
so 𝐴 = 𝐹𝑎 with 𝑎[𝑝] = 0, by Lemma 1.3.1(iii). Let 𝑀 be a maximal restricted
subalgebra of 𝐿 such that 𝑎 ∉ 𝑀 . We have 𝐿 = 𝑀+̇𝐴, by [164, Lemma 2.1], so
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𝑀 has codimension 1 in 𝐿, and, as in Proposition 1.1.2, ⟨𝐿(∞)
⟩𝑝 ⊆ 𝑀 . It follows

that ⟨𝐿(∞)
⟩𝑝 ∩ 𝐴 = 0. Choose 𝑥 ∈ ⟨𝐿(∞)

⟩𝑝. Then [𝑥, 𝑎] ∈ 𝐿(∞) ∩ 𝐴 = 0. If
⟨𝑥 + 𝑎⟩𝑝 = ⟨𝑥⟩𝑝 + ⟨𝑎⟩𝑝, then we have 𝑎 =

∑𝑛
𝑖=0 𝜆𝑖(𝑥 + 𝑎)[𝑝]𝑖 =

∑𝑛
𝑖=0 𝜆𝑖𝑥

[𝑝]𝑖 + 𝜆0𝑎.
Hence 𝜆0 = 1 and 𝑥 is semisimple. It follows from [213, Chapter 2, Theorem 3.10]
that ⟨𝐿(∞)

⟩𝑝 is abelian. But this means that 𝐿 is solvable.

Proposition 1.3.3. Let 𝐿 be a solvable restricted Lie algebra over any field 𝐹 . If 𝐿
is dually atomistic then

𝐿 ≃
(

∕⟨𝑓1⟩𝑝 ⊕⋯⊕ ∕⟨𝑓𝑟⟩𝑝 ⊕ 𝐹𝑥𝑟+1 ⊕⋯⊕ 𝐹𝑥𝑛
)

+̇𝐹𝑏,

where 𝑟 ≥ 0, but 𝑟 ≠ 𝑛, 𝑏 is toral,  = ⟨𝑥⟩𝑝 is a free cyclic restricted Lie algebra
and 𝑓𝑖 =

∑𝑚𝑖
𝑘=0 𝜆𝑘𝑥

[𝑝]𝑘 is an element of  such that 𝑓𝑖 =
∑𝑚𝑖
𝑘=0 𝜆𝑘𝑡

𝑘 is an irreducible
element of the ring 𝐹 [𝑡, 𝜎].

Proof. The nilradical 𝑁(𝐿) is non-zero and abelian by Lemma 1.3.1(i). As 𝐿 is 𝜙𝑝-
free, 𝐿 = 𝑁(𝐿)+̇𝐵 for some restricted subalgebra 𝐵 of 𝐿, and𝑁(𝐿) = 𝐴𝑝𝑠𝑜𝑐(𝐿) =∶
𝐴, by [164, Theorems 3.4 and 4.2]. Let 𝑎 ∈ 𝐴. Then 𝐶𝐵(𝐴) is a restricted ideal of 𝐿
and 𝐶𝐵(𝐴) ∩ 𝐴 = 0, so 𝐶𝐵(𝐴) = 0 and 𝐵 acts faithfully on 𝐴. Also ad2(𝑎) = 0 and
so ad

(

𝑎[𝑝]
)

= 0, whence 𝑎[𝑝] ∈ 𝑍(𝐿) for all 𝑎 ∈ 𝐴.
We can write𝐴 = 𝐴1⊕⋯⊕𝐴𝑛, where𝐴𝑖 is an minimal abelian restricted ideal of

𝐿 for 1 ≤ 𝑖 ≤ 𝑛. Moreover, 𝐴𝑖 ≃ ∕⟨𝑓𝑖⟩𝑝, where 𝑓𝑖 = ∑𝑚𝑖
𝑘≥0 𝜆𝑘𝑥

[𝑝]𝑘 is an element of
 such that 𝑓𝑖 = ∑𝑚𝑖

𝑘≥0 𝜆𝑘𝑡
𝑘 is an irreducible element of the ring 𝐹 [𝑡, 𝜎], by Lemma

1.3.1(iii) and Proposition 1.2.1. Let 𝐴1 ⊕ ⋯ ⊕ 𝐴𝑟 = 𝑍(𝐿), where 𝑟 ≥ 0. Since
𝐵 acts faithfully on 𝐴, we cannot have 𝑟 = 𝑛. Then [𝐵,𝐴] = 𝐴𝑟+1 ⊕ ⋯ ⊕ 𝐴𝑛 =
𝐹𝑥𝑟+1 ⊕⋯ ⊕ 𝐹𝑥𝑛. Now 𝐶𝐵(𝑥𝑖) is a restricted ideal of 𝐿, so 𝐶𝐵(𝑥𝑖) = 0 for each
𝑟 + 1 ≤ 𝑖 ≤ 𝑛. Let 𝑏1, 𝑏2 ∈ 𝐵. Then [𝑏𝑖, 𝑥𝑛] = 𝜆𝑖𝑥𝑛 for some 0 ≠ 𝜆𝑖 ∈ 𝐹 , 𝑖 = 1, 2.
But then [𝜆2𝑏1 − 𝜆1𝑏2, 𝑥𝑛] = 0, whence 𝑏1 and 𝑏2 are linearly dependent and 𝐵 is
one-dimensional. Choose 𝐵 = 𝐹𝑏 such that [𝑏, 𝑥𝑛] = 𝑥𝑛. Let 𝑏[𝑝] = 𝜇𝑏. Then

𝑥𝑛 = [𝑏[𝑝], 𝑥𝑛] = 𝜇[𝑏, 𝑥𝑛] = 𝜇𝑥𝑛,

so 𝜇 = 1 and 𝑏 is toral.
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We introduce another piece of notation before presenting the following results.
We say that a Lie algebra is restricted dually atomistic if it is restricted and every
subalgebra is an intersection of maximal subalgebras.
Proposition 1.3.4. Let 𝐿 be a perfect restricted dually atomistic Lie algebra. Then
every subalgebra of 𝐿 is restricted.

Proof. Arguing as in [164, Lemma 3.7], it is immediate to prove that every maximal
subalgebra of 𝐿 is self-idealising. It follows from [164, Lemma 3.9] that every maxi-
mal subalgebra of𝐿 is restricted. The result now follows from the fact that𝐿 is dually
atomistic.
Theorem 1.3.5. There are no perfect restricted dually atomistic Lie algebras over an
algebraically closed field.

Proof. Suppose that 𝐿 is a counterexample of minimal dimension. Proposition 1.3.4
yields that 𝐿 is simple as a Lie algebra, and hence its absolute toral rank is just the
dimension of a maximal torus 𝑇 . Given two linearly independent elements 𝑥, 𝑦 ∈ 𝑇 ,
Proposition 1.3.4 forces 0 ≠ (𝑥 + 𝜆𝑦)[𝑝] ∈ 𝐹 (𝑥 + 𝜆𝑦) for all 𝜆 ∈ 𝐹 , but this cannot
happen since 𝐹 is algebraically closed. Hence, 𝐿 has absolute toral rank 1.

Now, if 𝐹 has characteristic 𝑝 = 2, 3, then [211, Theorem 6.5] yields that 𝐿 is
solvable or isomorphic to 𝔰𝔩(2, 𝐹 ) or to 𝔭𝔰𝔩(3, 𝐹 ). Otherwise, 𝐿 has a restricted sub-
algebra with a quotient isomorphic to 𝔰𝔩(2, 𝐹 ), by Lemma 1.1.3 and Proposition 1.3.4.
But both 𝔰𝔩(2, 𝐹 ) and 𝔭𝔰𝔩(3, 𝐹 ) have elements which are neither semisimple nor 𝑝-
nilpotent, which clearly contradicts Proposition 1.3.4.

As well as the three-dimensional non-split simple Lie algebra, which is dually
atomistic in the characteristic zero case, there exist other perfect dually atomistic sim-
ple restricted Lie algebras over a perfect field which is not algebraically closed. For
example, let𝐿 be the seven-dimensional simple Lie algebra over a perfect field of char-
acteristic 3 constructed by Gein in [93, Example 2]. This algebra 𝐿 can be endowed
with a [𝑝]-map such that every element is semisimple. Any two linearly independent
elements of 𝐿 generate a three-dimensional non-split restricted subalgebra which is
maximal in 𝐿. Any second-maximal restricted subalgebra is then one-dimensional,
and every one-dimensional restricted subalgebra 𝑋 is inside more than one maximal
restricted subalgebra whose intersection is 𝑋.
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We finish this section by studying the so-called atomistic restricted Lie algebras,
those in which every restricted subalgebra is generated by minimal restricted subal-
gebras.
Proposition 1.3.6. A restricted Lie algebra 𝐿 over an algebraically closed field is
atomistic if and only if every 𝑝-nilpotent cyclic restricted subalgebra is one-dimension-
al.

Proof. Note that 𝐿 is atomistic if and only if all its cyclic restricted subalgebras are
atomistic. Consider the cyclic restricted subalgebra 𝐶 , whose semisimple elements
form a torus 𝑇 , and whose 𝑝-nilpotent elements form a 𝑝-nilpotent restricted subal-
gebra 𝑃 . By [213, Chapter 2, Theorem 3.6], 𝑇 is atomistic. From [213, Chapter 2,
Theorem 3.5], it follows that 𝐶 = 𝑇 ⊕ 𝑃 , so 𝐶 is atomistic if and only if 𝑃 is atom-
istic. But this is equivalent to requiring that dim𝑃 = 1 by Theorem 1.2.8. The result
follows.

1.4 Restricted quasi-ideals

A restricted subalgebra𝑋 of𝐿 is called a restricted quasi-ideal of𝐿 if [𝑋, 𝑌 ] ⊆ 𝑋+𝑌
for all restricted subalgebras 𝑌 of 𝐿. Clearly, every restricted subalgebra that is a
quasi-ideal is also a restricted quasi-ideal.
Lemma 1.4.1. If 𝑋 is a restricted subalgebra of 𝐿, then 𝑋𝐿 is a restricted ideal of
𝐿.

Proof. Simply note that (𝑋𝐿
)[𝑝] is an ideal of 𝐿 inside 𝑋.

Proposition 1.4.2. Let 𝐿 be a restricted Lie algebra over a perfect field. Then, 𝐿[𝑝]

is a restricted quasi-ideal if and only if it is an ideal of 𝐿.

Proof. Suppose that 𝐿[𝑝] is a restricted quasi-ideal of 𝐿. Then, for all 𝑥 ∈ 𝐿

[𝐿[𝑝], 𝑥] ⊆ 𝐿[𝑝] + ⟨𝑥⟩𝑝 = 𝐿[𝑝] + 𝐹𝑥,

so 𝐿[𝑝] is a quasi-ideal. Suppose that 𝐿[𝑝] is not an ideal of 𝐿, and factor out (𝐿[𝑝])

𝐿,
so we can assume that 𝐿[𝑝] is core-free. Then, by [11, Theorem 3.6], there are three
possibilities which we will consider in turn.
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Suppose first that 𝐿[𝑝] has codimension 1 in 𝐿. Define (

𝐿[𝑝])

𝑖 as in [12, (5)].
Then every element 𝑥 ∈ 𝐿 can be written as 𝑥 = 𝑥𝑠+𝑥𝑛, where 𝑥𝑠 is semisimple and
𝑥𝑛 is 𝑝-nilpotent, by [213, Theorem 3.5]. Moreover, all semisimple elements belong
to 𝐿[𝑝], so 𝐿 = 𝐿[𝑝] + 𝐹𝑥 for some 𝑝-nilpotent element 𝑥. Suppose that 𝑥[𝑝]𝑘 = 0.
Now (

𝐿[𝑝])

𝑖 =
{

𝑦 ∈ 𝐿[𝑝] ∣ [𝑦,𝑖 𝑥] ∈ 𝐿[𝑝]} for 𝑖 ≥ 0, by [12, Lemma 2.1(b)]. Hence
[𝑦,𝑝ℎ 𝑥] = [𝑦, 𝑥[𝑝]ℎ] = 0 for ℎ ≥ 𝑘. Also, (𝐿[𝑝])

0 = 𝐿[𝑝] and (

𝐿[𝑝])

𝑖+1 ⊆
(

𝐿[𝑝])

𝑖 for
𝑖 ≥ 0, so 0 =

(

𝐿[𝑝])

𝐿 = ∩∞
𝑖=0

(

𝐿[𝑝])

𝑖 = 𝐿[𝑝], by [12, Lemma 2.1], contradicting the
fact that 𝐿[𝑝] is not an ideal of 𝐿.

On the other hand, [11, Theorem 3.6(c)] cannot hold, as the three-dimensional
simple Lie algebra 𝑊 (1, 2)2 over a field of characteristic 2 is not restrictable. To see
this simply note that the derivation ad2(𝑥) is not inner.

Finally, suppose that [11, Theorem 3.6(d)] holds. Then 𝐿 = 𝐿2+𝐹𝑦where ad(𝑦)
acts as the identity map on 𝐿2 and 𝐿[𝑝] = 𝐹𝑦. Let 𝑥 ∈ 𝐿2. We have ad𝑝(𝑦) = ad(𝑦)
and ad𝑝(𝑥) = 0 for every 𝑥 ∈ 𝐿2. Therefore, as 𝐿 is centreless, the 𝑝-map of 𝐿
is determined by the conditions 𝑦[𝑝] = 𝑦 and 𝑥[𝑝] = 0. This implies 𝐿[𝑝] = 𝐿, a
contradiction.

The converse is straightforward.
Proposition 1.4.3. Let 𝐿 be a restricted Lie algebra such that every restricted subal-
gebra of 𝐿 is a restricted quasi-ideal. Then 𝐿2 ⊆ 𝐿[𝑝]. It follows that 𝐿3 = 𝐿𝑝+1; in
particular, if 𝐿 is nilpotent, then 𝐿 has nilpotency class at most 2.

Proof. By Proposition 1.4.2, 𝐿[𝑝] is a restricted ideal. Factor out 𝐿[𝑝], so we can
assume that 𝐿[𝑝] = 0. Then every subalgebra of 𝐿 is a quasi-ideal. If 𝐿 is not abelian
then it is almost abelian, by [11, Theorem 3.8], so 𝐿 = 𝐿2 + 𝐹𝑦, where ad(𝑦) acts as
the identity map on 𝐿2. But then, if 0 ≠ 𝑥 ∈ 𝐿2, 0 = [𝑦[𝑝], 𝑥] = 𝑥, a contradiction.
It follows that 𝐿2 = 0. If 𝑝 ≠ 2, we are done. Assume then that 𝑝 = 2, and suppose,
by contradiction, that 𝐿 has nilpotency class 𝑛 > 2. Set 𝐻 = 𝐿∕𝐶𝑛−3(𝐿), which has
nilpotency class 3. By [14, Chapter 16, Proposition 1.1],𝐻 does not satisfy the second
Engel condition, and therefore there exist 𝑥, 𝑦 ∈ 𝐻 such that [𝑥, 𝑦[2]] = [[𝑥, 𝑦], 𝑦] ≠ 0.
Set 𝑥̃, 𝑦̃ to be preimages of 𝑥, 𝑦 in 𝐿, and note that 𝑥̃[2]2 , 𝑦̃[2]2 , [𝑥̃[2], 𝑦̃[2]] ∈ 𝐶𝑛−3(𝐿).
Then, by hypothesis we can write [𝑥, 𝑦[2]] = 𝜆1𝑥 + 𝜆2𝑥[2] + 𝜆3𝑦[2] for some 𝜆𝑖 ∈ 𝐹 ,
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𝑖 = 1, 2, 3. Also we have that [[𝑥, 𝑦[2]], 𝑧] = 0 for any 𝑧 ∈ 𝐻 . Taking 𝑧 = 𝑦[2], we
obtain that 𝜆1 = 0; taking 𝑧 = 𝑥, that 𝜆3 = 0; and taking 𝑧 = 𝑦, that [𝑥[2], 𝑦] = 0.
Now, write [𝑥, 𝑦] = 𝜆4𝑥+𝜆5𝑥[2]+𝜆6𝑦+𝜆7𝑦[2], for some 𝜆𝑖 ∈ 𝐹 , 𝑖 = 4,… , 7. But then
[𝑥, 𝑦[2]] = [[𝑥, 𝑦], 𝑦] = 𝜆4[𝑥, 𝑦], and 0 = [[𝑥, 𝑦], 𝑦[2]] = 𝜆4[𝑥, 𝑦[2]]. Consequently,
𝜆4 = 0, a contradiction.
Lemma 1.4.4. Let 𝐿 be a restricted Lie algebra over an algebraically closed field
in which every restricted subalgebra is a restricted quasi-ideal. If 𝐻 is a Cartan
subalgebra of 𝐿, then 𝐿 has root space decomposition

𝐿 = 𝐻+̇
(

⊕𝛼∈Φ
(

𝐿𝛼+̇𝐿−𝛼
)

⊕𝛽∈Ψ 𝐿𝛽
)

,

where Φ is the set of roots 𝛼 for which −𝛼 is also a root, and Ψ is the remaining set
of roots.

Proof. Let 𝑇 be a maximal torus, 𝐻 = 𝐶𝐿(𝑇 ) and let 𝐿 = 𝐻+̇𝛼∈Π𝐿𝛼 be the corre-
sponding root space decomposition. Then

[𝑥𝛼, 𝑥𝛽] = 𝜆𝑥𝛼 + 𝜇𝑥𝛽 + ℎ for some ℎ ∈ 𝐻,

since 𝐿[𝑝]
𝛼 ⊆ 𝐻 for all 𝛼 ∈ Π, by [213, Corollary 4.3]. But [𝐿𝛼, 𝐿𝛽] ⊆ 𝐿𝛼+𝛽 , so,

either [𝐿𝛼, 𝐿𝛽] = 0 or [𝐿𝛼, 𝐿𝛽] ⊆ 𝐻 and 𝛼 + 𝛽 = 0. If [𝐿𝛼, 𝐿𝛽] = 0 for 𝛼 ≠ 𝛽 then
[𝐿−𝛼, 𝐿𝛽] = 0 also, giving the root space decomposition claimed.

From now on assume that every restricted subalgebra of 𝐿 is a restricted quasi-
ideal of 𝐿. Let 𝑆 be the subspace spanned by the semisimple elements of 𝐿 and
let 𝑃 be the subspace spanned by the 𝑝-nilpotent elements of 𝐿. Then 𝑆 and 𝑃 are
subalgebras of𝐿, since [𝑥, 𝑦] ∈ ⟨𝑥⟩𝑝+⟨𝑦⟩𝑝, and, if𝐹 is perfect,𝐿 = 𝑆+𝑃 . Moreover,
both are restricted, since

(𝜆𝑥 + 𝜇𝑦)[𝑝] = 𝜆𝑝𝑥[𝑝] + 𝜇𝑝𝑦[𝑝] +
𝑝−1
∑

𝑖=1
𝑠𝑖(𝑥, 𝑦),

and 𝑥[𝑝], 𝑦[𝑝] are semisimple/𝑝-nilpotent if 𝑥, 𝑦 are, and 𝑠𝑖(𝑥, 𝑦) ∈ ⟨𝑥, 𝑦⟩𝑝.
Restricted Lie algebras over perfect fields all of whose restricted subalgebras are

ideals were characterised in [207]. The next proposition addresses a similar issue for
restricted quasi-ideals, with the additional condition of 𝐿 been nilpotent.
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Proposition 1.4.5. Let 𝐿 be a nilpotent restricted Lie algebra over a perfect field.
Then every restricted subalgebra of 𝐿 is a restricted quasi-ideal of 𝐿 if and only if
𝐿 = 𝑇 ⊕ 𝑃 , where 𝑇 is a torus and 𝑃 is a 𝑝-nilpotent ideal in which every restricted
subalgebra is a restricted quasi-ideal.

Proof. Suppose that every restricted subalgebra of 𝐿 is a restricted quasi-ideal of 𝐿.
By Proposition 1.4.3, 𝐿3 = 0 and 𝐿[𝑝] ⊆ 𝑍(𝐿). Then, for all 𝑥, 𝑦 ∈ 𝐿, (𝑥 + 𝑦)[𝑝] =
𝑥[𝑝] + 𝑦[𝑝], so 𝑆, 𝑃 are just the sets of semisimple and 𝑝-nilpotent elements of 𝐿
respectively. Take 𝑇 = 𝑆. Then 𝑇 ∩𝑃 = 0 and 𝑇 ⊆ 𝑍(𝐿). It follows that𝐿 = 𝑇 ⊕𝑃
and that 𝑇 is a torus.

The converse is straightforward.
Corollary 1.4.6. Let𝐿 be a restricted Lie algebra over an algebraically closed field of
characteristic different from 2 in which every restricted subalgebra of𝐿 is a restricted
quasi-ideal of 𝐿. Then 𝐿 has a Cartan subalgebra 𝐻 such that 𝐻 = 𝑇 ⊕𝑃 where 𝑇
is a torus and 𝑃 is the set of p-nilpotent elements in 𝐻 , and 𝐿 = 𝑇 +̇𝑁 where 𝑁 is
an ideal, 𝑁3 = 0 and 𝑁 [𝑝] ⊆ 𝑍(𝐻).

Proof. We have that 𝐿 has the form given in Lemma 1.4.4 and 𝐻 = 𝑇 ⊕ 𝑃 , by
Proposition 1.4.5. Now 𝐿2

𝛼 = 𝐿2
−𝛼 = 𝐿2

𝛽 = 0 since 2𝛼, −2𝛼 and 2𝛽 are not roots. For
everyℎ ∈ 𝐻 , 𝛼 ∈ Π = Φ∪Ψ, we have that [ℎ, 𝑥𝛼] ∈

(

⟨ℎ⟩𝑝 + ⟨𝑥𝛼⟩𝑝
)

∩𝐿𝛼, so [ℎ, 𝑥𝛼] =
𝜆𝑥𝛼 for some 𝜆 ∈ 𝐹 ; that is, ℎ acts semisimply on 𝐿𝛼. Also 𝛼

(

𝑥[𝑝]𝛼
)

= 0, by [213,
Chapter 2, Corollary 4.3 (4)]. It follows that [𝑥[𝑝]𝛼 , 𝑥−𝛼] = 0. Similarly, [𝑥[𝑝]−𝛼, 𝑥𝛼] = 0.
Now [𝑥𝛼, 𝑥−𝛼] ∈ ⟨𝑥[𝑝]𝛼 ⟩𝑝 + ⟨𝑥[𝑝]−𝛼⟩𝑝, so, if 𝑁 = 𝑃 +

∑

𝛼∈Φ
(

𝐿𝛼 + 𝐿−𝛼
)

+
∑

𝛽∈Ψ𝐿𝛽 we
have 𝑁3 = 0 and 𝑁 [𝑝] ⊆ 𝑍(𝐻).

1.5 J-algebras and lower semimodular restricted Lie alge-
bras

For this section, it will be useful to handle the following result.
Lemma 1.5.1. Let 𝐿 be a restricted Lie algebra over an algebraically closed field. If
𝐿 is supersolvable, then 𝐿 admits a complete flag made up of restricted ideals of 𝐿.
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Proof. Plainly, it is enough to show that 𝐿 has a one-dimensional restricted ideal,
from which the conclusion will follow by induction. Suppose dim𝐿 > 1, the claim
being trivial otherwise. Consider a complete flag

0 = 𝐿0 ⊊ 𝐿1 ⊊⋯ ⊊ 𝐿𝑛 = 𝐿

of ideals of 𝐿. If the ideal 𝐿1 is restricted, then we are done. Thus we can suppose
that there exists 𝑥 ∈ 𝐿1 such that 𝑥[𝑝] ∉ 𝐿1. As 𝐿1 is an abelian ideal, the restricted
subalgebra𝐻 generated by 𝑥[𝑝] is contained in the centre of 𝐿. Since the ground field
is algebraically closed, by [213, Chapter 2, Theorem 3.6] we see that 𝐻 contains a
toral element 𝑡. We conclude that 𝐼 = 𝐹 𝑡 is a one-dimensional restricted ideal of 𝐿,
as desired.

Note that the assumption that the ground field is algebraically closed is essential
for the validity of Lemma 1.5.1. In fact, over arbitrary fields of positive characteristic,
there can be cyclic restricted Lie algebras of arbitrary dimension with no non-zero
proper restricted subalgebras, as Proposition 1.2.1 shows.

Let 𝐿 be a restricted Lie algebra. A restricted subalgebra 𝑋 of 𝐿 is called lower
semimodular in 𝐿 if 𝑋 ∩ 𝑌 is maximal in 𝑌 for every restricted subalgebra 𝑌 of 𝐿
such that 𝑋 is maximal in ⟨𝑋, 𝑌 ⟩𝑝. We say that 𝐿 is lower semimodular if every
restricted subalgebra of 𝐿 is lower semimodular in 𝐿.

If 𝑋, 𝑌 are restricted subalgebras of 𝐿 with 𝑋 ⊆ 𝑌 , a J-series (or Jordan-
Dedekind series) for (𝑋, 𝑌 ) is a series

𝑋 = 𝑋0 ⊊ 𝑋1 ⊊⋯ ⊊ 𝑋𝑟 = 𝑌

of restricted subalgebras such that 𝑋𝑖 is a maximal subalgebra of 𝑋𝑖+1 for 0 ≤ 𝑖 ≤
𝑟 − 1. This series has length equal to 𝑟. We shall call 𝐿 a J-algebra if, whenever 𝑋
and 𝑌 are restricted subalgebras of 𝐿 with 𝑋 ⊆ 𝑌 , all 𝐽 -series for (𝑋, 𝑌 ) have the
same finite length, 𝑑(𝑋, 𝑌 ). Put 𝑑(𝐿) = 𝑑(0, 𝐿).
Proposition 1.5.2. For a solvable restricted Lie algebra 𝐿 over an algebraically
closed field, the following are equivalent:

(i) 𝐿 is lower semimodular;

(ii) 𝐿 is a 𝐽 -algebra; and

(iii) 𝐿 is supersolvable.
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Proof. (i)⇒(ii): This is just a lattice theoretic result (see [26, Theorem V3]).
(ii)⇒(iii): We first show by induction on dim𝐿 that there exists a series of restricted
subalgebras from zero to 𝐿 having length dim𝐿. Suppose 𝐿 ≠ 0. As 𝐿 is solv-
able, it follows from [213, Section 2.1, Exercise 2] that ⟨𝐿(1)

⟩𝑝 ≠ 𝐿, so the inductive
hypothesis ensures the existence of a series of restricted subalgebras

𝑋 = 𝑋0 ⊊ 𝑋1 ⊊⋯ ⊊ 𝑋𝑟 = ⟨𝐿(1)
⟩𝑝

with dim𝑋𝑖 = 𝑖 for all 0 ≤ 𝑖 ≤ 𝑟. Moreover, as 𝐿∕⟨𝐿(1)
⟩𝑝 is abelian, Lemma 1.5.1

yields the claim.
Now, by hypothesis, all 𝐽 -series of restricted subalgebras from zero to 𝐿 have

length dim𝐿, and consequently all maximal restricted subalgebras have codimension
1 in 𝐿. On the other hand, if 𝑀 is a maximal subalgebra of 𝐿 which is not restricted,
then pick an element 𝑥 of 𝑀 such that 𝑥[𝑝] ∉ 𝑀 . Then 𝑀 + 𝐹𝑥[𝑝] is a subalgebra
of 𝐿 properly containing 𝑀 , so 𝑀 + 𝐹𝑥[𝑝] = 𝐿 by the maximality of 𝑀 . Therefore,
every maximal subalgebra has codimension 1 in 𝐿, which allows to conclude that 𝐿
is supersolvable, by [19, Theorem 7].

(iii)⇒(i): Let 𝑋, 𝑌 be restricted subalgebras of 𝐿 such that 𝑋 is maximal in
⟨𝑋, 𝑌 ⟩𝑝. By Lemma 1.5.1, 𝑋 has codimension 1 in ⟨𝑋, 𝑌 ⟩𝑝, which forces ⟨𝑋, 𝑌 ⟩𝑝 =
𝑋 + 𝑌 . It follows that dim (𝑌 ∕(𝑋 ∩ 𝑌 )) = dim ((𝑋 + 𝑌 )∕𝑋) = 1, whence 𝑋 ∩ 𝑌 is
maximal in 𝑌 , completing the proof.

Note that the assumption of solvability is actually needed in the previous result.
In fact, consider the restricted Lie algebra 𝐿 = 𝔰𝔩(2, 𝐹 ) over an algebraically closed
field 𝐹 of characteristic 𝑝 > 2. Then all 𝐽 -series of restricted subalgebras of 𝐿 have
length 3, despite the fact that 𝐿 is simple.

1.6 Upper semimodular restricted Lie algebras

Let 𝐿 be a restricted Lie algebra. We say that a restricted subalgebra𝑋 of a restricted
Lie algebra 𝐿 is upper semimodular in 𝐿 if 𝑋 is maximal in ⟨𝑋, 𝑌 ⟩𝑝 for every re-
stricted subalgebra 𝑌 of 𝐿 such that 𝑋 ∩ 𝑌 is maximal in 𝑌 . The restricted Lie
algebra 𝐿 is called upper semimodular if all of its restricted subalgebras are upper
semimodular in 𝐿.
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This section is devoted to study the structure of upper semimodular restricted Lie
algebras over algebraically closed fields. In particular, our main aim of this section is
to prove the following result:
Theorem 1.6.1. Let 𝐿 be a restricted Lie algebra over an algebraically closed field.
The following conditions are equivalent:

(i) 𝐿 is upper semimodular;

(ii) 𝐿 is modular;

(iii) every restricted subalgebra of 𝐿 is a restricted quasi-ideal.

Moreover, if one of the previous statements holds, then 𝐿 is either almost abelian or
nilpotent of class at most 2.

We start with some preliminary results.
Let 𝐿 be an almost abelian Lie algebra over a field 𝐹 of characteristic 𝑝 > 0.

Suppose that 𝐿 = 𝐴+̇𝐹𝑥, where 𝐴 is an abelian ideal and 𝑥 acts as the identity map
on 𝐴. It is immediate to check that 𝐿 is restrictable and also centreless, so it admits
a unique 𝑝-map by [213, Chapter 2, Corollary 2.2]. Explicitly, this 𝑝-map is given by
𝑎[𝑝] = 0 for all 𝑎 ∈ 𝐴 and 𝑥[𝑝] = 𝑥.
Lemma 1.6.2. Let 𝐿 be an upper semimodular restricted Lie algebra over an alge-
braically closed field. If 𝐿 is generated by two distinct one-dimensional restricted
subalgebras 𝑋 and 𝑌 , then 𝐿 is two-dimensional.

Proof. Let 𝑍 be a non-zero proper restricted subalgebra of 𝐿. Assume first that 𝑋 ⊆
𝑍, 𝑌 ⊈ 𝑍. As𝑋∩𝑌 = 0 is maximal in 𝑌 ,𝑋 must be maximal in𝐿, yielding𝑍 = 𝑋.
Assume now that 𝑋, 𝑌 ⊈ 𝑍 and take a one-dimensional restricted subalgebra 𝑍′ of
𝑍. By the previous case, ⟨𝑋,𝑍′

⟩𝑝 = 𝐿. Since 𝑋 ∩ 𝑍′ = 0 is maximal in 𝑋, 𝑍′ is
maximal in 𝐿 and 𝑍 = 𝑍′. Thus, all non-zero proper restricted subalgebras of 𝐿 are
one-dimensional, and it follows from [240, Lemma 1.6] that 𝐿 is two-dimensional.

Lemma 1.6.3. Let𝐿 be a non-abelian upper semimodular restricted Lie algebra over
an algebraically closed field generated by three one-dimensional restricted subalge-
bras. Then, 𝐿 is centreless.
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Proof. Let 𝐹𝑥, 𝐹𝑦, 𝐹𝑧 be three distinct one-dimensional restricted subalgebras gen-
erating𝐿 and suppose, by contradiction, that𝑍(𝐿) ≠ 0. Note that we can take 𝑥 to be
either toral or such that 𝑥[𝑝] = 0. By Lemma 1.6.2 and without loss of generality, we
may also assume 𝑥 ∈ 𝑍(𝐿) and that ⟨𝑦, 𝑧⟩𝑝 is almost abelian, with [𝑦, 𝑧] = 𝑧, 𝑦[𝑝] = 𝑦
and 𝑧[𝑝] = 0. If 𝑥[𝑝] = 0, then ⟨𝑥 + 𝑧⟩𝑝 ∩ 𝐹𝑦 = 0 is maximal in ⟨𝑥 + 𝑧⟩𝑝, but 𝐹𝑦 is
not maximal in ⟨𝑥+ 𝑧, 𝑦⟩𝑝 = 𝐿, a contradiction. On the other hand, if 𝑥 is toral, then

𝑥 ∈ ⟨𝑥 − 𝑧⟩𝑝 ⊆ ⟨𝑥 + 𝑦, 𝑦 + 𝑧⟩𝑝,

so ⟨𝑥 + 𝑦, 𝑦 + 𝑧⟩𝑝 = 𝐿. Now ⟨𝑥 + 𝑦⟩𝑝 ∩ ⟨𝑦 + 𝑧⟩𝑝 = 0 is maximal in ⟨𝑥 + 𝑦⟩𝑝, but
⟨𝑦 + 𝑧⟩𝑝 is not maximal in 𝐿, a contradiction.

Proposition 1.6.4. Any upper semimodular restricted Lie algebra 𝐿 over an alge-
braically closed field generated by its one-dimensional restricted subalgebras is either
abelian or almost abelian.

Proof. By Lemma 1.6.2, all the restricted subalgebras of 𝐿 generated by two one-
dimensional restricted subalgebras are abelian or almost abelian. Suppose that ⟨𝑦, 𝑥1⟩𝑝
is almost abelian, where 𝐹𝑦, 𝐹𝑥1 are restricted subalgebras of 𝐿 with [𝑦, 𝑥1] = 𝑥1,
𝑦[𝑝] = 𝑦 and 𝑥[𝑝]1 = 0. Write 𝐿 = ⟨𝑦, 𝑥1,… , 𝑥𝑠⟩𝑝, where 𝑦, 𝑥1,… , 𝑥𝑠 are linearly
independent.We claim that ⟨𝑦, 𝑥𝑖⟩𝑝 is almost abelian for 𝑖 = 2,… , 𝑠. Suppose other-
wise that [𝑦, 𝑥𝑖] = 0 for some 𝑖 ≠ 1. By Lemma 1.6.3, we must have [𝑥1, 𝑥𝑖] ≠ 0.
Then ⟨𝑥1, 𝑥𝑖⟩𝑝 would be almost abelian and [𝑥1, 𝑥𝑖] = 𝜆𝑥1 for some 𝜆 ∈ 𝐹 , 𝜆 ≠ 0.
But then 𝑦 + 𝜆−1𝑥𝑖 ∈ 𝑍

(

⟨𝑦, 𝑥1, 𝑥𝑖⟩𝑝
)

= 0 by Lemma 1.6.3, a contradiction. Note
also that [𝑦, 𝑥𝑖] ∉ 𝐹𝑦, as otherwise 𝑦[𝑝] = 0. Therefore, we can clearly assume that
[𝑦, 𝑥𝑖] = 𝑥𝑖. For 𝑖 ≠ 𝑗 write [𝑥𝑖, 𝑥𝑗] = 𝜆𝑖𝑗𝑥𝑖 + 𝜇𝑖𝑗𝑥𝑗 . We have

0 = [[𝑦, 𝑥𝑖], 𝑥𝑗] + [[𝑥𝑖, 𝑥𝑗], 𝑦] + [[𝑥𝑗 , 𝑦], 𝑥𝑖]

= 𝜆𝑖𝑗𝑥𝑖 + 𝜇𝑖𝑗𝑥𝑗 − 𝜆𝑖𝑗𝑥𝑖 − 𝜇𝑖𝑗𝑥𝑗 + 𝜆𝑖𝑗𝑥𝑖 + 𝜇𝑖𝑗𝑥𝑗
= 𝜆𝑖𝑗𝑥𝑖 + 𝜇𝑖𝑗𝑥𝑗 ,

hence 𝜆𝑖𝑗 = 𝜇𝑖𝑗 = 0.



36 1 On the subalgebra lattice of a restricted Lie algebra

Therefore, 𝐿 = ⟨𝑥1,… , 𝑥𝑠⟩𝑝+̇𝐹𝑦 is an almost abelian restricted Lie algebra of
dimension 𝑠 + 1, as desired.

Note that the hypothesis of𝐹 being algebraically closed is essential for our results.
Indeed, the Lie algebra 𝐿 over a perfect field of characteristic 3 given by Gein in [93,
Example 2], with the 𝑝-map indicated in Section 1.3, is upper semimodular, generated
by its minimal restricted subalgebras and semisimple. The reader could ask if, ruling
out the hypothesis of 𝐹 being algebraically closed, any upper semimodular restricted
Lie algebra generated by its minimal restricted subalgebras would be abelian, almost
abelian or semisimple, in a way somehow similar to the situation in the ordinary Lie
algebra setting (see [92]). However, this is not the case either: the restricted Lie
algebra 𝐹𝑥⊕𝐿, with 𝑥[𝑝] = 0, is generated by its minimal restricted subalgebras and
it is upper semimodular, but it is neither abelian, nor almost abelian, nor semisimple.
Furthermore, it is even possible to pick a modular restricted subalgebra of 𝐹𝑥 ⊕ 𝐿
which does not lie in any of these three cases.
Proposition 1.6.5. Let 𝐿 be an upper semimodular restricted Lie algebra over an
algebraically closed field. Let 𝐵 be the restricted subalgebra generated by the one-
dimensional restricted subalgebras of 𝐿. If 𝐵 is almost abelian, then 𝐿 = 𝐵.

Proof. Assume 𝐿 ≠ 𝐵. By Proposition 1.3.6, there exists a 𝑝-nilpotent element 𝑥 ∈
𝐿 with order of 𝑝-nilpotency 2. Write 𝐵 = 𝐴+̇𝐹𝑦, where 𝐴 is a strongly abelian
restricted ideal of 𝐵, and 𝑦 is a toral element which acts as the identity map on 𝐴.
Since 𝑥[𝑝] ∈ 𝐴, we have ad𝑝(𝑥)(𝑦) = [𝑥[𝑝], 𝑦] = −𝑥[𝑝]. Set 𝑤 = ad𝑝−1(𝑥)(𝑦), and note
that [𝑥,𝑤] = −𝑥[𝑝] and [𝑥[𝑝], 𝑤] = [𝑥,𝑤[𝑝]] = 0.

As ⟨𝑥⟩𝑝 ∩ ⟨𝑥[𝑝], 𝑦⟩𝑝 = 𝐹𝑥[𝑝] is maximal in ⟨𝑥[𝑝], 𝑦⟩𝑝 = 𝐹𝑥[𝑝] + 𝐹𝑦, one has that
⟨𝑥⟩𝑝 must be maximal in ⟨𝑥, 𝑥[𝑝], 𝑦⟩𝑝 = ⟨𝑥, 𝑦⟩𝑝. We have

⟨𝑥⟩𝑝 ⊊ ⟨𝑥,𝑤⟩𝑝 ⊆ ⟨𝑥, 𝑦⟩𝑝.

It follows that 𝑦 ∈ ⟨𝑥,𝑤⟩𝑝 = ⟨𝑥⟩𝑝 + ⟨𝑤⟩𝑝, from which [𝑥, 𝑦] = 𝜆[𝑥,𝑤] = −𝜆𝑥[𝑝], for
some 𝜆 ∈ 𝐹 . But then

−𝑥[𝑝] = ad𝑝(𝑥)(𝑦) = −𝜆 ad𝑝−1(𝑥)(𝑥[𝑝]) = 0,

a contradiction. Therefore, 𝐿 = 𝐵 and 𝐿 is almost abelian.
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Theorem 1.6.6. Any upper semimodular restricted Lie algebra𝐿 over an algebraically
closed field is either abelian, almost abelian or of the form

𝐿 = ⟨𝑥1,… , 𝑥𝑟, 𝐵⟩𝑝,

where 𝑥𝑖 is 𝑝-nilpotent of nilpotency order 𝑛𝑖 > 1 for all 𝑖 = 1,… , 𝑟, 𝐵 is an abelian
restricted subalgebra and [𝐿,𝐿] ⊆ ⟨𝑥1,… , 𝑥𝑟⟩𝑝.

Proof. Let𝐵 be the restricted subalgebra generated by the one-dimensional restricted
subalgebras of 𝐿. By Proposition 1.6.4, 𝐵 is either abelian or almost abelian. If
𝐿 ≠ 𝐵, then 𝐵 is abelian by Proposition 1.6.5, and every 𝑥𝑖 ∉ 𝐵 is 𝑝-nilpotent of
𝑝-nilpotency order 𝑛𝑖 > 1 by Proposition 1.3.6.

To prove that [𝐿,𝐿] ⊆ ⟨𝑥1,… , 𝑥𝑟⟩𝑝, it suffices to see that [𝑥𝑖, 𝑏] ∈ ⟨𝑥𝑖⟩𝑝, for
𝑖 = 1,… , 𝑟 and 𝑏 ∈ 𝐵 such that ⟨𝑏⟩𝑝 is one-dimensional. Take such a 𝑏 ∈ 𝐵. If
𝑏 ∈ ⟨𝑥𝑖⟩𝑝, then we are done. Otherwise, ⟨𝑥𝑖⟩𝑝 ∩ ⟨𝑏⟩𝑝 = 0 is maximal in ⟨𝑏⟩𝑝 = 𝐹𝑏,
and then ⟨𝑥𝑖⟩𝑝 must be maximal in ⟨𝑥𝑖, 𝑏⟩𝑝. Write 𝑤 = ad𝑟−1(𝑥𝑖)(𝑏) ≠ 0, where 𝑟 is
such that ad𝑟(𝑥𝑖)(𝑏) = 0. We have the following chain of inclusions

⟨𝑥𝑖⟩𝑝 ⊆ ⟨𝑥𝑖, 𝑤⟩𝑝 ⊊ ⟨𝑥𝑖, 𝑏⟩𝑝.

Then, 𝑤 ∈ ⟨𝑥𝑖⟩𝑝. Assume now that ad𝑟−𝑘(𝑥𝑖)(𝑏) ∈ ⟨𝑥𝑖⟩𝑝 for some 𝑘 > 1, and set
𝑤′ = ad𝑟−𝑘−1(𝑥𝑖)(𝑏). Again, it is clear that

⟨𝑥𝑖⟩𝑝 ⊆ ⟨𝑥𝑖, 𝑤
′
⟩𝑝 ⊆ ⟨𝑥𝑖, 𝑏⟩𝑝,

where one inclusion has to be an equality. By assumption, if 𝑏 ∈ ⟨𝑥𝑖, 𝑤′
⟩𝑝 = ⟨𝑥𝑖⟩𝑝 +

⟨𝑤′
⟩𝑝, then [𝑥𝑖, 𝑏] ∈ ⟨𝑥𝑖⟩𝑝. Therefore 𝑤′ ∈ ⟨𝑥𝑖⟩𝑝, and by induction we have that

[𝑥𝑖, 𝑏] ∈ ⟨𝑥𝑖⟩𝑝.
Note that, although any abelian or almost abelian restricted Lie algebra is upper

semimodular, the converse of Theorem 1.6.6 does not hold, as the following example
shows.
Example 1.6.7. Let 𝐿 = ⟨𝑥, 𝑦, 𝑧⟩𝑝 with 𝑥[𝑝]2 = 𝑦[𝑝] = 𝑧[𝑝] = 0 and [𝑥, 𝑦] = 𝑧 as
the only non-zero product. Then the restricted subalgebra 𝐵 = 𝐹𝑥[𝑝] ⊕ 𝐹𝑦 ⊕ 𝐹𝑧
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generated by all the one-dimensional restricted subalgebras is abelian. However, 𝐿 is
not upper semimodular, as ⟨𝑥⟩𝑝 ∩ 𝐹𝑦 = 0 is maximal in 𝐹𝑦, but ⟨𝑥⟩𝑝 is not maximal
in ⟨𝑥, 𝑦⟩𝑝 = 𝐿.

Proposition 1.6.8. Let 𝐿 be an upper semimodular restricted Lie algebra over an
algebraically closed field. Then, 𝐿 is almost abelian or nilpotent.

Proof. Assume that 𝐿 is not almost abelian. Let 𝑇 be a torus of 𝐿. By [213, Chapter
2, Theorem 3.6], 𝑇 has a basis consisting of toral elements and therefore 𝑇 ⊆ 𝐵,
in the notation of Theorem 1.6.6. Then, the restricted subalgebra 𝑆 formed by the
semisimple elements of 𝐵 is the unique maximal torus of 𝐿, and [213, Section 2.4,
Exercise 5] yields that 𝐿 is nilpotent.

Corollary 1.6.9. Let 𝐿 be an upper semimodular restricted Lie algebra over an al-
gebraically closed field. Then, 𝐿 is also lower semimodular and a 𝐽 -algebra.

Proof. It follows from Proposition 1.6.8 and Proposition 1.5.2.

Proposition 1.6.10. Let 𝐿 be an upper semimodular restricted Lie algebra over an
algebraically closed field. Then, every restricted subalgebra of𝐿 is a restricted quasi-
ideal.

Proof. By Proposition 1.6.8, 𝐿 is either almost abelian or nilpotent. If 𝐿 is almost
abelian, then we are done, so suppose that it is nilpotent. Let 𝑥, 𝑦 ∈ 𝐿. If 𝑥, 𝑦 are
semisimple, then we have that 𝑥, 𝑦 ∈ 𝐵 and [𝑥, 𝑦] = 0. If 𝑥 is semisimple and 𝑦 is
𝑝-nilpotent, then 𝑥 ∈ 𝐵 and we get that [𝑥, 𝑦] ∈ ⟨𝑦⟩𝑝 as in Theorem 1.6.6. If 𝑥, 𝑦 are 𝑝-
nilpotent, we claim that [𝑥, 𝑦] ∈ ⟨𝑥⟩𝑝+⟨𝑦⟩𝑝. Indeed, let 𝑠 be the sum of their orders of
𝑝-nilpotency. We will proceed by induction on 𝑠. If 𝑠 = 2, then 𝑥, 𝑦 ∈ 𝐵 and therefore
⟨𝑥, 𝑦⟩𝑝 ⊆ ⟨𝑥⟩𝑝 + ⟨𝑦⟩𝑝. Fix now 𝑠 > 2, and assume that 𝑥[𝑝] ≠ 0. If 𝑥 ∈ ⟨𝑥[𝑝], 𝑦⟩𝑝, it
holds that ⟨𝑥, 𝑦⟩𝑝 = ⟨𝑥[𝑝], 𝑦⟩𝑝 is contained in ⟨𝑥[𝑝]⟩𝑝 + ⟨𝑦⟩𝑝 by induction. Otherwise,
⟨𝑥[𝑝]⟩𝑝 = ⟨𝑥⟩𝑝 ∩ ⟨𝑥[𝑝], 𝑦⟩𝑝 is maximal in ⟨𝑥⟩𝑝, so ⟨𝑥[𝑝], 𝑦⟩𝑝 is maximal in ⟨𝑥, 𝑦⟩𝑝.
Then ⟨𝑥[𝑝], 𝑦⟩𝑝 has codimension 1 in ⟨𝑥, 𝑦⟩𝑝 and ⟨𝑥, 𝑦⟩𝑝 = ⟨𝑥⟩𝑝 + ⟨𝑥[𝑝], 𝑦⟩𝑝. But by
induction, ⟨𝑥[𝑝], 𝑦⟩𝑝 ⊆ ⟨𝑥[𝑝]⟩𝑝 + ⟨𝑦⟩𝑝.
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Now take 𝑥, 𝑦 two arbitrary elements in 𝐿 and consider their Jordan-Chevalley
decompositions, 𝑥 = 𝑥𝑠 + 𝑥𝑛 and 𝑦 = 𝑦𝑠 + 𝑦𝑛. The above arguments show that
[𝑥, 𝑦] ∈ ⟨𝑥𝑛⟩𝑝 + ⟨𝑦𝑛⟩𝑝. Since 𝑥[𝑝]𝑟𝑠 ∈ ⟨𝑥⟩𝑝 and 𝑦[𝑝]𝑡𝑠 ∈ ⟨𝑦⟩𝑝 for 𝑟 and 𝑡 large enough
and 𝑥𝑠, 𝑦𝑠 are semisimple, we get that 𝑥𝑛 ∈ ⟨𝑥⟩𝑝 and 𝑦𝑛 ∈ ⟨𝑦⟩𝑝. It follows that
[𝑥, 𝑦] ∈ ⟨𝑥⟩𝑝 + ⟨𝑦⟩𝑝.

The following easy lemma is all what is left to prove Theorem 1.6.1. We need a
simple consideration first.

Let 𝑋 be a restricted quasi-ideal of a restricted Lie algebra 𝐿. Then, for every
restricted subalgebra 𝑌 of 𝐿, it holds that 𝑋 + 𝑌 = ⟨𝑋, 𝑌 ⟩𝑝 is a restricted subalgebra
of 𝐿.
Lemma 1.6.11. Let𝐿 be a restricted Lie algebra in which every restricted subalgebra
is a restricted quasi-ideal. Then,𝐿 is modular, and consequently, upper semimodular
and lower semimodular.

Proof. Let 𝑋, 𝑌 and 𝑍 be restricted subalgebras of 𝐿 such that 𝑋 ⊆ 𝑍. Take 𝑧 ∈
⟨𝑋, 𝑌 ⟩𝑝 ∩ 𝑍 = (𝑋 + 𝑌 ) ∩ 𝑍, and write 𝑧 = 𝑥 + 𝑦 for some 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 . Then
𝑥 ∈ 𝑍, yielding that 𝑦 ∈ 𝑌 ∩𝑍. Therefore, 𝑧 ∈ 𝑋 + (𝑌 ∩𝑍) = ⟨𝑋, 𝑌 ∩𝑍⟩𝑝. Then,
𝐿 is modular.

Proof of Theorem 1.6.1. It follows from the combination of Proposition 1.6.8,
Proposition 1.6.10, Proposition 1.4.3 and Lemma 1.6.11.
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The non-abelian tensor product of
restricted Lie superalgebras
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In this chapter, we define a non-abelian tensor product for restricted Lie superalge-
bras and study some of its properties, especially its relation with universal central
extensions.

Introduction

Lie superalgebras originally appeared associated to certain generalised groups, today
known as formal Lie supergoups, in the decade of 1930. However, it was not until
forty years later when these objects achieved real importance in the mathematical
and physical communities, due to their connection with the theory of supersymmetry
(see [21, 192], for example). This theory intended to provide a unified treatment for
bosons and fermions, the two classes of elemental particles composing the universe,
and to model the transitions between them. Lie superalgebras are a key object in
this framework, and this motivated a deep study not only from the perspective of
mathematical physics, but also from a purely algebraic approach. Examples of this can
be the celebrated classification of finite-dimensional simple Lie superalgebras over an
algebraically closed field of characteristic zero by Kac [133], its real counterpart [206]
or the partial results towards a classification of simple Lie superalgebras of infinite
dimension (for instance [134]).

As it happens in the non-graded case, to deal with modular Lie superalgebras it
is convenient to handle restricted Lie superalgebras. Since its introduction in 1988
by Mikhalëv [175], they have proved to be useful to obtain new results about the rep-
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resentation theory or the classification of modular Lie superalgebras (see [15, 31, 32,
174, 186, 225, 226], among others). They have been studied in many other references
such as [25, 81, 165, 219, 224], for example.

On the other hand, non-abelian tensor products have a long history in the literature.
The first occurrence was in the context of groups: indeed, Loday and Brown [36]
defined a tensor product between not necessarily abelian groups acting on each other,
which they called non-abelian in order to avoid confusion with the well-known tensor
product of ℤ-modules. They also introduced a quotient of this object, the so-called
non-abelian exterior product. After that, Ellis constructed his non-abelian tensor and
exterior products of Lie algebras in [76]. These products have been generalised in
different directions, such as for restricted Lie algebras [157], for crossed modules of
Lie algebras [75,193], or for Lie superalgebras [91]. In all cases, they have been used
to obtain results about the (co)homology in low dimensions of the respective algebraic
structures, and also to find an explicit construction of the universal central extensions
of the perfect objects, delving in this way in the results stating than an object is perfect
if and only if it admits a universal central extension [142, 156, 180].

In this chapter, we extend diverse results from [76, 91, 142, 156, 157, 180] by in-
troducing a non-abelian tensor product for restricted Lie superalgebras, studying its
basic properties and relating it to central extensions relative to the Birkhoff subcate-
gory of abelian objects 𝐀𝐛. We highlight that our construction generalises that of the
short note [157] and therefore yields some new results in the ambit of restricted Lie
algebras. However, we do not define a non-abelian exterior product of restricted Lie
superalgebras, nor deal with any (co)homological applications of our conclusions.

Note also that, although we focus mostly on the Birkhoff subcategory 𝐀𝐛, there
exist other Birkhoff subcategories which would be worthy studying, namely the sub-
category 𝟎𝐩𝐒𝐋𝐢𝐞 of restricted Lie superalgebras where the 𝑝-map is identically zero,
or the intersection 𝐬𝐀𝐛 of 𝐀𝐛 and 𝟎𝐩𝐒𝐋𝐢𝐞, i.e. the subcategory formed by the abelian
restricted Lie superalgebras with zero 𝑝-map.

𝐩𝐒𝐋𝐢𝐞

𝐀𝐛

<<
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Therefore, this work needs to be understood as a first step towards a compre-
hensive study of the relationship between the different types of central extensions of
restricted Lie superalgebras and their corresponding (co)homology theories.

The structure of this chapter is as follows. In Section 2.1, we review some ba-
sic theory about the category of restricted Lie superalgebras. Section 2.2 contains the
main definition of this chapter, namely the non-abelian tensor product of two restricted
Lie superalgebras acting on each other, and studies some of its algebraic and categor-
ical properties. Finally, in Section 2.3 we explore the connection of the non-abelian
tensor product with the universal central extensions of restricted Lie superalgebras,
with respect to the Birkhoff subcategory of abelian objects.

Through this chapter, 𝐹 will denote a field of positive characteristic 𝑝 > 2. This
assumption is not necessary for all the results of the chapter, but it is essential, for
example, for endowing the Lie superalgebra of derivations of a restricted Lie algebra
𝐿, Der[𝑝](𝐿), with a 𝑝-map (and therefore having a natural definition of actions of
restricted Lie superalgebras), or for constructing the universal enveloping algebra of
𝐿. Unless otherwise stated, all the vector (super)spaces and (super)algebras in this
paper will be considered over 𝐹 . The symbol +̇ will denote the direct sum as vector
(super)spaces, while the symbol⊕will be reserved for direct sums of (super)algebras.

2.1 Preliminaries on restricted Lie superalgebras

This section intends to give a basic review on the category 𝐩𝐒𝐋𝐢𝐞 of restricted Lie
superalgebras. Most of the results were obtained by combining the existing theories
on Lie algebras, Lie superalgebras and restricted Lie algebras (see [47, 91, 127, 157,
178, 213], for example); a careful exposition can be found in [184, Chapter 2].

We define a superspace as a vector space 𝑉 endowed with a grading in ℤ2. We
write 𝑉 = 𝑉0̄ ⊕ 𝑉1̄; the elements in 𝑉0̄ will be called even or of degree 0̄, and the
elements in 𝑉1̄, odd or of degree 1̄. The element zero will be assumed to have both
degrees. We denote the degree of an element 𝑣with |𝑣|. Non-zero elements of 𝑉0̄∪𝑉1̄will be called homogeneous. The direct sum 𝑉 +̇𝑊 of two superspaces has the fol-
lowing induced grading: (𝑉 +̇𝑊 )0̄ = 𝑉0̄+̇𝑊0̄ and (𝑉 +̇𝑊 )1̄ = 𝑉1̄+̇𝑊1̄. The homo-
morphisms of superspaces are just homomorphisms of vector spaces. They form a
superspace with the following grading: a homomorphism is even if it preserves the
degree of the elements, and it is odd if it changes such degree.

If we worked over a ring 𝑅 instead of the field 𝐹 , we would talk about supermod-
ules over 𝑅.
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A Lie superalgebra is a superspace 𝐿 = 𝐿0̄⊕𝐿1̄ endowed with a bilinear opera-
tion [ , ] such that |[𝑥, 𝑦]| = |𝑥| + |𝑦|, and satisfying

[𝑥, 𝑦] = − (−1)|𝑥||𝑦| [𝑦, 𝑥],

[𝑥, [𝑦, 𝑧]] = [[𝑥, 𝑦], 𝑧] + (−1)|𝑥||𝑦| [𝑦, [𝑥, 𝑧]], (2.1.1)
[𝑥1̄, [𝑥1̄, 𝑥1̄]] = 0, (2.1.2)

for 𝑥, 𝑦, 𝑧 ∈ 𝐿 homogeneous elements, 𝑥0̄ ∈ 𝐿0̄, 𝑥1̄ ∈ 𝐿1̄ and where we consider
(−1)0̄ = 1 and (−1)1̄ = −1. Note that equation (2.1.2) follows from equation (2.1.1)
when 𝐹 has characteristic 𝑝 > 3. Henceforth, we will assume that we are dealing
with homogeneous elements when their degrees appear in any formula.

Note that Lie superalgebras are algebras in the sense of this manuscript, with some
additional structure. Also, the even part 𝐿0̄ of a Lie superalgebra 𝐿 is a Lie algebra.
On the other hand, the odd part 𝐿1̄ is an 𝐿0̄-module.

A Lie superalgebra is said to be restricted if it is a Lie superalgebra 𝐿 whose
even part 𝐿0̄ is endowed with the structure of a restricted Lie algebra and such that
ad

(

𝑥[𝑝]
0̄

)

(𝑥) = ad𝑝
(

𝑥0̄
)

(𝑥) for all 𝑥0̄ ∈ 𝐿0̄ and all 𝑥 ∈ 𝐿. Restricted Lie superalge-
bras were defined for the first time by Mikhalëv in [175].

Note that 𝐿1̄ is also a restricted module over 𝐿0̄.
A homomorphism of restricted Lie superalgebras 𝑓 is a homomorphism of super-

spaces such that 𝑓 ([𝑥, 𝑦]) = [𝑓 (𝑥) , 𝑓 (𝑦)] and 𝑓
(

𝑥[𝑝]
0̄

)

= 𝑓
(

𝑥0̄
)[𝑝], for all 𝑥, 𝑦 ∈ 𝐿

and all 𝑥0̄ ∈ 𝐿0̄. Note that, to that purpose, it is necessary that 𝑓 has even degree as
a homomorphism of superspaces. We denote the category with restricted Lie super-
algebras as objects, and homomorphisms between them as morphisms, by 𝐩𝐒𝐋𝐢𝐞. It
is a semiabelian category.

The subobjects in 𝐩𝐒𝐋𝐢𝐞 are the graded restricted subalgebras, subalgebras 𝐻 of
𝐿 with the grading 𝐻0̄ = 𝐿0̄ ∩𝐻 and 𝐻1̄ = 𝐿1̄ ∩𝐻 such that 𝐻0̄ is also a restricted
subalgebra. Furthermore, the normal subobjects are graded restricted subalgebras
which are also ideals in the usual sense; they are called graded restricted ideals. Note
that a subalgebra is graded if and only if it is generated by homogeneous elements.
Also, the quotient objects in 𝐩𝐒𝐋𝐢𝐞 are just the quotients of Lie superalgebra by a
graded restricted ideal, with the induced grading.

Noticing that the product of two restricted Lie superalgebras is just their direct
sum, it is easy to characterise the centre 𝑍 (𝐿) of a restricted Lie superalgebra 𝐿 as
the graded ideal 𝑍 (𝐿) = {𝑥 ∈ 𝐿 ∣ [𝑥, 𝑦] = 0 for all 𝑦 ∈ 𝐿}. Also, the kernels,
cokernels and images in 𝐩𝐒𝐋𝐢𝐞 coincide with their non-categorical equivalents.
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Note that the subcategory 𝐀𝐛 of 𝐩𝐒𝐋𝐢𝐞 is formed plainly by the abelian restricted
Lie superalgebras, and that the abelianisation 𝐿ab of a restricted Lie superalgebra 𝐿
is just the quotient 𝐿

⟨𝐿⟩𝑝
. If we fix this Birkhoff subcategory, we find that the perfect

objects are those 𝐿 such that 𝐿 = ⟨[𝐿,𝐿]⟩𝑝, the relative commutator is [𝐿,𝐿]𝐀𝐛 =
⟨[𝐿,𝐿]⟩𝑝, and that an extension 𝜑∶ 𝑀 → 𝐿 is central if and only if ker 𝜑 ⊆ 𝑍 (𝑀).

At the end of the chapter, we will also consider shortly the nested Birkhoff subcat-
egory 𝐬𝐀𝐛 of restricted Lie superalgebras 𝐿 with 𝐿0̄ strongly abelian. The reflector
functor for 𝐬𝐀𝐛 will be denoted by ( )sab; explicitly, 𝐿sab = 𝐿

⟨

[𝐿,𝐿],𝐿[𝑝]
0̄

⟩

𝑝

. Then, the

𝐬𝐀𝐛-perfect objects are the restricted Lie superalgebras 𝐿 with 𝐿 =
⟨

[𝐿,𝐿], 𝐿[𝑝]
0̄

⟩

𝑝
,

the relative commutator is [𝐿,𝐿]𝐬𝐀𝐛 =
⟨

[𝐿,𝐿], 𝐿[𝑝]
0̄

⟩

𝑝
, and the 𝐬𝐀𝐛-central exten-

sions are the surjective morphisms 𝜑∶ 𝑀 → 𝐿 satisfying that ker 𝜑 ⊆ 𝑍(𝑀) and
ker 𝜑[𝑝] = 0.

Unless otherwise stated, we will assume that we are working with respect to the
Birkhoff subcategory 𝐀𝐛.

Now we recall a relationship between restricted Lie superalgebras and associa-
tive superalgebras, defined in the obvious way. First, let 𝐴 be an associative su-
peralgebra. Then 𝐴 can be given structure of restricted Lie superalgebra by setting
[𝑥, 𝑦] = 𝑥𝑦 − (−1)|𝑥||𝑦|𝑦𝑥 and 𝑥[𝑝]

0̄
= 𝑥𝑝

0̄
, for all 𝑥, 𝑦 ∈ 𝐴 and all 𝑥0̄ ∈ 𝐴0̄. We denote

this new restricted Lie superalgebra by 𝐴𝑝𝐿. The correspondence (−)𝑝𝐿 induces a
functor between the category of associative superalgebras 𝐒𝐀𝐬𝐬 and 𝐩𝐒𝐋𝐢𝐞.

We will find that (−)𝑝𝐿 is a right adjoint of the universal enveloping functor. To
construct the universal enveloping superalgebra of a restricted Lie superalgebra𝐿, we
need to introduce first the so-called tensor superalgebra 𝑇 (𝑉 ) of a superspace 𝑉 . The
tensor product 𝑉 ⊗𝐹 𝑉 admits a structure of superspace with the grading

(

𝑉 ⊗𝐹 𝑉
)

0̄ =
(

𝑉0̄ ⊗𝐹 𝑉0̄
)

⊕
(

𝑉1̄ ⊗𝐹 𝑉1̄
)

;
(

𝑉 ⊗𝐹 𝑉
)

1̄ =
(

𝑉0̄ ⊗𝐹 𝑉1̄
)

.

Recursively, we obtain a superspace structure for 𝑉 ⊗𝑛 = 𝑉 ⊗𝐹
(𝑛)
⋯⊗𝐹 𝑉 for any 𝑛 ∈ ℕ,

and we can define the tensor superspace 𝑇 (𝑉 ) ∶=
⨁

𝑛≥0 𝑉
⊗𝑛, setting 𝑉 ⊗0 = 𝐹 .

The homogeneous components of 𝑇 (𝑉 ) are given by the sum of those of the terms,
assuming that (𝑉 ⊗0)

0̄ = 𝑉 ⊗0. This superspace 𝑇 (𝑉 ) can be endowed with structure
of unital associative superalgebra by considering the product given by juxtaposition;
it is called the tensor superalgebra of 𝑉 . Note that, for this construction, it was only
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needed the underlying superspace structure of 𝑉 . Note also that 𝑉 can be naturally
embedded in 𝑇 (𝑉 ).

Now we can introduce the universal enveloping superalgebra of a restricted Lie
superalgebra𝐿 [186]: it is the unital associative superalgebra 𝑢(𝐿) defined as the quo-
tient of 𝑇 (𝐿) by the graded restricted ideal generated by the homogeneous elements

𝑥 ⊗ 𝑦 − (−1)|𝑥||𝑦|𝑦 ⊗ 𝑥 − [𝑥, 𝑦],

𝑥[𝑝]
0̄

− 𝑥𝑝
0̄
,

for all 𝑥, 𝑦 ∈ 𝐿, 𝑥0̄ ∈ 𝐿0̄. Note that the canonical embedding of 𝐿 in 𝑇 (𝐿) gives
rise to an injective morphism 𝜌∶ 𝐿 → 𝑢(𝐿)𝑝𝐿. The pair (𝑢(𝐿), 𝜌) satisfies the fol-
lowing universal property: for any other pair (𝐴, 𝜅) of an associative superalgebra 𝐴
and a morphism in 𝐩𝐒𝐋𝐢𝐞 𝜅 ∶ 𝐿 → 𝐴𝑝𝐿, there exists a unique morphism in 𝐩𝐒𝐋𝐢𝐞
𝜃∶ 𝑢 (𝐿)𝑝𝐿 → 𝐴𝑝𝐿 such that 𝜃𝜌 = 𝜅.

𝐿

𝜅
""

𝜌 // 𝑢 (𝐿)𝑝𝐿
𝜃
��

𝐴𝑝𝐿

A homomorphism of restricted Lie superalgebras 𝑓 ∶ 𝐿 → 𝑀 can be extended to
a homomorphism of associative superalgebras 𝑢(𝑓 )∶ 𝑢(𝐿) → 𝑢(𝑀) in a functorial
way. Then 𝑢(−) is a functor with right adjoint (−)𝑝𝐿.

We also recall the definition of the augmentation ideal of𝐿, commonly denoted by
Ω(𝐿): it is the kernel of the homomorphism of associative superalgebras 𝜖∶ 𝑢(𝐿) →
𝐹 (where 𝐹 is considered as an associative superalgebra without odd component)
induced by the zero map from 𝐿 to 𝐹 .
Lemma 2.1.1. Let 𝐿 be a restricted Lie superalgebra. Then, there exists an isomor-
phism of superspaces

Ω(𝐿) ≃
𝐿⊗𝐹 𝑢(𝐿)

𝑍
,

where 𝑍 is the graded ideal of 𝐿⊗𝐹 𝑢(𝐿) generated by the elements

[𝑥, 𝑦]⊗ 1 − 𝑥 ⊗ 𝑦 + (−1)|𝑥||𝑦|𝑦 ⊗ 𝑥,

𝑥[𝑝]
0̄
⊗ 1 − 𝑥0̄ ⊗ 𝑥𝑝−1

0̄
,

for all 𝑥, 𝑦 ∈ 𝐿, 𝑥0̄ ∈ 𝐿0̄.
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We also need to mention the existence of free objects on ℤ2-graded sets in the
category 𝐩𝐒𝐋𝐢𝐞. Namely, given a ℤ2-graded set 𝑋 and the free superspace 𝐹𝑋 on 𝑋,
the free restricted Lie superalgebra 𝐿(𝑋) on 𝑋 is the graded restricted subalgebra of
𝑇
(

𝐹𝑋
)

𝑝𝐿 generated by 𝑋.
Another concept which will be fundamental for the rest of the chapter is that of

an action of restricted Lie superalgebras. Recall that a homogeneous derivation 𝐷 of
degree 𝛼̄ of a restricted Lie superalgebra 𝐿 is a linear map 𝐷∶ 𝐿 → 𝐿 of degree 𝛼̄
satisfying

𝐷(𝑥𝑦) = 𝐷(𝑥)𝑦 + (−1)|𝐷||𝑥|𝑥𝐷(𝑦)

for all 𝑥, 𝑦 ∈ 𝐿. We denote this set of linear maps by Der 𝛼̄(𝐿), and define a derivation
of 𝐿 as an element of

Der(𝐿) = Der 0̄(𝐿)⊕ Der 1̄(𝐿).

Furthermore, a derivation is said to be restricted if
𝐷
(

𝑥[𝑝]
0̄

)

= ad𝑝−1
(

𝑥0̄
) (

𝐷
(

𝑥0̄
))

for all 𝑥0̄ ∈ 𝐿0̄. The set of the restricted derivations of 𝐿 is denoted by Der[𝑝](𝐿). It
can be proved that Der[𝑝](𝐿) is a restricted Lie superalgebra, in a similar fashion as
in [125] in the restricted Lie algebra setting.

Given 𝐿,𝑀 two restricted Lie superalgebras, we can define now an action of 𝑀
on 𝐿 as a map

𝑀 × 𝐿→ 𝐿
(𝑚, 𝑥) ↦ 𝑚𝑥 ∶= 𝜙(𝑚)(𝑥),

where𝜙∶ 𝑀 → Der[𝑝](𝐿) is a homomorphism of restricted Lie superalgebras. Equiv-
alently, an action of 𝑀 on 𝐿 is bilinear map 𝑀 × 𝐿 → 𝐿 of even degree (i.e.
|

𝑚𝑥| = |𝑚| + |𝑥|) satisfying
[𝑚,𝑛]𝑥 = 𝑚 (𝑛𝑥) − (−1)|𝑚||𝑛|

(𝑛 (𝑚𝑥)
)

;
𝑚[𝑥, 𝑦] = [𝑚𝑥, 𝑦] + (−1)|𝑚||𝑥| [𝑥, 𝑚𝑦];
𝑚[𝑝]
0̄ 𝑥 = 𝑚𝑝

0̄𝑥;
𝑚𝑥[𝑝]

0̄
= ad𝑝−1

(

𝑥0̄
) (𝑚𝑥0̄

)

,

for all 𝑥, 𝑦 ∈ 𝐿,𝑚, 𝑛 ∈𝑀 , 𝑥0̄ ∈ 𝐿0̄ and𝑚0̄ ∈𝑀0̄, and where 𝑚𝑝0̄𝑥 ∶= 𝑚0̄ (⋯ (𝑚0̄𝑥)⋯).
Note that the definition by identities could be extended to restricted Lie superalgebras
over field of characteristic 𝑝 = 2, but the definition would lose its naturalness.
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Weakening the concept of an action, we find representations of restricted Lie su-
peralgebras and restricted supermodules. The endomorphisms of a superspace 𝑉 ,
End(𝑉 ), have structure of an associative superalgebra with the composition. Given
a restricted Lie superalgebra 𝐿 and a superspace 𝑉 , we say that 𝑉 is a restricted
supermodule over 𝐿 if there exists a homomorphism of restricted Lie superalgebras
𝜙∶ 𝐿 → End(𝑉 )𝑝𝐿; we will denote 𝑥 ⋅ 𝑣 ∶= 𝜙(𝑥)(𝑣). This morphism is called a
representation of 𝑀 on 𝑉 . Equivalently, 𝑉 is a restricted supermodule over 𝐿 if and
only if there exists a linear map of even degree

𝐿 × 𝑉 → 𝑉
(𝑥, 𝑣) ↦ 𝑥 ⋅ 𝑣

satisfying
[𝑥, 𝑦] ⋅ 𝑣 = 𝑥 ⋅ (𝑦 ⋅ (𝑣)) − (−1)|𝑥||𝑦| 𝑦 ⋅ (𝑥 ⋅ (𝑣)) ;

𝑥[𝑝]
0̄

⋅ 𝑣 = 𝑥0̄ ⋅
(

(𝑝)
⋯

(

𝑥0̄ ⋅ 𝑣
)

⋯
)

,

for all 𝑥, 𝑦 ∈ 𝐿, 𝑥0̄ ∈ 𝐿0̄ and 𝑣 ∈ 𝑉 . Note that 𝑉 is a restricted supermodule over 𝐿
if and only if it is a supermodule over 𝑢(𝐿) in the classic sense.

If 𝐿 and 𝑀 are two restricted Lie superalgebras acting on each other, we say that
they act compatibly if

(𝑥𝑚)𝑦 = − (−1)|𝑚||𝑥| [𝑚𝑥, 𝑦];
(𝑚𝑥)𝑛 = − (−1)|𝑚||𝑥| [𝑥𝑚, 𝑛],

are satisfied for all 𝑥, 𝑦 ∈ 𝐿 and all 𝑚, 𝑛 ∈ 𝑀 . For example, the bracket between
elements of two graded restricted ideals 𝐼 and 𝐽 of a restricted Lie superalgebra 𝐿
defines compatible actions of 𝐼 and 𝐽 on each other.

The pairs of restricted Lie superalgebras (𝐿,𝑀) acting compatibly on each other
are the objects of a new semiabelian category 𝐩𝐒𝐋𝐢𝐞𝟐, whose morphisms are pairs
of homomorphisms of restricted Lie superalgebras (𝜑,𝜓) ∶ (𝐿,𝑀) → (𝐿′,𝑀 ′) pre-
serving the actions; i.e. satisfying

𝜑 (𝑚𝑥) = 𝜓(𝑚)𝜑 (𝑥) , 𝜓 (𝑥𝑚) = 𝜑(𝑥)𝜓 (𝑚) ,

for all 𝑥 ∈ 𝐿, 𝑚 ∈𝑀 .
The concept of actions of restricted Lie superalgebras allows us to define crossed

modules of restricted Lie superalgebras: triples (𝐿,𝑀, 𝜕) such that 𝐿 and 𝑀 are
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restricted Lie superalgebras with 𝑀 acting on 𝐿 and 𝜕∶ 𝐿 → 𝑀 is a morphism in
𝐩𝐒𝐋𝐢𝐞, satisfying the conditions

𝜕 (𝑚𝑥) = [𝑚, 𝜕 (𝑥)];
𝜕(𝑥)𝑦 = [𝑥, 𝑦],

for all 𝑥, 𝑦 ∈ 𝐿, 𝑚 ∈ 𝑀 . For example, the inclusion 𝜄∶ 𝐼 → 𝐿 of a graded re-
stricted ideal 𝐼 in 𝐿 is a crossed module with respect to the bracket. The following
straightforward property of the crossed modules will be necessary later in this chapter.
Lemma 2.1.2. Let 𝜕∶ 𝐿 → 𝑀 be a crossed module of restricted Lie superalgebras.
Then, ker 𝜕 is contained in the centre 𝑍(𝐿).

Finally, we define the semidirect product 𝐿⋊𝑀 of two restricted Lie superalge-
bras 𝐿 and 𝑀 , with 𝑀 acting on 𝐿, as the superspace 𝐿+̇𝑀 with bracket

[𝑥 + 𝑚, 𝑦 + 𝑛] =
(

[𝑥, 𝑦] + 𝑚𝑦 − (−1)|𝑥||𝑛| (𝑛𝑥) + [𝑚, 𝑛]
)

,

for all 𝑥, 𝑦 ∈ 𝐿, 𝑚, 𝑛 ∈𝑀 , and 𝑝-map
(

𝑥0̄ + 𝑚0̄
)[𝑝] = 𝑥[𝑝]

0̄
+ 𝑚[𝑝]

0̄
+
𝑝−1
∑

𝑖=1
𝑠𝑖
(

𝑥0̄, 𝑚0̄
)

,

for all 𝑥0̄ ∈ 𝐿0̄ and all 𝑚0̄ ∈𝑀0̄, where 𝑠𝑖
(

𝑥0̄, 𝑚0̄
) has the usual meaning explained

in the Introduction of this Part I.

2.2 Non-abelian tensor product of restricted Lie superalge-
bras

In this section, we introduce the definition of the non-abelian tensor product of re-
stricted Lie superalgebras, and study some of their basic properties.
Definition 2.2.1. Let 𝐿 and 𝑀 be two restricted Lie superalgebras acting on each
other, and let 𝑋𝐿,𝑀 be the set of symbols 𝑥⊗𝑚, for 𝑥 and 𝑚 homogeneous elements
of 𝐿 and 𝑀 , respectively. Endow 𝑋𝐿,𝑀 with the ℤ2-grading |𝑥 ⊗ 𝑚| = |𝑥| + |𝑚|.
The non-abelian tensor product 𝐿⊗𝑀 is defined as the restricted Lie superalgebra
generated by 𝑋𝐿,𝑀 and subject to the following relations:
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𝜆 (𝑥 ⊗ 𝑚) = 𝜆𝑥 ⊗ 𝑚 = 𝑥 ⊗ 𝜆𝑚;

(𝑥 + 𝑦)⊗𝑚 = 𝑥 ⊗ 𝑚 + 𝑦 ⊗ 𝑚;

𝑥 ⊗ (𝑚 + 𝑛) = 𝑥 ⊗ 𝑚 + 𝑥 ⊗ 𝑛;

[𝑥, 𝑦]⊗𝑚 = 𝑥 ⊗ 𝑦𝑚 − (−1)|𝑥||𝑦| 𝑦 ⊗ 𝑥𝑚;

𝑥 ⊗ [𝑚, 𝑛] = (−1)|𝑥||𝑛| (−1)|𝑚||𝑛| (𝑛𝑥 ⊗ 𝑚) − (−1)|𝑥||𝑚| (𝑚𝑥 ⊗ 𝑛) ;
𝑚𝑥 ⊗ 𝑦𝑛 = − (−1)|𝑥||𝑚| [𝑥 ⊗ 𝑚, 𝑦 ⊗ 𝑛];

𝑥[𝑝]
0̄
⊗𝑚 = 𝑥0̄ ⊗

(

𝑥𝑝−1
0̄ 𝑚

)

;

𝑥 ⊗ 𝑚[𝑝]
0̄

=
(

𝑚𝑝−1
0̄ 𝑥

)

⊗𝑚0̄,

for all 𝜆 ∈ 𝐹 , 𝑥, 𝑦 ∈ 𝐿, 𝑚, 𝑛 ∈𝑀 , 𝑥0̄ ∈ 𝐿0̄ and 𝑚0̄ ∈𝑀0̄.
Given 𝑥, 𝑚 two non-homogeneous elements of 𝐿 and 𝑀 , respectively, we denote

𝑥 ⊗ 𝑚 ∶= 𝑥0̄ ⊗𝑚0̄ + 𝑥0̄ ⊗𝑚1̄ + 𝑥1̄ ⊗𝑚0̄ + 𝑥1̄ ⊗𝑚1̄.
Note that, given 𝐿 and 𝑀 two arbitrary restricted Lie superalgebras, we can al-

ways construct their non-abelian tensor product with respect to the trivial actions. In
this case, 𝐿⊗𝑀 is abelian.

We will characterise 𝐿⊗𝑀 as a universal object in the category 𝐩𝐒𝐋𝐢𝐞. To that
purpose, we introduce the following definition.
Definition 2.2.2. Let 𝐿 and 𝑀 be two restricted Lie superalgebras acting on each
other. A restricted Lie superpair with respect to 𝐿 and 𝑀 is a restricted Lie superal-
gebra 𝐻 together with a bilinear map of even degree 𝜉 ∶ 𝐿 ×𝑀 → 𝐻 satisfying

𝜉 ([𝑥, 𝑦], 𝑚) = 𝜉 (𝑥, 𝑦𝑚) − (−1)|𝑥||𝑦| 𝜉 (𝑦, 𝑥𝑚) ;

𝜉 (𝑥, [𝑚, 𝑛]) = (−1)|𝑥||𝑛| (−1)|𝑚||𝑛| 𝜉 (𝑛𝑥, 𝑚) − (−1)|𝑥||𝑚| 𝜉 (𝑚𝑥, 𝑛) ;

𝜉 (𝑚𝑥, 𝑦𝑛) = − (−1)|𝑥||𝑚| [𝜉 (𝑥, 𝑚) , 𝜉 (𝑦, 𝑛)];

𝜉
(

𝑥[𝑝]
0̄
, 𝑚

)

= 𝜉
(

𝑥0̄,
𝑥𝑝−1
0̄ 𝑚

)

;

𝜉
(

𝑥, 𝑚[𝑝]
0̄

)

= 𝜉
(

𝑚𝑝−1
0̄ 𝑥, 𝑚0̄

)

,

for all 𝑥, 𝑦 ∈ 𝐿, 𝑚, 𝑛 ∈𝑀 , 𝑥0̄ ∈ 𝐿0̄ and 𝑚0̄ ∈𝑀0̄.
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Furthermore, a restricted Lie superpair is called universal if for any other pair
(

𝐻 ′, 𝜉′
) in the same conditions, there exists a unique morphism in 𝐩𝐒𝐋𝐢𝐞 𝜃∶ 𝐻 →

𝐻 ′ such that 𝜃𝜉 = 𝜉′.
𝐿 ×𝑀

𝜉′ $$

𝜉 // 𝐻

𝜃
��
𝐻 ′

Clearly, the universal restricted Lie superpair is unique up to isomorphism.
Proposition 2.2.3. Let 𝐿 and 𝑀 be two restricted Lie superalgebras acting on each
other. The pair (𝐿⊗𝑀,𝜒) with 𝜒 ∶ 𝐿 ×𝑀 → 𝐿⊗𝑀 defined by 𝜒 (𝑥, 𝑚) = 𝑥⊗𝑚
is the universal restricted Lie superpair with respect to 𝐿 and 𝑀 .

Proof. It is obvious that (𝐿⊗𝑀,𝜒) is a restricted Lie superpair with respect to 𝐿
and 𝑀 . Also, given another restricted Lie superpair (𝐻, 𝜉), there exist a unique ho-
momorphism 𝜃∶ 𝐿 ⊗ 𝑀 → 𝐻 such that 𝜃𝜒 = 𝜉, given by 𝜃 (𝑥 ⊗ 𝑚) = 𝜉 (𝑥, 𝑚).
Note that 𝜃 is well-defined precisely because (𝐻, 𝜉) is a restricted Lie superpair.

If the actions of 𝐿 and 𝑀 on each other are compatible, 𝐿 and 𝑀 together with
the following maps provide easy examples of restricted Lie superpairs:

𝜉𝜇 ∶ 𝐿 ×𝑀 → 𝐿

(𝑥, 𝑚) ↦ −(−1)|𝑥||𝑚| (𝑚𝑥) ,
𝜉𝜈 ∶ 𝐿 ×𝑀 → 𝐿

(𝑥, 𝑚) ↦ 𝑥𝑚.

By Proposition 2.2.3, there exist homomorphisms of restricted Lie superalgebras
𝜇∶ 𝐿⊗𝑀 → 𝐿 and 𝜈 ∶ 𝐿⊗𝑀 →𝑀 defined by 𝜇 (𝑥 ⊗ 𝑚) = − (−1)|𝑥||𝑚| (𝑚𝑥) and
𝜈 (𝑥 ⊗ 𝑚) = 𝑥𝑚, respectively.

In particular, taking the graded restricted ideals 𝐼 and 𝐽 of 𝐹 , acting on each
other through the bracket of 𝐿, the homomorphisms 𝜇 and 𝜈 reduce to the bracket.
This consideration leads to the interpretation of the non-abelian tensor product 𝐼 ⊗𝐽
as a certain “universalisation” of the bracket.

The next technical lemma will be useful later on.
Lemma 2.2.4. Let𝐿 and𝑀 be two restricted Lie superalgebras acting compatibly on
each other. Then, there exist actions of 𝐿 and 𝑀 on 𝐿⊗𝑀 determined respectively
by
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𝑧 (𝑥 ⊗ 𝑚) = [𝑧, 𝑥]⊗𝑚 + (−1)|𝑧||𝑥| 𝑥 ⊗ 𝑧𝑚,
𝑞 (𝑥 ⊗ 𝑚) = 𝑞𝑥 ⊗ 𝑚 + (−1)|𝑞||𝑥| 𝑥 ⊗ [𝑞, 𝑚],

for all 𝑥, 𝑧 ∈ 𝐿 and𝑚, 𝑞 ∈𝑀 . Furthermore, the homomorphisms 𝜇 and 𝜈 are crossed
modules of restricted Lie superalgebras with respect to these actions.

Proof. The relative complexity of the direct calculations makes useful to follow this
sketch of proof. First, fix an homogeneous 𝑧 ∈ 𝐿 and prove that the assignment

𝜙𝑧 ∶ 𝐿⊗𝑀 → 𝐿⊗𝑀

𝑥⊗𝑚 ↦ 𝑧 (𝑥 ⊗ 𝑚)

can be extended to a restricted derivation. To do so, it suffices to check that𝜙𝑧 respects
the relations of 𝐿⊗𝑀 . Later, we need to ensure that

𝜙∶ 𝐿→ Der[𝑝] (𝐿⊗𝑀)

𝑧↦ 𝜙𝑧

is a homomorphism of restricted Lie superalgebras. To see that𝜙 preserves the 𝑝-map,
it is convenient to handle the equality

𝑥𝑘 (𝑥 ⊗ 𝑚) =
𝑘
∑

𝑖=0

(

𝑘
𝑖

)

ad𝑝−𝑖 (𝑥) (𝑚)⊗
(

𝑥𝑖𝑚
)

,

which can be proved by induction in 𝑘 ∈ ℕ, and to apply it for 𝑘 = 𝑝. Checking that
𝜇 is a crossed module with respect to this action is just routine.

The computations for the action of𝑀 on 𝐿⊗𝑀 and 𝜈 are completely analogous,
and therefore we omit them.

The following results provide basic properties of the non-abelian tensor product.
Proposition 2.2.5. Let 𝐿 and 𝑀 be two restricted Lie superalgebras acting on each
other. The non-abelian tensor products 𝐿⊗𝑀 and 𝑀 ⊗𝐿 are isomorphic.

Proof. Simply note that 𝜃 (𝑥 ⊗ 𝑚) = − (−1)|𝑥||𝑚|𝑚 ⊗ 𝑥 induces an isomorphism
between 𝐿⊗𝑀 and 𝑀 ⊗𝐿.
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Proposition 2.2.6. Let 𝐿, 𝑀 and 𝐻 be restricted Lie superalgebras such that both
𝐿 and 𝑀 , and 𝑀 and 𝐻 , act on each other. Suppose further that the following
hypotheses are satisfied:

1. ℎ (𝑥𝑚) = (−1)|𝑥||ℎ|
(𝑥 (ℎ𝑚

))

for all 𝑥 ∈ 𝐿, 𝑚 ∈𝑀 and ℎ ∈ 𝐻 .

2. 𝑥 ⊗ 𝑦𝑚 = ℎ ⊗ 𝑔𝑚 = 0 for all 𝑥, 𝑦 ∈ 𝐿, ℎ, 𝑔 ∈ 𝐻 and 𝑚 ∈𝑀 .

Then there are actions of 𝐻 ⊕𝐿 on 𝑀 and reciprocally, and

(𝐻 ⊕𝐿)⊗𝑀 ≃ (𝐻 ⊗𝑀)⊕ (𝐿⊗𝑀) .

Proof. The action of 𝐻 ⊕𝐿 on 𝑀 is given by the map
(𝐻 ⊕𝐿) ×𝑀 →𝑀

(ℎ + 𝑥, 𝑚) ↦ ℎ+𝑥𝑚 ∶= ℎ𝑚 + 𝑥𝑚,

and the action of 𝑀 on 𝐻 ⊕𝐿, by
𝑀 × (𝐻 ⊕𝐿) → 𝐻 ⊕𝐿

(𝑚, ℎ + 𝑥) ↦ 𝑚 (ℎ + 𝑥) ∶= 𝑚ℎ + 𝑛𝑥.

Proving that these maps are indeed actions is routine, so we omit the explicit compu-
tations. It is also routine to prove that (𝐿⊗𝑁)⊕ (𝑀 ⊗𝑁) together with

𝜉 ∶ (𝐻 ⊕𝐿) ×𝑀 → (𝐻 ⊗𝑀)⊕ (𝐿⊗𝑀)

(ℎ + 𝑥, 𝑚) ↦ ℎ ⊗ 𝑚 + 𝑥 ⊗ 𝑚,

is a restricted Lie superpair with respect to𝐻⊕𝐿 and𝑀 . Then there exists an induced
homomorphism of restricted Lie superalgebras 𝛼∶ (𝐻 ⊕𝐿) ⊗𝑀 → (𝐻 ⊗𝑀) ⊕
(𝐿⊗𝑀), with inverse 𝛽 ∶ (𝐻 ⊗𝑀) ⊕ (𝐿⊗𝑀) → (𝐻 ⊕𝐿) ⊗ 𝑀 defined by
𝛽 (ℎ ⊗ 𝑚 + 𝑥 ⊗ 𝑛) = ℎ ⊗ 𝑚 + 𝑥 ⊗ 𝑛.

An example of a triple of restricted Lie superalgebras satisfying the hypotheses
of Proposition 2.2.6 can be𝐻 , 𝐿 and𝐻⊕𝐿, where𝐻 and 𝐿 are identified with their
canonical inclusions in 𝐻 ⊕𝐿, together with the actions induced by the brackets.
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Now, we focus on the relationship between the non-abelian tensor product of re-
stricted Lie superalgebras and the tensor product (in the classic sense) of their under-
lying vector spaces. The skew polynomial ring 𝐹 [𝜎, 𝑡] with respect to the Frobenius
endomorphism 𝜎 of 𝐹 will play a key role.

One first easy relationship is the following: if 𝐿 and 𝑀 are strongly abelian and
we consider the trivial actions between them, then the non-abelian tensor product
𝐿⊗𝑀 and the tensor product of the underlying spaces coincide.
Proposition 2.2.7. Let 𝐿 and 𝑀 be two restricted Lie superalgebras acting compat-
ibly on each other. Then, there exists a surjective homomorphism of superspaces

𝑓 ∶ 𝐹 [𝜎, 𝑡]⊗𝐹
(

𝐿⊗𝐹 𝑀
)

→ 𝐿⊗𝑀.

Proof. First of all, note that𝐹 [𝜎, 𝑡]⊗𝐹
(

𝐿⊗𝐹 𝑀
) has a structure of left𝐹 -superspace

determined by 𝜆 (𝑔 ⊗ 𝑥 ⊗ 𝑚) = 𝜆𝑔 ⊗ 𝑥 ⊗ 𝑚. Note that
𝜆𝑝 (𝑔 ⊗ 𝑥 ⊗ 𝑚) = 𝜆𝑝𝑔 ⊗ 𝑥 ⊗ 𝑚 = 𝑔𝜆 ⊗ 𝑥 ⊗ 𝑚 = 𝑔 ⊗ 𝜆𝑥 ⊗ 𝑚 = 𝑔 ⊗ 𝑥 ⊗ 𝜆𝑚,

where 𝜆 ∈ 𝐹 , 𝑔 ∈ 𝐹 [𝜎, 𝑡], 𝑥 ∈ 𝐿 and 𝑚 ∈ 𝑀 . If {

𝑥𝛼
}

𝛼∈𝐴 and {

𝑚𝛽
}

𝛽∈𝐵 are
bases for𝐿 and𝑀 , respectively, {𝑡𝑟 ⊗ 𝑥𝛼 ⊗𝑚𝛽

}

𝛼∈𝐴,𝛽∈𝐵,𝑟∈ℕ is a basis for 𝐹 [𝜎, 𝑡]⊗𝐹
(

𝐿⊗𝐹 𝑀
). Setting (𝑥 ⊗ 𝑚)[𝑝]

0
∶= 𝑥 ⊗ 𝑚, we can take

𝑓
(

𝑡𝑟 ⊗ 𝑥𝛼 ⊗𝑚𝛽
)

=
(

𝑥𝛼 ⊗𝑚𝛽
)[𝑝]𝑟 ,

which gives rise to a well-defined homomorphism
𝑓 ∶ 𝐹 [𝜎, 𝑡]⊗𝐹

(

𝐿⊗𝐹 𝑀
)

→ 𝐿⊗𝑀

of even degree. To prove that 𝑓 is surjective, it suffices to find a preimage for the
elements (𝑥𝛼 ⊗𝑚𝛽

)[𝑝]𝑟 , thanks to the relations of 𝐿 ⊗𝑀 . Such a preimage can be
𝑡𝑟 ⊗ 𝑥𝛼 ⊗𝑚𝛽 .

Note that the homomorphism 𝑓 constructed in Proposition 2.2.7 is not necessarily
injective. However, if we consider trivial actions between 𝐿 and 𝑀 , and work with
𝐹 [𝜎, 𝑡]⊗𝐹

(

𝐿sab ⊗𝐹 𝑀sab
) instead of 𝐹 [𝜎, 𝑡]⊗𝐹

(

𝐿⊗𝐹 𝑀
), we get that ker 𝑓 = 0,

and 𝑓 is an isomorphism of superspaces. Then, the structure of abelian restricted Lie
superalgebra of 𝐿⊗𝑀 can be transferred to 𝐹 [𝜎, 𝑡]⊗𝐹

(

𝐿sab ⊗𝐹 𝑀sab
).
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Proposition 2.2.8. Let 𝐿 and 𝑀 be two restricted Lie superalgebras acting compat-
ibly on each other. Then, there exists a subspace 𝑊 of 𝐿⊗𝐹 𝑀 such that 𝐹 [𝜎, 𝑡]⊗𝐹
𝐿⊗𝐹𝑀
𝑊

and 𝐿⊗𝑀 are isomorphic as superspaces.

Proof. By Proposition 2.2.7, we have the surjective homomorphism of superspaces
𝑓 ∶ 𝐹 [𝜎, 𝑡] ⊗𝐹

(

𝐿⊗𝐹 𝑀
)

→ 𝐿 ⊗ 𝑀 . Construct the subspace 𝑊1 of 𝐿 ⊗𝐹 𝑀
generated by the elements

[𝑥, 𝑦]⊗𝑚 − 𝑥 ⊗ 𝑦𝑚 + (−1)|𝑥||𝑦|𝑦 ⊗ 𝑥𝑚,

𝑥 ⊗ [𝑚, 𝑛] − (−1)|𝑥||𝑛|(−1)|𝑚||𝑛| (𝑛𝑥 ⊗ 𝑚) + (−1)|𝑥||𝑚| (𝑚𝑥 ⊗ 𝑛) ,

𝑥[𝑝]
0̄
⊗𝑚 − 𝑥0̄ ⊗

(

𝑥𝑝−1
0̄ 𝑚

)

,

𝑥 ⊗ 𝑚[𝑝]
0̄

−
(

𝑚𝑝−1
0̄ 𝑥

)

⊗𝑚0̄,

for all 𝑥, 𝑦 ∈ 𝐿,𝑚, 𝑛 ∈𝑀 , 𝑥0̄ ∈ 𝐿0̄ and𝑚0̄ ∈𝑀0̄. Denote by ↺
𝑥⊗𝑚,𝑦⊗𝑛,𝑧⊗𝑞

the circular
sum with respect to 𝑥⊗𝑚, 𝑦⊗𝑛 and 𝑧⊗𝑞, and consider also the elements of 𝐿⊗𝑀

(−1)|𝑥||𝑚| (𝑚𝑥 ⊗ 𝑦𝑛) + (−1)(|𝑥|+|𝑚|)(|𝑦|+|𝑛|) (−1)|𝑦||𝑛| (𝑛𝑦 ⊗ 𝑥𝑚) ,

↺
𝑥⊗𝑚,𝑦⊗𝑛,𝑧⊗𝑞

(−1)(|𝑥|+|𝑚|)(|𝑧|+|𝑞|) (−1)|𝑥||𝑚| (𝑚𝑥 ⊗ [𝑦𝑛, 𝑧𝑞]) ,

𝑚𝑥 ⊗ [𝑥𝑚, 𝑥𝑚] for |𝑥| ≠ |𝑚|,

for all 𝑥, 𝑦, 𝑧 ∈ 𝐿 and 𝑚, 𝑛, 𝑞 ∈ 𝑀 , which are identically zero due to the anticom-
mutativity and the graded Jacobi identity. Define 𝑊2 to be the subspace of 𝐿⊗𝐹 𝑀
generated by all the preimages by 𝑓 of the previous elements, and take𝑊 = 𝑊1+𝑊2.

By construction, 𝑓 induces another homomorphism 𝑓 ∶ 𝐹 [𝜎, 𝑡] ⊗𝐹
𝐿⊗𝐹𝑀
𝑊

→

𝐿⊗𝑀 , which is bijective.
Once again, the isomorphism of Proposition 2.2.8 allows to transfer the structure

of restricted Lie superalgebra from 𝐿⊗𝑀 to 𝐹 [𝜎, 𝑡]⊗𝐹
𝐿⊗𝐹𝑀
𝑊

.
We present another isomorphism involving the augmentation idealΩ(𝐿) (cf. [50]).
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Proposition 2.2.9. Let 𝐿 be a restricted Lie superalgebra and 𝑀 a restricted super-
module over 𝐿. Then, there exists an isomorphism of superspaces

𝐿⊗𝑀 ≃ 𝐹 [𝜎, 𝑡]⊗𝐹
(

Ω (𝐿)⊗𝑢(𝐿) 𝑀
)

.

Proof. Note first that 𝑀 can be identified with a strongly abelian restricted Lie su-
peralgebra, with 𝐿 acting on it. Then, Proposition 2.2.8 yields the isomorphism of
superspaces

𝐿⊗𝑀 ≃ 𝐹 [𝜎, 𝑡]⊗𝐹

(

𝐿⊗𝐹 𝑀
𝑊

)

;

under the current hypotheses, 𝑊 is generated by the elements
[𝑥, 𝑦]⊗𝑚 − 𝑥 ⊗ 𝑦𝑚 + (−1)|𝑥||𝑦|𝑦 ⊗ 𝑥𝑚;

𝑥[𝑝]
0̄
⊗𝑚 − 𝑥0̄ ⊗

(

𝑥𝑝−1
0̄ 𝑚

)

,

for all 𝑥, 𝑦 ∈ 𝐿, 𝑚 ∈𝑀 and 𝑥0̄ ∈ 𝐿0̄.
On the other hand, Ω(𝐿) is a right 𝑢(𝐿)-supermodule in the classic sense, and 𝑀

a left 𝑢(𝐿)-supermodule; we can then construct the tensor product Ω(𝐿) ⊗𝑢(𝐿) 𝑀 .
Lemma 2.1.1 gives the isomorphism

Ω(𝐿)⊗𝑢(𝐿) 𝑀 ≃
𝐿⊗𝐹 𝑢(𝐿)

𝑍
⊗𝑢(𝐿) 𝑀 ;

also, by the right exactness of the tensor product,
𝐿⊗𝐹 𝑢(𝐿)

𝑍
⊗𝑢(𝐿) 𝑀 ≃

(

𝐿⊗𝐹 𝑢(𝐿)
)

⊗𝑢(𝐿) 𝑀
𝑍 ⊗𝑢(𝐿) 𝑀

.

We claim that the right-hand supermodule is isomorphic to 𝐿⊗𝐹𝑀
𝑊

. Indeed,
(

𝐿⊗𝐹 𝑢(𝐿)
)

⊗𝑢(𝐿) 𝑀 ≃ 𝐿⊗𝐹
(

𝑢(𝐿)⊗𝑢(𝐿) 𝑀
)

≃ 𝐿⊗𝐹 𝑀,

and this isomorphism transforms the generators of 𝑍 ⊗𝑢(𝐿) 𝑀 ,
([𝑥, 𝑦]⊗ 1)⊗𝑚 − (𝑥 ⊗ 𝑦)⊗𝑚 + (−1)|𝑥||𝑦| (𝑦 ⊗ 𝑥)⊗𝑚,
(

𝑥[𝑝]
0̄
⊗ 1

)

⊗𝑚 −
(

𝑥0̄ ⊗ 𝑥𝑝−1
0̄

)

⊗𝑚,

with 𝑥, 𝑦 ∈ 𝐿,𝑚 ∈𝑀 and 𝑥0̄ ∈ 𝐿0̄, into the generators of𝑊 . The result follows.
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The final part of this section is devoted to study the functoriality of the non-abelian
tensor product between the categories of 𝐩𝐒𝐋𝐢𝐞𝟐 and 𝐩𝐒𝐋𝐢𝐞. The following lemma
shows how the non-abelian tensor product behaves with respect to the morphisms in
𝐩𝐒𝐋𝐢𝐞𝟐.
Lemma 2.2.10. Let (𝜑,𝜓) be a morphism in 𝐩𝐒𝐋𝐢𝐞𝟐 between the objects (𝐿,𝑀) and
(𝑆, 𝑇 ). Then, there exists a morphism in 𝐩𝐒𝐋𝐢𝐞

𝜑⊗ 𝜓 ∶ 𝐿⊗𝑀 → 𝑆 ⊗ 𝑇

𝑥 ⊗ 𝑚 ↦ 𝜑(𝑥)⊗𝜓(𝑚).

Proof. It suffices to check that the map 𝜉 ∶ 𝐿 ×𝑀 → 𝑆 ⊗ 𝑇 defined by 𝜉(𝑥, 𝑚) =
𝜑(𝑥)⊗𝜓(𝑚) is a restricted Lie superpair with respect to 𝐿 and 𝑀 .

Proposition 2.2.11. The non-abelian tensor product is a functor between the cate-
gories 𝐩𝐒𝐋𝐢𝐞𝟐 and 𝐩𝐒𝐋𝐢𝐞.

Proof. Firstly, note that id(𝐿,𝑀) =
(

id𝐿, id𝑀
) is the identity morphism in 𝐩𝐒𝐋𝐢𝐞𝟐 as-

sociated to (𝐿,𝑀), and that id𝑀 ⊗ id𝑁 = id𝑀⊗𝑁 . Secondly, let (𝜑,𝜓) ∶ (𝐿,𝑀) →
(𝑆, 𝑇 ) and (

𝜑′, 𝜓 ′) ∶ (𝑆, 𝑇 ) → (𝑈, 𝑉 ) be two morphisms in 𝐩𝐒𝐋𝐢𝐞𝟐. We have that
(

𝜑′, 𝜓 ′) (𝜑,𝜓) =
(

𝜑′𝜑,𝜓 ′𝜓
), and also

((

𝜑′ ⊗𝜓 ′) (𝜑⊗ 𝜓)
)

(𝑥 ⊗ 𝑚) = 𝜑′ (𝜑(𝑥))⊗𝜓 ′ (𝜓(𝑚)) =
((

𝜑′𝜑
)

⊗
(

𝜓 ′𝜓
))

(𝑥⊗𝑚)

for all 𝑥 ∈ 𝐿, 𝑚 ∈𝑀 . It follows that (𝜑′ ⊗𝜓 ′) (𝜑⊗ 𝜓) =
(

𝜑′𝜑
)

⊗
(

𝜓 ′𝜓
), and we

are done.
Our last result deals with a certain exactness of the non-abelian tensor product.

Note that the kernels, cokernels and images in 𝐩𝐒𝐋𝐢𝐞𝟐 are just the pairs formed, re-
spectively, by the kernels, cokernels and images of the two homomorphisms of re-
stricted Lie superalgebras composing the morphisms in 𝐩𝐒𝐋𝐢𝐞𝟐.
Proposition 2.2.12. Let

(0, 0) → (𝐾,𝐻)
(𝑖,𝑗)
←←←←←←←←←←←←←←←→ (𝐿,𝑀)

(𝜑,𝜓)
←←←←←←←←←←←←←←←←←←←←→ (𝑆, 𝑇 ) → (0, 0)
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be an exact sequence in 𝐩𝐒𝐋𝐢𝐞𝟐. Then, the sequence

𝐾 ⊗𝑀 ⋊ 𝐿⊗𝐻
𝛼
←←←←←←←←←←←→ 𝐿⊗𝑀

𝜑⊗𝜓
←←←←←←←←←←←←←←←←←←←→ 𝑆 ⊗ 𝑇 → 0 (2.2.1)

is exact in 𝐩𝐒𝐋𝐢𝐞, being 𝛼 (𝑢 + 𝑣) =
(

𝑖 ⊗ id𝑀
)

(𝑢)+
(

id𝐿⊗𝑗
)

(𝑣), where 𝑢+𝑣 denotes
an arbitrary element of 𝐾 ⊗𝑀 ⋊ 𝐿⊗𝐻 .

Proof. Note first that the actions of 𝐿 and 𝑀 on each other induce actions of 𝐾 and
𝑀 , and of 𝐻 and 𝐿, on each other, which will be compatible. So we can construct
the non-abelian tensor products 𝐾 ⊗𝑀 and 𝐿⊗𝐻 .

Recall the action of 𝑀 on 𝐿 ⊗𝑀 constructed in Proposition 2.2.4: 𝑞(𝑥 ⊗ 𝑚) =
𝑞𝑥 ⊗ 𝑚 + (−1)|𝑞||𝑚|𝑥 ⊗ [𝑞, 𝑚], for all 𝑥 ∈ 𝐿, 𝑞, 𝑚 ∈ 𝑀 . This action also induces
another one of 𝑀 on 𝐾 ⊗𝑀 , i.e. a morphism 𝜙∶ 𝑀 → Der[𝑝](𝐾 ⊗𝑀).

Consider also the morphism
𝜂∶ 𝐿⊗𝐻 → 𝐻

𝑥⊗ ℎ ↦ 𝑥ℎ.

The composition (

𝜙|𝐻
)

𝜂 gives an action of 𝐿 ⊗ 𝐻 on 𝐾 ⊗ 𝑀 , which allows to
construct the semidirect product 𝐾 ⊗𝑀 ⋊ 𝐿⊗𝐻 .

As 𝜂 is nothing but the restriction 𝜈|𝐿⊗𝐻 ∶ 𝐿 ⊗𝐻 → 𝑀 , Lemma 2.2.4 and the
properties of crossed modules ensure that

(

𝑖 ⊗ id𝑀
)

(𝑣𝑢) =
(

𝑖 ⊗ id𝑀
) (𝜂(𝑣)𝑢

)

= [
(

id𝐿⊗𝑗
)

(𝑣) ,
(

𝑖 ⊗ id𝑀
)

(𝑢)],

for all 𝑢 ∈ 𝐾 ⊗𝑀 and 𝑣 ∈ 𝐿⊗𝐻 .
Taking into account this last equality, it is routine to prove that 𝛼 is a morphism

in 𝐩𝐒𝐋𝐢𝐞. To prove the exactness of the sequence (2.2.1), it suffices to work with the
elements 𝑘 ⊗ 𝑚 + 𝑥 ⊗ ℎ ∈ 𝐾 ⊗𝑀 ⋊ 𝐿⊗𝐻 and 𝑥 ⊗ 𝑚 ∈ 𝐿⊗𝑀 .

The surjectivity of 𝜑 ⊗ 𝜓 and the inclusion Im 𝛼 ⊆ ker(𝜑 ⊗ 𝜓) are immediate.
The properties of the crossed module 𝜈 yield that Im 𝛼 is a graded restricted ideal of
𝐿⊗𝑀 , so we are able to construct the quotient 𝐿⊗𝑀Im 𝛼

. The morphism 𝜑⊗𝜓 induces
another one 𝜑⊗ 𝜓 ∶ 𝐿⊗𝑀

Im 𝛼
→ 𝑆 ⊗ 𝑇 . The restricted Lie superpair with respect to 𝑆
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and 𝑇

𝜉 ∶ 𝑆 × 𝑇 →
𝐿⊗𝑀

Im 𝛼
(𝑠, 𝑡) ↦ 𝑥 ⊗ 𝑚 + Im 𝛼,

with 𝑥 ∈ 𝐿 and 𝑚 ∈𝑀 satisfying 𝜑(𝑥) = 𝑠 and 𝜓(𝑚) = 𝑡, induces a homomorphism
of restricted Lie superalgebras, 𝛽 ∶ 𝑆 ⊗ 𝑇 → 𝐿⊗𝑀

Im 𝛼
, which is the inverse of 𝜑⊗ 𝜓 .

Therefore, ker(𝜑⊗ 𝜓) ⊆ Im 𝛼, and the sequence (2.2.1) is exact.
Note that the morphism 𝛼 defined in Proposition 2.2.12 is not necessarily in-

jective. Indeed, take an element 𝑘 ⊗ ℎ ∈ (𝐾 ⊗ 𝑀) ∩ (𝐿 ⊗ 𝐻), and check that
𝛼 (−𝑘 ⊗ ℎ + 𝑘 ⊗ ℎ) = 0 although −𝑘⊗ ℎ+ 𝑘⊗ ℎ is non-zero in 𝐾 ⊗𝑀 ⋊𝐿⊗𝐻 .

In particular, Proposition 2.2.12 yields that the sequence of restricted Lie super-
algebras

𝐾 ⊗𝐿⋊ 𝐿⊗𝐾
𝛼
←←←←←←←←←←←→ 𝐿⊗𝐿

𝜋⊗𝜋
←←←←←←←←←←←←←←←←←←→ 𝐿∕𝐾 ⊗𝐿∕𝐾 → 0,

is exact for every graded restricted ideal 𝐾 of 𝐿.

2.3 Central extensions of restricted Lie superalgebras

In this short section, we apply the results obtained in Section 2.2 to the theory of
central extensions of restricted Lie superalgebras. In the first place, we are going to
work with central extensions relative to the Birkhoff subcategory 𝐀𝐛.

We begin with some simple results (cf. [180]) which will be necessary for the
proof of the main theorem of this section. Their proofs follow directly from the defi-
nitions, so we omit them.
Lemma 2.3.1. Let𝐿 and𝑀 be two restricted Lie superalgebras, with𝑀 perfect, and
let 𝜑∶ 𝑀 → 𝐿 be a central extension. Then, 𝐿 is also perfect.

Lemma 2.3.2. Let𝐿 and𝑀 be two restricted Lie superalgebras, and let 𝜑∶ 𝑀 → 𝐿
be a central extension. Then:

1. If 𝜑(𝑚) = 𝜑(𝑛) and 𝜑(𝑚′) = 𝜑(𝑛′) for some 𝑚,𝑚′, 𝑛, 𝑛′ ∈ 𝑀 , then [𝑛, 𝑛′] =
[𝑦, 𝑦′].
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2. If𝐻 is another restricted Lie superalgebra and𝜙, 𝜙′ ∶ 𝐻 →𝑀 are morphisms
satisfying 𝜑𝜙 = 𝜑𝜙′, then 𝜙|

⟨[𝐻,𝐻]⟩𝑝 = 𝜙′
|

⟨[𝐻,𝐻]⟩𝑝 .

Corollary 2.3.3. Let 𝐿, 𝑀 and 𝐻 be restricted Lie superalgebras, with 𝑀 perfect,
and let 𝜑∶ 𝑀 → 𝐿 and 𝜓 ∶ 𝐻 → 𝐿 be central extensions. Then, there exists at most
one homomorphism between the central extensions 𝜑 and 𝜓 .

Now we are prepared to present the main result of this section. The first part of
the proof uses the same argument as in [52, Theorem 3.7].
Theorem 2.3.4. A restricted Lie superalgebra 𝐿 admits a universal central extension
if and only if it is perfect.

Proof. Assume first that 𝐿 admits a universal central extension 𝜑∶ 𝑀 → 𝐿. Denote
𝑀 ∶=𝑀⊕𝑀ab, and define the morphism𝜓 ∶ 𝑀 → 𝐿 by𝜓 (

𝑚 + 𝑛 + ⟨[𝑀,𝑀]⟩𝑝
)

=
𝜑(𝑚), which is another central extension of 𝐿. Define now the homomorphisms of
central extensions 𝜙, 𝜙′ ∶ 𝑀 → 𝑀 by 𝜙(𝑚) = 𝑚 + 𝑚 + ⟨[𝑀,𝑀]⟩𝑝 and 𝜙′(𝑚) = 𝑚.
Since 𝜑 is universal, we have that 𝜙 = 𝜙′ and consequently 𝑀 is perfect. By
Lemma 2.3.1, 𝐿 is also perfect.

𝑁

𝜑
  

𝜙
++

𝜙′

33 𝑁

𝜓
~~

𝑀

Assume now that 𝐿 is perfect. By Lemma 2.2.4, the morphism of restricted Lie
superalgebras

𝜇∶ 𝐿⊗𝐿 → 𝐿

(𝑥, 𝑦) ↦ [𝑥, 𝑦]

is a crossed module. Since 𝐿 is perfect, 𝜇 is surjective, and Lemma 2.1.2 ensures that
it is a central extension for 𝐿.
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Suppose that 𝜑∶ 𝑀 → 𝐿 is another central extension, and consider the restricted
Lie superpair given by

𝜉 ∶ 𝐿 × 𝐿→𝑀

(𝑥, 𝑦) ↦ [𝑚, 𝑛],

where 𝜑(𝑚) = 𝑥 and 𝜑(𝑛) = 𝑦. Then, it is induced a morphism 𝜙∶ 𝐿 ⊗ 𝐿 →

𝑀 with 𝜙(𝑥 ⊗ 𝑦) = [𝑚, 𝑛]. By construction, it holds that 𝜑𝜙 = 𝜇, so 𝜙 can be
seen as a homomorphism of central extensions from 𝜇 to 𝜑. It is easy to check that
[𝑥, 𝑦][𝑝]𝑟⊗[𝑥′, 𝑦′][𝑝]𝑠 ∈ ⟨[𝐿⊗𝐿,𝐿⊗𝐿]⟩𝑝 for all 𝑥, 𝑥′, 𝑦, 𝑦′ ∈ 𝐿 such that |𝑥| = |𝑦| and
|𝑥′| = |𝑦′|. As 𝐿 is perfect, it follows that 𝐿⊗ 𝐿 is also perfect, and Corollary 2.3.3
yields the uniqueness of 𝜙. Therefore, 𝜇 is the universal central extension of 𝐿.

We offer also a partial result for central extensions relative to the Birkhoff subcat-
egory 𝐬𝐀𝐛.
Lemma 2.3.5. Let𝐿 and𝑀 be two restricted Lie superalgebras, with𝑀 𝐬𝐀𝐛-perfect,
and let 𝜑∶ 𝑀 → 𝐿 be a 𝐬𝐀𝐛-central extension. Then, 𝐿 is also 𝐬𝐀𝐛-perfect.

Proposition 2.3.6. Let 𝐿 be a restricted Lie superalgebra admitting a universal 𝐬𝐀𝐛-
central extension. Then, 𝐿 is 𝐬𝐀𝐛-perfect.

Proof. Let 𝜑∶ 𝑀 → 𝐿 be the universal 𝐬𝐀𝐛-central extension. Substitute 𝑀 in the
proof of Theorem 2.3.4 by 𝑀 ∶=𝑀 ⊕𝑀sab, and define the morphism 𝜓 ∶ 𝑀 → 𝐿
by 𝜓 (

𝑚 + 𝑛 + [𝑀,𝑀]𝐬𝐀𝐛
)

= 𝜑(𝑚). Since 𝜑 is 𝐬𝐀𝐛-central, if follows that 𝜓 is
𝐬𝐀𝐛-central too. The proof finishes as in Theorem 2.3.4.
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The subject of algebra extensions has long been a focal point of interest in mathematics
and physics. In short, an algebra A is an extension of another algebra B by K if there
exists a short exact sequence 0 → K → A → B → 0. The easiest example is the direct
sumB⊕K, along with the inclusion and projection maps. Imposing new conditions on
the extensions, we find important special types, such as the split extensions, the HNN-
extensions, which have been used to prove numerous theorems of embeddability in
different varieties of non-associative algebras [159, 163, 227], and many others. In
this memory, we will be concerned with central extensions, i.e. extensions in which
the centre (or, as we will be calling it throughout this Part II, the annihilator) of A
contains K. Several important algebras can be constructed as central extensions; for
example, the Virasoro algebra is the universal central extension of the Witt algebra,
and the Heisenberg algebra is a central extension of a commutative Lie algebra.

The algebraic study of central extensions of different varieties of non-associative
algebras has an interest on its own [8,138,239], but also plays an important role in the
classification problem in such varieties. Since Skjelbred and Sund in 1978 devised
a method for classifying nilpotent Lie algebras [209], making crucial use of central
extensions and the second cohomology space with trivial coefficients, it has been
profusely used [57,63,99] and adapted to many other varieties of algebras, including
associative [64], Jordan [6, 7], Malcev [3, 4], Novikov [137] or anticommutative [42,
143], among others (see [5, 101, 120], for instance). It has also been employed to
classify types of non-associative algebras not defined by polynomial identities, such
as 𝑝-nilpotent restricted Lie algebras [62] or 𝑛-dimensional algebras with annihilator
of dimension 𝑛 − 2 [44].

The key idea in this method for classifying nilpotent algebras of a certain variety
is to regard them as central extensions of algebras of smaller dimension, defined by
means of the second cohomology space. The isomorphism problem is then solved

65



66 Introduction

by considering the orbits of the automorphism group on the set of subspaces of this
cohomology space, together with certain technical nuances.

A nilpotent algebra has maximum index of nilpotency if and only if it is one-
generated. This fact highlights the importance of studying one-generated objects in
the classification of nilpotent algebras. Also, the description of one-generated, or
cyclic, groups is well known: there exists a unique one-generated group of order 𝑛,
up to isomorphism. One could wonder if the situation would be similar in the case
of some varieties of algebras. In fact, it has been proved that there exists only one 𝑛-
dimensional one-generated nilpotent algebra in the varieties of associative [68], non-
commutative Jordan [132] or Leibniz [171]. However, this circumstance does not
hold for every variety of non-associative algebras. For example, the classifications of
four-dimensional Novikov [137], assosymmetric [120] or terminal [144] nilpotent al-
gebras show that there exist several one-generated algebras of dimension 4 from these
varieties. Recently, one-generated nilpotent Novikov and assosymmetric algebras in
dimensions 5 and 6, and one-generated nilpotent terminal algebras in dimension 5
were classified in [45, 102, 145].

Once the algebraic classification of the algebras of fixed dimension from a given
variety is known, one can aim to classify them also geometrically in the sense ex-
plained in the sense of this manuscript. In particular, it is interesting to describe the
so-called rigid algebras, since the closures of their orbits under the action of the gen-
eralised linear group form irreducible components.

We can find numerous examples of this approach in the literature, too. To cite
some of them, we have [41, 107, 108, 203] for Lie algebras, [60, 61, 90, 172] for as-
sociative algebras, [103, 139–141] for Jordan algebras, [150] for Malcev algebras,
[22, 23, 137] for Novikov algebras, and many others [5, 43, 84, 121, 151].

This second part of the manuscript is divided into three chapters. Chapter 3
amalgamates the contents of the articles [147] and [148] (joint works with Ivan Kay-
gorodov and Vasily Voronin), presenting the algebraic and geometric classifications of
the four-dimensional nilpotent bicommutative algebras overℂ, as well as the algebraic
classifications of five- and six-dimensional one-generated nilpotent bicommutative al-
gebras. The finding of two central extensions of the one-generated algebra 3

02(1) will
be the starting point of Chapter 4. In this chapter, we study different central exten-
sions of the 𝑛-dimensional null-filiform associative algebra 𝜇𝑛0, which in dimension
3 coincides with 3

02(1). The chapter corresponds to the article [146], a joint work
with Ivan Kaygorodov and Samuel Lopes. Finally, in Chapter 5 we deal with a class
of non-associative algebra which is not a variety, namely axial algebras. We base on
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the method of Skjelbred-Sund to describe a technique for constructing central exten-
sions of axial algebras.This chapter corresponds to some work in progress with Ivan
Kaygorodov and Cándido Martín González.

The structure of each chapter will be described in its own introduction.
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Algebraic and geometric classifications of
nilpotent bicommutative algebras
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In this chapter, we give a classification of the four-dimensional and the one-generated
five- and six-dimensional nilpotent bicommutative algebras over ℂ. We also classify
the four-dimensional complex nilpotent bicommutative algebras from a geometric ap-
proach.

Introduction

The variety of bicommutative algebras, also called LR-algebras, is defined by the
polynomial identities of left- and right-commutativity. Explicitly, an algebra (A, ⋅)
is bicommutative if

𝑥 (𝑦𝑧) = 𝑦 (𝑥𝑧) , (𝑥𝑦) 𝑧 = (𝑥𝑧) 𝑦,

for all 𝑥, 𝑦, 𝑧 ∈ A.
The first known example of one-sided commutative algebras is the right-symmetric

Witt algebra in one variable, and dates back to 1857 [54]. This algebra satisfies the
identity of left-commutativity but not of right-commutativity, so it is not bicommu-
tative. The simpler examples of bicommutative algebras are the commutative and
associative algebras. Note that bicommutative algebras are Lie admissible: the com-
mutator [𝑥, 𝑦] = 𝑥𝑦 − 𝑦𝑥 defines an associated Lie algebra structure on A.

Bicommutative algebras over ℝ naturally appear in connection with geometry, in
particular with simply transitive affine actions of nilpotent Lie groups [38]. These
bicommutative algebras are complete (i.e. the operators of left multiplication 𝐿𝑥 are
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nilpotent for all 𝑥 ∈ A) and their associated Lie algebra structures are nilpotent. This
fact motivates the classification in [39] for dimension 𝑛 ≤ 4, where the authors limit
to consider real complete bicommutative algebras with nilpotent associated Lie struc-
ture. Bicommutative algebras have also been studied in [40,70–74]. We highlight the
algebraic and geometric classifications of two-dimensional bicommutative algebras
over an algebraically closed field in [151].

In this chapter, we also offer a partial classification of bicommutative algebras of
dimension 𝑛 ≤ 4, but with a different approach to that of [39]. On the one hand, we
work over ℂ, instead of ℝ. On the other hand, we classify nilpotent bicommutative
algebras, which is a larger class than that of complete bicommutative algebras with
nilpotent associated Lie structure (see [40, Proposition 2.2]). Also, the classification
in [39] depends heavily on the classification of nilpotent Lie algebras, while ours lies
entirely within the variety of bicommutative algebras, after a preliminary selection of
the two- and three-dimensional nilpotent complex algebras satisfying the identities of
left- and right-commutativity.

This chapter is organised as follows. Section 3.1 summarises the methods for
classifying nilpotent bicommutative algebras from both algebraic and geometric ap-
proaches, including also the current classifications of nilpotent bicommutative alge-
bras in dimensions 2 and 3. In Sections 3.2, 3.3 and 3.4, we apply the analogue of the
Skjelbred and Sund method [209] to obtain complete classifications of, respectively,
four-dimensional, one-generated five-dimensional and one-generated six-dimensional
nilpotent bicommutative algebras over ℂ. Finally, in Section 3.5 we apply the meth-
ods for computing degenerations to obtain the irreducible components of the variety
of four-dimensional nilpotent bicommutative algebras over ℂ. We show that there
exist two irreducible components in this variety.

Throughout this chapter, all algebras will be assumed to be over the field ℂ of
complex numbers.
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3.1 Preliminaries on the classification of nilpotent bicom-
mutative algebras

3.1.1 Method of the algebraic classification of nilpotent bicommutative
algebras

In this section, we offer an analogue of the Skjelbred-Sund method for classifying
nilpotent bicommutative algebras. As other analogues of this method were carefully
explained in, for instance, [3, 44], we will limit to expose its general lines, and refer
the interested reader to the previous sources.

We would like to highlight that this method will be generalised for any variety of
non-associative algebras in Section 4.1. However, we decided to include it here too
to facilitate the reading of this chapter.

Let (A, ⋅) be a bicommutative algebra of dimension 𝑛 and V a vector space of
dimension 𝑠 . We define the ℂ-linear space Z2 (A,V) as the set of all bilinear maps
𝜃∶ A × A → V such that

𝜃 (𝑥𝑦, 𝑧) = 𝜃 (𝑥𝑧, 𝑦) , 𝜃 (𝑥, 𝑦𝑧) = 𝜃 (𝑦, 𝑥𝑧) .

These maps will be called cocycles. Consider a linear map 𝑓 from A to V, and set
𝛿𝑓 ∶ A × A → V with 𝛿𝑓 (𝑥, 𝑦) = 𝑓 (𝑥𝑦). Then, 𝛿𝑓 is a cocycle, and we define
B2 (A,V) = {𝜃 = 𝛿𝑓 ∣ 𝑓 ∈ Hom (A,V)}, which is a linear subspace of Z2 (A,V).
Its elements are called coboundaries. The second cohomology space H2 (A,V) is
defined to be the quotient space Z2 (A,V)

/

B2 (A,V).
Let 𝜙 ∈ Aut (A) be an automorphism of A. Every 𝜃 ∈ Z2 (A,V) defines another

cocycle 𝜙𝜃 by 𝜙𝜃 (𝑥, 𝑦) = 𝜃 (𝜙 (𝑥) , 𝜙 (𝑦)). This construction induces a right action
of Aut (A) on Z2 (A,V), which leaves B2 (A,V) invariant. So, it follows that Aut (A)
also acts on H2 (A,V).

Given a bilinear map 𝜃∶ A×A → V, we can construct the direct sum A𝜃 = A⊕V
and endow it with the bilinear product [−,−]A𝜃 defined by [

𝑥 + 𝑥′, 𝑦 + 𝑦′
]

A𝜃
= 𝑥𝑦 +

𝜃 (𝑥, 𝑦) for all 𝑥, 𝑦 ∈ A, 𝑥′, 𝑦′ ∈ V. It is clear that the algebra A𝜃 is bicommutative if
and only if 𝜃 ∈ Z2 (A,V). Note that it is a 𝑠- dimensional central extension of A by
V; it is not difficult to prove that every central extension of A is of this type.

An important object for the development of the method is the so-called annihilator
of 𝜃, namely Ann (𝜃) = {𝑥 ∈ A ∣ 𝜃 (𝑥,A) + 𝜃 (A, 𝑥) = 0}. We also recall that the an-
nihilator (or centre) of an algebra A is the ideal Ann (A) = {𝑥 ∈ A ∣ 𝑥A + A𝑥 = 0}.
It holds that Ann (A𝜃

)

= (Ann (𝜃) ∩ Ann (A))⊕ V. If A = A0 ⊕ 𝐼 for any subspace
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𝐼 of Ann (A), then 𝐼 is called an annihilator component of A. A central extension of
an algebra A with annihilator component is called a split central extension; without
annihilator component, non-split.

The following result is fundamental for the classification method. For an idea of
the proof, we refer the reader to [3, Lemma 5].

Lemma 3.1.1. Let A be an 𝑛-dimensional bicommutative algebra such that satisfies
dim (Ann (A)) = 𝑠 ≠ 0. Then there exists, up to isomorphism, a unique (𝑛 − 𝑠)-
dimensional bicommutative algebra A′ and a bilinear map 𝜃 ∈ Z2 (A,V) such that
Ann

(

A′)∩Ann (𝜃) = 0, where V is a vector space of dimension 𝑠, such that A ≃ A′
𝜃

and A∕Ann (A) ≃ A′.

In view of this lemma, we can solve the isomorphism problem for bicommutative
algebras with non-zero annihilator just working with central extensions.

Let us fix a basis {𝑒1,… , 𝑒𝑠
} of V. Given a cocycle 𝜃, it can be uniquely written

as 𝜃 (𝑥, 𝑦) =
𝑠
∑

𝑖=1
𝜃𝑖 (𝑥, 𝑦) 𝑒𝑖, where 𝜃𝑖 ∈ Z2 (A,ℂ). The main relations between 𝜃

and 𝜃𝑖 are that 𝜃 ∈ B2 (A,V) if and only if all 𝜃𝑖 ∈ B2 (A,ℂ), and that Ann (𝜃) =
Ann

(

𝜃1
)

∩…∩Ann
(

𝜃𝑠
). Furthermore, we have the following lemma (see [3, Lemma

13]).

Lemma 3.1.2. With the previous notations, if Ann (𝜃) ∩Ann (A) = 0, then A𝜃 has an
annihilator component if and only if

[

𝜃1
]

,… ,
[

𝜃𝑠
]

are linearly dependent inH2 (A,ℂ).

Recall that, given a finite-dimensional vector space V over ℂ, the Grassmannian
𝐺𝑘 (V) is the set of all 𝑘-dimensional linear subspaces of V. Given

𝑊 =
⟨[

𝜃1
]

,… ,
[

𝜃𝑠
]⟩

∈ 𝐺𝑠
(

H2 (A,ℂ)
)

and 𝜙 ∈ Aut (A), we define 𝜙𝑊 as 𝜙𝑊 =
⟨[

𝜙𝜃1
]

,… ,
[

𝜙𝜃𝑠
]⟩, which again belongs

to 𝐺𝑠
(

H2 (A,ℂ)
). This induces an action of Aut (A) on 𝐺𝑠

(

H2 (A,ℂ)
); the orbit of

𝑊 ∈ 𝐺𝑠
(

H2 (A,ℂ)
) under this action will be denoted by Orb (𝑊 ).

Consider the set

𝑇𝑠 (A) =

{

𝑊 =
⟨[

𝜃1
]

,… ,
[

𝜃𝑠
]⟩

∈ 𝐺𝑠
(

H2 (A,ℂ)
)

∣
𝑠
⋂

𝑖=1
Ann

(

𝜃𝑖
)

∩ Ann (A) = 0

}

;
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it is well defined, as whenever⟨[𝜃1
]

,… ,
[

𝜃𝑠
]⟩

=
⟨[

𝜗1
]

,… ,
[

𝜗𝑠
]⟩

∈ 𝐺𝑠
(

H2 (A,ℂ)
),

it holds that
𝑠
⋂

𝑖=1
Ann

(

𝜃𝑖
)

∩ Ann (A) =
𝑠
⋂

𝑖=1
Ann

(

𝜗𝑖
)

∩ Ann (A) .

In addition, 𝑇𝑠 (A) is stable under the action of Aut (A).
Let us denote by E (A,V) the set of all non-split 𝑠-dimensional central extensions

of A by V:

E (A,V) =

{

A𝜃 ∣ 𝜃 (𝑥, 𝑦) =
𝑠
∑

𝑖=1
𝜃𝑖 (𝑥, 𝑦) 𝑒𝑖 and ⟨[

𝜃1
]

,… ,
[

𝜃𝑠
]⟩

∈ 𝑇𝑠 (A)

}

.

The following lemma (cf. [3, Lemma 17]) solves the isomorphism problem for
non-split central extensions of bicommutative algebras.

Lemma 3.1.3. Let A𝜃,A𝜗 ∈ E (A,V). Suppose that 𝜃 (𝑥, 𝑦) =
𝑠
∑

𝑖=1
𝜃𝑖 (𝑥, 𝑦) 𝑒𝑖 and

𝜗 (𝑥, 𝑦) =
𝑠
∑

𝑖=1
𝜗𝑖 (𝑥, 𝑦) 𝑒𝑖. Then the bicommutative algebrasA𝜃 andA𝜗 are isomorphic

if and only if
Orb

⟨[

𝜃1
]

,… ,
[

𝜃𝑠
]⟩

= Orb
⟨[

𝜗1
]

,… ,
[

𝜗𝑠
]⟩

.

In conclusion, we can construct all the non-split central extensions of a bicommu-
tative algebra A of dimension 𝑛 − 𝑠 by following this procedure:

1. Determine H2 (A,ℂ), Ann (A) and Aut (A).
2. Determine the set of Aut (A)-orbits on 𝑇𝑠 (A).
3. For each orbit, construct the bicommutative algebra associated with a represen-

tative of it.
Any nilpotent bicommutative algebra has non-zero annihilator, and hence can be

regarded as a central extension of a bicommutative algebra of smaller dimension, by
Lemma 3.1.1. Note that this algebra has to be nilpotent, too. Then, Lemma 3.1.3
yields that, provided that the classifications of nilpotent bicommutative algebras of
dimension up to 𝑛−1 are known, we can also classify all the nilpotent bicommutative
algebras of dimension 𝑛.
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Note also that if we want to stick to the one-generated case, it suffices to consider
the non-split central extensions of one-generated nilpotent bicommutative algebras
of lower dimension. Indeed, the central extensions of an algebra which is not one-
generated cannot be one-generated; on the other hand, considering the definition of
B2 (A,V) and Lemma 3.1.2, it is not difficult to see that the non-split extensions of a
one-generated algebra are again one-generated.

3.1.2 Method of the description of degenerations of bicommutative al-
gebras

Let W be an 𝑛-dimensional vector space over ℂ. The set Hom (W⊗W,W) ≃ W∗ ⊗
W∗⊗W is a vector space of dimension 𝑛3, and it has the structure of the affine variety
ℂ𝑛3 . Indeed, if we fix a basis {𝑒1,… , 𝑒𝑛

} of W, then any 𝜂 ∈ Hom (W⊗W,W) is
determined by 𝑛3 structure constants 𝑐𝑘𝑖𝑗 ∈ ℂ such that 𝜂 (𝑒𝑖 ⊗ 𝑒𝑗

)

=
𝑛
∑

𝑘=1
𝑐𝑘𝑖𝑗𝑒𝑘. A

subset of Hom (W⊗W,W) is called Zariski-closed if it can be defined by a set of
polynomial equations in the variables 𝑐𝑘𝑖𝑗 (1 ≤ 𝑖, 𝑗, 𝑘 ≤ 𝑛).

Let 𝑇 be the set of the polynomial identities of left- and right-commutativity. It
holds that the algebra structures on W satisfying the polynomial identities from 𝑇
form a Zariski-closed subset of the variety Hom (W⊗W,W); it is denoted by 𝕃 (𝑇 ).
There exists a natural action of the general linear group 𝐺𝐿 (W) on 𝕃 (𝑇 ) defined by

(𝑔 ∗ 𝜂) (𝑥 ⊗ 𝑦) = 𝑔𝜂
(

𝑔−1𝑥 ⊗ 𝑔−1𝑦
)

for 𝑥, 𝑦 ∈ W, 𝜂 ∈ 𝕃 (𝑇 ) and 𝑔 ∈ 𝐺𝐿 (W). Then, 𝕃 (𝑇 ) can be decomposed into
𝐺𝐿 (W)-orbits corresponding to the isomorphism classes of the algebras. We will
denote by 𝑂 (𝜂) the orbit of 𝜂 ∈ 𝕃 (𝑇 ) under the action of 𝐺𝐿 (W), and by 𝑂 (𝜂) the
Zariski closure of 𝑂 (𝜂).

Let A and B be two 𝑛-dimensional bicommutative algebras, and let 𝜂, 𝜈 ∈ 𝕃 (𝑇 )
represent A and B, respectively. We say that A degenerates to B, and write A → B, if
𝜈 ∈ 𝑂 (𝜂). Note that, in particular, it holds that𝑂 (𝜈) ⊆ 𝑂 (𝜂). Hence, the definition of
a degeneration does not depend on the choice of 𝜂 and 𝜈. If A ≄ B, then the assertion
A → B is called a proper degeneration. Also, we write A ̸→ B if 𝜈 ∉ 𝑂 (𝜂).

Now consider A (∗) ∶= {A (𝜆)}𝜆∈I and B (∗) ∶= {B (𝜇)}𝜇∈J two infinite fami-
lies of algebras parameterised by 𝜆 and 𝜇, respectively, and let A (𝜆), for 𝜆 ∈ 𝐼 , be
represented by the structure 𝜂 (𝜆) ∈ 𝕃 (𝑇 ), and B (𝜇), for 𝜇 ∈ 𝐽 , by the structure
𝜈 (𝜇) ∈ 𝕃 (𝑇 ). Then A (∗) → B means 𝜈 ∈ {𝑂 (𝜂 (𝜆))}𝜆∈𝐼 , and A (∗) ̸→ B means
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𝜈 ∉ {𝑂 (𝜂 (𝜆))}𝜆∈𝐼 . On the other hand, A → B (∗) means that 𝜈 (𝜇) ∈ 𝑂 (𝜂) for all
𝜇 ∈ 𝐵 except a finite number of instances, and A ̸→ B (∗) means that 𝜈 (𝜇) ∉ 𝑂 (𝜂)
for infinite 𝜇 ∈ 𝐵.

Moreover, we call A rigid in 𝕃 (𝑇 ) if 𝑂 (𝜂) is an open subset of 𝕃 (𝑇 ). Recall that
a subset of a variety is called irreducible if it cannot be represented as a union of two
non-trivial closed subsets, and that a maximal irreducible closed subset of a variety
is called an irreducible component. It is well known that any affine variety can be
represented as a finite union of its irreducible components in a unique way. Then, we
have the following characterization of rigidity: A is rigid in 𝕃 (𝑇 ) if and only if 𝑂 (𝜂)
is an irreducible component of 𝕃 (𝑇 ).

To describe the degenerations between bicommutative algebras, we use the meth-
ods applied to Lie algebras in [41, 107, 108, 203]. Let Der (A) denote the Lie algebra
of derivations of A. Our first and useful consideration is that if A → B and A ≄ B,
then dimDer (A) < dimDer (B) and dimA2 ≥ dimB2. Then, we will compute the
dimensions of algebras of derivations and will check the assertion A → B only for
A and B such that dimDer (A) < dimDer (B). Among them, we will calculate the
dimension of the squares of the algebras and check A → B only for A and B such that
dimA2 ≥ dimB2.

Now, we explain our method for proving degenerations. Let A, A (∗), B and B (∗)
be as above. Fixed a basis {𝑒1,… , 𝑒𝑛

} of W, let 𝑐𝑘𝑖𝑗 (1 ≤ 𝑖, 𝑗, 𝑘 ≤ 𝑛) be the structure
constants of 𝜈 in this basis, and 𝑐𝑘𝑖𝑗 (𝜇) (1 ≤ 𝑖, 𝑗, 𝑘 ≤ 𝑛) be the structure constants
of 𝜈 (𝜇). On the one hand, if there exist 𝑎𝑖𝑗 ∶ ℂ∗ → ℂ (1 ≤ 𝑖, 𝑗 ≤ 𝑛) such that
𝐸𝑡
𝑖 =

𝑛
∑

𝑗=1
𝑎𝑖𝑗 (𝑡) 𝑒𝑗 , for 1 ≤ 𝑖 ≤ 𝑛, form a basis of W for any 𝑡 ∈ ℂ∗, and the struc-

ture constants of 𝜂 in the basis {𝐸𝑡
1,… , 𝐸𝑡

𝑛
} are such polynomials 𝑐𝑘𝑖𝑗 (𝑡) ∈ ℂ[𝑡] that

𝑐𝑘𝑖𝑗 (0) = 𝑐𝑘𝑖𝑗 , then A → B. In this case {

𝐸𝑡
1,… , 𝐸𝑡

𝑛
} is called a parameterised basis

for A → B.
Also, if there exist some 𝑎𝑖𝑗 ∶ 𝐽 × ℂ∗ → ℂ (1 ≤ 𝑖, 𝑗 ≤ 𝑛) such that 𝐸𝑡

𝑖 (𝜇) =
𝑛
∑

𝑗=1
𝑎𝑖𝑗 (𝜇, 𝑡) 𝑒𝑗 , for 1 ≤ 𝑖 ≤ 𝑛, form a basis of W for any 𝑡 ∈ ℂ∗ and all 𝜇 ∈ 𝐽

except for a finite number of instances, and the structure constants of 𝜂 in the basis
{

𝐸𝑡
1 (𝜇) ,… , 𝐸𝑡

𝑛 (𝜇)
} are such polynomials 𝑐𝑘𝑖𝑗 (𝜇, 𝑡) ∈ ℂ[𝜇, 𝑡] that 𝑐𝑘𝑖𝑗 (𝜇, 0) = 𝑐𝑘𝑖𝑗 (𝜇),

then A → B (∗). The basis {𝐸𝑡
1 (𝜇) ,… , 𝐸𝑡

𝑛 (𝜇)
} is called a parameterised basis for

A → B (∗).
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On the other hand, if we construct 𝑎𝑖𝑗 ∶ ℂ∗ → ℂ (1 ≤ 𝑖, 𝑗 ≤ 𝑛) and 𝑓 ∶ ℂ∗ → 𝐼

such that 𝐸𝑡
𝑖 =

𝑛
∑

𝑗=1
𝑎𝑖𝑗 (𝑡) 𝑒𝑗 , for 1 ≤ 𝑖 ≤ 𝑛, form a basis of W for any 𝑡 ∈ ℂ∗,

and the structure constants of 𝜂 (𝑓 (𝑡)) in the basis {𝐸𝑡
1,… , 𝐸𝑡

𝑛
} are such polynomials

𝑐𝑘𝑖𝑗 (𝑡) ∈ ℂ[𝑡] that 𝑐𝑘𝑖𝑗 (0) = 𝑐𝑘𝑖𝑗 , then A (∗) → B. In this case {𝐸𝑡
1,… , 𝐸𝑡

𝑛
} and 𝑓 (𝑡) are

called a parameterised basis and a parameterised index for A (∗) → B, respectively.

3.1.3 Notations

Let A be a bicommutative algebra over ℂ with basis {𝑒1,… , 𝑒𝑛
}, and let V be a vector

space overℂ. We will denote byΔ𝑖𝑗 the bicommutative bilinear formΔ𝑖𝑗 ∶ A×A → ℂ
with Δ𝑖𝑗

(

𝑒𝑙, 𝑒𝑚
)

= 𝛿𝑖𝑙𝛿𝑗𝑚. Then, the set {Δ𝑖𝑗 ∣ 1 ≤ 𝑖, 𝑗 ≤ 𝑛
} is a basis for the linear

space of the bilinear forms on A, and every 𝜃 ∈ Z2 (A,V) can be uniquely written as
𝜃 =

∑

1≤𝑖,𝑗≤𝑛
𝑐𝑖𝑗Δ𝑖𝑗 , where 𝑐𝑖𝑗 ∈ ℂ. Henceforth, we will denote:

𝑖∗𝑗 — 𝑗th 𝑖-dimensional nilpotent non-pure bicommutative algebra
(with identity 𝑥𝑦𝑧 = 0);

𝑖𝑗 — 𝑗th 𝑖-dimensional nilpotent pure bicommutative algebra
(without identity 𝑥𝑦𝑧 = 0);

𝑖𝑗 — 𝑗th 𝑖-dimensional nilpotent one-generated bicommutative algebra;
𝔑𝑖 — 𝑖-dimensional algebra with zero product;
(A)𝑖,𝑗 — 𝑗th 𝑖-dimensional central extension of A.
Also, all algebras and vector spaces will be assumed to be over ℂ.

3.1.4 Low dimensional nilpotent bicommutative algebras

There are no non-trivial one-dimensional nilpotent bicommutative algebras, and there
is only one non-trivial two-dimensional nilpotent bicommutative algebra, which is ex-
actly the non-split central extension of the one-dimensional algebra with zero product
𝔑1:

2∗
01 ∶

(

𝔑1
)

2,1 ∶ 𝑒1𝑒1 = 𝑒2.

From this algebra, we construct the three-dimensional nilpotent bicommutative
algebra 3∗

01 = 2∗
01 ⊕ ℂ𝑒3.
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Also, [44] gives the description of all central extensions of 2∗
01 and 𝔑2. Choosing

the bicommutative algebras between them, we have the classification of all non-split
three-dimensional nilpotent bicommutative algebras:

3∗
02 ∶

(

𝔑2
)

3,1 ∶ 𝑒1𝑒1 = 𝑒3 𝑒2𝑒2 = 𝑒3
3∗
03 ∶

(

𝔑2
)

3,2 ∶ 𝑒1𝑒2 = 𝑒3 𝑒2𝑒1 = −𝑒3
3∗
04 (𝜆)𝜆≠0 ∶

(

𝔑2
)

3,3 ∶ 𝑒1𝑒1 = 𝜆𝑒3 𝑒2𝑒1 = 𝑒3 𝑒2𝑒2 = 𝑒3
3∗
04 (0) ∶

(

𝔑2
)

3,3 ∶ 𝑒1𝑒2 = 𝑒3
3
01 ∶

(

2∗
01

)

3,1 ∶ 𝑒1𝑒1 = 𝑒2 𝑒2𝑒1 = 𝑒3
3
02 (𝜆) ∶

(

2∗
01

)

3,2 ∶ 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒3 𝑒2𝑒1 = 𝜆𝑒3.

Remark 3.1.4. The reasons for considering separately the cases 3∗
04 (𝜆) with 𝜆 ≠ 0

and 3∗
04 (0) will become apparent in next section, as their cohomology spaces are

rather different.
From the previous list, we can select the one-generated algebras in dimension up

to 3:
2
01 ∶ 2∗

01 ∶ 𝑒1𝑒1 = 𝑒2
3
01 ∶ 3

01 ∶ 𝑒1𝑒1 = 𝑒2 𝑒2𝑒1 = 𝑒3
3
02 (𝜆) ∶ 3

02 (𝜆) ∶ 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒3 𝑒2𝑒1 = 𝜆𝑒3.

Let us focus now on the geometric classification of bicommutative algebras of
low dimensions. The variety of two-dimensional nilpotent bicommutative algebras is
trivially irreducible; for the general case of two-dimensional bicommutative algebras,
see [151]. Regarding dimension 3, the classification of the nilpotent algebras can be
extracted from the graph of degenerations of all the nilpotent algebras of dimension
3 [84]. There are two irreducible components, defined by the rigid algebras 3

01 and
3
02 (𝜆).

3.2 Algebraic classification of four-dimensional nilpotent bi-
commutative algebras

Note that the seven three-dimensional algebras from Subsection 3.1.4 provide seven
bicommutative algebras of dimension 4 by considering ℂ4 as the underlying vector
space. They will be denoted by 4∗

01, 4∗
02, 4∗

03, 4∗
04 (𝜆)𝜆≠0, 4∗

04 (0), 4
01 and 4

02 (𝜆),respectively.
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3.2.1 Second cohomology space of three-dimensional nilpotent bicom-
mutative algebras

In the following Table 3.1 we give the description of the second cohomology space of
three-dimensional nilpotent bicommutative algebras described in Subsection 3.1.4.

Z2 (3∗
01

) = ⟨

Δ11,Δ12,Δ13,Δ21,Δ31,Δ33
⟩

B2 (3∗
01

) = ⟨

Δ11
⟩

H2 (3∗
01

) = ⟨

[Δ12], [Δ13], [Δ21], [Δ31], [Δ33]
⟩

Z2 (3∗
02

) = ⟨

Δ11,Δ12,Δ21,Δ22
⟩

B2 (3∗
02

) = ⟨

Δ11 + Δ22
⟩

H2 (3∗
02

) = ⟨

[Δ12], [Δ21], [Δ22]
⟩

Z2 (3∗
03

) = ⟨

Δ11,Δ12,Δ21,Δ22
⟩

B2 (3∗
03

) = ⟨

Δ12 − Δ21
⟩

H2 (3∗
03

) = ⟨

[Δ11], [Δ21], [Δ22]
⟩

Z2 (3∗
04 (𝜆)𝜆≠0

) = ⟨

Δ11,Δ12,Δ21,Δ22
⟩

B2 (3∗
04 (𝜆)𝜆≠0

) = ⟨

𝜆Δ11 + Δ21 + Δ22
⟩

H2 (3∗
04 (𝜆)𝜆≠0

) = ⟨

[Δ12], [Δ21], [Δ22]
⟩

Z2 (3∗
04 (0)

) = ⟨

Δ11,Δ12,Δ13,Δ21,Δ22,Δ32
⟩

B2 (3∗
04 (0)

) = ⟨

Δ12
⟩

H2 (3∗
04 (0)

) = ⟨

[Δ11], [Δ13], [Δ21], [Δ22], [Δ32]
⟩

Z2 (3
01

) = ⟨

Δ11,Δ12,Δ21,Δ31
⟩

B2 (3
01

) = ⟨

Δ11,Δ21
⟩

H2 (3
01

) = ⟨

[Δ12], [Δ31]
⟩

Z2 (3
02 (𝜆)

) = ⟨

Δ11,Δ12,Δ21,Δ13 + 𝜆Δ22 + 𝜆Δ31
⟩

B2 (3
02 (𝜆)

) = ⟨

Δ11,Δ12 + 𝜆Δ21
⟩

H2 (3
02 (𝜆)

) = ⟨

[Δ21], 𝛼[Δ22] + [Δ13] + 𝛼[Δ31]
⟩

Table 3.1: Second cohomology space of three-dimensional nilpotent bicommutative
algebras.

Remark 3.2.1. From the description of the cocycles of the algebras 3∗
02, 3∗

03 and
3∗
04 (𝜆)𝜆≠0, it follows that the one-dimensional central extensions of these algebras are

two-dimensional central extensions of two-dimensional nilpotent bicommutative al-
gebras. Thanks to [44] we have the description of the unique non-split two-dimensional
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central extension of nilpotent bicommutative algebras of dimension 2: 4
03 =

(

2∗
01

)

4,1.
The multiplication table can be found in Table 3.2 (Subsection 3.2.6).

Then, in the following subsections we limit to study the central extensions of the
other algebras.

3.2.2 Central extensions of 3∗
01

Since the second cohomology spaces and automorphism groups of 3∗
01 and  3∗

01(from [137]) coincide, these algebras have the same central extensions. Therefore,
thanks to [137] we have all the new four-dimensional nilpotent bicommutative al-
gebras constructed from 3∗

01: 4
04 (𝜆) ,… ,4

09. The multiplication tables of these
algebras can be found in Table 3.2 (Section 3.2.6).

3.2.3 Central extensions of 3∗
04 (0)

Let us use the following notations:
∇1 = [Δ11],∇2 = [Δ13],∇3 = [Δ21],∇4 = [Δ22],∇5 = [Δ32].

The automorphism group of 3∗
04 (0) consists of invertible matrices of the form

𝜙 =
⎛

⎜

⎜

⎝

𝑥 0 0
0 𝑦 0
𝑧 𝑡 𝑥𝑦

⎞

⎟

⎟

⎠

.

Since

𝜙𝑇
⎛

⎜

⎜

⎝

𝛼1 0 𝛼2
𝛼3 𝛼4 0
0 𝛼5 0

⎞

⎟

⎟

⎠

𝜙 =
⎛

⎜

⎜

⎝

𝑥
(

𝑥𝛼1 + 𝑧𝛼2
)

𝛼∗ 𝑥2𝑦𝛼2
𝑥𝑦𝛼3 𝑦

(

𝑦𝛼4 + 𝑡𝛼5
)

0
0 𝑥𝑦2𝛼5 0

⎞

⎟

⎟

⎠

,

we have that the orbit of the action of Aut (3∗
04 (0)

) on the subspace
⟨

5
∑

𝑖=1
𝛼𝑖∇𝑖

⟩

is

given by
⟨

5
∑

𝑖=1
𝛼∗𝑖 ∇𝑖

⟩

, where

𝛼∗1 = 𝑥
(

𝑥𝛼1 + 𝑧𝛼2
)

, 𝛼∗2 = 𝑥2𝑦𝛼2, 𝛼∗3 = 𝑥𝑦𝛼3,
𝛼∗4 = 𝑦

(

𝑦𝛼4 + 𝑡𝛼5
)

, 𝛼∗5 = 𝑥𝑦2𝛼5.
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It is easy to see that the elements 𝛼1∇1 + 𝛼3∇3 + 𝛼4∇4 give algebras which are
central extensions of two-dimensional algebras. We find the following new cases:

1. 𝛼2 ≠ 0, 𝛼3 ≠ 0, 𝛼5 ≠ 0. Choosing 𝑥 = 𝛼3
𝛼2

, 𝑦 = 𝛼3
𝛼5

, 𝑧 = −𝑥𝛼1
𝛼2

and 𝑡 = − 𝑦𝛼4
𝛼5

, we
have the representative ⟨∇2 + ∇3 + ∇5⟩.

2. 𝛼2 ≠ 0, 𝛼3 = 0, 𝛼5 ≠ 0. Choosing 𝑦 = 𝑥𝛼2
𝛼5

, 𝑧 = −𝑥𝛼1
𝛼2

and 𝑡 = − 𝑦𝛼4
𝛼5

, we have
the representative ⟨∇2 + ∇5⟩.

3. 𝛼2 = 0, 𝛼3 ≠ 0, 𝛼5 ≠ 0:
(a) if 𝛼1 ≠ 0, then choosing 𝑦 = 𝛼3

𝛼5
, 𝑥 = 𝑦𝛼3

𝛼1
and 𝑡 = − 𝑦𝛼4

𝛼5
, we have the

representative ⟨∇1 + ∇3 + ∇5⟩.
(b) if 𝛼1 = 0, then choosing 𝑦 = 𝛼3

𝛼5
and 𝑡 = − 𝑦𝛼4

𝛼5
, we have the representative

⟨∇3 + ∇5⟩.
4. 𝛼2 ≠ 0, 𝛼3 ≠ 0, 𝛼5 = 0:

(a) if 𝛼4 ≠ 0, then choosing 𝑥 = 𝛼3
𝛼2

, 𝑦 = 𝑥𝛼3
𝛼4

and 𝑧 = −𝑥𝛼1
𝛼2

, we have the
representative ⟨∇2 + ∇3 + ∇4⟩.

(b) if 𝛼4 = 0, then choosing 𝑥 = 𝛼3
𝛼2

and 𝑧 = −𝑥𝛼1
𝛼2

, we have the representative
⟨∇2 + ∇3⟩.

5. 𝛼2 ≠ 0, 𝛼3 = 0, 𝛼5 = 0:
(a) if 𝛼4 ≠ 0, then choosing 𝑦 = 𝑥2𝛼2

𝛼4
and 𝑧 = −𝑥𝛼1

𝛼2
, we have the representa-

tive ⟨∇2 + ∇4⟩.
(b) if 𝛼4 = 0, then choosing 𝑧 = −𝑥𝛼1

𝛼2
, we have the representative ⟨∇2⟩.

6. 𝛼2 = 0, 𝛼3 = 0, 𝛼5 ≠ 0:
(a) if 𝛼1 ≠ 0, then choosing 𝑥 = 𝑦2𝛼5

𝛼1
and 𝑡 = − 𝑦𝛼4

𝛼5
, we have the representative

⟨∇1 + ∇5⟩.
(b) if 𝛼1 = 0 then choosing 𝑡 = − 𝑦𝛼4

𝛼5
, we have the representative ⟨∇5⟩.

Now we have all the new four-dimensional nilpotent bicommutative algebras con-
structed from 3∗

04 (0): 4
10,… ,4

19. The multiplication tables of these algebras can
be found in Table 3.2 (Section 3.2.6).
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3.2.4 Central extensions of 3
01

Let us use the following notations:

∇1 = [Δ12],∇2 = [Δ31].

The automorphism group of 3
01 consists of invertible matrices of the form

𝜙 =
⎛

⎜

⎜

⎝

𝑥 0 0
𝑦 𝑥2 0
𝑧 𝑥𝑦 𝑥3

⎞

⎟

⎟

⎠

.

Since

𝜙𝑇
⎛

⎜

⎜

⎝

0 𝛼1 0
0 0 0
𝛼2 0 0

⎞

⎟

⎟

⎠

𝜙 =
⎛

⎜

⎜

⎝

𝛼∗ 𝑥3𝛼1 0
𝛼∗∗ 0 0
𝑥4𝛼2 0 0

⎞

⎟

⎟

⎠

,

we have that the orbit of the action of Aut (3
01

) on the subspace
⟨

2
∑

𝑖=1
𝛼𝑖∇𝑖

⟩

is given

by
⟨

2
∑

𝑖=1
𝛼∗𝑖 ∇𝑖

⟩

, where

𝛼∗1 = 𝑥3𝛼1, 𝛼∗2 = 𝑥4𝛼2.

It is straightforward that the elements 𝛼1∇1 lead to central extensions of two-
dimensional algebras. The new cases are the following:

1. 𝛼1 ≠ 0, 𝛼2 ≠ 0. Choosing 𝑥 = 𝛼1
𝛼2

, we have the representative ⟨∇1 + ∇2⟩.

2. 𝛼1 = 0, 𝛼2 ≠ 0. Choosing 𝑥 = 1
4√𝛼2

, we have the representative ⟨∇2⟩.

Now we have all the new four-dimensional nilpotent bicommutative algebras con-
structed from 3

01: 4
20 and 4

21. The multiplication tables of these algebras can be
found in Table 3.2 (Section 3.2.6).
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3.2.5 Central extensions of 3
02 (𝜆)

Let us use the following notations:
∇1 = [Δ21],∇2 = [Δ13] + 𝜆[Δ22] + 𝜆[Δ31].

The automorphism group of 3
02 (𝜆) consists of invertible matrices of the form

𝜙 =
⎛

⎜

⎜

⎝

𝑥 0 0
𝑦 𝑥2 0
𝑧 (𝛼 + 1) 𝑥𝑦 𝑥3

⎞

⎟

⎟

⎠

.

Since
𝜙𝑇

⎛

⎜

⎜

⎝

0 0 𝛼2
𝛼1 𝜆𝛼2 0
𝜆𝛼2 0 0

⎞

⎟

⎟

⎠

𝜙 =
⎛

⎜

⎜

⎝

𝛼∗ 𝛼∗∗ 𝛼∗2
𝛼∗1 + 𝜆𝛼

∗∗ 𝜆𝛼∗2 0
𝜆𝛼∗2 0 0

⎞

⎟

⎟

⎠

,

we have that the orbit of the action of Aut (3
02 (𝜆)

) on the subspace
⟨

2
∑

𝑖=1
𝛼𝑖∇𝑖

⟩

is

given by
⟨

2
∑

𝑖=1
𝛼∗𝑖 ∇𝑖

⟩

, where

𝛼∗1 = 𝑥2
(

𝑥𝛼1 + 𝛼 (1 − 𝜆) 𝑦𝛼2
)

, 𝛼∗2 = 𝑥4𝛼2.

The elements 𝛼1∇1 give central extensions of two-dimensional algebras, so we
will consider only cases with 𝛼2 ≠ 0. We find the following new cases:

1. 𝜆 = 0 or 𝜆 = 1:
(a) if 𝛼1 ≠ 0, then choosing 𝑥 = 𝛼1

𝛼2
, we have the representative ⟨∇1 + ∇2⟩.

(b) if 𝛼1 = 0, then choosing 𝑥 = 1
4√𝛼2

, we have the representative ⟨∇2⟩.

2. 𝜆 ≠ 0, 1, then choosing 𝑥 = 1
4√𝛼2

and 𝑦 = −𝑥𝛼1
𝛼2𝛼(1−𝜆)

, we have the representative
⟨∇2⟩.

Now we have all the new four-dimensional nilpotent bicommutative algebras con-
structed from 3

02 (𝜆): 4
22, 4

23 and 4
24 (𝜆). The multiplication tables of these alge-

bras can be found in Table 3.2 (Section 3.2.6).
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3.2.6 Classification theorem
We distinguish two main classes of bicommutative algebras: the pure and the non-
pure or trivial ones. By the non-pure ones, we mean those algebras A satisfying the
identities (𝑥𝑦) 𝑧 = 0 and 𝑥 (𝑦𝑧) = 0 for all 𝑥, 𝑦, 𝑧 ∈ A; the pure ones are the rest.

These trivial algebras can be considered in many varieties of algebras defined by
polynomial identities of degree three (associative, Leibniz, Zinbiel. . . ), and they can
be expressed as central extensions of suitable algebras with zero product. Those with
dimension 4 are already classified: the list of the non-anticommutative ones can be
found in [69], and there is only one nilpotent and anticommutative.

Regarding the pure four-dimensional nilpotent bicommutative algebras, we have
the following theorem, whose proof is based on the classification of three-dimensional
nilpotent bicommutative algebras and on the results of Subsections 3.2.2 to 3.2.5.
Theorem 3.2.2. Let A be a four-dimensional nilpotent pure bicommutative algebra.
Then, A is isomorphic to one of the algebras in the following Table 3.2:

4
01 𝑒1𝑒1 = 𝑒2 𝑒2𝑒1 = 𝑒3

4
02 (𝜆) 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒3 𝑒2𝑒1 = 𝜆𝑒3

4
03 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒4 𝑒2𝑒1 = 𝑒3

4
04 (𝜆) 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒4 𝑒2𝑒1 = 𝜆𝑒4 𝑒3𝑒3 = 𝑒4

4
05 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒4 𝑒1𝑒3 = 𝑒4 𝑒2𝑒1 = 𝑒4 𝑒3𝑒3 = 𝑒4

4
06 (𝜆)𝜆≠0 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒4 𝑒1𝑒3 = 𝑒4 𝑒2𝑒1 = 𝜆𝑒4

4
07 𝑒1𝑒1 = 𝑒2 𝑒2𝑒1 = 𝑒4 𝑒3𝑒3 = 𝑒4

4
08 𝑒1𝑒1 = 𝑒2 𝑒1𝑒3 = 𝑒4 𝑒2𝑒1 = 𝑒4

4
09 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒4 𝑒3𝑒1 = 𝑒4

4
10 𝑒1𝑒2 = 𝑒3 𝑒1𝑒3 = 𝑒4 𝑒2𝑒1 = 𝑒4 𝑒3𝑒2 = 𝑒4

4
11 𝑒1𝑒2 = 𝑒3 𝑒1𝑒3 = 𝑒4 𝑒3𝑒2 = 𝑒4

4
12 𝑒1𝑒1 = 𝑒4 𝑒1𝑒2 = 𝑒3 𝑒2𝑒1 = 𝑒4 𝑒3𝑒2 = 𝑒4

4
13 𝑒1𝑒2 = 𝑒3 𝑒2𝑒1 = 𝑒4 𝑒3𝑒2 = 𝑒4

4
14 𝑒1𝑒2 = 𝑒3 𝑒1𝑒3 = 𝑒4 𝑒2𝑒1 = 𝑒4 𝑒2𝑒2 = 𝑒4

4
15 𝑒1𝑒2 = 𝑒3 𝑒1𝑒3 = 𝑒4 𝑒2𝑒1 = 𝑒4

4
16 𝑒1𝑒2 = 𝑒3 𝑒1𝑒3 = 𝑒4 𝑒2𝑒2 = 𝑒4
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4
17 𝑒1𝑒2 = 𝑒3 𝑒1𝑒3 = 𝑒4

4
18 𝑒1𝑒1 = 𝑒4 𝑒1𝑒2 = 𝑒3 𝑒3𝑒2 = 𝑒4

4
19 𝑒1𝑒2 = 𝑒3 𝑒3𝑒2 = 𝑒4

4
20 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒4 𝑒2𝑒1 = 𝑒3 𝑒3𝑒1 = 𝑒4

4
21 𝑒1𝑒1 = 𝑒2 𝑒2𝑒1 = 𝑒3 𝑒3𝑒1 = 𝑒4

4
22 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒3 𝑒1𝑒3 = 𝑒4 𝑒2𝑒1 = 𝑒4

4
23 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒3 𝑒1𝑒3 = 𝑒4

𝑒2𝑒1 = 𝑒3 + 𝑒4 𝑒2𝑒2 = 𝑒4 𝑒3𝑒1 = 𝑒4
4
24 (𝜆) 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒3 𝑒1𝑒3 = 𝑒4

𝑒2𝑒1 = 𝜆𝑒3 𝑒2𝑒2 = 𝜆𝑒4 𝑒3𝑒1 = 𝜆𝑒4

Table 3.2: Four-dimensional nilpotent pure bicommutative algebras.

From the previous list, we can select the one-generated algebras. Note that these
exhaust the four-dimensional one-generated nilpotent bicommutative algebras, as the
non-pure bicommutative algebras cannot be one-generated.

4
01 ∶ 4

03 ∶ 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒4 𝑒2𝑒1 = 𝑒3
4
02 ∶ 4

20 ∶ 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒4 𝑒2𝑒1 = 𝑒3 𝑒3𝑒1 = 𝑒4
4
03 ∶ 4

21 ∶ 𝑒1𝑒1 = 𝑒2 𝑒2𝑒1 = 𝑒3 𝑒3𝑒1 = 𝑒4
4
04 ∶ 4

22 ∶ 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒3 𝑒1𝑒3 = 𝑒4 𝑒2𝑒1 = 𝑒4
4
05 ∶ 4

23 ∶ 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒3 𝑒1𝑒3 = 𝑒4
𝑒2𝑒1 = 𝑒3 + 𝑒4 𝑒2𝑒2 = 𝑒4 𝑒3𝑒1 = 𝑒4

4
06 (𝜆) ∶ 4

24 (𝜆) ∶ 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒3 𝑒1𝑒3 = 𝑒4
𝑒2𝑒1 = 𝜆𝑒3 𝑒2𝑒2 = 𝜆𝑒4 𝑒3𝑒1 = 𝜆𝑒4.

3.3 Algebraic classification of five-dimensional one-generated
nilpotent bicommutative algebras

In this section, we will base on the lists of one-generated nilpotent bicommutative
algebras of dimension up to 4 from Subsection 3.1.4 and Subsection 3.2.6. Note
that there are not three-dimensional central extensions of the two-dimensional one-
generated bicommutative algebra 2

01.
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3.3.1 Two-dimensional central extensions of three-dimensional one-gen-
erated algebras

Considering the two-dimensional central extensions of the three-dimensional one-
generated nilpotent bicommutative algebras 3

01 and 3
02 (𝜆) we get the algebras 5

01and5
02 (𝜆), whose multiplication tables can be consulted in Table 3.4 (Subsection 3.3.9).

3.3.2 Second cohomology space of four-dimensional one-generated nilpo-
tent bicommutative algebras

In the following Table 3.3 we give the description of the second cohomology space
of four-dimensional one-generated nilpotent bicommutative algebras from Subsec-
tion 3.2.6.
Z2 (4

01

) = ⟨

Δ11,Δ12,Δ13 + Δ22 + Δ41,Δ14,Δ21,Δ31
⟩

B2 (4
01

) = ⟨

Δ11,Δ12,Δ21
⟩

H2 (4
01

) = ⟨

[Δ14], [Δ13] + [Δ22] + [Δ41], [Δ31]
⟩

Z2 (4
02

) = ⟨

Δ11,Δ12,Δ13 + Δ22 + Δ41,Δ21,Δ31
⟩

B2 (4
02

) = ⟨

Δ11,Δ12 + Δ31,Δ21
⟩

H2 (4
02

) = ⟨

[Δ13] + [Δ22] + [Δ41], [Δ31]
⟩

Z2 (4
03

) = ⟨

Δ11,Δ12,Δ21,Δ31,Δ41
⟩

B2 (4
03

) = ⟨

Δ11,Δ21,Δ31
⟩

H2 (4
03

) = ⟨

[Δ12], [Δ41]
⟩

Z2 (4
04

) = ⟨

Δ11,Δ12,Δ13,Δ14 + Δ22 + Δ31,Δ21
⟩

B2 (4
04

) = ⟨

Δ11,Δ12,Δ13 + Δ21
⟩

H2 (4
04

) = ⟨

[Δ14] + [Δ22] + [Δ31], [Δ21]
⟩

Z2 (4
05

) = ⟨

Δ11,Δ12,Δ13 + Δ22 + Δ31,Δ14 + Δ22 + Δ23 + Δ31 + Δ32 + Δ41,
Δ21

⟩

B2 (4
05

) = ⟨

Δ11,Δ12 + Δ21,Δ13 + Δ21 + Δ22 + Δ31
⟩

H2 (4
05

) = ⟨

[Δ14] + [Δ22] + [Δ23] + [Δ31] + [Δ32] + [Δ41], [Δ21]
⟩
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Z2 (4
06 (𝜆)

) = ⟨

Δ11,Δ12,Δ13 + 𝜆Δ22 + 𝜆Δ31,Δ14 + 𝜆Δ23 + 𝜆Δ32 + 𝜆Δ41,Δ21
⟩

B2 (4
06 (𝜆)

) = ⟨

Δ11,Δ12 + 𝜆Δ21,Δ13 + 𝜆Δ22 + 𝜆Δ31
⟩

H2 (4
06 (𝜆)

) = ⟨

[Δ14] + 𝛼[Δ23] + 𝛼[Δ32] + 𝛼[Δ41], [Δ21]
⟩

Table 3.3: Second cohomology space of four-dimensional one-generated nilpotent
bicommutative algebras.

3.3.3 Central extensions of 4
01

Let us use the following notations:
∇1 = [Δ14],∇2 = [Δ31],∇3 = [Δ13] + [Δ41] + [Δ22].

The automorphism group of 4
01 consists of invertible matrices of the form

𝜙 =

⎛

⎜

⎜

⎜

⎝

𝑥 0 0 0
𝑦 𝑥2 0 0
𝑧 𝑥𝑦 𝑥3 0
𝑡 𝑥𝑦 0 𝑥3

⎞

⎟

⎟

⎟

⎠

.

Since

𝜙𝑇
⎛

⎜

⎜

⎜

⎝

0 0 𝛼3 𝛼1
0 𝛼3 0 0
𝛼2 0 0 0
𝛼3 0 0 0

⎞

⎟

⎟

⎟

⎠

𝜙 =

⎛

⎜

⎜

⎜

⎜

⎝

𝛼∗ 𝛼∗∗ 𝛼∗3 𝛼∗1
𝛼∗∗∗ 𝛼∗3 0 0
𝛼∗2 0 0 0
𝛼∗3 0 0 0

⎞

⎟

⎟

⎟

⎟

⎠

,

then the action of Aut (4
01

) on the subspace
⟨

3
∑

𝑖=1
𝛼𝑖∇𝑖

⟩

is given by
⟨

3
∑

𝑖=1
𝛼∗𝑖 ∇𝑖

⟩

,

where
𝛼∗1 = 𝑥4𝛼1, 𝛼∗2 = 𝑥4𝛼2, 𝛼∗3 = 𝑥4𝛼3.
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One-dimensional central extensions

We have the following cases:
1. if 𝛼3 ≠ 0, by choosing 𝑥 = 1

4√𝛼3
we have the representative ⟨𝜆∇1 + 𝜇∇2 +∇3⟩;

2. if 𝛼3 = 0, then it must hold that 𝛼1 ≠ 0 (otherwise, the new algebras would have
two-dimensional annihilator and could be constructed as two-dimensional cen-
tral extensions of three-dimensional bicommutative algebras), and by choosing
𝑥 = 1

4√𝛼1
, we have the representatives ⟨∇1 + 𝜆∇2⟩.

Hence, we obtain the new algebras 5
03 (𝜆, 𝜇) and 5

04 (𝜆), whose multiplication
tables can be consulted in Table 3.4 (Subsection 3.3.9).

Two-dimensional central extensions

Consider the vector space generated by the following two cocycles:
𝜃1 = 𝛼1∇1 + 𝛼2∇2 + 𝛼3∇3
𝜃2 = 𝛽1∇1 + 𝛽2∇2.

If 𝛼3 = 0, we get the representative ⟨∇1,∇2⟩. If 𝛼3 ≠ 0, we distinguish the fol-
lowing cases:

1. if 𝛽2 = 0, we have the family of representatives ⟨∇1, 𝜆∇2 + ∇3⟩;

2. if 𝛽2 ≠ 0, we have the family of representatives ⟨𝜆∇1 + ∇2, 𝜇∇1 + ∇3⟩.

Hence, we have the new algebras 6
01, 6

02 (𝜆) and 6
03 (𝜆, 𝜇), whose multiplication

tables can be found in Table 3.6 (Subsection 3.4.13)

3.3.4 Central extensions of 4
02

Let us use the following notations:
∇1 = [Δ31],∇2 = [Δ13] + [Δ22] + [Δ41].



88 3 Classifications of nilpotent bicommutative algebras

The automorphism group of 4
02 consists of invertible matrices of the form

𝜙 =

⎛

⎜

⎜

⎜

⎝

1 0 0 0
𝑥 1 0 0
𝑦 𝑥 1 0
𝑧 𝑥 + 𝑦 𝑥 1

⎞

⎟

⎟

⎟

⎠

.

Since

𝜙𝑇
⎛

⎜

⎜

⎜

⎝

0 0 𝛼2 0
0 𝛼2 0 0
𝛼1 0 0 0
𝛼2 0 0 0

⎞

⎟

⎟

⎟

⎠

𝜙 =

⎛

⎜

⎜

⎜

⎜

⎝

𝛼∗ 𝛼∗∗ 𝛼∗2 0
𝛼∗∗∗ 𝛼∗2 0 0

𝛼∗1 + 𝛼
∗∗ 0 0 0

𝛼∗2 0 0 0

⎞

⎟

⎟

⎟

⎟

⎠

,

the action of Aut (4
02

) on the subspace
⟨

2
∑

𝑖=1
𝛼𝑖∇𝑖

⟩

is given by
⟨

2
∑

𝑖=1
𝛼∗𝑖 ∇𝑖

⟩

, where

𝛼∗1 = 𝛼1 − 𝑥𝛼2, 𝛼∗2 = 𝛼2.

One-dimensional central extensions

We can suppose that 𝛼2 ≠ 0, as otherwise we would obtain algebras with two-
dimensional annihilator which would be two-dimensional central extensions of three-
dimensional bicommutative algebras. Then, by choosing 𝑥 = 𝛼1

𝛼2
, we have the repre-

sentative ⟨∇2⟩, whose associated algebra is 5
05. Its multiplication table can be con-

sulted in Table 3.4 (Subsection 3.3.9).

Two-dimensional central extensions

Since the cohomology space has dimension 2, we just obtain the new algebra 6
04,

whose multiplication table can be found in Table 3.6 (Subsection 3.4.13).

3.3.5 Central extensions of 4
03

Let us use the following notations:
∇1 = [Δ12],∇2 = [Δ41].
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The automorphism group of 4
03 consists of invertible matrices of the form

𝜙 =

⎛

⎜

⎜

⎜

⎝

𝑥 0 0 0
𝑦 𝑥2 0 0
𝑧 𝑥𝑦 𝑥3 0
𝑡 𝑥𝑧 𝑥2𝑦 𝑥4

⎞

⎟

⎟

⎟

⎠

.

Since

𝜙𝑇
⎛

⎜

⎜

⎜

⎝

0 𝛼1 0 0
0 0 0 0
0 0 0 0
𝛼2 0 0 0

⎞

⎟

⎟

⎟

⎠

𝜙 =

⎛

⎜

⎜

⎜

⎝

𝛼∗ 𝛼∗1 0 0
𝛼∗∗ 0 0 0
𝛼∗∗∗ 0 0 0
𝛼∗2 0 0 0

⎞

⎟

⎟

⎟

⎠

,

the action of Aut (4
03

) on the subspace
⟨

2
∑

𝑖=1
𝛼𝑖∇𝑖

⟩

is given by
⟨

2
∑

𝑖=1
𝛼∗𝑖 ∇𝑖

⟩

, where

𝛼∗1 = 𝑥3𝛼1, 𝛼∗2 = 𝑥5𝛼2.

One-dimensional central extensions

We can suppose again that 𝛼2 ≠ 0. So, we have the following cases:

1. if 𝛼1 ≠ 0, by choosing 𝑥 =
√

𝛼1
𝛼2

we have the representative ⟨∇1 + ∇2⟩;

2. if 𝛼1 = 0, by choosing 𝑥 = 1
3√𝛼2

we have the representative ⟨∇2⟩.

Hence, we get the new algebras 5
06 and 5

07. Their multiplication tables can be
consulted in Table 3.4 (Subsection 3.3.9).

Two-dimensional central extensions

Since the cohomology space has dimension 2, we have just the new algebra 6
05, whose

multiplication table can be found in Table 3.6 (Subsection 3.4.13).
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3.3.6 Central extensions of 4
04

Let us use the following notations:

∇1 = [Δ21],∇2 = [Δ14] + [Δ22] + [Δ31].

The automorphism group of 4
04 consists of invertible matrices of the form

𝜙 =

⎛

⎜

⎜

⎜

⎝

1 0 0 0
𝑥 1 0 0
𝑦 𝑥 1 0
𝑧 𝑥 + 𝑦 𝑥 1

⎞

⎟

⎟

⎟

⎠

.

Since

𝜙𝑇
⎛

⎜

⎜

⎜

⎝

0 0 0 𝛼2
𝛼1 𝛼2 0 0
𝛼2 0 0 0
0 0 0 0

⎞

⎟

⎟

⎟

⎠

𝜙 =

⎛

⎜

⎜

⎜

⎝

𝛼∗ 𝛼∗∗ 𝛼∗∗∗ 𝛼∗2
𝛼∗1 + 𝛼

∗∗∗ 𝛼∗2 0 0
𝛼∗2 0 0 0
0 0 0 0

⎞

⎟

⎟

⎟

⎠

,

the action of Aut (4
04

) on the subspace
⟨

2
∑

𝑖=1
𝛼𝑖∇𝑖

⟩

is given by
⟨

2
∑

𝑖=1
𝛼∗𝑖 ∇𝑖

⟩

, where

𝛼∗1 = 𝛼1 + 𝑥𝛼2, 𝛼∗2 = 𝛼2.

One-dimensional central extensions

We can suppose that 𝛼2 ≠ 0. Then, by choosing 𝑥 = −𝛼1
𝛼2

, we have the representative
⟨∇2⟩, with associated algebra 5

08. Its multiplication table can be found in Table 3.4
(Subsection 3.3.9).

Two-dimensional central extensions

Since the cohomology space has dimension 2, we get the new algebra 6
06, whose

multiplication table can be consulted in Table 3.6 (Subsection 3.4.13).
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3.3.7 Central extensions of 4
05

Let us use the following notations:

∇1 = [Δ21],∇2 = [Δ14] + [Δ22] + [Δ23] + [Δ31] + [Δ32] + [Δ41].

The automorphism group of 4
05 consists of invertible matrices of the form

𝜙 =

⎛

⎜

⎜

⎜

⎝

1 0 0 0
𝑥 1 0 0
𝑦 2𝑥 1 0
𝑧 𝑥2 + 𝑥 + 2𝑦 3𝑥 1

⎞

⎟

⎟

⎟

⎠

.

Since

𝜙𝑇
⎛

⎜

⎜

⎜

⎝

0 0 0 𝛼2
𝛼1 𝛼2 𝛼2 0
𝛼2 𝛼2 0 0
𝛼2 0 0 0

⎞

⎟

⎟

⎟

⎠

𝜙 =

⎛

⎜

⎜

⎜

⎜

⎝

𝛼∗ 𝛼∗∗ 𝛼∗∗∗ 𝛼∗2
𝛼∗1 + 𝛼

∗∗ + 𝛼∗∗∗ 𝛼∗2 + 𝛼
∗∗∗ 0 0

𝛼∗2 + 𝛼
∗∗∗ 0 0 0

𝛼∗2 0 0 0

⎞

⎟

⎟

⎟

⎟

⎠

,

the action of Aut (4
05

) on the subspace
⟨

2
∑

𝑖=1
𝛼𝑖∇𝑖

⟩

is given by
⟨

2
∑

𝑖=1
𝛼∗𝑖 ∇𝑖

⟩

, where

𝛼∗1 = 𝛼1 − 2𝑥𝛼2, 𝛼∗2 = 𝛼2.

One-dimensional central extensions

We can suppose that 𝛼2 ≠ 0. Then, by choosing 𝑥 = 𝛼1
2𝛼2

, we have the representa-
tive ⟨∇2⟩. Hence, we obtain the new algebra 5

09, whose multiplication table can be
consulted in Table 3.4 (Subsection 3.3.9).

Two-dimensional central extensions

Since the cohomology space has dimension 2, we have the new algebra 6
07. Its mul-

tiplication table can be found in Table 3.6 (Subsection 3.4.13).



92 3 Classifications of nilpotent bicommutative algebras

3.3.8 Central extensions of 4
06 (𝜆)

Let us use the following notations:
∇1 = [Δ21],∇2 = [Δ14] + 𝛼[Δ23] + 𝛼[Δ32] + 𝛼[Δ41].

The automorphism group of 4
06 (𝜆) consists of invertible matrices of the form

𝜙 =

⎛

⎜

⎜

⎜

⎝

𝑥 0 0 0
0 𝑥2 0 0
𝑦 0 𝑥3 0
𝑧 (1 + 𝜆) 𝑥𝑦 0 𝑥4

⎞

⎟

⎟

⎟

⎠

.

Since

𝜙𝑇
⎛

⎜

⎜

⎜

⎝

0 0 0 𝛼2
𝛼1 0 𝜆𝛼2 0
0 𝜆𝛼2 0 0
𝜆𝛼2 0 0 0

⎞

⎟

⎟

⎟

⎠

𝜙 =

⎛

⎜

⎜

⎜

⎜

⎝

𝛼∗ 𝛼∗∗ 0 𝛼∗2
𝛼∗1 + 𝜆𝛼

∗∗ 0 𝜆𝛼∗2 0
0 𝜆𝛼∗2 0 0
𝜆𝛼∗2 0 0 0

⎞

⎟

⎟

⎟

⎟

⎠

,

we have that the action of Aut
(

4
06 (𝜆)

) on the subspace
⟨

2
∑

𝑖=1
𝛼𝑖∇𝑖

⟩

is given by
⟨

2
∑

𝑖=1
𝛼∗𝑖 ∇𝑖

⟩

, where

𝛼∗1 = 𝑥3𝛼1 + (1 − 𝜆) 𝜆𝑥2𝑦𝛼2, 𝛼∗2 = 𝑥5𝛼2.

One-dimensional central extensions

We can suppose that 𝛼2 ≠ 0. So, we have the following cases:
1. if 𝜆 ≠ 0, 1, by choosing 𝑦 = − 𝑥𝛼1

(1−𝜆)𝜆𝛼2
and 𝑥 = 1

5√𝛼2
we have the representative

⟨∇2⟩;
2. if 𝜆 = 0 or 𝜆 = 1, and 𝛼1 = 0, by choosing 𝑥 = 1

5√𝛼2
we get again the represen-

tative ⟨∇2⟩;
3. if 𝜆 = 0 or 𝜆 = 1, and 𝛼1 ≠ 0, by choosing 𝑥 =

√

𝛼1
𝛼2

we have the representative
⟨∇1 + ∇2⟩.
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Hence, we obtain the family of algebras 5
10 (𝜆), associated with the representative

⟨∇2⟩, and the algebras 5
11 and 5

12 associated with ⟨∇1 + ∇2⟩ for the values 𝜆 = 0
and 𝜆 = 1, respectively. Their multiplication tables can be consulted in Table 3.4
(Subsection 3.3.9).

Two-dimensional central extensions

Since the cohomology space has dimension 2, we get just the new algebra 6
08 (𝜆),whose multiplication table can be found in Table 3.6 (Subsection 3.4.13).

3.3.9 Classification theorem
The results of the Subsection 3.3.1 and Subsections 3.3.3 to 3.3.8 yield the following
theorem.
Theorem 3.3.1. Let A be a five-dimensional one-generated nilpotent bicommutative
algebra. Then, A is isomorphic to an algebra from the following Table 3.4:

5
01 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒4 𝑒2𝑒1 = 𝑒3 𝑒3𝑒1 = 𝑒5

5
02 (𝜆) 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒3 𝑒1𝑒3 = 𝑒5

𝑒2𝑒1 = 𝜆𝑒3 + 𝑒4 𝑒2𝑒2 = 𝜆𝑒5 𝑒3𝑒1 = 𝜆𝑒5
5
03 (𝜆, 𝜇) 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒4 𝑒1𝑒3 = 𝑒5 𝑒1𝑒4 = 𝜆𝑒5

𝑒2𝑒1 = 𝑒3 𝑒2𝑒2 = 𝑒5 𝑒3𝑒1 = 𝜇𝑒5 𝑒4𝑒1 = 𝑒5
5
04 (𝜆) 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒4 𝑒1𝑒4 = 𝑒5

𝑒2𝑒1 = 𝑒3 𝑒3𝑒1 = 𝜆𝑒5
5
05 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒4 𝑒1𝑒3 = 𝑒5 𝑒2𝑒1 = 𝑒3

𝑒2𝑒2 = 𝑒5 𝑒3𝑒1 = 𝑒4 𝑒4𝑒1 = 𝑒5
5
06 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒5 𝑒2𝑒1 = 𝑒3

𝑒3𝑒1 = 𝑒4 𝑒4𝑒1 = 𝑒5
5
07 𝑒1𝑒1 = 𝑒2 𝑒2𝑒1 = 𝑒3 𝑒3𝑒1 = 𝑒4 𝑒4𝑒1 = 𝑒5

5
08 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒3 𝑒1𝑒3 = 𝑒4 𝑒1𝑒4 = 𝑒5

𝑒2𝑒1 = 𝑒4 𝑒2𝑒2 = 𝑒5 𝑒3𝑒1 = 𝑒5
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5
09 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒3 𝑒1𝑒3 = 𝑒4 𝑒1𝑒4 = 𝑒5

𝑒2𝑒1 = 𝑒3 + 𝑒4 𝑒2𝑒2 = 𝑒4 + 𝑒5 𝑒2𝑒3 = 𝑒5
𝑒3𝑒1 = 𝑒4 + 𝑒5 𝑒3𝑒2 = 𝑒5 𝑒4𝑒1 = 𝑒5

5
10 (𝜆) 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒3 𝑒1𝑒3 = 𝑒4 𝑒1𝑒4 = 𝑒5

𝑒2𝑒1 = 𝜆𝑒3 𝑒2𝑒2 = 𝜆𝑒4 𝑒2𝑒3 = 𝜆𝑒5
𝑒3𝑒1 = 𝜆𝑒4 𝑒3𝑒2 = 𝜆𝑒5 𝑒4𝑒1 = 𝜆𝑒5

5
11 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒3 𝑒1𝑒3 = 𝑒4

𝑒1𝑒4 = 𝑒5 𝑒2𝑒1 = 𝑒5
5
12 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒3 𝑒1𝑒3 = 𝑒4 𝑒1𝑒4 = 𝑒5

𝑒2𝑒1 = 𝑒3 + 𝑒5 𝑒2𝑒2 = 𝑒4 𝑒2𝑒3 = 𝑒5
𝑒3𝑒1 = 𝑒4 𝑒3𝑒2 = 𝑒5 𝑒4𝑒1 = 𝑒5

Table 3.4: Five-dimensional one-generated nilpotent bicommutative algebras.

3.4 Algebraic classification of six-dimensional one-generated
nilpotent bicommutative algebras

In this section, we will base on the list of five-dimensional one-generated nilpotent
bicommutative algebras of Table 3.4 (Subsection 3.3.9).

3.4.1 Second cohomology space of five-dimensional one-generated nilpo-
tent bicommutative algebras

The necessary information about coboundaries, cocycles and second cohomology
spaces of the algebras in Table 3.4 (Subsection 3.3.9) is displayed in the following
Table 3.5.
Z2 (5

01

) = ⟨

Δ11,Δ12,Δ13 + Δ22 + Δ41,Δ14,Δ21,Δ31,Δ51
⟩

B2 (5
01

) = ⟨

Δ11,Δ12,Δ21,Δ31
⟩

H2 (5
01

) = ⟨

[Δ13] + [Δ22] + [Δ41], [Δ14], [Δ51]
⟩
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Z2 (5
02 (𝜆)

) = ⟨

Δ11,Δ12,Δ13 − 𝜆Δ14,Δ14 + Δ22 + Δ31,
Δ15 + 𝜆Δ23 + 𝜆Δ32 + 𝜆Δ51,Δ21,Δ41

⟩

B2 (5
02 (𝜆)

) = ⟨

Δ11,Δ12,Δ13 + 𝜆Δ22 + 𝜆Δ31,Δ21
⟩

H2 (5
02 (𝜆)

) = ⟨

[Δ14] + [Δ22] + [Δ31], [Δ15] + 𝛼[Δ23] + 𝜆[Δ32]
+𝜆[Δ51], [Δ41]

⟩

Z2 (5
03 (𝜆, 𝜇)𝜆=0 or 𝜇≠1∕𝜆

) = ⟨

Δ11,Δ12,Δ13 + Δ22 + Δ41,Δ14,Δ21,Δ31
⟩

B2 (5
03 (𝜆, 𝜇)𝜆=0 or 𝜇≠1∕𝜆

) = ⟨

Δ11,Δ12,Δ13 + 𝜆Δ14 + Δ22 + 𝜇Δ31 + Δ41,Δ21
⟩

H2 (5
03 (𝜆, 𝜇)𝜆=0 or 𝜇≠1∕𝜆

) = ⟨

[Δ14], [Δ31]
⟩

Z2 (5
03 (𝜆, 1∕𝜆)𝜆≠0

) = ⟨

Δ11,Δ12,Δ13 + Δ22 + Δ41,Δ14, 𝜆Δ15 + Δ23
+𝜆Δ24 + Δ32 + 𝜆Δ42 + Δ51,Δ21,Δ31

⟩

B2 (5
03 (𝜆, 1∕𝜆)𝜆≠0

) = ⟨

Δ11,Δ12,Δ13 + 𝜆Δ14 + Δ22 + (1∕𝜆) Δ31 + Δ41,
Δ21

⟩

H2 (5
03 (𝜆, 1∕𝜆)𝜆≠0

) = ⟨

[Δ14], 𝜆[Δ15] + [Δ23] + 𝛼[Δ24] + [Δ32] + 𝛼[Δ42]
+[Δ51], [Δ31]

⟩

Z2 (5
04 (𝜆)

) = ⟨

Δ11,Δ12,Δ13 + Δ22 + Δ41,Δ14,Δ21,Δ31
⟩

B2 (5
04 (𝜆)

) = ⟨

Δ11,Δ12,Δ14 + 𝜆Δ31,Δ21
⟩

H2 (5
04 (𝜆)

) = ⟨

[Δ13] + [Δ22] + [Δ41], [Δ31]
⟩

Z2 (5
05

) = ⟨

Δ11,Δ12,Δ13 + Δ22 + Δ41,Δ14 + Δ23 + Δ32
+Δ51,Δ21,Δ31

⟩

B2 (5
05

) = ⟨

Δ11,Δ12 + Δ31,Δ13 + Δ22 + Δ41,Δ21
⟩

H2 (5
05

) = ⟨

[Δ14] + [Δ23] + [Δ32] + [Δ51], [Δ31]
⟩

Z2 (5
06

) = ⟨

Δ11,Δ12,Δ13 + Δ22 + Δ51,Δ21,Δ31,Δ41
⟩

B2 (5
06

) = ⟨

Δ11,Δ12 + Δ41,Δ21,Δ31
⟩

H2 (5
06

) = ⟨

[Δ13] + [Δ22] + [Δ51], [Δ41]
⟩

Z2 (5
07

) = ⟨

Δ11,Δ12,Δ21,Δ31,Δ41,Δ51
⟩

B2 (5
07

) = ⟨

Δ11,Δ21,Δ31,Δ41
⟩

H2 (5
07

) = ⟨

[Δ12], [Δ51]
⟩

Z2 (5
08

) = ⟨

Δ11,Δ12,Δ13,Δ14 + Δ22 + Δ31,Δ15 + Δ23
+Δ32 + Δ41,Δ21

⟩

B2 (5
08

) = ⟨

Δ11,Δ12,Δ13 + Δ21,Δ14 + Δ22 + Δ31
⟩

H2 (5
08

) = ⟨

[Δ15] + [Δ23] + [Δ32] + [Δ41], [Δ21]
⟩

Z2 (5
09

) = ⟨

Δ11,Δ12,Δ13 + Δ22 + Δ31,Δ14 + Δ22 + Δ23
+Δ31 + Δ32 + Δ41,Δ15 + Δ23 + Δ24 + Δ32 + Δ33
+Δ41 + Δ42 + Δ51,Δ21

⟩
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B2 (5
09

) = ⟨

Δ11,Δ12 + Δ21,Δ13 + Δ21 + Δ22 + Δ31,Δ14
+Δ22 + Δ23 + Δ31 + Δ32 + Δ41

⟩

H2 (5
09

) = ⟨

[Δ15] + [Δ23] + [Δ24] + [Δ32] + [Δ33] + [Δ41]
+[Δ42] + [Δ51], [Δ21]

⟩

Z2 (5
10 (𝜆)

) = ⟨

Δ11,Δ12,Δ13 + 𝜆Δ22 + 𝜆Δ31,Δ14 + 𝜆Δ23
+𝜆Δ32 + 𝜆Δ41,Δ15 + 𝜆Δ24 + 𝜆Δ33 + 𝜆Δ42
+𝜆Δ51,Δ21

⟩

B2 (5
10 (𝜆)

) = ⟨

Δ11,Δ12 + 𝜆Δ21,Δ13 + 𝜆Δ22 + 𝜆Δ31,Δ14
+𝜆Δ23 + 𝜆Δ32 + 𝜆Δ41

⟩

H2 (5
10 (𝜆)

) = ⟨

[Δ15] + 𝛼[Δ24] + 𝛼[Δ33] + 𝛼[Δ42] + 𝛼[Δ51],
[Δ21]

⟩

Z2 (5
11

) = ⟨

Δ11,Δ12,Δ13,Δ14,Δ15 + Δ22 + Δ31,Δ21
⟩

B2 (5
11

) = ⟨

Δ11,Δ12,Δ13,Δ14 + Δ21
⟩

H2 (5
11

) = ⟨

[Δ15] + [Δ22] + [Δ31], [Δ21]
⟩

Z2 (5
12

) = ⟨

Δ11,Δ12,Δ13 + Δ22 + Δ31,Δ14 + Δ23 + Δ32
+Δ41,Δ15 + Δ22 + Δ24 + Δ31 + Δ33 + Δ42 + Δ51,
Δ21

⟩

B2 (5
12

) = ⟨

Δ11,Δ12 + Δ21,Δ13 + Δ22
+Δ31,Δ14 + Δ21 + Δ23 + Δ32 + Δ41

⟩

H2 (5
12

) = ⟨

[Δ15] + [Δ22] + [Δ24] + [Δ31] + [Δ33] + [Δ42]
+[Δ51], [Δ21]

⟩

Table 3.5: Second cohomology space of five-dimensional one-generated nilpotent
bicommutative algebras.

Remark 3.4.1. The extensions of the algebras 5
03 (𝜆, 𝜇)𝜆=0 or 𝜇≠1∕𝜆 and 5

04 (𝜆) have
two-dimensional annihilator, and have already been constructed as two-dimensional
central extensions of four-dimensional bicommutative algebras. Then, in the follow-
ing subsections we will study only the central extensions of the other algebras.

3.4.2 Central extensions of 5
01

Let us use the following notations:
∇1 = [Δ14], ∇2 = [Δ51], ∇3 = [Δ13] + [Δ22] + [Δ41].
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The automorphism group of 5
01 consists of invertible matrices of the form

𝜙 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑥 0 0 0 0
𝑦 𝑥2 0 0 0
𝑧 𝑥𝑦 𝑥3 0 0
𝑡 𝑥𝑦 0 𝑥3 0
𝑠 𝑥𝑧 𝑥2𝑦 0 𝑥4

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

Since

𝜙𝑇

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 0 𝛼3 𝛼1 0
0 𝛼3 0 0 0
0 0 0 0 0
𝛼3 0 0 0 0
𝛼2 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

𝜙 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝛼∗ 𝛼∗∗ 𝛼∗3 𝛼∗1 0
𝛼∗∗∗ 𝛼∗3 0 0 0
𝛼∗∗∗∗ 0 0 0 0
𝛼∗3 0 0 0 0
𝛼∗2 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

then the action of Aut (5
01

) on the subspace
⟨

3
∑

𝑖=1
𝛼𝑖∇𝑖

⟩

is given by
⟨

3
∑

𝑖=1
𝛼∗𝑖 ∇𝑖

⟩

,

where
𝛼∗1 = 𝑥4𝛼1, 𝛼∗2 = 𝑥5𝛼2, 𝛼∗3 = 𝑥4𝛼3.

We can suppose that 𝛼2 ≠ 0; otherwise, we would obtain algebras with two-
dimensional annihilator which have already been constructed as two-dimensional cen-
tral extensions of four-dimensional bicommutative algebras. We have the following
cases:

1. if 𝛼3 ≠ 0, by choosing 𝑥 = 𝛼3
𝛼2

we have the family of representatives ⟨𝜆∇1 +
∇2 + ∇3⟩;

2. if 𝛼3 = 0, 𝛼1 ≠ 0, by choosing 𝑥 = 𝛼1
𝛼2

we have the representative ⟨∇1 + ∇2⟩;

3. if 𝛼3 = 0, 𝛼1 = 0, by choosing 𝑥 = 1
4√𝛼2

we have the representative ⟨∇2⟩.

Hence, we obtain the following new algebras: 6
09 (𝜆), 6

10 and 6
11. Their multi-

plication tables can be found in Table 3.6 (Subsection 3.4.13).
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3.4.3 Central extensions of 5
02 (𝜆)

Let us use the following notations:
∇1 = [Δ41], ∇2 = [Δ14]+[Δ22]+[Δ31], ∇3 = [Δ15]+𝛼[Δ23]+𝛼[Δ32]+𝛼[Δ51].

The automorphism group of 5
01 consists of invertible matrices of the form

𝜙 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑥 0 0 0 0
𝑦 𝑥2 0 0 0
𝑧 (1 + 𝜆) 𝑥𝑦 𝑥3 0 0
𝑡 𝑥𝑦 0 𝑥3 0
𝑠 𝜆𝑦2 + (1 + 𝜆) 𝑥𝑧 (1 + 2𝜆) 𝑥2𝑦 𝛼 (1 − 𝜆) 𝑥2𝑦 𝑥4

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

Since

𝜙𝑇

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 𝛼2 𝛼3
0 𝛼2 𝜆𝛼3 0 0
𝛼2 𝜆𝛼3 0 0 0
𝛼1 0 0 0 0
𝜆𝛼3 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

𝜙 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝛼∗ 𝛼∗∗ 𝛼∗∗∗ 𝛼∗2 𝛼∗3
𝛼∗∗∗∗ 𝛼∗2 + 𝜆𝛼

∗∗∗ 𝜆𝛼∗3 0 0
𝛼∗2 + 𝜆𝛼

∗∗∗ 𝜆𝛼∗3 0 0 0
𝛼∗1 0 0 0 0
𝜆𝛼∗3 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

we have that the action of Aut
(

5
02 (𝜆)

) on the subspace
⟨

3
∑

𝑖=1
𝛼𝑖∇𝑖

⟩

is given by
⟨

3
∑

𝑖=1
𝛼∗𝑖 ∇𝑖

⟩

, where

𝛼∗1 = 𝑥4𝛼1 + (1 − 𝜆) 𝛼2𝑥3𝑦𝛼3, 𝛼∗2 = 𝑥4𝛼2 + (1 − 𝜆) 𝜆𝑥3𝑦𝛼3, 𝛼∗3 = 𝑥5𝛼3.

We can suppose that 𝛼3 ≠ 0. We have the following cases:
1. if 𝜆 = 0 or 𝜆 = 1, and 𝛼1 = 𝛼2 = 0, then we have the representative ⟨∇3⟩;

2. if 𝜆 = 0 or 𝜆 = 1, 𝛼2 = 0 and 𝛼1 ≠ 0, by choosing 𝑥 = 𝛼1
𝛼3

we have the
representative ⟨∇1 + ∇3⟩;

3. if 𝜆 = 0 or 𝜆 = 1, and 𝛼2 ≠ 0, by choosing 𝑥 = 𝛼2
𝛼3

we have the representative
⟨𝜇∇1 + ∇2 + ∇3⟩;
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4. if 𝜆 ≠ 0, 1 and 𝛼1 − 𝜆𝛼2 = 0, by choosing 𝑦 = − 𝑥𝛼2
(1−𝜆)𝜆𝛼3

and 𝑥 = 1
5√𝛼3

we have
the representative ⟨∇3⟩;

5. if 𝜆 ≠ 0, 1 and 𝛼1 − 𝜆𝛼2 ≠ 0, by choosing 𝑦 = − 𝑥𝛼2
(1−𝜆)𝜆𝛼3

and 𝑥 = 𝛼1−𝜆𝛼2
𝛼3

we
have the representative ⟨∇1 + ∇3⟩.

Therefore, we obtain the families 6
12 (𝜆) and 6

13 (𝜆) associated with the repre-
sentatives ⟨∇3⟩ and ⟨∇1 + ∇3⟩, respectively, and the families 6

14 (𝜇) and 6
15 (𝜇),associated with ⟨𝜇∇1 +∇2 +∇3⟩ for the values 𝜆 = 0 and 𝜆 = 1, respectively. Their

multiplication tables can be consulted in Table 3.6 (Subsection 3.4.13).

3.4.4 Central extensions of 5
03 (𝜆, 1∕𝜆)𝜆≠0

Let us use the following notations:
∇1 = [Δ14], ∇2 = [Δ31], ∇3 = 𝜆[Δ15]+[Δ23]+𝛼[Δ24]+[Δ32]+𝛼[Δ42]+[Δ51].

The automorphism group of 5
03 (𝜆, 1∕𝜆)𝜆≠0 consists of invertible matrices of the

form

𝜙 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑥 0 0 0 0
𝑦 𝑥2 0 0 0
𝑧 𝑥𝑦 𝑥3 0 0
𝑡 𝑥𝑦 0 𝑥3 0
𝑠 (1 + 1∕𝜆) 𝑥𝑧 + (1 + 𝜆) 𝑥𝑡 + 𝑦2 (2 + 1∕𝜆) 𝑥2𝑦 (2 + 𝜆) 𝑥2𝑦 𝑥4

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

Since

𝜙𝑇

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 𝛼1 𝜆𝛼3
0 0 𝛼3 𝜆𝛼3 0
𝛼2 𝛼3 0 0 0
0 𝜆𝛼3 0 0 0
𝛼3 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

𝜙 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝛼∗ 𝛼∗∗ 𝛼∗∗∗ 𝛼∗1 + 𝜆𝛼
∗∗∗ 𝜆𝛼∗3

𝛼∗∗∗∗ 𝛼∗∗∗ 𝛼∗3 𝜆𝛼∗3 0
𝛼∗2 + (1∕𝜆) 𝛼∗∗∗ 𝛼∗3 0 0 0

𝛼∗∗∗ 𝜆𝛼∗3 0 0 0
𝛼∗3 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

we have that the action of Aut (5
03 (𝜆, 1∕𝜆)𝜆≠0

) on the subspace
⟨

3
∑

𝑖=1
𝛼𝑖∇𝑖

⟩

is given

by
⟨

3
∑

𝑖=1
𝛼∗𝑖 ∇𝑖

⟩

, where

𝛼∗1 = 𝑥4𝛼1 + (1 − 𝜆) 𝜆𝑥3𝑦𝛼3, 𝛼∗2 = 𝑥4𝛼2 + (1 − 1∕𝜆) 𝑥3𝑦𝛼3, 𝛼∗3 = 𝑥5𝛼3.
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We can suppose that 𝛼3 ≠ 0. We have the following cases:
1. if 𝜆 = 1, and 𝛼1 = 𝛼2 = 0, then we get the representative ⟨∇3⟩;

2. if 𝜆 = 1, 𝛼2 = 0 and 𝛼1 ≠ 0, by choosing 𝑥 = 𝛼1
𝛼3

we have the representative
⟨∇1 + ∇3⟩;

3. if 𝜆 = 1, and 𝛼2 ≠ 0, by choosing 𝑥 = 𝛼2
𝛼3

we have the representative ⟨𝜇∇1 +
∇2 + ∇3⟩;

4. if 𝜆 ≠ 1 and 𝛼1 + 𝛼2𝛼2 = 0, by choosing 𝑦 = − 𝑥𝛼2
(1−1∕𝜆)𝜆𝛼3

and 𝑥 = 1
5√𝛼3

we get
the representative ⟨∇3⟩;

5. if 𝜆 ≠ 1 and 𝛼1 + 𝛼2𝛼2 ≠ 0, by choosing 𝑦 = − 𝑥𝛼2
(1−1∕𝜆)𝜆𝛼3

and 𝑥 = 𝛼1+𝛼2𝛼2
𝛼3

we
have the representative ⟨∇1 + ∇3⟩.

Hence, we get the new algebras 6
16 (𝜆)𝜆≠0, 6

17 (𝜆)𝜆≠0 and 6
18 (𝜇), associated

with ⟨∇3⟩ and ⟨∇1 + ∇3⟩ for every value of 𝜆 ≠ 0, and with ⟨𝜇∇1 + ∇2 + ∇3⟩

for 𝜆 = 1, respectively. Their multiplication tables can be consulted in Table 3.6
(Subsection 3.4.13).

3.4.5 Central extensions of 5
05

Let us use the following notations:
∇1 = [Δ31], ∇2 = [Δ14] + [Δ23] + [Δ32] + [Δ51].

The automorphism group of 5
05 consists of invertible matrices of the form

𝜙 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 0 0
0 1 0 0 0
𝑥 0 1 0 0
𝑦 𝑥 0 1 0
𝑧 𝑥 + 𝑦 𝑥 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

Since

𝜙𝑇

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 𝛼2 0
0 0 𝛼2 0 0
𝛼1 𝛼2 0 0 0
0 0 0 0 0
𝛼2 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

𝜙 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝛼∗ 𝛼∗∗ 0 𝛼∗2 0
𝛼∗∗∗ 0 𝛼∗2 0 0

𝛼∗1 + 𝛼
∗∗ 𝛼∗2 0 0 0

0 0 0 0 0
𝛼∗2 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,
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then the action of Aut (5
05

) on the subspace
⟨

2
∑

𝑖=1
𝛼𝑖∇𝑖

⟩

is given by
⟨

2
∑

𝑖=1
𝛼∗𝑖 ∇𝑖

⟩

,

where
𝛼∗1 = 𝛼1 − 𝑥𝛼2, 𝛼∗2 = 𝛼2.

We can suppose that 𝛼2 ≠ 0. Then, by choosing 𝑥 = 𝛼1
𝛼2

, we have the represen-
tative ⟨∇2⟩, whose associated algebra is 6

19. Its multiplication table can be found in
Table 3.6 (Subsection 3.4.13).

3.4.6 Central extensions of 5
06

Let us use the following notations:
∇1 = [Δ41], ∇2 = [Δ13] + [Δ22] + [Δ51].

The automorphism group of 5
06 consists of invertible matrices of the form

𝜙 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 0 0
𝑥 1 0 0 0
𝑦 𝑥 1 0 0
𝑧 𝑦 𝑥 1 0
𝑡 𝑥 + 𝑧 𝑦 𝑥 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

Since

𝜙𝑇

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 0 𝛼2 0 0
0 𝛼2 0 0 0
0 0 0 0 0
𝛼1 0 0 0 0
𝛼2 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

𝜙 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝛼∗ 𝛼∗∗ 𝛼∗2 0 0
𝛼∗∗∗ 𝛼∗2 0 0 0
𝛼∗∗∗∗ 0 0 0 0

𝛼∗1 + 𝛼
∗∗ 0 0 0 0

𝛼∗2 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

then the action of Aut (5
06

) on the subspace
⟨

2
∑

𝑖=1
𝛼𝑖∇𝑖

⟩

is given by
⟨

2
∑

𝑖=1
𝛼∗𝑖 ∇𝑖

⟩

,

where
𝛼∗1 = 𝛼1 − 𝑥𝛼2, 𝛼∗2 = 𝛼2.

We can suppose that 𝛼2 ≠ 0. Then, by choosing 𝑥 = 𝛼1
𝛼2

, we have the representa-
tive ⟨∇2⟩. Hence, we obtain the new algebra 6

20, whose multiplication table can be
consulted in Table 3.6 (Subsection 3.4.13).
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3.4.7 Central extensions of 5
07

Let us use the following notations:
∇1 = [Δ12], ∇2 = [Δ51].

The automorphism group of 5
07 consists of invertible matrices of the form

𝜙 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑥 0 0 0 0
𝑦 𝑥2 0 0 0
𝑧 𝑥𝑦 𝑥3 0 0
𝑡 𝑥𝑧 𝑥2𝑦 𝑥4 0
𝑠 𝑥𝑡 𝑥2𝑧 𝑥3𝑦 𝑥5

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

Since

𝜙𝑇

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 𝛼1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
𝛼2 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

𝜙 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝛼∗ 𝛼∗1 0 0 0
𝛼∗∗ 0 0 0 0
𝛼∗∗∗ 0 0 0 0
𝛼∗∗∗∗ 0 0 0 0
𝛼∗2 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

then the action of Aut (5
07

) on the subspace
⟨

2
∑

𝑖=1
𝛼𝑖∇𝑖

⟩

is given by
⟨

2
∑

𝑖=1
𝛼∗𝑖 ∇𝑖

⟩

,

where
𝛼∗1 = 𝑥3𝛼1, 𝛼∗2 = 𝑥6𝛼2.

We can suppose that 𝛼2 ≠ 0. We have the following cases:
1. if 𝛼1 ≠ 0, by choosing 𝑥 = 3

√

𝛼1
𝛼2

we have the representative ⟨∇1 + ∇2⟩;

2. if 𝛼1 = 0, by choosing 𝑥 = 1
6√𝛼2

we have the representative ⟨∇2⟩.

Hence, we get the new algebras 6
21 and 6

22, whose multiplication tables can be
consulted in Table 3.6 (Subsection 3.4.13).

3.4.8 Central extensions of 5
08

Let us use the following notations:
∇1 = [Δ21], ∇2 = [Δ15] + [Δ23] + [Δ32] + [Δ41].
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The automorphism group of 5
08 consists of invertible matrices of the form

𝜙 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 0 0
0 1 0 0 0
𝑥 0 1 0 0
𝑦 𝑥 0 1 0
𝑧 𝑥 + 𝑦 𝑥 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

Since

𝜙𝑇

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 𝛼2
𝛼1 0 𝛼2 0 0
0 𝛼2 0 0 0
𝛼2 0 0 0 0
0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

𝜙 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝛼∗ 𝛼∗∗ 𝛼∗∗∗ 0 𝛼∗2
𝛼∗1 + 𝛼

∗∗∗ 0 𝛼∗2 0 0
0 𝛼∗2 0 0 0
𝛼∗2 0 0 0 0
0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

the action of Aut (5
08

) on the subspace
⟨

2
∑

𝑖=1
𝛼𝑖∇𝑖

⟩

is given by
⟨

2
∑

𝑖=1
𝛼∗𝑖 ∇𝑖

⟩

, where

𝛼∗1 = 𝛼1 + 𝑥𝛼2, 𝛼∗2 = 𝛼2.

We can suppose that 𝛼2 ≠ 0. Then, by choosing 𝑥 = −𝛼1
𝛼2

, we have the repre-
sentative ⟨∇2⟩, with associated algebra 6

23. Its multiplication table can be found in
Table 3.6 (Subsection 3.4.13).

3.4.9 Central extensions of 5
09

Let us use the following notations:
∇1 = [Δ21], ∇2 = [Δ15] + [Δ23] + [Δ24] + [Δ32] + [Δ33] + [Δ41] + [Δ42] + [Δ51].

The automorphism group of 5
09 consists of invertible matrices of the form

𝜙 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 0 0
0 1 0 0 0
𝑥 0 1 0 0
𝑦 2𝑥 0 1 0
𝑧 𝑥 + 2𝑦 3𝑥 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.
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Since

𝜙𝑇

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 𝛼2
𝛼1 0 𝛼2 𝛼2 0
0 𝛼2 𝛼2 0 0
𝛼2 𝛼2 0 0 0
𝛼2 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

𝜙 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝛼∗ 𝛼∗∗ 𝛼∗∗∗ 0 𝛼∗2
𝛼∗1 + 𝛼

∗∗ + 𝛼∗∗∗ 𝛼∗∗∗ 𝛼∗2 𝛼∗2 0
𝛼∗∗∗ 𝛼∗2 𝛼∗2 0 0
𝛼∗2 𝛼∗2 0 0 0
𝛼∗2 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

then the action of Aut (5
09

) on the subspace
⟨

2
∑

𝑖=1
𝛼𝑖∇𝑖

⟩

is given by
⟨

2
∑

𝑖=1
𝛼∗𝑖 ∇𝑖

⟩

,

where
𝛼∗1 = 𝛼1 − 2𝑥𝛼2, 𝛼∗2 = 𝛼2.

We can suppose that 𝛼2 ≠ 0. Then, by choosing 𝑥 = 𝛼1
2𝛼2

, we have the represen-
tative ⟨∇2⟩. Hence, we get the new algebra 6

24, whose multiplication table can be
found in Table 3.6 (Subsection 3.4.13).

3.4.10 Central extensions of 5
10 (𝜆)

Let us use the following notations:
∇1 = [Δ21], ∇2 = [Δ15] + 𝛼[Δ24] + 𝛼[Δ33] + 𝛼[Δ42] + 𝛼[Δ51].

The automorphism group of 5
10 (𝜆) consists of invertible matrices of the form

𝜙 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑥 0 0 0 0
0 𝑥2 0 0 0
0 0 𝑥3 0 0
𝑦 0 0 𝑥4 0
𝑧 (1 + 𝜆) 𝑥𝑦 0 0 𝑥5

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

Since

𝜙𝑇

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 𝛼2
𝛼1 0 0 𝜆𝛼2 0
0 0 𝜆𝛼2 0 0
0 𝜆𝛼2 0 0 0
𝜆𝛼2 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

𝜙 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝛼∗ 𝛼∗∗ 0 0 𝛼∗2
𝛼∗1 + 𝜆𝛼

∗∗ 0 0 𝜆𝛼∗2 0
0 0 𝜆𝛼∗2 0 0
0 𝜆𝛼∗2 0 0 0
𝜆𝛼∗2 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,
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we have that the action of Aut
(

5
10 (𝜆)

) on the subspace
⟨

2
∑

𝑖=1
𝛼𝑖∇𝑖

⟩

is given by
⟨

2
∑

𝑖=1
𝛼∗𝑖 ∇𝑖

⟩

, where

𝛼∗1 = 𝑥3𝛼1 + (1 − 𝜆) 𝜆𝑥2𝑦𝛼2, 𝛼∗2 = 𝑥6𝛼2.

We can suppose that 𝛼2 ≠ 0. We have the following cases:

1. if 𝜆 = 0 or 𝜆 = 1, and 𝛼1 ≠ 0, by choosing 𝑥 = 3
√

𝛼1
𝛼2

we have the representative
⟨∇1 + ∇2⟩;

2. if 𝜆 = 0 or 𝜆 = 1, and 𝛼1 = 0, by choosing 𝑥 = 1
6√𝛼2

we have the representative
⟨∇2⟩;

3. if 𝜆 ≠ 0, 1, by choosing 𝑦 = − 𝑥𝛼1
(1−𝜆)𝜆𝛼2

and 𝑥 = 1
6√𝛼2

we have the representative
⟨∇2⟩.

Hence, we obtain the new algebras 6
25 (𝜆), 6

26 and 6
27, associated with ⟨∇2⟩

for every value of 𝜆, and with ∇1 + ∇2 for 𝜆 = 0 or 𝜆 = 1, respectively. Their
multiplication tables can be consulted in Table 3.6 (Subsection 3.4.13).

3.4.11 Central extensions of 5
11

Let us use the following notations:
∇1 = [Δ21], ∇2 = [Δ15] + [Δ22] + [Δ31].

The automorphism group of 5
11 consists of invertible matrices of the form

𝜙 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 0 0
𝑥 1 0 0 0
𝑦 𝑥 1 0 0
𝑧 𝑦 𝑥 1 0
𝑡 𝑥 + 𝑧 𝑦 𝑥 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.
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Since

𝜙𝑇

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 𝛼2
𝛼1 𝛼2 0 0 0
𝛼2 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

𝜙 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝛼∗ 𝛼∗∗ 𝛼∗∗∗ 𝛼∗∗∗∗ 𝛼∗2
𝛼∗1 + 𝛼

∗∗∗∗ 𝛼∗2 0 0 0
𝛼∗2 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

the action of Aut (5
11

) on the subspace
⟨

2
∑

𝑖=1
𝛼𝑖∇𝑖

⟩

is given by
⟨

2
∑

𝑖=1
𝛼∗𝑖 ∇𝑖

⟩

, where

𝛼∗1 = 𝛼1 + 𝑥𝛼2, 𝛼∗2 = 𝛼2.

We can suppose that 𝛼2 ≠ 0. Then, by taking 𝑥 = −𝛼1
𝛼2

, we have the representative
⟨∇2⟩, with associated algebra 6

28. Its multiplication table can be found in Table 3.6
(Subsection 3.4.13).

3.4.12 Central extensions of 5
12

Let us use the following notations:
∇1 = [Δ21], ∇2 = [Δ15] + [Δ22] + [Δ24] + [Δ31] + [Δ33] + [Δ42] + [Δ51].

The automorphism group of 5
12 consists of invertible matrices of the form

𝜙 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 0 0
𝑥 1 0 0 0
𝑦 2𝑥 1 0 0
𝑧 𝑥2 + 2𝑦 3𝑥 1 0
𝑡 𝑥 (1 + 2𝑦) + 2𝑧 3𝑥2 + 3𝑦 4𝑥 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

Since

𝜙𝑇

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 𝛼2
𝛼1 𝛼2 0 𝛼2 0
𝛼2 0 𝛼2 0 0
0 𝛼2 0 0 0
𝛼2 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

𝜙 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝛼∗ 𝛼∗∗ 𝛼∗∗∗ 𝛼∗∗∗∗ 𝛼∗2
𝛼∗1 + 𝛼

∗∗ + 𝛼∗∗∗∗ 𝛼∗2 + 𝛼
∗∗∗ 𝛼∗∗∗∗ 𝛼∗2 0

𝛼∗2 + 𝛼
∗∗∗ 𝛼∗∗∗∗ 𝛼∗2 0 0

𝛼∗∗∗∗ 𝛼∗2 0 0 0
𝛼∗2 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,
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then the action of Aut (5
12

) on the subspace
⟨

2
∑

𝑖=1
𝛼𝑖∇𝑖

⟩

is given by
⟨

2
∑

𝑖=1
𝛼∗𝑖 ∇𝑖

⟩

,

where
𝛼∗1 = 𝛼1 − 3𝑥𝛼2, 𝛼∗2 = 𝛼2.

We can suppose that 𝛼2 ≠ 0. Then, by taking 𝑥 = 𝛼1
3𝛼2

, we have the representa-
tive ⟨∇2⟩. Hence, we obtain the new algebra 6

29, whose multiplication table can be
consulted in Table 3.6 (Subsection 3.4.13).

3.4.13 Classification theorem
Summarising the results from Subsection 3.4.2 to Subsection 3.4.12, we obtain the
following theorem.
Theorem 3.4.2. Let A be a six-dimensional one-generated nilpotent bicommutative
algebra. Then, A is isomorphic to an algebra from the following Table 3.6.

6
01 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒4 𝑒1𝑒4 = 𝑒5

𝑒2𝑒1 = 𝑒3 𝑒3𝑒1 = 𝑒6
6
02 (𝜆) 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒4 𝑒1𝑒3 = 𝑒6 𝑒1𝑒4 = 𝑒5

𝑒2𝑒1 = 𝑒3 𝑒2𝑒2 = 𝑒6 𝑒3𝑒1 = 𝜆𝑒6 𝑒4𝑒1 = 𝑒6
6
03 (𝜆, 𝜇) 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒4 𝑒1𝑒3 = 𝑒6 𝑒1𝑒4 = 𝜆𝑒5 + 𝜇𝑒6

𝑒2𝑒1 = 𝑒3 𝑒2𝑒2 = 𝑒6 𝑒3𝑒1 = 𝑒5 𝑒4𝑒1 = 𝑒6
6
04 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒4 𝑒1𝑒3 = 𝑒6 𝑒2𝑒1 = 𝑒3

𝑒2𝑒2 = 𝑒6 𝑒3𝑒1 = 𝑒4 + 𝑒5 𝑒4𝑒1 = 𝑒6
6
05 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒5 𝑒2𝑒1 = 𝑒3 𝑒3𝑒1 = 𝑒4

𝑒4𝑒1 = 𝑒6
6
06 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒3 𝑒1𝑒3 = 𝑒4 𝑒1𝑒4 = 𝑒6

𝑒2𝑒1 = 𝑒4 + 𝑒5 𝑒2𝑒2 = 𝑒6 𝑒3𝑒1 = 𝑒6
6
07 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒3 𝑒1𝑒3 = 𝑒4 𝑒1𝑒4 = 𝑒6

𝑒2𝑒1 = 𝑒3 + 𝑒4 + 𝑒5 𝑒2𝑒2 = 𝑒4 + 𝑒6 𝑒2𝑒3 = 𝑒6
𝑒3𝑒1 = 𝑒4 + 𝑒6 𝑒3𝑒2 = 𝑒6 𝑒4𝑒1 = 𝑒6
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6
08 (𝜆) 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒3 𝑒1𝑒3 = 𝑒4 𝑒1𝑒4 = 𝑒6

𝑒2𝑒1 = 𝜆𝑒3 + 𝑒5 𝑒2𝑒2 = 𝜆𝑒4 𝑒2𝑒3 = 𝜆𝑒6
𝑒3𝑒1 = 𝜆𝑒4 𝑒3𝑒2 = 𝜆𝑒6 𝑒4𝑒1 = 𝜆𝑒6

6
09 (𝜆) 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒4 𝑒1𝑒3 = 𝑒6

𝑒1𝑒4 = 𝜆𝑒6 𝑒2𝑒1 = 𝑒3 𝑒2𝑒2 = 𝑒6
𝑒3𝑒1 = 𝑒5 𝑒4𝑒1 = 𝑒6 𝑒5𝑒1 = 𝑒6

6
10 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒4 𝑒1𝑒4 = 𝑒6

𝑒2𝑒1 = 𝑒3 𝑒3𝑒1 = 𝑒5 𝑒5𝑒1 = 𝑒6
6
11 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒4 𝑒2𝑒1 = 𝑒3

𝑒3𝑒1 = 𝑒5 𝑒5𝑒1 = 𝑒6
6
12 (𝜆) 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒3 𝑒1𝑒3 = 𝑒5 𝑒1𝑒5 = 𝑒6

𝑒2𝑒1 = 𝜆𝑒3 + 𝑒4 𝑒2𝑒2 = 𝜆𝑒5 𝑒2𝑒3 = 𝜆𝑒6
𝑒3𝑒1 = 𝜆𝑒5 𝑒3𝑒2 = 𝜆𝑒6 𝑒5𝑒1 = 𝜆𝑒6

6
13 (𝜆) 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒3 𝑒1𝑒3 = 𝑒5 𝑒1𝑒5 = 𝑒6

𝑒2𝑒1 = 𝜆𝑒3 + 𝑒4 𝑒2𝑒2 = 𝜆𝑒5 𝑒2𝑒3 = 𝜆𝑒6 𝑒3𝑒1 = 𝜆𝑒5
𝑒3𝑒2 = 𝜆𝑒6 𝑒4𝑒1 = 𝑒6 𝑒5𝑒1 = 𝜆𝑒6

6
14 (𝜆) 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒3 𝑒1𝑒3 = 𝑒5

𝑒1𝑒4 = 𝑒6 𝑒1𝑒5 = 𝑒6 𝑒2𝑒1 = 𝑒4
𝑒2𝑒2 = 𝑒6 𝑒3𝑒1 = 𝑒6 𝑒4𝑒1 = 𝜆𝑒6

6
15 (𝜆) 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒3 𝑒1𝑒3 = 𝑒5 𝑒1𝑒4 = 𝑒6

𝑒1𝑒5 = 𝑒6 𝑒2𝑒1 = 𝑒3 + 𝑒4 𝑒2𝑒2 = 𝑒5 + 𝑒6 𝑒2𝑒3 = 𝑒6
𝑒3𝑒1 = 𝑒5 + 𝑒6 𝑒3𝑒2 = 𝑒6 𝑒4𝑒1 = 𝜆𝑒6 𝑒5𝑒1 = 𝑒6

6
16 (𝜆)𝜆≠0 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒4 𝑒1𝑒3 = 𝑒5 𝑒1𝑒4 = 𝜆𝑒5

𝑒1𝑒5 = 𝜆𝑒6 𝑒2𝑒1 = 𝑒3 𝑒2𝑒2 = 𝑒5 𝑒2𝑒3 = 𝑒6
𝑒2𝑒4 = 𝜆𝑒6 𝑒3𝑒1 = (1∕𝜆) 𝑒5 𝑒3𝑒2 = 𝑒6
𝑒4𝑒1 = 𝑒5 𝑒4𝑒2 = 𝜆𝑒6 𝑒5𝑒1 = 𝑒6
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6
17 (𝜆)𝜆≠0 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒4 𝑒1𝑒3 = 𝑒5 𝑒1𝑒4 = 𝜆𝑒5 + 𝑒6

𝑒1𝑒5 = 𝜆𝑒6 𝑒2𝑒1 = 𝑒3 𝑒2𝑒2 = 𝑒5 𝑒2𝑒3 = 𝑒6
𝑒2𝑒4 = 𝜆𝑒6 𝑒3𝑒1 = (1∕𝜆) 𝑒5 𝑒3𝑒2 = 𝑒6
𝑒4𝑒1 = 𝑒5 𝑒4𝑒2 = 𝜆𝑒6 𝑒5𝑒1 = 𝑒6

6
18 (𝜆) 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒4 𝑒1𝑒3 = 𝑒5 𝑒1𝑒4 = 𝑒5 + 𝜆𝑒6

𝑒1𝑒5 = 𝑒6 𝑒2𝑒1 = 𝑒3 𝑒2𝑒2 = 𝑒5 𝑒2𝑒3 = 𝑒6
𝑒2𝑒4 = 𝑒6 𝑒3𝑒1 = 𝑒5 + 𝑒6 𝑒3𝑒2 = 𝑒6
𝑒4𝑒1 = 𝑒5 𝑒4𝑒2 = 𝑒6 𝑒5𝑒1 = 𝑒6

6
19 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒4 𝑒1𝑒3 = 𝑒5 𝑒1𝑒4 = 𝑒6

𝑒2𝑒1 = 𝑒3 𝑒2𝑒2 = 𝑒5 𝑒2𝑒3 = 𝑒6 𝑒3𝑒1 = 𝑒4
𝑒3𝑒2 = 𝑒6 𝑒4𝑒1 = 𝑒5 𝑒5𝑒1 = 𝑒6

6
20 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒5 𝑒1𝑒3 = 𝑒6 𝑒2𝑒1 = 𝑒3

𝑒2𝑒2 = 𝑒6 𝑒3𝑒1 = 𝑒4 𝑒4𝑒1 = 𝑒5 𝑒5𝑒1 = 𝑒6
6
21 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒6 𝑒2𝑒1 = 𝑒3

𝑒3𝑒1 = 𝑒4 𝑒4𝑒1 = 𝑒5 𝑒5𝑒1 = 𝑒6
6
22 𝑒1𝑒1 = 𝑒2 𝑒2𝑒1 = 𝑒3 𝑒3𝑒1 = 𝑒4

𝑒4𝑒1 = 𝑒5 𝑒5𝑒1 = 𝑒6
6
23 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒3 𝑒1𝑒3 = 𝑒4 𝑒1𝑒4 = 𝑒5

𝑒1𝑒5 = 𝑒6 𝑒2𝑒1 = 𝑒4 𝑒2𝑒2 = 𝑒5 𝑒2𝑒3 = 𝑒6
𝑒3𝑒1 = 𝑒5 𝑒3𝑒2 = 𝑒6 𝑒4𝑒1 = 𝑒6

6
24 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒3 𝑒1𝑒3 = 𝑒4 𝑒1𝑒4 = 𝑒5

𝑒1𝑒5 = 𝑒6 𝑒2𝑒1 = 𝑒3 + 𝑒4 𝑒2𝑒2 = 𝑒4 + 𝑒5 𝑒2𝑒3 = 𝑒5 + 𝑒6
𝑒2𝑒4 = 𝑒6 𝑒3𝑒1 = 𝑒4 + 𝑒5 𝑒3𝑒2 = 𝑒5 + 𝑒6 𝑒3𝑒3 = 𝑒6
𝑒4𝑒1 = 𝑒5 + 𝑒6 𝑒4𝑒2 = 𝑒6 𝑒5𝑒1 = 𝑒6

6
25 (𝜆) 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒3 𝑒1𝑒3 = 𝑒4 𝑒1𝑒4 = 𝑒5

𝑒1𝑒5 = 𝑒6 𝑒2𝑒1 = 𝜆𝑒3 𝑒2𝑒2 = 𝜆𝑒4 𝑒2𝑒3 = 𝜆𝑒5
𝑒2𝑒4 = 𝜆𝑒6 𝑒3𝑒1 = 𝜆𝑒4 𝑒3𝑒2 = 𝜆𝑒5 𝑒3𝑒3 = 𝜆𝑒6
𝑒4𝑒1 = 𝜆𝑒5 𝑒4𝑒2 = 𝜆𝑒6 𝑒5𝑒1 = 𝜆𝑒6
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6
26 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒3 𝑒1𝑒3 = 𝑒4

𝑒1𝑒4 = 𝑒5 𝑒1𝑒5 = 𝑒6 𝑒2𝑒1 = 𝑒6
6
27 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒3 𝑒1𝑒3 = 𝑒4 𝑒1𝑒4 = 𝑒5

𝑒1𝑒5 = 𝑒6 𝑒2𝑒1 = 𝑒3 + 𝑒6 𝑒2𝑒2 = 𝑒4 𝑒2𝑒3 = 𝑒5
𝑒2𝑒4 = 𝑒6 𝑒3𝑒1 = 𝑒4 𝑒3𝑒2 = 𝑒5 𝑒3𝑒3 = 𝑒6
𝑒4𝑒1 = 𝑒5 𝑒4𝑒2 = 𝑒6 𝑒5𝑒1 = 𝑒6

6
28 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒3 𝑒1𝑒3 = 𝑒4 𝑒1𝑒4 = 𝑒5

𝑒1𝑒5 = 𝑒6 𝑒2𝑒1 = 𝑒5 𝑒2𝑒2 = 𝑒6 𝑒3𝑒1 = 𝑒6
6
29 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒3 𝑒1𝑒3 = 𝑒4 𝑒1𝑒4 = 𝑒5

𝑒1𝑒5 = 𝑒6 𝑒2𝑒1 = 𝑒3 + 𝑒5 𝑒2𝑒2 = 𝑒4 + 𝑒6 𝑒2𝑒3 = 𝑒5
𝑒2𝑒4 = 𝑒6 𝑒3𝑒1 = 𝑒4 + 𝑒6 𝑒3𝑒2 = 𝑒5 𝑒3𝑒3 = 𝑒6
𝑒4𝑒1 = 𝑒5 𝑒4𝑒2 = 𝑒6 𝑒5𝑒1 = 𝑒6

Table 3.6: Six-dimensional one-generated nilpotent bicommutative algebras.

3.5 Geometric classification of four-dimensional nilpotent
bicommutative algebras

In the present section, we study the decomposition into irreducible components of the
variety of four-dimensional nilpotent bicommutative algebras. The main result is the
following theorem.
Theorem 3.5.1. The variety of four-dimensional nilpotent bicommutative algebras
has two irreducible components defined by the rigid algebra4

10 and the infinite family
of algebras 4

24 (𝜆).

Proof. As a preliminary step, we compute the dimension of the space of derivations of
all four-dimensional nilpotent bicommutative algebras, displayed in Table 3.7 below.
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A dimDer A
4
01 6

4
02 (𝜆) 6

4
03 4

4
04 (𝜆) 4

4
05 4

4
06 (𝜆)𝜆≠0 5

4
07 4

4
08 5

4
09 5

4
10 2

4
11 3

4
12 3

4
13 4

4
14 3

4
15 4

4
16 4

4
17 5

4
18 4

4
19 5

4
20 3

4
21 4

4
22 3

4
23 3

4
24 (𝜆) 3 (𝜆 ≠ 0, 1)

Table 3.7: Dimension of the space of derivations.
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After having checked that dimDer
(

4
10

)

< dimDer (A) for all four-dimensional
nilpotent bicommutative algebra A, A ≠ 4

10, it follows that there are not nilpotent
bicommutative algebras degenerating to 4

10. Also, the dimension of the square of
4
10 is 2, and 4

24 (𝜆) has three-dimensional square, so it cannot degenerate from 4
10.

Therefore, if we prove that these two algebras degenerate to the rest of the nilpotent
bicommutative algebras of dimension 4, the theorem is proved.

Recall that the full description of the degeneration system of four-dimensional
trivial bicommutative algebras was given in [149]. Using the cited result, we have
that the variety of four-dimensional trivial bicommutative algebras has two irreducible
components given by the two following families of algebras:

𝔑02 (𝜆) ∶ 𝑒1𝑒1 = 𝑒3 𝑒1𝑒2 = 𝑒4 𝑒2𝑒1 = −𝜆𝑒3 𝑒2𝑒2 = −𝑒4
𝔑03 (𝜆) ∶ 𝑒1𝑒1 = 𝑒4 𝑒1𝑒2 = 𝜆𝑒4 𝑒2𝑒1 = −𝜆𝑒4 𝑒2𝑒2 = 𝑒4 𝑒3𝑒3 = 𝑒4.

The algebra4
10 degenerates to both𝔑02 (𝜆) and𝔑03 (𝜆). We will explain in detail

the degeneration 4
10 → 𝔑03 (𝜆)𝜆≠0,±𝑖; as for 4

10 → 𝔑02 (𝜆), it is similar, but easier.
It can be found in Table 3.8.

Let us consider the following parametric basis of 4
10 ∶

{

𝐹 𝑡𝑖 =
4
∑

𝑗=𝑖
𝑎𝑖𝑗 (𝑡) 𝑒𝑗

}

.
The multiplication table in the new basis is given below:

𝐹 𝑡1𝐹
𝑡
1 = 𝑎11𝑎12

𝑎33
𝐹 𝑡3 +

𝑎11𝑎13+𝑎11𝑎12+𝑎12𝑎13−
𝑎11𝑎12𝑎34

𝑎33
𝑎44

𝐹 𝑡4,

𝐹 𝑡1𝐹
𝑡
2 = 𝑎11𝑎22

𝑎33
𝐹 𝑡3 +

𝑎11𝑎23+𝑎13𝑎22−
𝑎11𝑎22𝑎34

𝑎33
𝑎44

𝐹 𝑡4,

𝐹 𝑡1𝐹
𝑡
3 = 𝑎11𝑎33

𝑎44
𝐹 𝑡4, 𝐹 𝑡2𝐹

𝑡
1 = 𝑎11𝑎22+𝑎12𝑎23

𝑎44
𝐹 𝑡4,

𝐹 𝑡2𝐹
𝑡
2 = 𝑎22𝑎23

𝑎44
𝐹 𝑡4, 𝐹 𝑡3𝐹

𝑡
1 = 𝑎12𝑎33

𝑎44
𝐹 𝑡4,

𝐹 𝑡3𝐹
𝑡
2 = 𝑎22𝑎33

𝑎44
𝐹 𝑡4.
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To make the computations easier, we will consider a new basis {

𝑓1, 𝑓2, 𝑓3, 𝑓4
}

of 𝔑03 (𝜆) such that

𝑓2𝑓3 = 0, 𝑓3𝑓3 = 0, 𝑓4𝔑03 (𝜆) = 𝔑03 (𝜆) 𝑓4 = 0.

Such a basis can be defined as

𝑓1 = 𝑒1, 𝑓2 = 𝑒2, 𝑓3 = 𝑒1 + 𝜆𝑒2 + 𝑖
√

𝛼2 + 1𝑒3, 𝑓4 = 𝑒4.

The multiplication table of 𝔑03 (𝜆) with this new basis is
𝑓1𝑓1 = 𝑓4; 𝑓2𝑓2 = 𝑓4; 𝑓3𝑓1 =

(

1 − 𝛼2
)

𝑓4;
𝑓1𝑓2 = 𝜆𝑓4; 𝑓2𝑓1 = −𝜆𝑓4; 𝑓3𝑓2 = 2𝜆𝑓4.
𝑓1𝑓3 =

(

1 + 𝛼2
)

𝑓4;

Some routine calculations show that by taking
𝛼11 =

(

1 + 𝛼2
)

𝑡, 𝛼12 =
(

1 − 𝛼2
)

𝑡, 𝛼13 = −2𝑡, 𝛼14 = 0,
𝛼22 = 2𝜆𝑡, 𝛼23 = −2𝜆𝑡, 𝛼24 = 0,

𝛼33 = −4𝛼2𝑡, 𝛼34 = −4𝛼2𝑡𝛼
2−3
𝛼2+1

,
𝛼44 = −4𝛼2𝑡2,

we obtain exactly
𝐹 0
1 𝐹

0
1 = 𝐹 0

4 ; 𝐹 0
2 𝐹

0
2 = 𝐹 0

4 ; 𝐹 0
3 𝐹

0
1 =

(

1 − 𝛼2
)

𝐹 0
4 ;

𝐹 0
1 𝐹

0
2 = 𝜆𝐹 0

4 ; 𝐹 0
2 𝐹

0
1 = −𝜆𝐹 0

4 ; 𝐹 0
3 𝐹

0
2 = 2𝜆𝐹 0

4 .
𝐹 0
1 𝐹

0
3 =

(

1 + 𝛼2
)

𝐹 0
4 ;

Then, it suffices to take

𝐸𝑡
1 = 𝐹 𝑡1, 𝐸𝑡

2 = 𝐹 𝑡2, 𝐸𝑡
3 =

𝑖
√

𝛼2 + 1

(

𝐹 𝑡1 + 𝐹
𝑡
2 − 𝐹

𝑡
3
)

, 𝐸𝑡
4 = 𝐹 𝑡4,

so that we have the desired degeneration 4
10 → 𝔑03 (𝜆) by the method described in

Subsection 3.1.2. Namely,
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𝐸𝑡
1 = 𝑡

((

1 + 𝛼2
)

𝑒1 +
(

1 − 𝛼2
)

𝑒2 − 2𝑒3
)

;

𝐸𝑡
2 = 2𝜆𝑡

(

𝑒2 − 𝑒3
)

;

𝐸𝑡
3 =

𝑖𝑡
√

1 + 𝛼2

(

(

1 + 𝛼2
)

𝑒1 +
(

1 + 𝛼2
)

𝑒2 − 2
(

1 − 𝛼2
)

𝑒3 +
4𝛼2

(

𝛼2 − 3
)

1 + 𝛼2
𝑒4

)

;

𝐸𝑡
4 = −4𝛼2𝑡2𝑒4,

is a parameterised basis for 4
10 → 𝔑03 (𝜆).

Regarding the pure nilpotent bicommutative algebras, similar computations show
that 10, 12, 14, 20 or 4

24 (𝜆) degenerate to them. The explicit degenerations can
be seen in Table 3.8 below.

𝐸𝑡
1 = 𝑡

(

𝑒1 + 𝑒3
)

4
10 → 𝔑4

02 (𝜆) 𝐸𝑡
2 = −𝑡𝑒1 + 𝑡 (1 − 𝜆) 𝑒2

𝐸𝑡
3 = 𝑡2𝑒4

𝐸𝑡
4 = 𝑡2 (1 − 𝜆)

(

𝑒3 + 𝑒4
)

𝐸𝑡
1 = 𝑡𝑒1 + 𝑒2

4
10 → 4

01 𝐸𝑡
2 = 𝑡

(

𝑒3 + 𝑒4
)

𝐸𝑡
3 = 𝑡𝑒4

𝐸𝑡
4 = 𝑡𝑒2

𝐸𝑡
1 = 𝑒1 + 𝜆𝑒2

4
10 → 4

02 (𝜆)𝜆≠0 𝐸𝑡
3 = 𝜆𝑒4

𝐸𝑡
2 = 𝛼

(

𝑒3 + 𝑒4
)

𝐸𝑡
4 = 𝑡

(

𝑒2 + 𝑒3
)

𝐸𝑡
1 = 𝑡𝑒1

4
20 → 4

03 𝐸𝑡
2 = 𝑡2𝑒2

𝐸𝑡
3 = 𝑡3𝑒3

𝐸𝑡
4 = 𝑡3𝑒4
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𝐸𝑡
1 = −𝑡2𝑒1 − 𝜆𝑡2𝑒2 +

(

(𝛼 + 1) 𝑡2 + 𝑡4
)

𝑒3
4
10 → 4

04 (𝜆) 𝐸𝑡
2 = 𝜆𝑡4𝑒3 +

(

𝑡4
(

𝛼 − (𝛼 + 1)
(

𝛼 + 1 + 𝑡2
)))

𝑒4
𝐸𝑡
3 = 𝑡3𝑒1 − 𝜆𝑡3𝑒3

𝐸𝑡
4 = −𝜆𝑡6𝑒4

𝐸𝑡
1 = 𝑡2

(

𝑒1 + 𝑒2 + (𝑖𝑡 − 2) 𝑒3
)

4
10 → 4

05 𝐸𝑡
2 = 𝑡4

(

𝑒3 + (2𝑖𝑡 − 3) 𝑒4
)

𝐸𝑡
3 = 𝑖𝑡3

(

𝑒2 − 𝑒3
)

𝐸𝑡
4 = 𝑡6𝑒4

𝐸𝑡
1 = 𝑒1 + 𝜆𝑒2 − 𝛼

(

1 + 𝜆𝑡−1
)

𝑒3
4
10 → 4

06 (𝜆)𝜆≠0 𝐸𝑡
2 = 𝜆𝑒3 − 𝛼2

(

1 + (1 + 𝜆) 𝑡−1
)

𝑒4
𝐸𝑡
3 = 𝑡𝑒2

𝐸𝑡
4 = 𝜆𝑒4

𝐸𝑡
1 = 𝑡4𝑒1 − 𝑡2𝑒2 +

(

𝑡2 − 𝑡4 + 𝑡6
)

𝑒3
4
10 → 4

07 𝐸𝑡
2 = −𝑡6𝑒3 +

(

−𝑡4 + 𝑡6 − 2𝑡8 + 𝑡10
)

𝑒4
𝐸𝑡
3 = 𝑡5𝑒1 + 𝑡3𝑒3

𝐸𝑡
4 = 𝑡8𝑒4

𝐸𝑡
1 = 𝑡𝑒1 + 𝑒2 −

(

1 + 𝑡−1
)

𝑒3
4
10 → 4

08 𝐸𝑡
2 = 𝑡𝑒3 −

(

2 + 𝑡−1
)

𝑒4
𝐸𝑡
3 = 𝑡𝑒2 + 𝑡2𝑒3

𝐸𝑡
4 = 𝑡𝑒4

𝐸𝑡
1 = 𝑡𝑒1

4
20 → 4

09 𝐸𝑡
2 = 𝑡2𝑒2

𝐸𝑡
3 = 𝑡2𝑒3

𝐸𝑡
4 = 𝑡3𝑒4

𝐸𝑡
1 = 𝑡−1𝑒1

4
10 → 4

11 𝐸𝑡
2 = 𝑡−1𝑒2

𝐸𝑡
3 = 𝑡−2𝑒3

𝐸𝑡
4 = 𝑡−3𝑒4
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𝐸𝑡
1 = 𝑡𝑒1 + 𝑒3

4
10 → 4

12 𝐸𝑡
2 = 𝑒2

𝐸𝑡
3 = 𝑡𝑒3 + 𝑒4

𝐸𝑡
4 = 𝑡𝑒4

𝐸𝑡
1 = 𝑡𝑒1

𝐸𝑡
3 = 𝑡𝑒3

4
10 → 4

13 𝐸𝑡
2 = 𝑒2

𝐸𝑡
4 = 𝑡𝑒4

𝐸𝑡
1 = 𝑒1

4
10 → 4

14 𝐸𝑡
2 = 𝑡𝑒2 + 𝑒3

𝐸𝑡
3 = 𝑡𝑒3 + 𝑒4

𝐸𝑡
4 = 𝑡𝑒4

𝐸𝑡
1 = 𝑒1

4
10 → 4

15 𝐸𝑡
2 = 𝑡𝑒2

𝐸𝑡
3 = 𝑡𝑒3

𝐸𝑡
4 = 𝑡𝑒4

𝐸𝑡
1 = 𝑡−1𝑒1

𝐸𝑡
3 = 𝑡−3𝑒3

4
14 → 4

16 𝐸𝑡
2 = 𝑡−2𝑒2

𝐸𝑡
4 = 𝑡−4𝑒4

𝐸𝑡
1 = 𝑡−1𝑒1

4
10 → 4

17 𝐸𝑡
2 = 𝑒2

𝐸𝑡
3 = 𝑡−1𝑒3

𝐸𝑡
4 = 𝑡−2𝑒4

𝐸𝑡
1 = 𝑡−2𝑒1

4
12 → 4

18 𝐸𝑡
2 = 𝑡−1𝑒2

𝐸𝑡
3 = 𝑡−3𝑒3

𝐸𝑡
4 = 𝑡−4𝑒4
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𝐸𝑡
1 = 𝑒1

4
10 → 4

19 𝐸𝑡
2 = 𝑡−1𝑒2

𝐸𝑡
3 = 𝑡−1𝑒3

𝐸𝑡
4 = 𝑡−2𝑒4

𝐸𝑡
1 = 𝑡𝑒1 +

𝑡
1−𝑡𝑒2

4
24

(

1
𝑡

)

→ 4
20 𝐸𝑡

2 = 𝑡2𝑒2 + (1 + 𝑡) 𝑡
1−𝑡𝑒3 +

𝑡
(1−𝑡)2

𝑒4
𝐸𝑡
3 = 𝑡2𝑒3 + (1 + 2𝑡) 𝑡

1−𝑡𝑒4
𝐸𝑡
4 = 𝑡2𝑒4

𝐸𝑡
1 = 𝑡−1𝑒1

4
20 → 4

21 𝐸𝑡
2 = 𝑡−2𝑒2

𝐸𝑡
3 = 𝑡−3𝑒3

𝐸𝑡
4 = 𝑡−4𝑒4

𝐸𝑡
1 = 𝑡𝑒1 + 𝑡𝑒2

4
24 (𝑡) → 4

22 𝐸𝑡
2 = 𝑡2𝑒2 +

(

𝑡2 + 𝑡3
)

𝑒3 + 𝑡3𝑒4
𝐸𝑡
3 = 𝑡3𝑒3 +

(

𝑡3 + 2𝑡4
)

𝑒4
𝐸𝑡
4 = 𝑡4𝑒4

𝐸𝑡
1 = 𝑡𝑒1 + 𝑡𝑒2

4
24 (1 − 𝑡) → 4

23 𝐸𝑡
2 = 𝑡2𝑒2 +

(

2𝑡2 − 𝑡3
)

𝑒3 + 𝑡2 (1 − 𝑡) 𝑒4
𝐸𝑡
3 = 𝑡3𝑒3 +

(

3𝑡3 − 2𝑡4
)

𝑒4
𝐸𝑡
4 = 𝑡4𝑒4

Table 3.8: Degenerations of four-dimensional nilpotent bicommutative algebras.
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Non-associative central extensions of
null-filiform associative algebras
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In this chapter, we give the algebraic classification of alternative, left-alternative, Jor-
dan, bicommutative, left-commutative, assosymmetric, Novikov and left-symmetric
central extensions of null-filiform associative algebras.

Introduction

Null-filiform algebras are nothing but one-generated nilpotent algebras. However, in
this chapter we will employ the term null-filiform, since this is the common terminol-
ogy in the literature.

The study of (split and non-split) central extensions of null-filiform algebras was
initiated in [8], where all Leibniz central extensions of null-filiform Leibniz alge-
bras were described. The associative non-split central extensions of the unique null-
filiform associative algebra of dimension 𝑛, which we will denote by 𝜇𝑛0, were stud-
ied in [138] within the framework of associative algebras, and it was proved that
the only non-split associative central extension of 𝜇𝑛0 is 𝜇𝑛+10 . However, the null-
filiform associative algebras can be considered as elements of more general vari-
eties of algebras, such as alternative, left-alternative, Jordan, bicommutative, left-
commutative, assosymmetric, Novikov or left-symmetric, among others (note that
the right-alternative, right-commutative and right-symmetric cases are analogous to
their respective left counterparts). In particular, it was proven in [39] that the null-
filiform algebra 𝜇30 admits the trivial extension 𝜇40 and also another non-trivial bicom-
mutative extension. We also recovered this result in Chapter 3: with our notations,

119
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𝜇30 = 3
02 (1) admits the trivial extension 𝜇40 = 4

24 (1), but also 4
23. Then, it is rea-

sonable to wonder whether there will be non-trivial extensions in the aforementioned
varieties of algebras.

The main result of this chapter is the classification of the isomorphism classes
of central extensions of the null-filiform associative algebra over several varieties of
non-associative algebras, as the ones mentioned above. This is in part summarised in
Table 4.1, at the end of Section 4.5.

The structure of the present chapter is as follows. Section 1 is devoted to for-
malise the method of Skjelbred and Sund over any variety of non-associative alge-
bras defined by a set of polynomial identities. Section 2 presents a quick review of
null-filiform algebras. Respectively, Section 4.3, Section 4.4 and Section 4.5 deal
with left-alternative and alternative, Jordan, and left-commutative and bicommuta-
tive central extensions. Finally, Section 4.6 deals with the assosymmetric, Novikov
and left-symmetric cases, which happen to come out as a trivial corollary of the left-
commutative and bicommutative cases.

Throughout the chapter, 𝐹 will denote a field. Unless otherwise specified, this
field will be arbitrary and all vector spaces, tensor products, (multi)linear maps and
automorphism groups will be taken over 𝐹 . Given a non-negative integer 𝑛, [𝑛] will
denote the set {𝑖 ∈ ℤ ∣ 1 ≤ 𝑖 ≤ 𝑛}. Also, we fix the following notation:

AS ∶ variety of associative algebras;
AL ∶ variety of left-alternative algebras;
J ∶ variety of Jordan algebras;

LC ∶ variety of left-commutative algebras;
RC ∶ variety of right-commutative algebras;
BC ∶ variety of bicommutative algebras.

4.1 Non-associative central extensions

A varietyM of non-associative algebras over𝐹 is defined by a set of identities {𝐸𝑖
}

𝑖∈𝐼of the form
𝐸𝑖 ∶

𝑡𝑖
∑

𝑗=1
𝑝𝑖,𝑗

(

𝑧1,… , 𝑧𝓁
)

= 0,

where𝑍 =
{

𝑧1,… , 𝑧𝓁
} is a finite alphabet, 𝑝𝑖,𝑗 = 𝑝𝑖,𝑗

(

𝑧1,… , 𝑧𝓁
) is a non-associative

word in 𝑍 of length 𝑛𝑖,𝑗 ≥ 2, with a coefficient either 1 or −1 and 𝑍𝑖,𝑗 ⊆ 𝑍 is the set
of letters which occur in 𝑝𝑖,𝑗 . Note that it might be 𝐼 = ∅.
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As 𝑛𝑖,𝑗 ≥ 2, each 𝑝𝑖,𝑗 can be expressed uniquely as a product
𝑝𝑖,𝑗 = 𝑝1𝑖,𝑗𝑝

2
𝑖,𝑗 ,

where 𝑍𝑖,𝑗 = 𝑍1
𝑖,𝑗 ∪ 𝑍

2
𝑖,𝑗 and each 𝑝𝑘𝑖,𝑗 , with 𝑘 ∈ {1, 2}, either has length one or is

another concatenation of products. Recursively, we will obtain 𝑛𝑖,𝑗 − 1 factors 𝑝𝛼𝑖,𝑗with |𝑍𝛼
𝑖,𝑗| = 1 and 𝛼 of the form 𝛼 = 𝛼1, 𝛼2, 𝛼3,… , 𝛼𝓁, with 𝛼𝑘 ∈ {1, 2} for all 𝑘.

LetA be an algebra in the varietyM, and letV be a vector space over𝐹 . Following
the Skjelbred-Sund method, we introduce the cocycles of A with respect to V as the
bilinear maps 𝜃∶ A × A → V satisfying the set of identities

{

𝐸𝑖
}

𝑖∈𝐼
, where

𝐸𝑖 ∶
𝑡𝑖
∑

𝑗=1
𝜃
(

𝑝1𝑖,𝑗 , 𝑝
2
𝑖,𝑗

)

= 0.

These elements form a vector space over 𝐹 , which we will denote by Z2
M (A,V).

We also define the coboundaries of A with respect to V as follows. Let 𝑓 be a
linear map from A to V, and set 𝛿𝑓 ∶ A×A → V with (𝛿𝑓 ) (𝑥, 𝑦) = 𝑓 (𝑥𝑦). It is clear
from

𝑡𝑖
∑

𝑗=1
𝛿𝑓

(

𝑝1𝑖,𝑗 , 𝑝
2
𝑖,𝑗

)

=
𝑡𝑖
∑

𝑗=1
𝑓
(

𝑝𝑖,𝑗
)

= 𝑓 (0) = 0,

for all 𝑖 ∈ 𝐼 , that 𝛿𝑓 ∈ Z2
M (A,V). We define B2 (A,V) = {𝛿𝑓 ∶ 𝑓 ∈ Hom (A,V)};

it is a linear subspace of Z2
M (A,V). The quotient space Z2

M (A,V) ∕B2 (A,V) is called
the second cohomology space and is denoted by H2

M (A,V).
Consider the group Aut (A) of automorphisms of the algebra A. If 𝜃 is a cocycle

and 𝜙 ∈ Aut (A), we define 𝜙 ⋅ 𝜃∶ A × A → V by 𝜙 ⋅ 𝜃 (𝑥, 𝑦) = 𝜃 (𝜙 (𝑥) , 𝜙 (𝑦)). The
automorphism 𝜙 preserves the product, so

𝜙
(

𝑝𝑖,𝑗
(

𝑥1,… , 𝑥𝓁
))

= 𝑝𝑖,𝑗
(

𝜙
(

𝑥1
)

,… , 𝜙
(

𝑥𝓁
))

;

from this, we have that 𝜙 ⋅ 𝜃 ∈ Z2
M (A,V). This induces an action of Aut (A) on

Z2
M (A,V). Moreover, 𝜃 = 𝛿𝑓 if and only if 𝜙 ⋅ 𝜃 = 𝛿 (𝑓◦𝜙), so the action is inherited

by the quotient H2
M (A,V). Although this is a right action, we will write it on the left

to follow the usual convention. The orbit of an element 𝜃 ∈ Z2
M (A,V) will be denoted

by Orb(𝜃), and the orbit of [𝜃] ∈ H2
M (A,V), by Orb([𝜃]).

For every bilinear map 𝜃∶ A × A → V, we can define the algebra A𝜃 = A⊕ V
with the product [𝑥 + 𝑣, 𝑦 +𝑤]𝜃 = 𝑥𝑦 + 𝜃 (𝑥, 𝑦).
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Lemma 4.1.1. The algebra A𝜃 belongs to the variety M if and only if 𝜃 ∈ Z2
M (A,V) .

Proof. By definition, A𝜃 belongs to M if it satisfies the identities {

𝐸𝑖
}

𝑖∈𝐼 , i.e. if it
satisfies

𝑡𝑖
∑

𝑗=1
𝑝𝑖,𝑗

(

𝑥1 + 𝑣1,… , 𝑥𝓁 + 𝑣𝓁
)

= 0,

for all 𝑖 ∈ 𝐼 and all 𝑥𝑘 ∈ A, 𝑣𝑘 ∈ V, with 𝑘 ∈ [𝓁]. For the sake of brevity, we will
write

𝑡𝑖
∑

𝑗=1
𝑝𝑖,𝑗 (𝑋 + 𝑉 ) = 0;

also, when we make reference to these identities in the algebra A, we will write
𝑡𝑖
∑

𝑗=1
𝑝𝑖,𝑗 (𝑋) = 0.

It holds that
𝑝𝑖,𝑗 (𝑋 + 𝑉 ) = [𝑝1𝑖,𝑗 (𝑋 + 𝑉 ) , 𝑝2𝑖,𝑗 (𝑋 + 𝑉 )]𝜃.

An easy induction in the cardinal |𝑍𝑖,𝑗| shows that

𝑝𝑖,𝑗 (𝑋 + 𝑉 ) = 𝑝𝑖,𝑗 (𝑋) + 𝜃
(

𝑝1𝑖,𝑗 (𝑋) , 𝑝2𝑖,𝑗 (𝑋)
)

.

As A belongs to the variety M, it follows that A𝜃 satisfies the identities {𝐸𝑖
}

𝑖∈𝐼 if and
only if 𝜃 satisfies

{

𝐸𝑖
}

𝑖∈𝐼
.

In all that follows, we will consider A𝜃 just for 𝜃 ∈ Z2
M (A,V). Then, it is easy to

check that the algebra A𝜃 of the variety M is a central extension of A by 𝑉 . We define
the dimension of the extension as the dimension of V.

The particular identities of the variety M are not involved any more in the devel-
opment of the method. Thus, we refer the reader to Subsection 3.1.1, and limit to
expose the final procedure to construct all non-split central extensions A𝜃 of a given
algebra A of dimension 𝑛 − 𝑠 in the variety M.

1. Determine H2
M (A, 𝐹 ), Ann (A) and Aut A.

2. Determine the set of (Aut A)-orbits on 𝑇𝑠 (A).
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3. For each orbit, construct the algebra of the variety M associated with a repre-
sentative of it.

Let A be an algebra and fix a basis {𝑒1, 𝑒2,… , 𝑒𝑛
} of A. We define the bilinear

form Δ𝑖,𝑗 ∶ A × A → 𝐹 by Δ𝑖,𝑗
(

𝑒𝑙, 𝑒𝑚
)

= 𝛿𝑖,𝑙𝛿𝑗,𝑚. Then the set {Δ𝑖,𝑗 ∣ 𝑖, 𝑗 ∈ [𝑛]
} is

a basis for the linear space of bilinear forms on A; in particular, every 𝜃 ∈ Z2 (A,V)
can be uniquely written as 𝜃 =

∑𝑛
𝑖,𝑗=1 𝑐𝑖,𝑗Δ𝑖,𝑗 , with 𝑐𝑖,𝑗 ∈ 𝐹 .

4.2 Null-filiform associative algebras

For an algebra A of an arbitrary variety M, we consider the series

A1 = A, A𝑖+1 =
𝑖

∑

𝑘=1
A𝑘A𝑖+1−𝑘, 𝑖 ≥ 1.

An 𝑛-dimensional algebra A is called null-filiform if dimA𝑖 = (𝑛 + 1) − 𝑖, for all
𝑖 ∈ [𝑛 + 1]. Clearly, this condition is satisfied if and only if the index of nilpotency
of A is maximum. For a nilpotent algebra, being null-filiform is equivalent to being
one-generated, as we commented before.

All null-filiform associative algebras were described in [68].
Theorem 4.2.1. An arbitrary 𝑛-dimensional null-filiform associative algebra is iso-
morphic to the algebra:

𝜇𝑛0 ∶ 𝑒𝑖𝑒𝑗 = 𝑒𝑖+𝑗 , 𝑖, 𝑗 ∈ [𝑛],

where
{

𝑒1, 𝑒2,… , 𝑒𝑛
}

is a basis of the algebra 𝜇𝑛0 and we define 𝑒𝑚 = 0 for all 𝑚 > 𝑛.

Using the procedure explained in Section 4.1, we can easily find all associative
central extensions of 𝜇𝑛0. Let ∇𝑗 =

𝑗
∑

𝑘=1
Δ𝑘,𝑗+1−𝑘, for 𝑗 ∈ [𝑛]. We need the following

result from [138].
Proposition 4.2.2. Let 𝜇𝑛0 be the null-filiform associative algebra of dimension 𝑛.
Then

Z2
AS

(

𝜇𝑛0, 𝐹
)

=
⟨

∇𝑗 ∣ 𝑗 ∈ [𝑛]
⟩

, B2 (𝜇𝑛0, 𝐹
)

=
⟨

∇𝑗 ∣ 𝑗 ∈ [𝑛 − 1]
⟩

,

H2
AS

(

𝜇𝑛0, 𝐹
)

= Z2
A
(

𝜇𝑛0, 𝐹
)

∕B2 (𝜇𝑛0, 𝐹
)

= ⟨[∇𝑛]⟩ .
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Remark 4.2.3. The above result appears in [138] for 𝐹 = ℂ, the field of complex
numbers. Nevertheless, it is immediate to check, e.g. using the methods appearing
shortly in this chapter, that it does hold over an arbitrary field.

As dimH2
AS

(

𝜇𝑛0, 𝐹
)

= 1, the next result follows easily.
Theorem 4.2.4. Every non-split one-dimensional associative central extension of 𝜇𝑛0
is isomorphic to 𝜇𝑛+10 .

In the following sections we will study non-associative central extensions of 𝜇𝑛0.
It is easy to see that 𝜇𝑛+10 is an associative central extension of 𝜇𝑛0. All extensions of
this type will be called trivial. The basis {𝑒1,… , 𝑒𝑛

} of 𝜇𝑛0 will always be assumed
to satisfy the relations from Theorem 4.2.1.

4.3 Alternative and left-alternative central extensions

Throughout this section, we assume that the characteristic of the field 𝐹 is different
from 2. Recall that an algebra A is said to be left-alternative (respectively, right-
alternative) if it satisfies the identity

𝑥 (𝑥𝑦) = (𝑥𝑥) 𝑦 (respectively, (𝑥𝑦) 𝑦 = 𝑥 (𝑦𝑦)) ,

for all 𝑥, 𝑦 ∈ A. Also, if A is both left-alternative and right-alternative, it is called
alternative.

Let us consider 𝜇𝑛0 as a left-alternative algebra. Note also that the linearisation of
the left-alternative identity for 𝜇𝑛0 leads to

𝑒𝑖
(

𝑒𝑗𝑒𝑘
)

+ 𝑒𝑗
(

𝑒𝑖𝑒𝑘
)

=
(

𝑒𝑖𝑒𝑗
)

𝑒𝑘 +
(

𝑒𝑗𝑒𝑖
)

𝑒𝑘,

for 𝑖, 𝑗, 𝑘 ∈ [𝑛]. Then, its space of cocycles is formed by all the bilinear maps 𝜃∶ 𝜇𝑛0×
𝜇𝑛0 → 𝐹 satisfying 𝜃 (𝑒𝑖, 𝑒𝑗𝑒𝑘

)

+ 𝜃
(

𝑒𝑗 , 𝑒𝑖𝑒𝑘
)

= 𝜃
(

𝑒𝑖𝑒𝑗 , 𝑒𝑘
)

+ 𝜃
(

𝑒𝑗𝑒𝑖, 𝑒𝑘
)

. This can
be expressed as

𝜃
(

𝑒𝑖, 𝑒𝑗+𝑘
)

+ 𝜃
(

𝑒𝑗 , 𝑒𝑖+𝑘
)

= 2𝜃
(

𝑒𝑖+𝑗 , 𝑒𝑘
)

, (4.3.1)
for 𝑖, 𝑗, 𝑘 ∈ [𝑛], and considering that 𝑒𝑚 = 0 for 𝑚 > 𝑛.
Theorem 4.3.1. Assume that char (𝐹 ) ≠ 2. Then all left-alternative and all alterna-
tive central extensions of 𝜇𝑛0 are trivial.
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Proof. The first step is to compute Z2
LA

(

𝜇𝑛0, 𝐹
). Let 𝜃 =

∑

𝑖,𝑗 𝑐𝑖,𝑗Δ𝑖,𝑗 be an arbitrary
cocycle of 𝜇𝑛0 considered as a left-alternative algebra. The identity (4.3.1) leads to

𝑐𝑖,𝑗+𝑘 + 𝑐𝑗,𝑖+𝑘 = 2𝑐𝑖+𝑗,𝑘

for 𝑖, 𝑗, 𝑘 ∈ [𝑛], with the assumption that 𝑐𝑖,𝑗 = 0 if 𝑖 > 𝑛 or 𝑗 > 𝑛. Given integers
𝑚, 𝑠 such that 𝑚, 𝑠 − 𝑚 ∈ [𝑛] and 𝑚 ≥ 2, and taking 𝑖 = 𝑚 − 1, 𝑗 = 1 and 𝑘 = 𝑠 − 𝑚
in the above equation, we get

2𝑐𝑚,𝑠−𝑚 = 𝑐𝑚−1,𝑠−(𝑚−1) + 𝑐1,𝑠−1. (4.3.2)
Claim: For all 𝑖, 𝑗 ∈ [𝑛], 𝑐𝑖,𝑗 = 𝑐1,𝑖+𝑗−1. In particular, 𝑐𝑖,𝑗 = 0 if 𝑖 + 𝑗 ≥ 𝑛 + 2.
The claim will follow by induction on 𝑖, the case 𝑖 = 1 being trivial. So assume

that 𝑖 ≥ 2 and that the claim holds for 𝑖−1. Taking 𝑚 = 𝑖 and 𝑠 = 𝑖+ 𝑗 in (4.3.2), we
get

2𝑐𝑖,𝑗 = 𝑐𝑖−1,𝑗+1 + 𝑐1,𝑖+𝑗−1.

If 𝑗 = 𝑛, then 𝑗 + 1, 𝑖 + 𝑗 − 1 ≥ 𝑛 + 1 so 𝑐𝑖−1,𝑗+1 = 0 = 𝑐1,𝑖+𝑗−1 and it follows
from the identity above that 𝑐𝑖,𝑗 = 0, as char (𝐹 ) ≠ 2. In particular, 𝑐𝑖,𝑗 = 𝑐1,𝑖+𝑗−1
holds. Otherwise, if 𝑗 < 𝑛, then we can use the induction hypothesis to obtain 2𝑐𝑖,𝑗 =
𝑐𝑖−1,𝑗+1 + 𝑐1,𝑖+𝑗−1 = 2𝑐1,𝑖+𝑗−1, whence the claim.

So, it is clear that Z2
LA

(

𝜇𝑛0, 𝐹
) is in the linear space spanned by {

∇𝑗
}𝑛
𝑗=1; it is

also immediate to see that every element from Z2
AS

(

𝜇𝑛0, 𝐹
) is a left-alternative cocy-

cle. Thus, H2
LA

(

𝜇𝑛0, 𝐹
)

= H2
AS

(

𝜇𝑛0, 𝐹
), and every left-alternative central extension is

trivial. Since any alternative extension is left-alternative, it follows that every alter-
native central extension is trivial as well.

4.4 Jordan central extensions

Throughout this section, we assume that the characteristic of the field 𝐹 is different
from 2 and 3. Recall that a commutative algebra A is said to be Jordan if it satisfies

𝑥2 (𝑦𝑥) =
(

𝑥2𝑦
)

𝑥,
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for all 𝑥, 𝑦 ∈ A. It is immediate to check that the commutative algebra 𝜇𝑛0 satisfies
the previous identity and therefore is a Jordan algebra.

The space of Jordan cocycles of𝜇𝑛0 is formed by all the bilinear maps 𝜃∶ 𝜇𝑛0×𝜇𝑛0 →
𝐹 satisfying

𝜃 (𝑥, 𝑦) = 𝜃 (𝑦, 𝑥) ; (4.4.1)
𝜃
(

𝑥2, 𝑦𝑥
)

= 𝜃
(

𝑥2𝑦, 𝑥
)

. (4.4.2)
Equivalently, since char (𝐹 ) ≠ 2, 3, we have

𝜃
(

𝑒𝑖, 𝑒𝑗
)

= 𝜃
(

𝑒𝑗 , 𝑒𝑖
)

,

𝜃
(

𝑒𝑖+𝓁, 𝑒𝑗+𝑘
)

+ 𝜃
(

𝑒𝑗+𝓁, 𝑒𝑖+𝑘
)

+ 𝜃
(

𝑒𝑘+𝓁, 𝑒𝑖+𝑗
)

= 𝜃
(

𝑒𝑖, 𝑒𝑗+𝑘+𝓁
)

+ 𝜃
(

𝑒𝑗 , 𝑒𝑖+𝑘+𝓁
)

+ 𝜃
(

𝑒𝑘, 𝑒𝑖+𝑗+𝓁
)

,

for 𝑖, 𝑗, 𝑘,𝓁 ∈ [𝑛]. In particular, taking 𝑖 = 𝑗, we see that every cocycle must satisfy
2𝜃

(

𝑒𝑖+𝓁, 𝑒𝑖+𝑘
)

+ 𝜃
(

𝑒𝓁+𝑘, 𝑒2𝑖
)

= 2𝜃
(

𝑒𝑖, 𝑒𝑖+𝑘+𝓁
)

+ 𝜃
(

𝑒𝑘, 𝑒2𝑖+𝓁
)

. (4.4.3)
Theorem 4.4.1. All Jordan central extensions of 𝜇𝑛0 are trivial.

Proof. We will prove that {∇𝑗
}𝑛
𝑗=1 is a basis for Z2

J
(

𝜇𝑛0, 𝐹
).

Let 𝜃 =
∑

𝑖,𝑗 𝑐𝑖,𝑗Δ𝑖,𝑗 be an arbitrary cocycle in Z2
J
(

𝜇𝑛0, 𝐹
). Note that 𝑐𝑖,𝑗 = 𝑐𝑗,𝑖,

for all 𝑖, 𝑗 ∈ [𝑛]. By (4.4.3), we also have
𝑐𝑘,2𝑎+𝑏 = 2𝑐𝑎+𝑏,𝑎+𝑘 + 𝑐𝑏+𝑘,2𝑎 − 2𝑐𝑎,𝑎+𝑏+𝑘, (4.4.4)

for all 𝑎, 𝑏, 𝑘 ∈ [𝑛], with the assumption that 𝑐𝑖,𝑗 = 0 in case 𝑖 > 𝑛 or 𝑗 > 𝑛.
Claim: For all 𝑖, 𝑗 ∈ [𝑛], 𝑐𝑖,𝑗 = 𝑐1,𝑖+𝑗−1. In particular, 𝑐𝑖,𝑗 = 0 if 𝑖 + 𝑗 ≥ 𝑛 + 2.
The proof is by induction on 𝑖. If either 𝑖 = 1 or 𝑗 = 1, the claim is trivial, by

commutativity. So we can assume that 𝑖, 𝑗 ≥ 2. If 𝑖 = 2, then
𝑐2,𝑗 = 𝜃

(

𝑒21, 𝑒𝑗−1𝑒1
)

= 𝜃
(

𝑒𝑗+1, 𝑒1
)

= 𝜃
(

𝑒1, 𝑒𝑗+1
)

= 𝑐1,𝑗+1.

Let us assume thus that 𝑖 ≥ 3 and 𝑗 ≥ 2. There are unique integers 𝑎, 𝑏with 𝑏 ∈ {1, 2}
such that 𝑖 = 2𝑎 + 𝑏. Notice that 1 ≤ 𝑎 < 𝑎 + 𝑏 < 𝑖 ≤ 𝑛. Then, using (4.4.4) with
𝑘 = 𝑗, we get

𝑐𝑖,𝑗 = 𝑐2𝑎+𝑏,𝑗 = 2𝑐𝑎+𝑏,𝑎+𝑗 + 𝑐𝑏+𝑗,2𝑎 − 2𝑐𝑎,𝑎+𝑏+𝑗 .
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There are two cases to consider.
Case1: 𝑎 + 𝑏 + 𝑗 ≤ 𝑛. In this case, we can use the inductive hypothesis and the

commutativity to get
2𝑐𝑎+𝑏,𝑎+𝑗 + 𝑐𝑏+𝑗,2𝑎 − 2𝑐𝑎,𝑎+𝑏+𝑗 = 2𝑐1,2𝑎+𝑏+𝑗−1 + 𝑐1,2𝑎+𝑏+𝑗−1 − 2𝑐1,2𝑎+𝑏+𝑗−1

= 𝑐1,2𝑎+𝑏+𝑗−1 = 𝑐1,𝑖+𝑗−1.

Case2: 𝑎+𝑏+ 𝑗 ≥ 𝑛+1. Then 𝑐𝑎,𝑎+𝑏+𝑗 = 0 and we have 𝑐𝑖,𝑗 = 2𝑐𝑎+𝑏,𝑎+𝑗 +𝑐2𝑎,𝑏+𝑗 .
Either 𝑎+ 𝑗 ≥ 𝑛+1 and hence 𝑐𝑎+𝑏,𝑎+𝑗 = 0, or 𝑎+ 𝑗 ≤ 𝑛 and the inductive hypothesis
says that 𝑐𝑎+𝑏,𝑎+𝑗 = 𝑐1,2𝑎+𝑏+𝑗−1 = 0, because 2𝑎 + 𝑏 + 𝑗 − 1 ≥ 𝑎 + 𝑏 + 𝑗 ≥ 𝑛 + 1. In
any case, 𝑐𝑎+𝑏,𝑎+𝑗 = 0. Similarly, 𝑐2𝑎,𝑏+𝑗 = 0 and we conclude that 𝑐𝑖,𝑗 = 0 = 𝑐1,𝑖+𝑗−1,
because 𝑖 + 𝑗 − 1 ≥ 𝑎 + 𝑏 + 𝑗 ≥ 𝑛 + 1.

The claim is thus established. It remains to observe that the {

∇𝑗
}𝑛
𝑗=1 are in-

deed Jordan cocycles. In [138], it is proved that ∇𝑗 ∈ Z2
AS

(

𝜇𝑛0, 𝐹
), i.e. they verify

∇𝑗 (𝑥𝑦, 𝑧) = ∇𝑗 (𝑥, 𝑦𝑧). Clearly, also ∇𝑗 (𝑥, 𝑦) = ∇𝑗 (𝑦, 𝑥). These conditions are in-
deed stricter than conditions (4.4.1) and (4.4.2), so it is clear that ∇𝑗 ∈ Z2

J
(

𝜇𝑛0, 𝐹
).

This implies that H2
J
(

𝜇𝑛0, 𝐹
)

= H2
AS

(

𝜇𝑛0, 𝐹
) and, according to [138], the only Jordan

central extension of 𝜇𝑛0 is 𝜇𝑛+10 .

4.5 Left-commutative and bicommutative central extensions

Recall that an algebra A is said to be left- (respectively, right-) commutative if it
satisfies

𝑥 (𝑦𝑧) = 𝑦 (𝑥𝑧) (respectively, (𝑥𝑦) 𝑧 = (𝑥𝑧) 𝑦),
for all 𝑥, 𝑦, 𝑧 ∈ A. Equivalently, A is left- (respectively, right-) commutative if and
only if the left (respectively, right) multiplication operators commute. In case A is
both left- and right-commutative, we say that A is bicommutative.

The main results in this section will require the field 𝐹 to be algebraically closed
and of sufficiently large characteristic (which for simplicity we will assume to be zero,
when necessary), while others hold for arbitrary fields. Unless otherwise is stated, it
should be assumed that the field 𝐹 is arbitrary.
Proposition 4.5.1. Let 𝑛 ≥ 2 and recall the bilinear forms ∇𝑗 =

𝑗
∑

𝑘=1
Δ𝑘,𝑗+1−𝑘, defined

for 𝑗 ∈ [𝑛]. Then the following hold:
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(a) dimZ2
LC

(

𝜇𝑛0, 𝐹
)

= 2𝑛 − 1 and
{

Δ𝑖,1 ∣ 2 ≤ 𝑖 ≤ 𝑛
}

∪
{

∇𝑗 ∣ 𝑗 ∈ [𝑛]
}

is a basis
of Z2

LC

(

𝜇𝑛0, 𝐹
)

.

(b) dimH2
LC

(

𝜇𝑛0, 𝐹
)

= 𝑛 and the classes
{[

Δ𝑖,1
]

∣ 2 ≤ 𝑖 ≤ 𝑛
}

∪
{[

∇𝑛
]}

form a
basis of H2

LC

(

𝜇𝑛0, 𝐹
)

.

(c) In the bicommutative case we have that dimH2
BC

(

𝜇𝑛0, 𝐹
)

= 2, and
{[

Δ2,1
]

,
[

∇𝑛
]}

is a basis.

Proof. The space Z2
LC

(

𝜇𝑛0, 𝐹
) consists of the bilinear forms 𝜃 =

∑𝑛
𝑖,𝑗=1 𝑐𝑖,𝑗Δ𝑖,𝑗 , with

𝑐𝑖,𝑗 ∈ 𝐹 , satisfying 𝜃 (𝑒𝑖, 𝑒𝑗𝑒𝑘
)

= 𝜃
(

𝑒𝑗 , 𝑒𝑖𝑒𝑘
), for all 𝑖, 𝑗, 𝑘 ∈ [𝑛].

Claim: If 𝑗 ≥ 2, then 𝑐𝑖,𝑗 = 𝑐1,𝑖+𝑗−1. In particular, if 𝑖 + 𝑗 ≥ 𝑛 + 2 then 𝑐𝑖,𝑗 = 0.
For 𝑗 ≥ 2 we have

𝑐𝑖,𝑗 = 𝜃
(

𝑒𝑖, 𝑒𝑗
)

= 𝜃
(

𝑒𝑖, 𝑒1𝑒𝑗−1
)

= 𝜃
(

𝑒1, 𝑒𝑖𝑒𝑗−1
)

= 𝑐1,𝑖+𝑗−1. (4.5.1)
Thus, if 𝑖+𝑗 ≥ 𝑛+2, then necessarily 𝑗 ≥ 2 and (4.5.1) gives 𝑐𝑖,𝑗 = 0. This establishes
the claim.

Hence, 𝑐𝑖,2 = 𝑐𝑖−1,3 = ⋯ = 𝑐2,𝑖 = 𝑐1,𝑖+1 for all 𝑖 ∈ [𝑛 − 1] and we can write

𝜃 =
𝑛
∑

𝑖=1
𝑐𝑖,1Δ𝑖,1 +

𝑛
∑

𝑗=2
𝑐1,𝑗

(

∇𝑗 − Δ𝑗,1
)

=
𝑛
∑

𝑖=2

(

𝑐𝑖,1 − 𝑐1,𝑖
)

Δ𝑖,1 +
𝑛
∑

𝑗=1
𝑐1,𝑗∇𝑗 , (4.5.2)

which shows that Z2
LC

(

𝜇𝑛0, 𝐹
)

⊆
⟨{

Δ𝑖,1 ∣ 2 ≤ 𝑖 ≤ 𝑛
}

∪
{

∇𝑗 ∣ 𝑗 ∈ [𝑛]
}⟩.

It remains to prove the reverse inclusion, i.e. that the Δ𝑖,1 and the ∇𝑗 are left-
commutative cocycles. Let 𝑘,𝓁, 𝑚 ∈ [𝑛]. Then

Δ𝑖,1
(

𝑒𝑘, 𝑒𝓁𝑒𝑚
)

= 0 = Δ𝑖,1
(

𝑒𝓁, 𝑒𝑘𝑒𝑚
)

,

so indeed Δ𝑖,1 ∈ Z2
LC

(

𝜇𝑛0, 𝐹
). As ⟨∇𝑗 ∣ 𝑗 ∈ [𝑛 − 1]

⟩

= B2 (𝜇𝑛0, 𝐹
)

⊆ Z2
LC

(

𝜇𝑛0, 𝐹
),

it remains to show that ∇𝑛 is a cocycle. This follows immediately from the fact that

∇𝑛
(

𝑒𝑘, 𝑒𝓁𝑒𝑚
)

=

⎧

⎪

⎨

⎪

⎩

1 if 𝑘 + 𝓁 + 𝑚 = 𝑛 + 1;
0 otherwise.
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This concludes the proof of (a). Part (b) is clear by B2 (𝜇𝑛0, 𝐹
)

=
⟨

∇𝑗 ∣ 𝑗 ∈ [𝑛 − 1]
⟩.

We precede the proof of (c) with some general considerations. LetA be an algebra
and denote by 𝜈 ∶ A × A → A its multiplication map. The opposite algebra Aop is
the algebra with the same underlying vector space and with multiplication 𝜈◦𝜏, where
𝜏 ∶ A×A → A×A, (𝑎, 𝑏) ↦ (𝑏, 𝑎) is the flip. Clearly, A is right-commutative if and
only if Aop is left-commutative and 𝜃 ∈ Z2

RC (A, 𝐹 ) if and only if 𝜃◦𝜏 ∈ Z2
LC (A

op, 𝐹 ).
Moreover, Z2

BC (A, 𝐹 ) = Z2
LC (A, 𝐹 ) ∩ Z2

RC (A, 𝐹 ).
We return now to the case of the algebra 𝜇𝑛0. This algebra is commutative, so it

coincides with its opposite algebra. Let 𝜃 ∈ Z2
BC

(

𝜇𝑛0, 𝐹
). Then 𝜃 ∈ Z2

LC

(

𝜇𝑛0, 𝐹
) and

by (a) we can write 𝜃 as in (4.5.2). What is more, for such a 𝜃we have 𝜃 ∈ Z2
BC

(

𝜇𝑛0, 𝐹
)

if and only if 𝜃◦𝜏 ∈ Z2
LC

(

𝜇𝑛0, 𝐹
). Seeing that Δ𝑖,𝑗◦𝜏 = Δ𝑗,𝑖, we obtain ∇𝑗◦𝜏 = ∇𝑗 ,

for all 𝑗 ∈ [𝑛].
Thence, in view of the results in (a), and the observation that Δ1,2 = ∇2 − Δ2,1,

we have that 𝜃◦𝜏 ∈ Z2
LC

(

𝜇𝑛0, 𝐹
) if and only if 𝑐𝑖,1 = 𝑐1,𝑖 for all 3 ≤ 𝑖 ≤ 𝑛. This proves

that {∇𝑗 ∣ 𝑗 ∈ [𝑛]
}

∪
{

Δ2,1
} is a basis of Z2

BC

(

𝜇𝑛0, 𝐹
). Finally, given our description

of B2 (𝜇𝑛0, 𝐹
), we immediately obtain the basis {[Δ2,1

]

,
[

∇𝑛
]} of H2

BC

(

𝜇𝑛0, 𝐹
).

4.5.1 The automorphism group of 𝜇𝑛0
We denote by Aut

(

𝜇𝑛0
) the automorphism group of 𝜇𝑛0. Let 𝜙 ∈ Aut

(

𝜇𝑛0
). Then

we identify 𝜙 with its matrix (

𝜙𝑖,𝑗
)

𝑖,𝑗∈[𝑛] relative to the basis {𝑒1,… , 𝑒𝑛
}. It is easy

to see that the automorphisms of 𝜇𝑛0 are precisely those linear endomorphisms 𝜙 =
(

𝜙𝑖,𝑗
)

𝑖,𝑗∈[𝑛] with 𝜙1,1 ≠ 0, 𝜙2,1,… , 𝜙𝑛,1 ∈ 𝐹 arbitrary and 𝜙𝑖,𝑗 with 2 ≤ 𝑗 ≤ 𝑛

determined by 𝜙 (

𝑒𝑗
)

= 𝜙
(

𝑒1
)𝑗 . In other words,

𝜙𝑖,𝑗 =
∑

𝑘1+⋯+𝑘𝑗=𝑖
𝜙𝑘1,1⋯𝜙𝑘𝑗 ,1,

for all 𝑖, 𝑗 ∈ [𝑛].
It follows that 𝜙𝑖,𝑖 = 𝜙𝑖1,1 and 𝜙𝑖,𝑗 = 0 if 𝑗 > 𝑖. For 𝑗 < 𝑖 we also have

𝜙𝑖,𝑗 = 𝑗𝜙𝑗−11,1 𝜙𝑖−𝑗+1,1 + 𝑝𝑖,𝑗
(

𝜙1,1, 𝜙2,1,… , 𝜙𝑖−𝑗,1
)

, (4.5.3)
for some polynomial 𝑝𝑖,𝑗 with coefficients in 𝐹 which depends only on 𝑖 and 𝑗.
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Write 𝜙 =
∑𝑛
𝑖,𝑗=1 𝜙𝑖,𝑗𝐸𝑖,𝑗 , where we think of 𝐸𝑖,𝑗 both as the matrix unit with all

entries equal to zero except for the entry (𝑖, 𝑗) which equals 1, and also as the linear
endomorphism of 𝜇𝑛0 defined by 𝐸𝑖,𝑗

(

𝑒𝑘
)

= 𝛿𝑗,𝑘𝑒𝑖. Then,
𝜙 ⋅ Δ𝑠,𝑡

(

𝑒𝑘, 𝑒𝓁
)

= Δ𝑠,𝑡
(

𝜙
(

𝑒𝑘
)

, 𝜙
(

𝑒𝓁
))

=
∑

𝑘≤𝑖

∑

𝓁≤𝑗
𝜙𝑖,𝑘𝜙𝑗,𝓁Δ𝑠,𝑡

(

𝑒𝑖, 𝑒𝑗
)

=
∑

𝑘≤𝑠, 𝓁≤𝑡
𝜙𝑠,𝑘𝜙𝑡,𝓁.

Thence, the formula for the action is given as
𝜙 ⋅ Δ𝑠,𝑡 =

∑

𝑘≤𝑠, 𝓁≤𝑡
𝜙𝑠,𝑘𝜙𝑡,𝓁Δ𝑘,𝓁. (4.5.4)

4.5.2 The orbit decomposition of H2
LC

(

𝜇𝑛0, 𝐹
)

To state the main result of this subsection we need an additional definition. For 0 ≤
𝑖 ≤ 𝑛, let 𝑅 (𝑖, 𝑛) be the multiplicative subgroup of 𝐹 ∗ consisting of all (𝑖 + 1)-st
powers of all (𝑛 + 1)-st roots of unity in 𝐹 ∗. In case 𝐹 is algebraically closed of
characteristic zero, there exists some primitive (𝑛 + 1)-st root of unity 𝜁 and𝑅 (𝑖, 𝑛) =
⟨

𝜁 𝑖+1
⟩ is the cyclic group generated by 𝜁 𝑖+1. Denote the quotient group by

𝐹(𝑖,𝑛) = 𝐹 ∗∕𝑅 (𝑖, 𝑛) , (4.5.5)
and for 𝜇 ∈ 𝐹 ∗, let 𝜇 = 𝜇𝑅 (𝑖, 𝑛) be the corresponding coset.
Theorem 4.5.2. Assume that 𝐹 is algebraically closed of characteristic zero and let
𝑛 ≥ 2. The following elements of Z2

LC

(

𝜇𝑛0, 𝐹
)

give a complete list of distinct repre-
sentatives of the orbits of the automorphism group Aut

(

𝜇𝑛0
)

on H2
LC

(

𝜇𝑛0, 𝐹
)

∶

(a) 0;

(b) {

Δ𝑖,1 ∣ 2 ≤ 𝑖 ≤ 𝑛
}

;

(c) {

∇𝑛 + 𝜇Δ𝑛,1 ∣ 𝜇 ∈ 𝐹
}

;

(d) {

∇𝑛 + 𝜇Δ𝑖,1 ∣ 2 ≤ 𝑖 ≤ 𝑛 − 1, 𝜇 ∈ 𝐹(𝑖,𝑛)
}

.

From this result and Proposition 4.5.1, we immediately deduce the orbit space
decomposition in the bicommutative case.
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Corollary 4.5.3. Assume that 𝐹 is algebraically closed of characteristic zero and
let 𝑛 ≥ 2. The following elements of Z2

BC

(

𝜇𝑛0, 𝐹
)

give a complete list of distinct
representatives of the orbits of the automorphism group Aut

(

𝜇𝑛0
)

on H2
BC

(

𝜇𝑛0, 𝐹
)

∶

(Case 𝑛 = 2)

(a) 0;

(b) Δ2,1;

(c) {

∇2 + 𝜇Δ2,1 ∣ 𝜇 ∈ 𝐹
}

.

(Case 𝑛 > 2)

(a) 0;

(b) Δ2,1;

(c) ∇𝑛;

(d) {

∇𝑛 + 𝜇Δ2,1 ∣ 𝜇 ∈ 𝐹(2,𝑛)
}

.

We devote the remainder of this section to the proof of Theorem 4.5.2.
Lemma 4.5.4. Assume that 𝐹 is algebraically closed of characteristic zero. Fix 𝑖 ≥ 2.
Given scalars 𝑎1,1,… , 𝑎𝑖−1,1 ∈ 𝐹 with 𝑎1,1 ≠ 0, we define, for 2 ≤ 𝓁, 𝑚 ≤ 𝑖 ∶

𝑎𝓁,𝑚 =
∑

𝑗1+⋯+𝑗𝑚=𝓁
𝑎𝑗1,1⋯ 𝑎𝑗𝑚,1. (4.5.6)

Note that 𝑎𝓁,𝑚 depends only on 𝑎1,1,… , 𝑎𝓁−𝑚+1,1. Then, for any 0 ≤ 𝑘 ≤ 𝑖 − 1, the
map

𝜌𝑘 ∶ 𝐹 ∗ × 𝐹 𝑘 → 𝐹 ∗ × 𝐹 𝑘
(

𝑎1,1,… , 𝑎𝑘+1,1
)

↦
(

𝑎𝑖,𝑖𝑎1,1, 𝑎𝑖,𝑖−1𝑎1,1,… , 𝑎𝑖,𝑖−𝑘𝑎1,1
)

is onto and (𝑖 + 1)-to-1, i.e. ||
|

𝜌−1𝑘
(

𝜆1,… , 𝜆𝑘+1
)

|

|

|

= 𝑖 + 1, for all
(

𝜆1,… , 𝜆𝑘+1
)

∈
𝐹 ∗ × 𝐹 𝑘.

Proof. The proof is by induction on 0 ≤ 𝑘 ≤ 𝑖 − 1. First, notice that (4.5.6) implies
that 𝑎𝓁,𝓁 = 𝑎𝓁1,1. If 𝑘 = 0, then 𝜌0

(

𝑎1,1
)

= 𝑎𝑖+11,1 and the relation |

|

|

𝜌−10 (𝜆)||
|

= 𝑖 + 1 for
any 𝜆 ∈ 𝐹 ∗ follows from both our assumptions on 𝐹 .
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Now assume that 𝑘 ≥ 1 and take (

𝜆1,… , 𝜆𝑘+1
)

∈ 𝐹 ∗ × 𝐹 𝑘. By the induc-
tion hypothesis, ||

|

𝜌−1𝑘−1
(

𝜆1,… , 𝜆𝑘
)

|

|

|

= 𝑖 + 1, so choose (

𝑎1,1,… , 𝑎𝑘,1
)

∈ 𝐹 ∗ × 𝐹 𝑘−1

such that 𝜌𝑘−1
(

𝑎1,1,… , 𝑎𝑘,1
)

=
(

𝜆1,… , 𝜆𝑘
). As in (4.5.3), we have 𝑎𝑖,𝑖−𝑘𝑎1,1 =

(𝑖 − 𝑘) 𝑎𝑖−𝑘1,1 𝑎𝑘+1,1+𝑎1,1𝑝𝑖,𝑖−𝑘
(

𝑎1,1,… , 𝑎𝑘,1
), with 𝑝𝑖,𝑖−𝑘 a polynomial in 𝑎1,1,… , 𝑎𝑘,1.

Thus, we can set

𝑎𝑘+1,1 =
𝜆𝑘+1 − 𝑎1,1𝑝𝑖,𝑖−𝑘

(

𝑎1,1,… , 𝑎𝑘,1
)

(𝑖 − 𝑘) 𝑎𝑖−𝑘1,1

, (4.5.7)

and then 𝜌𝑘
(

𝑎1,1,… , 𝑎𝑘+1,1
)

=
(

𝜌𝑘−1
(

𝑎1,1,… , 𝑎𝑘,1
)

, 𝑎𝑖,𝑖−𝑘𝑎1,1
)

=
(

𝜆1,… , 𝜆𝑘+1
).

The above shows that the 𝑖+1 distinct solutions of the problem for 𝑘−1 give rise to
𝑖+1 distinct solutions of the problem for 𝑘. Conversely, each solution (𝑎1,1,… , 𝑎𝑘+1,1

)

of the latter determines a solution (

𝑎1,1,… , 𝑎𝑘,1
) of the former and, by (4.5.7), 𝑎𝑘+1,1

is completely determined by 𝑎1,1,… , 𝑎𝑘,1, so there are exactly 𝑖 + 1 solutions of the
problem for 𝑘. By induction, the proof is complete.

Now we can start computing orbits of Aut (𝜇𝑛0
) on Z2

LC

(

𝜇𝑛0, 𝐹
).

Proposition 4.5.5. Assume that 𝐹 is algebraically closed of characteristic zero. For
𝑖 ∈ [𝑛] we have

Orb
(

Δ𝑖,1
)

=
{

𝜆1Δ𝑖,1 + 𝜆2Δ𝑖−1,1 +⋯ + 𝜆𝑖Δ1,1 ∣ 𝜆1,… , 𝜆𝑖 ∈ 𝐹 , 𝜆1 ≠ 0
}

.

Proof. Let𝜙 =
(

𝜙𝑖,𝑗
)

∈ Aut
(

𝜇𝑛0
). Then, by (4.5.4) we have that𝜙⋅Δ𝑖,1 = 𝜙𝑖+11,1 Δ𝑖,1+

∑𝑖−1
𝑘=1 𝜙𝑖,𝑘𝜙1,1Δ𝑘,1 and as 𝜙1,1 ≠ 0, the direct inclusion in the statement is proved.

Conversely, given (

𝜆1,… , 𝜆𝑖
)

∈ 𝐹 ∗×𝐹 𝑖−1, Lemma 4.5.4 gives (𝑎1,1,… , 𝑎𝑖,1
)

∈
𝐹 ∗ × 𝐹 𝑖−1 such that 𝜆𝑖−𝑘+1 = 𝑎𝑖,𝑘𝑎1,1, for all 𝑘 ∈ [𝑖]. Since 𝑎1,1 ≠ 0, there exists
𝜙 ∈ Aut

(

𝜇𝑛0
) such that 𝜙𝑘,1 = 𝑎𝑘,1, for all 𝑘 ∈ [𝑖]. For any such 𝜙 ∈ Aut

(

𝜇𝑛0
) and

𝑗 ∈ [𝑖], we have
𝑎𝑖,𝑗 =

∑

𝑘1+⋯+𝑘𝑗=𝑖
𝑎𝑘1,1⋯ 𝑎𝑘𝑗 ,1 =

∑

𝑘1+⋯+𝑘𝑗=𝑖
𝜙𝑘1,1⋯𝜙𝑘𝑗 ,1 = 𝜙𝑖,𝑗 ,

so𝜙⋅Δ𝑖,1 = ∑𝑖
𝑘=1 𝜙𝑖,𝑘𝜙1,1Δ𝑘,1 =

∑𝑖
𝑘=1 𝑎𝑖,𝑘𝑎1,1Δ𝑘,1 =

∑𝑖
𝑘=1 𝜆𝑖−𝑘+1,1Δ𝑘,1. This proves

the reverse inclusion.
Recall that the ∇𝑗 , for 𝑗 ∈ [𝑛 − 1], form a basis of B2 (𝜇𝑛0, 𝐹

).
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Lemma 4.5.6. Let 𝜙 =
(

𝜙𝑖,𝑗
)

∈ Aut
(

𝜇𝑛0
)

. In H2
LC

(

𝜇𝑛0, 𝐹
)

we have 𝜙 ⋅
[

∇𝑛
]

=
𝜙𝑛+11,1

[

∇𝑛
]

.

Proof. If 𝑖+ 𝑗 > 𝑛+1, then Δ𝑖,𝑗 does not occur in 𝜙 ⋅∇𝑛. Otherwise, for 𝑖+ 𝑗 ≤ 𝑛+1,
the coefficient of Δ𝑖,𝑗 in the expression for 𝜙 ⋅ ∇𝑛 is

𝛼𝑖,𝑗 =
𝑛+1−𝑗
∑

𝑘=𝑖
𝜙𝑘,𝑖𝜙𝑛+1−𝑘,𝑗 ,

so that 𝜙 ⋅ ∇𝑛 =
∑

𝑖+𝑗≤𝑛+1 𝛼𝑖,𝑗Δ𝑖,𝑗 .
Since Aut

(

𝜇𝑛0
) acts on Z2

LC

(

𝜇𝑛0, 𝐹
) and on B2 (𝜇𝑛0, 𝐹

), we must have 𝜙 ⋅ ∇𝑛 ∈
Z2
LC

(

𝜇𝑛0, 𝐹
)

⧵ B2 (𝜇𝑛0, 𝐹
). Thus, by the proof of Proposition 4.5.1, we have 𝛼1,𝑘 =

𝛼2,𝑘−1 = ⋯ = 𝛼𝑘−1,2 for every 2 ≤ 𝑘 ≤ 𝑛. Moreover, by reparameterising the
summation index, we obtain 𝛼𝑖,𝑗 = ∑𝑛+1−𝑖

𝓁=𝑗 𝜙𝑛+1−𝓁,𝑖𝜙𝓁,𝑗 = 𝛼𝑗,𝑖; in particular, 𝛼𝑘,1 =
𝛼1,𝑘. It follows that

𝜙 ⋅ ∇𝑛 =
𝑛
∑

𝑘=1
𝛼1,𝑘∇𝑘.

Now, as [∇𝑘
]

= 0, for all 𝑘 ∈ [𝑛 − 1], we get 𝜙 ⋅
[

∇𝑛
]

= 𝛼1,𝑛
[

∇𝑛
]

= 𝜙𝑛+11,1

[

∇𝑛
].

Proposition 4.5.7. Assume that 𝐹 is algebraically closed of characteristic zero. Let
𝜇 ∈ 𝐹 ∗. We have

Orb
([

∇𝑛 + 𝜇Δ𝑛,1
])

=

{

𝜆1
[

∇𝑛
]

+ 𝜇𝜆1
[

Δ𝑛,1
]

+
𝑛−1
∑

𝑘=2
𝜆𝑛+1−𝑘

[

Δ𝑘,1
]

∣ 𝜆1,… , 𝜆𝑛−1 ∈ 𝐹 , 𝜆1 ≠ 0

}

.

Proof. Let 𝜙 =
(

𝜙𝑖,𝑗
)

∈ Aut
(

𝜇𝑛0
). Then, using Lemma 4.5.6 and recalling that

[

Δ1,1
]

=
[

∇1
]

= 0,

𝜙 ⋅
[

∇𝑛 + 𝜇Δ𝑛,1
]

= 𝜙𝑛+11,1

[

∇𝑛
]

+ 𝜇𝜙𝑛,𝑛𝜙1,1
[

Δ𝑛,1
]

+ 𝜇
𝑛−1
∑

𝑘=2
𝜙𝑛,𝑘𝜙1,1

[

Δ𝑘,1
]

. (4.5.8)

Since 𝜙𝑛,𝑛 = 𝜙𝑛1,1 and 𝜙1,1 ≠ 0, the direct inclusion in the statement follows.
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Conversely, let 𝜆1,… , 𝜆𝑛−1 ∈ 𝐹 , with 𝜆1 ≠ 0. Consider the map 𝜌𝑛−1 from
Lemma 4.5.4. By that result, for any 𝜇 ∈ 𝐹 ∗, there are (

𝑎1,1,… , 𝑎𝑛,1
)

∈ 𝐹 ∗ ×
𝐹 𝑛−1 such that 𝜌𝑛−1

(

𝑎1,1,… , 𝑎𝑛,1
)

=
(

𝜆1,
𝜆2
𝜇
,… , 𝜆𝑛−1

𝜇
, 0
)

. Let 𝜙 ∈ Aut
(

𝜇𝑛0
) be

determined by 𝜙𝑘,1 = 𝑎𝑘,1, for all 𝑘 ∈ [𝑛]. Then 𝜙𝑖,𝑗 = 𝑎𝑖,𝑗 for all 𝑖, 𝑗 ∈ [𝑛]. It follows
that 𝜙𝑛+11,1 = 𝜙𝑛,𝑛𝜙1,1 = 𝜆1 and similarly 𝜇𝜙𝑛,𝑘𝜙1,1 = 𝜆𝑛+1−𝑘 for all 2 ≤ 𝑘 ≤ 𝑛 − 1.
Thence, by (4.5.8),

𝜙 ⋅
[

∇𝑛 + 𝜇Δ𝑛,1
]

= 𝜆1
[

∇𝑛
]

+ 𝜇𝜆1
[

Δ𝑛,1
]

+
𝑛−1
∑

𝑘=2
𝜆𝑛+1−𝑘

[

Δ𝑘,1
]

,

proving the reverse inclusion.
Proposition 4.5.8. Assume that 𝐹 is algebraically closed of characteristic zero. For
2 ≤ 𝑖 ≤ 𝑛 − 1 and 𝜇 ∈ 𝐹 ∗ we have

Orb
([

∇𝑛 + 𝜇Δ𝑖,1
])

=

{

𝜆𝑛+1
[

∇𝑛
]

+ 𝜆𝑖+1𝜇
[

Δ𝑖,1
]

+
𝑖−1
∑

𝑗=2
𝜆𝑖+1−𝑗

[

Δ𝑗,1
]

∣ 𝜆2,… , 𝜆𝑖−1 ∈ 𝐹 , 𝜆 ∈ 𝐹 ∗

}

.

Proof. Let 𝜙 =
(

𝜙𝑖,𝑗
)

∈ Aut
(

𝜇𝑛0
). Then,

𝜙 ⋅
[

∇𝑛 + 𝜇Δ𝑖,1
]

= 𝜙𝑛+11,1

[

∇𝑛
]

+
𝑖

∑

𝑘=2
𝜙𝑖,𝑘𝜙1,1𝜇

[

Δ𝑘,1
]

.

So, as before, to prove the result it suffices to assume that 𝑖 ≥ 3 and to show that given
𝜙1,1, 𝜇 ∈ 𝐹 ∗, the elements 𝜙𝑖,𝑘𝜙1,1𝜇, with 2 ≤ 𝑘 ≤ 𝑖−1, can take on arbitrary values
in 𝐹 , for appropriate choices of 𝜙2,1,… , 𝜙𝑖−1,1 ∈ 𝐹 .

Considering 𝜌𝑖−2, we know that for any 𝜆2,… , 𝜆𝑖−1 ∈ 𝐹 there are 𝑖+ 1 solutions
to the equation

𝜌𝑖−2
(

𝑎1,1,… , 𝑎𝑖−1,1
)

=
(

𝜙𝑖+11,1 ,
𝜆2
𝜇
,… ,

𝜆𝑖−1
𝜇

)

.

As 𝑎𝑖+11,1 = 𝜙𝑖+11,1 , exactly one of the above solutions satisfies 𝑎1,1 = 𝜙1,1 and the re-
mainder of the proof goes as before.
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The final ingredient in the proof of Theorem 4.5.2 explains the relevance of the
factor group 𝐹(𝑖,𝑛), defined in (4.5.5).
Lemma 4.5.9. Fix 2 ≤ 𝑖 ≤ 𝑛 − 1. For 𝜇, 𝜇′ ∈ 𝐹 ∗ we have

Orb
([

∇𝑛 + 𝜇Δ𝑖,1
])

= Orb
([

∇𝑛 + 𝜇′Δ𝑖,1
])

⇔ 𝜇 = 𝜇′,

where 𝜇, 𝜇′ ∈ 𝐹(𝑖,𝑛).

Remark 4.5.10. In view of this result, it makes sense to write Orb
([

∇𝑛 + 𝜇Δ𝑖,1
]),

for 𝜇 ∈ 𝐹 ∗, and we can parameterise the orbits of the form above by the elements of
𝐹(𝑖,𝑛).
Proof. For the direct implication, suppose that [∇𝑛 + 𝜇′Δ𝑖,1

]

∈ Orb
([

∇𝑛 + 𝜇Δ𝑖,1
]).

Then there is some 𝜆 ∈ 𝐹 ∗ such that 𝜆𝑛+1 = 1 and 𝜇′ = 𝜆𝑖+1𝜇, so 𝜇′∕𝜇 ∈ 𝑅 (𝑖, 𝑛).
Conversely, if 𝜇′ = 𝜆𝑖+1𝜇 for some 𝜆 ∈ 𝐹 ∗ with 𝜆𝑛+1 = 1, then

[

∇𝑛 + 𝜇′Δ𝑖,1
]

= 𝜆𝑛+1
[

∇𝑛
]

+ 𝜆𝑖+1𝜇
[

Δ𝑖,1
]

∈ Orb
([

∇𝑛 + 𝜇Δ𝑖,1
])

,

which shows that the respective orbits coincide.
We are now ready to conclude our main result of this section.

Proof of Theorem 4.5.2. Let 0 ≠ 𝜃 = 𝜆1
[

∇𝑛
]

+
∑𝑛
𝑗=2 𝜆𝑗

[

Δ𝑗,1
]

∈ H2
LC

(

𝜇𝑛0, 𝐹
). Then:

• If 𝜆1 = 0, then 𝜃 ∈ Orb
([

Δ𝑖,1
]), where 𝑖 = max

{

𝑗 ∣ 𝜆𝑗 ≠ 0
}. (See Proposi-

tion 4.5.5.)
• If 𝜆1 ≠ 0 and 𝜆𝑛 ≠ 0, then 𝜃 ∈ Orb

([

∇𝑛 + 𝜇Δ𝑛,1
]), where 𝜇 = 𝜆𝑛∕𝜆1 ≠ 0.

(See Proposition 4.5.7.)
• If 𝜆1 ≠ 0 and 𝜆𝑗 = 0 for all 2 ≤ 𝑗 ≤ 𝑛, then 𝜃 ∈ Orb

([

∇𝑛
]). (See

Lemma 4.5.6.)
• If 𝜆1 ≠ 0, 𝜆𝑛 = 0 and 𝜆𝑗 ≠ 0 for some 2 ≤ 𝑗 ≤ 𝑛 − 1, define 𝜇 ∈ 𝐹 ∗ as

follows: choose some 𝜆 ∈ 𝐹 ∗ such that 𝜆𝑛+1 = 𝜆1; then take 𝜇 = 𝜆𝑖∕𝜆𝑖+1.
Then, 𝜃 ∈ Orb

([

∇𝑛 + 𝜇Δ𝑖,1
]), where 𝑖 = max

{

2 ≤ 𝑗 ≤ 𝑛 − 1 ∣ 𝜆𝑗 ≠ 0
} (See

Proposition 4.5.8.) By Lemma 4.5.9, 𝜇 is uniquely determined by 𝜃.
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The fact that distinct elements given in the statement of the Theorem yield disjoint
orbits follows easily from the description of the orbits in Proposition 4.5.5, Proposi-
tion 4.5.7, Proposition 4.5.8, Lemma 4.5.6 and Lemma 4.5.9.

4.5.3 The orbit decomposition of 𝑇1
(

𝜇𝑛0
)

in the left-commutative and bi-
commutative varieties

Observe that Ann (𝜇𝑛0
)

= 𝐹𝑒𝑛, so in order to get a non-split central extension of 𝜇𝑛0with one-dimensional annihilator associated with a cocycle 𝜃, we must have 𝑒𝑛 ∉
Ann (𝜃). This excludes the orbit representatives 0 and Δ𝑖,1, for 𝑖 < 𝑛. Notice also
that for non-zero cocycles 𝜃 and 𝜃′, the one-dimensional spaces ⟨[𝜃]⟩ and ⟨[

𝜃′
]⟩ are

in the same Aut
(

𝜇𝑛0
)-orbit in the corresponding Grassmannian if and only if there is

𝜆 ∈ 𝐹 ∗ such that 𝜆 [𝜃′] is in the orbit of [𝜃]. In particular, if the Aut (𝜇𝑛0
)-orbit of [𝜃]

is closed under the multiplicative action of 𝐹 ∗, then ⟨[𝜃]⟩ and ⟨[

𝜃′
]⟩ are in the same

orbit if and only if [𝜃] and [

𝜃′
] are in the same orbit.

In our context, all orbits are closed under multiplication by non-zero scalars, ex-
cept for the orbits of the form Orb

([

∇𝑛 + 𝜇Δ𝑖,1
]), with 2 ≤ 𝑖 ≤ 𝑛 − 1 and 𝜇 ∈ 𝐹(𝑖,𝑛).

Given 𝜖 ∈ 𝐹 ∗, Proposition 4.5.8 shows that 𝜖𝑛+1 [∇𝑛 + 𝜇Δ𝑖,1
]

=
[

∇𝑛 + 𝜖𝑛−𝑖𝜇Δ𝑖,1
]

.
Since 𝐹 is algebraically closed, for a fixed 𝑖 ≤ 𝑛 − 1, 𝜖𝑛−𝑖 can take on any non-
zero value as 𝜖 ∈ 𝐹 ∗ varies. Hence, [∇𝑛 + 𝜇Δ𝑖,1

] and
[

∇𝑛 + 𝜇′Δ𝑗,1
]

define one-
dimensional spaces in the same Aut

(

𝜇𝑛0
)-orbit of the Grassmannian if and only if

𝑖 = 𝑗.
Combining all the results from Section 4.5, we obtain our main result below.

Theorem 4.5.11. Assume that 𝐹 is algebraically closed of characteristic zero and
let 𝑛 ≥ 2. The following elements of Z2

LC

(

𝜇𝑛0, 𝐹
)

parameterise the distinct orbits of
Aut

(

𝜇𝑛0
)

on the subspace 𝑇1
(

𝜇𝑛0
)

of the Grassmannian 𝐺1
(

H2
LC

(

𝜇𝑛0, 𝐹
))

, i.e. they
parameterise the distinct isomorphism classes of non-split left-commutative central
extensions of the 𝑛-dimensional null-filiform algebra 𝜇𝑛0 with one-dimensional anni-
hilator:
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(a) Δ𝑛,1;

(b) {

∇𝑛 + 𝜇Δ𝑛,1 ∣ 𝜇 ∈ 𝐹
} (

𝜇 = 0 gives the trivial extension 𝜇𝑛+10

)

;

(c) {

∇𝑛 + Δ𝑖,1 ∣ 2 ≤ 𝑖 ≤ 𝑛 − 1
}

.

In the bicommutative case, the corresponding representatives are:

(Case 𝑛 = 2)

(a) Δ2,1;

(b) {

∇2 + 𝜇Δ2,1 ∣ 𝜇 ∈ 𝐹
}

(𝜇 = 0 gives the trivial extension 𝜇30).

(Case 𝑛 > 2)

(a) ∇𝑛 (trivial extension 𝜇𝑛+10 );

(b) ∇𝑛 + Δ2,1.

Remark 4.5.12. Note that Theorem 4.5.11 and the previous discussion only make
reference to non-split central extensions with one-dimensional annihilator. However,
it is also possible to construct non-split left-commutative central extensions of 𝜇𝑛0
with two-dimensional annihilator, whose isomorphism classes are parameterised by
the cocycles Δ𝑘,1 for 2 ≤ 𝑘 ≤ 𝑛 − 1. In the bicommutative case for 𝑛 > 2, also
Δ2,1 is a representative of an isomorphism class of non-split central extensions with
two-dimensional annihilator.

The explicit description of the multiplication in the central extensions referenced
in Theorems 4.5.2 and 4.5.11, in Corollary 4.5.3 and in Remark 4.5.12 can be found in
the following table. Only the non-zero products of the basis elements {𝑒1,… , 𝑒𝑛+1

}

are displayed.

Cocycle Multiplication, 𝑖, 𝑗 ∈ [𝑛]

Δ𝑛,1 𝑒𝑖𝑒𝑗 = 𝑒𝑖+𝑗 if 𝑖 + 𝑗 ≤ 𝑛
𝑒𝑛𝑒1 = 𝑒𝑛+1
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Δ𝑘,1 𝑒𝑖𝑒𝑗 = 𝑒𝑖+𝑗 if 𝑖 + 𝑗 ≤ 𝑛 and (𝑖, 𝑗) ≠ (𝑘, 1)
(2 ≤ 𝑘 ≤ 𝑛 − 1) 𝑒𝑘𝑒1 = 𝑒𝑘+1 + 𝑒𝑛+1
∇𝑛 + Δ𝑘,1 𝑒𝑖𝑒𝑗 = 𝑒𝑖+𝑗 if 𝑖 + 𝑗 ≤ 𝑛 + 1 and (𝑖, 𝑗) ≠ (𝑘, 1)
(2 ≤ 𝑘 ≤ 𝑛 − 1) 𝑒𝑘𝑒1 = 𝑒𝑘+1 + 𝑒𝑛+1
∇𝑛 + 𝜇Δ𝑛,1 𝑒𝑖𝑒𝑗 = 𝑒𝑖+𝑗 if 𝑖 + 𝑗 ≤ 𝑛 + 1 and 𝑖 ≠ 𝑛
(𝜇 ∈ 𝐹 ) 𝑒𝑛𝑒1 = (1 + 𝜇) 𝑒𝑛+1 (𝜇 = 0 gives the trivial extension)

Table 4.1: Isomorphism classes of one-dimensional non-split left-commutative and
bicommutative central extensions of the 𝑛-dimensional null-filiform algebra 𝜇𝑛0.

4.6 Assosymmetric, Novikov, and left-symmetric central ex-
tensions

4.6.1 Assosymmetric central extensions
Recall that an algebra A is said to be assosymmetric if it satisfies the identities

(𝑥𝑦) 𝑧 − 𝑥 (𝑦𝑧) = (𝑦𝑥) 𝑧 − 𝑦 (𝑥𝑧) = (𝑥𝑧) 𝑦 − 𝑥 (𝑧𝑦) ,

for all 𝑥, 𝑦, 𝑧 ∈ A. Now, to find the assosymmetric central extensions of 𝜇𝑛0, we need
cocycles 𝜃∶ 𝜇𝑛0 × 𝜇𝑛0 → 𝐹 satisfying
𝜃
(

𝑒𝑖𝑒𝑗 , 𝑒𝑘
)

− 𝜃
(

𝑒𝑖, 𝑒𝑗𝑒𝑘
)

= 𝜃
(

𝑒𝑗𝑒𝑖, 𝑒𝑘
)

− 𝜃
(

𝑒𝑗 , 𝑒𝑖𝑒𝑘
)

= 𝜃
(

𝑒𝑖𝑒𝑘, 𝑒𝑗
)

− 𝜃
(

𝑒𝑖, 𝑒𝑘𝑒𝑗
)

,

for all 𝑖, 𝑗, 𝑘 ∈ [𝑛]. Note that for the algebra 𝜇𝑛0, these two equalities reduce to
𝜃
(

𝑒𝑖, 𝑒𝑗+𝑘
)

= 𝜃
(

𝑒𝑗 , 𝑒𝑖+𝑘
) and 𝜃

(

𝑒𝑖+𝑗 , 𝑒𝑘
)

= 𝜃
(

𝑒𝑖+𝑘, 𝑒𝑗
)

,

for all 𝑖, 𝑗, 𝑘 ∈ [𝑛], with the usual convention that 𝑒𝑚 = 0 if 𝑚 > 𝑛. This means that
every assosymmetric cocycle of 𝜇𝑛0 is in Z2

BC

(

𝜇𝑛0, 𝐹
)

. On the other hand, it is easy to
see that every element from Z2

BC

(

𝜇𝑛0, 𝐹
) is an assosymmetric cocycle.

4.6.2 Novikov central extensions
Recall that an algebra A is said to be Novikov if it satisfies the identities

(𝑥𝑦) 𝑧 = (𝑥𝑧) 𝑦 and (𝑥𝑦) 𝑧 − 𝑥 (𝑦𝑧) = (𝑦𝑥) 𝑧 − 𝑦 (𝑥𝑧) ,
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for all 𝑥, 𝑦, 𝑧 ∈ A. Now, to find all the Novikov central extensions of 𝜇𝑛0, we require
cocycles 𝜃∶ 𝜇𝑛0 × 𝜇𝑛0 → 𝐹 satisfying
𝜃
(

𝑒𝑖𝑒𝑗 , 𝑒𝑘
)

= 𝜃
(

𝑒𝑖𝑒𝑘, 𝑒𝑗
) and 𝜃

(

𝑒𝑖𝑒𝑗 , 𝑒𝑘
)

−𝜃
(

𝑒𝑖, 𝑒𝑗𝑒𝑘
)

= 𝜃
(

𝑒𝑗𝑒𝑖, 𝑒𝑘
)

−𝜃
(

𝑒𝑗 , 𝑒𝑖𝑒𝑘
)

,

for all 𝑖, 𝑗, 𝑘 ∈ [𝑛]. For the algebra 𝜇𝑛0, these identities reduce to
𝜃
(

𝑒𝑖+𝑗 , 𝑒𝑘
)

= 𝜃
(

𝑒𝑖+𝑘, 𝑒𝑗
) and 𝜃

(

𝑒𝑖, 𝑒𝑗+𝑘
)

= 𝜃
(

𝑒𝑗 , 𝑒𝑖+𝑘
)

,

with 𝑒𝑚 = 0 if 𝑚 > 𝑛. As these are exactly the identities for the bicommutative
cocycles of Z2

BC

(

𝜇𝑛0, 𝐹
), this case also reduces to the bicommutative case.

4.6.3 Left-symmetric central extensions
Recall that an algebra A is said to be left-symmetric if it satisfies the identity

(𝑥𝑦) 𝑧 − 𝑥 (𝑦𝑧) = (𝑦𝑥) 𝑧 − 𝑦 (𝑥𝑧) ,

for all 𝑥, 𝑦, 𝑧 ∈ A. To find all the left-symmetric central extensions of 𝜇𝑛0, we need
cocycles 𝜃∶ 𝜇𝑛0 × 𝜇𝑛0 → 𝐹 satisfying

𝜃
(

𝑒𝑖𝑒𝑗 , 𝑒𝑘
)

− 𝜃
(

𝑒𝑖, 𝑒𝑗𝑒𝑘
)

= 𝜃
(

𝑒𝑗𝑒𝑖, 𝑒𝑘
)

− 𝜃
(

𝑒𝑗 , 𝑒𝑖𝑒𝑘
)

,

for all 𝑖, 𝑗, 𝑘 ∈ [𝑛]. Note that for the algebra 𝜇𝑛0, we obtain just the relation
𝜃
(

𝑒𝑖, 𝑒𝑗+𝑘
)

= 𝜃
(

𝑒𝑗 , 𝑒𝑖+𝑘
)

, for all 𝑖, 𝑗, 𝑘 ∈ [𝑛],

where 𝑒𝑚 = 0 if 𝑚 > 𝑛. Thus, 𝜃 is the same as a left-commutative cocycle from
Z2
LC

(

𝜇𝑛0, 𝐹
), and it follows that this case reduces to the left-commutative case.
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Central extensions of axial algebras
⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄

In this chapter, we develop a further adaptation of the method of Skjelbred-Sund ex-
plained in Chapter 3 and Chapter 4 to construct central extensions of a certain class
of algebras which is not defined by polynomial identities, namely axial algebras. Al-
though all the examples throughout the chapter are already known in the literature, it
is our hope that this technique will allow us to find new examples in the near future.
We also use our method to prove that all axial central extensions (with respect to a
maximal set of axes) of simple finite-dimensional Jordan algebras are split.

Introduction

Axial algebras are a recent class of non-associative commutative algebras introduced
by Hall, Rehren and Shpectorov [110] in 2015. They can be seen as a certain gener-
alisation of commutative, associative algebras, and as a common frame for Majorana
algebras [110,233], Jordan algebras [111,112] and other types of algebras appearing
in mathematical physics. They are also related to code algebras [53].

The relevance of Majorana and axial algebras lies on the fact that they provide an
axiomatic approach to vertex operator algebras (VOAs), complex algebraic structures
rooted in theoretical physics. In mathematics, the best-known VOA is the moon-
shine 𝑉 #, constructed by Frenkel, Lepowsky and Meurman in [89], and whose au-
tomorphism group is the Monster 𝑀 , the largest sporadic finite simple group. This
object shows a link to the theory of modular functions, and was key in the proof of
Borcherds [29] of the monstrous moonshine conjecture on the connection between the
Monster and modular functions. The rigorous development of the theory of VOAs,
an important tool for the proof, is also due to Borcherds [28].

141
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After the cited paper of Hall, Rehren and Shpectorov [110], it began a systematic
study of axial algebras. An interesting and active direction in this study is the descrip-
tion of 𝑛-generated axial algebras of a certain type. So, two-generated axial algebras
of Jordan type 𝜂 over fields of characteristic different from 2 were classified in [111]
by Hall, Rehren and Shpectorov. Rehren proved in [196, 197] that the dimension of
primitive two-generated axial algebras of Monster type (𝛼, 𝛽) does not exceed 8 if the
characteristic of the ground field is not 2 and 𝛼 ∉ {2𝛽, 4𝛽}. Later, Franchi, Mainardis
and Shpectorov constructed an infinite dimensional two-generated primitive axial al-
gebra of Monster type

(

2, 12
)

, today known as Highwater algebra [87], and they
classified all two-generated primitive axial algebras of Monster type (2𝛽, 𝛽) over a
field of characteristic not 2 in [88]. Also, a classification of primitive symmetric two-
generated axial algebras of Monster type was given between Yabe’s [235], Franchi and
Mainardis’ [85] and Franchi, Mainardis and McInroy’s [86]. On the other hand, Gor-
shkov and Staroletov showed that a three-generated primitive axial algebra of Jordan
type has dimension at most 9 [104]; Khasraw, McInroy and Shpectorov enumerated
all the three-generated axial algebras of Monster type (𝛼, 𝛽) of a certain subclass, the
so-called 4-algebras [153].

We cite some other directions in the research on axial algebras. Khasraw, McIn-
roy and Shpectorov described the structure of axial algebras [152]. De Medts and
Van Couwenberghe introduced axial representations of groups and modules over ax-
ial algebras as new tools to study axial algebras [66]. Axial algebras have been
also studied from a computational approach in McInroy and Shpectorov’s [173] (see
also [187, 205]), and from a categorical point of view in De Medts, Peacock, Shpec-
torov and Van Couwenberghe’s [65].

On the other hand, the study of algebras generated by idempotents has a proper
interest. Rowen and Segev described all associative and Jordan algebras generated by
two idempotents [199]; Brešar proved that a finite-dimensional (unital) algebra is zero
product determined if and only if it is generated by idempotents [34]; Hu and Xiao
proved that finite-dimensional algebras generated by idempotents can be characterised
homologically by their irreducible modules [117], and so on.

This chapter is organised as follows. The introductory Section 5.1 provides some
basic definitions about axial algebras. We also give a classification of complex two-
dimensional axial algebras and describe some of the main properties of these algebras.
Section 5.2 is devoted to a detailed explanation of an adaptation of the Skjelbred-Sund
method [209] for the construction of central extensions of axial algebras: we describe
the conditions that ensure that a given central extension of an axial algebra will also
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be axial (Theorem 5.2.12) and prove that an axial algebra with non-zero annihilator is
a central extension of another axial algebra of smaller dimension (Theorem 5.2.13).
In Section 5.3, we apply the methods developed in Section 5.2 to prove that a com-
plex finite-dimensional simple Jordan algebra does not have non-split axial central
extensions with respect to a maximal set of axes.

Unless otherwise stated, all algebras and vector spaces throughout the paper are
assumed to be of arbitrary dimension and over an arbitrary field 𝐹 . The generating
sets for the algebras are assumed to be finite.

5.1 Preliminaries on axial algebras

Let 𝐹 be a field,  ⊆ 𝐹 a subset, and ⋆∶  ×  → 2 a symmetric binary oper-
ation. The pair ( , ⋆) is called a fusion law over 𝐹 , and will be denoted simply by
 whenever there is not possibility of confusion. We say that the fusion law ( , ⋆)
is contained in the fusion law (, ⊙) if  ⊆  and, for every 𝜆, 𝜇 ∈  , it holds that
𝜆⋆𝜇 ⊆ 𝜆⊙𝜇. Also, if  ⊆ , we will denote by (, ⋆) the fusion law resulting from
setting 𝜆 ⋆ 𝜇 = ∅ for every 𝜆 ∈  ⧵  and every 𝜇 ∈ .

The values of any fusion law ( , ⋆) can be displayed in a symmetric square table.
This is the most common way to represent them; we employ it in Table 5.6 and Ta-
ble 5.7. Following the conventions in the literature (e.g. [110], [111]), we will abuse
notation in the tables by not writing the set symbols in unitary sets, or using a blank
entry to mean the empty set. On other occasions, we will limit to write explicitly the
relevant products of the fusion laws, as in Table 5.3 and Table 5.5.

Let A be a commutative algebra. For any element 𝑥 ∈ A, we denote by Spec (𝑥)
the spectrum of the endomorphism 𝐿𝑥 ∶ A → A, 𝑦 ↦ 𝑥𝑦, and by A𝑥𝜆 the eigenspace
associated with an eigenvalue 𝜆 ∈ Spec (𝑥). If 𝜇 ∉ Spec (𝑥), we assume A𝑥𝜇 = 0.
Also, given a subset  ⊆ Spec (𝑥), we denote A𝑥 = ⊕𝜆∈A𝑥𝜆 and A𝑥∅ = {0}.

Let ( , ⋆) be a fusion law over 𝐹 . An element 𝑎 ∈ A is called an  -axis if the
following conditions hold:

1. 𝑎 is idempotent;
2. 𝑎 is semisimple;
3. Spec (𝑎) ⊆  and A𝑎𝜆A

𝑎
𝜇 ⊆ A𝑎𝜆⋆𝜇, for all 𝜆, 𝜇 ∈ Spec (𝑎).
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Recall that, if A has finite dimension, by 𝑎 being semisimple we just mean that
𝐿𝑎 is diagonalisable. In the infinite-dimensional case, 𝑎 must satisfy the next two
conditions:

(i) For every 𝑥 ∈ A, there exists a finite-dimensional subspace 𝑊𝑥 ⊆ A stable by
𝐿𝑎 such that 𝑥 ∈ 𝑊𝑥.

(ii) For every subspace 𝑊 ⊆ A of finite dimension stable by 𝐿𝑎, the restriction
𝐿𝑎|𝑊 is diagonalisable.

An  -axial algebra over 𝐹 is a pair (A,X), where A is a commutative algebra
over 𝐹 and X is a finite set of  -axes that generate A. If the fusion law is clear, we
will simply refer to axes and axial algebras.

We will now recall some basic definitions regarding axial algebras. For more
information, see for instance [110–112, 152].

Note that, from conditions (1) and (3) above, any axis 𝑎 ∈ A satisfies A𝑎1 ≠ 0. An
axis 𝑎 ∈ A is called primitive if dimA𝑎1 = 1. If an axial algebra (A,X) is generated
by primitive axes, then it is called primitive. In this case, A𝑎1A𝑎𝜆 ⊆ A𝑎𝜆, for all 𝜆 ∈
Spec (𝑎).

A two-generated axial algebra (A,{𝑎1, 𝑎2
}) is called symmetric if it admits a flip,

i.e. if there exists an automorphism switching the generating axes 𝑎1 and 𝑎2.
An axial algebra (A,X) is said to be 𝑚-closed if A is spanned by products of axes

of X of length at most 𝑚.
Also, we say that an axial algebra (A,X) admits a Frobenius form if there exists a

(non-zero) bilinear form (⋅, ⋅) ∶ A × A → 𝐹 which associates with the product of A,
i.e.

(𝑥, 𝑦𝑧) = (𝑥𝑦, 𝑧)

for all 𝑥, 𝑦, 𝑧 ∈ A. Note that this form is necessarily symmetric [110, Proposition
3.5].

The radical𝑅 (A,X) of a primitive axial algebra (A,X) is the unique largest ideal
of A containing no axes from X. If (A,X) admits a Frobenius form, the radical of the
form and 𝑅 (A,X) are closely related (see [152]).

Sometimes, the fusion law ( , ⋆) is graded by a finite abelian group 𝑇 , in the
sense that there exists a partition {

𝑡 ∣ 𝑡 ∈ 𝑇
} such that for all 𝑠, 𝑡 ∈ 𝑇 ,

𝑠 ⋆ 𝑡 ⊆ 𝑠𝑡.

In these cases, it is induced a 𝑇 -grading on A for each axis 𝑎, namely A = ⊕𝑡∈𝑇A𝑎𝑡 .
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Let 𝑇 ∗ be the group of linear characters of 𝑇 . For each axis 𝑎, there exists a group
homomorphism, 𝜏𝑎 ∶ 𝑇 ∗ → Aut (A), where 𝜏𝑎 (𝜒) ∶ A → A, with 𝜒 ∈ 𝑇 ∗, is defined
by the linear extension of

𝜏𝑎 (𝜒) ∶ A → A
𝑢↦ 𝜒 (𝑡) 𝑢,

for 𝑢 ∈ 𝐴𝑎𝑡 .The automorphisms of the type 𝜏𝑎 (𝜒) are called Miyamoto automorphisms, and
the image 𝑇𝑎 ∶= Im 𝜏𝑎 is called the axial subgroup of Aut (A) corresponding to 𝑎. If
Z is a set of axes of A, the subgroup

𝐺 (Z) ∶= ⟨𝑇𝑎 ∣ 𝑎 ∈ Z⟩ ⊆ Aut (A)

is known as the Miyamoto group of A with respect to Z.
In this paper, we will restrict to dealing with𝐶2-gradings. Note that, in this setting,

𝑇𝑎 ⊆ Aut (A) has order two for every axis 𝑎. Let us write 𝑇𝑎 =
{

id𝐴, 𝜙𝑎
}.

A set of axes Z is called closed if 𝜙 (Z) = Z for any 𝜙 ∈ 𝐺 (Z). The minimal
closed set of axes containing Z exists and it is called the closure of Z, Z.

As an example, we select here the algebras of dimension 2 over ℂ which are ax-
ial from the classification in [151], and provide some information about their basic
features.
Example 5.1.1. Consider the set

{(

𝛼, 𝛽,
𝛼𝛽 − (𝛼 − 1) (𝛽 − 1)

4𝛼𝛽 − 1

)

∣ 𝛼, 𝛽 ∈ ℂ, 𝛼, 𝛽 ≠ 1
2
, 𝛼𝛽 ≠ 1

4

}

.

Note that there exists an action of 3 on such set, and choose a set of representatives
of the orbits, Δ, such that 𝛽 ≠ 0, 1, 𝛼 + 𝛽 ≠ 1 and 𝛼 ≠ 𝛽 ≠ 𝛼𝛽−(𝛼−1)(𝛽−1)

4𝛼𝛽−1
≠ 𝛼. Set

𝜅 =
{

(𝛼, 𝛽) ∈ ℂ2 ∣ 𝛼, 𝛽 ≠ 1
2
, 𝛼𝛽 ≠ 1

4
,
(

𝛼, 𝛽,
𝛼𝛽 − (𝛼 − 1) (𝛽 − 1)

4𝛼𝛽 − 1

)

∈ Δ
}

.

Also, the cyclic group 𝐶2 acts on ℂ ⧵ {0, 1} by taking −1 (𝛼) = 𝛼−1. We will fix
a certain set of representatives of the orbits under this action and denote it by ℂ∗

>1.
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Let us denote:
𝐴 : 𝐸1 (0, 0, 0, 0) : 𝑒1𝑒2 = 0
𝐵 : 𝐸1 (−1,−1,−1,−1) : 𝑒1𝑒2 = −𝑒1 − 𝑒2
𝐶 (𝛼)𝛼≠0,± 1

2 ,±1
: 𝐸1 (𝛼, 𝛼, 𝛼, 𝛼)𝛼≠0,± 1

2 ,±1
: 𝑒1𝑒2 = 𝛼

(

𝑒1 + 𝑒2
)

𝐷 (𝛽)(0,𝛽)∈𝜅 : 𝐸1 (0, 𝛽, 0, 𝛽)(0,𝛽)∈𝜅 : 𝑒1𝑒2 = 𝛽𝑒2
𝐸 (𝛼, 𝛽)(𝛼,𝛽)∈𝜅,𝛼≠0 : 𝐸1 (𝛼, 𝛽, 𝛼, 𝛽)(𝛼,𝛽)∈𝜅,𝛼≠0 : 𝑒1𝑒2 = 𝛼𝑒1 + 𝛽𝑒2
𝐹 : 𝐸2

(

1
2 , 0, 0

)

: 𝑒1𝑒2 =
1
2𝑒1

𝐺 (𝛽)𝛽≠0, 12 ,1
: 𝐸2

(

1
2 , 𝛽, 𝛽

)

𝛽≠0, 12 ,1
: 𝑒1𝑒2 =

1
2𝑒1 + 𝛽𝑒2

𝐻 (𝛾)𝛾∈ℂ∗
>1,𝛾≠2

: 𝐸3

(

1
2 ,

1
2 , 𝛾

)

𝛾∈ℂ∗
>1,𝛾≠2

: 𝑒1𝑒2 =
1
2𝛾𝑒1 +

1
2𝛾 𝑒2

𝐼 : 𝐸5

(

1
2

)

: 𝑒1𝑒2 =
1
2

(

𝑒1 + 𝑒2
),

where 𝑒1𝑒1 = 𝑒1 and 𝑒2𝑒2 = 𝑒2 in all instances.
All the previous algebras, alongside with certain sets of generating axes, are two-

closed axial algebras. The following Table 5.2 summarises information about some
of their basic features.

We limit to provide minimal set of axes X such that (A,X) is axial. The fusion
laws are displayed in Table 5.3, with the following conventions: we only write the
non-zero products, and we assume that 1 ⋆ 𝜆 = 𝜆 for all 𝜆 ∈  , 𝜆 ≠ 0. Write

𝑎3 = 𝑒1 + 𝑒2;
𝑎4 = −

(

𝑒1 + 𝑒2
)

;
𝑎5 = 1

1+2𝛼

(

𝑒1 + 𝑒2
)

;
𝑎6 = 𝑒1 + (1 − 2𝛽) 𝑒2;
𝑎7 = 1−2𝛼

1−4𝛼𝛽 𝑒1 +
1−2𝛽
1−4𝛼𝛽 𝑒2;

𝑎𝛼 = 𝛼𝑒1 + (1 − 𝛼) 𝑒2,

where 𝛼, 𝛽 are elements of ℂ whose requirements vary from case to case, and denote
by 𝔉2 the free group generated by two involutions. Note that, regarding Frobenius
forms, we just offer an example for each axial algebra.
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A X ( , ⋆) Symmetric (⋅, ⋅)

𝐴

{

𝑒1, 𝑒2
}

(

𝐴, ⋆𝐴
)

Yes (

𝑒1, 𝑒1
)

= 1
(

𝑒1, 𝑒2
)

= 0
(

𝑒2, 𝑒2
)

= 1

{

𝑒1, 𝑎3
}

No{

𝑒2, 𝑎3
}

𝐵

{

𝑒1, 𝑒2
}

(

𝐵, ⋆𝐵
) Yes

(

𝑒1, 𝑒1
)

= −2
(

𝑒1, 𝑒2
)

= 1
(

𝑒2, 𝑒2
)

= −2

{

𝑒1, 𝑎4
}

{

𝑒2, 𝑎4
}

𝐶 (𝛼)

{

𝑒1, 𝑒2
} (

𝐶1, ⋆𝐶1
) Yes (

𝑒1, 𝑒1
)

= (1 − 𝛼) ∕𝛼
(

𝑒1, 𝑒2
)

= 1
(

𝑒2, 𝑒2
)

= (1 − 𝛼) ∕𝛼

{

𝑒1, 𝑎5
}

(

𝐶2, ⋆𝐶2
) No{

𝑒2, 𝑎5
}

𝐷 (𝛽)

{

𝑒1, 𝑒2
} (

𝐷1, ⋆𝐷1
)

No
(

𝑒1, 𝑒1
)

= 1
(

𝑒1, 𝑒2
)

= 0
(

𝑒2, 𝑒2
)

= 0

{

𝑒1, 𝑎6
} (

𝐷2, ⋆𝐷2
)

{

𝑒2, 𝑎6
} (

𝐷3, ⋆𝐷3
)

𝐸 (𝛼, 𝛽)

{

𝑒1, 𝑒2
}

(𝛼≠1)
(

𝐸1, ⋆𝐸1
)

No
(

𝑒1, 𝑒1
)

= (1 − 𝛽) ∕𝛼
(

𝑒1, 𝑒2
)

= 1
(

𝑒2, 𝑒2
)

= (1 − 𝛼) ∕𝛽

{

𝑒1, 𝑎7
} (

𝐸2, ⋆𝐸2
)

{

𝑒2, 𝑎7
}

(𝛼≠1)
(

𝐸3, ⋆𝐸3
)

𝐹
{

𝑒1, 𝑒2
} (

𝐹 , ⋆𝐹
) No

(

𝑒1, 𝑒1
)

= 0
(

𝑒1, 𝑒2
)

= 0
(

𝑒2, 𝑒2
)

= 1

𝐺 (𝛽)
{

𝑒1, 𝑒2
} (

𝐺, ⋆𝐺
) No

(

𝑒1, 𝑒1
)

= 2 (1 − 𝛽)
(

𝑒1, 𝑒2
)

= 1
(

𝑒2, 𝑒2
)

= 1∕2𝛽

𝐻 (𝛾)
{

𝑒1, 𝑒2
} (

𝐻 , ⋆𝐻
)

𝛾 = −1

(

𝑒1, 𝑒1
)

= (2𝛾 − 1) ∕𝛾2
(

𝑒1, 𝑒2
)

= 1
(

𝑒2, 𝑒2
)

= (2 − 𝛾) 𝛾
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𝐼
{

𝑎𝛼, 𝑎𝛽
}

𝛼≠𝛽
(

𝐼 , ⋆𝐼
)

𝛼 ≠ −𝛽

(

𝑒1, 𝑒1
)

= 1
(

𝑒1, 𝑒2
)

= 1
(

𝑒2, 𝑒2
)

= 1

Table 5.2: Complex axial algebras of dimension 2.

Fusion law 
(

𝐴, ⋆𝐴
)

{1, 0} 0 ⋆𝐴 0 = 0
(

𝐵, ⋆𝐵
)

{1,−1} (−1) ⋆𝐵 (−1) = 1
(

𝐶1, ⋆𝐶1
)

{1, 𝛼} 𝛼 ⋆𝐶1 𝛼 = {1, 𝛼}
(

𝐶2, ⋆𝐶2
)

{1, 𝛼, 𝜆} 𝛼 ⋆𝐶2 𝛼 = {1, 𝛼},
𝜆 ⋆𝐶2 𝜆 = 1

(

𝐷1, ⋆𝐷1
)

{1, 𝛽, 0} 𝛽 ⋆𝐷1 𝛽 = 𝛽,
0 ⋆𝐷1 0 = {1, 0}

(

𝐷2, ⋆𝐷2
)

{1, 𝛽, 1 − 𝛽} 𝛽 ⋆𝐷2 𝛽 = 𝛽,
(1 − 𝛽) ⋆𝐷2 (1 − 𝛽) = 1 − 𝛽

(

𝐷3, ⋆𝐷3
)

{1, 1 − 𝛽, 0} (1 − 𝛽) ⋆𝐷3 (1 − 𝛽) = 1 − 𝛽,
0 ⋆𝐷3 0 = {1, 0}

(

𝐸1, ⋆𝐸1
)

{1, 𝛽, 𝜆} 𝛽 ⋆𝐸1 𝛽 = {1, 𝛽},
𝜆 ⋆𝐸1 𝜆 = {1, 𝜆}

(

𝐸2, ⋆𝐸2
)

{1, 𝛼, 𝛽} 𝛼 ⋆𝐸2 𝛼 = {1, 𝛼},
𝛽 ⋆𝐸2 𝛽 = {1, 𝛽}

(

𝐸3, ⋆𝐸3
)

{1, 𝛼, 𝜆} 𝛼 ⋆𝐸3 𝛼 = {1, 𝛼},
𝜆 ⋆𝐸3 𝜆 = {1, 𝜆}

(

𝐹 , ⋆𝐹
)

{1, 1∕2, 0} 1∕2 ⋆𝐹 1∕2 = 1∕2,
0 ⋆𝐹 0 = {1, 0}

(

𝐺, ⋆𝐺
)

{1, 𝛽, 1∕2} 𝛽 ⋆𝐺 𝛽 = {1, 𝛽},
1∕2 ⋆𝐺 1∕2 = {1, 1∕2}
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(

𝐻 , ⋆𝐻
)

{

1, 1
2𝛾 , 𝛾∕2

}

1
2𝛾 ⋆𝐻

1
2𝛾 =

{

1, 1
2𝛾

}

,
𝛾∕2 ⋆𝐻 𝛾∕2 = {1, 𝛾∕2}

(

𝐼 , ⋆𝐼
)

{1, 1∕2}

Table 5.3: Fusion laws in Table 5.2.

(For 𝐷3, 𝜆 = 1
1+2𝛼 , and for 𝐸1 and 𝐸3, 𝜆 = 1−𝛼−𝛽

1−4𝛼𝛽 ).
We indicate now some other properties of the above algebras not displayed in Ta-

ble 5.2. The only algebras which are not primitive are (𝐴,{𝑒1, 𝑎3
}) and (𝐴,{𝑒2, 𝑎3

});
the only ones that have non-zero radical, (𝐷 (𝛽) ,

{

𝑒1, 𝑎6
}) and (

𝐼,
{

𝑎𝛼, 𝑎𝛽
}), with

𝑅
(

𝐷 (𝛽) ,
{

𝑒1, 𝑎6
})

= ⟨𝑒2⟩ and 𝑅 (

𝐼,
{

𝑎𝛼, 𝑎𝛽
})

= ⟨𝑒1 − 𝑒2⟩, respectively. For the
sake of completeness, we point out that the algebras 𝐴, 𝐵, 𝐶 (𝛼), 𝐸 (𝛼, 𝛽), 𝐺 (𝛽) and
𝐻 (𝛾) are in fact simple.

Note that, between the fusion laws of Table 5.3, only (

𝐵, ⋆𝐵
), (𝐶2, ⋆𝐶2

) and
(

𝐼 , ⋆𝐼
) admit 𝐶2-gradings. We show now in detail the explicit Miyamoto groups of

𝐵, 𝐶 (𝛼) and 𝐼 .
Consider first 𝐵. The fusion law (

𝐵, ⋆𝐵
) admits the 𝐶2-grading (

𝐵
)

1 = {1},
(

𝐵
)

−1 = {−1}. The Miyamoto automorphisms with respect to the axes 𝑒1, 𝑒2 and
𝑎4 are

𝜙𝑒𝑖 ∶ 𝐵 → 𝐵

𝑒𝑖 ↦ 𝑒𝑖
𝑒𝑗 ↦ −𝑒𝑖 − 𝑒𝑗 ,

for 𝑖, 𝑗 ∈ {1, 2}, 𝑖 ≠ 𝑗, and
𝜙𝑎4 ∶ 𝐵 → 𝐵

𝑒1 ↦ 𝑒2
𝑒2 ↦ 𝑒1.

As a consequence, the Miyamoto group with respect to X =
{

𝑒1, 𝑒2
} is

𝐺 (X) =
⟨

𝜙𝑒1 , 𝜙𝑒2 ∣ 𝜙
2
𝑒1
= 𝜙2

𝑒2
=
(

𝜙𝑒1𝜙𝑒2
)3 =

(

𝜙𝑒2𝜙𝑒1
)3 = 1

⟩

≃ 3,
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and also, denoting X𝑖 =
{

𝑒𝑖, 𝑎4
},

𝐺
(

X𝑖
)

=
⟨

𝜙𝑒𝑖 , 𝜙𝑎4 ∣ 𝜙
2
𝑒𝑖
= 𝜙2

𝑎4
=
(

𝜙𝑒𝑖𝜙𝑎4
)3

=
(

𝜙𝑎4𝜙𝑒𝑖
)3

= 1
⟩

≃ 3,

for 𝑖 ∈ {1, 2}, 𝑖 ≠ 𝑗. The closure of any of the generating sets of axes considered in
Table 5.2 is 𝑋 =

{

𝑒1, 𝑒2, 𝑎4
}.

Regarding𝐶 (𝛼), the fusion law (

2, ⋆2
) admits the𝐶2-grading (

𝐶2
)

1 = {1, 𝛼},
(

𝐶2
)

−1 = {𝜆}. The Miyamoto automorphisms with respect to the axes 𝑒1 and 𝑒2 are
id𝐶(𝛼), whereas

𝜙𝑎5 ∶ 𝐶 (𝛼) → 𝐶 (𝛼)

𝑒1 ↦ 𝑒2
𝑒2 ↦ 𝑒1.

Then, the Miyamoto groups with respect to X𝑖 =
{

𝑒𝑖, 𝑎5
} are

𝐺
(

X𝑖
)

=
⟨

𝜙𝑎5 ∣ 𝜙
2
𝑎5

= 1
⟩

≃ 𝐶2,

for 𝑖 ∈ {1, 2}. The closure of both generating sets of axes considered in Table 5.2 is
𝑋 =

{

𝑒1, 𝑒2, 𝑎5
}.

Write X =
{

𝑒1, 𝑒2
}. Since (

𝐶1, ⋆𝐶1
)

⊆
(

𝐶2, ⋆𝐶2
), we could also consider

(𝐶 (𝛼) ,X) as an (

𝐶2, ⋆𝐶2
)-axial algebra. In this case, the Miyamoto group reduces

to 𝐺 (X) =
{

id𝐶(𝛼)
}, and X = X.

Finally, consider 𝐼 . Now, the 𝐶2-grading of (𝐼 , ⋆𝐼
) is (𝐼

)

1 = {1}, (𝐼
)

−1 =
{

1
2

}

. The Miyamoto group with respect to X =
{

𝑎𝛼, 𝑎𝛽
}

𝛼≠𝛽 is
𝐺 (X) =

⟨

𝜙𝑎𝛼 , 𝜙𝑎𝛽 ∣ 𝜙
2
𝑎𝛼

= 𝜙2
𝑎𝛽

= 1
⟩

≃ 𝔉2,

where
𝜙𝑎𝛼 ∶ 𝐼 → 𝐼

𝑒1 ↦ (2𝛼 − 1) 𝑒1 + 2 (1 − 𝛼) 𝑒2
𝑒2 ↦ 2𝛼𝑒1 + (1 − 2𝛼) 𝑒2,

for any 𝛼 ∈ ℂ. Also, it holds that 𝑋 =
{

𝑎𝛼+ℤ(𝛼−𝛽)
}.
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5.2 Central extensions of axial algebras

Let A be an algebra and V a vector space. Let also 𝜃∶ A×A → V be a bilinear map,
and define A𝜃 = A ⊕ V, which can be given structure of algebra with the product
[𝑥+𝑣, 𝑦+𝑤]𝜃 = 𝑥𝑦+𝜃 (𝑥, 𝑦). It is immediate to check that A𝜃 is a central extension of
dimension dimV of A with respect to V. Also, it can be seen that every commutative
central extension of A of arbitrary dimension is isomorphic to A𝜃 for some V and 𝜃
in the above conditions.

In the following paragraphs, we recall some basic features of this approach to
central extensions which will be needed later (for more details about the Skjelbred-
Sund method, see Chapter 3 and Chapter 4 and references therein).

Let 𝑓 ∶ A → V be a linear map and define the bilinear map 𝛿𝑓 ∶ A × A → V
by 𝛿𝑓 (𝑥, 𝑦) = 𝑓 (𝑥𝑦). The set {𝛿𝑓 ∣ 𝑓 ∶ A → V is linear} is a linear subspace of
the bilinear maps from A to V, so we can consider the quotient space. Note that if
𝜃′ = 𝜃+𝛿𝑓 for some 𝑓 ∶ A → V, then the map 𝜑∶ A𝜃 → A𝜃′ defined by 𝜑 (𝑥 + 𝑣) =
𝑥+𝑣+𝑓 (𝑥) is an isomorphism. Therefore, the isomorphy class ofA𝜃 does not depend
on the representatives 𝜃 of the equivalence class [𝜃].

Given a bilinear map 𝜃∶ A × A → V and a basis {

𝑒𝛾
}

𝛾∈Γ of V, there exist |Γ|
unique bilinear maps 𝜃𝛾 ∶ A×A → 𝐹 such that 𝜃 (𝑥, 𝑦) = ∑

𝛾∈Γ 𝜃𝛾 (𝑥, 𝑦) 𝑒𝑖. A central
extension A𝜃 is said to have an annihilator component if there exist an ideal 𝐼 and
a subspace of AnnA𝜃, 𝐽 , such that A𝜃 = 𝐼 ⊕ 𝐽 . The central extensions with anni-
hilator component are called split; without annihilator component, non-split. If the
dimensions of A and V are finite, for a non-split central extension𝐴𝜃, it holds that the
set {[𝜃𝛾

]}

𝛾∈Γ is linearly independent; the converse is also true under the hypothesis
AnnA𝜃 = V.

In the subsequent, we study when a central extension of an axial algebra is ax-
ial, in terms of the bilinear map 𝜃. Let us fix the following notation. We will de-
note by 𝐿𝑥 and 𝐿𝜃𝑥+𝑣 the operators of left multiplication in A and in A𝜃, respec-
tively. The spectrum of 𝐿𝜃𝑥+𝑣 will be denoted by Spec𝜃 (𝑥 + 𝑣). Also, we write
𝜃⟂𝑥 = {𝑦 ∈ A ∣ 𝜃 (𝑥, 𝑦) = 0}, and denote by 𝑃 ∶ A𝜃 → A the natural projection onto
A.

The following results are easy consequences of the definitions:

Lemma 5.2.1. Let A be a commutative algebra, V a vector space and 𝜃∶ A×A → V
a bilinear map. Then, A𝜃 is commutative if and only if 𝜃 is symmetric.



152 5 Central extensions of axial algebras

Lemma 5.2.2. Let V be a vector space and A an algebra with an element 𝑥 ∈ A such
that𝐿𝑥 ∶ A → A is diagonalisable. Choose a symmetric bilinear map 𝜃∶ A×A → V
such that ker

(

𝐿𝑥
)

⊆ 𝜃⟂𝑥 . Then if
{

𝑒𝛼
}

𝛼∈ is a basis of A diagonalising 𝐿𝑥 and
𝐿𝑥

(

𝑒𝛼
)

= 𝜆𝛼𝑒𝛼, 𝜆𝛼 ∈ 𝐹 , for any 𝛼, we may construct a basis of A𝜃 given by

𝐵 ∶=
{

𝑒𝛼 + 𝜆−1𝛼 𝜃
(

𝑥, 𝑒𝛼
)

∣ 𝜆𝛼 ≠ 0
}

⊔
{

𝑒𝛼 ∣ 𝜆𝛼 = 0
}

⊔ 𝐵V

where 𝐵V is any basis of V. The basis 𝐵 diagonalises 𝐿𝑥+𝑣 for any 𝑣 ∈ V.

Lemma 5.2.3. Let A be a commutative algebra, V a vector space and 𝜃∶ A×A → V
a bilinear map. Then, Spec𝜃 (𝑥 + 𝑣) = Spec (𝑥) ∪ {0} for all semisimple 𝑥 ∈ A and
all 𝑣 ∈ V, and the eigenspaces of 𝐿𝜃𝑥+𝑣 are

(

A𝜃
)𝑥+𝑣
𝜆 =

{

𝑦 + 𝜆−1𝜃 (𝑥, 𝑦) ∣ 𝑦 ∈ A𝑥𝜆
}

,

for 𝜆 ∈ Spec (𝑥), 𝜆 ≠ 0, and

(

A𝜃
)𝑥+𝑣
0 =

{

𝑦 +𝑤 ∈ A𝜃 ∣ 𝑦 ∈ A𝑥0 ∩ 𝜃
⟂
𝑥
}

,

recalling that we mean A𝑥0 = 0 if 0 ∉ Spec (𝑥).

Furthermore we have:
Lemma 5.2.4. Let 𝐵 =

{

𝑒𝛼 + 𝑣𝛼
}

𝛼∈ be a basis of A𝜃 diagonalising 𝐿𝑥+𝑣. Then
ker

(

𝐿𝑥
)

⊆ 𝜃⟂𝑥 and 𝐿𝑥 is diagonalisable.

Proof. We have 𝐿𝑥+𝑣
(

𝑒𝛼 + 𝑣𝛼
)

= 𝜆𝛼
(

𝑒𝛼 + 𝑣𝛼
), which implies 𝑥𝑒𝛼 = 𝜆𝛼𝑒𝛼 and

𝜃
(

𝑥, 𝑒𝛼
)

= 𝜆𝛼𝑣𝛼 for any 𝛼 ∈ . Note that when 𝜆𝛼 ≠ 0 we have 𝑣𝛼 = 𝜆−1𝛼 𝜃
(

𝑥, 𝑒𝛼
).

Define 𝑆 ∶=
{

𝛼 ∈  ∣ 𝜆𝛼 ≠ 0
} and 𝑇 ∶=  ⧵ 𝑆. So

𝐵 =
{

𝑒𝛼 + 𝜆−1𝛼 𝜃
(

𝑥, 𝑒𝛼
)

∣ 𝛼 ∈ 𝑆
}

⊔
{

𝑒𝛼 + 𝑣𝛼 ∣ 𝛼 ∈ 𝑇
}

.

The set{𝑒𝛼
}

𝛼∈ is a system of linear generators ofA and so a suitable subset{𝑒𝛼
}

𝛼∈′

is a basis of A. In this basis we can distinguish those 𝑒𝛼’s whose 𝜆𝛼 is non-zero and
those whose 𝜆𝛼 = 0. So we have a basis of A of the form 𝐵′ =

{

𝑒𝛼 ∣ 𝜆𝛼 ≠ 0
}

𝛼∈′ ⊔
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{

𝑒𝛼 ∣ 𝜆𝛼 = 0
}

𝛼∈′ . Take 𝑧 ∈ ker
(

𝐿𝑥
) and write 𝑧 =

∑

𝛼 𝑘𝛼𝑒𝛼 with 𝑘𝛼 ∈ 𝐹 relative
to the basis 𝐵′. Then

0 = 𝑥𝑧 =
∑

𝛼
𝑘𝛼𝑥𝑒𝛼 =

∑

𝛼
𝑘𝛼𝜆𝛼𝑒𝛼

where the 𝜆𝛼’s in the last sum are those which are non-zero. Consequently 𝑘𝛼𝜆𝛼 = 0,
that is, 𝑘𝛼 = 0. Thus 𝑧 =

∑

𝛼 𝑘𝛼𝑒𝛼 where the sum is extended to those indices 𝛼
for which 𝜆𝛼 = 0. So 𝜃 (𝑥, 𝑧) =

∑

𝛼 𝑘𝛼𝜃
(

𝑥, 𝑒𝛼
)

=
∑

𝛼 𝑘𝛼𝜆𝛼𝑣𝛼 = 0 and 𝑧 ∈ 𝜃⟂𝑥 .
The fact that 𝐿𝑥 is diagonalisable follows now from the fact that 𝑥𝑒𝛼 = 𝜆𝛼𝑒𝛼 for any
𝛼 ∈ ′.

Fix a fusion law ( , ⋆). Unless otherwise stated, all axial algebras will be assumed
to be axial with respect to ( , ⋆).

Let (A,X) an axial algebra, V a vector space and 𝜃∶ A × A → V a symmetric
bilinear map such that {[𝜃𝛾

]}

𝛾∈Γ are linearly independent. Let {X𝑖}𝑖∈𝐼 be the family
of minimal sets of axes that generate A, X𝑖 =

{

𝑎𝑖1,… , 𝑎𝑖𝑟𝑖
}

. In particular, each X𝑖 is
linearly independent and can be extended to a basis 𝐵𝑖 =

{

𝑎𝑖𝑗
}

𝑗∈𝐽
of A.

Set 𝜔𝑖𝑗 = 𝜃
(

𝑎𝑖𝑗 , 𝑎
𝑖
𝑗

)

and define 𝑓 𝑖𝑗 ∶ A → V by 𝑓 𝑖𝑗
(

𝑎𝑖𝑘
)

= 𝜔𝑖𝑗𝛿𝑗𝑘, for 𝑗 = 1,… , 𝑟𝑖

and 𝑘 ∈ 𝐽 . Then, consider
𝜃𝑖 = 𝜃 −

𝑟𝑖
∑

𝑗=1
𝛿𝑓 𝑖𝑗 .

It is clear that [𝜃] = [𝜃𝑖]; moreover, it holds that 𝜃𝑖 (𝑎𝑖𝑘, 𝑎𝑖𝑘
)

= 0 for all 𝑘 = 1,… , 𝑟𝑖:

𝜃𝑖
(

𝑎𝑖𝑘, 𝑎
𝑖
𝑘
)

= 𝜃
(

𝑎𝑖𝑘, 𝑎
𝑖
𝑘
)

−
𝑟𝑖
∑

𝑗=1
𝛿𝑓𝑗

(

𝑎𝑖𝑘, 𝑎
𝑖
𝑘
)

= 𝜔𝑖𝑘 −
𝑟𝑖
∑

𝑗=1
𝑓𝑗

(

𝑎𝑖𝑘
)

= 𝜔𝑖𝑘 − 𝜔
𝑖
𝑘 = 0.

For the sake of simplicity, we will drop the superindex 𝑖 whenever X is assumed
to be a minimal set of axes generating A. Also, when X is linearly independent, we
can assume without loss of generality that 𝜃 (𝑎𝑗 , 𝑎𝑗

)

= 0 for all 𝑗 = 1,… , 𝑟.
Let us establish another piece of notation. Let 𝑎 ∈ X and 𝜆, 𝜇 ∈ Spec (𝑎). For

𝑥 ∈ A𝑎𝜆 and 𝑦 ∈ A𝑎𝜇, write
𝑥𝑦 =

∑

0≠𝜈∈𝜆⋆𝜇
𝑧𝜈 + 𝑧0,

where 𝑧𝜈 ∈ A𝑎𝜈 and 𝑧0 ∈ A𝑎0.
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Proposition 5.2.5. Let (A,X) be an axial algebra, V a vector space and 𝜃∶ A×A →

V a symmetric bilinear map. Let 𝑥 ∈ A be semisimple and take 𝑣 ∈ V. Then,
𝑥 + 𝑣 ∈ A𝜃 is semisimple if and only if

ker 𝐿𝑥 ⊆ 𝜃⟂𝑥 . (5.2.1)
Furthermore, if an axis 𝑎 ∈ X satisfies condition (5.2.1), the eigenspace decomposi-
tion of A𝜃 according to 𝑎 + 𝑣 follows the fusion law ( ∪ {0} , ⋆) if and only if for
every 𝜆, 𝜇 ∈ Spec (𝑎) such that 0 ∉ 𝜆 ⋆ 𝜇, it holds that

𝜃 (𝑥, 𝑦) =
∑

𝜈∈𝜆⋆𝜇
𝜈−1𝜃

(

𝑎, 𝑧𝜈
) (5.2.2)

for all 𝑥 ∈ A𝑎𝜆, 𝑦 ∈ A𝑎𝜇.

Proof. The first part of the proposition follows trivially from Lemmas 5.2.2 and 5.2.4.
Take 𝑎 ∈ X satisfying condition (5.2.1) and 𝑣 ∈ V. By Lemma 5.2.3, the

eigenspace decomposition ofA𝜃 according to 𝑎+𝑣 follows the fusion law ( ∪ {0} , ⊙)
for some symmetric binary operation ⊙.

Throughout the rest of the proof, we will denote B = A𝜃 for the sake of simplicity.
Lemma 5.2.3 gives the description of B𝑎+𝑣𝜆 for all 𝜆 ∈ Spec𝜃 (𝑎 + 𝑣); moreover, under
the present hypotheses, we can particularise

B𝑎+𝑣0 =
{

𝑥 + 𝑣 ∈ B ∣ 𝑥 ∈ A𝑎0
}

.

Take 𝜆, 𝜇 ∈ Spec (𝑎), 𝑥 + 𝑢 ∈ B𝑎+𝑣𝜆 and 𝑦 +𝑤 ∈ B𝑎+𝑣𝜇 . Then,
[𝑥 + 𝑢, 𝑦 +𝑤]𝜃 = 𝑥𝑦 + 𝜃 (𝑥, 𝑦) =

∑

0≠𝜈∈𝜆⋆𝜇

(

𝑧𝜈 + 𝜈−1𝜃
(

𝑎, 𝑧𝜈
))

+

(

𝑧0 +

(

𝜃 (𝑥, 𝑦) −
∑

0≠𝜈∈𝜆⋆𝜇
𝜈−1𝜃

(

𝑎, 𝑧𝜈
)

))

∈
∑

0≠𝜈∈𝜆⋆𝜇
B𝑎+𝑣𝜈 ⊕ B𝑎+𝑣0 .

Then, it is clear that B𝑎+𝑣𝜆 B𝑎+𝑣𝜇 ⊆ B𝑎+𝑣𝜆⋆𝜇 if and only if 0 ∈ 𝜆 ⋆ 𝜇 or condition (5.2.2)
holds for every 𝑥 ∈ A𝑎𝜆 and every 𝑦 ∈ A𝑎𝜇.

Also, if 0 ∉ Spec (𝑎), B𝑎+𝑣0 B𝑎+𝑣𝜆 = B𝑎+𝑣0 B𝑎+𝑣0 = {0} for all 𝜆 ∈ Spec (𝑎). The
result follows.
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Note that conditions (5.2.1) and (5.2.2) do not depend on the representative of
[𝜃]. Set 𝜃′ = 𝜃 + 𝛿𝑓 for some linear map 𝑓 ∶ A → V, and take 𝑥 ∈ A and 𝑎 ∈ X.
Given 𝑦 ∈ ker 𝐿𝑥, we have that 𝛿𝑓 (𝑥, 𝑦) = 𝑓 (𝑥𝑦) = 0, and therefore 𝜃′ satisfies
condition (5.2.1) if and only if 𝜃 does. Also, given 𝜆, 𝜇 ∈ Spec (𝑎) such that 0 ∉ 𝜆⋆𝜇,
we can write
𝛿𝑓 (𝑥, 𝑦) = 𝑓 (𝑥𝑦) =

∑

𝜈∈𝜆⋆𝜇
𝑓
(

𝑧𝜈
)

=
∑

𝜈∈𝜆⋆𝜇
𝜈−1𝑓

(

𝑎𝑧𝜈
)

=
∑

𝜈∈𝜆⋆𝜇
𝜈−1𝛿𝑓

(

𝑎, 𝑧𝜈
)

.

We conclude that 𝜃′ satisfies condition (5.2.2) if and only if 𝜃 does.
Corollary 5.2.6. Let (A,X) be a two-dimensional axial algebra, V a vector space
and 𝜃∶ A × A → V a non-zero symmetric bilinear map. Take an axis 𝑎 ∈ X. Then,
condition (5.2.1) is satisfied if and only if 0 ∉ Spec (𝑎).

Proof. Assume that 0 ∈ Spec (𝑎) and that {𝑎, 𝑏} is a minimal set of axes, with
𝜃 (𝑎, 𝑎) = 𝜃 (𝑏, 𝑏) = 0, and note that {𝑎, 𝑏} is also a basis of A. Note that 𝑎 ∈ 𝜃⟂𝑎
but 𝑏 ∉ 𝜃⟂𝑎 , as otherwise 𝜃 would be the zero map. Then, 𝜃⟂𝑎 = ⟨𝑎⟩. By hypothesis,
ker 𝐿𝑎 is non-zero and 𝑎 ∉ ker 𝐿𝑎. It follows that condition (5.2.1) is not satisfied.
The converse is trivial.

We introduce now a notion of cocycles for axial algebras. Note that we don’t in-
tend to relate them to any theory of cohomology for axial algebras; instead, the choice
of the term “cocycle” is motivated because they will help to describe the extensions
of axial algebras.
Definition 5.2.7. Let (A,X) be an ( , ⋆)-axial algebra, V a vector space and 𝜃∶ A×
A → V a symmetric bilinear map. We say that 𝜃 is a cocycle relative to a subset
X′ ⊆ X if condition (5.2.1) is satisfied for all 𝑎 ∈ X′, and if, for every 𝜆, 𝜇 ∈ 
such that 0 ∉ 𝜆 ⋆ 𝜇, condition (5.2.2) holds for all 𝑎 ∈ X′ such that 𝜆, 𝜇 ∈ Spec (𝑎),
all 𝑥 ∈ A𝑎𝜆 and all 𝑦 ∈ A𝑎𝜇. The vector space formed by them will be denoted by
Z
(

A,V;X′).
The next technical lemma will be needed for the main results of this section.

Lemma 5.2.8. Let (A,X) be an axial algebra, V a vector space and 𝜃∶ A × A → V
a symmetric bilinear map such that

{[

𝜃𝛾
]}

𝛾∈Γ are linearly independent. Assume that
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X =
{

𝑎𝑗
}𝑟
𝑗=1 is a minimal set of axes generating A. Then, X is a minimal generating

set for A𝜃.

Proof. Let us denote by ⟨X⟩ the subalgebra of A generated by X, by ⟨X⟩𝜃 the sub-
algebra of A𝜃 generated by X. Once we prove that A ⊆ ⟨X⟩𝜃, we will know that
⟨X⟩𝜃 = A𝜃 by the linear independence of {[𝜃𝛾 ]

}

𝛾∈Γ.
Let 𝐵 =

{

𝑎𝑗
}

𝑗∈𝐽 be a basis of A extending X, and denote 𝐽𝑟 = 𝐽 ⧵ {1,… , 𝑟}.
SinceA = ⟨X⟩, for 𝑗 ∈ 𝐽𝑟 we can express each 𝑎𝑗 as a finite sum 𝑎𝑗 =

∑𝑚𝑗
𝑙=1 𝛼𝑗,𝑙

∏

X𝑗,𝑙,
where 𝛼𝑗,𝑙 ∈ 𝐹 and ∏

X𝑗,𝑙 denotes a product of elements of X with a certain ar-
rangement of brackets. Set ∏X𝑗,𝑙 =

(

∏

X1
𝑗,𝑙

)(

∏

X2
𝑗,𝑙

)

, where ∏

X1
𝑗,𝑙 and ∏

X2
𝑗,𝑙

are products of elements of X with strictly smaller length than ∏

X𝑗,𝑙. Set also
𝜔𝑗 =

∑𝑚𝑗
𝑙=1 𝛼𝑗,𝑙𝜃

(

∏

X1
𝑗,𝑙,

∏

X2
𝑗,𝑙

)

, and define the homomorphism 𝑓 ∶ A → V by
𝑓
(

𝑎𝑗
)

= 0 for 𝑗 = 1,… , 𝑟, and 𝑓 (

𝑎𝑗
)

= 𝜔𝑗 , for 𝑗 ∈ 𝐽𝑟. Consider 𝜃′ = 𝜃 − 𝛿𝑓 .
Since A𝜃 and A𝜃′ are isomorphic and X is preserved by the isomorphism, it is enough
to show that A ⊆ ⟨X⟩𝜃′ . We proceed by induction in the largest length 𝐿 of the prod-
ucts ∏X𝑗,𝑙 for 𝑙 = 1,… , 𝑚𝑗 . If 𝐿 = 1, it is trivial that 𝑎𝑘 ∈ ⟨X⟩𝜃′ . In the general
case,

𝑚𝑘
∑

𝑙=1
𝛼𝑘,𝑙

([

∏

X1
𝑘,𝑙,

∏

X2
𝑘,𝑙

]

𝜃′

)

=
𝑚𝑘
∑

𝑙=1
𝛼𝑘,𝑙

∏

X𝑘,𝑙 +
𝑚𝑘
∑

𝑙=1
𝛼𝑘,𝑙𝜃

′
(

∏

X1
𝑘,𝑙,

∏

X2
𝑘,𝑙

)

−
𝑚𝑘
∑

𝑙=1
𝛼𝑘,𝑙

(

𝛿𝑓
(

∏

X1
𝑘,𝑙,

∏

X2
𝑘,𝑙

))

=𝑎𝑘 + 𝜔𝑘 − 𝑓

( 𝑚𝑘
∑

𝑙=1
𝛼𝑘,𝑙

∏

X𝑘,𝑙

)

= 𝑎𝑘 + 𝜔𝑘 − 𝑓
(

𝑎𝑘
)

= 𝑎𝑘,

and by induction 𝑎𝑘 ∈ ⟨X⟩𝜃′ .
Finally, we prove the minimality of X. If there existed a subset X′ ⊊ X generating

A𝜃, 𝑃
(

X′) = X′ ⊊ X would be a set of axes generating 𝑃 (

A𝜃
)

= A, a contradiction.

We put together all the previous results in the following proposition.
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Proposition 5.2.9. Let (A,X) be an axial algebra, V a vector space and 𝜃∶ A ×
A → V a symmetric bilinear map such that

{[

𝜃𝛾
]}

𝛾∈Γ are linearly independent.
Assume that X =

{

𝑎𝑗
}𝑟
𝑗=1 is a minimal set of axes generating A. The pair

(

A𝜃,X
)

is
( ∪ {0} , ⊙)-axial if and only if condition (5.2.1) holds for all 𝑗 = 1,… , 𝑟, for some
fusion law ( ∪ {0} , ⊙) containing ( , ⋆). Furthermore, we can take ⊙ = ⋆ if and
only if 𝜃 ∈ Z (A,V;X).

Proof. As X is minimal, we may assume that 𝜃 (𝑎𝑗 , 𝑎𝑗
)

= 0 for all 𝑗 = 1,… , 𝑟.
Simply observe that the elements 𝑎𝑗 are idempotents in A𝜃 for 𝑗 = 1,… , 𝑟, and use
Lemma 5.2.3, Lemma 5.2.8 and Proposition 5.2.5.

Note that, if ( , ⋆) is a minimal fusion law for (A,X) in the sense that (A,X) is
not axial for any fusion law strictly contained in ( , ⋆), ( ∪ {0} , ⊙) is minimal for
(

A𝜃,X
), too.

Example 5.2.10. Consider the two-dimensional axial algebras over ℂ described in
Example 5.1.1. By Corollary 5.2.6, only 𝐵, 𝐶 (𝛼), 𝐷 (𝛽) (with respect to {

𝑒1, 𝑎6
}),

𝐸 (𝛼, 𝛽), 𝐺 (𝛽), 𝐻 (𝛾) and 𝐼 admit an axial extension. We select their commutative
non-split central extensions of dimension 1 from the classification in [44]: all of them
are given by the representative 𝜃 determined by 𝜃 (𝑒𝑖, 𝑒𝑖

)

= 0 for 𝑖 ∈ {1, 2} and
𝜃
(

𝑒1, 𝑒2
)

= 1. Now we can apply Proposition 5.2.9 to find out their axial structures,
shown in Table 5.4. The corresponding fusion laws are displayed in Table 5.5, with
the same conventions as in Table 5.3.

A𝜃 X (, ⊙) 𝜃 ∈ Z (A,V;X)

𝐵𝜃

{

𝑒1, 𝑒2
}

(

𝐵 ∪ {0} , ⊙𝐵
) No{

𝑒1, 𝑎4
}

{

𝑒2, 𝑎4
}

𝐶 (𝛼)𝜃

{

𝑒1, 𝑒2
} (

𝐶1 ∪ {0} , ⊙𝐶1
)

No{

𝑒1, 𝑎5
}

(

𝐶2 ∪ {0} , ⊙𝐶2
)

{

𝑒2, 𝑎5
}

𝐷 (𝛽)𝜃
{

𝑒1, 𝑎6
} (

𝐷2 ∪ {0} , ⊙𝐷2
) No
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𝐸 (𝛼, 𝛽)𝜃

{

𝑒1, 𝑒2
}

(𝛼≠1)
(

𝐸1 ∪ {0} , ⊙𝐸1
)

No{

𝑒1, 𝑎7
} (

𝐸2 ∪ {0} , ⊙𝐸2
)

{

𝑒2, 𝑎7
}

(𝛼≠1)
(

𝐸3 ∪ {0} , ⊙𝐸3
)

𝐺 (𝛽)𝜃
{

𝑒1, 𝑒2
} (

𝐺 ∪ {0} , ⊙𝐺
) No

𝐻 (𝛾)𝜃
{

𝑒1, 𝑒2
} (

𝐻 ∪ {0} , ⊙𝐻
) No

𝐼𝜃
{

𝑎𝛼, 𝑎𝛽
}

𝛼≠𝛽
(

𝐼 ∪ {0} , ⊙𝐼
) No

Table 5.4: Axial central extensions of complex axial algebras of dimension 2.

Fusion law 
(

𝐵 ∪ {0} , ⊙𝐵
)

{1,−1, 0} (−1)⊙𝐵 (−1) = {1, 0}
(

𝐶1 ∪ {0} , ⊙𝐶1
)

{1, 𝛼, 0} 𝛼 ⊙𝐶1 𝛼 = {1, 𝛼, 0}
(

𝐶2 ∪ {0} , ⊙𝐶2
)

{1, 𝛼, 𝜆, 0} 𝛼 ⊙𝐶2 𝛼 = {1, 𝛼, 0}
𝜆 ⊙𝐶2 𝜆 = {1, 0}

(

𝐷 ∪ {0} , ⊙𝐷
)

{1, 𝛽, 1 − 𝛽, 0} 𝛽 ⊙𝐷 𝛽 = {𝛽, 0}
(1 − 𝛽)⊙𝐷 (1 − 𝛽) = 1 − 𝛽

(

𝐸1 ∪ {0} , ⊙𝐸1
)

{1, 𝛽, 𝜆, 0} 𝛽 ⊙𝐸1 𝛽 = {1, 𝛽, 0}
𝜆 ⊙𝐸1 𝜆 = {1, 𝜆, 0}

(

𝐸2 ∪ {0} , ⊙𝐸2
)

{1, 𝛼, 𝛽, 0} 𝛼 ⊙𝐸2 𝛼 = {1, 𝛼, 0}
𝛽 ⊙𝐸2 𝛽 = {1, 𝛽, 0}

(

𝐸3 ∪ {0} , ⊙𝐸3
)

{1, 𝛼, 𝜆, 0} 𝛼 ⊙𝐸3 𝛼 = {1, 𝛼, 0}
𝜆 ⊙𝐸3 𝜆 = {1, 𝜆, 0}

(

𝐺 ∪ {0} , ⊙𝐺
)

{1, 𝛽, 1∕2, 0} 𝛽 ⊙𝐺 𝛽 = {1, 𝛽, 0}
1∕2⊙𝐺 1∕2 = {1, 1∕2, 0}

(

𝐻 ∪ {0} , ⊙𝐻
)

{

1, 1
2𝛾
, 𝛾∕2, 0

}

1
2𝛾
⊙𝐻

1
2𝛾

=
{

1, 1
2𝛾
, 0
}

𝛾∕2⊙𝐻 𝛾∕2 = {1, 𝛾∕2, 0}
(

𝐼 ∪ {0} , ⊙𝐼
)

{1, 1∕2, 0} 1∕2⊙𝐼 1∕2 = 0

Table 5.5: Fusion laws in Table 5.4.
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We highlight now that, in dimension greater than 2, it is possible to simultane-
ously have 0 ∈ Spec (𝑎) and condition (5.2.1) satisfied (cf. Corollary 5.2.6). Indeed,
consider the axial algebra (A,X) =

(

𝐼𝜃,
{

𝑒1, 𝑒2
}), the axis 𝑎 = 𝑒1 and the bilinear

map 𝜃′ ∶ A × A → ℂ defined by 𝜃′ (𝑒2, 𝑒3
)

= 1 as the only non-zero slot (note that
[𝜃′] ≠ 0). Then, (𝜃′)⟂𝑎 = A, so condition (5.2.1) is satisfied. However, 0 ∈ Spec (𝑎),
since 𝑎𝑒3 = 0.

Note that none of the bilinear maps 𝜃 of Example 5.2.10 is a cocycle in the sense
of Definition 5.2.7. We present now an example, already known in the literature
(see [235, Section 3.5]), to illustrate that this is not necessarily the case.
Example 5.2.11. Let 𝐹 be a field of characteristic not 2, and A the 4-dimensional
algebra over 𝐹 with basis {𝑎−1, 𝑎0, 𝑎1, 𝑎2

} and commutative product given by

𝑎𝑖𝑎𝑖+1 = 2
(

𝑎𝑖 + 𝑎𝑖+1
)

− 1
2
(

𝑎−1 + 2𝑎0 + 2𝑎1 + 𝑎2
)

, 𝑖 = −1, 0, 1;

𝑎−1𝑎2 =
1
2
(

𝑎−1 + 𝑎2
)

;

𝑎𝑖𝑎𝑖+2 = 𝑎𝑖−1 + 𝑎𝑖 − 𝑎𝑖+1, 𝑖 = −1, 0,

where we understand that 𝑎−2 = −𝑎−1+𝑎1+𝑎2. It is routine to check that (A,{𝑎0, 𝑎1
})

is an axial algebra of Monster type
(

2, 1
2

)

(i.e. regarding the fusion law 
(

2, 1
2

)

displayed in Table 5.6) with eigenspaces
A𝑎01 =𝐹𝑎0;

A𝑎00 =𝐹
(

𝑎−1 + 2𝑎0 − 𝑎1 − 2𝑎2
)

=∶ 𝐹𝑢;

A𝑎02 =𝐹
(

𝑎−1 − 𝑎1
)

=∶ 𝐹𝑣;

A𝑎01∕2 =𝐹
(

𝑎−1 − 𝑎2
)

=∶ 𝐹𝑤;

A𝑎11 =𝐹𝑎1;

A𝑎10 =𝐹
(

2𝑎−1 + 𝑎0 − 2𝑎1 − 𝑎2
)

=∶ 𝐹𝑢′;

A𝑎12 =𝐹
(

𝑎0 − 𝑎2
)

=∶ 𝐹𝑣′;

A𝑎11∕2 =𝐹
(

𝑎−1 − 𝑎2
)

= 𝐹𝑤.

Take a symmetric bilinear map 𝜃∶ A×A → 𝐹 with [𝜃] ≠ 0. Then, 𝜃 is a cocycle
relative to {

𝑎0, 𝑎1
} if and only if the following equations are satisfied:
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⋆ 1 0 2 1∕2

1 1 2 1∕2
0 0 2 1∕2
2 2 2 {1, 0} 1∕2

1∕2 1∕2 1∕2 1∕2 {1, 0, 2}

Table 5.6: Fusion law  (2, 1∕2).

𝜃
(

𝑎0, 𝑢
)

= 0;

𝜃 (𝑢, 𝑣) = 1
2
𝜃
(

𝑎0, 𝑢𝑣
)

;

𝜃 (𝑢,𝑤) = 2𝜃
(

𝑎0, 𝑢𝑤
)

;

𝜃 (𝑣,𝑤) = 2𝜃
(

𝑎0, 𝑣𝑤
)

;

𝜃
(

𝑎1, 𝑢
′) = 0;

𝜃
(

𝑢′, 𝑣′
)

= 1
2
𝜃
(

𝑎1, 𝑢
′𝑣′

)

;

𝜃
(

𝑢′, 𝑤
)

= 2𝜃
(

𝑎1, 𝑢
′𝑤

)

;

𝜃
(

𝑣′, 𝑤
)

= 2𝜃
(

𝑎1, 𝑣
′𝑤

)

.

(5.2.3)

Assuming 𝜃 (𝑎𝑖, 𝑎𝑖
)

= 0 for 𝑖 = −1,… , 2, the equations (5.2.3) give rise to an
easy system with solution

𝜃
(

𝑎−1, 𝑎1
)

= 𝜃
(

𝑎0, 𝑎2
)

= 0,

𝜃
(

𝑎−1, 𝑎0
)

= 𝜃
(

𝑎−1, 𝑎2
)

= 𝜃
(

𝑎0, 𝑎1
)

= 𝜃
(

𝑎1, 𝑎2
)

.

Take 𝜃 in such conditions and set 𝜃 (𝑎−1, 𝑎0
)

= 1 so that [𝜃] ≠ 0. Then 𝜃 ∈
Z
(

A, 𝐹 ;
{

𝑎0, 𝑎1
}) and (

A𝜃,
{

𝑎0, 𝑎1
}) is an axial algebra of Monster type

(

2, 12
)

by
Proposition 5.2.9. In particular, A𝜃 is the algebra IV3

(

1
2 , 2

)

of [235].
The next result deals with the general case in which the set X of generating axes

of (A,X) is not minimal.
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Theorem 5.2.12. Let (A,X) be an axial algebra, V a vector space and 𝜃∶ A×A → V
a symmetric bilinear map such that

{[

𝜃𝛾
]}

𝛾∈Γ are linearly independent. The pair
(

A𝜃,X𝑖
)

is
(

 ∪ {0} , ⊙𝑖
)

-axial if and only if condition (5.2.1) holds for all 𝑎𝑖𝑗 ∈ X𝑖,
𝑗 = 1,… , 𝑟𝑖, for some fusion law

(

 ∪ {0} , ⊙𝑖
)

containing ( , ⋆). Furthermore, we
can take ⊙𝑖 = ⋆ if and only if 𝜃 ∈ Z

(

A,V;X𝑖
)

.
Also, define the set

Y = {𝑎 + 𝜃 (𝑎, 𝑎) ∣ 𝑎 ∈ X satisfies condition (5.2.1)} .
For every Y′ ⊆ Y such that there exists 𝑖 ∈ 𝐼 with X𝑖 ⊆ 𝑃

(

Y′),
(

A𝜃,Y′) is
( ∪ {0} , ⊙)-axial for some fusion law ( ∪ {0} , ⊙) containing ( , ⋆). We can take
⊙ = ⋆ if and only if 𝜃 ∈ Z

(

A,V;𝑃
(

Y′)).

Proof. The first part follows directly from Proposition 5.2.9.
Regarding the second part, it is clear that Y is composed of idempotent elements.

By Lemma 5.2.8, the set
{

𝑎𝑖𝑗 + 𝜃
(

𝑎𝑖𝑗 , 𝑎
𝑖
𝑗

)}𝑟𝑖

𝑗=1
generates A𝜃, and consequently, so

does Y′. Lemma 5.2.2 ensures that the elements of Y′ are semisimple too. Finally,
given 𝜆, 𝜇 ∈  , set 𝜆 ⊙ 𝜇 = 𝜆 ⋆ 𝜇 if 𝜃 is a cocycle relative to 𝑃 (

Y′) or 𝜆 ⊙ 𝜇 =
𝜆 ⋆ 𝜇 ∪ {0} otherwise, and 0 ⊙ 0 = 0 ⊙ 𝜆 = ∅ for all 𝜆 ∈  if 0 ∉  . Using
Proposition 5.2.5, it is obvious that the fusion law ( ∪ {0} , ⊙) defined in this way
satisfies the conditions of the theorem.

Note that, contrary to the situation described after Proposition 5.2.9, if ( , ⋆) is a
minimal fusion law for (A,X), ( ∪ {0} , ⊙) does not need to be minimal for (A𝜃,Y

),
with the notation of Theorem 5.2.12.

Now, we present an important result that justifies the importance of studying cen-
tral extensions of axial algebras.
Theorem 5.2.13. Let (B,Y) be an ( , ⋆)-axial algebra with Ann(𝐵) ≠ 0. Then, there
exists another ( , ⋆)-axial algebra (A,X) and a cocycle 𝜃 ∈ Z (A,Ann (B) ; X) such
that B = A𝜃. Also, if Y is a minimal generating set of axes for B, X is a minimal
generating set of axes for A.

Proof. Take a linear complement A of Ann (B) and set 𝑃A ∶ B → A defined by
𝑃A (𝑥 + 𝑣) = 𝑥, with 𝑥 ∈ A and 𝑣 ∈ Ann (B). We endow A with the product
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𝑥𝑦 = 𝑃A ([𝑥, 𝑦]), where [, ] denotes the product in B, in order to give it structure
of algebra. Note that, with this structure, 𝑃 is a homomorphism of algebras: indeed,
for all 𝑥 + 𝑣, 𝑦 +𝑤 ∈ B,

𝑃A ([𝑥 + 𝑣, 𝑦 +𝑤]) = 𝑃A
(

[𝑃A (𝑥 + 𝑣) , 𝑃A (𝑦 +𝑤)]
)

= 𝑃A (𝑥 + 𝑣)𝑃A (𝑦 +𝑤) .

Set X = 𝑃A (Y). Since Y is a generating set for B, X generates 𝑃A (B) = A. Take
𝑎 ∈ X such that 𝑎 = 𝑃A (𝑏) for a certain 𝑏 ∈ Y. Then

𝑎𝑎 = 𝑃A (𝑏)𝑃A (𝑏) = 𝑃A ([𝑏, 𝑏]) = 𝑃A (𝑏) = 𝑎,

and 𝑎 is idempotent.
Write 𝐿B

𝑏 for the left multiplication by 𝑏 operator in B, and SpecB (𝑏) for its
spectrum. We reserve the notations 𝐿𝑎 and Spec (𝑎) for their correspondences in
A. It is clear that 0 ∈ SpecB (𝑏) and Ann (B) ⊆ B𝑏0. Choose a basis

{

𝑧𝑏𝛽
}

𝛽∈
of

Ann (B) and complete it to a basis
{

𝑧𝑏𝛽
}

𝛽∈′
of B formed by eigenvectors of𝐿B

𝑏 , with
[𝑏, 𝑧𝑏𝛽] = 𝜆𝛽𝑧𝑏𝛽 . The elements {

𝑃
(

𝑧𝑏𝛼
)}

𝛼∈′⧵ form a basis for A, and are in fact
eigenvectors of 𝐿𝑎 with respect to 𝜆𝛽 . Note that Spec (𝑎) = SpecB (𝑏) if and only if
B𝑏0 ≠ Ann (B); otherwise, Spec (𝑎) = SpecB (𝑏) ⧵ {0}.

The above explanations show that, for every 𝜆 ∈ Spec (𝑎), A𝑎𝜆 = 𝑃A
(

B𝑏𝜆
), and

therefore

A𝑎𝜆A
𝑎
𝜇 = 𝑃A

(

B𝑏𝜆
)

𝑃A
(

B𝑏𝜇
)

= 𝑃A[B𝑏𝜆,B
𝑏
𝜇] ⊆ 𝑃A

(

B𝑏𝜆⋆𝜇
)

= A𝑎𝜆⋆𝜇,

for all 𝜆, 𝜇 ∈ Spec (𝑎), and assuming that A𝑎0 = {0} if 0 ∉ Spec (𝑎), as always.
Summing up, we have proved that (A,X) is an ( , ⋆)-axial algebra.
Now, define 𝜃∶ A × A → Ann (B) by 𝜃 (𝑥, 𝑦) = [𝑥, 𝑦] − 𝑥𝑦, and construct A𝜃 in

the usual way. For 𝑥 + 𝑣, 𝑦 +𝑤 ∈ A𝜃, we have that

[𝑥 + 𝑣, 𝑦 +𝑤]𝜃 = 𝑥𝑦 + 𝜃 (𝑥, 𝑦) = [𝑥, 𝑦],

so A𝜃 = 𝐵, and (

A𝜃,Y
) is ( , ⋆)-axial. Then, Proposition 5.2.5 yields that 𝜃 ∈

Z (A,Ann (𝐵) ; X).
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Finally, assume that Y is a minimal generating set of axes for B. Take a minimal
generating set of axes for A, X′ ⊆ X. Then, X′ would also generate A𝜃 = B by
Lemma 5.2.8. It follows that also Y′ =

{

𝑏 ∈ Y ∣ 𝑃 (𝑏) ∈ X′} ⊊ Y would generate B,
a contradiction.

Remark 5.2.14. Note that, in the conditions of Theorem 5.2.13, in some cases we can
find another fusion law (, ⊙) ⊆ ( , ⋆) such that (A,X) is (, ⊙)-axial. Namely, if
B𝑏0 = Ann (B) for all 𝑏 ∈ Y, we can set  =  ⧵ {0} and 𝜆 ⊙ 𝜇 = 𝜆 ⋆ 𝜇 ⧵ {0} for all
𝜆, 𝜇 ∈ . On the contrary, assume that there exists 𝑏 ∈ 𝐵 such that B𝑏0 ≠ Ann (B).
Then, we must set  =  and, given 𝜆, 𝜇 ∈ SpecB (𝑏) = Spec (𝑎), we can set 𝜆⊙𝜇 =
𝜆⋆𝜇 ⧵ {0} if and only if Π𝑏0

(

[B𝑏𝜆,B𝜇]
)

⊆ Ann (B), where Π𝑏0 ∶ B → B𝑏0 is the natural
projection; otherwise, we must set 𝜆 ⊙ 𝜇 = 𝜆 ⋆ 𝜇.

The following corollary is a direct consequence of Theorem 5.2.13.

Corollary 5.2.15. LetA be an algebra, V a vector space and 𝜃∶ A×A → V a bilinear
form. If

(

A𝜃,Y
)

is axial with respect to some fusion law ( , ⋆), then (A, 𝑃 (Y)) is
also ( , ⋆)-axial.

We finish this section relating some properties of an axial algebra (A,X) with
those of its central extensions. First, we provide an easy lemma whose proof is left to
the reader.

Lemma 5.2.16. Let (A,X) be an axial algebra admitting a Frobenius form (⋅, ⋅). Then,
Ann (A) is contained in the radical of (⋅, ⋅).

Proposition 5.2.17. Let (A,X) be an ( , ⋆)-axial algebra admitting an ( ∪ {0} , ⊙)-
axial central extension, and take Y as in Theorem 5.2.12. Then:

1. (A,X) is primitive if and only if
(

A𝜃,Y
)

is primitive.

2. (A,X) admits a Frobenius form if and only if
(

A𝜃,Y
)

admits a Frobenius form.

3. The radical of
(

A𝜃,Y
)

is 𝑅
(

A𝜃,Y
)

= 𝑅 (A,X)⊕ V. Conversely, the radical
of (A,X) is 𝑅 (A,X) = 𝑃

(

𝑅
(

A𝜃,Y
))

.
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4. If (A,X) is 𝑚-closed for a certain 𝑚 ∈ ℕ, then
(

A𝜃,Y
)

is at most (𝑚 + 1)-
closed.

5. If (A,X) is symmetric with flip 𝜏 and there exists an automorphism𝜑 ∈ Aut (V)
such that 𝜑 (𝜃 (𝑥, 𝑦)) = 𝜃 (𝜏 (𝑥) , 𝜏 (𝑦)) for all 𝑥, 𝑦 ∈ A, then

(

A𝜃,Y
)

is sym-
metric with flip 𝜏𝜃 defined by 𝜏𝜃 (𝑥 + 𝑣) = 𝜏 (𝑥) + 𝜑 (𝑣).

6. Assume that both ( , ⋆) and ( ∪ {0} , ⊙) admit 𝐶2-gradings such that the
one of ( ∪ {0} , ⊙) contains that of ( , ⋆). Then, the axial subgroups 𝑇𝑎 =
{

idA, 𝜙𝑎
}

⊆ Aut (A) and 𝑇𝑎+𝜃(𝑎,𝑎) =
{

idA𝜃 , 𝜙𝑎+𝜃(𝑎,𝑎)
}

⊆ Aut
(

A𝜃
)

are iso-
morphic, for all 𝑎 ∈ X. Moreover, if the assignment 𝜙𝑎 ↦ 𝜙𝑎+𝜃(𝑎,𝑎) gives rise
to a homomorphism between the Miyamoto groups 𝐺 (X) and 𝐺 (Y), then it is
bijective and 𝐺 (X) ≃ 𝐺 (Y).

Proof.

1. It follows from Lemma 5.2.3.
2. Let (⋅, ⋅) be a Frobenius form for A. Then, (⋅, ⋅)𝜃 ∶ A𝜃 × A𝜃 → 𝐹 defined by

(𝑥 + 𝑣, 𝑦 +𝑤)𝜃 = (𝑥, 𝑦) is a Frobenius form for A𝜃.
Conversely, given a Frobenius form (⋅, ⋅)𝜃 for A𝜃, define a bilinear form in 𝐴,
(⋅, ⋅) ∶ A × A → 𝐹 , by (𝑥, 𝑦) = (𝑥, 𝑦)𝜃. By Lemma 5.2.16,

(𝑥, 𝑦𝑧) = (𝑥, 𝑦𝑧)𝜃 =
(

𝑥, [𝑦, 𝑧]𝜃
)

𝜃 =
(

[𝑥, 𝑦]𝜃, 𝑧
)

𝜃 = (𝑥𝑦, 𝑧)𝜃 = (𝑥𝑦, 𝑧)

for all 𝑥, 𝑦 ∈ A, so (⋅, ⋅) is a Frobenius form for A.
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3. It follows from the definition of radical.
4. It follows from the proof of Lemma 5.2.8.
5. Routine.
6. Routine.

Example 5.2.18. Proposition 5.2.17 and Example 5.1.1 allow us to obtain some ba-
sic properties of the algebras in Example 5.2.10. Note that the additional conditions
of 5.2.17(5) only hold for (𝐵,{𝑒1, 𝑒2

}) and (

𝐼,
{

𝑒1, 𝑒2
}); in both cases, it suffices to

take𝜑 = idℂ. However, these conditions are not necessary: the map on (𝐵𝜃,
{

𝑒1, 𝑎4
})

defined by 𝜏 (𝑒1
)

= 𝑎4, 𝜏 (𝑒2
)

= 𝑒2 and 𝜏 (𝑒3
)

= −𝑒3 is indeed a flip.
On the other hand, (𝐷 (𝛼) ,

{

𝑒𝑖, 𝑎6
}) for 𝑖 = 1, 2, and (𝐵,X) and (𝐼,X) for all

choices of X satisfy the additional conditions in 5.2.17(6). Therefore, the Miyamoto
groups of (𝐷 (𝛼)𝜃 ,

{

𝑒𝑖, 𝑎6
}) for 𝑖 = 1, 2, (𝐵𝜃,X

) and (

𝐼𝜃,X
) are isomorphic to 𝐶2,

3 and 𝔉2, respectively.

5.3 Axial central extensions of simple Jordan algebras

One of the most well-known features of the variety of Jordan algebras is the Peirce
decomposition. This can be naturally expressed in the language of axial algebras:
every idempotent of a Jordan algebra is an 

(

1
2

)

-axis, where 
(

1
2

)

is the fusion
law displayed in Table 5.7. Then, every Jordan algebra generated by its idempotent
elements is 

(

1
2

)

-axial.

⋆ 1 0 1∕2
1 1 1∕2
0 0 1∕2

1∕2 1∕2 1∕2 {1, 0}

Table 5.7: Fusion law 
(

1
2

)

.
It turns out (cf. [9, 10]) that every finite-dimensional simple Jordan algebra over

ℂ is generated by idempotents, so we can apply the results of Section 5.2 to study
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which of their non-split central extensions are 
(

1
2

)

-axial. The aim of this section
is to prove the following theorem.
Theorem 5.3.1. Let 𝐽 be a finite-dimensional simple Jordan algebra over ℂ. There
do not exist 

(

1
2

)

-axial non-split central extensions 𝐽𝜃 of 𝐽 with respect to the set

Y = {𝑎 + 𝜃 (𝑎, 𝑎) ∣ 𝑎 ∈ X is semisimple} .
The significance of Theorem 5.3.1 lies on the fact that it generalizes the non-

existence of non-split central extensions in the variety of Jordan algebras of such an
algebra 𝐽 [98].

To prove it, we will rely on the classification of the finite-dimensional simple
Jordan algebras over ℂ [9, 10].

• Type 𝔄: algebras of complex 𝑛 × 𝑛-matrices 𝑛 (ℂ), with product

𝑋𝑌 = 1
2
(𝑋◦𝑌 + 𝑌 ◦𝑋) , (5.3.1)

where ◦ denotes the usual product of matrices.
• Type 𝔅: algebras of complex symmetric 𝑛×𝑛-matrices Sym𝑛 (ℂ), with product

given by (5.3.1).
• Type ℭ: algebras of complex 𝐽𝑛-symmetric 𝑛 × 𝑛-matrices

Sym𝑛 (𝐽 ,ℂ) =
{

𝑋 ∈ 𝑛 (ℂ) ∣ 𝐽−1
𝑛 𝑋𝑇 𝐽𝑛 = 𝑋

}

,

where
𝐽𝑛 =

(

0 id𝑛
− id𝑛 0

)

,

with product given by (5.3.1).
• Type 𝔇: algebras with underlying vector space ℂ𝑛 and product given by

𝑥𝑦 =
(

𝑥𝑇 𝑒𝑛
)

𝑦 +
(

𝑦𝑇 𝑒𝑛
)

𝑥 −
(

𝑥𝑇 𝑦
)

𝑒𝑛,

where {

𝑒𝑖
}𝑛
𝑖=1 is the canonical basis of ℂ𝑛.
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• Type 𝔈: the algebra of 3 × 3-hermitian matrices over 𝕆ℂ

Herm3
(

𝕆ℂ
)

=
{

𝑋 ∈ 3
(

𝕆ℂ
)

∣ 𝑋𝑇 = 𝑋∗} ,

where 𝑋∗ means the conjugate matrix of 𝑋, with product given by (5.3.1).

Proof. We will deal with each type of the classification separately. Recall that, in any
case, if 𝑒 is an idempotent in A, then 𝑒 + 𝜃 (𝑒, 𝑒) is an idempotent in A𝜃.

• Type 𝔄.
Let A be an algebra of type 𝔄, V a vector space over ℂ and 𝜃∶ A × A → V a
bilinear map. Consider the idempotents 𝑎𝑖 = 𝐸𝑖𝑖 for 𝑖 = 1,… , 𝑛, with Peirce
decompositions

A𝑎𝑖1 =ℂ𝑎𝑖;

A𝑎𝑖0 = span
{

𝐸𝑗𝑘 ∣ 𝑗, 𝑘 = 1,… , 𝑛, 𝑗, 𝑘 ≠ 𝑖
}

;

A𝑎𝑖1∕2 = span
{

𝐸𝑖𝑗 , 𝐸𝑘𝑖 ∣ 𝑗, 𝑘 = 1,… , 𝑛, 𝑗, 𝑘 ≠ 𝑖
}

,

and assume, without loss of generality, that 𝜃 (𝑎𝑖, 𝑎𝑖
)

= 0 for all 𝑖 = 1,… , 𝑛.
We apply Proposition 5.2.5 to determine what values 𝜃 must have in order that
the idempotents 𝑎𝑖 are in fact 

(

1
2

)

-axes in A𝜃. From condition (5.2.1), it
follows that

𝜃
(

𝐸𝑖𝑖, 𝐸𝑗𝑘
)

= 0

for 𝑗, 𝑘 ≠ 𝑖, and from condition (5.2.2), we obtain that

𝜃
(

𝐸𝑖𝑗 , 𝐸𝑘𝑙
)

= 0, 𝑗, 𝑙 ≠ 𝑖, 𝑗 ≠ 𝑘, (𝑖, 𝑗) ≠ (𝑘, 𝑙) ;

𝜃
(

𝐸𝑖𝑗 , 𝐸𝑗𝑘
)

= 𝜃
(

𝐸𝑖𝑖, 𝐸𝑖𝑘
)

, 𝑗, 𝑘 ≠ 𝑖.

We consider also the idempotents 𝑎𝑖𝑗 = 𝐸𝑖𝑖 +𝐸𝑖𝑗 for 𝑖, 𝑗 = 1,… , 𝑛, 𝑖 ≠ 𝑗, with
eigenspace decomposition
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A𝑎𝑖𝑗1 =ℂ𝑎𝑖𝑗 ;

A𝑎𝑖𝑗0 = span
{

𝐸𝑖𝑘 − 𝐸𝑗𝑘, 𝐸𝑙𝑘 ∣ 𝑘, 𝑙 = 1,… , 𝑛, 𝑘, 𝑙 ≠ 𝑖, 𝑙 ≠ 𝑗
}

;

A𝑎𝑖𝑗1∕2 = span
{

𝐸𝑖𝑖 − 𝐸𝑗𝑗 − 𝐸𝑗𝑖, 𝐸𝑖𝑘, 𝐸𝑙𝑖 + 𝐸𝑙𝑗 ∣ 𝑘, 𝑙 = 1,… , 𝑛, 𝑘, 𝑙 ≠ 𝑖, 𝑙 ≠ 𝑗
}

,

and study what values 𝜃 must take so that the idempotents 𝑎𝑖𝑗 + 𝜃
(

𝑎𝑖𝑗 , 𝑎𝑖𝑗
) are


(

1
2

)

-axes in A𝜃. We obtain from condition (5.2.1) that

𝜃
(

𝐸𝑖𝑗 , 𝐸𝑖𝑗
)

= 0,

and from condition (5.2.2), that

𝜃
(

𝐸𝑖𝑗 , 𝐸𝑗𝑖
)

= 0,

for 𝑗 ≠ 𝑖. Finally, it is easy to check that 𝜃 = 𝛿𝑓 for

𝑓 ∶ A → V

𝐸𝑖𝑗 ↦

⎧

⎪

⎨

⎪

⎩

2𝜃
(

𝐸𝑖𝑖, 𝐸𝑖𝑗
)

, if 𝑖 ≠ 𝑗;

0, if 𝑖 = 𝑗,

and therefore [𝜃] = 0.

• Type 𝔅.
Let A be an algebra of type 𝔅, V a vector space over ℂ and 𝜃∶ A × A → V a
bilinear map. Consider the idempotents 𝑎𝑖 = 𝐸𝑖𝑖 for 𝑖 = 1,… , 𝑛, with Peirce
decompositions

A𝑎𝑖1 =ℂ𝑎𝑖;

A𝑎𝑖0 = span
{

𝐸𝑗𝑘 + 𝐸𝑘𝑗 ∣ 𝑗, 𝑘 ≠ 𝑖
}

;

A𝑎𝑖1∕2 = span
{

𝐸𝑖𝑗 + 𝐸𝑗𝑖 ∣ 𝑗 ≠ 𝑖
}

,
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and assume, without loss of generality, that 𝜃 (𝑎𝑖, 𝑎𝑖
)

= 0 for all 𝑖 = 1,… , 𝑛.
Applying Proposition 5.2.5, we determine what values 𝜃 must have in order that
the idempotents 𝑎𝑖 are 

(

1
2

)

-axes also in A𝜃. From condition (5.2.1),

𝜃
(

𝐸𝑖𝑖, 𝐸𝑗𝑗
)

= 0;

𝜃
(

𝐸𝑖𝑖, 𝐸𝑗𝑘 + 𝐸𝑘𝑗
)

= 0,

for 𝑗, 𝑘 ≠ 𝑖, 𝑗 ≠ 𝑘, and from condition (5.2.2),

𝜃
(

𝐸𝑖𝑗 + 𝐸𝑗𝑖, 𝐸𝑘𝑙 + 𝐸𝑙𝑘
)

= 0;

𝜃
(

𝐸𝑖𝑗 + 𝐸𝑗𝑖, 𝐸𝑗𝑘 + 𝐸𝑘𝑗
)

= 𝜃
(

𝐸𝑖𝑖, 𝐸𝑖𝑘 + 𝐸𝑘𝑖
)

,

where the indexes 𝑖, 𝑗, 𝑘, 𝑙 must take different values.
Now, we take into account the idempotents 𝑎𝑖𝑗 = 1

2

(

𝐸𝑖𝑖 + 𝐸𝑗𝑗 + 𝐸𝑖𝑗 + 𝐸𝑗𝑖
) for

𝑖, 𝑗 = 1,… , 𝑛, 𝑖 ≠ 𝑗, with eigenspace decomposition

A𝑎𝑖𝑗1 =ℂ𝑎𝑖𝑗 ;

A𝑎𝑖𝑗0 = span
{

𝐸𝑖𝑖 + 𝐸𝑗𝑗 − 𝐸𝑖𝑗 − 𝐸𝑗𝑖, 𝐸𝑖𝑘 + 𝐸𝑘𝑖 − 𝐸𝑗𝑘 − 𝐸𝑗𝑘,

𝐸𝑘𝑙 + 𝐸𝑙𝑘 ∣ 𝑘, 𝑙 ≠ 𝑖, 𝑗
}

;

A𝑎𝑖𝑗1∕2 = span
{

𝐸𝑖𝑖 − 𝐸𝑗𝑗 , 𝐸𝑖𝑘 + 𝐸𝑘𝑖 + 𝐸𝑗𝑘 + 𝐸𝑗𝑘 ∣ 𝑘 ≠ 𝑖, 𝑗
}

.

By condition (5.2.1), we obtain that

𝜃
(

𝐸𝑖𝑗 + 𝐸𝑗𝑖, 𝐸𝑖𝑗 + 𝐸𝑗𝑖
)

= 0

is a necessary condition so that 𝑎𝑖𝑗+𝜃
(

𝑎𝑖𝑗 , 𝑎𝑖𝑗
) is semisimple in A𝜃 and follows

the fusion law 
(

1
2

)

. Then 𝜃 = 𝛿𝑓 for
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𝑓 ∶ A → V

𝐸𝑖𝑗 + 𝐸𝑗𝑖 ↦

⎧

⎪

⎨

⎪

⎩

2𝜃
(

𝐸𝑖𝑖, 𝐸𝑖𝑗 + 𝐸𝑗𝑖
)

, if 𝑖 ≠ 𝑗;

0, if 𝑖 = 𝑗,

so [𝜃] = 0.
• Type ℭ.

Let A be an algebra of type ℭ, V a vector space over ℂ and 𝜃∶ A×A → V a bi-
linear map. Note that{𝐸𝑖𝑗 + 𝐸(𝑛+𝑗)(𝑛+𝑖), 𝐸𝑖(𝑛+𝑗) − 𝐸𝑗(𝑛+𝑖), 𝐸(𝑛+𝑖)𝑗 − 𝐸(𝑛+𝑗)𝑖

}𝑛
𝑖,𝑗=1

is a basis of A. As we have done in the previous cases, we will obtain condi-
tions on 𝜃 necessary to preserve the semisimplicity of the idempotents of A in
A𝜃 and the fusion law 

(

1
2

)

.
Consider first the idempotents 𝑎𝑖 = 𝐸𝑖𝑖+𝐸(𝑛+𝑖)(𝑛+𝑖), with Peirce decomposition

A𝑎𝑖1 =ℂ𝑎𝑖;

A𝑎𝑖0 = span
{

𝐸𝑗𝑘 + 𝐸(𝑛+𝑘)(𝑛+𝑗), 𝐸𝑗(𝑛+𝑘) − 𝐸𝑘(𝑛+𝑗), 𝐸(𝑛+𝑗)𝑘 − 𝐸(𝑛+𝑘)𝑗 ∣ 𝑗, 𝑘 ≠ 𝑖
}

;

A𝑎𝑖1∕2 = span
{

𝐸𝑖𝑗 + 𝐸(𝑛+𝑗)(𝑛+𝑖), 𝐸𝑗𝑖 + 𝐸(𝑛+𝑖)(𝑛+𝑗), 𝐸𝑖(𝑛+𝑗) − 𝐸𝑗(𝑛+𝑖),

𝐸(𝑛+𝑖)𝑗 − 𝐸(𝑛+𝑗)𝑖 ∣ 𝑗 ≠ 𝑖
}

.

Following the same steps as for algebras of type 𝔄, we obtain

𝜃
(

𝐸𝑖𝑖 + 𝐸(𝑛+𝑖)(𝑛+𝑖), 𝐸𝑖𝑖 + 𝐸(𝑛+𝑖)(𝑛+𝑖)
)

= 0;

𝜃
(

𝐸𝑖𝑖 + 𝐸(𝑛+𝑖)(𝑛+𝑖), 𝐸𝑗𝑘 + 𝐸(𝑛+𝑘)(𝑛+𝑗)
)

= 0, 𝑗, 𝑘 ≠ 𝑖;

𝜃
(

𝐸𝑖𝑗 + 𝐸(𝑛+𝑗)(𝑛+𝑖), 𝐸𝑘𝑙 + 𝐸(𝑛+𝑙)(𝑛+𝑘)
)

= 0, 𝑗, 𝑙 ≠ 𝑖, 𝑗 ≠ 𝑘, (𝑖, 𝑗) ≠ (𝑘, 𝑙) ;

𝜃
(

𝐸𝑖𝑗 + 𝐸(𝑛+𝑗)(𝑛+𝑖), 𝐸𝑗𝑘 + 𝐸(𝑛+𝑘)(𝑛+𝑗)
)

= 𝜃
(

𝐸𝑖𝑖 + 𝐸(𝑛+𝑖)(𝑛+𝑖), 𝐸𝑖𝑘 + 𝐸(𝑛+𝑘)(𝑛+𝑖)
)

,

𝑗, 𝑘 ≠ 𝑖;

𝜃
(

𝐸𝑖𝑗 + 𝐸(𝑛+𝑗)(𝑛+𝑖), 𝐸𝑖𝑗 + 𝐸(𝑛+𝑗)(𝑛+𝑖)
)

= 0, 𝑗 ≠ 𝑖;

𝜃
(

𝐸𝑖𝑗 + 𝐸(𝑛+𝑗)(𝑛+𝑖), 𝐸𝑗𝑖 + 𝐸(𝑛+𝑖)(𝑛+𝑗)
)

= 0, 𝑗 ≠ 𝑖.
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But more information can be obtained from these idempotents. After a careful
inspection and the application of conditions (5.2.1) and (5.2.2), respectively,
we obtain that

𝜃
(

𝐸𝑖𝑖 + 𝐸(𝑛+𝑖)(𝑛+𝑖), 𝐸𝑗(𝑛+𝑘) − 𝐸𝑘(𝑛+𝑗)
)

= 0, 𝑗, 𝑘 ≠ 𝑖, 𝑗 ≠ 𝑘;

𝜃
(

𝐸𝑖𝑖 + 𝐸(𝑛+𝑖)(𝑛+𝑖), 𝐸(𝑛+𝑗)𝑘 − 𝐸(𝑛+𝑘)𝑗
)

= 0, 𝑗, 𝑘 ≠ 𝑖, 𝑗 ≠ 𝑘;

and
𝜃
(

𝐸𝑖𝑗 + 𝐸(𝑛+𝑗)(𝑛+𝑖), 𝐸𝑘(𝑛+𝑙) − 𝐸𝑙(𝑛+𝑘)
)

= 0, 𝑘, 𝑙 ≠ 𝑖, 𝑗, 𝑘 ≠ 𝑙;

𝜃
(

𝐸𝑖𝑗 + 𝐸(𝑛+𝑗)(𝑛+𝑖), 𝐸(𝑛+𝑘)𝑙 − 𝐸(𝑛+𝑙)𝑘
)

= 0, 𝑘, 𝑙 ≠ 𝑖, 𝑗, 𝑘 ≠ 𝑙;

𝜃
(

𝐸𝑖(𝑛+𝑗) − 𝐸𝑗(𝑛+𝑖), 𝐸𝑘(𝑛+𝑙) − 𝐸𝑙(𝑛+𝑘)
)

= 0, 𝑗, 𝑘, 𝑙 ≠ 𝑖, 𝑘 ≠ 𝑙;

𝜃
(

𝐸(𝑛+𝑖)𝑗 − 𝐸(𝑛+𝑗)𝑖, 𝐸(𝑛+𝑘)𝑙 − 𝐸(𝑛+𝑙)𝑘
)

= 0, 𝑗, 𝑘, 𝑙 ≠ 𝑖, 𝑘 ≠ 𝑙;

𝜃
(

𝐸𝑖(𝑛+𝑗) − 𝐸𝑗(𝑛+𝑖), 𝐸(𝑛+𝑘)𝑙 − 𝐸(𝑛+𝑙)𝑘
)

= 0, 𝑗, 𝑘, 𝑙 ≠ 𝑖, 𝑘, 𝑙 ≠ 𝑗, 𝑘 ≠ 𝑙;

𝜃
(

𝐸𝑖(𝑛+𝑗) − 𝐸𝑗(𝑛+𝑖), 𝐸𝑗𝑘 + 𝐸(𝑛+𝑘)(𝑛+𝑗)
)

= 0, 𝑗, 𝑘 ≠ 𝑖, 𝑗 ≠ 𝑘;

𝜃
(

𝐸𝑖(𝑛+𝑘) − 𝐸𝑘(𝑛+𝑖), 𝐸𝑗𝑘 + 𝐸(𝑛+𝑘)(𝑛+𝑗)
)

= 𝜃
(

𝐸𝑖𝑖 + 𝐸(𝑛+𝑖)(𝑛+𝑖), 𝐸𝑖(𝑛+𝑗) − 𝐸𝑗(𝑛+𝑖)
)

,

𝑗, 𝑘 ≠ 𝑖;

𝜃
(

𝐸(𝑛+𝑖)𝑘 − 𝐸(𝑛+𝑘)𝑖, 𝐸𝑗𝑘 + 𝐸(𝑛+𝑘)(𝑛+𝑗)
)

= 0 𝑗, 𝑘 ≠ 𝑖, 𝑗 ≠ 𝑘;

𝜃
(

𝐸(𝑛+𝑖)𝑗 − 𝐸(𝑛+𝑗)𝑖, 𝐸𝑗𝑘 + 𝐸(𝑛+𝑘)(𝑛+𝑗)
)

= 𝜃
(

𝐸𝑖𝑖 + 𝐸(𝑛+𝑖)(𝑛+𝑖), 𝐸(𝑛+𝑖)𝑘 − 𝐸(𝑛+𝑘)𝑖
)

,

𝑗, 𝑘 ≠ 𝑖;

𝜃
(

𝐸𝑖(𝑛+𝑗) − 𝐸𝑗(𝑛+𝑖), 𝐸(𝑛+𝑗)𝑘 − 𝐸(𝑛+𝑘)𝑗
)

= 𝜃
(

𝐸𝑖𝑖 + 𝐸(𝑛+𝑖)(𝑛+𝑖), 𝐸𝑖𝑘 + 𝐸(𝑛+𝑘)(𝑛+𝑖)
)

,

𝑗, 𝑘 ≠ 𝑖.

Finally, take the idempotents 𝑎𝑖𝑗 = 𝐸𝑖𝑖+𝐸(𝑛+𝑖)(𝑛+𝑖)+𝐸𝑖𝑗+𝐸(𝑛+𝑗)(𝑛+𝑖)+𝐸𝑖(𝑛+𝑗)−
𝐸𝑗(𝑛+𝑖), whose Peirce decomposition is
A𝑎𝑖𝑗1 =ℂ𝑎𝑖𝑗 ;

A𝑎𝑖𝑗0 = span
{

𝐸𝑖𝑗 + 𝐸(𝑛+𝑗)(𝑛+𝑖) + 𝐸𝑖(𝑛+𝑗) − 𝐸𝑗(𝑛+𝑖) − 𝐸𝑗𝑗 − 𝐸(𝑛+𝑗)(𝑛+𝑗),

𝐸𝑘𝑙 + 𝐸(𝑛+𝑙)(𝑛+𝑘), 𝐸𝑘(𝑛+𝑙) − 𝐸𝑙(𝑛+𝑘), 𝐸(𝑛+𝑘)𝑙 − 𝐸(𝑛+𝑙)𝑘,

𝐸𝑖𝑘 + 𝐸(𝑛+𝑘)(𝑛+𝑖) − 𝐸𝑗𝑘 − 𝐸(𝑛+𝑘)(𝑛+𝑗), 𝐸𝑖(𝑛+𝑘) − 𝐸𝑘(𝑛+𝑖)
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+ 𝐸𝑘𝑗 + 𝐸(𝑛+𝑗)(𝑛+𝑘), 𝐸𝑖𝑘 + 𝐸(𝑛+𝑘)(𝑛+𝑖) − 𝐸(𝑛+𝑗)𝑘 + 𝐸(𝑛+𝑘)𝑗 ,

𝐸𝑖(𝑛+𝑘) − 𝐸𝑘(𝑛+𝑖) − 𝐸𝑗(𝑛+𝑘) + 𝐸𝑘(𝑛+𝑗) ∣ 𝑘, 𝑙 ≠ 𝑖, 𝑗
}

;

A𝑎𝑖𝑗1∕2 = span
{

𝐸𝑖𝑖 + 𝐸(𝑛+𝑖)(𝑛+𝑖) − 𝐸𝑗𝑗 − 𝐸(𝑛+𝑗)(𝑛+𝑗) − 𝐸𝑗𝑖 − 𝐸(𝑛+𝑖)(𝑛+𝑗),

𝐸𝑗𝑖 + 𝐸(𝑛+𝑖)(𝑛+𝑗) − 𝐸(𝑛+𝑗)𝑖 + 𝐸(𝑛+𝑖)𝑗 , 𝐸𝑖𝑗 + 𝐸(𝑛+𝑗)(𝑛+𝑖),

𝐸𝑖(𝑛+𝑗) − 𝐸𝑗(𝑛+𝑖), 𝐸𝑖𝑘 + 𝐸(𝑛+𝑘)(𝑛+𝑖), 𝐸𝑖(𝑛+𝑘) − 𝐸𝑘(𝑛+𝑖),

𝐸𝑗𝑘 + 𝐸(𝑛+𝑘)(𝑛+𝑗) − 𝐸(𝑛+𝑗)𝑘 + 𝐸(𝑛+𝑘)𝑗 − 𝐸(𝑛+𝑖)𝑘 + 𝐸(𝑛+𝑘)𝑖, 𝐸𝑘𝑗
+ 𝐸(𝑛+𝑗)(𝑛+𝑘) + 𝐸𝑘𝑖 + 𝐸(𝑛+𝑖)(𝑛+𝑘) − 𝐸𝑗(𝑛+𝑘) + 𝐸𝑘(𝑛+𝑗) ∣ 𝑘 ≠ 𝑖, 𝑗

}

.

From condition (5.2.2), we obtain

𝜃
(

𝐸𝑖𝑗 + 𝐸(𝑛+𝑗)(𝑛+𝑖), 𝐸𝑖(𝑛+𝑗) − 𝐸𝑗(𝑛+𝑖)
)

= 0;

𝜃
(

𝐸𝑖𝑗 + 𝐸(𝑛+𝑗)(𝑛+𝑖), 𝐸(𝑛+𝑖)𝑗 − 𝐸(𝑛+𝑗)𝑖
)

= 0;

𝜃
(

𝐸𝑖(𝑛+𝑗) − 𝐸𝑗(𝑛+𝑖), 𝐸(𝑛+𝑖)𝑗 − 𝐸(𝑛+𝑗)𝑖
)

= 0;

and after that, we can apply condition (5.2.1) to get

𝜃
(

𝐸𝑖(𝑛+𝑗) − 𝐸𝑗(𝑛+𝑖), 𝐸𝑖(𝑛+𝑗) − 𝐸𝑗(𝑛+𝑖)
)

= 0;

𝜃
(

𝐸(𝑛+𝑖)𝑗 − 𝐸(𝑛+𝑗)𝑖, 𝐸(𝑛+𝑖)𝑗 − 𝐸(𝑛+𝑗)𝑖
)

= 0.

In summary, we have that 𝜃 = 𝛿𝑓 for

𝑓 ∶ A → V

𝐸𝑖𝑗 + 𝐸(𝑛+𝑗)(𝑛+𝑖) ↦

⎧

⎪

⎨

⎪

⎩

2𝜃
(

𝐸𝑖𝑖 + 𝐸(𝑛+𝑖)(𝑛+𝑖), 𝐸𝑖𝑗 + 𝐸(𝑛+𝑗)(𝑛+𝑖)
)

, if 𝑖 ≠ 𝑗;

0, if 𝑖 = 𝑗;

𝐸𝑖(𝑛+𝑗) − 𝐸𝑗(𝑛+𝑖) ↦ 2𝜃
(

𝐸𝑖𝑖 + 𝐸(𝑛+𝑖)(𝑛+𝑖), 𝐸𝑖(𝑛+𝑗) − 𝐸𝑗(𝑛+𝑖)
)

;

𝐸(𝑛+𝑖)𝑗 − 𝐸(𝑛+𝑗)𝑖 ↦ 2𝜃
(

𝐸𝑖𝑖 + 𝐸(𝑛+𝑖)(𝑛+𝑖), 𝐸(𝑛+𝑖)𝑗 − 𝐸(𝑛+𝑗)𝑖
)

,

and therefore [𝜃] = 0.
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• Type 𝔇.
Let A be an algebra of type 𝔇, V a vector space over ℂ and 𝜃∶ A × A → V a
bilinear map. Consider the idempotents 𝑎𝑖 = 1

2

(

𝐼𝑒𝑖 + 𝑒𝑛
) for 𝑖 = 1,… , 𝑛 − 1,

where 𝐼 stands for the imaginary unit. The corresponding Peirce decomposi-
tions are

A𝑎𝑖1 =ℂ𝑎𝑖;

A𝑎𝑖0 = span
{

𝐼𝑒𝑖 − 𝑒𝑛 ∣ 𝑖 ≠ 𝑛
}

;

A𝑎𝑖1∕2 = span
{

𝑒𝑗 ∣ 𝑗 ≠ 𝑖, 𝑛
}

.

Assume, without loss of generality, that 𝜃 (𝑎𝑖, 𝑎𝑖
)

= 0 for all 𝑖 = 1,… , 𝑛 − 1;
it follows that

𝜃
(

𝑒𝑖, 𝑒𝑛
)

= 𝐼𝜃
(

𝑒𝑛, 𝑒𝑛
)

for 𝑖 ≠ 𝑛. In order that the idempotents 𝑎𝑖, are 
(

1
2

)

-axes in A𝜃, it must hold

𝜃
(

𝑒𝑖, 𝑒𝑖
)

= −𝜃
(

𝑒𝑛, 𝑒𝑛
)

for 𝑖 ≠ 𝑛, by condition (5.2.1), and that
𝜃
(

𝑒𝑖, 𝑒𝑗
)

= 0

for 𝑖, 𝑗 ≠ 𝑛, 𝑖 ≠ 𝑗, by condition (5.2.2). Then, we have that 𝜃 = 𝛿𝑓 for
𝑓 ∶ A → V

𝑒𝑖 ↦

⎧

⎪

⎨

⎪

⎩

𝐼𝜃
(

𝑒𝑛, 𝑒𝑛
)

, if 𝑖 ≠ 𝑛;

𝜃
(

𝑒𝑛, 𝑒𝑛
)

, if 𝑖 = 𝑛,

and therefore [𝜃] = 0.
• Type 𝔈.

Let us establish some notation: for 𝑥 ∈ 𝕆ℂ, write 𝑥 = 𝑥0 +
∑7
𝑞=1 𝐼𝑞𝑥𝑞, with

𝑥𝑞 ∈ ℂ, 𝑋∗ = 𝑥0 −
∑7
𝑞=1 𝐼𝑞𝑥𝑞 and 𝑥𝐸𝑖𝑗 =

∑7
𝑞=0 𝑥𝑞𝐸

𝑞
𝑖𝑗 . Also, take 𝑞, 𝑟 ∈
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{1,… , 7}, 𝑞 ≠ 𝑟. If 𝐼𝑞𝐼𝑟 = 𝐼𝑠, for some 𝑠 ∈ {1,… , 7}, write 𝑞 ⋅ 𝑟 = 𝑠, 𝑠∕𝑟 = 𝑞
and 𝑞∖𝑠 = 𝑟; if 𝐼𝑞𝐼𝑟 = −𝐼𝑠, write 𝑞 ⋅ 𝑟 = −𝑠, 𝑠∕𝑟 = −𝑞 and 𝑞∖𝑠 = −𝑟. Finally,
for 𝑞 = 1,… , 7, set 𝐸−𝑞

𝑖𝑗 = −𝐸𝑞
𝑖𝑗 .

Let A be the 27-dimensional algebra Herm3
(

𝕆ℂ
), and set the basis

{

𝐸0
𝑖𝑖, 𝐸

0
𝑖𝑗 + 𝐸

0
𝑗𝑖, 𝐸

𝑞
𝑖𝑗 − 𝐸

𝑞
𝑗𝑖

}

1≤𝑖<𝑗≤3,𝑡=1,…,7
.

The idempotents 𝑎𝑖 = 𝐸0
𝑖𝑖 have Peirce decomposition

A𝑎𝑖1 =ℂ𝑎𝑖;

A𝑎𝑖0 = span
{

𝐸0
𝑗𝑗 , 𝐸

0
𝑗𝑘 + 𝐸

0
𝑘𝑗 , 𝐸

𝑞
𝑗𝑘 − 𝐸

𝑞
𝑘𝑗 ∣ 𝑗, 𝑘 ≠ 𝑖, 𝑗 ≠ 𝑘, 𝑞 = 1,… , 7

}

;

A𝑎𝑖1∕2 = span
{

𝐸0
𝑖𝑗 + 𝐸

0
𝑗𝑖, 𝐸

𝑞
𝑖𝑗 − 𝐸

𝑞
𝑗𝑖 ∣ 𝑗 ≠ 𝑖, 𝑞 = 1,… , 7

}

.

Consider also a complex vector space V a bilinear map 𝜃∶ A × A → V. With-
out loss of generality, we will assume that 𝜃 (𝑎𝑖, 𝑎𝑖

)

= 0. Applying condi-
tion (5.2.1), we know that we must impose

𝜃
(

𝐸0
𝑖𝑖, 𝐸

0
𝑗𝑗

)

= 0;

𝜃
(

𝐸0
𝑖𝑖, 𝐸

0
𝑗𝑘 + 𝐸

0
𝑘𝑗

)

= 0;

𝜃
(

𝐸0
𝑖𝑖, 𝐸

𝑞
𝑗𝑘 − 𝐸

𝑞
𝑘𝑗

)

= 0,

for 𝑗, 𝑘 ≠ 𝑖, 𝑗 ≠ 𝑘 and 𝑞 = 1,… , 7, so that the idempotents 𝑎𝑖 are semisimple in
A𝜃; from condition (5.2.2), we obtain that each 𝑎𝑖 is a 

(

1
2

)

-axis if and only
if

𝜃
(

𝐸0
𝑖𝑗 + 𝐸

0
𝑗𝑖, 𝐸

0
𝑗𝑘 + 𝐸

0
𝑘𝑗

)

= 𝜃
(

𝐸0
𝑖𝑖, 𝐸

0
𝑖𝑘 + 𝐸

0
𝑘𝑖
)

,

𝜃
(

𝐸0
𝑖𝑗 + 𝐸

0
𝑗𝑖, 𝐸

𝑞
𝑗𝑘 − 𝐸

𝑞
𝑘𝑗

)

= 𝜃
(

𝐸0
𝑖𝑖, 𝐸

𝑞
𝑖𝑘 − 𝐸

𝑞
𝑘𝑖

)

,

𝜃
(

𝐸𝑞
𝑖𝑗 − 𝐸

𝑞
𝑗𝑖, 𝐸

𝑞
𝑗𝑘 − 𝐸

𝑞
𝑘𝑗

)

= −𝜃
(

𝐸0
𝑖𝑖, 𝐸

0
𝑖𝑘 + 𝐸

0
𝑘𝑖
)

,

𝜃
(

𝐸𝑞
𝑖𝑗 − 𝐸

𝑞
𝑗𝑖, 𝐸

𝑟
𝑗𝑘 − 𝐸

𝑟
𝑘𝑗

)

= 𝜃
(

𝐸0
𝑖𝑖, 𝐸

𝑞⋅𝑟
𝑖𝑘 − 𝐸𝑞⋅𝑟

𝑘𝑖

)

,
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for 𝑗, 𝑘 ≠ 𝑖, 𝑗 ≠ 𝑘 and 𝑞, 𝑠 ∈ {1,… , 7}, 𝑞 ≠ 𝑟.
Additionally, from the idempotents 𝑎0𝑖𝑗 = 1

2

(

𝐸0
𝑖𝑖 + 𝐸

0
𝑗𝑗 + 𝐸

0
𝑖𝑗 + 𝐸

0
𝑗𝑖

)

, with Peirce
decomposition

A
𝑎0𝑖𝑗
1 =ℂ𝑎0𝑖𝑗 ;

A
𝑎0𝑖𝑗
0 = span

{

𝐸0
𝑘𝑘, 𝐸

0
𝑖𝑖 + 𝐸

0
𝑗𝑗 − 𝐸

0
𝑖𝑗 − 𝐸

0
𝑗𝑖, 𝐸

0
𝑖𝑘 + 𝐸

0
𝑘𝑖 − 𝐸

0
𝑗𝑘 − 𝐸

0
𝑘𝑗 ,

𝐸𝑞
𝑖𝑘 − 𝐸

𝑞
𝑘𝑖 − 𝐸

𝑞
𝑗𝑘 + 𝐸

𝑞
𝑘𝑗 ∣ 𝑗, 𝑘 ≠ 𝑖, 𝑗 ≠ 𝑘, 𝑞 = 1,… , 7

}

;

A
𝑎0𝑖𝑗
1∕2 = span

{

𝐸0
𝑖𝑖 − 𝐸

0
𝑗𝑗 , 𝐸

𝑞
𝑖𝑗 − 𝐸

𝑞
𝑗𝑖, 𝐸

0
𝑖𝑘 + 𝐸

0
𝑘𝑖 + 𝐸

0
𝑗𝑘 + 𝐸

0
𝑘𝑗 ,

𝐸𝑞
𝑖𝑘 − 𝐸

𝑞
𝑘𝑖 + 𝐸

𝑞
𝑗𝑘 − 𝐸

𝑞
𝑘𝑗 ∣ 𝑗 ≠ 𝑖, 𝑞 = 1,… , 7

}

.

and from conditions (5.2.1) and (5.2.2), respectively, we obtain the next neces-
sary conditions in order that the idempotents 𝑎0𝑖𝑗 + 𝜃

(

𝑎0𝑖𝑗 , 𝑎
0
𝑖𝑗

)

are 
(

1
2

)

-axes
in A𝜃:

𝜃
(

𝐸0
𝑖𝑗 + 𝐸

0
𝑗𝑖, 𝐸

0
𝑖𝑗 + 𝐸

0
𝑗𝑖

)

= 0,

𝜃
(

𝐸0
𝑖𝑗 + 𝐸

0
𝑗𝑖, 𝐸

𝑞
𝑖𝑗 − 𝐸

𝑞
𝑗𝑖

)

= 0,

for 𝑞 = 1,… , 7.
Finally, from the idempotents 𝑎𝑞𝑖𝑗 = 1

2

(

𝐸0
𝑖𝑖 + 𝐸

0
𝑗𝑗 + 𝐸

𝑞
𝑖𝑗 − 𝐸

𝑞
𝑗𝑖

)

, for 𝑞 = 1,… , 7,
with Peirce decomposition

A
𝑎𝑞𝑖𝑗
1 =ℂ𝑎𝑞𝑖𝑗 ;

A
𝑎𝑞𝑖𝑗
0 = span

{

𝐸0
𝑘𝑘, 𝐸

0
𝑖𝑖 + 𝐸

0
𝑗𝑗 − 𝐸

𝑞
𝑖𝑗 + 𝐸

𝑞
𝑗𝑖, 𝐸

0
𝑖𝑘 + 𝐸

0
𝑘𝑖 + 𝐸

𝑞
𝑗𝑘 − 𝐸

𝑞
𝑘𝑗 ,

𝐸𝑞
𝑖𝑘 − 𝐸

𝑞
𝑘𝑖 − 𝐸

0
𝑗𝑘 − 𝐸

0
𝑘𝑗 ,

𝐸𝑟
𝑖𝑘 − 𝐸

𝑟
𝑘𝑖 + 𝐸

𝑟∕𝑞
𝑗𝑘 − 𝐸𝑟∕𝑞

𝑘𝑗 ∣ 𝑖, 𝑗 ≠ 𝑘, 𝑟 = 1,… , 7, 𝑟 ≠ 𝑞
}

;

A
𝑎𝑞𝑖𝑗
1∕2 = span

{

𝐸0
𝑖𝑖 − 𝐸

0
𝑗𝑗 , 𝐸

0
𝑖𝑗 + 𝐸

0
𝑗𝑖, 𝐸

𝑟
𝑖𝑗 − 𝐸

𝑟
𝑗𝑖, 𝐸

0
𝑖𝑘 + 𝐸

0
𝑘𝑖 − 𝐸

𝑞
𝑗𝑘 + 𝐸

𝑞
𝑘𝑗 ,

𝐸𝑞
𝑖𝑘 − 𝐸

𝑞
𝑘𝑖 + 𝐸

0
𝑗𝑘 + 𝐸

0
𝑘𝑗 ,

𝐸𝑟
𝑖𝑘 − 𝐸

𝑟
𝑘𝑖 − 𝐸

𝑟∕𝑞
𝑗𝑘 + 𝐸𝑟∕𝑞

𝑘𝑗 ∣ 𝑖, 𝑗 ≠ 𝑘, 𝑟 = 1,… , 7, 𝑟 ≠ 𝑞
}

.
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and, again, from conditions (5.2.1) and (5.2.2), respectively, it follows that

𝜃
(

𝐸𝑞
𝑖𝑗 − 𝐸

𝑞
𝑗𝑖, 𝐸

𝑞
𝑖𝑗 − 𝐸

𝑞
𝑗𝑖

)

= 0

and
𝜃
(

𝐸𝑞
𝑖𝑗 − 𝐸

𝑞
𝑗𝑖, 𝐸

𝑟
𝑖𝑗 − 𝐸

𝑟
𝑗𝑖

)

= 0,

for 𝑟 = 1,… , 7, 𝑟 ≠ 𝑞, are also necessary conditions so that the idempotents
𝑎𝑞𝑖𝑗 + 𝜃

(

𝑎𝑞𝑖𝑗 , 𝑎
𝑞
𝑖𝑗

)

are 
(

1
2

)

-axes in A𝜃.
Then, we have that 𝜃 = 𝛿𝑓 for

𝑓 ∶ A → V

𝐸0
𝑖𝑗 + 𝐸

0
𝑗𝑖 ↦

⎧

⎪

⎨

⎪

⎩

2𝜃
(

𝐸0
𝑖𝑖, 𝐸

0
𝑖𝑗 + 𝐸

0
𝑗𝑖

)

, if 𝑖 ≠ 𝑗;

0, if 𝑖 = 𝑗;

𝐸𝑞
𝑖𝑗 − 𝐸

𝑞
𝑗𝑖 ↦ 2𝜃

(

𝐸0
𝑖𝑖, 𝐸

𝑞
𝑖𝑗 − 𝐸

𝑞
𝑗𝑖

)

,

and therefore [𝜃] = 0.
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This final part of the manuscript includes some works which do not lie within any of
the two main lines of the thesis, developed in the previous parts. However, we can find
a connection between the first Chapter 6 of this part and Chapter 2: indeed, both of
them deal with the introduction of a non-abelian tensor product of different algebraic
structures. In particular, in Chapter 6 we work in the category 𝐗𝐒𝐋𝐢𝐞 of crossed mod-
ules of Lie superalgebras. In such chapter we collect the contents in the article [80], a
joint work with Tahereh Fakhr Taha and Manuel Ladra. We introduce also two defini-
tions which are crucial for the development of the contents, namely, the analogues of
the Whitehead’s quadratic functor for supermodules and for abelian crossed modules
of Lie superalgebras. The properties of these objects are studied in Chapter 7, inspired
by some work in progress with Manuel Ladra. Supermodules and Lie superalgebras
were already introduced in Part I; we devote the following paragraphs to explain why
it is interesting to study crossed modules.

Crossed modules of groups were first introduced by Whitehead in the decade of
1940 [229–231] in the context of algebraic homotopy theory. A crossed module is a
triple (𝐻,𝐺, 𝜕) of two groups 𝐻 and 𝐺 and a homomorphism of groups 𝜕∶ 𝐻 → 𝐺
together with an action of 𝐺 on 𝐻 satisfying some compatibility conditions. They
can be interpreted as simultaneous generalisations of normal subgroups and of mod-
ules over a group or, from a categorical point of view, as an internal category in the
category 𝐆𝐫𝐩 of groups, or as an internal group object in the category 𝐂𝐚𝐭 of cate-
gories. Throughout the history of crossed modules, they have been applied to different
branches of mathematics as combinatorial group theory [116, 231], homological al-
gebra [96,97,166,179], algebraic topology [35], differential geometry [167] or cryp-
tography [119].

Since their definition by Whitehead, crossed modules have been generalised in
diverse directions. One of the most important was in the ambit of Lie algebras in [142],
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when they were used in the study of the cyclic homology of associative algebras.
Crossed modules of Lie algebras were afterwards employed as suitable coefficients
of a non-abelian cohomology for 𝑇 -algebras (where 𝑇 denotes a theory of 𝐾-Lie
algebras) [161], and to study the non-abelian homology of Lie algebras [109]. A
further generalisation is due to Janelidze [128], who defined internal crossed modules
in any semi-abelian category. From a purely algebraic approach, crossed modules of
Lie superalgebras were defined in [237] (see also [91]).

Finally, the last Chapter 8 follows a completely different direction than the rest
of the manuscript. It lies within the framework of automated deduction in geometry,
and is devoted to study the differences of two ways (namely Rabinowitsch’s trick and
ideal saturation) of introducing negative statements in the procedures for automatic
proving of geometric theorems. It corresponds to the article [158], a joint work with
Manuel Ladra and Tomás Recio.

We gratefully thank CESGA (Centro de Supercomputación de Galicia, Santiago
de Compostela, Spain) for providing access to the FinisTerrae 2 supercomputer, em-
ployed to carry out the computations corresponding to this last chapter.

The structure of each chapter will be described in its own introduction.
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The non-abelian tensor and exterior
products of crossed modules of Lie

superalgebras
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In this chapter, we introduce the notions of non-abelian tensor and exterior products of
two ideal graded crossed submodules of a given crossed module of Lie superalgebras.
We also study some of their basic properties and their connection with the second
homology of crossed modules of Lie superalgebras.

Introduction

As we already commented in Chapter 2, the non-abelian tensor and exterior products
of Lie algebras were first introduced by Ellis in [76]. Between their main properties,
studied in that paper, we remark that for any Lie algebra𝐿,𝐻2(𝐿) ≅ ker(𝐿∧𝐿→ 𝐿).
These constructions have been generalised to different structures in order to obtain
similar characterisations of the second homology 𝐻2.

One of these generalisations was in the direction of crossed modules of Lie alge-
bras. First, it was defined a tensor product for abelian crossed modules of Lie algebras
in [75]. After that, Ravanbod and Salemkar [193] generalised this construction defin-
ing the non-abelian tensor product of two ideal crossed submodules of a given crossed
module of Lie algebras (𝑇 , 𝐿, 𝜕), as well as the exterior product. They also charac-
terised the second homology crossed module 𝐻2(𝑇 , 𝐿, 𝜕) as the kernel of the com-
mutator map (𝑇 , 𝐿, 𝜕)∧ (𝑇 , 𝐿, 𝜕) → (𝑇 , 𝐿, 𝜕). This homology for crossed modules of
Lie algebras was introduced by Casas, Inassaridze and Ladra in [49], employing the
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182 6 Non-abelian tensor and exterior products of crossed modules

general theory of cotriple homology of Barr and Beck [20]. Given a crossed module
of Lie algebras (𝑇 , 𝐿, 𝜕), its homology crossed modules𝐻𝑛(𝑇 , 𝐿, 𝜕) are defined to be
the simplicial derived functors of the abelianisation functor between the categories
of crossed modules of Lie algebras and abelian crossed modules. This can be seen
indeed as a generalisation of the Eilenberg-MacLane homology of Lie algebras. Also,
the authors gave a Hopf formula for the second homology of a crossed module.

Another generalisation of the work of Ellis was given in [91], where García-
Martínez, Khmaladze and Ladra introduced the non-abelian tensor and exterior prod-
ucts of Lie superalgebras. They also defined their homology, obtaining the Hopf for-
mula for the second homology of Lie superalgebras and extending the five-term exact
sequence one term to the left. Moreover, it was proved that, given a Lie superalgebra
𝐿, 𝐻2(𝐿) ≅ ker(𝐿 ∧ 𝐿→ 𝐿).

In this chapter, we present a new generalisation of [76] for crossed modules of
Lie superalgebras. After defining the tensor product of abelian crossed modules of
Lie superalgebras, we introduce the non-abelian tensor and exterior products of two
graded ideal crossed submodules of a given crossed module of Lie superalgebras.
Also, generalising the work [49] of Casas, Inassaridze and Ladra, we define the sec-
ond homology of a crossed module of Lie superalgebras, give a Hopf formula, and
study some applications of the exterior product on the matter. In particular, we ob-
tain an expression for the second homology 𝐻2(𝑇 , 𝐿, 𝜕) for any crossed module of
Lie superalgebras (𝑇 , 𝐿, 𝜕): it is isomorphic to the kernel of the commutator map
(𝑇 , 𝐿, 𝜕) ∧ (𝑇 , 𝐿, 𝜕) → (𝑇 , 𝐿, 𝜕).

A relevant aspect of this chapter is the introduction of the Whitehead’s quadratic
functor of supermodules, whose construction differs from the one for modules [208],
and which turns out to be fundamental for our purposes.

This chapter is organised as follows. In Section 6.1, we recall some general aspects
of Lie superalgebras and their non-abelian tensor product, as well as introduce the def-
inition of the Whitehead’s quadratic functor of supermodules. Section 6.2 consists of
some generalities on crossed modules of Lie superalgebras which will be needed in
the subsequent sections. Section 6.3 introduces the non-abelian tensor and exterior
products of two graded ideal crossed submodules and studies some of their main prop-
erties. Finally, in Section 6.4, we define the cotriple homology of crossed modules
of Lie superalgebras and explore the relation between the second homology and the
non-abelian exterior products.

Throughout this chapter, 𝑅 will denote a unital commutative ring in which 2 has
an inverse. Unless otherwise stated, all the (super)modules and (super)algebras in this
chapter will be considered over 𝑅.



6.1 Preliminaries 183

6.1 Preliminaries

The definition of Lie superalgebras was already recalled in Chapter 2. However, we
will need more information besides the definition, so we decided to include it again
for the sake of convenience. Also, in this section we recall the construction of the
non-abelian tensor product of Lie superalgebras, introduced in [91]. This reference
also offers a detailed introduction to Lie superalgebras.

We define a supermodule as a module 𝑀 endowed with a grading in ℤ∕2ℤ. We
write 𝑀 = 𝑀0̄ ⊕𝑀1̄; the elements in 𝑀0̄ will be called even or of degree 0̄, and
the elements in 𝑀1̄, odd or of degree 1. The element 0 will be assumed to have
both degrees. We denote the degree of an element 𝑚 with |𝑚|. Non-zero elements of
𝑀0̄ ∪𝑀1̄ will be called homogeneous. The direct sum 𝑉 +̇𝑊 of two superspaces has
the following induced grading: (𝑉 +̇𝑊 )0̄ = 𝑉0̄+̇𝑊0̄ and (𝑉 +̇𝑊 )1̄ = 𝑉1̄+̇𝑊1̄. The
homomorphisms of supermodules are just homomorphisms of modules. They form a
supermodule with the following grading: a homomorphism is even if it preserves the
degree of the elements, and it is odd if it changes such degree.

A Lie superalgebra is a supermodule 𝑀 = 𝑀0̄ ⊕𝑀1̄ endowed with a bilinear
operation [ , ] such that |[𝑚,𝑚′]| = |𝑚| + |𝑚′

|, and verifying
[𝑚,𝑚′] = −(−1)|𝑚||𝑚′

|[𝑚′, 𝑚],

[𝑚, [𝑚′, 𝑚′′]] = [[𝑚,𝑚′], 𝑚′′] + (−1)|𝑚||𝑚′
|[𝑚′, [𝑚,𝑚′′]], (6.1.1)

[𝑚1̄, [𝑚1̄, 𝑚1̄]] = 0, (6.1.2)
for 𝑚,𝑚′, 𝑚′′ ∈ 𝑀 homogeneous elements, 𝑚1 ∈ 𝑀1̄ and considering (−1)0̄ = 1
and (−1)1 = −1. Note that equation (6.1.2) follows from equation (6.1.1) when 3 has
an inverse in 𝑅. Henceforth, we will assume that we are dealing with homogeneous
elements when their degrees appear in any formula.

A homomorphism of Lie superalgebras 𝑓 is a homomorphism of supermodules
such that 𝑓 ([𝑚,𝑚′]) = [𝑓 (𝑚), 𝑓 (𝑚′)]. Note that, to that purpose, it is necessary that
𝑓 preserves the degrees of the elements. Also, we consider graded subalgebras, sub-
modules 𝑁 of 𝑀 with the grading 𝑁0̄ =𝑀0̄ ∩𝑁 and 𝑁1̄ =𝑀1̄ ∩𝑁 , verifying that
[𝑛, 𝑛′] ∈ 𝑁 for all 𝑛, 𝑛′ ∈ 𝑁 . Furthermore, if [𝑛, 𝑚] ∈ 𝑁 for any 𝑚 ∈𝑀 and 𝑛 ∈ 𝑁 ,
we say that 𝑁 is a graded ideal of 𝑀 ; for example, the commutator (with respect to
the subcategory 𝐀𝐛 of abelian objects, i.e. the abelian Lie superalgebras) [𝑀,𝑀]
generated by the elements [𝑚,𝑚′], with 𝑚,𝑚′ ∈𝑀 . Note that a subalgebra is graded
if and only if it is generated by homogeneous elements. Also, the quotient of a Lie
superalgebra by a graded ideal is another Lie superalgebra, with the induced grading.
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We recall now the concept of action of Lie superalgebras, necessary to construct
the non-abelian tensor product. An action of the Lie superalgebra 𝑀 on 𝑁 is a 𝑅-
bilinear map 𝑀 ×𝑁 → 𝑁 with even degree (i.e. |𝑚𝑛| = |𝑚| + |𝑛|) verifying

[𝑚,𝑚′]𝑛 = 𝑚(𝑚′
𝑛) − (−1)|𝑚||𝑚′

|(𝑚
′
(𝑚𝑛));

𝑚[𝑛, 𝑛′] = [𝑚𝑛, 𝑛′] + (−1)|𝑚||𝑛|[𝑛, 𝑚𝑛′],

for all 𝑚,𝑚′ ∈𝑀 and 𝑛, 𝑛′ ∈ 𝑁 .
Given two Lie superalgebras 𝑀 and 𝑁 acting on each other, their non-abelian

tensor product𝑀⊗𝑁 was defined in [91] as the quotient of the free Lie superalgebra
generated by the elements 𝑚⊗ 𝑛 with |𝑚⊗ 𝑛| = |𝑚| + |𝑛|, by the ideal generated by
the following homogeneous elements

𝜆(𝑚⊗ 𝑛) − 𝜆𝑚 ⊗ 𝑛,
𝜆(𝑚⊗ 𝑛) − 𝑚⊗ 𝜆𝑛,
(𝑚 + 𝑚′)⊗ 𝑛 − 𝑚⊗ 𝑛 − 𝑚′ ⊗ 𝑛,
𝑚 ⊗ (𝑛 + 𝑛′) − 𝑚⊗ 𝑛 − 𝑚⊗ 𝑛′,

[𝑚,𝑚′]⊗ 𝑛 − 𝑚⊗ 𝑚′
𝑛 + (−1)|𝑚||𝑚′

|(𝑚′ ⊗ 𝑚𝑛),

𝑚 ⊗ [𝑛, 𝑛′] − (−1)(|𝑚|+|𝑛|)|𝑛′|(𝑛′𝑚⊗ 𝑛) + (−1)|𝑚||𝑛|(𝑛𝑚⊗ 𝑛′),
𝑛𝑚⊗ 𝑚′

𝑛′ + (−1)|𝑚||𝑛|[𝑚⊗ 𝑛,𝑚′ ⊗ 𝑛′],

for all 𝜆 ∈ 𝑅, 𝑚,𝑚′ ∈𝑀 and 𝑛, 𝑛′ ∈ 𝑁 .
Note that to define a homomorphism with domain 𝑀 ⊗𝑁 , it suffices to define it

on generators 𝑚⊗ 𝑛 and extend linearly to any element, provided that it respects the
defining relations of the non-abelian tensor product.

Also, we recall the definition of the semidirect product in Lie superalgebras. If
a superalgebra 𝑀 acts over 𝑁 , we can define the semidirect product 𝑁 ⋊𝑀 as the
direct sum 𝑁 ⊕𝑀 endowed with the Lie bracket

[𝑛 + 𝑚, 𝑛′ + 𝑚′] = [𝑛, 𝑛′] + 𝑚𝑛′ − (−1)|𝑛||𝑚′
|(𝑚′

𝑛) + [𝑚,𝑚′].

Finally, an extension of Lie superalgebras is a surjective homomorphism 𝑓 ∶ 𝑀 →
𝑁 . It is central (relative to 𝐀𝐛) when ker 𝑓 ⊆ 𝑍(𝑀) = {𝑚 ∈ 𝑀 ∣ [𝑚,𝑚′] =
0 for all 𝑚′ ∈𝑀}.

Now, we will introduce the generalised version for supermodules of Whitehead’s
universal quadratic functor. The version for modules was given in [208].
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Definition 6.1.1. Let 𝑀 = 𝑀0̄ ⊕ 𝑀1̄ be a supermodule, and let 𝑅𝑀0̄ be the free
supermodule, concentrated in degree zero, generated by the elements 𝑒𝑚0̄

for all 𝑚0̄ ∈
𝑀0̄. We define the supermodule Γ(𝑀) as the direct sum

𝑅𝑀0̄ ⊕
(

𝑀 ⊗𝑅𝑀
)

,

subject to the relations

𝑒𝜆𝑚0̄
= 𝜆2𝑒𝑚0̄

;

𝑒𝑚0̄+𝑚′
0̄
− 𝑒𝑚0̄

− 𝑒𝑚′
0̄
= 𝑚0̄ ⊗𝑚′

0̄
;

𝑚⊗𝑚′ = (−1)|𝑚||𝑚′
|𝑚′ ⊗𝑚,

where 𝜆 ∈ 𝑅, 𝑚0̄, 𝑚′
0̄
∈𝑀0̄ and 𝑚,𝑚′ ∈𝑀 , and with the induced grading.

The properties of this supermodule will be studied in Chapter 7.

6.2 Crossed modules of Lie superalgebras

The crossed modules of Lie superalgebras have been scarcely studied; the authors have
knowledge of only two references, namely [91] and [237], in which the definition is
offered, but they are not carefully analysed. In this section, we intend to give some
other definitions and results on the subject, following a categorical approach.
Definition 6.2.1. A crossed module of Lie superalgebras (𝑇 , 𝐿, 𝜕) consists of two Lie
superalgebras 𝑇 and 𝐿, a homomorphism 𝜕∶ 𝑇 → 𝐿 and an action of 𝐿 on 𝑇 such
that the following conditions are fulfilled for all 𝑡, 𝑡′ ∈ 𝑇 and 𝑙 ∈ 𝐿:

1. 𝜕 (𝑙𝑡) = [𝑙, 𝜕(𝑡)],
2. 𝜕(𝑡)𝑡′ = [𝑡, 𝑡′].
The simplest examples are (𝐿,𝐿, id) and (𝑃 ,𝐿, 𝑖), where 𝐿 is a Lie superalgebra,

𝑃 is a graded ideal and 𝑖 is the inclusion, and taking the Lie bracket as action. Other
examples somewhat more involved can be central extensions of Lie superalgebras
(𝑇 , 𝐿, 𝜕), together with the action 𝑙𝑡 = [𝑡′, 𝑡] for any 𝑡′ ∈ 𝑇 such that 𝜕(𝑡′) = 𝑙, or
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(𝑇 ,Der(𝑇 ), 𝜕), where 𝜕(𝑡) = ad 𝑡 for all 𝑡 ∈ 𝑇 , together with the action given by
𝐷𝑡 = 𝐷(𝑡).

In what follows, crossed module will make reference to a crossed module of Lie
superalgebras, unless otherwise stated.
Definition 6.2.2. A morphism of crossed modules 𝜓 ∶ (𝑇 , 𝐿, 𝜕) →

(

𝑇 ′, 𝐿′, 𝜕′
) is a

pair (𝜓1, 𝜓2
) of homomorphisms of Lie superalgebras, 𝜓1 ∶ 𝑇 → 𝑇 ′ and 𝜓2 ∶ 𝐿 →

𝐿′, such that 𝜓1(𝑙𝑡) = 𝜓2(𝑙)𝜓1(𝑡) for all 𝑡 ∈ 𝑇 , 𝑙 ∈ 𝐿, and that the following diagram
is commutative:

𝑇 𝜕 //

𝜓1
��

𝐿
𝜓2
��

𝑇 ′
𝜕′
// 𝐿′.

We say that 𝜓 is injective (surjective) if both 𝜓1 and 𝜓2 are injective (surjective).
Note that the morphisms of crossed modules of Lie superalgebras have structure

of 𝑅-supermodule.
The category formed by crossed modules and the morphisms between them will

be denoted by XSLie. A morphism 𝜓 in this category is an isomorphism if and only
if 𝜓1 and 𝜓2 are isomorphisms of Lie superalgebras. XSLie is a semiabelian cate-
gory; therefore, it has a zero object (namely, the trivial crossed module (0, 0, 0)), and
also kernels, cokernels and images. While the kernel of a morphism 𝜓 is the crossed
module (

ker 𝜓1, ker 𝜓2, 𝜕|
), its image is (Im 𝜓1, Im 𝜓2, 𝜕′|

). We also have the obvi-
ous notion of exact sequence.

The subobjects in XSLie of a given crossed module (𝑇 , 𝐿, 𝜕) can be characterised
as the crossed modules (𝑀,𝑃 , 𝜎) such that 𝑀 and 𝑃 are graded Lie subalgebras
of 𝑇 and 𝐿, the homomorphism 𝜎 is the restriction of 𝜕 to 𝑀 , and the action of
𝑃 on 𝑀 is induced by the one of 𝐿 on 𝑇 . From now on, we will write (𝑀,𝑃 , 𝜕)
instead of (𝑀,𝑃 , 𝜎). Furthermore, (𝑀,𝑃 , 𝜕) is a normal subobject when 𝑃 is a
graded ideal of 𝐿 and the elements 𝑙𝑚 and 𝑝𝑡 belong to 𝑀 for all 𝑙 ∈ 𝐿, 𝑚 ∈ 𝑀 ,
𝑝 ∈ 𝑃 and 𝑡 ∈ 𝑇 . These normal subobjects are called graded ideal crossed sub-
modules. Other interesting objects are the regular quotient objects of (𝑇 , 𝐿, 𝜕), which
are characterised as (𝑇 ∕𝑀,𝐿∕𝑃 , 𝜕) where (𝑀,𝑃 , 𝜕) is a graded ideal crossed sub-
module of (𝑇 , 𝐿, 𝜕), and the action of 𝐿

𝑃
on 𝑇

𝑀
is the induced. We denote (𝑇 ,𝐿,𝜕)

(𝑀,𝑃 ,𝜕)
∶=

(𝑇 ∕𝑀,𝐿∕𝑃 , 𝜕). Note that we denote again by 𝜕 the homomorphism induced in the
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quotient. Also, the product in XSLie of two objects (𝑇1, 𝐿1, 𝜕1
) and (

𝑇2, 𝐿2, 𝜕2
) is

given by (𝑇1 ⊕ 𝑇2, 𝐿1 ⊕𝐿2, ⟨𝜕1, 𝜕2⟩
). We will denote it by (𝑇1, 𝐿1, 𝜕1

)

⊕
(

𝑇2, 𝐿2, 𝜕2
).

The abelian objects of XSLie are just the crossed modules (𝐴,𝐵, 𝜕) with 𝐴 and
𝐵 abelian Lie superalgebras. Note that the action of 𝐵 on 𝐴 becomes trivial, and
the only condition on 𝜕 is to be a homomorphism of supermodules. We are going to
work with respect to the Birkhoff subcategory 𝐀𝐛. The functor ( )ab ∶ 𝐗𝐒𝐋𝐢𝐞 → 𝐀𝐛,
left adjoint of the inclusion, gives the abelianisation (𝑇 , 𝐿, 𝜕)ab of a crossed module;
namely, (𝑇 ∕[𝐿, 𝑇 ], 𝐿∕[𝐿,𝐿], 𝜕), where [𝐿, 𝑇 ] denotes the graded subalgebra gener-
ated by the elements 𝑙𝑡, with 𝑙 ∈ 𝐿 and 𝑡 ∈ 𝑇 . Therefore, the perfect crossed modules
are those satisfying 𝑇 = [𝐿, 𝑇 ] and 𝐿 = [𝐿,𝐿], and the commutator of (𝑇 , 𝐿, 𝜕) is
[(𝑇 , 𝐿, 𝜕) , (𝑇 , 𝐿, 𝜕)] = ([𝐿, 𝑇 ], [𝑇 , 𝑇 ], 𝜕). Given two normal subobjects (𝑀,𝑃 , 𝜕)
and (𝑁,𝑄, 𝜕) of (𝑇 , 𝐿, 𝜕), the Higgins commutator [(𝑀,𝑃 , 𝜕) , (𝑁,𝑄, 𝜕)] can be
characterised as the graded ideal crossed submodule ([𝑄,𝑀] + [𝑃 ,𝑁], [𝑃 ,𝑄], 𝜕).

The same reasoning as in [51, Proposition 18] for crossed modules of Lie algebras
enables us to assure that the centre 𝑍 (𝑇 , 𝐿, 𝜕) of a crossed module in XSLie is

𝑍 (𝑇 , 𝐿, 𝜕) =
(

𝑇 𝐿, 𝑍 (𝐿) ∩ st𝐿 (𝑇 ) , 𝜕
)

,

where 𝑍 (𝐿) is the centre of 𝐿, 𝑇 𝐿 = {𝑡 ∈ 𝑇 ∣ 𝑙𝑡 = 0 for all 𝑙 ∈ 𝐿} and st𝐿 (𝑇 ) =
{𝑙 ∈ 𝐿 ∣ 𝑙𝑡 = 0 for all 𝑡 ∈ 𝑇 }.

We include now a definition for abelian Lie superalgebras, which will be necessary
for Theorem 6.3.10 (cf. [189] for abelian groups and [75] for abelian Lie algebras).
Definition 6.2.3. The tensor product of two arbitrary abelian crossed modules (𝑇 , 𝐿, 𝜕)
and (

𝑇 ′, 𝐿′, 𝜕′
) is defined as the abelian crossed module

(𝑇 , 𝐿, 𝜕)⊗𝑅
(

𝑇 ′, 𝐿′, 𝜕′
)

=
(coker 𝛼𝑅, 𝐿 ⊗ 𝐿′, 𝛿𝑅

)

,

where 𝛼𝑅 ∶ 𝑇⊗𝑇 ′ →
(

𝑇 ⊗ 𝐿′)⊕
(

𝐿⊗ 𝑇 ′) is defined by 𝛼𝑅
(

𝑡 ⊗ 𝑡′
)

= −𝑡⊗𝜕′
(

𝑡′
)

+
𝜕 (𝑡)⊗ 𝑡′, and 𝛿𝑅 ∶ coker 𝛼𝑅 → 𝐿⊗ 𝐿′ is induced by ⟨𝜕 ⊗ id, id⊗𝜕′⟩. To construct
all the previous tensor products, we consider trivial actions.

Given two crossed modules (𝑀,𝐿, 𝜕) and (𝑁,𝐿, 𝜎), there are actions of𝑀 on𝑁
and of 𝑁 on 𝑀 given, respectively, by 𝑚𝑛 = 𝜕(𝑚)𝑛 and 𝑛𝑚 = 𝜎(𝑛)𝑚, which allow us to
construct the non-abelian tensor product 𝑀 ⊗𝑁 (note that we can always construct
𝑀 ⊗ 𝐿 by considering (𝑀,𝐿, 𝜕) and (𝐿,𝐿, id)). Consider the graded submodule
𝑀□𝑁 of 𝑀 ⊗𝑁 , generated by the elements
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𝑚0̄ ⊗ 𝑛0̄, with 𝜕 (𝑚0̄
)

= 𝜎
(

𝑛0̄
)

,

𝑚 ⊗ 𝑛 + (−1)|𝑚
′
||𝑛′|𝑚′ ⊗ 𝑛′, with 𝜕 (𝑚) = 𝜎

(

𝑛′
) and 𝜕 (𝑚′) = 𝜎 (𝑛) ,

being𝑚0̄ ∈𝑀0̄, 𝑛0̄ ∈ 𝑁0̄, 𝑚,𝑚′ ∈𝑀 and 𝑛, 𝑛′ ∈ 𝑁 . In [91], it is proved that𝑀□𝑁
is a graded ideal in the centre of𝑀⊗𝑁 , and the non-abelian exterior product𝑀 ∧𝑁
is defined as the quotient (𝑀 ⊗𝑁) ∕ (𝑀□𝑁). The images of the elements 𝑚⊗𝑛 in
the quotient are denoted by 𝑚 ∧ 𝑛.

In the following proposition, we recall some elementary properties of the non-
abelian tensor and exterior products. The proof is left to the reader (see also [91]),
except the one of the last item, which we offer below.
Proposition 6.2.4. Let (𝑀,𝐿, 𝜕) and (𝑁,𝐿, 𝜎) be two crossed modules. Then:

1. There is a Lie superalgebra homomorphism 𝜉 ∶ 𝑀⊗𝑁 → 𝐿 with 𝜉 (𝑚⊗ 𝑛) =
𝑚𝜎 (𝑛) = − (−1)|𝑚||𝑛| (𝑛𝜕 (𝑚)).

2. The triple (𝑀 ⊗𝑁,𝐿, 𝜉) is a crossed module with the action of 𝐿 on 𝑀 ⊗𝑁
defined by 𝑙 (𝑚⊗ 𝑛) = 𝑙𝑚⊗ 𝑛 + (−1)|𝑙||𝑚|𝑚⊗ 𝑙𝑛.

3. The non-abelian tensor products𝑀⊗𝑁 and𝑁⊗𝑀 are isomorphic, through
the map 𝑚⊗ 𝑛 ↦ − (−1)|𝑚||𝑛| 𝑛 ⊗ 𝑚.

4. If the actions of 𝐿 on 𝑀 and 𝑁 are trivial, then 𝑀 ⊗ 𝑁 is isomorphic to
𝑀ab ⊗ 𝑁ab, being 𝑀ab = 𝑀∕[𝑀,𝑀] and 𝑁ab = 𝑁∕[𝑁,𝑁], and where
𝑀ab ⊗ 𝑁ab is formed with 𝑀ab and 𝑁ab acting trivially on each other. Also,
𝑀 ∧𝑁 ≅𝑀ab ∧𝑁ab.

5. There is an isomorphism

(𝑀 ⊕𝑁) ∧ (𝑀 ⊕𝑁) → (𝑀 ∧𝑀)⊕ (𝑁 ∧𝑁)⊕
(

𝑀ab ⊗𝑁ab
)

(𝑚 + 𝑛) ∧
(

𝑚′ + 𝑛′
)

↦ 𝑚 ∧ 𝑚′ + 𝑛 ∧ 𝑛′ + 𝑚⊗ 𝑛′ − (−1)|𝑚||𝑚
′
|𝑚′ ⊗ 𝑛.

The inverse homomorphism is given by

(𝑀 ∧𝑀)⊕ (𝑁 ∧𝑁)⊕
(

𝑀ab ⊗𝑁ab
)

→ (𝑀 ⊕𝑁) ∧ (𝑀 ⊕𝑁)

𝑚 ∧ 𝑚′ + 𝑛 ∧ 𝑛′ + 𝑚′′ ⊗ 𝑛′′ ↦ 𝑚 ∧ 𝑚′ + 𝑛 ∧ 𝑛′ + 𝑚′′ ∧ 𝑛′′.
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6. If (𝑀,𝐿, 𝜕) is perfect, then 𝐿□𝑀 vanishes, and 𝐿 ⊗𝑀 and 𝐿 ∧𝑀 are iso-
morphic.

7. Given 𝑈 a graded ideal of 𝑀 , the following sequence of Lie superalgebras is
exact:

𝑈 ∧𝑀 →𝑀 ∧𝑀 →
𝑀
𝑈

∧ 𝑀
𝑈

→ 0.

8. If 𝑀 is perfect, the homomorphism

𝑢∶ 𝑀 ⊗𝑀 →𝑀

given by 𝑢
(

𝑚⊗𝑚′) = [𝑚,𝑚′] is the universal central extension.

9. The following sequence of Lie superalgebras,

Γ
(

𝑀ab
) 𝜂
←←←←←←←←←←←←←←→𝑀 ⊗𝑀

𝜋
←←←←←←←←←←←←→𝑀 ∧𝑀 ←←←←←←←→ 0

where 𝜂
(

𝑒𝑚0̄
+ 𝑚⊗𝑚′

)

= 𝑚0̄ ⊗𝑚0̄ + 𝑚⊗𝑚′ + (−1)|𝑚||𝑚
′
|𝑚′ ⊗𝑚, is exact.

Proof. We just offer the proof of the last item, as it involves the Whitehead’s universal
quadratic functor. We must check that the morphism 𝜂 is well defined. On the one
hand, it is straightforward to see that it preserves the relations in Definition 6.1.1. On
the other hand, take [𝑚,𝑚′] ∈ [𝑀,𝑀]0̄. It holds that
𝜂
(

𝑒[𝑚,𝑚′]
)

= [𝑚,𝑚′]⊗ [𝑚,𝑚′] = − (−1)|𝑚||𝑚
′
|

(

𝑚′
𝑚
)

⊗ 𝑚𝑚′ = [𝑚⊗𝑚′, 𝑚 ⊗ 𝑚′] = 0.

Now, let [𝑚,𝑚′] ∈ [𝑀,𝑀].
𝜂
(

[𝑚,𝑚′]⊗ 𝜇
)

=[𝑚,𝑚′]⊗ 𝜇 + (−1)(|𝑚|+|𝑚
′
|)|𝜇| 𝜇 ⊗ [𝑚,𝑚′]

= − (−1)|𝑚||𝑚
′
|𝑚′ ⊗ [𝑚, 𝜇] + (−1)|𝑚||𝑚

′
| (−1)(|𝑚|+|𝑚

′
|)|𝜇| [𝜇,𝑚′]⊗𝑚

+ (−1)(|𝑚|+|𝑚
′
|)|𝜇| 𝜇 ⊗ [𝑚,𝑚′]

= (−1)|𝑚||𝜇| (−1)|𝑚||𝑚
′
|𝑚′ ⊗ [𝜇,𝑚] − (−1)(|𝑚|+|𝑚

′
|)|𝜇| 𝜇 ⊗ [𝑚,𝑚′]

− (−1)|𝑚||𝑚
′
| (−1)|𝑚||𝜇|𝑚′ ⊗ [𝜇,𝑚] + (−1)(|𝑚|+|𝑚

′
|)|𝜇| 𝜇 ⊗ [𝑚,𝑚′]

= 0.
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Analogously, 𝜂 (𝜇 ⊗ [𝑚,𝑚′]
)

= 0. Therefore, the morphism 𝜂 is well defined. Fi-
nally, it is clear that Im 𝜂 = 𝑀□𝑀 = ker 𝜋, and 𝜋 is surjective, so the sequence is
exact.

We finish this section with some considerations about central extensions. An ex-
tension in 𝐗𝐒𝐋𝐢𝐞 is just a surjective morphism; it is central (relative to 𝐀𝐛 ) if and
only if ker 𝜓 ⊆ 𝑍

(

𝑇 ′, 𝐿′, 𝜕′
).

The proofs of the following results are similar to the ones offered in [50] for
crossed modules of Lie algebras; therefore, we omit them. The previous results
needed to carry out these proofs can be found in [91].

Lemma 6.2.5. Let𝜓 ∶
(

𝑇 ′, 𝐿′, 𝜕′
)

→ (𝑇 , 𝐿, 𝜕) be a central extension with
(

𝑇 ′, 𝐿′, 𝜕′
)

perfect, and let 𝜙∶
(

𝑇 ′′, 𝐿′′, 𝜕′′
)

→ (𝑇 , 𝐿, 𝜕) be another central extension. If there
exists a morphism of central extensions 𝜃∶

(

𝑇 ′, 𝐿′, 𝜕′
)

→
(

𝑇 ′′, 𝐿′′, 𝜕′′
)

, then it is
unique.

Also, it is easy to construct a counterexample to the previous result in the case in
which (

𝑇 ′, 𝐿′, 𝜕′
) is not perfect (see [50]).

Lemma 6.2.6. Let (𝑇 , 𝐿, 𝜕) be a crossed module. Then, (𝐿⊗ 𝑇 ,𝐿 ⊗ 𝐿, id⊗𝜕) is
also a crossed module. Moreover, if (𝑇 , 𝐿, 𝜕) is perfect, so is (𝐿⊗ 𝑇 ,𝐿 ⊗ 𝐿, id⊗𝜕).

The previous lemmas help to prove the following theorem.

Theorem 6.2.7. Let (𝑇 , 𝐿, 𝜕) be a perfect crossed module. The morphism

𝜐∶ (𝐿⊗ 𝑇 ,𝐿 ⊗ 𝐿, id⊗𝜕) → (𝑇 , 𝐿, 𝜕)

defined by 𝜐1 (𝑙 ⊗ 𝑡) = 𝑙𝑡 and 𝜐2
(

𝑙 ⊗ 𝑙′
)

= [𝑙, 𝑙′] is a universal central extension of
(𝑇 , 𝐿, 𝜕).

From this theorem and the observation below Lemma 6.2.5 is obtained the fol-
lowing corollary.

Corollary 6.2.8. A crossed module (𝑇 , 𝐿, 𝜕) admits a universal central extension if
and only if it is perfect.
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6.3 The non-abelian tensor and exterior products of crossed
modules

The present section is devoted to the definition of the non-abelian tensor and exterior
products of graded ideal crossed submodules, and their basic properties.

Let (𝑀,𝑃 , 𝜕) and (𝑁,𝑄, 𝜕) two graded ideal crossed submodules of a crossed
module (𝑇 , 𝐿, 𝜕). Considering also the crossed modules (𝑀,𝐿, 𝜕), (𝑁,𝐿, 𝜕), (𝑃 ,𝐿, 𝑖)
and (𝑄,𝐿, 𝑖), we can construct the non-abelian tensor products𝑀⊗𝑁 ,𝑀⊗𝑄, 𝑃⊗𝑁
and 𝑃 ⊗𝑄. By Proposition 6.2.4 (1), there is a homomorphism 𝜉 ∶ 𝑃 ⊗𝑁 → 𝐿, and
also Proposition 6.2.4 (2) ensures the existence of an action of 𝐿 on 𝑀 ⊗ 𝑄. This
yields an action of 𝑃 ⊗𝑁 on 𝑀 ⊗𝑄; similarly, of 𝑃 ⊗𝑄 on 𝑃 ⊗𝑁 and 𝑀 ⊗𝑄.
Lemma 6.3.1. With the above assumptions, the actions of 𝑃 ⊗ 𝑁 on 𝑀 ⊗ 𝑄, of
𝑃 ⊗𝑄 on 𝑃 ⊗𝑁 and of 𝑃 ⊗𝑄 on 𝑀 ⊗𝑄, respectively, are given explicitly by:

1. 𝑝⊗𝑛 (𝑚⊗ 𝑞) = 𝑝𝑛 ⊗ 𝑚𝑞.

2. 𝑝⊗𝑞 (𝑝′ ⊗ 𝑛
)

= 𝑝𝑞 ⊗ 𝑝′𝑛.

3. 𝑝⊗𝑞 (𝑚⊗ 𝑞′
)

= (−1)|𝑚||𝑞
′
| (−1)(|𝑝|+|𝑞|)(|𝑚|+|𝑞

′
|) (𝑞′𝑚

)

⊗ 𝑝𝑞.

Proof. Routine.
The action of 𝑃 ⊗ 𝑁 on 𝑀 ⊗ 𝑄 allows us to construct the semidirect product

(𝑀 ⊗𝑄)⋊ (𝑃 ⊗𝑁), and the homomorphisms of Lie superalgebras defined by

𝛼∶ 𝑀 ⊗𝑁 → (𝑀 ⊗𝑄)⋊ (𝑃 ⊗𝑁) ,
𝑚 ⊗ 𝑛 ↦ −𝑚⊗ 𝜕 (𝑛) + 𝜕 (𝑚)⊗ 𝑛,

𝛽 ∶ (𝑀 ⊗𝑄)⋊ (𝑃 ⊗𝑁) → 𝑃 ⊗𝑄.
𝑚 ⊗ 𝑞 + 𝑝 ⊗ 𝑛 ↦ 𝜕 (𝑚)⊗ 𝑞 + 𝑝 ⊗ 𝜕 (𝑛) .

Lemma 6.3.1 helps to check that the previous maps are indeed homomorphisms,
and also to prove the following lemma, fundamental for our main definitions.
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Lemma 6.3.2. In the previous conditions, we have

1. The image of 𝛼 is a graded ideal in (𝑀 ⊗𝑄)⋊ (𝑃 ⊗𝑁).

2. There is an action of 𝑃 ⊗𝑄 on (𝑀 ⊗𝑄)⋊ (𝑃 ⊗𝑁) determined by

𝑝′⊗𝑞′ (𝑚⊗ 𝑞 + 𝑝 ⊗ 𝑛) = 𝑝′⊗𝑞′ (𝑚⊗ 𝑞) + 𝑝′⊗𝑞′ (𝑝 ⊗ 𝑛) .

3. If 𝛿∶ coker 𝛼 → 𝑃 ⊗ 𝑄 is the homomorphism induced by 𝛽, then the triple
(coker 𝛼, 𝑃 ⊗ 𝑄, 𝛿) is a crossed module with the action induced by the part (2).

Proof. Similar to the proof of [193, Lemma 3.1].
Let 𝐼 be the graded subalgebra of coker 𝛼 generated by the elements

𝑥 ⊗ 𝑦 + (−1)|𝑥||𝑦| 𝑦 ⊗ 𝑥 + 𝜕
(

𝑧0̄
)

⊗ 𝑧0̄ + Im 𝛼,

𝑥 ⊗ 𝑦 + (−1)|𝑥||𝑦| 𝑦 ⊗ 𝑥 + 𝜕 (𝑧)⊗ 𝑧′ + (−1)|𝑧||𝑧
′
| 𝜕

(

𝑧′
)

⊗ 𝑧 + Im 𝛼,

such that 𝑥, 𝑧, 𝑧′ ∈ 𝑀 ∩ 𝑁 , 𝑧0̄ ∈ 𝑀0̄ ∩ 𝑁0̄ and 𝑦 ∈ 𝑃 ∩ 𝑄. We easily check that
𝛿 (𝐼) ⊆ 𝑃□𝑄.

Lemma 6.3.3. The crossed module (𝐼, 𝑃□𝑄, 𝛿) is a graded ideal crossed submodule
of (coker 𝛼, 𝑃 ⊗ 𝑄, 𝛿).

Proof. As 𝑃□𝑄 is a graded ideal of 𝑃 ⊗ 𝑄, we just have to prove that the action of
𝑃 ⊗𝑄 on 𝐼 remains in 𝐼 and that the action of 𝑃□𝑄 on coker𝛼 also lies in 𝐼 (in fact,
we will prove that it is trivial). Applying Lemma 6.3.1, and with the usual notations,
we have that

𝑝⊗𝑞 (
𝑥 ⊗ 𝑦 + (−1)|𝑥||𝑦| 𝑦 ⊗ 𝑥 + 𝜕

(

𝑧0̄
)

⊗ 𝑧0̄
)

+ Im 𝛼

= (−1)|𝑥||𝑦| (−1)(|𝑝|+|𝑞|)(|𝑥|+|𝑦|) (𝑦𝑥)⊗ 𝑝𝑞 + (−1)|𝑥||𝑦| (𝑝𝑞)⊗ 𝑦𝑥 + 𝑝𝑞 ⊗ [𝑧0̄, 𝑧0̄] + Im 𝛼

= (−1)|𝑥||𝑦| (−1)(|𝑝|+|𝑞|)(|𝑥|+|𝑦|)
(𝑦𝑥 ⊗ 𝑝𝑞 + (−1)(|𝑝|+|𝑞|)(|𝑥|+|𝑦|) (𝑝𝑞)⊗ 𝑦𝑥

)

+ Im 𝛼 ∈ 𝐼 ;
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𝑝⊗𝑞 (
𝑥 ⊗ 𝑦 + (−1)|𝑥||𝑦| 𝑦 ⊗ 𝑥 + 𝜕 (𝑧)⊗ 𝑧′ + (−1)|𝑧||𝑧

′
| 𝜕

(

𝑧′
)

⊗ 𝑧
)

+ Im 𝛼

= (−1)|𝑥||𝑦| (−1)(|𝑝|+|𝑞|)(|𝑥|+|𝑦|) (𝑦𝑥)⊗ 𝑝𝑞

+ (−1)|𝑥||𝑦| (𝑝𝑞)⊗ 𝑦𝑥 + 𝑝𝑞 ⊗ [𝑧, 𝑧′] + (−1)|𝑧||𝑧
′
| (𝑝𝑞)⊗ [𝑧′, 𝑧] + Im 𝛼

= (−1)|𝑥||𝑦| (−1)(|𝑝|+|𝑞|)(|𝑥|+|𝑦|)
(𝑦𝑥 ⊗ 𝑝𝑞 + (−1)(|𝑝|+|𝑞|)(|𝑥|+|𝑦|) (𝑝𝑞)⊗ 𝑦𝑥

)

+ Im 𝛼 ∈ 𝐼 ;

therefore, the first condition holds. As for the second one, 𝑃□𝑄 is generated by the
elements 𝑝0̄ ⊗ 𝑞0̄ and 𝑝 ⊗ 𝑞 + (−1)|𝑝

′
||𝑞′| 𝑝′ ⊗ 𝑞′, with 𝑖 (𝑝0̄

)

= 𝑖
(

𝑞0̄
), 𝑖 (𝑝) = 𝑖

(

𝑞′
)

and 𝑖 (𝑝′) = 𝑖 (𝑞). Motivated by these restrictions, we will work with the elements
𝑙0̄ ⊗ 𝑙0̄ and 𝑙 ⊗ 𝑙′ + (−1)|𝑙||𝑙

′
| 𝑙′ ⊗ 𝑙. Applying again Lemma 6.3.1, we see that

𝑙0̄⊗𝑙0̄ (𝑚⊗ 𝑞 + 𝑝 ⊗ 𝑛 + Im 𝛼) = (−1)|𝑚||𝑞| (𝑞𝑚)⊗ [𝑙0̄, 𝑙0̄] + [𝑙0̄, 𝑙0̄]⊗
𝑝𝑛 + Im 𝛼 = 0;

𝑙⊗𝑙′+(−1)|𝑙||𝑙
′
|𝑙′⊗𝑙 ((𝑚⊗ 𝑞, 𝑝 ⊗ 𝑛) + Im 𝛼)

= (−1)|𝑚||𝑞| (−1)(|𝑙|+|𝑙
′
|)(|𝑚|+|𝑞|)

(

𝑞𝑚⊗ [𝑙, 𝑙′] + (−1)|𝑙||𝑙
′
| (𝑞𝑚)⊗ [𝑙′, 𝑙]

)

+ [𝑙, 𝑙′]⊗ 𝑝𝑛 + (−1)|𝑙||𝑙
′
| [𝑙′, 𝑙]⊗ 𝑝𝑛 + Im 𝛼 = 0.

Therefore, the action of 𝑃□𝑄 on coker 𝛼 is trivial, and the lemma is proved.
Now, we present the main definitions of this chapter.

Definition 6.3.4. Let (𝑀,𝑃 , 𝜕) and (𝑁,𝑄, 𝜕) two graded ideal crossed submodules
of a crossed module (𝑇 , 𝐿, 𝜕). With the previous notations, we define the non-abelian
tensor product of (𝑀,𝑃 , 𝜕) and (𝑁,𝑄, 𝜕) as

(𝑀,𝑃 , 𝜕)⊗ (𝑁,𝑄, 𝜕) = (coker 𝛼, 𝑃 ⊗ 𝑄, 𝛿) ,

and the exterior product as
(𝑀,𝑃 , 𝜕) ∧ (𝑁,𝑄, 𝜕) =

(coker 𝛼, 𝑃 ⊗ 𝑄, 𝛿)
(𝐼, 𝑃□𝑄, 𝛿)

=
(coker 𝛼

𝐼
, 𝑃 ∧𝑄, 𝛿

)

.

For coherence with the theory of Lie algebras and superalgebras, we will denote
(𝐼, 𝑃□𝑄, 𝛿) as (𝑀,𝑃 , 𝜕)□ (𝑁,𝑄, 𝜕).
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The reader should note that the only role played by the crossed module (𝑇 , 𝐿, 𝜕) in
the definition above is to provide a common environment for (𝑀,𝑃 , 𝜕) and (𝑁,𝑄, 𝜕),
which is used to determine the actions specified in Lemma 6.3.1.

As in the case of crossed modules of Lie algebras, we find the following particular
cases:
Proposition 6.3.5.

1. Let 𝑃 and 𝑄 be two graded ideals of a Lie superalgebra 𝐿. Then, we have:

(a) (𝑃 , 𝑃 , id)⊗ (𝑄,𝑄, id) ≅ (𝑃 ⊗𝑄, 𝑃 ⊗ 𝑄, id);

(b) (𝑃 , 𝑃 , id) ∧ (𝑄,𝑄, id) ≅ (𝑃 ∧𝑄, 𝑃 ∧𝑄, id);

(c) (0, 𝑃 , 𝑖)⊗ (0, 𝑄, 𝑖) ≅ (0, 𝑃 ⊗ 𝑄, 𝑖);

(d) (0, 𝑃 , 𝑖) ∧ (0, 𝑄, 𝑖) ≅ (0, 𝑃 ∧𝑄, 𝑖);

2. Let (𝑇 , 𝐿, 𝜕) be a crossed module, and consider the exterior product, (𝑇 , 𝐿, 𝜕)∧
(𝑇 , 𝐿, 𝜕). There is a isomorphism of Lie superalgebras

𝜈 ∶ coker 𝛼
𝐼

→ 𝐿 ∧ 𝑇

𝑡 ⊗ 𝑙 + 𝑙′ ⊗ 𝑡′ + 𝐼 ↦ 𝑙′ ∧ 𝑡′ − (−1)|𝑙||𝑡| 𝑙 ∧ 𝑡,

such that (𝜈, id) ∶ (𝑇 , 𝐿, 𝜕) ∧ (𝑇 , 𝐿, 𝜕) → (𝐿 ∧ 𝑇 , 𝐿 ∧ 𝐿, id ∧𝜕) is an isomor-
phism of crossed modules.

Proof.

1. Routine.
2. To check that 𝜈 is well defined, it suffices to define 𝜈̃ ∶ (𝑇 ⊗ 𝐿)⋊ (𝐿⊗ 𝑇 ) →
𝐿⊗ 𝑇 by 𝜈̃ (𝑡 ⊗ 𝑙 + 𝑙′ ⊗ 𝑡′

)

= 𝑙′ ⊗ 𝑡′ − (−1)|𝑙||𝑡| 𝑙 ⊗ 𝑡. Noting that 𝜈̃ (Im 𝛼) is
contained in𝐿□𝑇 , we see that 𝜈̃ induces a homomorphism 𝜈̄ ∶ coker𝛼 → 𝐿∧𝑇
with kernel ker 𝜈̄ = 𝐼 . Then, 𝜈 is well defined. The rest of the proof is routine.
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The rest of this section is devoted to the study of some basic properties of the non-
abelian tensor and exterior products of crossed modules of Lie superalgebras, which
extend the ones offered in Proposition 6.2.4 (4)–(9) for Lie superalgebras. To that
purpose, we need first this useful lemma.
Lemma 6.3.6. Let (𝑇 , 𝐿, 𝜕) be a crossed module such that 𝜕 is surjective or the action
of 𝐿 on 𝑇 is trivial. Then:

1. For all 𝑡 ∈ 𝑇 and 𝑙, 𝑙′ ∈ 𝐿, it holds that 𝜕
(𝑙𝑡

)

⊗𝑡′ = − (−1)|𝑡
′
|(|𝑙|+|𝑡|) 𝜕

(

𝑡′
)

⊗ 𝑙𝑡.

2. The graded ideal 𝐼 ⊆ coker 𝛼 is abelian.

Proof. We will give the proof for the case in which 𝜕 is surjective, and the other case
is trivial.

1. Routine.
2. Let 𝑥, 𝑦 ∈ 𝐼 . Clearly, [𝑥, 𝑦] = 𝛿(𝑥)𝑦, with 𝛿 (𝑥) ∈ 𝐿□𝐿 ⊆ 𝐿 ⊗ 𝐿; so, it

suffices to prove that the action of𝐿⊗𝐿 on 𝐼 is trivial. It is enough to consider
𝜆 ⊗ 𝜆′ ∈ 𝐿⊗ 𝐿 and the generators of 𝐼 . Using Lemma 6.3.1, part (1) and the
surjectivity of 𝜕, we see that
𝜆⊗𝜆′ (

𝑡 ⊗ 𝑙 + (−1)|𝑡||𝑙| 𝑙 ⊗ 𝑡 + 𝜕
(

𝑧0̄
)

⊗ 𝑧0̄
)

= − (−1)|𝑡||𝑙| (−1)(|𝑡|+|𝑙|)(|𝜆|+|𝜆
′
|) (−1)|𝜆||𝜆

′
|

(𝑙𝑡
)

⊗ [𝜆′, 𝜆]

− (−1)|𝑡||𝑙| (−1)|𝜆||𝜆
′
| [𝜆′, 𝜆]⊗ 𝑙𝑡 − (−1)|𝜆||𝜆

′
| [𝜆′, 𝜆]⊗ [𝑧0̄, 𝑧0̄]

= − (−1)|𝑡||𝑙| (−1)(|𝑡|+|𝑙|)(|𝜆|+|𝜆
′
|) (−1)|𝜆||𝜆

′
|

(𝑙𝑡
)

⊗ [𝜆′, 𝜕 (𝜏)]

− (−1)|𝑡||𝑙| (−1)|𝜆||𝜆
′
| [𝜆′, 𝜕 (𝜏)]⊗ 𝑙𝑡

= − (−1)|𝑡||𝑙| (−1)(|𝑡|+|𝑙|)(|𝜆|+|𝜆
′
|) (−1)|𝜆||𝜆

′
|

(𝑙𝑡
)

⊗ 𝜕
(

𝜆′𝜏
)

− (−1)|𝑡||𝑙| (−1)|𝜆||𝜆
′
| 𝜕

(

𝜆′𝜏
)

⊗ 𝑙𝑡

= (−1)|𝑡||𝑙| (−1)|𝜆||𝜆
′
| (−1)(|𝑡|+|𝑙|)(|𝜆|+|𝜆

′
|)
(

−𝑙𝑡 ⊗ 𝜕
(

𝜆′𝜏
)

+ 𝜕
(𝑙𝑡

)

⊗ 𝜆′𝜏
)

∈ Im 𝛼,

for 𝑧0 ∈ 𝑇0̄, 𝑡, 𝜏 ∈ 𝑇 and 𝑙 ∈ 𝐿. Also, for 𝑡, 𝑧, 𝑧′, 𝜏 ∈ 𝑇 and 𝑙 ∈ 𝐿,



196 6 Non-abelian tensor and exterior products of crossed modules
𝜆⊗𝜆′ (

𝑡 ⊗ 𝑙 + (−1)|𝑡||𝑙| 𝑙 ⊗ 𝑡 + 𝜕 (𝑧)⊗ 𝑧′ + (−1)(|𝑧||𝑧
′
|) 𝜕

(

𝑧′
)

⊗ 𝑧
)

= − (−1)|𝑡||𝑙| (−1)|𝜆||𝜆
′
| (−1)(|𝑡|+|𝑙|)(|𝜆|+|𝜆

′
|) (𝑙𝑡

)

⊗ 𝜕
(

𝜆′𝜏
)

+ (−1)|𝑡||𝑙| (−1)|𝜆||𝜆
′
| (−1)(|𝑡|+|𝑙|)(|𝜆|+|𝜆

′
|) 𝜕

(𝑙𝑡
)

⊗ 𝜆′𝜏

− (−1)|𝜆||𝜆
′
| [𝜆′, 𝜆]⊗ [𝑧, 𝑧′] − (−1)(|𝑧||𝑧

′
|) (−1)|𝜆||𝜆

′
| [𝜆′, 𝜆]⊗ [𝑧′, 𝑧]

= (−1)|𝑡||𝑙| (−1)|𝜆||𝜆
′
| (−1)(|𝑡|+|𝑙|)(|𝜆|+|𝜆

′
|)
(

−𝑙𝑡 ⊗ 𝜕
(

𝜆′𝜏
)

+ 𝜕
(𝑙𝑡

)

⊗ 𝜆′𝜏
)

∈ Im 𝛼.

The lemma is proved.

Proposition 6.3.7. Let (𝑇 , 𝐿, 𝜕) be a perfect crossed module, such that 𝜕 is surjective
or the action of 𝐿 on 𝑇 is trivial. Then,

(𝑇 , 𝐿, 𝜕)⊗ (𝑇 , 𝐿, 𝜕) ≅ (𝑇 , 𝐿, 𝜕) ∧ (𝑇 , 𝐿, 𝜕) .

Proof. We will show that (𝑇 , 𝐿, 𝜕)□ (𝑇 , 𝐿, 𝜕) = (𝐼, 𝐿□𝐿, 𝛿) is zero. As (𝑇 , 𝐿, 𝜕) is
perfect, so is 𝐿, and Proposition 6.2.4 (6) implies that 𝐿□𝐿 is zero. We just have to
check that 𝐼 is also zero. It suffices to show that the generators

𝜆𝜏 ⊗ 𝑦 + (−1)(|𝜆|+|𝜏|)|𝑦| 𝑦 ⊗ 𝜆𝜏 + 𝜕
(𝑙𝑡

)

⊗ 𝑙𝑡 + Im 𝛼, (6.3.1)
with 𝑙, 𝜆, 𝑦 ∈ 𝐿, 𝑡, 𝜏 ∈ 𝑇 and |𝑡| = |𝑙|, and
𝜆𝜏 ⊗𝑦+ (−1)(|𝜆|+|𝜏|)|𝑦| 𝑦⊗ 𝜆𝜏 + 𝜕

(𝑙𝑡
)

⊗ 𝑙′𝑡′ + (−1)(|𝑙|+|𝑡|)(|𝑙
′
|+|𝑡′|) 𝜕

(

𝑙′𝑡′
)

⊗ 𝑙𝑡+ Im 𝛼,
(6.3.2)

with 𝑙, 𝑙′, 𝜆, 𝑦 ∈ 𝐿 and 𝑡, 𝑡′, 𝜏 ∈ 𝑇 , are zero.
Clearly, if the action of 𝐿 on 𝑇 is zero, the assertion is trivial. Therefore, let

us assume that 𝜕 is surjective and 𝑦 = 𝜕 (𝑥). Applying Lemma 6.3.6 (1), we see
that 𝜆𝜏 ⊗ 𝑦 + (−1)(|𝜆|+|𝜏|)|𝑦| 𝑦 ⊗ 𝜆𝜏 = 𝜆𝜏 ⊗ 𝜕 (𝑥) − 𝜕

(𝜆𝜏
)

⊗ 𝑥 ∈ Im 𝛼. Also, for
|𝑡| = |𝑙|, 𝜕 (𝑙𝑡) ⊗ 𝑙𝑡 = −𝜕

(𝑙𝑡
)

⊗ 𝑙𝑡, hence it is zero, and the generator (6.3.1) is
zero. Regarding the generator (6.3.2), 𝜕 (𝑙𝑡)⊗ 𝑙′𝑡′ + (−1)(|𝑙|+|𝑡|)(|𝑙

′
|+|𝑡′|) 𝜕

(𝑙′𝑡′
)

⊗ 𝑙𝑡 =
𝜕
(𝑙𝑡

)

⊗ 𝑙′𝑡′ − 𝜕
(𝑙𝑡

)

⊗ 𝑙′𝑡′ = 0, so it is also zero. This completes the proof.
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Theorem 6.3.8. Let (𝑇 , 𝐿, 𝜕) be a perfect crossed module such that 𝜕 is surjective or
the action of 𝐿 on 𝑇 is trivial. The morphism

𝜅 =
(

𝜅1, 𝜅2
)

∶ (𝑇 , 𝐿, 𝜕)⊗ (𝑇 , 𝐿, 𝜕) → (𝑇 , 𝐿, 𝜕)

given by 𝜅1
(

𝑡 ⊗ 𝑙 + 𝑙′ ⊗ 𝑡′ + Im 𝛼
)

= 𝑙′𝑡′ − (−1)|𝑡||𝑙|
(𝑙𝑡

)

and 𝜅2
(

𝑙 ⊗ 𝑙′
)

= [𝑙, 𝑙′] is a
universal central extension of (𝑇 , 𝐿, 𝜕).

Proof. In view of Theorem 6.2.7, we just have to prove that there exists an isomor-
phism 𝜔∶ (𝑇 , 𝐿, 𝜕)⊗ (𝑇 , 𝐿, 𝜕) → (𝐿⊗ 𝑇 ,𝐿 ⊗ 𝐿, id⊗𝜕) such that 𝜐𝜔 = 𝜅. Indeed,
the combination of Proposition 6.3.7, Proposition 6.3.5 (2) and Proposition 6.2.4 (6)
gives the desired isomorphism.
Proposition 6.3.9. Let (𝑀,𝑃 , 𝜕) and (𝑁,𝑄, 𝜕) be two graded ideal crossed submod-
ules of (𝑇 , 𝐿, 𝜕).

1. If the commutator [(𝑀,𝑃 , 𝜕) , (𝑁,𝑄, 𝜕)] is trivial, then

(𝑀,𝑃 , 𝜕)⊗ (𝑁,𝑄, 𝜕) ≅ (𝑀,𝑃 , 𝜕)ab ⊗ (𝑁,𝑄, 𝜕)ab .

2. The following natural sequence of crossed modules is exact:

(𝑀,𝑃 , 𝜕) ∧ (𝑇 , 𝐿, 𝜕) → (𝑇 , 𝐿, 𝜕) ∧ (𝑇 , 𝐿, 𝜕) →
(𝑇 , 𝐿, 𝜕)
(𝑀,𝑃 , 𝜕)

∧
(𝑇 , 𝐿, 𝜕)
(𝑀,𝑃 , 𝜕)

→ 0.

Proof.

1. It follows from the definitions, Proposition 6.2.4 (4) and the fact that, in our
conditions, 𝑀

[𝑃 ,𝑀]
⊗𝑄ab and𝑀⊗𝑄 are isomorphic (similarly, 𝑃ab⊗ 𝑁

[𝑄,𝑁]
and

𝑃 ⊗𝑁).
2. We give a sketch of the proof.

Let us fix the following terminology:
(𝑀,𝑃 , 𝜕) ∧ (𝑇 , 𝐿, 𝜕) =

(coker 𝛼̃∕𝐼, 𝑃 ∧ 𝐿, 𝛿
)

;

(𝑇 , 𝐿, 𝜕) ∧ (𝑇 , 𝐿, 𝜕) = (coker 𝛼∕𝐼, 𝐿 ∧ 𝐿, 𝛿) ;
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(𝑇 , 𝐿, 𝜕)
(𝑀,𝑃 , 𝜕)

∧
(𝑇 , 𝐿, 𝜕)
(𝑀,𝑃 , 𝜕)

=
(

coker 𝛼̄∕𝐼, 𝐿
𝑃

∧ 𝐿
𝑃
, 𝛿
)

.

Let 𝜛1 ∶ coker 𝛼∕𝐼 → coker 𝛼̄∕𝐼 and 𝜛2 ∶ 𝐿 ∧ 𝐿 → 𝐿∕𝑃 ∧ 𝐿∕𝑃 be the sur-
jective homomorphisms induced by the projections 𝑇 → 𝑇 ∕𝑀 and𝐿→ 𝐿∕𝑃 .
Then, 𝜛 =

(

𝜛1, 𝜛2
)

∶ (𝑇 , 𝐿, 𝜕) ∧ (𝑇 , 𝐿, 𝜕) →
(𝑇 , 𝐿, 𝜕)
(𝑀,𝑃 , 𝜕)

∧
(𝑇 , 𝐿, 𝜕)
(𝑀,𝑃 , 𝜕)

is a
surjective morphism of crossed modules. Also, consider the following homo-
morphism induced by the natural inclusions,𝑀⊗𝐿⋊𝑃⊗𝑇 → 𝑇 ⊗𝐿⋊𝐿⊗𝑇 ,
which in turn induces 𝜌1 ∶ coker 𝛼̃∕𝐼 → coker 𝛼∕𝐼 , and 𝜌2 ∶ 𝑃 ∧ 𝐿 → 𝐿 ∧ 𝐿.
They provide another morphism of crossed modules 𝜌 = (

𝜌1, 𝜌2
)

∶ (𝑀,𝑃 , 𝜕)∧
(𝑇 , 𝐿, 𝜕) → (𝑇 , 𝐿, 𝜕) ∧ (𝑇 , 𝐿, 𝜕). To see that ker𝜛 = Im 𝜌, we define the
homomorphism 𝜗∶ (𝑇 ∕𝑀 ⊗𝐿∕𝑃 ) ⋊ (𝐿∕𝑃 ⊗ 𝑇 ∕𝑀) → coker 𝜌1 given by
𝜗
(

(𝑡 +𝑀)⊗ (𝑙 + 𝑃 ) +
(

𝑙′ + 𝑃
)

⊗
(

𝑡′ +𝑀
))

= 𝑡 ⊗ 𝑙 + 𝑙′ ⊗ 𝑡′ + Im 𝜌1. It in-
duces an isomorphism 𝜗̃∶ coker 𝛼̄∕𝐼 → coker 𝜌1 with inverse induced by 𝜛1;
this makes clear that ker𝜛1 = Im 𝜌1. Also, ker𝜛2 = Im 𝜌2 by Proposi-
tion 6.2.4 (7). This concludes the proof.

Theorem 6.3.10. Let
(

𝑇1, 𝐿1, 𝜕1
)

and
(

𝑇2, 𝐿2, 𝜕2
)

be two arbitrary crossed modules.
Then

((

𝑇1, 𝐿1, 𝜕1
)

⊕
(

𝑇2, 𝐿2, 𝜕2
))

∧
((

𝑇1, 𝐿1, 𝜕1
)

⊕
(

𝑇2, 𝐿2, 𝜕2
))

≅
((

𝑇1, 𝐿1, 𝜕1
)

∧
(

𝑇1, 𝐿1, 𝜕1
))

⊕
((

𝑇2, 𝐿2, 𝜕2
)

∧
(

𝑇2, 𝐿2, 𝜕2
))

⊕
((

𝑇1, 𝐿1, 𝜕1
)

ab ⊗𝑅
(

𝑇2, 𝐿2, 𝜕2
)

ab

)

,

where the last crossed module is the tensor product of abelian objects of Defini-
tion 6.2.3.
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Proof. Denoting 𝑇𝑖 = 𝑇𝑖∕[𝐿𝑖, 𝑇𝑖] and 𝐿𝑖 =
(

𝐿𝑖
)

ab, for 𝑖 ∈ {1, 2}, we will construct
an isomorphism 𝜓 = (𝜒, 𝜁) between both crossed modules

(

𝐿1 ⊕𝐿2
)

∧
(

𝑇1 ⊕ 𝑇2
)

id ∧(𝜕1⊕𝜕2)
��

𝜒 //
(

𝐿1 ∧ 𝑇1
)

⊕
(

𝐿2 ∧ 𝑇2
)

⊕ coker 𝛼𝑅
(id ∧𝜕1)⊕(id ∧𝜕2)⊕𝛿𝑅
��

(

𝐿1 ⊕𝐿2
)

∧
(

𝐿1 ⊕𝐿2
) 𝜁 //

(

𝐿1 ∧ 𝐿1
)

⊕
(

𝐿2 ∧ 𝐿2
)

⊕
(

𝐿1 ⊗𝐿2

)

.

The homomorphism 𝜁 will be the isomorphism defined in Proposition 6.2.4 (5); as
for 𝜒 , we define it on generators as

𝜒
((

𝑙1 + 𝑙2
)

∧
(

𝑡1 + 𝑡2
))

= 𝑙1 ∧ 𝑡1 + 𝑙2 ∧ 𝑡2 − (−1)|𝑡1||𝑙2| 𝑡1 ⊗ 𝑙2 + 𝑙1 ⊗ 𝑡2 + Im 𝛼𝑅.

Routine calculations show that 𝜒 is well defined and it extends to an homomorphism
of Lie superalgebras. We construct the inverse homomorphism as follows: consider
the maps

𝜑1 ∶ 𝐿1 ∧ 𝑇1 →
(

𝐿1 ⊕𝐿2
)

∧
(

𝑇1 ⊕ 𝑇2
)

, 𝑙1 ∧ 𝑡1 ↦ 𝑙1 ∧ 𝑡1;

𝜑2 ∶ 𝐿2 ∧ 𝑇2 →
(

𝐿1 ⊕𝐿2
)

∧
(

𝑇1 ⊕ 𝑇2
)

, 𝑙2 ∧ 𝑡2 ↦ 𝑙2 ∧ 𝑡2;

𝜑3 ∶ 𝑇1 ⊗𝐿2 →
(

𝐿1 ⊕𝐿2
)

∧
(

𝑇1 ⊕ 𝑇2
)

, 𝑡1 ⊗ 𝑙2 ↦ − (−1)|𝑡1||𝑙2| 𝑙2 ∧ 𝑡1;

𝜑4 ∶ 𝐿1 ⊗ 𝑇2 →
(

𝐿1 ⊕𝐿2
)

∧
(

𝑇1 ⊕ 𝑇2
)

, 𝑙1 ⊗ 𝑡2 ↦ 𝑙1 ∧ 𝑡2;

all of them are well defined and extend to Lie superalgebra homomorphisms. Also,
𝜑3 and 𝜑4 define another homomorphism, 𝜑̃∶ coker 𝛼𝑅 →

(

𝐿1 ⊕𝐿2
)

∧
(

𝑇1 ⊕ 𝑇2
)

with 𝜑̃
(

𝑡1 ⊗ 𝑙2 + 𝑙1 ⊗ 𝑡2 + Im 𝛼
)

= 𝜑3
(

𝑡1 ⊗ 𝑙2
)

+ 𝜑4
(

𝑙1 ⊗ 𝑡2
)

.
Finally, we construct 𝜑 = ⟨𝜑1, 𝜑2, 𝜑̃⟩

𝜑∶
(

𝐿1 ∧ 𝑇1
)

⊕
(

𝐿2 ∧ 𝑇2
)

⊕ coker 𝛼𝑅 →
(

𝐿1 ⊕𝐿2
)

∧
(

𝑇1 ⊕ 𝑇2
)

,

which is an inverse to 𝜒 . The pair of isomorphisms (𝜒, 𝜁) satisfies the conditions to
be an isomorphism of crossed modules, and the theorem is proved.
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We will finish this section by studying the kernel of the projection
𝜋 =

(

𝜋1, 𝜋2
)

∶ (𝑇 , 𝐿, 𝜕)⊗ (𝑇 , 𝐿, 𝜕) → (𝑇 , 𝐿, 𝜕) ∧ (𝑇 , 𝐿, 𝜕) .

First, we present a definition which will be fundamental for the last theorem of the
section (cf. [189] for the case of abelian crossed modules of groups, and [193] for
abelian crossed modules of Lie algebras).
Definition 6.3.11. Let (𝐴,𝐵, 𝜕) an abelian crossed module, and denote by 𝐵⊗𝐴 the
tensor product 𝐵 ⊗𝐴 subject to the homogeneous relation

𝜕 (𝑎)⊗ 𝑎′ = (−1)|𝑎||𝑎
′
| 𝜕

(

𝑎′
)

⊗ 𝑎,

for all 𝑎, 𝑎′ ∈ 𝐴. Consider also the Lie homomorphism
𝑓 ∶ 𝐴⊗𝐴 →

(

𝐵⊗𝐴
)

⊕ Γ (𝐴)

𝑎 ⊗ 𝑎′ ↦ 𝜕 (𝑎)⊗ 𝑎′ − 𝑎 ⊗ 𝑎′,

and denote Γ̃ (𝐴,𝐵, 𝜕) ∶= coker 𝑓 . Then we define Γ (𝐴,𝐵, 𝜕) to be the abelian
crossed module

(

Γ̃ (𝐴,𝐵, 𝜕) ,Γ (𝐵) , 𝜕Γ
)

, where 𝜕Γ is determined by

𝜕Γ
(

𝑏 ⊗ 𝑎 + 𝑒𝑎0̄ + 𝛼 ⊗ 𝛼′
)

= 𝑒𝜕(𝑎0̄) + 𝑏 ⊗ 𝜕 (𝑎) + 𝜕 (𝛼)⊗ 𝜕
(

𝛼′
)

.

Theorem 6.3.12. Let (𝑇 , 𝐿, 𝜕) be a crossed module such that 𝜕 is surjective or the
action of 𝐿 on 𝑇 is trivial. Then, there is an exact sequence

Γ
(

(𝑇 , 𝐿, 𝜕)ab
) (𝜂1,𝜂2)
←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ (𝑇 , 𝐿, 𝜕)⊗ (𝑇 , 𝐿, 𝜕)

(𝜋1,𝜋2)
←←←←←←←←←←←←←←←←←←←←←←←←←←→ (𝑇 , 𝐿, 𝜕) ∧ (𝑇 , 𝐿, 𝜕) ←←←←←←←←←←→ 0.

Proof. Let 𝑇 = 𝑇 ∕[𝐿, 𝑇 ] and 𝐿 = 𝐿ab. We want to find a morphism of crossed
modules 𝜂∶ Γ

(

(𝑇 , 𝐿, 𝜕)ab
)

→ (𝑇 , 𝐿, 𝜕) ⊗ (𝑇 , 𝐿, 𝜕) such that Im 𝜂 = (𝐼, 𝐿□𝐿, 𝛿);
i.e. two surjective homomorphisms of Lie superalgebras 𝜂1, 𝜂2 making commutative

Γ̃
(

(𝑇 , 𝐿, 𝜕)ab
) 𝜕Γ //

𝜂1
��

Γ
(

𝐿
)

𝜂2
��

𝐼
𝛿

// 𝐿□𝐿.
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Note that such homomorphisms preserve the actions of the crossed modules, as𝐿□𝐿
acts trivially on 𝐼 ⊆ coker 𝛼, as it was pointed out in Lemma 6.3.3.

The component 𝜂2 will be the homomorphism 𝜂 given in Proposition 6.2.4 (9). As
for 𝜂1, it will be induced by a homomorphism 𝑔 = ⟨𝑔1, 𝑔2⟩∶

(

𝐿⊗𝑇
)

⊕ Γ
(

𝑇
)

→ 𝐼
which vanishes on Im 𝑓 .

We define 𝑔1 ∶ 𝐿⊗𝑇 → 𝐼 on generators as 𝑔1
(

𝑙 ⊗ 𝑡
)

= (−1)|𝑙||𝑡| 𝑡⊗𝑙+𝑙⊗𝑡+Im𝛼.
Easy calculations lead us to check that 𝑔1 is well defined, and also that it induces
another Lie homomorphism 𝑔1 ∶ 𝐿⊗𝑇 → 𝐼 .

We will explain the construction of 𝑔2 more carefully, due to the complexity of
the object Γ

(

𝑇
)

comparatively to the classical case of modules. We define

ℎ̃1 ∶ 𝑇0̄ → 𝐼, 𝑡0̄ ↦ 𝜕
(

𝑡0̄
)

⊗ 𝑡0̄ + Im 𝛼;

ℎ2 ∶ 𝑇 ⊗ 𝑇 → 𝐼, 𝑡 ⊗ 𝑡′ ↦ 𝜕 (𝑡)⊗ 𝑡′ + (−1)|𝑡||𝑡
′
| 𝜕

(

𝑡′
)

⊗ 𝑡 + Im 𝛼.

The map ℎ̃1 is well defined: if 𝑡0̄ = 𝑡′
0̄
+ 𝑥, with 𝑥 ∈ [𝐿, 𝑇 ], we have that

ℎ̃1
(

𝑡0̄
)

= 𝜕
(

𝑡0̄
)

⊗ 𝑡0̄ + Im 𝛼

= 𝜕
(

𝑡′
0̄

)

⊗ 𝑡′
0̄
+ 𝜕

(

𝑡′
0̄

)

⊗ 𝑥 + 𝜕 (𝑥)⊗ 𝑡′
0̄
+ 𝜕 (𝑥)⊗ 𝑥 + Im 𝛼 = ℎ̃1

(

𝑡′
0̄

)

,

as Lemma 6.3.6 (1) assures that 𝜕
(

𝑡′
0̄

)

⊗𝑥 = −𝜕 (𝑥)⊗𝑡′
0̄

(and, in particular, 𝜕 (𝑥)⊗𝑥 =
−𝜕 (𝑥)⊗ 𝑥 = 0). Furthermore, the map is a homomorphism of supermodules, and it
induces another homomorphism

ℎ1 ∶ 𝑅𝑇0̄ → 𝐼

𝑒𝑡0̄ ↦ ℎ̃1
(

𝑡0̄
)

.

Regarding ℎ2, Lemma 6.3.6 (1) again allows to check that it is well defined, and
it leads to another homomorphism of supermodules. We define now

𝑔2 = ⟨ℎ1, ℎ2⟩∶ 𝑅𝑇0̄ ⊕
(

𝑇 ⊗ 𝑇
)

→ 𝐼

𝑒𝑡0̄ + 𝑡 ⊗ 𝑡′ ↦ ℎ1
(

𝑒𝑡0̄

)

+ ℎ2
(

𝑡 ⊗ 𝑡′
)

.
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It is easy to see that 𝑔2 vanishes on the relations of Definition 6.1.1; then, it induces a
homomorphism of supermodules 𝑔2 ∶ Γ

(

𝑇
)

→ 𝐼 . Giving to Γ
(

𝑇
)

the trivial struc-
ture of abelian Lie superalgebra, 𝑔2 will be also homomorphism of Lie superalgebras
due to Lemma 6.3.6 (2).

Finally, 𝑔 = ⟨𝑔1, 𝑔2⟩∶
(

𝐿⊗𝑇
)

⊕ Γ
(

𝑇
)

→ 𝐼 is a homomorphism of Lie su-
peralgebras which vanishes on Im 𝑓 , as 𝑔

(

𝑓
(

𝑡 ⊗ 𝑡′
))

∈ Im 𝛼. Then, 𝑔 induces
𝜂1 ∶ Γ̃

(

(𝑇 , 𝐿, 𝜕)ab
)

→ 𝐼 , which is surjective and satisfies 𝛿𝜂1 = 𝜂2𝜕Γ. The theorem
is proved.

Note that Proposition 6.3.7 can also be obtained as a trivial corollary of Theo-
rem 6.3.12.

6.4 Applications to the second homology of crossed modules

This section is devoted to deal with the connection between the exterior products with
the second homologies of crossed modules of Lie superalgebras, and generalise some
known results of the second homology of Lie superalgebras to the second homology
of crossed modules.

It will be shown that the category XSLie of crossed modules of Lie superalgebras
is an algebraic category, that is, there exists a tripleable forgetful functor from XSLie
to the category of ℤ2-graded sets, 𝟐−𝐒𝐞𝐭.

Firstly we construct an adjoint pair of functors 𝟐−𝐒𝐞𝐭
 // 𝐗𝐒𝐋𝐢𝐞

oo . In fact, the

usual forgetful functor 1 ∶ 𝐒𝐋𝐢𝐞 → 𝟐−𝐒𝐞𝐭 has a left adjoint 1 ∶ 𝟐−𝐒𝐞𝐭 → 𝐒𝐋𝐢𝐞,
where 1 (𝑋) is the free Lie superalgebra on 𝑋. On the other hand, there is a faithful
functor 2 ∶ 𝐗𝐒𝐋𝐢𝐞 → 𝐒𝐋𝐢𝐞, which assigns to a crossed module (𝑇 , 𝐿, 𝜕) the direct
product of Lie superalgebras 𝑇 ×𝐿. Now, we define the functor 2 ∶ 𝐒𝐋𝐢𝐞 → 𝐗𝐒𝐋𝐢𝐞
as follows: for any Lie superalgebra 𝑀 , let 2 (𝑀) denote the inclusion crossed
module

(

𝑀,𝑀 ∗𝑀, inc
)

, where 𝑀 ∗ 𝑀 is the coproduct of 𝑀 with itself, with
the natural inclusions 𝑖1, 𝑖2 ∶ 𝑀 → 𝑀 ∗ 𝑀 , and 𝑀 is the kernel of the retraction
𝑝2 ∶ 𝑀 ∗𝑀 →𝑀 determined by the conditions 𝑝2𝑖1 = 0 and 𝑝2𝑖2 = id𝑀 .
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Proposition 6.4.1. The functor 2 is left adjoint to the functor 2.

Proof. Let 𝑀 be a Lie superalgebra. Our assertion is that the homomorphism
(

𝑖1, 𝑖2
)

∶ 𝑀 →𝑀 × (𝑀 ∗𝑀)

is a universal arrow from 𝑀 to the functor 2.
Given a crossed module (𝑇 , 𝐿, 𝜕), let 𝑓𝑇 ∶ 𝑀 → 𝑇 , 𝑓𝐿 ∶ 𝑀 → 𝐿 be two ho-

momorphisms of Lie superalgebras and define the homomorphism (

𝑓𝑇 , 𝑓𝐿
)

∶ 𝑀 →

𝑇 ×𝐿 = 2 (𝑇 , 𝐿, 𝜕). Denoting by 𝑖∶ 𝑇 → 𝑇 ⋊𝐿, 𝑗 ∶ 𝐿→ 𝑇 ⋊𝐿 the natural inclu-
sions, we construct the following commutative diagram with split exact sequences of
Lie superalgebras:

𝑀

𝑔𝑇
��

// inc //𝑀 ∗𝑀

ℎ
��

𝑝2 //𝑀

𝑓𝐿
��

𝑖2
mm

𝑇 // 𝑖 // 𝑇 ⋊ 𝐿
𝑝 // 𝐿,
𝑗
mm

where ℎ is the Lie superalgebra homomorphism satisfying ℎ𝑖1 = 𝑖𝑓𝑇 and ℎ𝑖2 = 𝑗𝑓𝐿
defined by the universal property of the coproduct, and 𝑔𝑇 is the restriction of ℎ to𝑀 .
It also holds that 𝑝ℎ = 𝑓𝐿𝑝2, as can be easily checked. Again, the universal property of
the coproduct defines a unique Lie superalgebra homomorphism 𝑔𝐿 ∶ 𝑀 ∗ 𝑀 → 𝐿
satisfying 𝑔𝐿𝑖1 = 𝜕𝑓𝑇 and 𝑔𝐿𝑖2 = 𝑓𝐿.

Next, we will show that (𝑔𝑇 , 𝑔𝐿
)

∶
(

𝑀,𝑀 ∗𝑀, inc
)

→ (𝑇 , 𝐿, 𝜕) is the unique
morphism of crossed modules satisfying (

𝑔𝑇 × 𝑔𝐿
) (

𝑖1, 𝑖2
)

=
(

𝑓𝑇 , 𝑓𝐿
). Let 𝑚 ∈ 𝑀

and 𝑚̄ ∈𝑀 be arbitrary. We have
𝑔𝑇 [𝑖1 (𝑚) , 𝑚̄] = [𝑓𝑇 (𝑚) , 𝑔𝑇 (𝑚̄)] = 𝜕𝑓𝑇 (𝑚)𝑔𝑇 (𝑚̄) = 𝑔𝐿𝑖1(𝑚)𝑔𝑇 (𝑚̄),

𝑔𝑇 [𝑖2 (𝑚) , 𝑚̄] = [𝑗𝑓𝐿 (𝑚) , 𝑖𝑔𝑇 (𝑚̄)] = 𝑓𝐿(𝑚)𝑔𝑇 (𝑚̄) = 𝑔𝐿𝑖2(𝑚)𝑔𝑇 (𝑚̄);

it follows that 𝑔𝑇 [𝑧, 𝑚̄] = 𝑔𝐿(𝑧)𝑔𝑇 (𝑚̄) for any 𝑧 ∈𝑀 ∗𝑀 and 𝑚̄ ∈𝑀 .
Furthermore, since 𝑀 is the graded ideal of 𝑀 ∗𝑀 generated by Im 𝑖1, it holds

that
𝜕𝑔𝑇 𝑖1 (𝑚) = 𝜕𝑓𝑇 (𝑚) = 𝑔𝐿𝑖1 (𝑚) ,
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𝜕𝑔𝑇 [𝑧, 𝑖1 (𝑚)] = 𝜕
(𝑔𝐿(𝑧)𝑔𝑇 𝑖1 (𝑚)

)

= 𝜕
(𝑔𝐿(𝑧)𝑓𝑇 (𝑚)

)

= [𝑔𝐿 (𝑧) , 𝜕𝑓𝑇 (𝑚)]

= [𝑔𝐿 (𝑧) , 𝑔𝐿𝑖1 (𝑚)] = 𝑔𝐿[𝑧, 𝑖1 (𝑚)],

and hence 𝜕𝑔𝑇 = 𝑔𝐿 inc.
We conclude that (𝑔𝑇 , 𝑔𝐿

) is a morphism of crossed modules such that
(

𝑔𝑇 × 𝑔𝐿
) (

𝑖1, 𝑖2
)

=
(

𝑓𝑇 , 𝑓𝐿
)

,

and it is clearly the unique satisfying this condition.

Composing the functors 2 and 1, we have the underlying set functor
 = 12 ∶ 𝐗𝐒𝐋𝐢𝐞 → 𝟐−𝐒𝐞𝐭, (𝑇 , 𝐿, 𝜕) ↦ 𝑇 × 𝐿,

which assigns to any crossed module (𝑇 , 𝐿, 𝜕) the cartesian product of the underly-
ing ℤ2-graded sets of the Lie superalgebras 𝑇 and 𝐿. Therefore, the functor  =
21 ∶ 𝟐−𝐒𝐞𝐭 → 𝐗𝐒𝐋𝐢𝐞 is left adjoint to  . Let 𝔾 = (𝐺, 𝜀, 𝛿) be the cotriple on the
category 𝐗𝐒𝐋𝐢𝐞 generated by the adjoint pair of functors  and  , 𝐺 =  .

Following [79], which extends the Barr and Beck’s definition of cotriple homol-
ogy [20] to the semiabelian context, we define the cotriple homology of crossed mod-
ules of Lie superalgebras.
Definition 6.4.2. The 𝑛-th cotriple homology of the crossed module (𝑇 , 𝐿, 𝜕) is de-
fined by the formula

𝐻𝑛 (𝑇 , 𝐿, 𝜕) = 𝐻𝑛−1𝑁𝔾 (𝑇 , 𝐿, 𝜕)ab , 𝑛 ≥ 1.

This defines a functor 𝐻𝑛 ∶ 𝐗𝐒𝐋𝐢𝐞 → 𝐀𝐛, for any 𝑛 ≥ 1.
Analogously to the theory developed in [76] for Lie algebras, we can develop a

relative homology theory for Lie superalgebras. In particular, we obtain the following
results.

Let 0 → 𝑃 → 𝐿
𝜓
←←←←←←←←←→ 𝑄 → 0 be a short exact sequence of Lie superalgebras,

and 𝕊 =
(

𝑆, 𝜀1, 𝛿1
) the cotriple on the category 𝐒𝐋𝐢𝐞 generated by the adjoint pair

of functors 1 and 1, 𝑆 = 11, 𝜀1 ∶ 𝑆 → 1𝐒𝐋𝐢𝐞 and 𝛿1 ∶ 𝑆 → 𝑆2. Consider the
surjective simplicial Lie superalgebras homomorphism

𝜓∗ab ∶
(

𝑆∗𝐿
)

ab →
(

𝑆∗𝑄
)

ab .
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The 𝑛-th relative derived functor 𝐻𝑛 (𝐿;𝑃 ) is defined as the 𝑛-th homotopy group
𝜋𝑛

(

ker
(

𝜓∗ab
)).

Proposition 6.4.3 (see [76, Theorem 34]). For any graded ideal 𝑃 of a Lie superal-
gebra 𝐿, there is the following natural long exact sequence:

⋯ → 𝐻𝑛+1 (𝐿∕𝑃 ) → 𝐻𝑛 (𝐿;𝑃 ) → 𝐻𝑛 (𝐿) → 𝐻𝑛 (𝐿∕𝑃 ) → ⋯ → 𝐻1 (𝐿∕𝑃 ) → 0.

Proposition 6.4.4 (see [76, Theorem 35]). For any graded ideal 𝑃 of a Lie superal-
gebra 𝑃 , we have the isomorphism

𝐻2 (𝐿;𝑃 ) ≅ ker (𝐿 ∧ 𝑃 → 𝑃 ) .

Applying Proposition 6.4.3 and Proposition 6.4.4, as well as [91, Proposition 6.3],
we obtain the following fundamental result.
Proposition 6.4.5. If (𝑌 , 𝐹 , 𝜇) is a projective crossed module, then

(𝑌 , 𝐹 , 𝜇) ∧ (𝑌 , 𝐹 , 𝜇) ≅ ([𝐹 , 𝑌 ], [𝐹 , 𝐹 ], 𝜇) .

Given a projective presentation 0 → (𝑉 ,𝑅, 𝜇) → (𝑌 , 𝐹 , 𝜇) → (𝑇 , 𝐿, 𝜕) → 0 of
the crossed module (𝑇 , 𝐿, 𝜕), the Hopf formula provided in [79] assures that

𝐻2 (𝑇 , 𝐿, 𝜕) ≅
(

𝑉 ∩ [𝐹 , 𝑌 ]
[𝑅, 𝑌 ] + [𝐹 , 𝑉 ]

, 𝑅 ∩ [𝐹 , 𝐹 ]
[𝐹 ,𝑅]

, 𝜇
)

.

The above proposition and the Hopf formula allow us to prove the following the-
orem.
Theorem 6.4.6. With the above notation, there is an isomorphism

(𝑇 , 𝐿, 𝜕) ∧ (𝑇 , 𝐿, 𝜕) ≅
[(𝑌 , 𝐹 , 𝜇) , (𝑌 , 𝐹 , 𝜇)]
[(𝑉 ,𝑅, 𝜇) , (𝑌 , 𝐹 , 𝜇)]

.

In particular, 𝐻2 (𝑇 , 𝐿, 𝜕) ≅ ker ((𝑇 , 𝐿, 𝜕) ∧ (𝑇 , 𝐿, 𝜕) → (𝑇 , 𝐿, 𝜕)).

Proof. Consider the exact sequence

(𝑉 ,𝑅, 𝜇) ∧ (𝑌 , 𝐹 , 𝜇) → (𝑌 , 𝐹 , 𝜇) ∧ (𝑌 , 𝐹 , 𝜇) → (𝑇 , 𝐿, 𝜕) ∧ (𝑇 , 𝐿, 𝜕) → 0,
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where the first morphism is 𝜌 from Proposition 6.3.9 (2), and the second one is given
by the projective presentation of (𝑇 , 𝐿, 𝜕). Then,

(𝑇 , 𝐿, 𝜕) ∧ (𝑇 , 𝐿, 𝜕) ≅
(𝑌 , 𝐹 , 𝜇) ∧ (𝑌 , 𝐹 , 𝜇)

Im 𝜌
.

Identifying (𝑌 , 𝐹 , 𝜇)∧(𝑌 , 𝐹 , 𝜇)with (𝐹 ∧ 𝑌 , 𝐹 ∧ 𝐹 , id ∧𝜇) by Proposition 6.3.5 (1b),
it is easy to see that Im 𝜌1 is isomorphic to the ideal of 𝐹 ∧ 𝑌 generated by all 𝑓 ∧ 𝑣
and 𝑟 ∧ 𝑦 with 𝑓 ∈ 𝐹 , 𝑣 ∈ 𝑉 , 𝑟 ∈ 𝑅, 𝑦 ∈ 𝑌 , and that Im 𝜌2 is isomorphic to the
ideal of 𝐹 ∧ 𝐹 generated by all 𝑟 ∧ 𝑓 with 𝑟 ∈ 𝑅 and 𝑓 ∈ 𝐹 . By the isomorphism in
Proposition 6.4.5, it holds that

(𝑇 , 𝐿, 𝜕) ∧ (𝑇 , 𝐿, 𝜕) ≅
([𝐹 , 𝑌 ], [𝐹 , 𝐹 ], 𝜇)

([𝐹 , 𝑉 ] + [𝑅, 𝑌 ], [𝑅, 𝐹 ], 𝜇)
=

[(𝑌 , 𝐹 , 𝜇) , (𝑌 , 𝐹 , 𝜇)]
[(𝑉 ,𝑅, 𝜇) , (𝑌 , 𝐹 , 𝜇)]

.
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We devote this chapter to study the properties of Whitehead’s quadratic functor for
supermodules and for abelian crossed modules of Lie superalgebras, introduced in
Chapter 6.

Introduction

Whitehead first introduced his quadratic functor Γ for abelian groups in [232]. He
used it to construct a long exact sequence in the context of homotopy theory, yielding
an invariant for four-dimensional CW-complexes. This construction was later gener-
alised by Simson and Tyc [208] for arbitrary modules over a commutative ring 𝑅 in
connection with the study of stable derived functors. They explored some of its basic
properties, proving in particular that this object satisfies a universal property regard-
ing quadratic maps between 𝑅-modules: namely, every quadratic map 𝑏∶ 𝑀 → 𝑁
factorises through Γ(𝑀). After this, Ellis also related this version of Whitehead’s
quadratic functor to his just introduced non-abelian tensor and exterior products of
Lie algebras in [76].

Further generalisations of Whitehead’s quadratic functor were given in the con-
text of abelian crossed modules, both of groups [189] and of Lie algebras [193]. The
definition of these objects led to advances in the homology theory of crossed mod-
ules [189] and in the study of non-abelian tensor and exterior products of crossed
modules of groups [200] and Lie algebras [193].

207



208 7 On Whitehead’s quadratic functor for supermodules

In Chapter 6, we offered two new generalisations of Whitehead’s quadratic func-
tor, namely for supermodules and for abelian crossed modules of Lie superalgebras.
We devote the present chapter to study some of their properties. In particular, we prove
that the version for supermodules satisfies a universal property regarding quadratic
maps between supermodules in the sense of [180]. However, these maps do not seem
to have been introduced in the framework of crossed modules, so we offer a defini-
tion of quadratic maps between abelian crossed modules of Lie superalgebras (with
its straightforward particular case for abelian crossed modules of Lie algebras) to be
those maps factorising through Γ(𝐴,𝐵, 𝜕).

The structure of this chapter is as follows. The first preliminary Section 7.1 recalls
some definitions and properties which will be needed later. In Section 7.2, we study
some properties of Whitehead’s quadratic functor for supermodules introduced in
Definition 6.1.1 (see Chapter 6, page 185), such as its relation with quadratic maps of
supermodules, with the symmetric algebra 𝑆2(𝑀) of a supermodule 𝑀 and with the
non-abelian tensor and exterior products of Lie superalgebras. Finally, Section 7.3 ad-
dresses similar problems for Whitehead’s quadratic functor for abelian crossed mod-
ules of Lie superalgebras, according to Definition 6.3.11 (see Chapter 6, page 200).
In particular, we introduce a definition for quadratic maps between abelian crossed
modules of Lie superalgebras.

Throughout this chapter, 𝑅 will denote a unital commutative ring. Unless other-
wise stated, all the (super)modules and (super)algebras in this chapter will be consid-
ered over 𝑅.

7.1 Preliminaries

We devote this section to recall some basic definitions and properties regarding White-
head’s quadratic functor of modules and also regarding supermodules.

Let𝑀 be a module. Recall from [208] that the universal quadratic functor Γ(𝑀)
is defined to be the module generated by the elements 𝑒𝑚, for all 𝑚 ∈ 𝑀 , subject to
the relations

0 = 𝑒𝜆𝑚 − 𝜆2𝑒𝑚;
0 = 𝑒𝜆𝑚+𝑚′ + 𝜆𝑒𝑚 + 𝜆𝑒𝑚′ − 𝜆𝑒𝑚+𝑚′ − 𝑒𝜆𝑚 − 𝑒𝑚′ ;
0 = 𝑒𝑚+𝑚′+𝑚′′ + 𝑒𝑚 + 𝑒𝑚′ + 𝑒𝑚′′ − 𝑒𝑚+𝑚′ − 𝑒𝑚+𝑚′′ − 𝑒𝑚′+𝑚′′ ,

for all 𝑚,𝑚′, 𝑚′′ ∈𝑀 and 𝜆 ∈ 𝑅.
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This object is strongly related to the quadratic maps between modules, namely
those maps 𝜑∶ 𝑀 → 𝑁 satisfying:

1. 𝜑(𝜆𝑚) = 𝜆2𝜑(𝑚).
2. The associated symmetric function 𝑏𝜑 ∶ 𝑀 ×𝑀 → 𝑁 defined by 𝑏𝜑(𝑚,𝑚′) =
𝜑(𝑚 + 𝑚′) − 𝜑(𝑚) − 𝜑(𝑚′) is bilinear.

Indeed, the map 𝛾 ∶ 𝑀 → Γ(𝑀) defined by 𝛾(𝑚) = 𝑒𝑚 is quadratic. Also, given any
quadratic map 𝜑 from𝑀 to another module𝑁 , there exists a unique homomorphism
of modules ℎ∶ Γ(𝑀) → 𝑁 making the following diagram commutative:

𝑀
𝛾 //

𝜑 !!

Γ(𝑀)

ℎ{{
𝑁.

This homomorphism ℎ is determined by ℎ(𝑒𝑚) = 𝜑(𝑚).
We recall now a less common construction of the same object Γ(𝑀), which can

be found in [114] and is more suitable for our purposes. To do so, it is convenient to
handle the notation𝑅𝑀 , the free module generated by the elements 𝑒𝑚 for all𝑚 ∈𝑀 .

Indeed, construct the module Γ′(𝑀) as the direct sum 𝑅𝑀 ⊕ (𝑀 ⊗𝑅𝑀) subject
to the following relations:

𝑒𝜆𝑚 = 𝜆2𝑒𝑚;
𝑒𝑚+𝑚′ − 𝑒𝑚 − 𝑒𝑚′ = 𝑚⊗𝑚′,

for all 𝑚,𝑚′ ∈ 𝑀 and all 𝜆 ∈ 𝑅, and note that the map 𝛾 ′ ∶ 𝑀 → Γ′(𝑀) given by
𝛾 ′(𝑚) = 𝑒𝑚 is quadratic. Also, Γ′(𝑀) satisfies the same universal property than Γ(𝑀):
let 𝜑∶ 𝑀 → 𝑁 be a quadratic map, and define ℎ′ ∶ Γ′(𝑀) → 𝑁 as ℎ′(𝑒𝑥 + 𝑦 ⊗ 𝑧) =
𝜑(𝑥) + 𝑏𝜑(𝑦, 𝑧). This map ℎ′ is well defined and is the unique homomorphism from
Γ′(𝑀) to 𝑁 which satisfies ℎ′𝛾 ′ = 𝜑. It follows that Γ(𝑀) and Γ′(𝑀) are isomor-
phic. As a consequence, we will henceforth identify these two objects, employing the
notation Γ(𝑀) for both of them.

The basic properties of the module Γ(𝑀) were studied in [208]. Also, Ellis ex-
plored its relation with the non-abelian tensor product of Lie algebras in [76].

For a basic background in Lie superalgebras and crossed modules of Lie superal-
gebras, we refer the reader to Chapter 6. Additionally, we include now two definitions
which will be necessary for the next section.
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Recall from Chapter 2 that the tensor superalgebra 𝑇 (𝑀) of a supermodule 𝑀 is
the sum ⨁

𝑛≥0𝑀
⊗𝑛 with juxtaposition as product, where 𝑀⊗0 ∶= 𝑅, 𝑀⊗1 ∶= 𝑀

and 𝑀⊗𝑛 ∶= 𝑀 ⊗𝑅
(𝑛)… ⊗𝑅 𝑀 for 𝑛 ≥ 2. To obtain the symmetric superalgebra

𝑆(𝑀), we take the quotient of 𝑇 (𝑀) by the graded ideal generated by the elements
𝑚⊗𝑚′−(−1)|𝑚||𝑚′

|𝑚′⊗𝑚, with 𝑚,𝑚′ ∈𝑀 ; the image of𝑀⊗𝑛 through this quotient
is denoted 𝑆𝑛(𝑀). We denote the class of the elements 𝑥1⊗⋯⊗𝑥𝑛 by 𝑥1 ∧⋯∧ 𝑥𝑛.

In particular, 𝑆2(𝑀) has the following universal property: given another super-
module 𝑁 and a symmetric bilinear map 𝑏∶ 𝑀 × 𝑀 → 𝑁 , there exists a unique
homomorphism of supermodules 𝜃∶ 𝑆2(𝑀) → 𝑁 such that 𝜃(𝑥 ∧ 𝑦) = 𝑏(𝑥, 𝑦).

Finally, we recall from [181] the definition of quadratic maps between supermod-
ules. Given𝑀 and𝑁 two supermodules, a homogeneous bilinear map 𝑏∶ 𝑀×𝑀 →
𝑁 is called symmetric-alternating if

𝑏(𝑚,𝑚′) = (−1)|𝑚||𝑚′
|𝑏(𝑚′, 𝑚);

𝑏(𝑚1̄, 𝑚1̄) = 0,

for all 𝑚,𝑚′ ∈ 𝑀 , 𝑚1̄ ∈ 𝑀1̄. Also, a quadratic map from 𝑀 to 𝑁 , denoted by
𝜑∶ 𝑀 → 𝑁 , is defined to be a pair 𝜑 = (𝜑0̄, 𝑏𝜑) such that 𝜑0̄ ∶ 𝑀0̄ → 𝑁0̄ is a
quadratic map between modules, and 𝑏𝜑 ∶ 𝑀 ×𝑀 → 𝑁 is a symmetric-alternating
bilinear map of degree 0̄, compatible with 𝜑0̄ in the sense that

𝑏𝜑(𝑚0̄, 𝑚
′
0̄
) = 𝜑0̄(𝑚0̄ + 𝑚

′
0̄
) − 𝜑0̄(𝑚0̄) − 𝜑0̄(𝑚

′
0̄
),

for all 𝑚0̄, 𝑚′
0̄
∈𝑀0̄.

7.2 Whitehead’s quadratic functor for supermodules

In this section, we study the basic properties of Whitehead’s quadratic functor for su-
permodules introduced in Definition 6.1.1 (see Chapter 6, page 185). We present here
a definition that slightly generalises Definition 6.1.1, as it is also valid for supermod-
ules over rings in which 2 does not have an inverse. Note that the free supermodule
𝑅𝑀0̄ is assumed to be concentrated in degree zero.
Definition 7.2.1 (cf. Definition 6.1.1). Let 𝑀 a supermodule. We define the super-
module Γ(𝑀) as the direct sum

𝑅𝑀0̄ ⊕ (𝑀 ⊗𝑅𝑀),
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subject to the homogeneous relations
𝑒𝜆𝑚0̄

= 𝜆2𝑒𝑚0̄
; (7.2.1)

𝑒𝑚0̄+𝑚′
0̄
− 𝑒𝑚0̄

− 𝑒𝑚′
0̄
= 𝑚0̄ ⊗𝑚′

0̄
; (7.2.2)

𝑚⊗𝑚′ = (−1)|𝑚||𝑚′
|𝑚′ ⊗𝑚; (7.2.3)

𝑚1̄ ⊗𝑚1̄ = 0, (7.2.4)
where 𝜆 ∈ 𝑅, 𝑚0̄, 𝑚′

0̄
∈𝑀0̄, 𝑚1̄ ∈𝑀1̄ and 𝑚,𝑚′ ∈𝑀 , with the induced grading.

Note that the difference with respect to Definition 6.1.1 is precisely the rela-
tion (7.2.4), which follows from relation (7.2.3) whenever 2 has an inverse in 𝑅.
Proposition 7.2.2. The pair 𝛾 = 𝛾𝑀 = (𝛾0̄, 𝑏𝛾 ), with 𝛾0̄ ∶ 𝑀0̄ → Γ(𝑀)0̄ defined by
𝛾0̄(𝑥0̄) = 𝑒𝑥0̄ and 𝑏𝛾 ∶ 𝑀 ×𝑀 → Γ(𝑀) defined by 𝑏𝛾 (𝑥, 𝑦) = 𝑥 ⊗ 𝑦 is a quadratic
map.

Proof. Routine.
The next proposition shows that the pair (Γ(𝑀), 𝛾) is universal with respect to

the quadratic maps with domain 𝑀 . We introduce the following piece of notation: if
ℎ∶ Γ(𝑀) → 𝑁 is a homomorphism of supermodules, with restriction ℎ0̄ to Γ(𝑀)0̄,
such that ℎ0̄𝛾0̄ = 𝜑0̄ and ℎ𝑏𝛾 = 𝑏𝜑, we will limit to write ℎ𝛾 = 𝜑.
Proposition 7.2.3. Let 𝑀 and 𝑁 be two supermodules, and let 𝜑∶ 𝑀 → 𝑁 , 𝜑 =
(𝜑0̄, 𝑏𝜑), be a quadratic map. Then, there exists a unique homomorphism of super-
modules ℎ∶ Γ(𝑀) → 𝑁 such that ℎ𝛾 = 𝜑.

𝑀0̄
𝛾0̄ //

𝜑0̄ !!

Γ(𝑀)0̄

ℎ0̄{{
𝑁0̄

𝑀 ×𝑀
𝑏𝛾 //

𝑏𝜑 ##

Γ(𝑀)

ℎ||
𝑁
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Proof. It suffices to define ℎ∶ Γ(𝑀) → 𝑁 by
ℎ
(

𝑒𝑚0̄
+ 𝑚′ ⊗𝑚′′

)

= 𝜑0̄
(

𝑚0̄
)

+ 𝑏𝜑
(

𝑚′, 𝑚′′) .

We would like to stress the fact that it does not seem possible to construct Γ(𝑀)
in a similar way to the original definition for modules [208]. The reason is that, to
construct the free superalgebra over a set 𝑆, this set must admit a ℤ2-grading, and
this is not the case of the underlying set of𝑀 . Thus, the construction offered in [114]
appears to be much more suitable to be adapted to supermodules.

Note that Whitehead’s quadratic functor for supermodules Γ is indeed an endo-
functor in the category 𝐒𝐌𝐨𝐝 of supermodules. It carries each object𝑀 to Γ(𝑀), and
acts on morphisms in the following way: given 𝑓 ∶ 𝑀 → 𝑁 a morphism in 𝐒𝐌𝐨𝐝,
the composition 𝛾𝑁𝑓 is a quadratic map from 𝑀 to Γ(𝑁). Then, Proposition 7.2.3
yields the desired morphism Γ(𝑓 ) = ℎ.

The rest of this section will be devoted to prove some elementary properties of
the functor Γ.
Proposition 7.2.4. Let 𝑀 and 𝑁 be two supermodules. There is an isomorphism

Γ (𝑀 ⊕𝑁) ≃ Γ(𝑀)⊕ Γ(𝑁)⊕
(

𝑀 ⊗𝑅 𝑁
)

.

Proof. We will begin by constructing a quadratic map from𝑀⊕𝑁 toΓ(𝑀)⊕Γ(𝑁)⊕
(

𝑀 ⊗𝑅 𝑁
). Define

𝜑1
0̄
∶ (𝑀 ⊕𝑁)0̄ → Γ(𝑀)0̄, 𝑚0̄ + 𝑛0̄ ↦ 𝑒𝑚0̄

;
𝜑2
0̄
∶ (𝑀 ⊕𝑁)0̄ → Γ(𝑁)0̄, 𝑚0̄ + 𝑛0̄ ↦ 𝑒𝑛0̄ ;

𝜑3
0̄
∶ (𝑀 ⊕𝑁)0̄ → (𝑀 ⊗𝑅 𝑁)0̄, 𝑚0̄ + 𝑛0̄ ↦ 𝑚0̄ ⊗ 𝑛0̄;

𝑏1𝜑 ∶ (𝑀 ⊕𝑁) × (𝑀 ⊕𝑁) → Γ(𝑀), (𝑚 + 𝑛, 𝑚′ + 𝑛′) ↦ 𝑚⊗𝑚′;
𝑏2𝜑 ∶ (𝑀 ⊕𝑁) × (𝑀 ⊕𝑁) → Γ(𝑁), (𝑚 + 𝑛, 𝑚′ + 𝑛′) ↦ 𝑛 ⊗ 𝑛′;
𝑏3𝜑 ∶ (𝑀 ⊕𝑁) × (𝑀 ⊕𝑁) →

(

𝑀 ⊗𝑅 𝑁
), (𝑚 + 𝑛, 𝑚′ + 𝑛′) ↦ 𝑚⊗ 𝑛′

+(−1)|𝑚||𝑚′
|𝑛 ⊗ 𝑚′;

The pairs 𝜑1 = (𝜑1
0̄
, 𝑏1𝜑), 𝜑

2 = (𝜑2
0̄
, 𝑏2𝜑), 𝜑

3 = (𝜑3
0̄
, 𝑏3𝜑) are quadratic maps, and

define a natural quadratic map 𝜑 from 𝑀 ⊕𝑁 to Γ(𝑀)⊕ Γ(𝑁)⊕ (𝑀 ⊗𝑅 𝑁). The
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universal property of the functor Γ exposed in Proposition 7.2.3 defines a homomor-
phism ℎ∶ Γ(𝑀 ⊕𝑁) → Γ(𝑀)⊕ Γ(𝑁)⊕ (𝑀 ⊗𝑅 𝑁).

On the other hand, let us consider the maps

𝜙1
0̄
∶ 𝑀0̄ → Γ(𝑀 ⊕𝑁)0̄, 𝑚0̄ ↦ 𝑒𝑚0̄

;
𝑏1𝜙 ∶ 𝑀 ×𝑀 → Γ(𝑀 ⊕𝑁)0̄, 𝑚⊗𝑚′ ↦ 𝑚⊗𝑚′;
𝜙2
0̄
∶ 𝑁0̄ → Γ(𝑀 ⊕𝑁)0̄, 𝑛0̄ ↦ 𝑒𝑛0̄ ;

𝑏2𝜙 ∶ 𝑁 ×𝑁 → Γ(𝑀 ⊕𝑁)0̄, 𝑛 ⊗ 𝑛′ ↦ 𝑛 ⊗ 𝑛′;
𝜙3 ∶ 𝑀 ×𝑁 → Γ(𝑀 ⊕𝑁), (𝑚, 𝑛) ↦ 𝑚⊗ 𝑛.

The pair 𝜙1 = (𝜙1
0̄
, 𝑏1𝜙) is a quadratic map, and it induces a homomorphism

𝜃1 ∶ Γ(𝑀) → Γ(𝑀 ⊕𝑁) thanks to the universal property of the functor Γ. Analo-
gously, we obtain 𝜃2 ∶ Γ(𝑀) → Γ(𝑀 ⊕𝑁). Also, 𝜙3 is bilinear, and it induces the
natural homomorphism 𝜃3 ∶ 𝑀 ⊗𝑁 → Γ(𝑀 ⊕𝑁). Finally, we get the homomor-
phism 𝜃 = ⟨𝜃1, 𝜃2, 𝜃3⟩∶ Γ(𝑀)⊕ Γ(𝑁)⊕

(

𝑀 ⊗𝑅 𝑁
)

→ Γ(𝑀 ⊕𝑁).
It is easily checked that ℎ and 𝜃 are inverse homomorphisms.

The following lemma will be useful to prove that the functor Γ preserves free
supermodules.

Lemma 7.2.5. Let 𝑀 be a free supermodule and 𝑁 an arbitrary supermodule. Let
us consider an ordered basis of𝑀 , {𝑥𝑖}𝑖∈𝐼 , composed by homogeneous elements and
such that the elements of 𝑀0̄ are less or equal than those of 𝑀1̄. Set |𝑖| ∶= |𝑥𝑖|.
Let also {𝑦𝑖𝑗}𝑖,𝑗∈𝐼 be a family of elements of 𝑁 such that |𝑦𝑖𝑗| = |𝑖| + |𝑗| and 𝑦𝑖𝑗 =
(−1)|𝑖||𝑗|𝑦𝑗𝑖. Then, there exists a unique quadratic map 𝜑∶ 𝑀 → 𝑁 , 𝜑 = (𝜑0̄, 𝑏𝜑),
such that 𝜑0̄(𝑥𝑖) = 𝑦𝑖𝑖 for |𝑖| = 0̄, and 𝑏𝜑(𝑥𝑖, 𝑥𝑗) = 𝑦𝑖𝑗 for 𝑖 < 𝑗.

Proof. To construct 𝜑, we will employ the procedure explained in the first example
in [181, 1.10], i.e. constructing a bilinear map 𝑏∶ 𝑀×𝑀 → 𝑁 preserving the degree
and defining 𝜑0̄(𝑚0̄) = 𝑏(𝑚0̄, 𝑚0̄) and 𝑏𝜑(𝑚,𝑚′) = 𝑏(𝑚,𝑚′) + (−1)|𝑚||𝑚′

|𝑏(𝑚′, 𝑚). The
pair (𝜑0̄, 𝑏𝜑) will be a quadratic map.
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Define

𝑏(𝑥𝑖, 𝑥𝑗) =

⎧

⎪

⎨

⎪

⎩

𝑦𝑖𝑗 if 𝑖 ≤ 𝑗,

0 otherwise,
and extend 𝑏 by bilinearity. Indeed, it preserves the degree, and defines a quadratic
map 𝜑 = (𝜑0̄, 𝑏𝜑) in the required conditions. The uniqueness is immediate.
Proposition 7.2.6. Let 𝑀 be a free supermodule, and let {𝑥𝑖}𝑖∈𝐼0̄ ∪ {𝑥𝑖}𝑖∈𝐼1̄ be an
ordered basis of 𝑀 composed by homogeneous elements and such that the elements
{𝑥𝑖}𝑖∈𝐼0̄ of 𝑀0̄ are less or equal than those of 𝑀1̄, {𝑥𝑖}𝑖∈𝐼1̄ . Then, Γ(𝑀) is free with
basis

{

𝛾0̄
(

𝑥𝑖
)}

𝑖∈𝐼0̄
∪
{

𝑏𝛾
(

𝑥𝑖, 𝑥𝑗
)}

𝑖,𝑗∈𝐼0̄∪𝐼1̄, 𝑖<𝑗
.

Proof. Let 𝑁 be a supermodule. Every quadratic map 𝜑 =
(

𝜑0̄, 𝑏𝜑
)

∶ 𝑀 → 𝑁
determines a homomorphism ℎ from Γ(𝑀) to 𝑁 ; conversely, every homomorphism
ℎ′ ∶ Γ(𝑀) → 𝑁 determines a quadratic map 𝜑′ ∶ 𝑀 → 𝑁 with 𝜑′

0̄

(

𝑥𝑖
)

= ℎ′
(

𝑒𝑥𝑖
)

for 𝑖 ∈ 𝐼0̄, and 𝑏′𝜑(𝑥𝑖, 𝑥𝑗) = ℎ′
(

𝑥𝑖 ⊗ 𝑥𝑗
) for 𝑖 < 𝑗. This correspondence is bi-

jective, and therefore, applying Lemma 7.2.5, each homomorphism of supermodules
ℎ∶ Γ(𝑀) → 𝑁 is unequivocally determined by the images ℎ

(

𝑒𝑥𝑖
)

for 𝑖 ∈ 𝐼0̄ and
ℎ
(

𝑥𝑖 ⊗ 𝑥𝑗
) for 𝑖 < 𝑗. This means that {𝛾0̄

(

𝑥𝑖
)}

𝑖∈𝐼0̄
∪
{

𝑏𝛾
(

𝑥𝑖, 𝑥𝑗
)}

𝑖,𝑗∈𝐼0̄∪𝐼1̄, 𝑖<𝑗
is a

basis for Γ(𝑀).
Next, we relate the universal quadratic and symmetric functors Γ and 𝑆2.

Proposition 7.2.7. Assume that 2 has an inverse in 𝑅, and let 𝑀 be a supermodule.
Then,

𝑆2(𝑀) ≅ Γ(𝑀).

Proof. The canonical map 𝑏𝛾 ∶ 𝑀 ×𝑀 → Γ(𝑀) is bilinear and therefore induces
a homomorphism of supermodules 𝑔∶ 𝑆2(𝑀) → Γ(𝑀). On the other hand, the
pair 𝜑 = (𝜑0̄, 𝑏𝜑)∶ 𝑀 → 𝑆2(𝑀) defined as 𝜑0̄(𝑚0̄) = 𝑚0̄ ∧ 𝑚0̄ and 𝑏𝜑(𝑚,𝑚′) =
𝑚∧𝑚′+(−1)|𝑚||𝑚′

|𝑚′∧𝑚 = 2𝑚∧𝑚′ is a quadratic map and induces a homomorphism
ℎ∶ Γ(𝑀) → 𝑆2(𝑀). It is easy to check that ℎ𝑔 = 2 id and 𝑔ℎ = 2 id; therefore, ℎ
and 𝑔

2
are inverse.
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The next properties will relate Whitehead’s quadratic functor for supermodules
to the non-abelian tensor product of Lie superalgebras. We will need the following
notation.

Let (𝑀,𝑃 , 𝜕) and (𝑁,𝑃 , 𝜎) be two crossed modules of Lie superalgebras, and
consider the following graded Lie subalgebra of 𝑀 ⊕𝑁 :

𝑀 ×𝑃 𝑁 = {𝑚 + 𝑛 ∈𝑀 ⊕𝑁 ∣ 𝜕(𝑚) = 𝜎(𝑛)} .

Set also
⟨𝑀,𝑁⟩ =

{

−(−1)|𝑚||𝑛| (𝑛𝑚) + 𝑚𝑛
}

.

It is easy to check that ⟨𝑀,𝑁⟩ is a graded ideal of𝑀 ×𝑃 𝑁 , and also that the quotient
𝑄 ∶= 𝑀×𝑃𝑁

⟨𝑀,𝑁⟩

is abelian. We will denote its elements by 𝑚 + 𝑛.
Proposition 7.2.8. Let (𝑀,𝑃 , 𝜕) and (𝑁,𝑃 , 𝜎) be two crossed modules of Lie super-
algebras, and define 𝜓 ∶ Γ(𝑄) →𝑀 ⊗𝑁 by

𝜓
(

𝑒𝜇0̄+𝜈0̄ + 𝑚 + 𝑛 ⊗ 𝑚′ + 𝑛′
)

= 𝑚0̄ ⊗ 𝑛0̄ + 𝑚⊗ 𝑛′ + (−1)|𝑚||𝑛|𝑚′ ⊗ 𝑛.

Then, the following sequence of Lie superalgebras

Γ (𝑄)
𝜓

←←←←←←←←←←←←←←←←→𝑀 ⊗𝑁
𝜋
←←←←←←←←←←←←→𝑀 ∧𝑁 ←←←←←←←→ 0

is exact.

Proof. It is clear that, if 𝜓 is well defined, the sequence is exact, since Im 𝜓 =
𝑀□𝑁 = ker 𝜋. To see that 𝜓 is well defined, let us consider 𝜓̃ ∶ 𝑅(𝑀×𝑃𝑁)0̄ ⊕
((

𝑀 ×𝑃 𝑁
)

⊗𝑅
(

𝑀 ×𝑃 𝑁
))

→ 𝑀 ⊗𝑁 and check that it induces 𝜓 . Let us prove
firstly the following equality:

𝜓̃
(

(𝑚 + 𝑛)⊗
(

−(−1)|𝑚′
||𝑛′|

(

𝑛′𝑚′
)

+ 𝑚′
𝑛′
))

= 0.

We will prove it using the properties of crossed modules and the relations of the non-
abelian tensor product. If 𝜕(𝑚) = 𝜎(𝑛) ≠ 0, it holds that |𝑚| = |𝑛| and
𝜓̃
(

(𝑚 + 𝑛)⊗
(

− (−1)|𝑚
′
||𝑛′|

(

𝑛′𝑚′
)

+ 𝑚′
𝑛′
))

= 𝑚⊗ 𝑚′
𝑛′ − (−1)|𝑛|(|𝑚

′
|+|𝑛′|) (−1)|𝑚

′
||𝑛′| 𝑛 ⊗ 𝑛′𝑚′
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= [𝑚,𝑚′]⊗ 𝑛 + (−1)|𝑚||𝑚
′
|𝑚′ ⊗ 𝜕(𝑚)𝑛′ − (−1)|𝑛|(|𝑚

′
|+|𝑛′|) (−1)|𝑚

′
||𝑛′|

(

𝑛′𝑚′
)

⊗ 𝑛

= [𝑚,𝑚′]⊗ 𝑛 + (−1)|𝑚||𝑚
′
|𝑚′ ⊗ 𝜎(𝑛)𝑛′ − (−1)|𝑛|(|𝑚

′
|+|𝑛′|) (−1)|𝑚

′
||𝑛′|

(

𝑛′𝑚′
)

⊗ 𝑛

= [𝑚,𝑚′]⊗ 𝑛 + (−1)|𝑚||𝑚
′
|𝑚′ ⊗ [𝑛, 𝑛′] − (−1)|𝑛|(|𝑚

′
|+|𝑛′|) (−1)|𝑚

′
||𝑛′|

(

𝑛′𝑚′
)

⊗ 𝑛

= [𝑚,𝑚′]⊗ 𝑛 + (−1)|𝑛
′
|(|𝑚′

|+|𝑛|) (−1)|𝑚||𝑚
′
|

(

𝑛′𝑚′
)

⊗ 𝑛

− (−1)|𝑛||𝑚
′
| (−1)|𝑚||𝑚

′
|

(𝜎(𝑛)𝑚′)⊗ 𝑛′ − (−1)|𝑚||𝑚
′
| (−1)|𝑛||𝑛

′
| (−1)|𝑚

′
||𝑛′|

(

𝑛′𝑚′
)

⊗ 𝑛

= [𝑚,𝑚′]⊗ 𝑛 − (−1)|𝑚||𝑚
′
| (−1)|𝑚||𝑚

′
|

(𝜕(𝑚)𝑚′)⊗ 𝑛′ = [𝑚,𝑚′]⊗ 𝑛 − [𝑚,𝑚′]⊗ 𝑛

= 0.

If 𝜕(𝑚) = 𝜎(𝑛) = 0, the computations are similar but less involved, so we omit them.
Analogously, 𝜓̃

((

− (−1)|𝑚
′
||𝑛′| (𝑛′𝑚′) + 𝑚′𝑛′

)

⊗ (𝑚 + 𝑛)
)

= 0.
Now we check that 𝜓̃

(

𝑒𝜇0̄+𝜈0̄+⟨𝑀,𝑁⟩0̄

)

= 𝜓̃
(

𝑒𝜇0̄+𝜈0̄
)

= 𝜇0̄⊗ 𝜈0̄ for all 𝜇0̄ + 𝜈0̄ ∈
(

𝑀 ×𝑃 𝑁
)

0̄. Indeed, if 𝜕(𝑚) = 𝜎(𝑛) = 0 the assertion is trivial; otherwise,

𝜓̃
(

𝑒𝜇0̄+𝜈0̄−(−1)|𝑚||𝑛|(𝑛𝑚)+𝑚𝑛
)

= 𝜓̃
(

𝑒𝜇0̄+𝜈0̄
)

+ 𝜓̃
(

𝑒−(−1)|𝑚||𝑛|(𝑛𝑚)+𝑚𝑛
)

+ 𝜓̃
((

𝜇0̄ + 𝜈0̄
)

⊗
(

− (−1)|𝑚||𝑛| (𝑛𝑚) + 𝑚𝑛
))

= 𝜇0̄ ⊗ 𝜈0̄ − (−1)|𝑚||𝑛| (𝑛𝑚)⊗ 𝑚𝑛 + 𝜇0̄ ⊗
𝑚𝑛 − (−1)|𝑚||𝑛| 𝜈0̄ ⊗

𝑛𝑚

= 𝜇0̄ ⊗ 𝜈0̄ + [𝑚⊗ 𝑛,𝑚 ⊗ 𝑛] = 𝜇0̄ ⊗ 𝜈0̄;

therefore, we can define 𝜓 ∶ 𝑅𝑄0̄ ⊕ (𝑄⊗𝑄) →𝑀 ⊗𝑁 .
We can easily check that 𝜓 respects the relations (7.2.1)–(7.2.4); therefore, it in-

duces 𝜓 , which is a well-defined homomorphism.
As a particular case, we recover Proposition 6.2.4(9) (see Chapter 6, page 189):

for any Lie superalgebra 𝑀 , there exists an exact sequence
Γ(𝑀ab)

𝜓
←←←←←←←←←←←←←←←←→𝑀 ⊗𝑀

𝜋
←←←←←←←←←←←←→𝑀 ∧𝑀 ←←←←←←←→ 0; (7.2.5)

also, given 𝐼, 𝐽 two graded ideals of 𝑀 , the following sequence is exact:

Γ
(

𝐼 ∩ 𝐽
[𝐼, 𝐽 ]

)

𝜓
←←←←←←←←←←←←←←←←→ 𝐼 ⊗ 𝐽

𝜋
←←←←←←←←←←←←→ 𝐼 ∧ 𝐽 ←←←←←←←→ 0. (7.2.6)
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We finish this section with a sufficient condition for 𝜓 to be injective.

Proposition 7.2.9. Let𝑀 be a Lie superalgebra such that𝑀𝑎𝑏 is a free supermodule.
Then, the homomorphism 𝜓 in the sequence (7.2.5) is injective.

Proof. Let 𝜌∶ 𝑀 ⊗ 𝑀 → 𝑀ab ⊗ 𝑀ab be the natural projection, and consider
{

𝑥𝑖
}

𝑖∈𝐼0̄
∪
{

𝑥𝑖
}

𝑖∈𝐼1̄
an ordered basis of 𝑀ab, composed by homogeneous elements

and such that the elements {𝑥𝑖}𝑖∈𝐼0̄ of 𝑀0̄ are less or equal than those of 𝑀1̄. Then,
{

𝑥𝑖 ⊗ 𝑥𝑗
}

𝑖,𝑗∈𝐼0̄∪𝐼1̄
is a basis of𝑀ab⊗𝑀ab, and

{(

𝑒𝑥𝑖
)}

𝑖∈𝐼0̄
∪
{

𝑥𝑖 ⊗ 𝑥𝑗
}

𝑖,𝑗∈𝐼0̄∪𝐼1̄, 𝑖<𝑗

is a basis of Γ(𝑀ab) by Proposition 7.2.6. The composition 𝜌𝜓 carries the elements
of a basis of Γ(𝑀ab) to elements of a basis of𝑀ab⊗𝑀ab, and therefore it is injective.
It follows that 𝜓 is injective.

7.3 Whitehead’s quadratic functor for abelian crossed mod-
ules of Lie superalgebras

A Whitehead’s quadratic functor for abelian crossed modules was first defined by Pi-
rashvili in [189] for abelian groups. Later, an analogue for abelian crossed modules
of Lie algebras was given in [193]. Definition 6.3.11 (see Chapter 6, page 200) gener-
alises this concept for abelian crossed modules of Lie superalgebras; as in Section 7.2,
we include here a slightly more general definition which admits supermodules over
rings without inverse of 2.

Definition 7.3.1 (cf. Definition 6.3.11). Let (𝐴,𝐵, 𝜕) an abelian crossed module of
Lie superalgebras, and denote by 𝐵⊗𝐴 the tensor product 𝐵 ⊗ 𝐴 subject to the ho-
mogeneous relation

𝜕(𝑎)⊗ 𝑎′ = (−1)|𝑎||𝑎′|𝜕(𝑎′)⊗ 𝑎,

for all 𝑎, 𝑎′ ∈ 𝐴. Consider also the Lie homomorphism

𝑓 ∶ 𝐴⊗𝐴 →
(

𝐵⊗𝐴
)

⊕ Γ (𝐴)

𝑎 ⊗ 𝑎′ ↦ 𝜕(𝑎)⊗ 𝑎′ − 𝑎 ⊗ 𝑎′,
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and denote Γ̃ (𝐴,𝐵, 𝜕) ∶= coker 𝑓 . Then we define Γ (𝐴,𝐵, 𝜕) to be the abelian
crossed module

(

Γ̃ (𝐴,𝐵, 𝜕) ,Γ (𝐵) , 𝜕Γ
)

, where 𝜕Γ is determined by
𝜕Γ

(

𝑏 ⊗ 𝑎 +
(

𝑒𝑎0̄ + 𝛼 ⊗ 𝛼′
))

= 𝑒𝜕(𝑎0̄) + 𝑏 ⊗ 𝜕 (𝑎) + 𝜕 (𝛼)⊗ 𝜕
(

𝛼′
)

.

We define now the quadratic maps of abelian crossed modules of Lie superalge-
bras to be precisely the maps which factorise through Γ (𝐴,𝐵, 𝜕). We highlight that
we do not have knowledge of any reference in the literature dealing with this concept,
and also that our definition admits the quadratic maps of abelian crossed modules of
Lie algebras as a particular case.
Definition 7.3.2. Let (𝐴,𝐵, 𝜕) and (𝐶,𝐷, 𝜎) be two abelian crossed modules of Lie
superalgebras. We define a quadratic map between them as two pairs 𝜉 =

(

𝜉0̄, 𝑏𝜉
)

and 𝜑 =
(

𝜑0̄, 𝑏𝜑
) such that:

1. 𝜑∶ 𝐵 → 𝐷 is a quadratic map between supermodules.
2. 𝜉 = (

𝜉0̄, 𝑏𝜉
)

∶ 𝐴→ 𝐶 is such that:
• 𝜉0̄ ∶ 𝐴0̄ → 𝐶0̄ is a quadratic map between modules;
• 𝑏𝜉 ∶ 𝐵 × 𝐴→ 𝐶 is bilinear and satisfies:

𝑏𝜉
(

𝜕
(

𝑎0̄
)

, 𝑎′
0̄

)

= 𝜉0̄
(

𝑎0̄ + 𝑎′0̄
)

− 𝜉0̄
(

𝑎0̄
)

− 𝜉0̄
(

𝑎′
0̄

)

,
𝑏𝜉

(

𝜕 (𝑎) , 𝑎′
)

= (−1)|𝑎||𝑎
′
| 𝑏𝜉

(

𝜕
(

𝑎′
)

, 𝑎
),

𝑏𝜉
(

𝑎1̄, 𝑎1̄
)

= 0,
for all 𝑎0̄, 𝑎′0̄ ∈ 𝐴0̄, 𝑎1̄ ∈ 𝐴1̄ and 𝑎, 𝑎′ ∈ 𝐴;

3. 𝜎0̄𝜉0̄ = 𝜑0̄𝜕0̄, where 𝜕0̄ and 𝜎0̄ denote the restrictions of 𝜕 and 𝜎 to 𝐴0̄ and 𝐶0̄,
respectively, and 𝜎𝑏𝜉 = 𝑏𝜑 (id⊗𝜕).

We denote these pairs by Υ = (𝜉, 𝜑) ∶ (𝐴,𝐵, 𝜕) → (𝐶,𝐷, 𝜎).
Trivially, the composition of a homomorphism of abelian crossed modules and a

quadratic map is again a quadratic map.
The following easy results explore the relation between Γ(𝐴,𝐵, 𝜕) and quadratic

maps of abelian crossed modules of Lie superalgebras.



7.3 Whitehead’s quadratic functor for abelian crossed modules 219

Proposition 7.3.3. The canonical map

Ω = (𝜂, 𝛾) =
((

𝜂0̄, 𝑏𝜂
)

,
(

𝛾0̄, 𝑏𝛾
))

∶ (𝐴,𝐵, 𝜕) → Γ(𝐴,𝐵, 𝜕),

with 𝜂0̄ ∶ 𝐴0̄ → Γ̃(𝐴,𝐵, 𝜕)0̄ defined by 𝜂0̄
(

𝑎0̄
)

= 𝑒𝑎0̄ , 𝑏𝜂 ∶ 𝐵×𝐴→ Γ̃(𝐴,𝐵, 𝜕) defined
by 𝑏𝜂(𝑏, 𝑎) = 𝑏⊗𝑎, 𝛾0̄ ∶ 𝐵0̄ → Γ(𝐵)0̄ defined by 𝛾0̄

(

𝑏0̄
)

= 𝑒𝑏0̄ and 𝑏𝛾 ∶ 𝐵×𝐵 → Γ(𝐵)
defined by 𝑏𝛾

(

𝑏, 𝑏′
)

= 𝑏 ⊗ 𝑏′, is a quadratic map.

Proof. It is routine.

Proposition 7.3.4. Given any quadratic map Υ∶ (𝐴,𝐵, 𝜕) → (𝐶,𝐷, 𝜎), with Υ =
(𝜉, 𝜑) =

((

𝜉0̄, 𝑏𝜉
)

,
(

𝜑0̄, 𝑏𝜑
))

, there exists a unique morphism of crossed modules
𝐻 =

(

ℎ1, ℎ2
)

such that ℎ1𝜂 = 𝜉 and ℎ2𝛾 = 𝜑. To summarise, we will write Ω𝐻 = Υ.

𝐵0̄ Γ(𝐵)0̄

𝐴0̄ Γ̃(𝐴,𝐵, 𝜕)0̄

𝐷0̄

𝐶0̄

𝜑0̄

𝛾0̄

ℎ2

𝜕0̄

𝜉0̄

𝜂0̄

𝜕Γ0̄

ℎ1

𝜎0̄
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𝐵 × 𝐵 Γ(𝐵)

𝐵 × 𝐴 Γ̃(𝐴,𝐵, 𝜕)

𝐷

𝐶

𝑏𝜑

𝑏𝛾

ℎ2

id ×𝜕

𝑏𝜉

𝑏𝜂

𝜕Γ

ℎ1

𝜎

Proof. The morphism 𝐻 =
(

ℎ1, ℎ2
) given by

ℎ1
(

𝛽 ⊗ 𝛼 +
(

𝛾
(

𝛼′
0̄

)

+ 𝑎 ⊗ 𝑎′
))

= 𝜉0̄
(

𝛼′
0̄

)

+ 𝑏𝜉 (𝛽, 𝛼) + 𝑏𝜉
(

𝜕 (𝑎) , 𝑎′
)

,

ℎ2
(

𝛾
(

𝛽0̄
)

+ 𝑏 ⊗ 𝑏′
)

= 𝜑0̄
(

𝛽0̄
)

+ 𝑏𝜑
(

𝑏, 𝑏′
)

satisfies the required conditions.

Proposition 7.3.4 makes it clear that Whitehead’s quadratic functor for abelian
crossed modules is an actual functor. Indeed, let 𝑓 =

(

𝑓1, 𝑓2
)

∶ (𝐴,𝐵, 𝜕) → (𝐶,𝐷, 𝜎)
be a homomorphism. The composition Ω(𝐶,𝐷,𝜎)𝑓 is a quadratic map, and therefore
induces a morphism ℎ =

(

ℎ1, ℎ2
)

∶ Γ (𝐴,𝐵, 𝜕) → Γ (𝐶,𝐷, 𝜎), which is functorial
and will be called Γ (𝑓 ).

We devote the rest of the section to investigate the properties of Whitehead’s
quadratic functor of abelian crossed modules, following a similar line as in Sec-
tion 7.2.

To do so, for an abelian crossed module (𝐴,𝐵, 𝜕), we introduce the abelian crossed
module 𝑆2(𝐴,𝐵, 𝜕) as a crossed module analogue of 𝑆2(𝐴) for an abelian Lie super-
algebra 𝐴 (cf. [189] for abelian crossed modules of groups).
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Definition 7.3.5. Let (𝐴,𝐵, 𝜕) be an abelian crossed module. We define the abelian
crossed module 𝑆2(𝐴,𝐵, 𝜕) as (𝐵⊗𝐴,𝑆2(𝐵), 𝜕𝑆), with 𝜕𝑆(𝑏 ⊗ 𝑎) = 𝑏 ∧ 𝜕(𝑎).

As well as other second symmetric powers, 𝑆2(𝐴,𝐵, 𝜕) satisfies the following
interesting universal property.
Proposition 7.3.6. Let (𝐴,𝐵, 𝜕) and (𝐶,𝐷, 𝜎) be two abelian crossed modules, and
consider two bilinear maps 𝑓1 ∶ 𝐵 × 𝐴→ 𝐶 and 𝑓2 ∶ 𝐵 × 𝐵 → 𝐷 satisfying

(i) 𝑓1(𝜕(𝑎), 𝑎′) = (−1)|𝑎||𝑎′|𝑓1(𝜕(𝑎′), 𝑎), for all 𝑎, 𝑎′ ∈ 𝐴;

(ii) 𝑓2 is symmetric;

(iii) 𝜎𝑓1 = 𝑓2(id ×𝜕).

Then, there exists a unique morphism of abelian crossed modules 𝑔∶ 𝑆2(𝐴,𝐵, 𝜕) →
(𝐶,𝐷, 𝜎), 𝑔 = (𝑔1, 𝑔2), making the following diagram commutative:

𝐵 × 𝐵 𝑆2(𝐵)

𝐵 × 𝐴 𝐵⊗𝐴

𝐷

𝐶

𝑓2

𝑠2

𝑔2

id ×𝜕

𝑓1

𝑠1

𝜕𝑆

𝑔1

𝜎

where 𝑠1(𝑏, 𝑎) = 𝑏 ⊗ 𝑎 and 𝑠2(𝑏, 𝑏′) = 𝑏 ∧ 𝑏′ for all 𝑎 ∈ 𝐴 and 𝑏, 𝑏′ ∈ 𝐵.

Proof. Define 𝑔 by 𝑔1(𝑏 ⊗ 𝑎) = 𝑓1(𝑏, 𝑎) and 𝑔2(𝑏 ∧ 𝑏′) = 𝑓2(𝑏, 𝑏′). The rest of the
proof is routine.
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We need also a result about the adjointness of the tensor product of abelian crossed
modules of Lie superalgebras, introduced in Chapter 6 (Definition 6.2.3) following [75]
(consult [189] for abelian groups and [75] for abelian Lie algebras).

Given (𝐶,𝐷, 𝜎) and (𝐸, 𝐹 , 𝜒) two abelian crossed modules of Lie superalgebras,
there is a homomorphism of abelian Lie superalgebras

𝜖∶ Hom (𝐷,𝐸) → Hom ((𝐶,𝐷, 𝜎) , (𝐸, 𝐹 , 𝜒))

given by 𝜖 (𝑓 ) = (𝑓𝜎, 𝜒𝑓 ). We define the abelian crossed module
Hom ((𝐶,𝐷, 𝜎) , (𝐸, 𝐹 , 𝜒)) ∶= (Hom (𝐷,𝐸) ,Hom ((𝐶,𝐷, 𝜎) , (𝐸, 𝐹 , 𝜒)) , 𝜖) .

Proposition 7.3.7. Let (𝐴,𝐵, 𝜕), (𝐶,𝐷, 𝜎) and (𝐸, 𝐹 , 𝜒) be three abelian crossed
modules of Lie superalgebras. There is a natural isomorphism of 𝑅-supermodules

Hom
(

(𝐴,𝐵, 𝜕)⊗𝑅 (𝐶,𝐷, 𝜎) , (𝐸, 𝐹 , 𝜒)
)

≃ Hom ((𝐴,𝐵, 𝜕) ,Hom ((𝐶,𝐷, 𝜎) , (𝐸, 𝐹 , 𝜒))) .

Proof. First, note that a morphism Δ from (𝐴,𝐵, 𝜕) to Hom ((𝐶,𝐷, 𝜎) , (𝐸, 𝐹 , 𝜒)) is
characterised by a pair of homomorphisms of abelian Lie superalgebras Δ1 ∶ 𝐴 →

Hom (𝐷,𝐸) and Δ2 ∶ 𝐵 → Hom ((𝐶,𝐷, 𝜎) , (𝐸, 𝐹 , 𝜒)) satisfying
(

Δ2 (𝜕 (𝑎))
)

1 (𝑐) = Δ1 (𝑎) (𝜎 (𝑐)) , (7.3.1)
(

Δ2 (𝜕 (𝑎))
)

2 (𝑑) = 𝜒
(

Δ1 (𝑎) (𝑑)
)

, (7.3.2)
𝜒
((

Δ2 (𝑏)
)

1 (𝑐)
)

=
(

Δ2 (𝑏)
)

2 (𝜎 (𝑐)) , (7.3.3)
for all 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵, 𝑐 ∈ 𝐶 and 𝑑 ∈ 𝐷. Now, given a morphism 𝑓 =

(

𝑓1, 𝑓2
)

∈
Hom

(

(𝐴,𝐵, 𝜕)⊗𝑅 (𝐶,𝐷, 𝜎) , (𝐸, 𝐹 , 𝜒)
), if we define

Δ1 (𝑎) (𝑑) = 𝑓1 (𝑎 ⊗ 𝑑) ;
(

Δ2 (𝑏)
)

1 (𝑐) = 𝑓1 (𝑐 ⊗ 𝑏) ;
(

Δ2 (𝑏)
)

2 (𝑑) = 𝑓2 (𝑏 ⊗ 𝑑) ,

it is easy to check that Δ1 and Δ2 are homomorphisms of abelian Lie superalgebras
satisfying the conditions (7.3.1)–(7.3.3).
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Conversely, given a morphism
Δ =

(

Δ1,Δ2
)

∈ Hom ((𝐴,𝐵, 𝜕) ,Hom ((𝐶,𝐷, 𝜎) , (𝐸, 𝐹 , 𝜒))) ,

we define 𝑓 =
(

𝑓1, 𝑓2
)

∶ (𝐴,𝐵, 𝜕)⊗𝑅 (𝐶,𝐷, 𝜎) → (𝐸, 𝐹 , 𝜒) by
𝑓1 (𝑎 ⊗ 𝑑 + 𝑏 ⊗ 𝑐) = Δ1 (𝑎) (𝑑) +

(

Δ2 (𝑏)
)

1 (𝑐) ;

𝑓2 (𝑏 ⊗ 𝑑) =
(

Δ2 (𝑐)
)

2 (𝑑) .

Condition (7.3.1) assures that 𝑓1 is well defined, and conditions (7.3.2) and (7.3.3) tell
us that 𝜒𝑓1 = 𝑓2𝜇. Also, 𝑓1 and 𝑓2 preserve the degrees, and the pair 𝑓 =

(

𝑓1, 𝑓2
)

is a homomorphism of abelian crossed modules of Lie superalgebras.
This correspondence is lineal and bijective, and we obtain the desired natural iso-

morphism.
Proposition 7.3.8. Let (𝐴,𝐵, 𝜕) and (𝐶,𝐷, 𝜎) be two abelian crossed modules. Then,
there is an isomorphism

Γ((𝐴,𝐵, 𝜕)⊕ (𝐶,𝐷, 𝜎)) ≃ Γ(𝐴,𝐵, 𝜕)⊕ Γ(𝐶,𝐷, 𝜎)⊕
(

(𝐴,𝐵, 𝜕)⊗𝑅 (𝐶,𝐷, 𝜎)
)

.

Proof. First, we define quadratic maps Υ1, Υ2 and Υ3 from (𝐴,𝐵, 𝜕)⊕ (𝐶,𝐷, 𝜎) =
(𝐴⊕𝐶,𝐵⊕𝐷, ⟨𝜕, 𝜎⟩) to, respectively, Γ(𝐴,𝐵, 𝜕), (𝐶,𝐷, 𝜎) and (𝐴,𝐵, 𝜕)⊗(𝐶,𝐷, 𝜎) =
(coker𝛼𝑅, 𝐵⊗𝐷, 𝜇). Set𝜑1 ∶ 𝐵⊕𝐷 → Γ(𝐵),𝜑2 ∶ 𝐵⊕𝐷 → Γ(𝐷) and𝜑3 ∶ 𝐵⊕𝐷 →

𝐵 ⊗𝐷 in the same way as in Proposition 7.2.4. Also, set
𝜉1
0̄
∶ 𝐴0̄ ⊕𝐶0̄ → Γ̃(𝐴,𝐵, 𝜕)0̄, 𝑎0̄ + 𝑏0̄ ↦ 𝑒𝑎0̄ ;

𝜉2
0̄
∶ 𝐴0̄ ⊕𝐶0̄ → Γ̃(𝐶,𝐷, 𝜎)0̄, 𝑎0̄ + 𝑏0̄ ↦ 𝑒𝑏0̄ ;

𝜉2
0̄
∶ 𝐴0̄ ⊕𝐶0̄ → (coker 𝛼)0̄, 𝑎0̄ + 𝑏0̄ ↦ 𝜕(𝑎0̄)⊗ 𝑐;

𝑏1𝜉 ∶ (𝐵 ⊕𝐷) × (𝐴⊕ 𝐶) → Γ̃(𝐴,𝐵, 𝜕), (𝑏 + 𝑑, 𝑎 + 𝑐) ↦ 𝑏 ⊗ 𝑎;
𝑏2𝜉 ∶ (𝐵 ⊕𝐷) × (𝐴⊕ 𝐶) → Γ̃(𝐶,𝐷, 𝜎), (𝑏 + 𝑑, 𝑎 + 𝑐) ↦ 𝑑 ⊗ 𝑐;
𝑏3𝜉 ∶ (𝐵 ⊕𝐷) × (𝐴⊕ 𝐶) → coker 𝛼, (𝑏 + 𝑑, 𝑎 + 𝑐) ↦ (−1)|𝑎||𝑑|𝑎 ⊗ 𝑑 + 𝑏 ⊗ 𝑐;

We define 𝜉𝑖 = (𝜉𝑖
0̄
, 𝑏𝑖𝜉) and Υ𝑖 = (𝜉𝑖, 𝜑𝑖), 𝑖 ∈ {1, 2, 3}. It is routine to prove

that the Υ𝑖 are quadratic maps, and so is their sum Υ from (𝐴,𝐵, 𝜕) ⊕ (𝐶,𝐷, 𝜎) to
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Γ(𝐴,𝐵, 𝜕)⊕ (𝐶,𝐷, 𝜎)⊕ ((𝐴,𝐵, 𝜕)⊗ (𝐶,𝐷, 𝜎)). By Proposition 7.3.4, Υ induces a
morphism of crossed modules
𝐻 = (ℎ1, ℎ2)∶ Γ((𝐴,𝐵, 𝜕)⊕ (𝐶,𝐷, 𝜎)) → Γ(𝐴,𝐵, 𝜕)⊕ (𝐶,𝐷, 𝜎)

⊕
(

(𝐴,𝐵, 𝜕)⊗𝑅 (𝐶,𝐷, 𝜎)
)

.

Now, we construct a morphism from
Γ(𝐴,𝐵, 𝜕)⊕ (𝐶,𝐷, 𝜎)⊕

(

(𝐴,𝐵, 𝜕)⊗𝑅 (𝐶,𝐷, 𝜎)
)

to Γ ((𝐴,𝐵, 𝜕)⊕ (𝐶,𝐷, 𝜎)). On the one hand, the maps
𝜚1
0̄
∶ 𝐴0̄ → Γ̃ (𝐴⊕ 𝐶,𝐵 ⊕𝐷, ⟨𝜕, 𝜎⟩)0̄, 𝑎0̄ ↦ 𝑒𝑎0̄ ;

𝑏1𝜚 ∶ 𝐵 × 𝐴→ Γ̃ (𝐴⊕ 𝐶,𝐵 ⊕𝐷, ⟨𝜕, 𝜎⟩), (𝑏, 𝑎) ↦ 𝑏 ⊗ 𝑎,

together with the analogue to 𝜙1 from Proposition 7.2.4, conform a quadratic map
Φ1 = ((𝜚1

0̄
, 𝑏1𝜚), 𝜙

1), which induces a morphism Θ1 ∶ Γ(𝐴,𝐵, 𝜕) → Γ((𝐴,𝐵, 𝜕) ⊕
(𝐶,𝐷, 𝜎)). Analogously, we get another morphism Θ2 ∶ Γ(𝐶,𝐷, 𝜎) → Γ((𝐴,𝐵, 𝜕)⊕
(𝐶,𝐷, 𝜎)). On the other hand, we define

Δ1(𝑎)∶ 𝐷 → Γ̃ (𝐴⊕ 𝐶,𝐵 ⊕𝐷, ⟨𝜕, 𝜎⟩), 𝑑 ↦ (−1)|𝑎||𝑑|𝑑 ⊗ 𝑎;
(Δ2(𝑏))1 ∶ 𝐶 → Γ̃ (𝐴⊕ 𝐶,𝐵 ⊕𝐷, ⟨𝜕, 𝜎⟩), 𝑐 ↦ 𝑏 ⊗ 𝑐;
(Δ2(𝑏))2 ∶ 𝐷 → Γ(𝐵 ⊕𝐷), 𝑑 ↦ 𝑏 ⊗ 𝑑,

for all 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵, 𝑐 ∈ 𝐶 and 𝑑 ∈ 𝐷. These maps induce two homomorphisms
of Lie superalgebras, Δ1 ∶ 𝐴→ Hom(𝐷,𝐸) and

Δ2 ∶ 𝐵 → Hom ((𝐶,𝐷, 𝜎) ,Γ ((𝐴,𝐵, 𝜕)⊕ (𝐶,𝐷, 𝜎))) ,

satisfying the conditions (7.3.1)–(7.3.3); therefore, they define a morphism Δ from
(𝐴,𝐵, 𝜕) to Hom((𝐶,𝐷, 𝜎), (𝐸, 𝐹 , 𝜒)), which by Proposition 7.3.7 determines an-
other morphism Θ3 ∶ (𝐴,𝐵, 𝜕) ⊗ (𝐶,𝐷, 𝜎) → Γ ((𝐴,𝐵, 𝜕)⊕ (𝐶,𝐷, 𝜎)). The mor-
phisms Θ1, Θ2 and Θ3 determine the morphism
Θ∶ Γ(𝐴,𝐵, 𝜕)⊕ (𝐶,𝐷, 𝜎)⊕ ((𝐴,𝐵, 𝜕)⊗ (𝐶,𝐷, 𝜎)) → Γ((𝐴,𝐵, 𝜕)⊕ (𝐶,𝐷, 𝜎)),

which is the inverse of 𝐻 .
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Proposition 7.3.9. Assume that 2 has an inverse in 𝑅, and let (𝐴,𝐵, 𝜕) be an abelian
crossed module. Then, the abelian crossed modules Γ(𝐴,𝐵, 𝜕) and 𝑆2(𝐴,𝐵, 𝜕) are
isomorphic.

Proof. On the one hand, the pair of canonical maps 𝑏𝜂 ∶ 𝐵 × 𝐴 → Γ̃(𝐴,𝐵, 𝜕) and
𝑏𝛾 ∶ 𝐵 × 𝐵 → Γ(𝐵) from Proposition 7.3.3 satisfy conditions (i)–(iii) of Proposi-
tion 7.3.6. Therefore, they induce a morphism 𝐺 = (𝑔1, 𝑔2) between 𝑆2(𝐴,𝐵, 𝜕)
and Γ(𝐴,𝐵, 𝜕). On the other hand, we will define a quadratic map between (𝐴,𝐵, 𝜕)
and Γ(𝐴,𝐵, 𝜕). Consider the pair 𝜑 =

(

𝜑0̄, 𝑏𝜑
) from Proposition 7.2.7, and also

𝑥0̄ ∶ 𝐴0̄ →
(

𝐵⊗𝐴
)

0̄
and 𝑏𝜉 ∶ 𝐵 × 𝐴 → 𝐵⊗𝐴, defined by 𝑥0̄(𝑎0̄) = 𝜕(𝑎0̄) ⊗ 𝑎0̄

and 𝑏𝜉(𝑏, 𝑎) = 2𝑏 ⊗ 𝑎, respectively. It holds that Υ =
((

𝑥0̄, 𝑏𝜉
)

, 𝜑
) is a quadratic

map; then, Proposition 7.3.4 ensures that there exists a morphism 𝐻 = (ℎ1, ℎ2)
from Γ(𝐴,𝐵, 𝜕) to 𝑆2(𝐴,𝐵, 𝜕). Some quick calculations show that 𝐻𝐺 = 2 id and
𝐺𝐻 = 2 id; then, 𝑆2(𝐴,𝐵, 𝜕) and Γ(𝐴,𝐵, 𝜕) are isomorphic.

To obtain an exact sequence similar to that of Proposition 7.2.8 in the context
of crossed modules, it would be necessary to handle non-abelian tensor and exterior
products of crossed modules acting on each other in the sense of [51, 182]. As far as
we are concerned, these concepts have not been defined yet, so we limit to deal with a
particular case which slightly generalises Theorem 6.3.12 (see Chapter 6, page 200).
Proposition 7.3.10. Let (𝑇 , 𝐿, 𝜕) be a crossed module such that 𝜕 is surjective or
the action of 𝐿 on 𝑇 is trivial, and let (𝑀,𝑃 , 𝜕) and (𝑁,𝑄, 𝜕) be two graded ideal
crossed submodules. Then, there is an exact sequence

Γ
(

(𝑀,𝑃 , 𝜕) ∩ (𝑁,𝑄, 𝜕)
[(𝑀,𝑃 , 𝜕), (𝑁,𝑄, 𝜕)]

)

(𝑀,𝑃 , 𝜕)⊗ (𝑁,𝑄, 𝜕)

(𝑀,𝑃 , 𝜕) ∧ (𝑁,𝑄, 𝜕) 0.

(𝜙,𝜓)

(𝜋1,𝜋2)

Proof. This proof is step-by-step analogous to the one of Theorem 6.3.12 (see Chap-
ter 6, page 200).

We finish this chapter by highlighting a significant difference with respect to
the cases of modules and supermodules. Namely, Whitehead’s quadratic functor for
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abelian crossed modules of Lie superalgebras does not preserve free objects, defined
in the following way. Consider the forgetful functor  from the subcategory 𝐀𝐛 of
𝐗𝐒𝐋𝐢𝐞 to the category 𝐒𝐞𝐭𝟐 of ℤ2-graded sets, which carries each (𝐴,𝐵, 𝜕) to the
disjoint union (

𝐴0̄ × 𝐵0̄
)

⊔
(

𝐴1̄ × 𝐵1̄
). It can be checked that this functor has a left

adjoint, which we will denote by  and which carries each set 𝑋 = 𝑋0̄ ∪ 𝑋1̄ to
the abelian crossed module (

⊕𝑋𝑅,
(

⊕𝑋𝑅
)

⊕
(

⊕𝑋𝑅
)

, 𝜄1
), where 𝜄 denotes the in-

clusion into the first component, and being ⊕𝑋𝑅 =
(

⊕𝑋0̄
𝑅
)

⊕
(

⊕𝑋1̄
𝑅
)

. It will be
called the free functor. One can check that this is the same approach to free crossed
modules as the one given in [48] in the context of crossed modules of groups.

Set 𝑋 = {∗}, concentrated in degree 0̄, and 𝑅 = ℤ. Then, the free abelian
crossed module over 𝑋 of is  (𝑋) =

(

ℤ,ℤ⊕ ℤ, 𝜄1
). Now, consider the second

component of Γ (

ℤ,ℤ⊕ ℤ, 𝜄1
),

Γ(ℤ⊕ ℤ) = Γ(ℤ)⊕ Γ(ℤ)⊕ ℤ⊗ ℤ ≃ ℤ⊕ ℤ⊕ ℤ,

where Γ(ℤ) ≃ ℤ follows from Proposition 7.2.6. It is clear that ℤ⊕ ℤ⊕ ℤ cannot
be expressed as (⊕𝑌ℤ

)

⊕
(

⊕𝑌ℤ
) for any set 𝑌 , and therefore Γ(ℤ,ℤ⊕ℤ, 𝜄1) is not

free.
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In the algebraic-geometry-based theory of automated proving and discovery, it is of-
ten required that the user includes, as complementary hypotheses, some intuitively
obvious non-degeneracy conditions. Traditionally there are two main procedures to
introduce such conditions into the hypotheses set. The aim of this chapter is to present
these two approaches, namely Rabinowitsch’s trick and the ideal saturation computa-
tion, and to discuss in detail the close relationships and subtle differences that exist be-
tween them, highlighting the advantages and drawbacks of each one. We also present
a carefully developed example which illustrates the previous discussion. Moreover,
the chapter will analyse the impact of each of these two methods in the formulation of
statements with negative theses, yielding rather unexpected results if Rabinowitsch’s
trick is applied.

Introduction

The framework of this chapter is the automated theorem proving and discovery theory
initiated, forty years ago, by Wu on his seminal paper [234, “On the decision problem
and the mechanisation of theorem-proving in elementary geometry”], based in com-
putational (complex) algebraic geometry. This theory has evolved, along the years,
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yielding a variety of methods that have been recognised to be a quite successful ap-
proach to automated reasoning in elementary geometry, as already shown, long ago,
by the quantity and quality of the performing examples in [56]. In this chapter, we
will follow the protocol and notation described in [58, Chapter 6, Section 4], quite
similar to that of [59], [194] or [238]. Its recent implementation (see [1]) in a free
mathematics software, with millions of users worldwide, brings again to the frontline
some pending issues.

The point we will address in this chapter deals with the most convenient way(s) of
handling hypotheses and theses that describe negative assertions, such as “consider
two different points” (i.e. two points that are not equal), or “let𝐴,𝐵, 𝐶 be the vertices
of a non-degenerate triangle” (i.e. three points that 𝐴,𝐵, 𝐶 neither coincide nor lie
on a line), etc. The relevance of clarifying this issue is not just restricted to extending
the mechanical proving method to handle a larger kind of statements. In fact, as we
will show in the next Section 8.1 of this chapter, non-degeneracy conditions arise
in a natural way along with the traditional protocol for theorem proving of purely
affirmative statements.

It happens that, in order to introduce, as input for the standard algebraic geom-
etry algorithms, the requirement to avoid such degeneracies, the given polynomial
inequalities 𝑝1(𝑥1,… , 𝑥𝑛) ≠ 0 must be expressed by means of equations. In the
tradition of automated theorem proving this conversion has been achieved through
two possible approaches, that we will describe in detail in Section 8.2: Rabinow-
itsch’s trick and ideal saturation. We plan to deal in the future with some recent
methods for introducing negative hypotheses, such as the ones based on comprehen-
sive Gröbner systems (see [177]), or those in the ZariskiFrames package https:
//github.com/homalg-project/ZariskiFrames (see [16]), using ideal member-
ship and syzygies, as they are not yet implemented in most popular dynamic geometry
programs, such as GeoGebra [2].

Rabinowitsch’s trick is an old companion to automated proving in geometry [135],
where it has been used to formulate negations of equalities, the so-called “disequality”
relations. Despite its antiquity, the current validity and interest of this approach can
be confirmed, for example, by considering the recent research of Kapur, Sun, Wang
and Zhou [136] on a generalisation of the “trick”. See also [16, Example 6.1] for a
sound, abstract, description of this trick, i.e. the replacement of a locally closed set
𝐴 ⧵ 𝐵, where 𝐴,𝐵 are algebraic subsets of an affine space 𝐹 𝑛, by an algebraic set in
𝐹 𝑛+1, the so-called “Rabinowitsch cover”, such that the set-theoretic projection of the
cover is exactly the locally closed set and, thus, the closure in the Zariski topology of
the projection of the cover can be computed through elimination.

https://github.com/homalg-project/ZariskiFrames
https://github.com/homalg-project/ZariskiFrames
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On the other hand, ideal saturation is a direct algebraic way to compute 𝐴 ⧵ 𝐵
without requiring to replace the locally closed set 𝐴 ⧵ 𝐵 by an algebraic set on a
higher dimensional affine space and then projecting it down to 𝐹 𝑛. Its relation to
Rabinowitsch’s trick is well known in commutative algebra, and the potential impact
of using saturation as an alternative to Rabinowitsch’s trick for theorem proving has
been already highlighted in [59, Section 5], but it seems a detailed and general analysis
of the pros and cons of both approaches, regarding their faithfulness as translations of
negative statements, has never been thoroughly addressed.

Thus, the main contribution of this chapter is to study, in detail, the different im-
plications of adopting each of these formulations for describing negative theses and
hypotheses. Section 8.3 focuses on the consequences of both methods for stating
negative theses, suggesting that saturation could be considered as more reliable in
this context (see Proposition 8.3.8), while Section 8.4 deals with the introduction of
negative hypotheses, clarifying the different, albeit close, results in each of the two
alternate proposals. Section 8.5 discusses in detail an example, showing the com-
putational pros and cons of both approaches. Finally, Section 8.6 establishes some
conclusions for the future consideration of automatic theorem proving software de-
velopers.

Throughout this chapter, 𝐹 will denote an algebraically closed field of character-
istic 0, and all the vector spaces, affine spaces and polynomial rings will be considered
over 𝐹 . Also, for simplicity of notation, we will denote by𝐻 (respectively 𝑇 ) the col-
lection of polynomials involved in the hypotheses (respectively theses) and the ideal
generated by them.

8.1 A short digest on automatic proving and discovery by
algebraic geometry methods

Roughly speaking, the computational algebraic geometry theorem proving method
proceeds by assigning coordinates and equations to the elements (points, lines, circles,
etc.) and conditions (perpendicularity, incidence, etc.) of the involved geometric
hypotheses 𝐻 and theses 𝑇 . In this way the geometric statement, which we will
symbolise as𝐻 ⇒ 𝑇 , is translated as an inclusion𝑉 (𝐻) ⊆ 𝑉 (𝑇 ) between the solution
set, 𝑉 (𝐻), of the system of equations {𝐻 = 0} and that, 𝑉 (𝑇 ), of the set of equations
{𝑇 = 0}. Finally, this inclusion needs to be tested by some computational algebraic
geometry methods.
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One practical protocol to perform this test is the refutational approach introduced
by Kapur [135], in which testing the inclusion 𝑉 (𝐻) ⊆ 𝑉 (𝑇 ) turns to deciding if
𝑉 (𝐻) ⧵ 𝑉 (𝑇 ) is empty or not. This is, obviously, equivalent to showing that its
Zariski-closure 𝑉 (𝐻) ⧵ 𝑉 (𝑇 ) is empty or not. But this fact can be checked by test-
ing the emptiness of the corresponding Rabinowitsch cover (i.e. by determining the
membership of 1 in the defining ideal of the cover) since the projection of an algebraic
set is empty if and only if the set is empty. In fact, when 𝑇 is a single thesis, verifying
that 𝐻 ∧ ¬𝑇 is empty is equivalent, by the Weak Nullstellensatz, to simply checking
if 1 ∈ 𝐻𝑒 + (𝑇 𝑡 − 1), where 𝐻𝑒 is the extension of 𝐻 to the polynomial ring with
an extra variable 𝑡. In what follows, we will assume indeed that 𝑇 consists of a single
thesis, as it is straightforward to adapt all the obtained results to the general case

As it is well known, the reduction from the Strong to the Weak Nullstellensatz,
by introducing 𝑇 𝑡 − 1 = 0 as the algebraic, affirmative formulation for ¬{𝑇 = 0} is,
precisely, the role of the so-called Rabinowitsch’s trick, see [191]. In summary, there
is a special, and since long, relation between automatic proving in geometry and this
particular trick.

Going a little bit further, let us remark that, in the algebraic geometry approach to
automated theorem proving, it happens that in most cases we are not actually dealing
with proving, but with discovering! Indeed, many statements that seem obviously
true to human intuition, turn out to be false in the algebraic formulation, in the sense
of not fully satisfying 𝑉 (𝐻) ⊆ 𝑉 (𝑇 ). Thus, the main task for the automatic reason-
ing theory turns out to be devising algorithms to find out extra hypotheses that will
constrain the set 𝑉 (𝐻) in order to fit inside 𝑉 (𝑇 ): i.e. to discover how to modify
a given statement so that it becomes true! See [195] for a thorough reflection and
bibliographic references on this involved issue.

A key ingredient in this framework is the concept of set of independent variables
modulo the hypotheses ideal, i.e. a set of variables such that no polynomial, in these
variables alone, belongs to the ideal𝐻 . Examples of sets of free variables are the col-
lection of three times two coordinates describing the vertices of an arbitrary triangle,
or only one of the coordinates of a point constrained to be in a circle, etc.

Among the many different sets of independent variables for a particular hypothe-
ses ideal, we will consider sets of maximum cardinality: in this way, the remaining
variables will satisfy some algebraic dependence over the independent ones and thus,
except at some special cases, they are finitely determined for each setting of the inde-
pendent variables. Therefore, it is exclusively in terms of the independent variables
that we will consider reasonable to formulate the extra hypotheses needed to modify
some given geometric statement, to turn it strictly true.
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Obviously, it is crucial to automatically find such conditions: this can be done,
roughly speaking, by elimination of the extra variable 𝑡 and the non-independent vari-
ables (say, 𝑥𝑠+1,… , 𝑥𝑛) in the ideal𝐻𝑒+(𝑇 𝑡−1). Indeed, the zero set of𝐻𝑒+(𝑇 𝑡−1)
exactly corresponds to the “failure cases” where 𝐻 and ¬ 𝑇 simultaneously hold.

Thus, by adding to the given hypotheses𝐻 the negation of any of the polynomials
in the elimination ideal of𝐻𝑒+(𝑇 𝑡−1), we will get a true statement. These additional,
negative hypotheses (such as these two given points must be truly different, the given
triangle should not collapse to a line, etc.) expressed in terms of the independent
variables, are known as non-degeneracy conditions.

Of course, it can happen that the elimination of 𝑡 and the dependent variables in
the ideal𝐻𝑒+(𝑇 𝑡−1) is just the zero ideal and, in this case, the only non-degeneracy
condition turns out to be 0 ≠ 0, so that it does not hold over any instance of the geo-
metric hypotheses. Notice that this zero-ideal case is the only possibility for getting an
empty hypotheses statement when adding the negation of an equation ℎ′ = 0, where
ℎ′ arises from the elimination of 𝐻𝑒 + (𝑇 𝑡 − 1) in terms of independent variables.
Thus, the name generally true is reserved to statements where this elimination ideal
(𝐻𝑒 + (𝑇 𝑡 − 1)) ∩𝐹

[

𝑥1,… , 𝑥𝑠
] is not zero; logically, the name non generally true is

applied to those statements in which the former ideal is zero (that is, generally true
is false). Note that we are employing the terminology of [56] and some recent pa-
pers as [1, 59, 194], but recall that in some classic references as [58] or [176] these
statements are called generically true and non generically true, respectively.

When the elimination ideal is zero, it is advisable to consider, instead, the elimi-
nation of the same dependent variables, but now in the ideal of hypotheses and thesis
𝐻 +𝑇 . If this elimination is not zero, the given statement is labeled as generally false
(and non generally false if it is zero).

Obviously, when the elimination of the dependent variables in 𝐻 + 𝑇 is not zero,
adding as complementary, affirmative hypotheses the equations of a basis of this elim-
ination ideal we are led to a new statement, and we should restart again our protocol.

Notice that the new hypotheses variety could be empty if and only if𝐻+𝑇 = (1),
i.e. if the elimination ideal turns out to be (1), and from there we can conclude the
truth of whatever statement. It is the extremely false case, in which the hypothesis va-
riety has nothing in common with the thesis variety. Our approach does not disregard
this option; but routinely checking that the analysed statements have a non empty hy-
potheses set should be included in any theorem proving algorithm, in order to detect
trivialities.
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On the other hand, if the elimination in 𝐻 + 𝑇 yields zero, we are in the non
generally false and non generally true case. See [58, Chapter 6, Section 4] or [59],
[194] for further details on the whole algorithm.

Thus, the general automatic proving procedure ends, either with a generally true
statement (after discovering some new, affirmative and/or negative conditions), or
arriving at a neither generally false nor generally true situation, a quite challenging
context, yielding as well to the discovery of new statements, but in a more involved
way. See [30] and [238] for some recent advances concerning this last issue.

8.2 Introducing negative conditions: different ways. . .

Summarising, negative conditions appear naturally in classical automated theorem
proving in two different circumstances:

• to refute the thesis 𝑇 , in order to establish if the given statement is generally
true or not;

• if generally true, to add, as complementary, negative hypotheses, some newly
discovered non-degeneracy conditions.

On the other hand, the high complexity of the polynomial Gröbner basis algo-
rithms involved in the method explained before [58] compels the user to manually
introduce, before starting to run the proving algorithm, some intuitive, easy-to-guess
non-degeneracy conditions, to attempt to simplify the computation.

Bearing this in mind, we think that the second item above should be extended and
reformulated as follows:

• to add, at different stages of the proving protocol, as complementary hypothe-
ses, human or automatically guessed non-degeneracy conditions.

Thus, an important task is to find ways to introduce both the refutation of a thesis
and non-degeneracy conditions, so that it reflects (as closely as possible) the geometric
meaning of the added condition (i.e. to avoid some degenerate cases, to negate some
theses) and expresses it by means of equations.

As mentioned above, traditionally (at least since [135]) the negation of a given
geometric property described by the equation 𝑓 = 0, is handled as an equation by
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adding some auxiliary variable 𝑡 and considering the equation 𝑓𝑡 − 1 = 0 as repre-
senting ¬{𝑓 = 0}, emulating Rabinowitsch’s trick. It is easy to generalise this ap-
proach to refutation for the case of having to negate the conjunction or the disjunction
of several conditions, see [59, Appendix].

However, the avoidance of some condition 𝑓 = 0 can be expressed considering
the Zariski closure of the difference 𝑉 (𝐻) ⧵ 𝑉 (𝑓 ), i.e. by considering as new hy-
potheses the polynomial equations expressing the smallest set that satisfies the given
hypotheses and not the condition 𝑓 = 0. In general, if 𝐼, 𝐽 are ideals of a polyno-
mial ring 𝐹 [

𝑥1,… , 𝑥𝑛
], the saturation of 𝐼 by 𝐽 is defined as Sat(𝐼, 𝐽 ) = 𝐼 ∶ 𝐽∞ =

∪𝑛(𝐼 ∶ 𝐽 𝑛) (see [58, 59]), where 𝐼 ∶ 𝐽 = {𝑔 ∈ 𝐹
[

𝑥1,… , 𝑥𝑛
]

∣ 𝑔𝐽 ⊆ 𝐼}, and it satis-
fies 𝑉 (Sat(𝐼, 𝐽 )) = 𝑉 (𝐼) ⧵ 𝑉 (𝐽 ). When the ideal 𝐽 is principal, 𝐽 = (𝑗), we merely
denote Sat(𝐼, 𝑗).

In summary, the other option we are considering here to include non-degeneracy
conditions ¬{𝑓 = 0} is to saturate the ideal of hypotheses by the ideal 𝐽 = (𝑓 ).
Again, it is straightforward the generalisation of this idea of saturation to the case of
several conditions (see [59, Appendix]). As mentioned in the previous section, we
could say that saturation is a direct way to compute 𝑉 (𝐻) ⧵ 𝑉 (𝑓 ) without requiring
adding one extra variable and then eliminating it.

This second option could seem, at first glance, more sophisticated than the im-
plementation of Rabinowitsch’s trick. But there is not a big difference. In fact, [59,
Proposition 6 and Corollary 2 of Appendix] shows that the saturation of the ideal 𝐼
by another ideal 𝐽 =

∏𝑟
𝑖=1 𝐽𝑖, where 𝐽𝑖 = (𝑓𝑖1,… , 𝑓𝑖𝑙𝑖), satisfies:

Sat(𝐼, 𝐽 ) =
(

𝐼𝑒 +
(

(𝑓11𝑡1 − 1)⋯ (𝑓1𝑙1𝑡1 − 1),… , (𝑓𝑟1𝑡𝑟 − 1)⋯ (𝑓𝑟𝑙𝑟𝑡𝑟 − 1)
))

∩ 𝐹
[

𝑥1,… , 𝑥𝑛
]

;

in particular, it holds that
Sat(𝐼, 𝑓 ) = (𝐼𝑒 + (𝑓𝑡 − 1)) ∩ 𝐹

[

𝑥1,… , 𝑥𝑛
]

, (8.2.1)
as it is stated in [58, Theorem 14 of Chapter 4, Section 4].
Remark 8.2.1. Although formula (8.2.1) relates saturation and elimination theoreti-
cally, it does not implies that, computationally speaking, saturation requires elimina-
tion, see, for instance, [17].

Thus, the actual dilemma is: do we want to add non-degeneracy conditions as
in Rabinowitsch’s trick, by carrying around within 𝐻 an extra, alien variable, which
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should be eliminated at the end of the theorem proving or discovery process, i.e. when
considering the ideal𝐻𝑒+(𝑇 𝑡−1); or should we deal, from the beginning, with the non
degeneracy conditions expressed in terms of the “given” variables of our statement, by
saturation? And, actually, does it imply any difference concerning theorem proving?

This dilemma does not seem to appear concerning the use of Rabinowitsch’s trick
or saturation in order to determine if a theorem is generally true by refuting the thesis.
It is easy to prove that both approaches yield the same result: it follows from (8.2.1)
and the fact that
(𝐻𝑒 + (𝑇 𝑡 − 1))∩𝐹

[

𝑥1,… , 𝑥𝑠
]

= (𝐻𝑒 + (𝑇 𝑡 − 1))∩𝐹
[

𝑥1,… , 𝑥𝑛
]

∩𝐹
[

𝑥1,… , 𝑥𝑠
]

.

8.3 . . . different consequences: introducing negative theses

In this section, we will analyse the different behaviour of both approaches (Rabinow-
itsch, saturation) regarding the introduction of negative theses. Note that this task
is not as important as the introduction of negative hypotheses (which will be tack-
led in the following section), because the former just enlarges the realm of classical
automated theorem proving, while the latter appears naturally on it.
Example 8.3.1. Let us consider the following quite artificial statement: given a gen-
eral triangle, with free vertices 𝐴(0, 0), 𝐵(1, 0), 𝐶(𝑐1, 𝑐2), we assert that 𝑐2 ≠ 0, i.e.
that 𝐶 does not lie in the 𝐴𝐵 line. Intuitively this statement seems generally true. We
consider the ideal𝐻 = (0) as the zero ideal, since there are no hypotheses; moreover,
both variables, 𝑐1, 𝑐2 are free.

Then, we apply the protocol and start computing𝐻+(𝑇 𝑡−1), with 𝑇 ∶= {𝑐2 ≠ 0}.
Using Rabinowitsch’s trick we should consider 𝑇 ∶= {𝑐2𝑧−1 = 0}, with an auxiliary
variable 𝑧, and then proceed to compute the elimination of the variables 𝑧 and 𝑡 in
the ideal 𝐻 +

(

(𝑐2𝑧 − 1)𝑡 − 1
)

= (0) +
(

(𝑐2𝑧 − 1)𝑡 − 1
)

=
(

(𝑐2𝑧 − 1)𝑡 − 1
). The

obvious result is (0), so the statement is non generally true and we should proceed by
considering the ideal 𝐻 + 𝑇 , i.e. (0) + (𝑐2𝑧 − 1) and eliminating the variable 𝑧 here.
The result is, again, zero. So we are stuck in the non generally true and non generally
false case!

On the other hand, if we model the thesis 𝑇 as the saturation of 𝐻 = (0) by 𝑐2 we
get Sat((0), (𝑐2)) = (0), so the thesis should be considered to be 𝑇 = 0 and, then, we
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start checking if this thesis is generally true, but computing the ideal 𝐻 + (𝑇 𝑡 − 1),
i.e. ideal (0) + (1) = (1). We get that the statement is not only generally but always
true, since the only non-degeneracy condition is 1 ≠ 0 !

As we can see in the above example, we can obtain quite different results following
both methods. But this is not just a particular behaviour in some cases. In general,
we can state the following unexpected facts:
Proposition 8.3.2. The introduction of a negative thesis 𝑇1 ∶= {𝑝 ≠ 0} by using
Rabinowitsch’s trick, always yields a non generally true statement 𝐻 ⇒ 𝑇1.

Proof. Let us assume that {𝑥1,… , 𝑥𝑠} are the independent variables for 𝐻 . Then let
us prove that the closure of the projection over this affine space, of the variety 𝑉 (𝐻)∩
𝑉 ((𝑝𝑧 − 1)𝑡 − 1) lying in the space of the variables {𝑥1,… , 𝑥𝑠, 𝑥𝑠+1,… , 𝑥𝑛, 𝑧, 𝑡}, is
the whole {𝑥1,… , 𝑥𝑠}-space. In fact, take any point (𝑥1,… , 𝑥𝑠) in the projection of
𝑉 (𝐻), which is, by definition of independent variables, dense in the affine space, and
we will prove that it is also in the projection of 𝑉 (𝐻) ∩ 𝑉 ((𝑝𝑧 − 1)𝑡 − 1).

First we notice that, because (𝑥1,… , 𝑥𝑠) lies in the projection of 𝑉 (𝐻), there are
values of 𝑥𝑠+1,… , 𝑥𝑛 such that (𝑥1,… , 𝑥𝑠, 𝑥𝑠+1,… , 𝑥𝑛) is in 𝑉 (𝐻). If, for one of
these points in 𝑉 (𝐻), it happens that 𝑝(𝑥1,… , 𝑥𝑛) = 0, then by taking 𝑡 = −1 and
an arbitrary value of 𝑧, we will have that the point (𝑥1,… , 𝑥𝑛, 𝑧,−1) is in 𝑉 (𝐻) ∩
𝑉 ((𝑝𝑧 − 1)𝑡 − 1). On the other hand, if 𝑝(𝑥1,… , 𝑥𝑛) ≠ 0, we consider a value of
𝑧 ≠ 1∕𝑝(𝑥1,… , 𝑥𝑛), so that 𝑝𝑧−1 ≠ 0. Finally, by taking 𝑡 = 1∕(𝑝𝑧−1), we will have,
again, that the point (𝑥1,… , 𝑥𝑛, 𝑧, 1∕(𝑝𝑧 − 1)

) is in 𝑉 (𝐻) ∩ 𝑉 ((𝑝𝑧 − 1)𝑡 − 1).
This surprising result could suggest the idea that this method fails to model geo-

metric problems with negative thesis. Indeed, an intuitive approximation might con-
sider that the two successive negations involved here (one, for the negative thesis;
two, for the refutational approach required for checking generally true statements),
would be equivalent to simply verifying the thesis in an affirmative way. That is,
common sense is prone to conclude that verifying if a negative thesis (introduced
through Rabinowitsch’s trick) is generally true would be equivalent to verifying if
the corresponding affirmative thesis is generally false, but see some of the examples
and propositions below. In fact, postponing the elimination of 𝑧 until the end of the
process, which is the essence of Rabinowitsch’s trick, forces us to consider the for-
mulation of the negative thesis 𝑝𝑧 − 1 just as a simple statement in 𝐹 [

𝑥1,… , 𝑥𝑛, 𝑧
],
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rather than the negation of something, yet with subtle relations with the corresponding
affirmative statement.

Notice that, in general, we have [30, Proposition 2.3]:
Proposition 8.3.3. A statement 𝐻 ⇒ 𝑇 cannot be simultaneously generally true and
generally false, that is, it cannot happen that both 𝐻 + 𝑇 and 𝐻𝑒 + (𝑇 𝑡− 1) have, at
the same time, some non-zero polynomials in the independent variables alone.

On the other hand, it is easy to notice that, by applying directly the definitions, we
have:
Proposition 8.3.4. If a statement with an affirmative thesis 𝑇2 ∶= {𝑝 = 0} is gen-
erally true, then the same statement but with the negative thesis (formulated through
Rabinowitsch’s trick) 𝑇1 ∶= {𝑝 ≠ 0} will be generally false, and conversely.

Putting together the two precedent propositions, it follows immediately the fol-
lowing result:
Proposition 8.3.5. If a statement with an affirmative thesis 𝑇2 ∶= {𝑝 = 0} is generally
false, then the same statement, but with the corresponding negative thesis (formulated
through Rabinowitsch’s trick) 𝑇1 ∶= {𝑝 ≠ 0} will be non generally false.

Proof. If a statement with an affirmative thesis 𝑇2 ∶= {𝑝 = 0} is generally false, then
Proposition 8.3.3 says that it cannot be generally true and thus, by Proposition 8.3.4,
the corresponding negative thesis (formulated through Rabinowitsch’s trick) 𝑇1 ∶=
{𝑝 ≠ 0} will be non generally false.
Corollary 8.3.6. In summary: if 𝐻 ⇒ 𝑇2 is generally false, then necessarily

• 𝐻 ⇒ 𝑇2 is non generally true;

• 𝐻 ⇒ 𝑇1 is non generally false and non generally true.

On the other hand, if 𝐻 ⇒ 𝑇2 is non generally false, then, there are two options: if
𝐻 ⇒ 𝑇2 is also generally true, we will have that 𝐻 ⇒ 𝑇1 is generally false as well,
and non generally true; and if 𝐻 ⇒ 𝑇2 is non generally false and non generally true,
then 𝐻 ⇒ 𝑇1 is also non generally false and non generally true.
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Example 8.3.7. If we consider𝐻 ∶= {(𝑦−1)(𝑦−2) = 0} in the variables {𝑥, 𝑦}, with
𝑥 the only independent variable, and 𝑇2 ∶= {𝑦 − 1 = 0}, 𝑇1 ∶= {(𝑦 − 1)𝑧 − 1 = 0} it
is easy to check that 𝐻 ⇒ 𝑇2 is both non generally true and non generally false, and
the same happens for 𝐻 ⇒ 𝑇1. On the other hand, if we take 𝑇2 ∶= {𝑦 − 3 = 0},
𝑇1 ∶= {(𝑦−3)𝑧−1 = 0}, we obtain that 𝐻 ⇒ 𝑇2 is non generally true, but generally
false, while 𝐻 ⇒ 𝑇1 is both non generally true and non generally false. Finally,
if we take 𝐻 ∶= {(𝑦 − 1) = 0} in the variables {𝑥, 𝑦}, and 𝑇2 ∶= {𝑦 − 1 = 0},
𝑇1 ∶= {(𝑦 − 1)𝑧 − 1 = 0} it is easy to check that 𝐻 ⇒ 𝑇2 is generally true, but non
generally false, while 𝐻 ⇒ 𝑇1 will be no generally true, but generally false. This
covers all possibilities.

Similarly to Proposition 8.3.4, for the formulation of negative thesis using satura-
tion, we have the following:
Proposition 8.3.8. If the statement 𝐻 ⇒ 𝑇2 is generally true then the statement
𝐻 ⇒ 𝑇1, formulated by introducing the negative thesis 𝑇1 ∶= {𝑝 ≠ 0} by using
saturation, is generally false. Analogously, if 𝐻 ⇒ 𝑇2 is generally false then the
statement 𝐻 ⇒ 𝑇1, formulated by introducing the negative thesis 𝑇1 ∶= {𝑝 ≠ 0} by
using saturation, is a generally true statement.

Proof. If 𝐻 ⇒ 𝑇2 is generally true, it means that the elimination of dependent vari-
ables modulo 𝐻 in 𝐻𝑒 + (𝑝𝑡 − 1) is not zero. Let 𝐽 be this elimination ideal. Now,
𝐻 ⇒ 𝑇1 ∶= {Sat(𝐻, 𝑝)}, expressed by saturation, is generally false because if we
eliminate the dependent variables in𝐻+𝑇1 we get (𝐻 + Sat(𝐻, 𝑝))∩𝐹

[

𝑥1,… , 𝑥𝑠
]

=
(

𝐻 +
(

(𝐻𝑒 + (𝑝𝑡 − 1)) ∩ 𝐹
[

𝑥1,… , 𝑥𝑛
]))

∩𝐹
[

𝑥1,… , 𝑥𝑠
], where the inner intersec-

tion just means the elimination of 𝑡. Obviously, this intersection contains 𝐽 , which
is already an ideal in the independent variables, so this inclusion is not affected by
adding 𝐻 or by the outer intersection, hence (𝐻 + Sat(𝐻, 𝑝)) ∩ 𝐹

[

𝑥1,… , 𝑥𝑠
]

=
(

𝐻 +
(

(𝐻𝑒 + (𝑝𝑡 − 1)) ∩ 𝐹
[

𝑥1,… , 𝑥𝑛
]))

∩ 𝐹
[

𝑥1,… , 𝑥𝑠
]

⊇ 𝐽 ≠ (0).
Concerning the second statement in this proposition, let us assume that Sat(𝐻, 𝑝)

is principal, for simplicity; say, generated by 𝑞. Then there is a power of 𝑝, such as
𝑝𝑟, satisfying that 𝑞𝑝𝑟 ∈ 𝐻 . Next, notice that if 𝐻 + (𝑝) has some polynomial in the
independent variables (i.e. if 𝐻 ⇒ 𝑇2 is generally false), then the same happens for



238 8 Dealing with negative conditions in automated proving

𝐻 + (𝑝𝑛), for whatever power of 𝑝; thus, the elimination of the independent variables
in 𝐻 + (𝑝𝑟) will also be not zero. On the other hand, we observe that 𝑝𝑟 is in 𝐻𝑒 +
(Sat(𝐻, 𝑝)𝑡 − 1), since equality (8.2.1) tells us that the elimination of 𝑡 in this ideal
is Sat (𝐻, Sat(𝐻, 𝑝)), and 𝑝𝑟𝑞 ∈ 𝐻 . Thus, 𝐻𝑒 + (Sat(𝐻, 𝑝)𝑡 − 1) ⊇ 𝐻 + (𝑝𝑟) and it
follows the corresponding elimination is not zero.

Example 8.3.9. If we consider 𝐻 ∶= {(𝑦 − 1)(𝑦 − 2) = 0} in the variables {𝑥, 𝑦},
with 𝑥 the only independent variable, and 𝑇2 ∶= {𝑦−1 = 0}, 𝑇1 ∶= Sat(((𝑦−1)(𝑦−
2)), (𝑦 − 1))={𝑦 − 2 = 0} it is easy to check that 𝐻 ⇒ 𝑇2 is both non generally true
and non generally false, and the same happens for 𝐻 ⇒ 𝑇1. On the other hand, if we
take 𝑇2 ∶= {𝑦 − 3 = 0}, 𝑇1 ∶= Sat(((𝑦 − 1)(𝑦 − 2)),
(𝑦 − 3))={(𝑦 − 1)(𝑦 − 2) = 0}, we obtain that 𝐻 ⇒ 𝑇2 is non generally true, but
generally false, while 𝐻 ⇒ 𝑇1 is generally true and non generally false. Finally,
if we take 𝐻 ∶= {(𝑦 − 1) = 0} in the variables {𝑥, 𝑦}, and 𝑇2 ∶= {𝑦 − 1 = 0},
𝑇1 ∶= Sat((𝑦 − 1), (𝑦 − 1)) = (1) it is easy to check that 𝐻 ⇒ 𝑇2 is generally true,
but non generally false, while 𝐻 ⇒ 𝑇1 will be non generally true, but generally false.
We see, comparing with Example 8.3.7, that when 𝐻 ⇒ 𝑇2 is generally false, the
behaviour with saturation is diverse from the one with Rabinowitsch.

8.4 . . . different consequences: introducing negative hypothe-
ses

In [59, Example 6 of Section 5] it is presented one specific example showing how
both methods (Rabinowitsch, saturation) differ in a common context, yielding, if a
non-degeneracy hypothesis is introduced using Rabinowitsch’s trick, an interesting
theorem discovering the conditions for the orthic triangle of a given triangle with non-
collinear vertices to be equilateral. On the other hand, if the non-collinearity of the
vertices is introduced by saturation, there is no discovery at all. Although the concept
of theorem discovery in [59] and the one from [194] we have just recalled here in the
introduction (which has been recently implemented in some popular mathematical
software [1,2]) are practically the same, the framework is a little bit different: in [59]
the approach is slightly more sophisticated.
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In order to analyse the behaviour of both approaches to non-degeneracy hypothe-
ses, let us denote:

𝐻1 ∶= 𝐻𝑒 + (𝑓𝑡 − 1),
𝐻2 ∶= Sat(𝐻,𝑓 ).

Thus, 𝐻1,𝐻2 are the enlarged ideals of hypotheses, corresponding to the two pos-
sibilities of introducing non-degeneracy conditions such as 𝑓 ≠ 0 over an ideal of
hypotheses 𝐻 of a given statement.
Remark 8.4.1. With the above notation, it holds that 𝐻𝑒

2 ⊆ 𝐻1, since the saturation
is equal to the elimination of the variable 𝑡 in the ideal on the right side (i.e. the
contraction into the ring 𝐹 [

𝑥1,… , 𝑥𝑛
]), and the contraction and, then, extension of

an ideal, is always contained in the given ideal.
Example 8.4.2. The following trivial example𝐻 = (0), 𝑓 = 𝑥, shows that, in general,
the inclusion 𝐻𝑒

2 ⊂ 𝐻1 is strict. We find that 𝐻2 = Sat(𝐻,𝑓 ) = (0), its extension
is, again, (0) and 𝐻1 = 𝐻𝑒 + (𝑓𝑡 − 1) = (𝑥𝑡 − 1). In this case, the saturation does
not assimilate the information contained in 𝑥 ≠ 0: the zero set of Sat(𝐻,𝑓 ) includes
the points where 𝑥 = 0, although we wanted to avoid such instances. This situation is
due to the early consideration of the closure in the saturation method.

Taking Remark 8.4.1 into account, we are ready to present the following basic
result.
Proposition 8.4.3. Notation as above. The set of hypotheses𝐻1 provides, in general,
more additional conditions for discovery that the set 𝐻2; that is:

(𝐻2 + 𝑇 ) ∩ 𝐹
[

𝑥1,… , 𝑥𝑠
]

⊆ (𝐻1 + 𝑇 ) ∩ 𝐹
[

𝑥1,… , 𝑥𝑠
]

. (8.4.1)

Proof. Using the properties of extension and contraction of ideals, it is clear that
𝐻2+𝑇 ⊆ (𝐻2+𝑇 )𝑒𝑐 = (𝐻𝑒

2+𝑇 )
𝑐 , where (−)𝑐 symbolises the contraction of the ideals

to the ring 𝐹 [

𝑥1,… , 𝑥𝑛
]. By Remark 8.4.1, we can state that (𝐻𝑒

2+𝑇 )
𝑐 ⊆ (𝐻1+𝑇 )𝑐 .

Thus, intersecting both𝐻2+𝑇 and (𝐻1+𝑇 )𝑐 with𝐹 [

𝑥1,… , 𝑥𝑠
], the inclusion (8.4.1)

holds.
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Corollary 8.4.4. It follows that if the statement 𝐻2 ⇒ 𝑇 is generally false, 𝐻1 ⇒ 𝑇
will also be generally false. Replacing in the proposition above the polynomial 𝑇 with
𝑇 𝑡′ − 1, we obtain the same inclusion and, thus 𝐻2 ⇒ 𝑇 generally true implies that
𝐻1 ⇒ 𝑇 is, as well, generally true.

Example 8.4.5. Again, we present a simple example to illustrate that the inclusion
in (8.4.1) is, in general, strict. Let us retake the previous Example 8.4.2, with thesis
𝑇 = (𝑥) (essentially, the same example which appears at the beginning of [59, Section
5]). Clearly, the variable 𝑥 is independent. Recall that 𝐻1 = (𝑥𝑡 − 1) and 𝐻2 = (0).
If we add 𝑇 to our ideals and eliminate all variables except 𝑥 (i.e. the variable 𝑡),
we obtain, respectively, the sets (1) and (𝑥). It is clear that adding the condition
1 = 0 to the hypotheses set makes the hypotheses variety empty, from which we
could conclude whatever we wanted. So, this is not an interesting option. But neither
is the set obtained from saturation, because it leads to a contradiction with 𝑥 ≠ 0.

So, the previous example ends up in a discovery, but not in a proper one.
In order to gain a better understanding of discovery from each one of the ap-

proaches, we will now precise the difference between the two sets of derived addi-
tional conditions (a result which is similar to [59, Proposition 3]). Remark that we
just consider the case in which the non-degeneracy condition introduced by the user
is formulated in terms of the independent variables; a reasonable restriction, since
these variables are the only ones we can freely manipulate.
Lemma 8.4.6. Notation as above. Assume that 𝑓 ∈ 𝐹

[

𝑥1,… , 𝑥𝑠
]

. Then it holds
that:

(𝐻2 + 𝑇 ) ∩ 𝐹
[

𝑥1,… , 𝑥𝑠
]

= (𝐻1 + 𝑇 ) ∩ 𝐹
[

𝑥1,… , 𝑥𝑠
]

⇔ (𝐻2 + 𝑇 ) ∩ 𝐹
[

𝑥1,… , 𝑥𝑠
]

= Sat
(

(𝐻2 + 𝑇 ) ∩ 𝐹
[

𝑥1,… , 𝑥𝑠
]

, 𝑓
)

.

Proof. The statement immediately follows if we prove the equality
(𝐻𝑒 + (𝑓𝑡 − 1) + 𝑇 )∩𝐹

[

𝑥1,… , 𝑥𝑠
]

= Sat
(

(Sat(𝐻,𝑓 ) + 𝑇 ) ∩ 𝐹
[

𝑥1,… , 𝑥𝑠
]

, 𝑓
)

,
(8.4.2)

stating that the non-degeneracy conditions found employing Rabinowitsch’s trick are
the saturation of those provided by the saturation method.
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First of all, we recall that, by equality (8.2.1), it holds that (𝐻𝑒 + (𝑓𝑡 − 1) + 𝑇 ) ∩
𝐹
[

𝑥1,… , 𝑥𝑛
]

= Sat(𝐻 + 𝑇 , 𝑓 ). Let us continue proving that the right side of this
equality can be regarded as follows

Sat(𝐻 + 𝑇 , 𝑓 ) = Sat (Sat(𝐻,𝑓 ) + 𝑇 , 𝑓 ) . (8.4.3)

It is clear that Sat(𝐻 + 𝑇 , 𝑓 ) ⊆ Sat (Sat(𝐻,𝑓 ) + 𝑇 , 𝑓 ), since 𝐻 ⊆ Sat(𝐻,𝑓 ).
Conversely, if 𝑔 ∈ Sat(Sat(𝐻,𝑓 )+𝑇 , 𝑓 ), there exists 𝑛 ∈ ℕ>0 such that 𝑔𝑓 𝑛 = 𝑎+𝑏,
with 𝑎 ∈ Sat(𝐻,𝑓 ) and 𝑏 ∈ 𝑇 . Again, there exists 𝑚 ∈ ℕ>0 such that 𝑎𝑓𝑚 ∈ 𝐻 ; so,
𝑔𝑓 𝑛+𝑚 = 𝑎𝑓𝑚+𝑏𝑓𝑚 ∈ 𝐻+𝑇 . Thus, it follows by definition that 𝑔 ∈ Sat(𝐻+𝑇 , 𝑓 ).

Now, in order to end proving the initial equality (8.4.2) it remains to exhibit that

Sat (Sat(𝐻,𝑓 ) + 𝑇 , 𝑓 ) ∩ 𝐹
[

𝑥1,… , 𝑥𝑠
]

= Sat
(

(Sat(𝐻,𝑓 ) + 𝑇 ) ∩ 𝐹
[

𝑥1,… , 𝑥𝑠
]

, 𝑓
)

.

Let 𝑔 ∈ Sat (Sat(𝐻,𝑓 ) + 𝑇 , 𝑓 )∩𝐹
[

𝑥1,… , 𝑥𝑠
]. It is clear that 𝑔𝑓 𝑛 ∈ Sat(𝐻,𝑓 )+𝑇

for some 𝑛 ∈ ℕ>0. Both 𝑔 and 𝑓 𝑛 belong to 𝐹 [

𝑥1,… , 𝑥𝑠
], whence 𝑔𝑓 𝑛 belongs to the

same ring, too. So, 𝑔 ∈ Sat
(

(Sat(𝐻,𝑓 ) + 𝑇 ) ∩ 𝐹
[

𝑥1,… , 𝑥𝑠
]

, 𝑓
). The converse

follows trivially from the fact that both (Sat(𝐻,𝑓 ) + 𝑇 ) ∩ 𝐹
[

𝑥1,… , 𝑥𝑠
] and (𝑓 ) lie

on 𝐹 [

𝑥1,… , 𝑥𝑠
].

The previous lemma allows us to conclude the following result.
Theorem 8.4.7. The statement 𝐻1 ⇒ 𝑇 is generally false if and only if the statement
𝐻2 ⇒ 𝑇 is also generally false; analogously, 𝐻1 ⇒ 𝑇 generally true is equivalent to
𝐻2 ⇒ 𝑇 generally true.

Proof. The first assertion follows from Lemma 8.4.6 and the fact that an ideal is zero if
and only if its saturation by another, non-zero, arbitrary ideal, is zero. For the second
one, it suffices to replace the ideal 𝑇 in Lemma 8.4.6 with 𝑇 𝑡′ − 1 and to reason as
above.

Theorem 8.4.7 says that the method employed for introducing the non-degeneracy
conditions does not affect whether the theorem is generally true or generally false,
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but it can provide different sets of additional hypotheses for discovery (see Exam-
ple 8.4.5). Henceforth, we will denote them by:

1 ∶= (𝐻1 + 𝑇 ) ∩ 𝐹
[

𝑥1,… , 𝑥𝑠
]

,
2 ∶= (𝐻2 + 𝑇 ) ∩ 𝐹

[

𝑥1,… , 𝑥𝑠
]

.

Recall (see equation (8.4.2)) that1 = Sat(2, 𝑓 ). Following the traditional protocol
for discovery, the next step would be to consider the statements:

𝑆𝑡𝐴 ∶ 𝐻1 +𝑒
1 ⇒ 𝑇 ,

𝑆𝑡𝐵 ∶ 𝐻2 +𝑒
2 ⇒ 𝑇 ,

and continue to check out whether the new theorems are generally true or not. But
we have already seen in Example 8.4.5 that 2 may be generated by elements con-
tradicting the negation ¬{𝑓 = 0}. Therefore, it might be interesting to saturate again
𝐻2 +𝑒

2 by 𝑓 and to change 𝑆𝑡𝐵 by
𝑆𝑡𝐵′ ∶ Sat(𝐻2 +𝑒

2, 𝑓 ) ⇒ 𝑇 ,

where Sat(𝐻2 + 𝑒
2, 𝑓 ) = Sat(𝐻 + 𝑒

2, 𝑓 ) (it follows from repeating the proof of
equality (8.4.3)). Note that, also, 𝐻1 +𝑒

1 = 𝐻𝑒 +𝑒
1 + (𝑓𝑡 − 1). Finally, and with

the goal of generalising as well as making easier the proof of the following results,
we will consider

𝑆𝑡1 ∶ 𝐻𝑒 +𝑒
1 + (𝑓𝑡 − 1) ⇒ 𝑇 ,

𝑆𝑡2 ∶ 𝐻𝑒 +𝑒
2 + (𝑓𝑡 − 1) ⇒ 𝑇 ,

𝑆𝑡3 ∶ Sat(𝐻 +𝑒
1, 𝑓 ) ⇒ 𝑇 ,

𝑆𝑡4 ∶ Sat(𝐻 +𝑒
2, 𝑓 ) ⇒ 𝑇 ,

being 𝑆𝑡1 = 𝑆𝑡𝐴 and 𝑆𝑡4 = 𝑆𝑡𝐵′ .
Recall that, by enlarging the set of hypotheses 𝐻 with 𝑒

1 or 𝑒
2, some of the

independent variables {𝑥1,… , 𝑥𝑠} ruling the initial theorem 𝐻 ⇒ 𝑇 , could become
dependent. In that case we would have to deal with two new sets of independent
variables: Λ1 ∶= {𝑥1,… , 𝑥𝑠1}, the independent variables in 𝐻 + 𝑒

1, as well as
Λ2 ∶= {𝑥1,… , 𝑥𝑠2} for 𝐻 +𝑒

2. Since the inclusion 𝐻𝑒
2 ⊆ 𝐻1 holds, it follows that

Λ1 ⊆ Λ2.
Nevertheless, we will avoid such subtleties by restricting, in what follows, to the

case in which 𝑓 is formulated just in terms of the variables in Λ1: 𝑓 “as independent
as possible”.



8.4 . . . different consequences: introducing negative hypotheses 243

Aiming to establish the relationships among the statements 𝑆𝑡1, 𝑆𝑡2, 𝑆𝑡3 and 𝑆𝑡4,
we present the following useful lemma.
Lemma 8.4.8. With the above notation, it holds that

Sat(𝐻 +𝑒
1, 𝑓 ) = Sat(𝐻 +𝑒

2, 𝑓 ). (8.4.4)
In addition,

(

𝐻𝑒 +𝑒
1 + (𝑓𝑡 − 1) + (𝑇 𝑡′ − 1)

)

∩ 𝐹
[

𝑥1,… , 𝑥𝑛, 𝑡
′]

=
(

𝐻𝑒 +𝑒
2 + (𝑓𝑡 − 1) + (𝑇 𝑡′ − 1)

)

∩ 𝐹
[

𝑥1,… , 𝑥𝑛, 𝑡
′] .

(8.4.5)

Proof. We infer from Lemma 8.4.6 that
Sat(𝐻 +𝑒

1, 𝑓 ) = Sat(𝐻 + Sat(2, 𝑓 )𝑒, 𝑓 ),

being the term in the right side equal to Sat
(

𝐻 + Sat(𝑒
2, 𝑓 ), 𝑓

) (see [59, Ap-
pendix]). From here, it suffices to essentially repeat the proof of equality (8.4.3) to
have equation (8.4.4) proved: the two sets of additional hypotheses 1 and 2 yield
the same ideal when added to 𝐻 and saturated by 𝑓 .

As for (8.4.5), employing equality (8.2.1) we see that both
(

𝐻𝑒 +𝑒
1 + (𝑓𝑡 − 1) + (𝑇 𝑡′ − 1)

)

∩𝐹
[

𝑥1,… , 𝑥𝑛, 𝑡
′] = Sat

(

𝐻𝑒 +𝑒
1 + (𝑇 𝑡′ − 1), 𝑓

)

and
(

𝐻𝑒 +𝑒
2 + (𝑓𝑡 − 1) + (𝑇 𝑡′ − 1)

)

∩𝐹
[

𝑥1,… , 𝑥𝑛, 𝑡
′] = Sat

(

𝐻𝑒 +𝑒
2 + (𝑇 𝑡′ − 1), 𝑓

)

hold. Again, Lemma 8.4.6 and the idea lying under equality (8.4.3) enable us to state:
Sat

(

𝐻𝑒 +𝑒
1 + (𝑇 𝑡′ − 1), 𝑓

)

= Sat
(

𝐻𝑒 + Sat(2, 𝑓 )𝑒 + (𝑇 𝑡′ − 1), 𝑓
)

= Sat
(

𝐻𝑒 + Sat(𝑒
2, 𝑓 ) + (𝑇 𝑡′ − 1), 𝑓

)

= Sat
(

𝐻𝑒 +𝑒
2 + (𝑇 𝑡′ − 1), 𝑓

)

,

and we are done.
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Remark 8.4.9. Note that the only requirement for Lemma 8.4.8 to hold is that 𝑓 ∈
𝐹
[

𝑥1,… , 𝑥𝑠
], since this is an essential hypotheses in Lemma 8.4.6.

Now, we are ready to state our main results.

Theorem 8.4.10. Notation as above. The statements 𝑆𝑡1, 𝑆𝑡2, 𝑆𝑡3 and 𝑆𝑡4 are gen-
erally true if and only if one of them is generally true. Furthermore, 𝑆𝑡3 and 𝑆𝑡4 have
exactly the same hypotheses, and the non-degeneracy conditions of 𝑆𝑡1 are equal to
those of 𝑆𝑡2 provided that Λ1 = Λ2.

Proof. Firstly, we observe that, with the assumption that 𝑓 ∈ 𝐹
[

𝑥1,… , 𝑥𝑠1
], by The-

orem 8.4.7, 𝑆𝑡1 generally true is equivalent to 𝑆𝑡3 generally true; the same happens
with 𝑆𝑡2 and 𝑆𝑡4. If we prove that 𝑆𝑡3 is generally true if and only if so is 𝑆𝑡4, we
are done. Indeed, this follows trivially from Lemma 8.4.8, since 𝑆𝑡3 = 𝑆𝑡4.

In addition, equality (8.4.5) of Lemma 8.4.8 and the inclusion Λ1 ⊆ Λ2 tell us
that

(

𝐻𝑒 +𝑒
1 + (𝑓𝑡 − 1) + (𝑇 𝑡′ − 1)

)

∩ 𝐹
[

𝑥1,… , 𝑥𝑠1
]

⊆
(

𝐻𝑒 +𝑒
2 + (𝑓𝑡 − 1) + (𝑇 𝑡′ − 1)

)

∩ 𝐹
[

𝑥1,… , 𝑥𝑠2
]

.

The previous inclusion trivially switches to an equality if Λ1 = Λ2.

Corollary 8.4.11. With the above notation, 𝑆𝑡𝐴 is generally true if and only if 𝑆𝑡𝐵 is
generally true as well.

Proof. Since 𝑆𝑡𝐴 and 𝑆𝑡1 are the same statement, Theorem 8.4.10 enables us to state
that 𝑆𝑡𝐴 generally true is equivalent to 𝑆𝑡2 generally true; i.e.

(

𝐻𝑒 +𝑒
2 + (𝑓𝑡 − 1)𝑒 + (𝑇 𝑡′ − 1)

)

∩ 𝐹
[

𝑥1,… , 𝑥𝑠2
]

≠ (0).

Let us prove that
(

𝐻𝑒 +𝑒
2 + (𝑓𝑡 − 1) + (𝑇 𝑡′ − 1)

)

∩ 𝐹
[

𝑥1,… , 𝑥𝑠2
]

= Sat
((

𝐻𝑒
2 +𝑒

2 + (𝑇 𝑡′ − 1)
)

∩ 𝐹
[

𝑥1,… , 𝑥𝑠2
]

, 𝑓
)

.
(8.4.6)
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Indeed, by equality (8.2.1), the reasoning in (8.4.3) and 𝑓 ∈ 𝐹
[

𝑥1,… , 𝑥𝑠1
], we have

that

Sat
((

𝐻𝑒
2 +𝑒

2 + (𝑇 𝑡′ − 1)
)

∩ 𝐹
[

𝑥1,… , 𝑥𝑠2
]

, 𝑓
)

= Sat
(

Sat(𝐻𝑒, 𝑓 ) +𝑒
2 + (𝑇 𝑡′ − 1), 𝑓

)

∩ 𝐹
[

𝑥1,… , 𝑥𝑠2
]

= Sat
(

𝐻𝑒 +𝑒
2 + (𝑇 𝑡′ − 1), 𝑓

)

∩ 𝐹
[

𝑥1,… , 𝑥𝑠2
]

=
(

𝐻𝑒 +𝑒
2 + (𝑇 𝑡′ − 1) + (𝑓𝑡 − 1)

)

∩ 𝐹
[

𝑥1,… , 𝑥𝑛, 𝑡
′] ∩ 𝐹

[

𝑥1,… , 𝑥𝑠2
]

=
(

𝐻𝑒 +𝑒
2 + (𝑓𝑡 − 1) + (𝑇 𝑡′ − 1)

)

∩ 𝐹
[

𝑥1,… , 𝑥𝑠2
]

.

Therefore, (8.4.6) is proved and then
(

𝐻𝑒 +𝑒
2 + (𝑓𝑡 − 1) + (𝑇 𝑡′ − 1)

)

∩ 𝐹
[

𝑥1,… , 𝑥𝑠2
]

≠ (0)

if and only if (𝐻𝑒
2 +𝑒

2 + (𝑇 𝑡′ − 1)
)

∩𝐹
[

𝑥1,… , 𝑥𝑠2
]

≠ (0); i.e. 𝑆𝑡2 is generally true
if and only if 𝑆𝑡𝐵 is generally true.

In conclusion, 𝑆𝑡𝐴 generally true is equivalent to 𝑆𝑡𝐵 generally true.

8.5 Our experiences

In this section, we would like to present a particular example in order to show in some
detail the described situation, having the calculations been carried out using the soft-
ware Singular [67] in the FinisTerrae 2 supercomputer. Our example is based on the
already cited theorem about the orthic triangle taken from [59, Example 6 of Section
5]. We wish to show that the orthic triangle associated with an equilateral triangle is
also equilateral (see Fig. 8.1). Since we want to address the theorem from the point
of view of discovery, we decide to ignore the hypothesis about the original triangle
being equilateral and take a completely arbitrary one, with the purpose of obtaining,
automatically, a necessary condition on this general triangle for the corresponding
orthic triangle to be equilateral.

So, we take𝐴(0, 0),𝐵(𝑥1, 0) and𝐶(𝑥2, 𝑥3) as the vertices of the main triangle, and
set 𝐷(𝑥2, 0), 𝐸(𝑥4, 𝑥5) and 𝐹 (𝑥6, 𝑥7) the vertices of the orthic one. The independent
variables are {𝑥1, 𝑥2, 𝑥3}. We force the segments 𝐴𝐸 and 𝐵𝐶 to be perpendicular,
as well as 𝐸 to be collinear with 𝐵 and 𝐶; analogously, 𝐵𝐹 and 𝐴𝐶 must be perpen-
dicular, and 𝐹 must be aligned with 𝐴 and 𝐶 . By construction, it is obvious that the
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point 𝐷 is collinear with 𝐴 and 𝐵, and that 𝐶𝐷 is perpendicular to 𝐴𝐶 . As for our
desired conclusion, we state it using two polynomials, each one forcing two sides of
the orthic triangle to have the same length; i.e. one for 𝐴𝐵 = 𝐴𝐶 , and another for
𝐴𝐵 = 𝐵𝐶 . We deal with them separately, distinguishing between theses 𝑇 and 𝑇 ′,
respectively, and theorems 𝐻 ⇒ 𝑇 and 𝐻 ⇒ 𝑇 ′.

𝐴 𝐵

𝐶

𝐷

𝐸

𝐹

Figure 8.1: Orthic triangle

Besides the main hypotheses, we choose to add (based on human intuition and
hoping to help to simplify the computations) as non-degeneracy conditions those
which force the triangle 𝐴𝐵𝐶 not to collapse to a line, i.e. 𝑥1 ≠ 0 and 𝑥3 ≠ 0.
These two conditions can be summarised in just one: 𝑓 = 𝑥1𝑥3 ≠ 0. We introduce
this new hypothesis 𝑓 ≠ 0, both employing Rabinowitsch’s trick and by saturation,
in each of the two theorems 𝐻 ⇒ 𝑇 and 𝐻 ⇒ 𝑇 ′. It is easy to check that any of the
statements 𝐻1 ⇒ 𝑇 , 𝐻2 ⇒ 𝑇 , 𝐻1 ⇒ 𝑇 ′ and 𝐻2 ⇒ 𝑇 ′ is generally false. However,
different formulations of the introduced non-degeneracy hypothesis can lead to dif-
ferent sets of additional affirmative hypotheses for the discovery of a true statement.
More precisely, for the theorem 𝐻 ⇒ 𝑇 with the notation of 8.4, we get that

𝑇
2 = 𝑥1𝑇

1 =
(

𝑥1 (𝑥1 − 2𝑥2) (𝑥1𝑥2 − 𝑥22 + 𝑥
2
3) (−𝑥1𝑥2 + 𝑥

2
2 + 𝑥

2
3)
)

.

Nevertheless, for the theorem 𝐻 ⇒ 𝑇 ′, we obtain
𝑇 ′

1 = 𝑇 ′

2 =
(

𝑥2 (−𝑥21 + 𝑥
2
2 + 𝑥

2
3) (−𝑥

2
1𝑥2 + 2𝑥1𝑥22 + 2𝑥1𝑥23 − 𝑥

3
2 − 𝑥2𝑥

2
3)
)

.

We appreciate that the factor 𝑥1, which was forced to be different from zero by
introducing the non-degeneracy hypothesis, appears as a zero condition in 𝑇

2 , due
to the early closure of the saturation, similarly to what happens in Example 8.4.5.
Informally speaking, we can say that adding the negation 𝑥1𝑥3 ≠ 0 is not so conclusive
when we deal with saturation as it is when employing Rabinowitsch’s trick.
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It is also trivial to check that, if the triangle 𝐴𝐵𝐶 is equilateral, the additional
conditions in 𝑇

1 , 𝑇
2 , 𝑇 ′

1 or 𝑇 ′

2 all vanish. That is, equilateral triangles yield
equilateral orthic triangles. Nevertheless, we also see that there are other possible
configurations for the given triangle which make these additional, necessary condi-
tions to vanish: configurations that should be carefully analysed, since, if also suffi-
cient, they would bring some unexpected statements regarding the regularity of the
orthic triangle.

Now, a direct computation shows that the statement𝑆𝑡𝐵 (according to the previous
section notation) is generally true for both 𝑇 and 𝑇 ′, but by brute force we are not able
to decide if 𝑆𝑡𝐴 is, as well, generally true. Yet, applying our precedent results, we can
conclude that not only is 𝑆𝑡𝐴 = 𝑆𝑡1 generally true, but the same applies to 𝑆𝑡2 and
𝑆𝑡3 = 𝑆𝑡4, too. Moreover, the calculations for 𝑆𝑡4 reveal that, in addition to being
generally true, we do not need to consider non-degeneracy conditions both for 𝑇 and
for 𝑇 ′; again, and since Λ𝑇1 = Λ𝑇2 = Λ𝑇 ′

1 = Λ𝑇 ′

2 = {𝑥1, 𝑥3}, Theorem 8.4.10 allows
us to state that 𝑆𝑡𝐴 = 𝑆𝑡1 and 𝑆𝑡2 do not need additional non-degeneracy conditions
as well.

What is interesting to emphasise here is that the computer is not able to arrive at
these conclusions by directly following the Rabinowitsch approach in 𝑆𝑡𝐴 and con-
firming that the theses 𝑇 and 𝑇 ′ are generally true, while it encounters no difficulties
with the saturation approach of 𝑆𝑡𝐵 or 𝑆𝑡4. So, we think that this example clearly
illustrates the practical advantages, in some cases, of using saturation instead of Ra-
binowitsch’s trick. Also, the example highlights the applicability of the results in the
previous section.

Yet, we should make clear here that we do not know the reason for the failure of
the FinisTerrae 2 supercomputer concerning the computation, via Singular, of the
Rabinowitsch approach for this particular example. We would like to note that the
saturation-based computation uses Singular’s implementation of saturation which
does not involve elimination (see https://github.com/Singular/Sources/blob/
Release-4-1-2/Singular/LIB/elim.lib#L739). We want to thank the referees
for pointing out this, as well as for bringing up our attention to reference [17], for a de-
tailed account of the complex, reciprocal relation between saturation and elimination
(saturation via elimination, elimination via saturation).

https://github.com/Singular/Sources/blob/Release-4-1-2/Singular/LIB/elim.lib#L739
https://github.com/Singular/Sources/blob/Release-4-1-2/Singular/LIB/elim.lib#L739
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8.6 Conclusions

At this point, the reader could wonder: which one of the presented methods is better?
The answer is not totally objective. We encourage to implement the saturation method
in the automated proving and discovery software, due to the scarce effectiveness of
Rabinowitsch’s trick when dealing with negative theses and to the practical objections
exposed in Section 8.5. But there is a counterpart: by considering the early closure
of the saturation Sat(𝐻,𝑓 ), we can lose essential information about the negation
¬{𝑓 = 0}, and 𝑓 may appear further as a zero equation in the additional hypotheses
yielded by saturation, transgressing, in a certain sense, the restrictions imposed by
the introduced non-degeneracy conditions. This fact is precisely what differentiates
both methods, and what could persuade us to employ sometimes Rabinowitsch’s trick,
if we want to preserve the negation of 𝑓 until the end of the procedure, in order to
remain faithful to some a priori stated non-degeneracy condition. In our opinion, in
this case, it should be decided by the user, through the corresponding dialogue with
the involved automatic theorem proving software.

Finally, we must recall here the existence of some new algorithmic tools to deal
with constructible sets, as commented in the Introduction, that deserve future con-
sideration and implementation in some dynamic geometry program provided with
automated reasoning modules.
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Also, we have included a considerable amount of work in progress, which be plan
to submit to some international journals in the near future.
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Throughout this dissertation, we have fully achieved the objectives stated. Namely:
In Chapter 1, we characterise restricted Lie algebras with distributive and Boolean

lattices of restricted subalgebras, and we study the structural properties of finite-
dimensional restricted Lie algebras over algebraically closed fields whose lattice of
restricted subalgebras is dually atomistic, atomistic, lower or upper semimodular, or
in which every restricted subalgebra is a quasi-ideal. Most of these properties turn
out to be weaker than their counterparts in the ordinary Lie algebra case, hence there
are more examples of algebras satisfying them.

In Chapter 2, we introduce the definition of the non-abelian tensor product of
restricted Lie superalgebras and study some of its structural and categorical properties.
In particular, we obtain that a restricted Lie superalgebra admits a universal central
extension if and only if it is perfect, and offer a specific construction of this extension
in terms of the non-abelian tensor product.

In Chapter 3, we find the twenty-four isomorphism classes of nilpotent pure bi-
commutative algebras over ℂ of dimension 4, the twelve isomorphism classes of one-
generated nilpotent bicommutative algebras over ℂ of dimension 5 and the twenty-
nine isomorphism classes of one-generated nilpotent bicommutative algebras over ℂ
of dimension 6. Also, we find that the variety of four-dimensional complex nilpo-
tent bicommutative algebras has two irreducible components determined by a rigid
algebra and an infinite family of algebras.

In Chapter 4, we prove that the null-filiform associative algebra 𝜇𝑛0 over fields of
suitable characteristic does not admit non-split non-trivial central extensions within
the varieties of alternative, left-alternative (and right-alternative) or Jordan algebras.
If the ground field is algebraically closed and has characteristic 0, we give the alge-
braic classification of all non-split central extensions with one-dimensional annihi-
lator of 𝜇𝑛0 within the varieties of left-commutative (or right-commutative) and bi-
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commutative algebras. We also reduce the cases of assosymmetric, Novikov and left-
symmetric (or right-symmetric) algebras to the situation in the bicommutative and
left-commutative (or right-commutative) varieties.

In Chapter 5, we develop a further adaptation of the method of Skjelbred-Sund
explained in Chapters 3 and 4 to construct central extensions of axial algebras. We
prove that every axial algebra with non-zero annihilator is isomorphic to a certain
central extension of an axial algebra of smaller dimension, and also use our results to
prove that all axial central extensions (with respect to a maximal set of axes) of simple
finite-dimensional Jordan algebras are split.

In Chapter 6, we introduce the notions of non-abelian tensor and exterior products
of two ideal graded crossed submodules of a given crossed module of Lie superalge-
bras. We study some of their basic structural and homological properties; in partic-
ular, we characterise the second homology 𝐻2 (𝑇 , 𝐿, 𝜕) in terms of the non-abelian
exterior product. We also define new versions of Whitehead’s quadratic functor for
supermodules and for abelian crossed modules of Lie superalgebras.

In Chapter 7, we study the properties of Whitehead’s quadratic functor for super-
modules and for abelian crossed modules of Lie superalgebras, introduced in Chap-
ter 6, and generalised in Chapter 7 to rings in which 2 does not necessarily have an
inverse. In particular, we explore their relation with quadratic maps of supermodules
and introduce a notion of quadratic maps of abelian crossed modules, which we relate
with the Whitehead’s quadratic functor for abelian crossed modules of Lie superalge-
bras.

In Chapter 8, we compare the methods of Rabinowitsch’s trick and saturation for
introducing negative theses and negative hypotheses in the standard procedures for the
algebraic-geometry-based theory of automated proving and discovery of geometric
theorems. We conclude that Rabinowitsch’s trick is not suitable for the introduction
of negative theses, whereas for negative hypotheses it presents theoretical advantages
and practical disadvantages compared to saturation.
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Resumo abreviado

O marco xeral no que se encadra esta tese é a teoría das álxebras non asociativas. Nela
tratamos diversos problemas que concernentes ás álxebras de Lie restrinxidas, ás extensións
centrais de diferentes clases de álxebras e aos módulos cruzados de superálxebras de Lie. A
saber, estudamos as relacións entre as propiedades estruturais dunha álxebra de Lie restrinxi-
da e as do seu retículo de subálxebras restrinxidas; definimos un produto tensor non abeliano
para superálxebras de Lie restrinxidas e para submódulos cruzados graduados ideais dun mó-
dulo cruzado de superálxebras de Lie, e exploramos as súas propiedades dende puntos de vista
estrutural, categórico e homolóxico; empregamos extensións centrais para clasificar álxebras
biconmutativas nilpotentes; e calculamos extensións centrais das álxebras nulfiliformes aso-
ciativas e de álxebras axiais. Ademais, incluímos un capítulo final adicado a comparar os
dous métodos principais (o truco de Rabinowitsch e a saturación) para introducir condicións
negativas nos procedementos usuais da teoría de probas e descubrimentos automáticos.

As relacións entre a estrutura dun grupo e a do seu retículo de subgrupos está
altamente desenvolvida e atraeu a atención de moitos destacados alxebristas (véxase
por exemplo a monografía [202] ou a revisión [185]). Segundo Schmidt [202], a orixe
deste tema remóntase a Dedekind, quen estudou o retículo de ideais nun anel de en-
teiros alxébricos; descubriu e empregou a identidade modular, tamén chamada a lei
de Dedekind, ao calcular os ideais. Porén, os comezos reais do estudo de retículos de
subgrupos datan dos arredores de 1930. Un dos primeiros logros destacados neste con-
texto foi a caracterización de Ore dos grupos con retículo de subgrupos distributivos:
son exactamente os grupos localmente cíclicos [183]. Dende entón, a modularidade,
distributividade e condicións reticulares relacionadas con elas foron estudadas en moi-
tos contextos. O retículo de submódulos dun módulo sobre un anel é modular, e polo
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tanto tamén o é o retículo de subgrupos dun grupo abeliano. O retículo de subgrupos
normais dun grupo tamén é modular, pero o retículo de todos os subgrupos non o é, en
xeral [122,123]. O retículo de ideais dun anel tamén é modular. A distributividade do
retículo de submódulos dun módulo foi investigado en [46, 212, 218], e a do retículo
de ideais (pola dereita) dun anel ou dunha álxebra asociativa, en [37, 131, 218].

O estudo do retículo de subálxebras e de ideais dunha álxebra de Lie de dimensión
finita foi popular na segunda metade do século pasado, especialmente nas décadas de
1980 e 1990 (véxase, por exemplo, [13,18,24,33,92–95,100,154,160,216,217,220–
223]), pero logo o interese desvaneceuse. Unha posible razón disto é que as condi-
cións estudadas eran demasiado fortes e poucas álxebras as satisfacían; un exemplo
paradigmático disto é a caracterización das álxebras de Lie con retículo de subálxebras
distributivo [154, Theorem 2.1]. Non obstante, o retículo de subálxebras restrinxidas
dunha álxebra de Lie restrinxida é radicalmente diferente: por exemplo, non todo ele-
mento xera unha subálxebra restrinxida de dimensión 1. Entón, podemos esperar que
se cumpran resultados máis interesantes que no caso das álxebras de Lie ordinarias e,
como veremos, este é o caso.

No primeiro Capítulo 1, caracterizamos as álxebras de Lie restrinxidas con retí-
culo de subálxebras restrinxidas distributivo e Booleano nos seguintes resultados.
Teorema 1.2.5. Unha álxebra de Lie restrinxida𝐿 sobre un corpo𝐹 de característica
𝑝 > 0 é distributiva se e só se 𝐿 é abeliana e, para toda subálxebra restrinxida 𝐻 de
𝐿, 𝐿∕𝐻 non contén subálxebras restrinxidas minimais isomorfas diferentes.

Corolario 1.2.11. Sexa 𝐿 unha álxebra de Lie restrinxida 𝐿 sobre un corpo 𝐹 de
característica 𝑝 > 0. Entón 𝐿 é Booleana se e só se 𝐿 ≃ ⊕𝐼∈𝐼 , onde  é unha
familia de álxebras de Lie restrinxidas non isomorfas dúas a dúas, cada unha das
cales non contén subálxebras restrinxidas propias e distintas de cero.

A continuación, estúdanse álxebras de Lie restrinxidas de dimensión finita e con
corpos bases case sempre alxebricamente pechados cuxos retículos de subálxebras
restrinxidas son dualmente atomísticos, atomísticos, semimodulares por abaixo e se-
mimodulares por enriba. Tamén se estudan álxebras de Lie restrinxidas nas que toda
subálxebra restrinxida é un case-ideal restrinxido. Enumeramos a continuación os re-
sultados máis relevantes neste respecto.
Proposición 1.3.2. Sexa 𝐿 unha álxebra de Lie restrinxida sobre un corpo alxebri-
camente pechado 𝐹 . Entón, 𝐿 é soluble ou semisimple.
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Proposición 1.3.3. Sexa 𝐿 unha álxebra de Lie restrinxida soluble sobre calquera
corpo 𝐹 . Se 𝐿 é dualmente atomística, entón

𝐿 ≃
(

∕⟨𝑓1⟩𝑝 ⊕⋯⊕ ∕⟨𝑓𝑟⟩𝑝 ⊕ 𝐹𝑥𝑟+1 ⊕⋯⊕ 𝐹𝑥𝑛
)

+̇𝐹𝑏,

onde 𝑟 ≥ 0, pero 𝑟 ≠ 𝑛, 𝑏 é toral,  = ⟨𝑥⟩𝑝 é unha álxebra de Lie restrinxida cíclica
libre e 𝑓𝑖 =

∑𝑠𝑖
𝑘=0 𝜆𝑘𝑥

[𝑝]𝑘 é un elemento de  tal que 𝑓𝑖 =
∑𝑠𝑖
𝑘=0 𝜆𝑘𝑡

𝑘 é un elemento
irreducible do anel de polinomios nesgados 𝐹 [𝑡, 𝜎].

Proposición 1.3.6. Sexa𝐹 un corpo alxebricamente pechado de característica 𝑝 > 0.
Unha álxebra de Lie restrinxida sobre 𝐹 é atomística se e só se cada subálxebra
restrinxida cíclica 𝑝-nilpotente ten dimensión 1.

Teorema 1.6.1. Sexa 𝐿 unha álxebra de Lie restrinxida sobre un corpo alxebrica-
mente pechado 𝐹 . As seguintes condicións son equivalentes:

(i) 𝐿 é semimodular por enriba;

(ii) 𝐿 é modular;

(iii) toda subálxebra restrinxida de 𝐿 é un case-ideal restrinxido.

Ademais, se se cumpre algunha das afirmacións previas, entón 𝐿 é case abeliano ou
nilpotente de clase como moito 2.

As superálxebras de Lie apareceron orixinalmente asociadas a certos grupos xe-
neralizados, hoxe coñecidos como supergrupos formais de Lie, na década de 1930.
Porén, non foi ata corenta anos despois cando estes obxectos acadaron importancia
real nas comunidades física e matemática, debido á súa conexión coa teoría da su-
persimetría (véxase [21, 192], por exemplo). Esta teoría pretendía proporcionar un
tratamento unificado para bosóns e fermións, as dúas clases de partículas elementais
que compoñen o universo, así como modelar as transicións entre elas. As superálxe-
bras de Lie son un obxecto clave neste contexto, o que motivou un profundo estudo
non só dende a perspectiva da física matemática, senón tamén dende unha aproxi-
mación puramente alxébrica. Exemplos disto poden ser a aclamada clasificación das
superálxebras de Lie simples de dimensión finita sobre un corpo alxebricamente pe-
chado de característica 0 feita por Kac [133], a clasificación homóloga real [206] ou
os resultados parciais cara á clasificación das álxebras de Lie simples de dimensión
infinita (por exemplo [134]).
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Ao igual que ocorre no caso non graduado, para traballar con superálxebras de
Lie modulares convén coñecer as superálxebras de Lie restrinxidas. Dende a súa in-
trodución no 1988 da man de Mikhalëv [175], probaron sobradamente ser útiles na
obtención de novos resultados na teoría de representacións ou na clasificación de
superálxebras de Lie modulares (véxase [15, 31, 32, 174, 186, 225, 226], entre ou-
tros). Estas superálxebras tamén foron estudadas en moitas outras referencias co-
ma [25, 81, 165, 219, 224], por exemplo.

Por outra banda, os produtos tensores non abelianos teñen unha longa historia
na literatura especializada. A súa primeira aparición foi no contexto dos grupos: en
efecto, Loday e Brown [36] definiron un produto tensor entre dous grupos non nece-
sariamente abelianos actuando un sobre o outro, ao cal chamaron non abeliano pa-
ra evitar confusións co coñecido produto tensor de ℤ-módulos. Tamén introduciron
un cociente deste obxecto, chamado o produto exterior non abeliano. Despois disto,
Ellis construíu os seus produtos tensor e exterior non abelianos de álxebras de Lie
en [76]. Estes produtos foron obxecto de diversas xeneralizacións en distintas direc-
cións, como pode ser para álxebras de Lie restrinxidas [157], para módulos cruzados
de álxebras de Lie [75, 193], ou para superálxebras de Lie [91]. En todos os casos,
ditos produtos foron empregados para obter resultados acerca da (co)homoloxía en
baixas dimensións das estruturas alxébricas respectivas, así como para atopar unha
expresión explícita das extensións centrais universais de obxectos perfectos, afondan-
do deste xeito nos resultados que afirman que un obxecto é perfecto se e só se admite
unha extensión central universal [142, 156, 180].

No Capítulo 2, estendemos distintos resultados de [76, 91, 142, 156, 157, 180] ao
introducir un produto tensor non abeliano de superálxebras de Lie restrinxidas, es-
tudar as súas propiedades básicas e relacionalo con extensións centrais relativas á
subcategoría de Birkhoff dos obxectos abelianos 𝐀𝐛. Queremos salientar que a nosa
construción xeneraliza a da corta nota [157], ofrecendo polo tanto algúns resultados
novos no ámbito das álxebras de Lie restrinxidas. Porén, non definimos un produto
exterior non abeliano de superálxebras de Lie restrinxidas, nin tampouco tratamos con
ningunha aplicación (co)homolóxica das nosas conclusións.

Tamén é de destacar que, aínda que nós nos centramos principalmente na sub-
categoría de Birkhoff 𝐀𝐛, existen outras subcategorías de Birkhoff que sería intere-
sante estudar, a saber a subcategoría 𝟎𝐩𝐒𝐋𝐢𝐞 de superálxebras de Lie restrinxidas nas
que a 𝑝-aplicación é identicamente cero, ou a intersección 𝐬𝐀𝐛 de 𝐀𝐛 e 𝟎𝐩𝐒𝐋𝐢𝐞, é
dicir, a subcategoría formada polas superálxebras de Lie restrinxidas abelianas con
𝑝-aplicación cero.
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Polo tanto, este capítulo 2 debe ser entendido como un primeiro paso cara a un
estudo exhaustivo das relacións entre os diferentes tipos de extensións centrais de
superálxebras de Lie restrinxidas e as súas correspondentes teorías de (co)homoloxía.

A principal definición introducida é a seguinte.
Definición 2.2.1. Sexan𝐿 e𝑀 dúas superálxebras de Lie restrinxidas actuando unha
sobre a outra, e sexa 𝑋𝐿,𝑀 o conxunto de símbolos 𝑥 ⊗ 𝑚, para 𝑥 e 𝑚 elementos
homoxéneos de𝐿 e𝑀 , respectivamente. Dótese a𝑋𝐿,𝑀 coaℤ2-graduación |𝑥⊗𝑚| =
|𝑥| + |𝑚|. O produto tensor non abeliano 𝐿 ⊗𝑀 defínese como a superálxebra de
Lie restrinxida xerada por 𝑋𝐿,𝑀 e suxeita ás seguintes relacións:

𝜆(𝑥 ⊗ 𝑚) = 𝜆𝑥 ⊗ 𝑚 = 𝑥 ⊗ 𝜆𝑚;

(𝑥 + 𝑦)⊗𝑚 = 𝑥 ⊗ 𝑚 + 𝑦 ⊗ 𝑚;

𝑥 ⊗ (𝑚 + 𝑛) = 𝑥 ⊗ 𝑚 + 𝑥 ⊗ 𝑛;

[𝑥, 𝑦]⊗𝑚 = 𝑥 ⊗ 𝑦𝑚 − (−1)|𝑥||𝑦|𝑦 ⊗ 𝑥𝑚,

𝑥 ⊗ [𝑚, 𝑛] = (−1)|𝑥||𝑛|(−1)|𝑚||𝑛|(𝑛𝑥 ⊗ 𝑚) − (−1)|𝑥||𝑚|(𝑚𝑥 ⊗ 𝑛);
𝑚𝑥 ⊗ 𝑦𝑛 = −(−1)|𝑥||𝑚|[𝑥 ⊗ 𝑚, 𝑦 ⊗ 𝑛];

𝑥[𝑝]
0̄
⊗𝑚 = 𝑥0̄ ⊗

(𝑥𝑝−1
0̄ 𝑚

)

;

𝑥 ⊗ 𝑚[𝑝]
0̄

=
(𝑚𝑝−1

0̄ 𝑥
)

⊗𝑚0̄,

para todo 𝜆 ∈ 𝐹 , 𝑥, 𝑦 ∈ 𝐿, 𝑚, 𝑛 ∈𝑀 , 𝑥0̄ ∈ 𝐿0̄ e 𝑚0̄ ∈𝑀0̄.

O principal resultado obtido en relación ao produto tensor non abeliano de super-
álxebras de Lie restrinxidas é o seguinte.
Teorema 2.3.4. Unha superálxebra de Lie restrinxida 𝐿 admite unha extensión cen-
tral universal se e só se é perfecta.
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Dita extensión do Teorema 2.3.4 non é outra que
𝜇∶ 𝐿⊗𝐿 → 𝐿

(𝑥, 𝑦) ↦ [𝑥, 𝑦].

A variedade das álxebras biconmutativas, tamén coñecidas como LR-álxebras,
está definida polas identidades polinomiais de conmutatividade pola esquerda e pola
dereita. Explicitamente, unha álxebra (A, ⋅) dise biconmutativa se

𝑥 (𝑦𝑧) = 𝑦 (𝑥𝑧) , (𝑥𝑦) 𝑧 = (𝑥𝑧) 𝑦,

para todo 𝑥, 𝑦, 𝑧 ∈ A.
O primeiro exemplo coñecido de álxebra conmutativa por un lado é a álxebra de

Witt nunha variable simétrica pola dereita, que se remonta ao ano 1857 [54]. Esta ál-
xebra satisfai a a identidade da conmutatividade pola esquerda, pero non pola dereita,
polo que non é biconmutativa. Os exemplos máis sinxelos de álxebras biconmutativas
son as álxebras conmutativas e asociativas. Nótese que as álxebras biconmutativas son
Lie admisibles: o conmutador [𝑥, 𝑦] = 𝑥𝑦− 𝑦𝑥 define unha estrutura de Lie asociada
en A.

As álxebras biconmutativas sobre ℝ aparecen naturalmente en conexión coa xeo-
metría, en particular coas accións afíns simplemente transitivas de grupos de Lie nil-
potentes [38]. Estas álxebras biconmutativas son completas (é dicir, os operadores de
multiplicación pola esquerda 𝐿𝑥 son nilpotentes para todo 𝑥 ∈ A) e as súas estruturas
de álxebras de Lie asociadas son nilpotentes. Este feito motiva a clasificación de [39]
para dimensións 𝑛 ≤ 4, na que os autores limítanse a considerar álxebras biconmutati-
vas reais e completas con estrutura de álxebra de Lie asociada nilpotente. As álxebras
biconmutativas tamén foron estudadas en [40, 70–74]; salientamos as clasificacións
alxébrica e xeométrica das álxebras biconmutativas de dimensión 2 sobre un corpo
alxebricamente pechado de [151].

No Capítulo 3, tamén ofrecemos unha clasificación parcial das álxebras bicon-
mutativas de dimensión 𝑛 ≤ 4, pero dende un enfoque diferente ao de [39]. Por unha
parte, traballamos sobre o corpo base ℂ, non sobre ℝ. Por outra, clasificamos ál-
xebras biconmutativas nilpotentes, as cales conforman unha clase máis ampla que a
das álxebras biconmutativas completas con estrutura de Lie asociada nilpotente (vé-
xase [40, Proposition 2.2]). Ademais, a clasificación de [39] depende fortemente da
clasificación das álxebras de Lie nilpotentes, mentres que a nosa desenvólvese com-
pletamente dentro da variedade das álxebras biconmutativas, unha vez feita unha se-
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lección preliminar das álxebras nilpotentes sobre ℂ de dimensións 2 e 3 satisfacendo
as identidades de conmutatividade pola esquerda e pola dereita.

Amosamos a continuación as clasificacións obtidas.
Teorema 3.2.2. Sexa A unha álxebra biconmutativa pura nilpotente de dimensión 4
sobre ℂ. Entón, A é isomorfa a unha das álxebras na seguinte Táboa 3.2:

4
01 𝑒1𝑒1 = 𝑒2 𝑒2𝑒1 = 𝑒3

4
02 (𝜆) 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒3 𝑒2𝑒1 = 𝜆𝑒3

4
03 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒4 𝑒2𝑒1 = 𝑒3

4
04 (𝜆) 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒4 𝑒2𝑒1 = 𝜆𝑒4 𝑒3𝑒3 = 𝑒4

4
05 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒4 𝑒1𝑒3 = 𝑒4 𝑒2𝑒1 = 𝑒4 𝑒3𝑒3 = 𝑒4

4
06 (𝜆) 𝜆 ≠ 0 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒4 𝑒1𝑒3 = 𝑒4 𝑒2𝑒1 = 𝜆𝑒4

4
07 𝑒1𝑒1 = 𝑒2 𝑒2𝑒1 = 𝑒4 𝑒3𝑒3 = 𝑒4

4
08 𝑒1𝑒1 = 𝑒2 𝑒1𝑒3 = 𝑒4 𝑒2𝑒1 = 𝑒4

4
09 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒4 𝑒3𝑒1 = 𝑒4

4
10 𝑒1𝑒2 = 𝑒3 𝑒1𝑒3 = 𝑒4 𝑒2𝑒1 = 𝑒4 𝑒3𝑒2 = 𝑒4

4
11 𝑒1𝑒2 = 𝑒3 𝑒1𝑒3 = 𝑒4 𝑒3𝑒2 = 𝑒4

4
12 𝑒1𝑒1 = 𝑒4 𝑒1𝑒2 = 𝑒3 𝑒2𝑒1 = 𝑒4 𝑒3𝑒2 = 𝑒4

4
13 𝑒1𝑒2 = 𝑒3 𝑒2𝑒1 = 𝑒4 𝑒3𝑒2 = 𝑒4

4
14 𝑒1𝑒2 = 𝑒3 𝑒1𝑒3 = 𝑒4 𝑒2𝑒1 = 𝑒4 𝑒2𝑒2 = 𝑒4

4
15 𝑒1𝑒2 = 𝑒3 𝑒1𝑒3 = 𝑒4 𝑒2𝑒1 = 𝑒4

4
16 𝑒1𝑒2 = 𝑒3 𝑒1𝑒3 = 𝑒4 𝑒2𝑒2 = 𝑒4

4
17 𝑒1𝑒2 = 𝑒3 𝑒1𝑒3 = 𝑒4

4
18 𝑒1𝑒1 = 𝑒4 𝑒1𝑒2 = 𝑒3 𝑒3𝑒2 = 𝑒4

4
19 𝑒1𝑒2 = 𝑒3 𝑒3𝑒2 = 𝑒4

4
20 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒4 𝑒2𝑒1 = 𝑒3 𝑒3𝑒1 = 𝑒4

4
21 𝑒1𝑒1 = 𝑒2 𝑒2𝑒1 = 𝑒3 𝑒3𝑒1 = 𝑒4

4
22 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒3 𝑒1𝑒3 = 𝑒4 𝑒2𝑒1 = 𝑒4

4
23 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒3 𝑒1𝑒3 = 𝑒4

𝑒2𝑒1 = 𝑒3 + 𝑒4 𝑒2𝑒2 = 𝑒4 𝑒3𝑒1 = 𝑒4
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4
24 (𝜆) 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒3 𝑒1𝑒3 = 𝑒4

𝑒2𝑒1 = 𝜆𝑒3 𝑒2𝑒2 = 𝜆𝑒4 𝑒3𝑒1 = 𝜆𝑒4

Táboa 3.2: Álxebras biconmutativas nilpotentes puras de dimensión 4.
Teorema 3.3.1. Sexa A unha álxebra biconmutativa nilpotente de dimensión 5 sobre
ℂ, xerada por un único elemento. Entón,A é isomorfa a unha das álxebras na seguinte
Táboa 3.4:

5
01 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒4 𝑒2𝑒1 = 𝑒3 𝑒3𝑒1 = 𝑒5

5
02 (𝜆) 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒3 𝑒1𝑒3 = 𝑒5

𝑒2𝑒1 = 𝜆𝑒3 + 𝑒4 𝑒2𝑒2 = 𝜆𝑒5 𝑒3𝑒1 = 𝜆𝑒5
5
03 (𝜆, 𝜇) 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒4 𝑒1𝑒3 = 𝑒5 𝑒1𝑒4 = 𝜆𝑒5

𝑒2𝑒1 = 𝑒3 𝑒2𝑒2 = 𝑒5 𝑒3𝑒1 = 𝜇𝑒5 𝑒4𝑒1 = 𝑒5
5
04 (𝜆) 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒4 𝑒1𝑒4 = 𝑒5

𝑒2𝑒1 = 𝑒3 𝑒3𝑒1 = 𝜆𝑒5
5
05 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒4 𝑒1𝑒3 = 𝑒5 𝑒2𝑒1 = 𝑒3

𝑒2𝑒2 = 𝑒5 𝑒3𝑒1 = 𝑒4 𝑒4𝑒1 = 𝑒5
5
06 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒5 𝑒2𝑒1 = 𝑒3

𝑒3𝑒1 = 𝑒4 𝑒4𝑒1 = 𝑒5
5
07 𝑒1𝑒1 = 𝑒2 𝑒2𝑒1 = 𝑒3 𝑒3𝑒1 = 𝑒4 𝑒4𝑒1 = 𝑒5

5
08 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒3 𝑒1𝑒3 = 𝑒4 𝑒1𝑒4 = 𝑒5

𝑒2𝑒1 = 𝑒4 𝑒2𝑒2 = 𝑒5 𝑒3𝑒1 = 𝑒5
5
09 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒3 𝑒1𝑒3 = 𝑒4 𝑒1𝑒4 = 𝑒5

𝑒2𝑒1 = 𝑒3 + 𝑒4 𝑒2𝑒2 = 𝑒4 + 𝑒5 𝑒2𝑒3 = 𝑒5
𝑒3𝑒1 = 𝑒4 + 𝑒5 𝑒3𝑒2 = 𝑒5 𝑒4𝑒1 = 𝑒5

5
10 (𝜆) 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒3 𝑒1𝑒3 = 𝑒4 𝑒1𝑒4 = 𝑒5

𝑒2𝑒1 = 𝜆𝑒3 𝑒2𝑒2 = 𝜆𝑒4 𝑒2𝑒3 = 𝜆𝑒5
𝑒3𝑒1 = 𝜆𝑒4 𝑒3𝑒2 = 𝜆𝑒5 𝑒4𝑒1 = 𝜆𝑒5
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5
11 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒3 𝑒1𝑒3 = 𝑒4

𝑒1𝑒4 = 𝑒5 𝑒2𝑒1 = 𝑒5
5
12 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒3 𝑒1𝑒3 = 𝑒4 𝑒1𝑒4 = 𝑒5

𝑒2𝑒1 = 𝑒3 + 𝑒5 𝑒2𝑒2 = 𝑒4 𝑒2𝑒3 = 𝑒5
𝑒3𝑒1 = 𝑒4 𝑒3𝑒2 = 𝑒5 𝑒4𝑒1 = 𝑒5

Táboa 3.4: Álxebras biconmutativas nilpotentes de dimensión 5 xeradas por un
elemento.

Teorema 3.4.2. Sexa A unha álxebra biconmutativa nilpotente de dimensión 6 sobre
ℂ, xerada por un único elemento. Entón,A é isomorfa a unha das álxebras na seguinte
Táboa 3.6:

6
01 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒4 𝑒1𝑒4 = 𝑒5

𝑒2𝑒1 = 𝑒3 𝑒3𝑒1 = 𝑒6
6
02 (𝜆) 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒4 𝑒1𝑒3 = 𝑒6 𝑒1𝑒4 = 𝑒5

𝑒2𝑒1 = 𝑒3 𝑒2𝑒2 = 𝑒6 𝑒3𝑒1 = 𝜆𝑒6 𝑒4𝑒1 = 𝑒6
6
03 (𝜆, 𝜇) 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒4 𝑒1𝑒3 = 𝑒6 𝑒1𝑒4 = 𝜆𝑒5 + 𝜇𝑒6

𝑒2𝑒1 = 𝑒3 𝑒2𝑒2 = 𝑒6 𝑒3𝑒1 = 𝑒5 𝑒4𝑒1 = 𝑒6
6
04 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒4 𝑒1𝑒3 = 𝑒6 𝑒2𝑒1 = 𝑒3

𝑒2𝑒2 = 𝑒6 𝑒3𝑒1 = 𝑒4 + 𝑒5 𝑒4𝑒1 = 𝑒6
6
05 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒5 𝑒2𝑒1 = 𝑒3 𝑒3𝑒1 = 𝑒4

𝑒4𝑒1 = 𝑒6
6
06 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒3 𝑒1𝑒3 = 𝑒4 𝑒1𝑒4 = 𝑒6

𝑒2𝑒1 = 𝑒4 + 𝑒5 𝑒2𝑒2 = 𝑒6 𝑒3𝑒1 = 𝑒6
6
07 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒3 𝑒1𝑒3 = 𝑒4 𝑒1𝑒4 = 𝑒6

𝑒2𝑒1 = 𝑒3 + 𝑒4 + 𝑒5 𝑒2𝑒2 = 𝑒4 + 𝑒6 𝑒2𝑒3 = 𝑒6
𝑒3𝑒1 = 𝑒4 + 𝑒6 𝑒3𝑒2 = 𝑒6 𝑒4𝑒1 = 𝑒6
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6
08 (𝜆) 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒3 𝑒1𝑒3 = 𝑒4 𝑒1𝑒4 = 𝑒6

𝑒2𝑒1 = 𝜆𝑒3 + 𝑒5 𝑒2𝑒2 = 𝜆𝑒4 𝑒2𝑒3 = 𝜆𝑒6
𝑒3𝑒1 = 𝜆𝑒4 𝑒3𝑒2 = 𝜆𝑒6 𝑒4𝑒1 = 𝜆𝑒6

6
09 (𝜆) 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒4 𝑒1𝑒3 = 𝑒6

𝑒1𝑒4 = 𝜆𝑒6 𝑒2𝑒1 = 𝑒3 𝑒2𝑒2 = 𝑒6
𝑒3𝑒1 = 𝑒5 𝑒4𝑒1 = 𝑒6 𝑒5𝑒1 = 𝑒6

6
10 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒4 𝑒1𝑒4 = 𝑒6

𝑒2𝑒1 = 𝑒3 𝑒3𝑒1 = 𝑒5 𝑒5𝑒1 = 𝑒6
6
11 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒4 𝑒2𝑒1 = 𝑒3

𝑒3𝑒1 = 𝑒5 𝑒5𝑒1 = 𝑒6
6
12 (𝜆) 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒3 𝑒1𝑒3 = 𝑒5 𝑒1𝑒5 = 𝑒6

𝑒2𝑒1 = 𝜆𝑒3 + 𝑒4 𝑒2𝑒2 = 𝜆𝑒5 𝑒2𝑒3 = 𝜆𝑒6
𝑒3𝑒1 = 𝜆𝑒5 𝑒3𝑒2 = 𝜆𝑒6 𝑒5𝑒1 = 𝜆𝑒6

6
13 (𝜆) 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒3 𝑒1𝑒3 = 𝑒5 𝑒1𝑒5 = 𝑒6

𝑒2𝑒1 = 𝜆𝑒3 + 𝑒4 𝑒2𝑒2 = 𝜆𝑒5 𝑒2𝑒3 = 𝜆𝑒6 𝑒3𝑒1 = 𝜆𝑒5
𝑒3𝑒2 = 𝜆𝑒6 𝑒4𝑒1 = 𝑒6 𝑒5𝑒1 = 𝜆𝑒6

6
14 (𝜆) 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒3 𝑒1𝑒3 = 𝑒5

𝑒1𝑒4 = 𝑒6 𝑒1𝑒5 = 𝑒6 𝑒2𝑒1 = 𝑒4
𝑒2𝑒2 = 𝑒6 𝑒3𝑒1 = 𝑒6 𝑒4𝑒1 = 𝜆𝑒6

6
15 (𝜆) 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒3 𝑒1𝑒3 = 𝑒5 𝑒1𝑒4 = 𝑒6

𝑒1𝑒5 = 𝑒6 𝑒2𝑒1 = 𝑒3 + 𝑒4 𝑒2𝑒2 = 𝑒5 + 𝑒6 𝑒2𝑒3 = 𝑒6
𝑒3𝑒1 = 𝑒5 + 𝑒6 𝑒3𝑒2 = 𝑒6 𝑒4𝑒1 = 𝜆𝑒6 𝑒5𝑒1 = 𝑒6

6
16 (𝜆)𝜆≠0 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒4 𝑒1𝑒3 = 𝑒5 𝑒1𝑒4 = 𝜆𝑒5

𝑒1𝑒5 = 𝜆𝑒6 𝑒2𝑒1 = 𝑒3 𝑒2𝑒2 = 𝑒5 𝑒2𝑒3 = 𝑒6
𝑒2𝑒4 = 𝜆𝑒6 𝑒3𝑒1 = (1∕𝜆) 𝑒5 𝑒3𝑒2 = 𝑒6
𝑒4𝑒1 = 𝑒5 𝑒4𝑒2 = 𝜆𝑒6 𝑒5𝑒1 = 𝑒6



Resumo 263

6
17 (𝜆)𝜆≠0 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒4 𝑒1𝑒3 = 𝑒5 𝑒1𝑒4 = 𝜆𝑒5 + 𝑒6

𝑒1𝑒5 = 𝜆𝑒6 𝑒2𝑒1 = 𝑒3 𝑒2𝑒2 = 𝑒5 𝑒2𝑒3 = 𝑒6
𝑒2𝑒4 = 𝜆𝑒6 𝑒3𝑒1 = (1∕𝜆) 𝑒5 𝑒3𝑒2 = 𝑒6
𝑒4𝑒1 = 𝑒5 𝑒4𝑒2 = 𝜆𝑒6 𝑒5𝑒1 = 𝑒6

6
18 (𝜆) 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒4 𝑒1𝑒3 = 𝑒5 𝑒1𝑒4 = 𝑒5 + 𝜆𝑒6

𝑒1𝑒5 = 𝑒6 𝑒2𝑒1 = 𝑒3 𝑒2𝑒2 = 𝑒5 𝑒2𝑒3 = 𝑒6
𝑒2𝑒4 = 𝑒6 𝑒3𝑒1 = 𝑒5 + 𝑒6 𝑒3𝑒2 = 𝑒6
𝑒4𝑒1 = 𝑒5 𝑒4𝑒2 = 𝑒6 𝑒5𝑒1 = 𝑒6

6
19 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒4 𝑒1𝑒3 = 𝑒5 𝑒1𝑒4 = 𝑒6

𝑒2𝑒1 = 𝑒3 𝑒2𝑒2 = 𝑒5 𝑒2𝑒3 = 𝑒6 𝑒3𝑒1 = 𝑒4
𝑒3𝑒2 = 𝑒6 𝑒4𝑒1 = 𝑒5 𝑒5𝑒1 = 𝑒6

6
20 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒5 𝑒1𝑒3 = 𝑒6 𝑒2𝑒1 = 𝑒3

𝑒2𝑒2 = 𝑒6 𝑒3𝑒1 = 𝑒4 𝑒4𝑒1 = 𝑒5 𝑒5𝑒1 = 𝑒6
6
21 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒6 𝑒2𝑒1 = 𝑒3

𝑒3𝑒1 = 𝑒4 𝑒4𝑒1 = 𝑒5 𝑒5𝑒1 = 𝑒6
6
22 𝑒1𝑒1 = 𝑒2 𝑒2𝑒1 = 𝑒3 𝑒3𝑒1 = 𝑒4

𝑒4𝑒1 = 𝑒5 𝑒5𝑒1 = 𝑒6
6
23 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒3 𝑒1𝑒3 = 𝑒4 𝑒1𝑒4 = 𝑒5

𝑒1𝑒5 = 𝑒6 𝑒2𝑒1 = 𝑒4 𝑒2𝑒2 = 𝑒5 𝑒2𝑒3 = 𝑒6
𝑒3𝑒1 = 𝑒5 𝑒3𝑒2 = 𝑒6 𝑒4𝑒1 = 𝑒6

6
24 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒3 𝑒1𝑒3 = 𝑒4 𝑒1𝑒4 = 𝑒5

𝑒1𝑒5 = 𝑒6 𝑒2𝑒1 = 𝑒3 + 𝑒4 𝑒2𝑒2 = 𝑒4 + 𝑒5 𝑒2𝑒3 = 𝑒5 + 𝑒6
𝑒2𝑒4 = 𝑒6 𝑒3𝑒1 = 𝑒4 + 𝑒5 𝑒3𝑒2 = 𝑒5 + 𝑒6 𝑒3𝑒3 = 𝑒6
𝑒4𝑒1 = 𝑒5 + 𝑒6 𝑒4𝑒2 = 𝑒6 𝑒5𝑒1 = 𝑒6

6
25 (𝜆) 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒3 𝑒1𝑒3 = 𝑒4 𝑒1𝑒4 = 𝑒5

𝑒1𝑒5 = 𝑒6 𝑒2𝑒1 = 𝜆𝑒3 𝑒2𝑒2 = 𝜆𝑒4 𝑒2𝑒3 = 𝜆𝑒5
𝑒2𝑒4 = 𝜆𝑒6 𝑒3𝑒1 = 𝜆𝑒4 𝑒3𝑒2 = 𝜆𝑒5 𝑒3𝑒3 = 𝜆𝑒6
𝑒4𝑒1 = 𝜆𝑒5 𝑒4𝑒2 = 𝜆𝑒6 𝑒5𝑒1 = 𝜆𝑒6
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6
26 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒3 𝑒1𝑒3 = 𝑒4

𝑒1𝑒4 = 𝑒5 𝑒1𝑒5 = 𝑒6 𝑒2𝑒1 = 𝑒6
6
27 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒3 𝑒1𝑒3 = 𝑒4 𝑒1𝑒4 = 𝑒5

𝑒1𝑒5 = 𝑒6 𝑒2𝑒1 = 𝑒3 + 𝑒6 𝑒2𝑒2 = 𝑒4 𝑒2𝑒3 = 𝑒5
𝑒2𝑒4 = 𝑒6 𝑒3𝑒1 = 𝑒4 𝑒3𝑒2 = 𝑒5 𝑒3𝑒3 = 𝑒6
𝑒4𝑒1 = 𝑒5 𝑒4𝑒2 = 𝑒6 𝑒5𝑒1 = 𝑒6

6
28 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒3 𝑒1𝑒3 = 𝑒4 𝑒1𝑒4 = 𝑒5

𝑒1𝑒5 = 𝑒6 𝑒2𝑒1 = 𝑒5 𝑒2𝑒2 = 𝑒6 𝑒3𝑒1 = 𝑒6
6
29 𝑒1𝑒1 = 𝑒2 𝑒1𝑒2 = 𝑒3 𝑒1𝑒3 = 𝑒4 𝑒1𝑒4 = 𝑒5

𝑒1𝑒5 = 𝑒6 𝑒2𝑒1 = 𝑒3 + 𝑒5 𝑒2𝑒2 = 𝑒4 + 𝑒6 𝑒2𝑒3 = 𝑒5
𝑒2𝑒4 = 𝑒6 𝑒3𝑒1 = 𝑒4 + 𝑒6 𝑒3𝑒2 = 𝑒5 𝑒3𝑒3 = 𝑒6
𝑒4𝑒1 = 𝑒5 𝑒4𝑒2 = 𝑒6 𝑒5𝑒1 = 𝑒6

Táboa 3.6: Álxebras biconmutativas nilpotentes de dimensión 6 xeradas por un
elemento.
O Capítulo 3 complétase coa clasificación xeométrica das álxebras biconmutativas

nilpotentes de dimensión 4 sobre ℂ.
Teorema 3.5.1. A variedade das álxebras biconmutativas nilpotentes de dimensión 4
sobre ℂ ten dúas compoñentes irreducibles definidas pola álxebra ríxida 4

10 e pola
familia infinita de álxebras 4

24 (𝜆).

As álxebras nulfiliformes non son máis que álxebras nilpotentes xeradas por un
único elemento. Non obstante, no Capítulo 4 empregaremos o termo nulfiliforme, xa
que esta é a terminoloxía máis común na literatura especializada.

O estudo das extensións centrais (separables e non separables) das álxebras nulfi-
liformes iniciouse en [8], onde se describen todas as extensións centrais na variedade
das álxebras de Leibniz das álxebras de Leibniz nulfiliformes. As extensións centrais
non separables da única álxebra asociativa nulfiliforme de dimensión 𝑛, que denota-
remos por 𝜇𝑛0, foron estudadas en [138] no marco das álxebras asociativas. Probouse
que a única extensión central asociativa non separable de 𝜇𝑛0 é 𝜇𝑛+10 . Porén, as álxe-
bras asociativas nulfiliformes poden ser consideradas dentro de variedades de álxebras
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máis xerais, como as álxebras alternativas, alternativas pola esquerda, de Jordan, bi-
conmutativas, biconmutativas pola esquerda, asosimétricas, simétricas pola esquerda
ou de Novikov, entre outras (nótese que os casos alternativa pola dereita, conmutativa
pola dereita e simétrica pola dereita son análogos ás súas contrapartidas pola esquer-
da). En particular, en [39] probouse que a álxebra nulfiliforme 𝜇30 admite a extensión
trivial 𝜇40 pero tamén outra extensión biconmutativa non trivial. Este resultado recu-
pérase no Capítulo 3: coas nosas notacións, 𝜇30 = 3

02(1) admite a extensión trivial
𝜇40 = 4

24(1) e tamén 4
23. Polo tanto, semella razoable preguntarse se existirán ex-

tensións non triviais nas variedades de álxebras previamente mencionadas.
O resultado principal do Capítulo 4 é a clasificación das clases de isomorfismo das

extensións centrais da álxebra nulfiliforme asociativa 𝜇𝑛0 nas distintas variedades de
álxebras non asociativas mencionadas no parágrafo anterior. Mentres que nas varie-
dades das álxebras alternativas, alternativas pola esquerda (e pola dereita) e de Jordan
non existen extensións centrais non triviais de 𝜇𝑛0, para as álxebras biconmutativas e
conmutativas pola esquerda (ou pola dereita) obtemos o seguinte resultado.
Teorema 4.5.11. Sexa 𝐹 un corpo alxebricamente pechado de característica 0, e se-
xa 𝑛 ≥ 2. Os seguintes elementos de Z2

LC(𝜇
𝑛
0, 𝐹 ) parametrizan as distintas órbitas

de Aut(𝜇𝑛0) no subespazo 𝑇1(𝜇𝑛0) da Grassmanniana 𝐺1(H2
LC(𝜇

𝑛
0, 𝐹 )), é dicir, para-

metrizan as distintas clases de isomorfismo das extensións centrais non separables
conmutativas pola esquerda con anulador de dimensión 1 da álxebra nulfiliforme de
dimensión 𝑛, 𝜇𝑛0.

(a) Δ𝑛,1;

(b) {

∇𝑛 + 𝜇Δ𝑛,1 ∶ 𝜇 ∈ 𝐹
}

(𝜇 = 0 dá a extensión trivial 𝜇𝑛+10 );

(c) {

∇𝑛 + Δ𝑖,1 ∶ 2 ≤ 𝑖 ≤ 𝑛 − 1
}

.

No caso biconmutativo, os representantes correspondentes son:

(Caso 𝑛 = 2)

(a) Δ2,1;

(b) {

∇2 + 𝜇Δ2,1 ∶ 𝜇 ∈ 𝐹
}

(𝜇 = 0 dá a extensión trivial 𝜇30).

(Caso 𝑛 > 2)

(a) ∇𝑛 (extensión trivial 𝜇𝑛+10 );

(b) ∇𝑛 + Δ2,1.
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Nótese que o Teorema 4.5.11 só fai referencia ás extensións centrais non separa-
bles con anulador de dimensión 1. Porén, tamén é posible construír extensións cen-
trais de 𝜇𝑛0 conmutativas pola esquerda, non separables e con anulador de dimen-
sión 2. As súas clases de isomorfismo están parametrizadas polos cociclos Δ𝑘,1 para
2 ≤ 𝑘 ≤ 𝑛 − 1. No caso biconmutativo para 𝑛 > 2, Δ2,1 tamén é un representante
dunha clase de isomorfismo das extensións centrais non separables con anulador de
dimensión 2.

A descrición explícita da multiplicación nas extensións centrais atopadas amó-
sase na seguinte táboa, na que só están escritos os produtos dos elementos da base
{

𝑒1,… , 𝑒𝑛+1
} que non son nulos.

Cociclo Multiplicación, 𝑖, 𝑗 ∈ [𝑛]

Δ𝑛,1 𝑒𝑖𝑒𝑗 = 𝑒𝑖+𝑗 se 𝑖 + 𝑗 ≤ 𝑛
𝑒𝑛𝑒1 = 𝑒𝑛+1

Δ𝑘,1 𝑒𝑖𝑒𝑗 = 𝑒𝑖+𝑗 se 𝑖 + 𝑗 ≤ 𝑛 e (𝑖, 𝑗) ≠ (𝑘, 1)
(2 ≤ 𝑘 ≤ 𝑛 − 1) 𝑒𝑘𝑒1 = 𝑒𝑘+1 + 𝑒𝑛+1
∇𝑛 + Δ𝑘,1 𝑒𝑖𝑒𝑗 = 𝑒𝑖+𝑗 se 𝑖 + 𝑗 ≤ 𝑛 + 1 e (𝑖, 𝑗) ≠ (𝑘, 1)
(2 ≤ 𝑘 ≤ 𝑛 − 1) 𝑒𝑘𝑒1 = 𝑒𝑘+1 + 𝑒𝑛+1
∇𝑛 + 𝜇Δ𝑛,1 𝑒𝑖𝑒𝑗 = 𝑒𝑖+𝑗 se 𝑖 + 𝑗 ≤ 𝑛 + 1 e 𝑖 ≠ 𝑛
(𝜇 ∈ 𝐹 ) 𝑒𝑛𝑒1 = (1 + 𝜇)𝑒𝑛+1 (𝜇 = 0 dá a extensión trivial)

Táboa 4.1: Clases de isomorfismo de extensións centrais non separables conmu-
tativas pola esquerda e biconmutativas da álxebra nulfiliforme de dimensión 𝑛,
𝜇𝑛0.

As extensións centrais nas variedades das álxebras asosimétricas, simétricas po-
la esquerda (e pola dereita) e de Novikov resultan ser unha consecuencia trivial das
extensións centrais biconmutativas e conmutativas pola esquerda (e pola dereita).

As álxebras axiais son unha clase recente de álxebras non asociativas conmutati-
vas, que foi introducida no ano 2015 por Hall, Rehren e Shpectorov [110]. Podemos
velas como unha certa xeneralización das álxebras conmutativas e asociativas, e tamén
como un marco común para as álxebras de Majorana [110,233], de Jordan [111,112]
e outros tipos de álxebras típicas da física matemática. Ademais, tamén están relacio-
nadas coas álxebras de códigos [53].
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A relevancia das álxebras de Majorana e as álxebras axiais xace no feito de que
estas proporcionan unha aproximación axiomática ás álxebras de operadores de vér-
tices (VOAs), estruturas alxébricas complicadas que xurdiron na física teórica. En
matemáticas, o exemplo máis coñecido de VOA é o moonshine 𝑉 #, construído por
Frenkel, Lepowsky e Meurman en [89], e cuxo grupo de automorfismos é o Monstro
𝑀 , o maior grupo finito simple esporádico. Este obxecto fai patente unha conexión
coa teoría das funcións modulares, e foi clave na proba de Borcherds [29] da conxec-
tura monstrous moonshine sobre a relación entre o Monstro e as funcións modulares.
O desenvolvemento rigoroso da teoría das VOAs, unha ferramenta moi importante
para dita proba, débese tamén a Borcherds [28].

Despois do xa nomeado artigo de Hall, Rehren e Shpectorov [110], comezou un
estudo sistemático das álxebras axiais. Unha dirección interesante e activa neste estu-
do é a descrición das álxebras dun certo tipo xeradas por 𝑛 elementos. Neste sentido,
todas al álxebras axiais xeradas por dous elementos dee tipo Jordan 𝜂 sobre un cor-
po de característica distinta de 2 foron clasificadas por Hall, Rehren e Shpectorov
en [111]. Rehren probou en [196,197] que a dimensión das álxebras axiais primitivas
de tipo Monstro (𝛼, 𝛽) xeradas por dous elementos non excede 8 se a característica
do corpo base é distinta de 2 e 𝛼 ∉ {2𝛽, 4𝛽}. Despois disto, Franchi, Mainardis e
Shpectorov construíron unha álxebra axial primitiva de tipo Monstro

(

2, 12
)

, xera-
da por dous elementos e de dimensión infinita, hoxe coñecida como a álxebra Hi-
ghwater [87], e tamén clasificaron todas as álxebras axiais primitivas de tipo Mons-
tro (2𝛽, 𝛽) sobre un corpo de característica distinta de 2 xeradas por dous elementos
en [88]. Finalmente, entre Yabe [235], Franchi e Mainardis [85] e Franchi, Mainar-
dis e McInroy [86] clasificaron todas as álxebras axiais primitivas e simétricas de
tipo Monstro xeradas por dous elementos. Respecto das álxebras xeradas por tres ele-
mentos, Gorshkov e Staroletov amosaron que as álxebras axiais primitivas de tipo
Jordan teñen dimensión como moito 9; pola súa banda, Khasraw, McInroy e Shpec-
torov enumeraron en [153] todas as álxebras axiais xeradas por tres elementos dunha
certa subclase (as chamadas 4-álxebras) das álxebras de tipo Monstro (𝛼, 𝛽).

Citamos tamén algunhas outras direccións na investigación en álxebras axiais.
Khasraw, McInroy e Shpectorov describiron a estrutura das álxebras axiais [152]. De
Medts e Van Couwenberghe introduciron as representacións axiais de grupos e módu-
los sobre álxebras axiais como novas ferramentas para estudar as álxebras axiais [66].
Estas álxebras tamén foron estudadas dende un punto de vista computacional no ar-
tigo [173] de McInroy e Shpectorov (véxase tamén [187, 205]), e dende un punto de
vista categórico por De Medts, Peacock, Shpectorov e Van Couwenberghe [65].
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Por outra banda, o estudo das álxebras xeradas por idempotentes ten interese en si
mesmo. Rowen e Segev describiron todas as álxebras asociativas e de Jordan xeradas
por dous idempotentes en [199]; Brešar probou en [34] que unha álxebra unitaria de
dimensión finita é determinada por produto cero se e só se está xerada por idempo-
tentes; Hu e Xiao probaron en [117] que as álxebras de dimensión finita xeradas por
idempotentes poden ser caracterizadas homoloxicamente polos seus módulos irredu-
cibles, etc.

No Capítulo 5, describimos un método para construír álxebras axiais como exten-
sións centrais A𝜃 doutras álxebras axiais dadas A. Para enunciar os principais resul-
tados obtidos, precisamos introducir antes as seguintes notación e definición.

Sexa 𝑎 ∈ X e 𝜆, 𝜇 ∈ Spec (𝑎). Para 𝑥 ∈ A𝑎𝜆 e 𝑦 ∈ A𝑎𝜇, escribimos
𝑥𝑦 =

∑

0≠𝜈∈𝜆⋆𝜇
𝑧𝜈 + 𝑧0,

onde 𝑧𝜈 ∈ A𝑎𝜈 e 𝑧0 ∈ A𝑎0.
Definición 5.2.7. Sexa (A,X) unha álxebra ( , ⋆)-axial, V un espazo vectorial e
𝜃∶ A × A → V unha aplicación bilinear simétrica. Dicimos que 𝜃 é un cociclo
relativo a un subconxunto X′ ⊆ X se

ker 𝐿𝑎 ⊆ 𝜃⟂𝑎 (5.2.1)
satisfaise para todo 𝑎 ∈ X′, e se para todo 𝜆, 𝜇 ∈  tales que 0 ∉ 𝜆 ⋆ 𝜇, entón

𝜃 (𝑥, 𝑦) =
∑

𝜈∈𝜆⋆𝜇
𝜈−1𝜃

(

𝑎, 𝑧𝜈
) (5.2.2)

satisfaise para todo 𝑎 ∈ X′ tal que 𝜆, 𝜇 ∈ Spec (𝑎), todo 𝑥 ∈ A𝑎𝜆 e todo 𝑦 ∈ A𝑎𝜇. Deno-
taremos o espazo vectorial formado por tales aplicacións bilineares por Z

(

A,V;X′).

A continuación presentamos os resultados máis importantes do Capítulo 5.
Teorema 5.2.12. Sexa (A,X) unha álxebra axial, V un espacio vectorial e 𝜃∶ A ×
A → V unha aplicación bilinear simétrica tal que {[𝜃𝛾 ]}𝛾∈Γ son linearmente inde-
pendentes. O par

(

A𝜃,X𝑖
)

é
(

 ∪ {0}, ⊙𝑖
)

-axial se e só se a condición (5.2.1) satis-
faise para todo 𝑎𝑖𝑗 ∈ X𝑖, 𝑗 = 1,… , 𝑟𝑖, para algunha regra de fusión

(

 ∪ {0}, ⊙𝑖
)

contendo a ( , ⋆). Ademais, podemos tomar ⊙𝑖 = ⋆ se e só se 𝜃 ∈ Z
(

A,V;X𝑖
)

.
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Defínase tamén o conxunto

Y = {𝑎 + 𝜃 (𝑎, 𝑎) ∶ 𝑎 ∈ X satisfai a condición (5.2.1)}.
Para todo Y′ ⊆ Y tal que exista 𝑖 ∈ 𝐼 con X𝑖 ⊆ 𝑃

(

Y′),
(

A𝜃,Y′) é ( ∪ {0}, ⊙)-
axial para algunha regra de fusión ( ∪ {0}, ⊙) contendo a ( , ⋆). Podemos tomar
⊙ = ⋆ se e só se 𝜃 ∈ Z

(

A,V;𝑃
(

Y′)).

Teorema 5.2.13. Sexa (B,Y) unha álxebra ( , ⋆)-axial con Ann(𝐵) ≠ 0. Entón,
existe outra álxebra ( , ⋆)-axial (A,X) e un cociclo 𝜃 ∈ Z (A,Ann (B) ; X) tales que
B = A𝜃. Ademais, se Y é un conxunto minimal de eixos xeradores de B, entón X é un
conxunto minimal de eixos xeradores de A.

Unha consecuencia interesante do Teorema 5.2.12 é o seguinte resultado.
Teorema 5.3.1. Sexa 𝐽 unha álxebra de Jordan simple e de dimensión finita sobre
ℂ. Non existen extensións centrais 

(

1
2

)

-axiais non separables 𝐽𝜃 con respecto ao
conxunto

Y = {𝑎 + 𝜃 (𝑎, 𝑎) ∶ 𝑎 ∈ X é semisimple}.

Como xa comentamos uns parágrafos atrás, os produtos tensor e exterior non abe-
lianos de álxebras de Lie foron introducidos por Ellis en [76]. Entre as súas propie-
dades, estudadas nese artigo, destacamos que para toda álxebra de Lie 𝐿, 𝐻2(𝐿) ≅
ker(𝐿 ∧ 𝐿 → 𝐿). Estas construcións foron xeneralizadas a diferentes estruturas para
obter caracterizacións similares da segunda homoloxía 𝐻2.

Unha destas xeneralizacións foi na dirección dos módulos cruzados de álxebras de
Lie. En primeiro lugar, definiuse un produto tensor para módulos cruzados abelianos
de álxebras de Lie en [75]. Despois, Ravanbod e Salemkar [193] xeneralizaron esta
construción definindo o produto tensor non abeliano de dous submódulos cruzados
ideais dun módulo cruzado de álxebras de Lie (𝑇 , 𝐿, 𝜕) dado, así como o seu produto
exterior. Tamén caracterizaron o segundo módulo cruzado de homoloxía 𝐻2(𝑇 , 𝐿, 𝜕)
como o núcleo da aplicación conmutador (𝑇 , 𝐿, 𝜕) ∧ (𝑇 , 𝐿, 𝜕) → (𝑇 , 𝐿, 𝜕). Esta ho-
moloxía para módulos cruzados de álxebras de Lie foi introducida por Casas, Inas-
saridze e Ladra en [49], empregando a teoría xeral da homoloxía do cotriple de Barr
e Beck [20]. Dado un módulo cruzado de álxebras de Lie (𝑇 , 𝐿, 𝜕), os seus módulos
cruzados de homoloxía𝐻𝑛(𝑇 , 𝐿, 𝜕) defínense como os funtores derivados simpliciais
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do funtor abelianización entre as categorías de módulos cruzados de álxebras de Lie
e os módulos cruzados abelianos de álxebras de Lie. En efecto, esta teoría pode verse
como unha xeneralización da homoloxía de Eilenberg-MacLane para álxebras de Lie.
Ademais, os autores ofrecen unha fórmula de Hopf para a segunda homoloxía dun
módulo cruzado.

Outra xeneralización do traballo de Ellis foi dada en [91], onde García-Martínez,
Khmaladze e Ladra introduciron os produtos tensor e exterior non abelianos de su-
perálxebras de Lie. Tamén definiron a súa homoloxía, obtendo unha fórmula de Hopf
para a segunda homoloxía de superálxebras de Lie e estendendo a sucesión exacta de
cinco termos un termo cara á esquerda. Ademais, probaron que, dada unha superál-
xebra de Lie 𝐿, 𝐻2(𝐿) ≅ ker(𝐿 ∧ 𝐿→ 𝐿).

No Capítulo 6, presentamos unha nova xeneralización de [76] para módulos cru-
zados de superálxebras de Lie. A definición principal do capítulo é a seguinte.
Definición 6.3.4. Sexan (𝑀,𝑃 , 𝜕) e (𝑁,𝑄, 𝜕) dous submódulos cruzados ideais gra-
duados dun módulo cruzado de superálxebras de Lie (𝑇 , 𝐿, 𝜕), e consideremos os
homomorfismos

𝛼∶ 𝑀 ⊗𝑁 → (𝑀 ⊗𝑄)⋊ (𝑃 ⊗𝑁) ,

𝑚 ⊗ 𝑛 ↦ −𝑚⊗ 𝜕 (𝑛) + 𝜕 (𝑚)⊗ 𝑛,

𝛽 ∶ (𝑀 ⊗𝑄)⋊ (𝑃 ⊗𝑁) → 𝑃 ⊗𝑄.

𝑚 ⊗ 𝑞 + 𝑝 ⊗ 𝑛 ↦ 𝜕 (𝑚)⊗ 𝑞 + 𝑝 ⊗ 𝜕 (𝑛) .

Definimos o produto tensor non abeliano de (𝑀,𝑃 , 𝜕) e (𝑁,𝑄, 𝜕) como

(𝑀,𝑃 , 𝜕)⊗ (𝑁,𝑄, 𝜕) = (coker 𝛼, 𝑃 ⊗ 𝑄, 𝛿) ,

onde 𝛿 é o homomorfismo inducido por 𝛽, e o produto exterior como

(𝑀,𝑃 , 𝜕) ∧ (𝑁,𝑄, 𝜕) =
(coker 𝛼, 𝑃 ⊗ 𝑄, 𝛿)

(𝐼, 𝑃□𝑄, 𝛿)
=
(coker 𝛼

𝐼
, 𝑃 ∧𝑄, 𝛿

)

,

onde 𝐼 é a subálxebra graduada de coker 𝛼 xerada polos elementos

𝑥 ⊗ 𝑦 + (−1)|𝑥||𝑦| 𝑦 ⊗ 𝑥 + 𝜕
(

𝑧0̄
)

⊗ 𝑧0̄ + Im 𝛼,

𝑥 ⊗ 𝑦 + (−1)|𝑥||𝑦| 𝑦 ⊗ 𝑥 + 𝜕 (𝑧)⊗ 𝑧′ + (−1)|𝑧||𝑧
′
| 𝜕

(

𝑧′
)

⊗ 𝑧 + Im 𝛼,
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tales que 𝑥, 𝑧, 𝑧′ ∈𝑀∩𝑁 , 𝑧0̄ ∈𝑀0̄∩𝑁0̄ e 𝑦 ∈ 𝑃∩𝑄. Por coherencia coa teoría de ál-
xebras e superálxebras de Lie, denotamos (𝐼, 𝑃□𝑄, 𝛿) como (𝑀,𝑃 , 𝜕)□ (𝑁,𝑄, 𝜕).

A continuación, estúdanse diversas propiedades estruturais e homolóxicas dos
produtos tensor e exterior non abelianos da Definición 6.3.4. Destacamos as dúas
seguintes.
Teorema 6.2.7. Sexa (𝑇 , 𝐿, 𝜕) un módulo cruzado perfecto. O morfismo

𝜐∶ (𝐿⊗ 𝑇 ,𝐿 ⊗ 𝐿, id⊗𝜕) → (𝑇 , 𝐿, 𝜕)

definido por 𝜐1 (𝑙 ⊗ 𝑡) = 𝑙𝑡 e 𝜐2
(

𝑙 ⊗ 𝑙′
)

= [𝑙, 𝑙′] é unha extensión central universal
de (𝑇 , 𝐿, 𝜕).

Teorema 6.4.6. Dada unha presentación proxectiva 0 → (𝑉 ,𝑅, 𝜇) → (𝑌 , 𝐹 , 𝜇) →
(𝑇 , 𝐿, 𝜕) → 0 do módulo cruzado (𝑇 , 𝐿, 𝜕), existe un isomorfismo

(𝑇 , 𝐿, 𝜕) ∧ (𝑇 , 𝐿, 𝜕) ≅
[(𝑌 , 𝐹 , 𝜇) , (𝑌 , 𝐹 , 𝜇)]
[(𝑉 ,𝑅, 𝜇) , (𝑌 , 𝐹 , 𝜇)]

.

En particular, 𝐻2 (𝑇 , 𝐿, 𝜕) ≅ ker ((𝑇 , 𝐿, 𝜕) ∧ (𝑇 , 𝐿, 𝜕) → (𝑇 , 𝐿, 𝜕)).

Whitehead introduciu o seu funtor cadrático Γ para grupos abelianos en [232],
e empregouno para construír unha sucesión exacta longa no contexto da teoría de
homotopía, proporcionando un invariante para CW-complexos de dimensión 4. Esta
construción foi xeneralizada máis adiante por Simson e Tyc [208] para módulos arbi-
trarios sobre un anel conmutativo 𝑅 en relación co estudo de funtores derivados esta-
bles. Simson e Tyc exploraron algunhas das súas propiedades básicas, e en particular
probaron que este obxecto satisfai unha propiedade universal en relación ás aplica-
cións cadráticas entre 𝑅-módulos: a saber, que toda aplicación cadrática 𝑏∶ 𝑀 → 𝑁
factoriza a través de Γ(𝑀). Despois disto, Ellis relacionou esta versión do funtor ca-
drático de Whitehead cos seus produtos tensor e exterior non abelianos de álxebras
de Lie en [76].

Outras xeneralizacións do funtor cadrático de Whitehead apareceron no contexto
de módulos cruzados abelianos, tanto de grupos [189] como de álxebras de Lie [193].
A definición destes obxectos trouxo consigo avances nas teorías de homoloxía de
módulos cruzados [189] e no estudo dos produtos tensor e exterior non abelianos de
módulos cruzados de grupos [200] e de álxebras de Lie [193]. Outro aspecto relevante
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deste capítulo é a introdución do funtor cadrático de Whitehead para supermódulos,
cuxa construción difire da versión para módulos de [208] e que resulta ser fundamental
para os nosos propósitos.
Definición 6.1.1. Sexa 𝑀 = 𝑀0̄ ⊕ 𝑀1̄ un supermódulo sobre 𝑅, e sexa 𝑅𝑀0̄ o
supermódulo libre, concentrado en grao 0̄, xerado polos elementos 𝑒𝑚0̄

para todo
𝑚0̄ ∈𝑀0̄. Definimos o supermódulo Γ(𝑀) como a suma directa

𝑅𝑀0̄ ⊕ (𝑀 ⊗𝑅𝑀),

suxeita ás relacións

𝑒𝜆𝑚0̄
= 𝜆2𝑒𝑚0̄

,

𝑒𝑚0̄+𝑚′
0̄
− 𝑒𝑚0̄

− 𝑒𝑚′
0̄
= 𝑚0̄ ⊗𝑚′

0̄
,

𝑚 ⊗ 𝑚′ = (−1)|𝑚||𝑚′
|𝑚′ ⊗𝑚,

onde 𝜆 ∈ 𝑅, 𝑚0̄, 𝑚′
0̄
∈𝑀0̄ e 𝑚,𝑚′ ∈𝑀 , e coa graduación inducida.

Tamén ofrecemos a seguinte versión para módulos cruzados abelianos de superál-
xebras de Lie, que nos permitirá construír unha sucesión exacta de módulos cruzados
de tres termos involucrando aos produtos tensor e exterior non abelianos.
Definición 6.3.11. Sexa (𝐴,𝐵, 𝜕) un módulo cruzado abeliano de superálxebras de
Lie restrinxidas, e denotemos por 𝐵⊗𝐴 o produto tensor 𝐵 ⊗ 𝐴 suxeito á relación
homoxénea

𝜕 (𝑎)⊗ 𝑎′ = (−1)|𝑎||𝑎
′
| 𝜕

(

𝑎′
)

⊗ 𝑎,

para todo 𝑎, 𝑎′ ∈ 𝐴. Consideremos tamén o homomorfismo de álxebras de Lie

𝑓 ∶ 𝐴⊗𝐴 →
(

𝐵⊗𝐴
)

⊕ Γ (𝐴)

𝑎 ⊗ 𝑎′ ↦ 𝜕 (𝑎)⊗ 𝑎′ − 𝑎 ⊗ 𝑎′,

e denotemos Γ̃ (𝐴,𝐵, 𝜕) ∶= coker 𝑓 . Entón, defínese Γ (𝐴,𝐵, 𝜕) como o módulo cru-
zado abeliano de superálxebras de Lie

(

Γ̃ (𝐴,𝐵, 𝜕) ,Γ (𝐵) , 𝜕Γ
)

, onde 𝜕Γ está deter-
minado por

𝜕Γ
(

𝑏 ⊗ 𝑎 + 𝑒𝑎0̄ + 𝛼 ⊗ 𝛼′
)

= 𝑒𝜕(𝑎0̄) + 𝑏 ⊗ 𝜕 (𝑎) + 𝜕 (𝛼)⊗ 𝜕
(

𝛼′
)

.
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Teorema 6.3.12. Sexa (𝑇 , 𝐿, 𝜕) un módulo cruzado de superálxebras de Lie tal que 𝜕
é sobrexectiva ou a acción de 𝐿 sobre 𝑇 é trivial. Entón, existe unha sucesión exacta

Γ
(

(𝑇 , 𝐿, 𝜕)ab
) (𝜂1,𝜂2)
←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ (𝑇 , 𝐿, 𝜕)⊗ (𝑇 , 𝐿, 𝜕)

(𝜋1,𝜋2)
←←←←←←←←←←←←←←←←←←←←←←←←←←→ (𝑇 , 𝐿, 𝜕) ∧ (𝑇 , 𝐿, 𝜕) ←←←←←←←←←←→ 0.

O Capítulo 7 adícase por completo a estudar as propiedades destas dúas novas
versións do funtor cadrático de Whitehead, ademais de estendelas a supermódulos e
superálxebras sobre aneis nos que 2 non ten por que ter inverso. No caso de supermó-
dulos, destacamos o seu papel como obxecto universal respecto das aplicacións ca-
dráticas; no caso de módulos cruzados abelianos de superálxebras de Lie, definimos
como aplicacións cadráticas entre módulos cruzados abelianos aquelas aplicacións
respecto das cales Γ(𝐴,𝐵, 𝜕) xoga un papel de obxecto universal.
Proposición 7.2.3. Sexan 𝑀 e 𝑁 dous supermódulos, e sexa 𝜑∶ 𝑀 → 𝑁 , 𝜑 =
(𝜑0̄, 𝑏𝜑), unha aplicación cadrática. Entón, existe un único homomorfismo de super-
módulos tal que ℎ𝛾 = 𝜑.

𝑀0̄
𝛾0̄ //

𝜑0̄ !!

Γ(𝑀)0̄

ℎ0̄{{
𝑁0̄

𝑀 ×𝑀
𝑏𝛾 //

𝑏𝜑 ##

Γ(𝑀)

ℎ||
𝑁

Definición 7.3.2. Sexan (𝐴,𝐵, 𝜕) e (𝐶,𝐷, 𝜎) dous módulos cruzados abelianos de su-
perálxebras de Lie. Definimos unha aplicación cadrática entre eles como dous pares
𝜉 =

(

𝜉0̄, 𝑏𝜉
)

e 𝜑 =
(

𝜑0̄, 𝑏𝜑
)

tales que:

1. 𝜑∶ 𝐵 → 𝐷 é unha aplicación cadrática entre supermódulos.
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2. 𝜉 =
(

𝜉0̄, 𝑏𝜉
)

∶ 𝐴→ 𝐶 é tal que:

• 𝜉0̄ ∶ 𝐴0̄ → 𝐶0̄ é unha aplicación cadrática entre módulos;

• 𝑏𝜉 ∶ 𝐵 × 𝐴→ 𝐶 é bilinear e satisfai:

𝑏𝜉
(

𝜕
(

𝑎0̄
)

, 𝑎′
0̄

)

= 𝜉0̄
(

𝑎0̄ + 𝑎′0̄
)

− 𝜉0̄
(

𝑎0̄
)

− 𝜉0̄
(

𝑎′
0̄

)

,

𝑏𝜉
(

𝜕 (𝑎) , 𝑎′
)

= (−1)|𝑎||𝑎
′
| 𝑏𝜉

(

𝜕
(

𝑎′
)

, 𝑎
)

,
𝑏𝜉

(

𝑎1̄, 𝑎1̄
)

= 0,
para todo 𝑎0̄, 𝑎′0̄ ∈ 𝐴0̄, 𝑎1̄ ∈ 𝐴1̄ e 𝑎, 𝑎′ ∈ 𝐴;

3. 𝜎0̄𝜉0̄ = 𝜑0̄𝜕0̄, onde 𝜕0̄ e 𝜎0̄ denotan as restricións de 𝜕 e 𝜎 a 𝐴0̄ e 𝐶0̄, respecti-
vamente, e 𝜎𝑏𝜉 = 𝑏𝜑 (id⊗𝜕).

Denotamos estes pares como Υ = (𝜉, 𝜑) ∶ (𝐴,𝐵, 𝜕) → (𝐶,𝐷, 𝜎).

Proposición 7.3.4. Dada unha aplicación cadrática Υ∶ (𝐴,𝐵, 𝜕) → (𝐶,𝐷, 𝜎) en-
tre dous módulos cruzados abelianos de superálxebras de Lie, con Υ = (𝜉, 𝜑) =
((

𝜉0̄, 𝑏𝜉
)

,
(

𝜑0̄, 𝑏𝜑
))

, entón existe un único morfismo de módulos cruzados𝐻 =
(

ℎ1, ℎ2
)

tal que ℎ1𝜂 = 𝜉 e ℎ2𝛾 = 𝜑. Para resumir, escribiremos Ω𝐻 = Υ.

𝐵0̄ Γ(𝐵)0̄

𝐴0̄ Γ̃(𝐴,𝐵, 𝜕)0̄

𝐷0̄

𝐶0̄

𝜑0̄

𝛾0̄

ℎ2

𝜕0̄

𝜉0̄

𝜂0̄

𝜕Γ0̄

ℎ1

𝜎0̄
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𝐵 × 𝐵 Γ(𝐵)

𝐵 × 𝐴 Γ̃(𝐴,𝐵, 𝜕)

𝐷

𝐶

𝑏𝜑

𝑏𝛾

ℎ2

id ×𝜕

𝑏𝜉

𝑏𝜂

𝜕Γ

ℎ1

𝜎

Mentres que a nosa versión do funtor cadrático de Whitehead para supermódulos
satisfai todas as propiedades típicas da versión para módulos [76, 208] que estuda-
mos, na versión para módulos cruzados abelianos de superálxebras de Lie atopamos
unha diferenza destacable, xa que, ao contrario que nos outros casos, este funtor non
preserva obxectos libres.

O Capítulo 8 encádrase nunha teoría completamente distinta á do resto da tese: a
das probas e descubrimentos automáticos de teoremas, baseada na xeometría alxébri-
ca (complexa) computacional, que foi iniciada fai corenta anos por Wu no artigo fun-
dacional [234, “On the decision problem and the mechanization of theorem-proving
in elementary geometry”]. Dita teoría evolucionou ao longo dos anos desenvolven-
do unha gran variedade de métodos para os razoamentos automáticos en xeometría
elemental, cuxa eficacia quedou sobradamente probada pola cantidade e a calidade
dos exemplos presentados en referencias como [56]. Neste capítulo traballamos co
protocolo e coa notación descritos en [58, Sección 4 do Capítulo 6], os cales son bas-
tante similares aos de [59], [194] ou [238]. A súa recente implementación en software
matemático libre e amplamente empregado (véxase [1]) amosa que este tema segue
tendo actualidade hoxe en día, e anímanos a fixar a nosa atención nalgúns aspectos
que non estaban completamente estudados.



276 Resumo

O obxectivo deste capítulo é esclarecer cal é o modo máis adecuado de tratar con
hipóteses e teses que describan condicións negativas, tales como “consideremos dous
puntos diferentes” (é dicir, dous puntos que non son iguais), ou “sexan 𝐴,𝐵, 𝐶 os
vértices dun triángulo non dexenerado” (é dicir, tres puntos 𝐴,𝐵, 𝐶 que non sexan
coincidentes nin colineares), etc. Nótese que a relevancia de clarificar este aspecto
non se restrinxe unicamente a estender métodos xa coñecidos no ámbito das probas
automáticas a un tipo máis amplo de postulados. De feito, as chamadas condicións de
non dexeneración xorden de modo natural no protocolo tradicional para as probas de
teoremas con postulados puramente afirmativos.

Ocorre que, ao introducir o requirimento de evitar situacións dexeneradas nos
algoritmos estándares de xeometría alxébrica, as desigualdades polinómicas do tipo
𝑝1(𝑥1,… , 𝑥𝑛) ≠ 0 téñense que expresar por medio de ecuacións. Na tradición das
probas automáticas de teoremas, esta conversión levouse a cabo a través de dous pro-
cedementos: o truco de Rabinowitsch e o ideal saturación.

O truco de Rabinowitsch é un vello coñecido das probas automáticas en xeometría
[135], pois sempre foi amplamente empregado para formular negacións de igualdades,
tamén coñecidas como “relacións de desigualdade”. A pesar da súa antigüidade, segue
mantendo a súa validez e o seu interese; non hai máis que considerar, por exemplo, a
recente investigación de Kapur, Sun, Wang e Zhou [136] sobre unha xeneralización
do “truco”, cuxa descrición abstracta completa pode atoparse en [16, Exemplo 6.1].
En liñas xerais, o truco de Rabinowitsch consiste en substituír un conxunto localmente
pechado𝐴⧵𝐵 contido no espazo afín𝐾𝑛 por un conxunto alxébrico de𝐾𝑛+1 chamado
“cuberta de Rabinowitsch”, de tal xeito que a proxección conxuntista da cuberta sexa
exactamente 𝐴 ⧵ 𝐵 e polo tanto a súa clausura (na topoloxía de Zariski) poida ser
calculada mediante unha eliminación.

Doutra banda, o ideal saturación permítenos calcular 𝐴 ⧵ 𝐵 dun xeito alxébrico
directo, sen necesidade de substituír 𝐴⧵𝐵 por un conxunto alxébrico nun espazo afín
de maior dimensión para logo proxectalo de volta a𝐾𝑛. A súa relación co truco de Ra-
binowitsch é ben coñecida no campo da álxebra conmutativa, e o potencial impacto do
seu uso nas probas de teoremas no canto de dito truco xa foi estudado en [59, Sección
5]. Porén, non atopamos na literatura existente ningunha análise sólida e detallada das
vantaxes e inconvenientes de cada unha destas aproximacións no que respecta á súa
fidelidade como traducións de condicións negativas.

Así, a principal contribución deste capítulo final é estudar en detalle as diferentes
implicacións de adoptar cada unha destas formulacións para describir hipóteses e te-
ses negativas. A seguinte proposición deixa claro que o truco de Rabinowitsch non é
adecuado para modelar teses negativas.
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Proposición 8.3.2. A introdución dunha tese negativa 𝑇1 ∶= {𝑝 ≠ 0} empregando o
truco de Rabinowitsch nunca dá lugar a unha afirmación 𝐻 ⇒ 𝑇1 xeralmente certa.

Porén, a introdución de teses negativas por medio da saturación ofrece unha ca-
suística completa de situacións, como amosa o seguinte exemplo.
Exemplo 8.3.9. Se consideramos a hipótese 𝐻 ∶= {(𝑦 − 1) ⋅ (𝑦 − 2) = 0} nas
variables {𝑥, 𝑦}, sendo 𝑥 a única variable independente, e as teses 𝑇2 ∶= {𝑦−1 = 0}
e 𝑇1 ∶= Sat(((𝑦 − 1) ⋅ (𝑦 − 2)), (𝑦 − 1))={𝑦 − 2 = 0}, é sinxelo comprobar que
tanto 𝐻 ⇒ 𝑇2 como 𝐻 ⇒ 𝑇1 non son nin xeralmente certos nin xeralmente falsos.
Se no canto das teses anteriores tomamos 𝑇2 ∶= {𝑦 − 3 = 0} e a correspondente
𝑇1 ∶= Sat(((𝑦 − 1) ⋅ (𝑦 − 2)), (𝑦 − 3))={(𝑦 − 1) ⋅ (𝑦 − 2) = 0}, obtemos que 𝐻 ⇒ 𝑇2
non é xeralmente certo pero si xeralmente falso, mentres que 𝐻 ⇒ 𝑇1 é xeralmente
certo e non xeralmente falso. Por último, consideremos 𝐻 ∶= {(𝑦 − 1) = 0} nas
variables {𝑥, 𝑦}, 𝑇2 ∶= {𝑦 − 1 = 0} e 𝑇1 ∶= Sat((𝑦 − 1), (𝑦 − 1)) = (1). Neste caso,
tense que𝐻 ⇒ 𝑇2 é xeralmente certo e non xeralmente falso, e𝐻 ⇒ 𝑇1 é xeralmente
falso pero non xeralmente certo.

En cambio, na introdución de hipóteses negativas non semella haber diferenzas
teóricas entre empregar o truco de Rabinowitsch ou a saturación. Denotemos por

𝐻1 ∶= 𝐻𝑒 + (𝑓 ⋅ 𝑡 − 1),
𝐻2 ∶= Sat(𝐻,𝑓 ).

os ideais de hipóteses agrandados correspondentes ás dúas posibilidades de introducir
condicións de non dexeneración do tipo 𝑓 ≠ 0 sobre o ideal orixinal de hipóteses 𝐻
dun postulado dado.
Teorema 8.4.7. O teorema𝐻1 ⇒ 𝑇 é xeralmente falso se e só se o teorema𝐻2 ⇒ 𝑇
é xeralmente falso; analogamente, o postulado 𝐻1 ⇒ 𝑇 é xeralmente certo se e só se
tamén o é 𝐻2 ⇒ 𝑇 .

Porén, as nosas experiencias traballando con exemplos concretos amosan que hai
ocasións nas que o ordenador non experimenta problemas para determinar se un enun-
ciado é xeralmente certo ou falso empregando a saturación, pero é incapaz de determi-
nalo se as condicións negativas foron introducidas a través do truco de Rabinowitsch.
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Chegados a este punto, poderíamos preguntarnos: cal dos dous métodos presen-
tados é mellor? A resposta non é totalmente obxectiva. A nosa suxestión é que se
implemente o método da saturación no software existente na materia, debido á escasa
efectividade do truco de Rabinowitsch ao tratar con teses negativas e ás obxeccións
prácticas que acabamos de comentar. Pero a saturación tamén ten desvantaxes: ao
considerar a clausura do ideal Sat(𝐻,𝑓 ), arriscámonos a perder información esencial
acerca da negación ¬{𝑓 = 0} e incluso a atopar a ecuación 𝑓 = 0 entre as hipóteses
adicionais para o descubrimento, transgredindo en certo sentido as restricións impos-
tas polas condicións de non dexeneración introducidas ao comezo da proba. Este feito
é precisamente o que diferencia a ambos métodos, e o que podería persuadirnos para
empregar o truco de Rabinowitsch nas ocasións en que desexemos permanecer fieis
a algunha condición de non dexeneración establecida de antemán. De ser o caso, na
nosa opinión, a decisión de que método utilizar debería ser tomada polo propio usua-
rio a través do correspondente diálogo co software de probas automáticas de teoremas
que estea empregando.
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