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A B S T R A C T

This paper addresses several mechanisms for overall ranking Decision Making Units (DMUs) according to the
contribution of DMUs to the relative efficiency score of a merger considering aggregate units The possible
organization of agents outside each possible merger naturally influences the relative efficiency score, which
motivates the use of games in partition function form and specific ranking indices for DMUs based on the
Shapley value. Several computational problems arise in their exact computation when the number of DMUs
increases. We describe two sampling alternatives to reduce these drawbacks. Finally, we apply these methods
to analyse the efficiency of the hotel industry in Spain.
1. Introduction

The analysis of expert or intelligent multiagent situations cannot
be overlooked because the global interconnections among their compo-
nents is a key factor of society. Such relations ensure that information
about the decisions in a group of agents is influenced by the outcomes
of other groups of agents. In a collaborative scheme, considering the
coalitional externalities of agents in the game-theoretical framework
used for modelling such cooperation can derive a much more realistic
fitting of the used transferable utility (TU) game approach. For instance,
resource allocation problems, which may be influenced by factors such
as environmental or climate change influence, or Data Envelopment
Analysis are clear examples of the above.

Data Envelopment Analysis (DEA) is a nonparametric methodology
in operations research and economics, introduced by Charnes et al.
(1978), and it is used to assess the relative efficiency score of a set of
homogeneous Decision Making Units (DMUs). These DMUs are char-
acterized by the use of certain inputs to produce certain outputs. The
idea behind these techniques is the estimation of efficient frontiers of
the Production Possibility Set (PPS), on which each DMU is projected.
Formally, the efficient frontier is given by those nondominated opera-
tion points. Thus, a DMU is said to be inefficient if an operation point
exists that produces the same outputs using less inputs, or produces
more outputs with the same inputs. Immediately, DMUs can be rated
as efficient or as inefficient. Although these techniques were proposed
for evaluating activities of nonprofit entities, multiple references in the
literature have applied them to a wide variety of real problems. We
mention (Hua et al., 2007), that apply DEA for ecological efficiency
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evaluations of factories, and Cooper et al. (2009), that evaluate how
effective basketball players are by using DEA. In addition, Yin et al.
(2020) evaluate the hotel performance in relation to the impact of
operations and marketing capabilities. and Yazdani et al. (2020) use
DEA to select the location of logistics centres in Spanish autonomous
regions.

The natural collaboration of DMUs within a DEA framework favours
the use of cooperative game theory for its analysis in recent years. For
instance, Cook and Kress (1999) first use DEA for fixed cost alloca-
tion. Lozano (2012) analyses the gains achieved by sharing information
on the consumption and the production of DMUs. Yang and Zhang
(2015) allocate resources by using a modified Shapley value. An et al.
(2019) explore the payoff allocation problem in a three-stage system
and Chu et al. (2020) allocate a fixed cost among DMUs with two-
stage structures in DEA. As an immediate application, rankings in DEA
settings are naturally justified. Li and Liang (2010) use the Shapley
value to rank variables according to the efficiencies of DMUs. Ranking
DMUs using cooperative game theory has received considerable atten-
tion in the literature, since that this process substantially increases the
discrimination power of the DEA method. We refer to Lozano et al.
(2016) as a comprehensive survey on this topic, although there are
other references in the literature focusing on this topic. Moreover, we
refer to Li et al. (2016), who uses cooperative game theory to rank
efficient DMUs from their efficiencies under DEA. Hinojosa et al. (2017)
consider the relative efficiency score of inefficient DMUs when a group
of efficient units is dropped from the sample. Omrani et al. (2018)
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introduce the class of Integrated Fuzzy Clustering cooperative games
DEA, and use the core and the Shapley value for ranking efficient
DMUs. In this sense, Demetrescu et al. (2019) also use the Shapley value
as a ranking mechanism under DEA for the Italian system of evaluating
research quality.

In this paper, we analyse the impact of DMUs on the overall relative
efficiency score in the event of a merger from a game theoretical ap-
proach. We will consider the DEA formulation in Charnes et al. (1978)
due to the vast collection of papers that have proven its reliability in
practice and because it is often presented as a basis for many of the
formulations and approaches in DEA literature. The first novelty of our
proposed approach is that the set of agents considered is now given
by the whole set of DMUs, regardless of whether they are individually
efficient (or not) under DEA. Moreover, we build new DMUs, called
artificial DMUs, which are associated with any group or coalition of
our primary DMUs by aggregating the inputs and the outputs of their
members. Each artificial DMU can be seen as an entity that collects
all inputs and outputs of its members as in Hosseinzadeh Lotfi et al.
(2011) or Kritikos (2017), among others. We measure the relative
efficiency score of each artificial DMU under any possible configuration
of the outsiders. The main innovation lies in the fact that the relative
efficiency score of each artificial DMU is obtained under any possible
configuration of the remaining DMUs. This perspective allows us to use
the model of partition function form games (Thrall & Lucas, 1963) to
epresent these situations. As in the case of cooperative games with
ransferable utility (TU game), one main goal for partition function
orm games is to split the global earning in a reasonable way, such
s by extending the Shapley value (Shapley, 1953). Papers related to
he application of partition function form games have been published.
or instance, Pintassilgo and Lindroos (2008) model the management
f the North Atlantic bluefin tuna fishery; Liu et al. (2016) model the
arvesting costs of the Norwegian springspawning herring; Csercsik
nd Kóczy (2017) analyse an electrical network to obtain balancing
roups of producers and consumers; and Yang et al. (2019) analysed
equencing situations with externalities. Another application is the
oalition formation process (see Mahdiraji et al., 2021). In this paper
e will use partition form games and the values defined in Albizuri
t al. (2005), de Clippel and Serrano (2008), Hu and Yang (2010)
nd McQuillin (2009) to rank the whole set of DMUs based on the
mount allocated to each of them.

Certain computational problems, such as those that motivated Cas-
ro et al. (2009) or Maleki (2015), also maintain now. Specifically, for
very coalition of DMUs, we need to assign the worth of the cooper-
tion among its members for all possibilities of grouping outside the
oalition. Thus, new difficulties arise because when forming a coalition,
ll possibilities of organization of the remaining agents cannot be
valuated in polynomial time. To solve this new drawback, sampling
ethodologies (Cochran, 2007) are considered as alternatives.

This paper is organized as follows. Section 2 introduces some basic
otions on DEA problems. Section 3 innovatively introduces the class
f DEA sum games under the presence of externalities and studies some
roperties that they satisfy. Section 4 provides several alternatives for
anking DMUs in this new setting based on values for games in partition
unction form. Section 5 describes two sampling proposals for their
stimation in contexts that involve a large number of DMUs. Section 6
llustrates this methodology using data from the hotel industry in Spain.
ome concluding remarks are presented in Section 7.

. On DEA problems

Data environment analysis (DEA) deals with measuring the rela-
ive efficiency score of a homogeneous group of decision-making units
DMUs), which all present a common goal to be achieved. Each DMU
ses certain inputs to produce certain outputs. It is noteworthy that
2

hese inputs and outputs are usually multiple in character and may
lso assume a variety of forms, which permits only ordinal measure-
ents. Charnes et al. (1978) initially analyse this problem from a
athematical point of view. This contribution has high relevance in

conomic environments due to the large number of real applications.
Let 𝑁 = {1,… , 𝑛} be the system of DMUs under study. Each DMU is

haracterized in a DEA problem by the elements that are enumerated
elow.

• There exist 𝑚 different inputs. The value 𝑥𝑘𝑖 denotes the amount
of input 𝑘, with 𝑘 = 1,… , 𝑚 used by DMU 𝑖 for every 𝑖 ∈
𝑁 . All this information can be grouped in the subvectors 𝑋𝑖,
which contain the input information for every DMU 𝑖. If they
are concatenated, they directly determine the input matrix 𝑋 =
(𝑋1,… , 𝑋𝑛).

• There exist 𝑙 different outputs. In this case, 𝑦𝑘𝑖 denotes the amount
of output 𝑘, with 𝑘 = 1,… , 𝑙 produced by DMU 𝑖 for every 𝑖 ∈ 𝑁 .
Analogously, we can organize this information in the subvector 𝑌𝑖
that includes the output information for DMU 𝑖. In this case, the
matrix 𝑌 = (𝑌1,… , 𝑌𝑛) contains the output data for all the DMUs
in 𝑁 .

In this paper, we consider the output-oriented DEA model with
onstant returns to scale that was formally described in Charnes et al.
1978). However, the presented procedures can be applied for any DEA
odel. Adler et al. (2002) note that the output-oriented and the input-

riented DEA models of Charnes et al. (1978) lead to the same results.
owever, this consistency is not observed for the variable returns to

cale model considered in Banker et al. (1984). Even so, Problem FP can
till be used to determine returns to scale by using the model of Charnes
t al. (1978) in envelopment form as in Banker et al. (2011).

The performance of a DEA problem is based on the following
remises. Formally, a DEA problem enables a global evaluation of the
ndividual efficiency score of a DMU in a certain system relative to all
ther DMUs. This value, which is usually known in the literature as
he relative efficiency score of a DMU, can be defined in terms of the
rofitable character of its operation. More specifically, this profit is
efined in terms of the maximization of the ratio of its weighted outputs
ith respect to its weighted inputs, which is subject to the condition

hat similar ratios for every DMU are less than or equal to unity.
aking into account these assumptions, this analysis is formulated
hrough a mathematical programming problem that models this class of
ituations. This problem corresponds to a multiagent DEA problem that
ill be denoted by (𝑁 ;𝑋; 𝑌 ).

Let 𝑖0 be a certain 𝐷𝑀𝑈 . The relative efficiency score of DMU
0, according to the output-oriented DEA model with constant returns
o scale, is obtained by maximizing the objective function in the
ptimization problem formulated below:

𝐏

max 𝜃𝑖0 =
∑𝑙

𝑟=1 𝑢𝑟𝑦𝑟0
∑𝑚

𝑗=1 𝑣𝑗𝑥𝑗0
subject to

∑𝑙
𝑟=1 𝑢𝑟𝑦𝑟𝑖

∑𝑚
𝑗=1 𝑣𝑗𝑥𝑗𝑖

≤ 1,∀𝑖 = 1,… , 𝑛.

𝑢𝑟, 𝑣𝑗 ≥ 0; 𝑟 = 1,… , 𝑙; 𝑗 = 1,… , 𝑚.

(1)

More specifically, the relative efficiency score of DMU 𝑖0 is given by
the optimal value of the quotient 𝜃𝑖0 , 𝜃∗𝑖0 =

∑𝑙
𝑟=1 𝑢

∗
𝑟 𝑦𝑟0

∑𝑚
𝑗=1 𝑣

∗
𝑗 𝑥𝑗0

, with 𝑣∗ =

𝑣∗1 , 𝑣
∗
2 ,… , 𝑣∗𝑚) and 𝑢∗ = (𝑢∗1 , 𝑢

∗
2 ,… , 𝑢∗𝑙 ) being the optimal solution of the

problem. By satisfying also feasibility, it always holds that 𝜃∗𝑖0 ≤ 1.
Since the problem is a fractional programming problem, it is nec-

essary to apply some transformations that reduce the difficulty of
reaching a solution. From Charnes et al. (1978), the following formu-

lation is introduced in terms of a linear programming problem, which
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is an alternative to Problem FP, for measuring the relative efficiency
score of DMU 𝑖0.

𝐏
max 𝜂𝑖0
subject to

−
∑

𝑖∈𝑁
𝑦𝑟𝑖𝜆𝑖 + 𝑦𝑟𝑖0𝜂𝑖0 ≤ 0, 𝑟 = 1,… , 𝑙

∑

𝑖∈𝑁
𝑥𝑗𝑖𝜆𝑖 ≤ 𝑥𝑗𝑖0 , 𝑗 = 1,… , 𝑚

𝜆𝑖 ≥ 0, ∀𝑖 ∈ {1,… , 𝑛}
𝜂𝑖0 ∈ R.

(2)

In this case, the optimal solution is given by 𝜆∗ = (𝜆∗1 , 𝜆
∗
2 ,… , 𝜆∗𝑛) and

𝜂∗𝑖0 . We can also consider the dual problem of (2), whose formulation
is given below:

𝐃𝐏

min 𝜌𝑖0 =
𝑚
∑

𝑗=1
𝜔𝑗𝑥𝑗𝑖0

subject to

−
𝑙

∑

𝑟=1
𝜇𝑟𝑦𝑟𝑖 +

𝑚
∑

𝑗=1
𝜔𝑗𝑥𝑗𝑖 ≥ 0,∀𝑖 ∈ {1,… , 𝑛}.

𝑙
∑

𝑟=1
𝜇𝑟𝑦𝑟𝑖0 = 1

𝜇𝑟, 𝜔𝑗 ≥ 0; 𝑟 = 1,… , 𝑙; 𝑗 = 1,… , 𝑚.

(3)

The optimal value of the problems described above, which is given
by 𝜃∗𝑖0 , 𝜂

∗
𝑖0

and 𝜌∗𝑖0 , satisfies that

𝜂∗𝑖0 = 𝜌∗𝑖0 and 𝜃∗𝑖0 = 1
𝜂∗𝑖0

.

Taking into account the previous relations on the relative efficiency
cores, if DMU 𝑖0 is efficient, then Problem FP ensures 𝜃∗𝑖0 = 1; thus,
𝜌∗𝑖0 = 1. However, 𝜃∗𝑖0 = 1 does not ensure the efficiency of DMU
𝑖0. Moreover, using less inputs or producing more outputs (with the
amounts of outputs or inputs remaining constant, respectively) does
not affect the worth of 𝜃∗𝑖0 . The DMU resulting from such inputs and
outputs would be qualitatively more efficient than the initial one. For
additional details, see Charnes et al. (1978). We only assess the relative
efficiency score of a DMU through the objective function of Problem
MP, for example, regardless of whether the DMU is efficient (or not).

3. On the cooperation of DMUs under externalities

In this section, we analyse the problem of cooperation in DEA
using a different approach from the usual collaboration concepts such
as those in Hinojosa et al. (2017), Li and Liang (2010) and Lozano
et al. (2016). The overall relative efficiency score of a merger of a
group of DMUs is influenced by the organization of the remaining
DMUs and their possible mergers. Thrall and Lucas (1963) introduced
the model of games in partition function form to describe situations
such as these, in which the worth of a coalition substantially depends
on how the remaining agents are organized. In this framework the
basic organization of agents is called an embedded coalition, which is
a pair whose first component is an element of a partition and whose
second component contains the remaining elements of the partition
(sometimes, the whole partition).

Let 𝑁 be a set of agents and 𝛱(𝑁) be the set of partitions of 𝑁 .
Formally, an embedded coalition is given by a pair (𝑆;𝑃 ) with 𝑆 ⊆ 𝑁
and 𝑃 ∈ 𝛱(𝑁 ⧵ 𝑆).1 The empty set always belongs to any partition
𝑃 ∈ 𝛱(𝑁). Nevertheless, we consider embedded coalitions of type
(∅;𝑃 ), for every 𝑃 ∈ 𝛱(𝑁). The family of those nonempty embedded
coalitions is denoted by

𝐸𝐶𝑁 = {(𝑆;𝑃 ) ∶ 𝑃 ∈ 𝛱(𝑁 ⧵ 𝑆) and 𝑆 ⊆ 𝑁}. (4)

1 We use this notation for simplicity. If 𝑆 = 𝑁 , then we use (𝑁 ; ∅).
3

A partition function form game or a game with externalities is formally
defined by a function 𝑒 ∶ 𝐸𝐶𝑁 ⟶ R such that 𝑒(∅;𝑃 ) = 0. 𝑃𝐺(𝑁)
denotes the family of all games with externalities with player set 𝑁 .

Consider the multiagent DEA problem (𝑁 ;𝑋; 𝑌 ). In this context,
measuring the relative efficiency score of DMUs under cooperation
varies when embedded coalitions are considered. If 𝑆 ⊆ 𝑁 is formed,
then an artificial DMU [𝑖𝑆 ] is defined. This artificial DMU makes use of
a certain amount of inputs to produce another amount of outputs, with
both quantities obtained from the original values. Different proposals
associated with this aim has been reported. For simplicity, we consider
the natural case of the direct aggregation, such as in Hosseinzadeh
Lotfi et al. (2011) and Kritikos (2017). Formally, if DMUs in 𝑆 ⊆ 𝑁
decide to cooperate, then the sum-sum artificial DMU [𝑖𝑆 ] is defined by
n input vector 𝑥[𝑖𝑆 ] = (𝑥1[𝑖𝑆 ],… , 𝑥𝑚[𝑖𝑆 ]) and an output vector 𝑦[𝑖𝑆 ] =

(𝑦1[𝑖𝑆 ],… , 𝑦𝑙[𝑖𝑆 ]) given by

𝑥𝑘[𝑖𝑆 ] =
∑

𝑗∈𝑆
𝑥𝑘𝑗 , with 𝑘 = 1,… , 𝑚,

𝑦𝑘[𝑖𝑆 ] =
∑

𝑗∈𝑆
𝑦𝑘𝑗 , with 𝑘 = 1,… , 𝑙.

(5)

As mentioned, the organization of agents in 𝑁 ⧵ 𝑆 according to a
coalition structure that describes their cooperation affinities also affects
the relative efficiency score of [𝑖𝑆 ]. Below, we formally describe its
performance. Let 𝑃 ∈ 𝛱(𝑁) be a coalition structure for the agents in
𝑁 . We define the artificial DMU [𝑖𝑆 ] for every 𝑆 ∈ 𝑃 , in such way the
new set of DMUs is given by 𝑁𝑃 = {[𝑖𝑆 ] ∶ 𝑆 ∈ 𝑃 }, with 𝑥[𝑖𝑆 ] and 𝑦[𝑖𝑆 ]
representing the corresponding input and output vectors obtained from
(5) for each 𝑆 ∈ 𝑃 , respectively. Thus, the resulting DEA problem will
be denoted by (𝑁𝑃 ;𝑋𝑃 ; 𝑌 𝑃 ).

It is possible to define a game with externalities associated with any
multiagent DEA problem (𝑁 ;𝑋; 𝑌 ).

Definition 3.1. Let (𝑁 ;𝑋; 𝑌 ) be a multiagent DEA problem. We can
define an associated partition function form game (𝑁 ;𝑋; 𝑌 ; 𝐞) as follows:

𝐞(𝑆;𝑃 ) =
⎧

⎪

⎨

⎪

⎩

1
𝜂∗[𝑖𝑆 ],𝑃

, if ∅ ≠ 𝑆 ⊆ 𝑁, 𝑃 ∈ 𝛱(𝑁 ⧵ 𝑆),

0, otherwise.

∗
[𝑖𝑆 ],𝑃

is the optimal value of Problem (2) for the DEA problem
𝑁𝑃∪⌈𝑆⌉;𝑋𝑃∪⌈𝑆⌉; 𝑌 𝑃∪⌈𝑆⌉), with 𝑃 ∪ ⌈𝑆⌉ ∈ 𝛱(𝑁) having 𝑆 as a block,2
or DMU 𝑖0 = [𝑖𝑆 ]. Thus, (𝑁 ;𝑋; 𝑌 ; 𝐞) is called a DEA sum game, and for
otational convenience, it will be denoted by 𝐞.

Specifically, by considering the output-oriented DEA model with
onstant returns to scale, the optimal value of the DMU 𝑖 in Problem
2) determines the value of 𝐞({𝑖}; {{𝑗} ∶ 𝑗 ∈ 𝑁 ⧵{𝑖}}). In the remainder,
𝑆⌋ denotes {{𝑗} ∶ 𝑗 ∈ 𝑆} for each 𝑆 ⊆ 𝑁 . Under externalities, given a

nonempty coalition 𝑆 of 𝑁 and 𝑃 ∈ 𝛱(𝑁 ⧵𝑆), Problem (2) is rewritten
or any (𝑁𝑃∪⌈𝑆⌉;𝑋𝑃∪⌈𝑆⌉; 𝑌 𝑃∪⌈𝑆⌉) and any 𝑖0 = [𝑖𝑆 ] as follows:

𝐏(𝐒;𝐏)
max 𝜂[𝑖𝑆 ],𝑃
subject to

−
∑

𝑇∈𝑃∪⌈𝑆⌉
𝑦𝑟[𝑖𝑇 ]𝜆[𝑖𝑇 ] + 𝑦𝑟𝑖𝑆 𝜂[𝑖𝑆 ],𝑃 ≤ 0,

𝑟 = 1,… , 𝑙,
∑

𝑇∈𝑃∪⌈𝑆⌉
𝑥𝑗[𝑖𝑇 ]𝜆[𝑖𝑇 ] ≤ 𝑥𝑗[𝑖𝑆 ], 𝑗 = 1,… , 𝑚

𝜆[𝑖𝑇 ] ≥ 0, 𝑇 ∈ 𝑃 ∪ ⌈𝑆⌉
𝜂[𝑖𝑆 ],𝑃 ∈ R.

(6)

2
⌈𝑆⌉ means that 𝑆 is an element of the partition.
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Equivalently, the dual problem of MP(S;P) is given by

𝐃𝐏(𝐒;𝐏)

min 𝜌[𝑖𝑆 ],𝑃 =
𝑚
∑

𝑗=1
𝜔𝑗𝑥𝑗[𝑖𝑆 ]

subject to

−
𝑙

∑

𝑟=1
𝜇𝑟𝑦𝑟[𝑖𝑇 ] +

𝑚
∑

𝑗=1
𝜔𝑗𝑥𝑗[𝑖𝑇 ] ≥ 0, 𝑇 ∈ 𝑃 ∪ ⌈𝑆⌉,

𝑙
∑

𝑟=1
𝜇𝑟𝑦𝑟[𝑖𝑆 ] = 1,

𝜇𝑟 ≥ 0, 𝑟 = 1,… , 𝑙, 𝜔𝑗 ≥ 0, 𝑗 = 1,… , 𝑚.

(7)

Next, we present a collection of theoretical results on DEA sum games
that fulfil the most basic properties for partition function form games.
Previously, we introduce an order relation between partitions. Recall
that 𝛱(𝑁) is an ordered set with the following order. Given the
partitions 𝑃 ,𝑄 ∈ 𝛱(𝑁), 𝑃 precedes 𝑄 (or 𝑃 is finer than 𝑄), 𝑃 ⪯ 𝑄,
if for every 𝑆 ∈ 𝑃 there is 𝑇 ∈ 𝑄 such that 𝑆 ⊆ 𝑇 . In other words, the
lements in 𝑄 are obtained by unions of elements in 𝑃 .

A partition function form game 𝑒 ∈ 𝑃𝐺(𝑁) has positive externalities if
for every 𝑆 ⊆ 𝑁 , 𝑃 ,𝑄 ∈ 𝛱(𝑁 ⧵𝑆) such that 𝑃 ⪯ 𝑄, it satisfies 𝑒(𝑆;𝑃 ) ≤
𝑒(𝑆;𝑄). This means that the earning of coalition 𝑆 is nondecreasing
according to the ordering ⪯ on 𝛱(𝑁 ⧵ 𝑆).

From the formal definition, the next result directly establishes the
ense of the externalities of a DEA sum game 𝐞.

Proposition 3.2. Let (𝑁 ;𝑋; 𝑌 ) be a multiagent DEA problem. Then, the
associated DEA sum game 𝐞 has positive externalities.

Proof. Let 𝑆 ⊆ 𝑁 , and 𝑃 ,𝑄 ∈ 𝛱(𝑁 ⧵ 𝑆) such that 𝑃 ⪯ 𝑄. Notice that
any feasible solution 𝜇𝑟, 𝑟 = 1,… , 𝑙, 𝜔𝑗 , 𝑗 = 1,… , 𝑚 for Problem DP(S;P)
is also feasible for Problem DP(S;Q). Then,

𝜌∗[𝑖𝑆 ],𝑃 ≥ 𝜌∗[𝑖𝑆 ],𝑄.

Therefore, 𝐞(𝑆;𝑃 ) ≤ 𝐞(𝑆;𝑄). □

Under the DEA perspective, this property ensures that for any coali-
tion 𝑆 ⊆ 𝑁 , its relative efficiency score increases as the elements of the
partition in 𝑁 ⧵𝑆 progressively merge. From Proposition 3.2, it imme-
diately follows that the value of the relative efficiency score of coalition
𝑆 enlarges as DMUs outside 𝑆 form larger blocks with elements of 𝑃 .
In particular, for every efficient DMU 𝑖, we have 𝐞({𝑖};𝑃 ) = 1, for every
𝑃 ∈ 𝛱(𝑁 ⧵ {𝑖}).

In addition, we study the profitable character of the cooperation
in DEA sum games. To do this, we consider the following property. A
partition function form game 𝑒 is subadditive (Hafalir, 2007) if, for every
𝑆, 𝑇 ⊆ 𝑁 with 𝑆 ∩ 𝑇 = ∅ and 𝑃 ∈ 𝛱(𝑁 ⧵ (𝑆 ∪ 𝑇 )), it holds that

𝑒(𝑆 ∪ 𝑇 ;𝑃 ) ≤ 𝑒(𝑆;𝑃 ∪ ⌈𝑇 ⌉) + 𝑒(𝑇 ;𝑃 ∪ ⌈𝑆⌉).

This property ensures that the joint efficiency score of merging
reduces with respect to the sum of the efficiencies of each coalition
involved.

Proposition 3.3. Let (𝑁 ;𝑋; 𝑌 ) be a multiagent DEA problem. The
associated DEA sum game 𝐞 is subadditive.

Proof. Let 𝑆, 𝑇 ⊂ 𝑁 , 𝑆 ∩ 𝑇 = ∅, and take 𝑃 ∈ 𝛱(𝑁 ⧵ (𝑆 ∪ 𝑇 )). First,
we check that

𝐞(𝑆 ∪ 𝑇 ;𝑃 ) ≤ max
{

𝐞(𝑆;𝑃 ∪ ⌈𝑇 ⌉), 𝐞(𝑇 ;𝑃 ∪ ⌈𝑆⌉)
}

to prove

𝐞(𝑆 ∪ 𝑇 ;𝑃 ) ≤ 𝐞(𝑆;𝑃 ∪ ⌈𝑇 ⌉) + 𝐞(𝑇 ;𝑃 ∪ ⌈𝑆⌉).
4

If max{𝐞(𝑆;𝑃 ∪ ⌈𝑇 ⌉), 𝐞(𝑇 ;𝑃 ∪ ⌈𝑆⌉)} = 1, then the result immediately
follows. Let us assume that

max
{

𝐞(𝑆;𝑃 ∪ ⌈𝑇 ⌉), 𝐞(𝑇 ;𝑃 ∪ ⌈𝑆⌉)
}

= 𝐞(𝑇 ;𝑃 ∪ ⌈𝑆⌉) < 1.

We also assume that 𝐞(𝑆 ∪ 𝑇 ;𝑃 ) > 𝐞(𝑇 ;𝑃 ∪ ⌈𝑆⌉). Notice that 𝐞(𝑆 ∪ 𝑇 ;𝑃 )
is the optimal value of the fractional programming problem

max
∑𝑙

𝑟=1 𝑢𝑟(𝑦𝑟[𝑖𝑆 ] + 𝑦𝑟[𝑖𝑇 ])
∑𝑚

𝑗=1 𝑣𝑗 (𝑥𝑗[𝑖𝑆 ] + 𝑥𝑗[𝑖𝑇 ])
subject to

∑𝑙
𝑟=1 𝑢𝑟𝑦𝑟[𝑖𝑅]

∑𝑚
𝑗=1 𝑣𝑗𝑥𝑗[𝑖𝑅]

≤ 1, 𝑅 ∈ 𝑃 ∪ ⌈𝑆 ∪ 𝑇 ⌉,

𝑢𝑟 ≥ 0, 𝑟 = 1,… , 𝑙, 𝑣𝑗 ≥ 0, 𝑗 = 1,… , 𝑚.

(8)

Let 𝑢̂𝑟, 𝑟 = 1,… , 𝑙, 𝑣̂𝑗 , 𝑗 = 1,… , 𝑚 be an optimal solution of Problem (8).
Then,
∑𝑙

𝑟=1 𝑢̂𝑟(𝑦𝑟[𝑖𝑆 ] + 𝑦𝑟[𝑖𝑇 ])
∑𝑚

𝑗=1 𝑣̂𝑗 (𝑥𝑗[𝑖𝑆 ] + 𝑥𝑗[𝑖𝑇 ])
≤ max

{

∑𝑙
𝑟=1 𝑢̂𝑟𝑦𝑟[𝑖𝑆 ]

∑𝑚
𝑗=1 𝑣̂𝑗𝑥𝑗[𝑖𝑆 ]

,
∑𝑙

𝑟=1 𝑢̂𝑟𝑦𝑟[𝑖𝑇 ]
∑𝑚

𝑗=1 𝑣̂𝑗𝑥𝑗[𝑖𝑇 ]

}

.

We distinguish several cases.

Case 1. First, we assume that max
{

∑𝑙
𝑟=1 𝑢̂𝑟𝑦𝑟[𝑖𝑆 ]

∑𝑚
𝑗=1 𝑣̂𝑗𝑥𝑗[𝑖𝑆 ]

,
∑𝑙

𝑟=1 𝑢̂𝑟𝑦𝑟[𝑖𝑇 ]
∑𝑚

𝑗=1 𝑣̂𝑗𝑥𝑗[𝑖𝑇 ]

}

≤ 1.

Here, 𝑢̂𝑟, 𝑟 = 1,… , 𝑙, 𝑣̂𝑗 , 𝑗 = 1,… , 𝑚 are feasible for coalition
𝑇 and 𝑆. Then, we distinguish two subcases.

Subcase 1.1 If it satisfies that max
{

∑𝑙
𝑟=1 𝑢̂𝑟𝑦𝑟[𝑖𝑆 ]

∑𝑚
𝑗=1 𝑣̂𝑗𝑥𝑗[𝑖𝑆 ]

,
∑𝑙

𝑟=1 𝑢̂𝑟𝑦𝑟[𝑖𝑇 ]
∑𝑚

𝑗=1 𝑣̂𝑗𝑥𝑗[𝑖𝑇 ]

}

=
∑𝑙

𝑟=1 𝑢̂𝑟𝑦𝑟[𝑖𝑇 ]
∑𝑚

𝑗=1 𝑣̂𝑗𝑥𝑗[𝑖𝑇 ]
, then we have that

𝐞(𝑇 ;𝑃 ∪⌈𝑆⌉) ≥
∑𝑙

𝑟=1 𝑢̂𝑟𝑦𝑟[𝑖𝑇 ]
∑𝑚

𝑗=1 𝑣̂𝑗𝑥𝑗[𝑖𝑇 ]
≥ 𝐞(𝑆∪𝑇 ;𝑃 ) > 𝐞(𝑇 ;𝑃 ∪⌈𝑆⌉),

which is not possible.
Subcase 1.2 Otherwise, if it satisfies that max

{
∑𝑙

𝑟=1 𝑢̂𝑟𝑦𝑟[𝑖𝑆 ]
∑𝑚

𝑗=1 𝑣̂𝑗𝑥𝑗[𝑖𝑆 ]
,

∑𝑙
𝑟=1 𝑢̂𝑟𝑦𝑟[𝑖𝑇 ]

∑𝑚
𝑗=1 𝑣̂𝑗𝑥𝑗[𝑖𝑇 ]

}

=
∑𝑙

𝑟=1 𝑢̂𝑟𝑦𝑟[𝑖𝑆 ]
∑𝑚

𝑗=1 𝑣̂𝑗𝑥𝑗[𝑖𝑆 ]
, then we obtain that

𝐞(𝑆∪𝑇 ;𝑃 ) > 𝐞(𝑇 ;𝑃∪⌈𝑆⌉) ≥ 𝐞(𝑆;𝑃∪⌈𝑇 ⌉) ≥
∑𝑙

𝑟=1 𝑢̂𝑟𝑦𝑟[𝑖𝑆 ]
∑𝑚

𝑗=1 𝑣̂𝑗𝑥𝑗[𝑖𝑆 ]
≥ 𝐞(𝑆∪𝑇 ;𝑃 ).

However, this case is again not possible.

Case 2. Secondly, we suppose that max
{

∑𝑙
𝑟=1 𝑢̂𝑟𝑦𝑟[𝑖𝑆 ]

∑𝑚
𝑗=1 𝑣̂𝑗𝑥𝑗[𝑖𝑆 ]

,
∑𝑙

𝑟=1 𝑢̂𝑟𝑦𝑟[𝑖𝑇 ]
∑𝑚

𝑗=1 𝑣̂𝑗𝑥𝑗[𝑖𝑇 ]

}

> 1.
Without a loss of generality, we assume that

max
{

∑𝑙
𝑟=1 𝑢̂𝑟𝑦𝑟[𝑖𝑆 ]

∑𝑚
𝑗=1 𝑣̂𝑗𝑥𝑗[𝑖𝑆 ]

,
∑𝑙

𝑟=1 𝑢̂𝑟𝑦𝑟[𝑖𝑇 ]
∑𝑚

𝑗=1 𝑣̂𝑗𝑥𝑗[𝑖𝑇 ]

}

=
∑𝑙

𝑟=1 𝑢̂𝑟𝑦𝑟[𝑖𝑇 ]
∑𝑚

𝑗=1 𝑣̂𝑗𝑥𝑗[𝑖𝑇 ]
.

(Otherwise, we can naturally switch 𝑇 by 𝑆 for the remainder
of the proof). The optimality of 𝑢̂𝑟 and 𝑣̂𝑗 , for all 𝑟 = 1,… , 𝑙
and 𝑗 = 1,… , 𝑚, for obtaining 𝐞(𝑆 ∪ 𝑇 ;𝑃 ) ensures that
∑𝑙

𝑟=1 𝑢̂𝑟(𝑦𝑟[𝑖𝑆 ] + 𝑦𝑟[𝑖𝑇 ])
∑𝑚

𝑗=1 𝑣̂𝑗 (𝑥𝑗[𝑖𝑆 ] + 𝑥𝑗[𝑖𝑇 ])
≤ 1. (9)

Notice that combining the inequality in (9) with
∑𝑙

𝑟=1 𝑢̂𝑟𝑦𝑟[𝑖𝑇 ]
∑𝑚

𝑗=1 𝑣̂𝑗𝑥𝑗[𝑖𝑇 ]
≥

1 implies that ∑𝑙
𝑟=1 𝑢̂𝑟𝑦𝑟[𝑖𝑆 ] ≤

∑𝑚
𝑗=1 𝑣̂𝑗𝑥𝑗[𝑖𝑆 ].

Take 𝑢̃𝑟, 𝑟 = 1,… , 𝑙 and 𝑣̃𝑗 , 𝑗 = 1,… , 𝑚, which is an optimal
solution for Problem (10) that gives 𝑒(𝑇 ;𝑃 ∪ ⌈𝑆⌉),

max
∑𝑙

𝑟=1 𝑢𝑟𝑦𝑟[𝑖𝑇 ]
∑𝑚

𝑗=1 𝑣𝑗𝑥𝑗[𝑖𝑇 ]
subject to

∑𝑙
𝑟=1 𝑢𝑟𝑦𝑟[𝑖𝑅]

∑𝑚
𝑗=1 𝑣𝑗𝑥𝑗[𝑖𝑅]

≤ 1, 𝑅 ∈ 𝑃 ∪ ⌈𝑆⌉ ∪ ⌈𝑇 ⌉,

𝑢𝑟 ≥ 0, 𝑟 = 1,… , 𝑙, 𝑣𝑗 ≥ 0, 𝑗 = 1,… , 𝑚.

(10)
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a

In addition, define 𝑢̄𝑟 = 𝑢̂𝑟
𝐾 , with 𝐾 =

∑𝑙
𝑟=1 𝑢̂𝑟𝑦𝑟[𝑖𝑇 ]

∑𝑚
𝑗=1 𝑣̂𝑗𝑥𝑗[𝑖𝑇 ]

, for all

𝑟 = 1,… , 𝑙 and 𝑣̄𝑗 = 𝑣̂𝑗 , for all 𝑗 = 1,… , 𝑚. We check that
these elements are also feasible for Problem (10). It is clear
that 𝑢̄𝑟 ≥ 0, 𝑟 = 1,… , 𝑙 and 𝑣̄𝑗 ≥ 0, 𝑗 = 1,… , 𝑚.
Take 𝑅 ∈ 𝑃 . Then,
∑𝑙

𝑟=1 𝑢̄𝑟𝑦𝑟[𝑖𝑅]
∑𝑚

𝑗=1 𝑣̄𝑗𝑥𝑗[𝑖𝑅]
=

∑𝑙
𝑟=1

𝑢̂𝑟
𝐾 𝑦𝑟[𝑖𝑅]

∑𝑚
𝑗=1 𝑣̂𝑗𝑥𝑗[𝑖𝑅]

= 1
𝐾

∑𝑙
𝑟=1 𝑢̂𝑟𝑦𝑟[𝑖𝑅]

∑𝑚
𝑗=1 𝑣̂𝑗𝑥𝑗[𝑖𝑅]

≤ 1

because 𝐾 =
∑𝑙

𝑟=1 𝑢̂𝑟𝑦𝑟[𝑖𝑇 ]
∑𝑚

𝑗=1 𝑣̂𝑗𝑥𝑗[𝑖𝑇 ]
> 1 and the feasibility condition of

𝑢̂𝑟, 𝑟 = 1,… , 𝑙 and 𝑣̂𝑗 , 𝑗 = 1,… , 𝑚 for any 𝑅 ∈ 𝑃 .
Take 𝑅 = 𝑆. Then,
∑𝑙

𝑟=1 𝑢̄𝑟𝑦𝑟[𝑖𝑆 ]
∑𝑚

𝑗=1 𝑣̄𝑗𝑥𝑗[𝑖𝑆 ]
=

∑𝑙
𝑟=1

𝑢̂𝑟
𝐾 𝑦𝑟[𝑖𝑆 ]

∑𝑚
𝑗=1 𝑣̂𝑗𝑥𝑗[𝑖𝑆 ]

= 1
𝐾

∑𝑙
𝑟=1 𝑢̂𝑟𝑦𝑟[𝑖𝑆 ]

∑𝑚
𝑗=1 𝑣̂𝑗𝑥𝑗[𝑖𝑆 ]

≤ 1

because 𝐾 =
∑𝑙

𝑟=1 𝑢̂𝑟𝑦𝑟[𝑖𝑇 ]
∑𝑚

𝑗=1 𝑣̂𝑗𝑥𝑗[𝑖𝑇 ]
> 1 and the condition ∑𝑙

𝑟=1 𝑢̂𝑟𝑦𝑟[𝑖𝑆 ] ≤
∑𝑚

𝑗=1 𝑣̂𝑗𝑥𝑗[𝑖𝑆 ].
Finally, take 𝑅 = 𝑇 . Then,
∑𝑙

𝑟=1 𝑢̄𝑟𝑦𝑟[𝑖𝑇 ]
∑𝑚

𝑗=1 𝑣̄𝑗𝑥𝑗[𝑖𝑇 ]
=

∑𝑙
𝑟=1

𝑢̂𝑟
𝐾 𝑦𝑟[𝑖𝑇 ]

∑𝑚
𝑗=1 𝑣̂𝑗𝑥𝑗[𝑖𝑇 ]

= 1
𝐾

∑𝑙
𝑟=1 𝑢̂𝑟𝑦𝑟[𝑖𝑇 ]

∑𝑚
𝑗=1 𝑣̂𝑗𝑥𝑗[𝑖𝑇 ]

= 1

because 𝐾 =
∑𝑙

𝑟=1 𝑢̂𝑟𝑦𝑟[𝑖𝑇 ]
∑𝑚

𝑗=1 𝑣̂𝑗𝑥𝑗[𝑖𝑇 ]
. In addition, it implies that

∑𝑙
𝑟=1 𝑢̄𝑟𝑦𝑟[𝑖𝑇 ]

∑𝑚
𝑗=1 𝑣̄𝑗𝑥𝑗[𝑖𝑇 ]

= 1 > 𝐞(𝑇 ;𝑃 ∪ ⌈𝑆⌉) =
∑𝑙

𝑟=1 𝑢̃𝑟𝑦𝑟[𝑖𝑇 ]
∑𝑚

𝑗=1 𝑣̃𝑗𝑥𝑗[𝑖𝑇 ]
.

This fact contradicts the optimality of 𝑢̃𝑟, 𝑟 = 1,… , 𝑙 and 𝑣̃𝑗 ,
𝑗 = 1,… , 𝑚, and 𝐞(𝑇 ;𝑃 ∪ ⌈𝑆⌉).

hen, 𝐞(𝑆 ∪ 𝑇 ;𝑃 ) ≤ max
{

𝐞(𝑆;𝑃 ∪ ⌈𝑇 ⌉), 𝐞(𝑇 ;𝑃 ∪ ⌈𝑆⌉)
}

≤ 𝐞(𝑆;𝑃 ∪ ⌈𝑇 ⌉) +
𝐞(𝑇 ;𝑃 ∪ ⌈𝑆⌉), thus concluding the proof. □

Games with externalities deal with coalitions and allocations, and
they consider groups of agents willing to allocate the joint benefits
derived from their cooperation. In the remainder of this paper, we
will use allocations for games with externalities to rank DMUs. More
specifically, we will consider proposals that make use of games with
transferable utility for this purpose. Recall that a game with transferable
utility or TU game is a pair (𝑁, 𝑣), where 𝑁 is a finite set of agents and
𝑣 is a map from 2𝑁 to R that satisfies that 𝑣(∅) = 0 (cf. González-Díaz
et al., 2010). The class of TU games with a set of agents 𝑁 is denoted
by 𝐺𝑁 . Given 𝑒 ∈ 𝑃𝐺(𝑁), we can associate some intuitive TU games.
For instance, considering an optimistic perspective, we can define the
TU game (𝑁, 𝑒max) ∈ 𝐺𝑁 for every 𝑆 ⊆ 𝑁 , as

𝑒max(𝑆) = max
𝑃∈𝛱(𝑁⧵𝑆)

𝑒(𝑆;𝑃 )

From a pessimistic point of view, we can define the TU game (𝑁, 𝑒min) ∈
𝐺𝑁 . It is formally given for every 𝑆 ⊆ 𝑁 by

𝑒min(𝑆) = min
𝑃∈𝛱(𝑁⧵𝑆)

𝑒(𝑆;𝑃 ).

By their definition, 𝑒max and 𝑒min assign to each 𝑆 ⊆ 𝑁 the maximum
and the minimum value that the members of 𝑆 can obtain by their
cooperation, respectively, among all possible structures of 𝑁 ⧵ 𝑆.

Alternatively, we can consider averaging procedures. Albizuri et al.
(2005) proposed assigning to every 𝑆 ⊆ 𝑁 the TU game (𝑁, 𝑒) ∈ 𝐺𝑁

given by

̄(𝑆) = 1
|𝛱(𝑁 ⧵ 𝑆)|

∑

𝑃∈𝛱(𝑁⧵𝑆)
𝑒(𝑆;𝑃 ). (11)

Here, each coalition 𝑆 ⊆ 𝑁 obtains the expected value of the coopera-
tion of the members of 𝑆 in 𝑒, that is, the average over the whole set
f the embedded coalitions (𝑆;𝑃 ) with 𝑃 ∈ 𝛱(𝑁 ⧵ 𝑆) when they are

equally likely.
5

Finally, we mention the approach of Hu and Yang (2010), which
consider the TU game (𝑁, 𝑒) ∈ 𝐺𝑁 given by

𝑒(𝑆) = 1
|𝛱(𝑁)|

∑

𝑃∈𝛱(𝑁)
𝑒(𝑆;𝑃−𝑆 ), for each 𝑆 ⊆ 𝑁. (12)

hus, for each 𝑆 ⊆ 𝑁 , 𝑒(𝑆) is the expected worth of 𝑆 in 𝑒 over the set
f embedded coalitions induced by any partition in 𝛱(𝑁), assuming
hat all 𝑃 ∈ 𝛱(𝑁) are equally likely.

In our case, we have explicit expressions for the optimistic and the
essimistic TU games 𝐞max and 𝐞min. From Proposition 3.2, it readily
ollows for any DEA sum game 𝐞 that

max(𝑆) = 𝐞(𝑆; ⌈𝑁 ⧵ 𝑆⌉) and 𝐞min(𝑆) = 𝐞(𝑆; ⌊𝑁 ⧵ 𝑆⌋).

This implies that the maximum worth of the cooperation of 𝑆 is reached
when the outsiders act as a whole block, while the minimum is reached
when the partition of 𝑁 ⧵ 𝑆 is formed by the individual agents.

We illustrate the computation of (𝑁, 𝐞𝑚𝑎𝑥), (𝑁, 𝐞𝑚𝑖𝑛), (𝑁, 𝐞̄) and (𝑁, ̄̄𝐞)
in our setting. It also allows us to discuss some of their properties. A
more exhaustive analysis of properties of the resulting TU games could
be carried out, but this is beyond the scope of ranking DMUs.

Example 3.4. Let (𝑁 ;𝑋; 𝑌 ) be a multiagent DEA problem, 𝑁 =
{1, 2, 3, 4}. We consider the case with a single input and a single output
given by the data set of the inputs and the outputs of the DMUs
described below.

𝑋1 =
(

30
)

, 𝑋2 =
(

1
)

, 𝑋3 =
(

3
)

, and 𝑋4 =
(

11
)

.

𝑌1 =
(

17
)

, 𝑌2 =
(

27
)

, 𝑌3 =
(

22
)

, and 𝑌4 =
(

9
)

.

Thus, the associated DEA sum game 𝐞 is given by

𝐞(𝑁 ; ∅) = 1, 𝐞({1, 2, 4}; {3}) = 0.153, 𝐞({3}; {1, 2, 4}) = 1,
𝐞({1, 2, 3}; {4}) = 1, 𝐞({4}; {1, 2, 3}) = 0.464, 𝐞({1, 3, 4}; {2}) = 0.035,
𝐞({2}; {1, 3, 4}) = 1, 𝐞({2, 3, 4}; {1}) = 1, 𝐞({1}; {2, 3, 4}) = 0.0948,
({1, 4}; {2, 3}) = 0.040, 𝐞({2, 3}; {1, 4}) = 1, 𝐞({1, 2}; {3, 4}) = 0.554,
({3, 4}; {1, 2}) = 1, 𝐞({1, 3}; {2, 4}) = 0.333, 𝐞({2, 4}; {1, 3}) = 1,
({1, 4}; ⌊2, 3⌋) = 0.018, 𝐞({2}; {{1, 4}, {3}}) = 1, 𝐞({3}; {{1, 4}, {2}}) = 0.272,
({1, 2}; ⌊3, 4⌋) = 0.167, 𝐞({3}; {{1, 2}, {4}}) = 1, 𝐞({4}; {{1, 2}, {3}}) = 0.112,
({1, 3}; ⌊2, 4⌋) = 0.037, 𝐞({2}; {{1, 3}, {4}}) = 1, 𝐞({4}; {{1, 3}, {2}}) = 0.030,
({2, 4}; ⌊1, 3⌋) = 0.409, 𝐞({1}; {{2, 4}, {3}}) = 0.05, 𝐞({3}; {{2, 4}, {1}}) = 1,
({2, 3}; ⌊1, 4⌋) = 1, 𝐞({1}; {{2, 3}, {4}}) = 0.030, 𝐞({4}; {{2, 3}, {1}}) = 0.067
({3, 4}; ⌊1, 2⌋) = 0.082, 𝐞({1}; {{3, 4}, {2}}) = 0.014, 𝐞({2}; {{3, 4}, {1}}) = 1,
({1}; ⌊2, 3, 4⌋) = 0.014, 𝐞({2}; ⌊1, 3, 4⌋) = 1, 𝐞({3}; ⌊1, 2, 4⌋) = 0.272,
({4}; ⌊1, 2, 3⌋) = 0.030.

Table 1 depicts the TU games (𝑁, 𝐞̄), (𝑁, 𝐞𝑚𝑖𝑛), (𝑁, 𝐞𝑚𝑎𝑥) and (𝑁, ̄̄𝐞)
ssociated with the DEA sum game 𝐞.
Table 1
TU games (𝑁, 𝐞̄), (𝑁, 𝐞𝑚𝑖𝑛), (𝑁, 𝐞𝑚𝑎𝑥), and (𝑁, ̄̄𝐞).

𝑆 𝐞̄(𝑆) 𝐞𝑚𝑖𝑛(𝑆) 𝐞𝑚𝑎𝑥(𝑆) 𝐞(𝑆) 𝑆 𝐞̄(𝑆) 𝐞𝑚𝑖𝑛(𝑆) 𝐞𝑚𝑎𝑥(𝑆) 𝐞(𝑆)

∅ 0.000 0.000 0.000 0.000 {2, 3} 1.000 1.000 1.000 1.000
{1} 0.062 0.021 0.147 0.054 {2, 4} 0.705 0.409 1.000 0.606
{2} 1.000 1.000 1.000 1.000 {3, 4} 0.541 0.082 1.000 0.388
{3} 0.709 0.272 1.000 0.660 {1, 2, 3} 1.000 1.000 1.000 1.000
{4} 0.132 0.030 0.422 0.106 {1, 2, 4} 0.172 0.172 0.172 0.172
{1, 2} 0.417 0.194 0.641 0.343 {1, 3, 4} 0.040 0.040 0.040 0.040
{1, 3} 0.219 0.044 0.394 0.161 {2, 3, 4} 1.000 1.000 1.000 1.000
{1, 4} 0.038 0.024 0.052 0.033 𝑁 1.000 1.000 1.000 1.000

It is easy to verify that 𝐞𝑚𝑎𝑥(𝑆 ∪ 𝑇 ) ≤ 𝐞𝑚𝑎𝑥(𝑆) + 𝐞𝑚𝑎𝑥(𝑇 ) for every
𝑆, 𝑇 ⊆ 𝑁 with 𝑆 ∩ 𝑇 = ∅. However, this property does not hold for
𝐞𝑚𝑖𝑛, 𝐞̄, nor ̄̄𝐞. For instance, take 𝑆 = {1, 2} and 𝑇 = {3, 4}. ⊲

4. Ranking DMUs under externalities

In this section, we address the task of ranking DMUs in multiagent
DEA problems under the idea of cooperation described above.
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In the literature, the relative efficiency score of DMUs is frequently
used as a criterion. For this purpose, some tools taken from cooperative
game theory, such as the values or solutions for TU games, are used.
They assign a vector in R𝑁 to every TU game (𝑁, 𝑣) ∈ 𝐺𝑁 and they are
usually based on the notion of marginal contribution of an agent to those
coalitions that do not contain it. That is, fixed 𝑖 ∈ 𝑁 and (𝑁, 𝑣) ∈ 𝐺𝑁 ,
agent 𝑖’s marginal contribution to 𝑇 ⊆ 𝑁 ⧵ {𝑖} is given as follows:

𝑣(𝑇 ∪ {𝑖}) − 𝑣(𝑇 ). (13)

One of the most important values is the Shapley value (Shapley, 1953),
which is defined, for every 𝑖 ∈ 𝑁 and every TU game (𝑁, 𝑣) ∈ 𝐺𝑁 , as
follows:

𝑆ℎ𝑖(𝑁, 𝑣) =
∑

𝑇⊆𝑁⧵{𝑖}

|𝑇 |! (|𝑁| − |𝑇 | − 1)!
|𝑁|!

(𝑣(𝑇 ∪ {𝑖}) − 𝑣(𝑇 )). (14)

Under externalities, natural extensions of this value are observed. In
DEA settings, these solutions provide a measure of the ability of DMUs
to modify the relative efficiency score of merging under cooperation.

Let 𝑒 ∈ 𝑃𝐺(𝑁) be a game with externalities. In what follows, we list
the values proposed for games in partition function form that we will
use to rank DMUs. Each of them, even those defined as an allocation
that satisfy some properties, corresponds to the Shapley value of one of
the TU games described at the end of Section 3.

• First, we refer to Albizuri et al. (2005), who propose as a solution
for 𝑒 the Shapley value for the TU game (𝑁, 𝑒), that is, 𝑆ℎ(𝑁, 𝑒).

• The solution proposed by de Clippel and Serrano (2008) and
Pham Do and Norde (2007) for 𝑒 is the Shapley value for the
associated TU game (𝑁, 𝑒𝑚𝑖𝑛), that is, 𝑆ℎ(𝑁, 𝑒𝑚𝑖𝑛). It is known as
the externality-free Shapley value.

• McQuillin (2009) proposes an allocation represented by the Shap-
ley value for the TU game (𝑁, 𝑒𝑚𝑎𝑥), that is, 𝑆ℎ(𝑁, 𝑒𝑚𝑎𝑥).

• Finally, we consider the approach of Hu and Yang (2010) who
consider the Shapley value for (𝑁, 𝑒).

Below, Example 4.1 illustrates their performance on DEA sum
ames.

xample 4.1. Let (𝑁 ;𝑋; 𝑌 ) be the multiagent DEA problem, with
𝑁 = {1, 2, 3, 4} and two inputs and a single output. The associated data
set for the DMUs in 𝑁 is given as follows:

𝑋1 =
(

2
9

)

, 𝑋2 =
(

10
8

)

, 𝑋3 =
(

6
7

)

, and 𝑋4 =
(

4
5

)

;

and

𝑌1 =
(

4
)

, 𝑌2 =
(

10
)

, 𝑌3 =
(

9
)

, and 𝑌4 =
(

6
)

.

Table 2 depicts the characteristic function of the above-mentioned
TU games (𝑁, 𝐞̄), (𝑁, 𝐞𝑚𝑖𝑛), (𝑁, 𝐞𝑚𝑎𝑥) and (𝑁, ̄̄𝐞), which are associated
with the corresponding game 𝐞 with externalities.
Table 2
TU games (𝑁, 𝐞̄), (𝑁, 𝐞𝑚𝑖𝑛), (𝑁, 𝐞𝑚𝑎𝑥), and (𝑁, ̄̄𝐞).

𝑆 𝐞̄(𝑆) 𝐞𝑚𝑖𝑛(𝑆) 𝐞𝑚𝑎𝑥(𝑆) 𝐞(𝑆) 𝑆 𝐞̄(𝑆) 𝐞𝑚𝑖𝑛(𝑆) 𝐞𝑚𝑎𝑥(𝑆) 𝐞(𝑆)

∅ 0.000 0.000 0.000 0.000 {2, 3} 1.000 1.000 1.000 1.000
{1} 1.000 1.000 1.000 1.000 {2, 4} 0.979 0.957 1.000 0.972
{2} 0.989 0.972 1.000 0.987 {3, 4} 1.000 1.000 1.000 1.000
{3} 1.000 1.000 1.000 1.000 {1, 2, 3} 0.852 0.852 0.852 0.852
{4} 0.998 0.992 1.000 0.998 {1, 2, 4} 0.833 0.833 0.833 0.833
{1, 2} 0.778 0.778 0.778 0.778 {1, 3, 4} 1.000 1.000 1.000 1.000
{1, 3} 1.000 1.000 1.000 1.000 {2, 3, 4} 1.000 1.000 1.000 1.000
{1, 4} 1.000 1.000 1.000 1.000 𝑁 1.000 1.000 1.000 1.000

The row in Table 3 named ‘‘Eff.’’ includes the individual relative
fficiency score, which is given by 𝐞({𝑖}; ⌊𝑁 ⧵ {𝑖}⌋) for each 𝑖 ∈ 𝑁 , as
ell as the corresponding ranking. Below, we also include the ranking
ased on the allocations proposed in Albizuri et al. (2005), which
s denoted by (A), that proposed in de Clippel and Serrano (2008),
hich is denoted by (CS), that proposed in McQuillin (2009), which
6

Table 3
Ranking of DMUs.

Numerical results Position of DMUs

DMU 1 DMU 2 DMU 3 DMU 4 DMU 1 DMU 2 DMU 3 DMU 4

Eff. 1.000 0.972 1.000 0.992 1.5 4 1.5 3

(A) 0.208 0.201 0.301 0.290 3 4 1 2
(CS) 0.212 0.195 0.304 0.288 3 4 1 2
(MQ) 0.205 0.205 0.298 0.292 3 4 1 2
(HY) 0.209 0.200 0.301 0.290 3 4 1 2

is denoted by (MQ), and that proposed by Hu and Yang (2010), which
is denoted by (HY). In the remainder of this section, for DMUs that are
indistinguishable in a ranking (i.e., showing the same relative efficiency
score), we will assign the artificial position given by the average of their
positions. That is, positions of DMUs 1 and 3 that occupy the first two
positions in the ranking of individual efficiencies, are denoted in the
ranking by 1.5.

In this example, DMU 4 has a higher rank than DMU 1, despite
having a lower relative efficiency score than DMU 1. ⊲

All four rankings coincide in the previous example, which is not
usual. The following example, with 12 DMUS, illustrates this fact.

Example 4.2. We revisit Example 1 taken from Kritikos (2017).
The data set of the inputs and the outputs is shown in Table 4. The
individual efficiencies under the DEA method are in the second column
of Table 5.
Table 4
Input and output data in Example 1 of Kritikos (2017).

DMU Input 1 Input 2 Output 1 Output 2 Output 3 Output 4

1 17.02 5.0 42 45.3 14.2 30.1
2 16.46 4.5 39 40.1 13.0 29.8
3 11.76 6.0 26 39.6 13.8 24.5
4 10.52 4.0 22 36.0 11.3 25.0
5 9.50 3.8 21 34.2 12.0 20.4
6 4.79 5.4 10 20.1 5.0 16.5
7 6.21 6.2 14 26.5 7.0 19.7
8 11.12 6.0 25 35.9 9.0 24.7
9 3.67 8.0 4 17.4 0.1 18.1
10 8.93 7.0 16 34.3 6.5 20.6
11 17.74 7.1 43 45.6 14.0 31.1
12 14.85 6.2 27 38.7 13.8 25.4

Table 5
Ranking of DMUs.

DMU Efficiency Rank (A) Rank (CS) Rank (MQ) Rank

1 1.000 4 0.08676 5 0.09377 4 0.08323 7
2 1.000 4 0.08462 6 0.08720 6 0.08313 8
3 0.982 9 0.08453 7 0.08254 7 0.08348 5
4 1.000 4 0.08979 3 0.09656 3 0.08392 2
5 1.000 4 0.09049 2 0.10007 2 0.08379 4
6 1.000 4 0.08862 4 0.09295 5 0.08381 3
7 1.000 4 0.09183 1 0.10361 1 0.08411 1
8 0.961 10 0.08317 8 0.08028 9 0.08348 6
9 1.000 4 0.07685 11 0.06913 10 0.08267 11
10 0.954 11 0.07706 10 0.06866 11 0.08292 9
11 0.983 8 0.08165 9 0.08167 8 0.08282 10
12 0.801 12 0.06464 12 0.04357 12 0.08263 12

From a computational perspective, the solutions of Albizuri et al.
(2005), de Clippel and Serrano (2008), and McQuillin (2009), denoted
by (A), (CS) and (MQ), respectively, can be exactly obtained in a
reasonable time. Consequently, we are able to rank DMUs from the
ordering of their components, and they are all depicted in Table 5.

Below, we provide comments on the rankings. The proposals of (A)
and (CS) assign a relative efficiency score equal to 1 to the first six
positions of the DMU rankings, and the less efficient DMU (DMU 12)
occupies the last position. Under the proposal of (MQ), not all DMUs
with a relative efficiency score equal to 1 occupy the top positions (see,
for instance, the cases of DMU 3 and DMU 8 in positions 5 and 6),

although DMU 12 is again in the last position.
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Table 6
Spearman’s correlation matrix for the rankings of DMUs.

(A) (CS) (MQ)

(A) 1.00000 0.97902 0.91608
(CS) 0.97902 1.00000 0.84615
(MQ) 0.91608 0.84615 1.00000

Using the Spearman’s correlation coefficients depicted in Table 6,
e observe that the pairs of more similar rankings are (A) and (CS),

A) and (MQ), and (CS) and (MQ), respectively. ⊲

The previous example reflects that the proposal of Hu and Yang
2010) cannot be obtained exactly in a reasonable calculation time,
ven in those cases with a relatively small number of agents, such as in
xample 4.2, since the total amount of partitions in 𝛱(𝑁) is equal to
213 597 for every coalition. These drawbacks may also arise for the
ase of Albizuri et al. (2005) for coalitions of small sizes. For instance,
nly having 13 agents instead of 12 would imply that the number of
artitions to be evaluated for those coalitions of the form {{𝑖} ∶ 𝑖 ∈ 𝑁}
s equal to 4 213 597, which makes difficult to obtain the exact value
f 𝑒({𝑖}) for every 𝑖 ∈ 𝑁 . Nevertheless, we can exactly obtain this value
n Example 4.2. Table 7 shows |𝛱(𝑁 ⧵ 𝑆)|, for every 𝑆 ⊆ 𝑁 .
Table 7
Number of partitions for several coalition sizes for 12 agents.
|𝑆| |𝑁 ⧵ 𝑆| |𝛱(𝑁 ⧵ 𝑆)| |𝑆| |𝑁 ⧵ 𝑆| |𝛱(𝑁 ⧵ 𝑆)| |𝑆| |𝑁 ⧵ 𝑆| |𝛱(𝑁 ⧵ 𝑆)|

1 11 678 570 5 7 877 9 3 5
2 10 115 975 6 6 203 10 2 2
3 9 21 147 7 5 52 11 1 1
4 8 4140 8 4 15 12 0 1

5. Estimating rankings of DMUs under externalities

In this section, we address those computational problems that arise
when calculating some of the above-mentioned solutions for games
with externalities. Along with the usual problems observed for calculat-
ing the Shapley value with a large number of agents (see Castro et al.
(2009) or Fernández-García and Puerto-Albandoz (2006)), new diffi-
culties arise only in determining the characteristic functions of some
considered games, as we indicate in Section 4 for the TU games 𝑒 and
̄̄𝑒. Below, we describe two procedures based on sampling techniques
that reduce this complexity for any game with externalities 𝑒 involving
a large amount of agents.

The numerical results included in the following sections have been
computed using the statistical software R (R Core Team, 2021) on
a personal computer with an Intel(R) Core(TM) i9-9980HK, 32 GB
of memory and a single 2.40 GHz CPU processor. Specifically, the
lpSolveAPI package in R software, which is used to solve mathematical
linear programming problems, and the numbers package and partitions
package, which are used for managing with partitions, are required.

5.1. Estimating the ranking of Hu and Yang

Here, we describe a sampling algorithm for ranking DMUs according
to the Shapley value for the TU game (𝑁, 𝑒) of Hu and Yang (2010).
In particular, this proposal is mainly focused on the estimation of its
characteristic function.

Let 𝑒 be a partition function form game. Under this approach,
the worth of the cooperation of DMUs in a given coalition 𝑆 is the
expected value of the game 𝑒 with externalities on the set of partitions
of 𝑁 (see Expression (12)). Thus, with fixed 𝑆 ⊆ 𝑁 , the problem of
estimating 𝑒(𝑆) is a very common task in Statistics. For this purpose,
imple random sampling with replacement (Cochran, 2007) on the set
f partitions of 𝑁 is useful. Therefore, for a given sample of partitions,
he estimation of 𝑒(𝑆), ̂̂𝑒𝑆 , is the average of the worth of the game in
artition function form over the partitions for 𝑁 ⧵ 𝑆 induced by the
7

sampled units. Recall that, if we take 𝑃 ∈ 𝛱(𝑁), 𝑃 induces the partition
for 𝑁 ⧵ 𝑆 given by 𝑃−𝑆 = {𝑇 ⧵ 𝑆 ∶ 𝑇 ∈ 𝑃 }.

The proposed sampling procedure is described as follows.

1. The parameter under study is 𝑒(𝑆) for a fixed 𝑆 ⊆ 𝑁 .
2. The population of the sampling procedure is the set of partitions

𝛱(𝑁).
3. The characteristic under study for each sampling unit 𝑃 ∈ 𝛱(𝑁)

is the worth of coalition 𝑆 in 𝑒 when agents in 𝑁 ⧵𝑆 are joined
according to the partition induced by 𝑃 for 𝑁 ⧵ 𝑆, which is
denoted by 𝑃−𝑆 . Thus, the sampling unit is 𝑃−𝑆 .

4. The sampling procedure takes each partition 𝑃 ∈ 𝛱(𝑁) with the
same probability. The process chooses at random a partition 𝑃 𝑘

for all 𝑘 ∈ {1,… , |𝛱(𝑁)|}. Thus, with replacement, we obtain a
sample  = {𝑃1,… , 𝑃𝓁} of size 𝓁.

5. The estimation of 𝑒(𝑆) with 𝑆 ⊆ 𝑁 is the mean of 𝑒(𝑆;𝑃−𝑆 ) over
the sample of partitions 𝑃 in  . That is, ̂̂𝑒𝑆 = 1

𝓁

∑

𝑃∈ 𝑒(𝑆;𝑃−𝑆 )
for each 𝑆 ⊆ 𝑁 , with 𝓁 denoting the sample size such that
1 < 𝓁 ≤ |𝛱(𝑁)|.

The pseudocode to estimate 𝑒(𝑆) for a given 𝑆 ⊆ 𝑁 is depicted in
Procedure 5.1.

Procedure 5.1. Take 𝑒 ∈ 𝑃𝐺(𝑁). Fix 𝑆 ⊆ 𝑁 .
Set 𝓁. Do 𝑗 = 0 and ̂̂𝑒𝑆 = 0.
while 𝑗 < 𝓁 do

Do 𝑗 = 𝑗 + 1 and take 𝑃 ∈ 𝛱(𝑁) with replacement.
Do ̂̂𝑒𝑆 = ̂̂𝑒𝑆 + 𝑒(𝑆;𝑃−𝑆 ).

end while
Finally, ̂̂𝑒𝑆 =

̂̂𝑒𝑆
𝓁

.

We highlight that ̂̂𝑒𝑆 is an unbiased and consistent estimator for
𝑒(𝑆). Following Saavedra-Nieves et al. (2018), the task of establishing
a probabilistic bound of error in estimating 𝑒(𝑆), with 𝑆 ⊆ 𝑁 , can be
addressed. In a natural manner, the use of the estimation of (𝑁, 𝑒), given
by {̂̂𝑒𝑆}𝑆⊆𝑁 , in (14) provides an estimator of the 𝑖 component of the
hapley value for (𝑁, 𝑒). We refer the reader to Appendix A.1 in the
nline Resource Section for a detailed collection of statistical results

ocused on these topics.
We evaluate how this sampling proposal performs in ranking DMUs

n Example 4.2.

xample 5.2. We rank the DMUs in Example 4.2 under the approach
n Hu and Yang (2010) with sampling. The ratio between the amount
f sampled partitions and the population size, or the sampling fraction,
s denoted by 𝑓 . Here, 𝑓 is constant because the sampling population

does not change.
Table 8 depicts the Shapley value for the estimated TU game of Hu

and Yang (2010) in columns 4, 6, and 8, with 𝑓 equal to 10−4, 5 ⋅ 10−4,
nd 10−3. In practice, these values correspond to sample sizes 𝓁 (after
ounding to the upper integer) of 422, 2107, and 4214 partitions of 𝑁 .
hese amounts ensure that for each 𝑆 ⊆ 𝑁 , the bounds on the error in
stimating 𝑒(𝑆) are equal to 0.06611, 0.02959, and 0.02092, by using

the inequality (A.1.1) in Appendix A.1 in the Online Resource Section,
with 𝛼 = 0.05. In addition, for each 𝑖 ∈ 𝑁 , the error in the Shapley

value estimation (
√

Var(̂̂𝑆ℎ𝑖)) is also bounded by 0.00994, 0.00445,
and 0.00314, respectively.

The rankings obtained place those DMUs with relative efficiency
score equal to 1 in the top positions except for DMU 9, which is ranked
tenth among those DMUs with efficiency score less than 1. However,
these ranking still respect the position of the less efficient DMU, which
is the twelfth one. ⊲
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Table 8
Ranking of DMUs using the individual efficiencies and the estimated Shapley value for
the TU game of Hu and Yang (2010).

DMU Efficiency Estimated rankings

Eff. Rank 𝑓 = 10−4 Rank 𝑓 = 5 ⋅ 10−4 Rank 𝑓 = 10−3 Rank

1 1.000 4 0.093322 3 0.093292 3 0.093288 3
2 1.000 4 0.086539 6 0.086542 6 0.086577 6
3 0.982 9 0.084275 7 0.084251 7 0.084237 7
4 1.000 4 0.093236 4 0.093194 4 0.093204 4
5 1.000 4 0.095728 1 0.095675 1 0.095698 1
6 1.000 4 0.088152 5 0.088117 5 0.088133 5
7 1.000 4 0.093964 2 0.093980 2 0.093963 2
8 0.961 10 0.081901 9 0.081844 9 0.081840 9
9 1.000 4 0.075715 10 0.075829 10 0.075817 10
10 0.954 11 0.072909 11 0.073060 11 0.073085 11
11 0.983 4 0.083424 8 0.083413 8 0.083417 8
12 0.801 12 0.050835 12 0.050803 12 0.050739 12

5.2. Estimating the ranking of Albizuri et al.

Consistent with the previous section, we now analyse the problem
of ranking DMUs according to the Shapley value for (𝑁, 𝑒), i.e. the TU
game of Albizuri et al. (2005). For this purpose, we also consider the
estimation of its characteristic function.

Take 𝑒 as a partition function form game. For 𝑆 ⊆ 𝑁 , the worth of
the cooperation of DMUs in 𝑆 is the expected value of the game 𝑒 with
externalities, although it now applies over the set of partitions of 𝑁 ⧵𝑆.
Roughly speaking, the estimation of 𝑒(𝑆), 𝑒𝑆 , corresponds to the sample
mean of 𝑒(𝑆;𝑃 ), in which 𝑃 is an element of a sample of partitions in
𝛱(𝑁 ⧵ 𝑆) obtained under simple random sampling with replacement
(cf. Cochran, 2007).

The steps of our sampling proposal are as follows:

1. The parameter under study is 𝑒(𝑆) for a fixed 𝑆 ⊆ 𝑁 .
2. The population of the sampling procedure is the set of partitions

𝛱(𝑁 ⧵ 𝑆).
3. The characteristic under study for each sampling unit 𝑃 ∈ 𝛱(𝑁⧵

𝑆) is the worth of coalition 𝑆 in 𝑒, when agents in 𝑁 ⧵ 𝑆 are
joined according to 𝑃 . Thus, the sampling unit will be 𝑃 .

4. The sampling procedure takes each partition 𝑃 ∈ 𝛱(𝑁 ⧵𝑆) with
the same probability. A partition 𝑃 𝑘 is chosen at random for all
𝑘 ∈ {1,… , |𝛱(𝑁 ⧵ 𝑆)|}. Thus, we obtain with replacement the
sample  = {𝑃1,… , 𝑃𝓁𝑆 }, with size 𝓁𝑆 .

5. The estimation of 𝑒(𝑆), with 𝑆 ⊆ 𝑁 , corresponds to the mean of
𝑒(𝑆;𝑃 ) over the sample  . That is, 𝑒𝑆 = 1

𝓁𝑆

∑

𝑃∈ 𝑒(𝑆;𝑃 ) for
each 𝑆 ⊆ 𝑁 , being 𝓁𝑆 the sample size with 1 < 𝓁𝑠 ≤ |𝛱(𝑁 ⧵ 𝑆)|.

Procedure 5.3 shows the pseudocode for estimating 𝑒(𝑆) for a fixed
𝑆 ⊆ 𝑁 .

Procedure 5.3. Take 𝑒 ∈ 𝑃𝐺(𝑁). Fix 𝑆 ⊆ 𝑁 .
Set 𝓁𝑆 . Do 𝑗 = 0 and 𝑒𝑆 = 0.
while 𝑗 < 𝓁𝑆 do

Do 𝑗 = 𝑗 + 1 and take 𝑃 ∈ 𝛱(𝑁 ⧵ 𝑆) with replacement.
Do 𝑒𝑆 = 𝑒𝑆 + 𝑒(𝑆;𝑃 ).

end while
Finally, 𝑒𝑆 = 𝑒𝑆

𝓁𝑆
.

For a certain coalition 𝑆 ⊆ 𝑁 , the estimator 𝑒𝑆 is also unbiased
and consistent. Under this perspective, for every 𝑆 ⊆ 𝑁 , the task of
bounding the error in estimating 𝑒(𝑆) can be also addressed. Now,
sample sizes need to be different per coalition to ensure an equitable
computational effort in coalitions because the number of involved
partitions changes with the cardinal of coalitions, unlike the case of Hu
and Yang (2010). An estimator of the Shapley value for the TU game
(𝑁, 𝑒) of Albizuri et al. (2005) is given for every 𝑖 ∈ 𝑁 by the Shapley
alue for the estimation of (𝑁, 𝑒), which is given by the collection
8

{𝑒𝑆}𝑆⊆𝑁 . Appendix A.2 in the Online Resource Section formally details
ll the evidence supporting these conclusions.

Finally, we estimate the rankings of DMUs in Example 4.2 using this
pproach.

xample 5.4. We reconsider Example 4.2 under the approach of Al-
izuri et al. (2005) with sampling. We take sampling fraction 𝑓𝑆 = 0.1
or each 𝑆 ⊆ 𝑁 such that 1 ≤ |𝑆| ≤ 5. Table 9 depicts the theoretical
ounds of the error in estimating 𝑒(𝑆), with 𝛼 = 0.05 (see Inequality

A.2.1 in the Online Resource Section).
Table 9
Theoretical errors (𝜀) for estimating (𝑁, 𝑒).
|𝑆| 1 2 3 4 5

Th. error 5.214 ⋅ 10−3 1.261 ⋅ 10−2 2.953 ⋅ 10−2 6.675 ⋅ 10−2 1.448 ⋅ 10−1

For each 𝑆 ⊆ 𝑁 , with |𝑆| > 5, we are completely exhaustive in
evaluating the embedded coalitions (𝑆;𝑃 ), with 𝑃 ∈ 𝛱(𝑁 ⧵ 𝑆) (see
Table 7).
Table 10
Ranking of DMUs using the individual efficiencies, the exact Shapley value and its
estimation for the TU game of Albizuri et al. (2005).

DMU Efficiency Albizuri et al. Estimated ranking

Eff. Rank (A) Rank 𝑓𝑆 = 10−1 Rank Abs. error

1 1.000 4 0.08676 5 0.09067 4 0.00391
2 1.000 4 0.08462 6 0.08617 6 0.00155
3 0.982 9 0.08453 7 0.08513 7 0.00060
4 1.000 4 0.08979 3 0.09160 2 0.00181
5 1.000 4 0.09049 2 0.09268 1 0.00219
6 1.000 4 0.08862 4 0.08759 5 0.00103
7 1.000 4 0.09183 1 0.09131 3 0.00052
8 0.961 10 0.08317 8 0.08275 9 0.00042
9 1.000 4 0.07685 11 0.07801 10 0.00116
10 0.954 11 0.07706 10 0.07563 11 0.00143
11 0.983 4 0.08165 9 0.08314 8 0.00149
12 0.801 12 0.06464 12 0.05532 12 0.00932

Table 10 shows the exact Shapley value as well as its estimation.
The average absolute error of the estimations is equal to 0.00212,
clearly less than

√

Var(𝑆ℎ𝑖) which in this particular example can be
bounded by 0.01044 (see the Online Resource Section for details).
The positions given by the estimations (column 7) vary by at most
one or two positions with respect to the exact ranking (column 3).
The Spearman’s rank correlation coefficient between the exact and the
estimated ranking is 0.95804. ⊲

6. An application: the hotel industry in Spain

In this section, we apply the proposed ranking methodology to anal-
yse the Spanish hotel industry. Spain was one of the world’s favourite
touristic destinations in 2019, with 83.7 million annual travellers, of
which 4.3 million were international travellers. These results have
boosted the Spanish economy in recent decades, and it has the second
highest income from tourism (approximately 12% of its gross domestic
product).

The guidelines of the United Nations World Tourism Organization
(UNWTO, https://www.unwto.org/) seek a more efficient and sustain-
able form of tourism. Among other policies, joining resources from
different touristic areas may be considered for the development of a
common network that minimizes the impacts of economic fluctuations
and favours the arrival of new visitors. In this sense, directly aggregat-
ing the existing resources for a set of tourism areas is naturally assumed
to have the purpose of increasing the competitiveness and efficiency as
a single joint destination relative to other destinations in the global
tourism market.

Table 11 depicts a measure of the annual capabilities of the hotel
industry in Spain per region in 2019. This dataset refers to the an-
nual monthly average number of hotels (not including camping, rural
tourism accommodations or hostels), available bed places, volume of

employees, total number of hotel guests, overnight stays and estimated

https://www.unwto.org/
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Table 11
Average of monthly indicators of the Spanish hotel industry in 2019. Source: Instituto Nacional de Estadística, INE, https://www.ine.es/.

Region Hotels Bed places Employees Hotel guests Overnight stays Occupied bed places

Andalucía 2455.000 259 275.333 36 287.250 1 653 402.167 4 576 537.92 146 765.583
Aragón 766.583 37 562.333 3638.750 247 598.833 480 469.00 15 559.583
Principado de Asturias 547.833 24 187.417 2753.417 148 125.000 311 687.17 10 095.417
Illes Balears 773.667 202 184.750 33 402.917 879 083.000 4 840 793.17 152 446.583
Canarias 540.667 249 976.167 47 752.417 814 067.250 5 604 536.50 180 138.167
Cantabria 325.750 15 942.250 2157.083 110 174.583 246 587.50 7893.833
Castilla y León 1269.833 58 019.333 6710.500 425 852.250 710 568.25 23 119.083
Castilla-La Mancha 728.667 31 638.500 2818.250 189 637.500 319 173.25 10 395.667
Cataluña 2302.667 251 134.000 34 896.000 1 727 974.917 4 854 300.92 153 449.667
Comunitat Valenciana 1028.750 128 020.750 16 301.167 777 374.167 2 487 222.00 77 899.167
Extremadura 370.000 18 523.667 2350.417 122 368.250 209 967.83 6841.667
Galicia 1416.667 59 754.333 6920.917 372 374.750 751 117.92 24 260.083
Comunidad de Madrid 1170.500 114 306.500 14 758.000 1 052 319.083 2 127 934.25 69 282.500
Región de Murcia 161.000 17 745.417 2184.333 113 575.417 273 159.33 8798.833
Com. Foral de Navara 271.917 11 899.500 1492.000 89 055.083 167 078.75 5383.333
País Vasco 554.500 29 519.583 4161.500 266 280.250 513 775.25 16 609.500
La Rioja 147.500 6210.917 785.250 47 858.333 83 548.83 2718.167
Ceuta 12.667 773.500 124.667 6371.083 14 058.17 459.083
Melilla 10.000 838.000 152.000 5604.833 11 668.33 383.167
occupied bed places in 2019 for the hotel industry in the seventeen
autonomous regions and two autonomous cities within the territory of
Spain.

Thus, the elements of the associated DEA problem are formally
defined as follows. From Table 11, the set of involved agents is given
by the 17 regions and the two autonomous cities of Spain, that is,
𝑁 = {1,… , 19}. The inputs are given by the number of hotels, occu-
pied bed places and employees of the hotel industry. These quantities
measure the hotel industry’s potential in Spain. The outputs, as result
of managing the existing resources, are the average of the number
of hotel guests, of the overnight stays and of the occupied accom-
modations. Each region manages administrative hotel competencies,
such as business licences, and seeks to promote new visitor arrivals
through active policies in this field. Hence, a natural question refers
to how efficient each of the regions is in comparison to the others. The
individual efficiencies of the autonomous regions and cities under the
DEA perspective are depicted in Table 12. Recall that those autonomous
regions that are indistinguishable with the same relative efficiency
score will occupy the artificial position given by the average position.
The case of Cataluña is noteworthy because although it has the largest
average amount of hotel guests, it is not efficient and occupies position
7 in the ranking of individual efficiencies.
Table 12
Individual efficiencies under a DEA approach.

Region Efficiency Rank Region Efficiency Rank

Andalucía 0.86858 11 Extremadura 0.73014 19
Aragón 0.95428 6 Galicia 0.75457 17
Principado de Asturias 0.78051 16 Comunidad de Madrid 1.00000 2.5
Illes Balears 1.00000 2.5 Región de Murcia 0.85143 13
Canarias 1.00000 2.5 Com. Foral de Navarra 0.83709 14
Cantabria 0.80268 15 País Vasco 0.97983 5
Castilla y León 0.88999 10 La Rioja 0.85473 12
Castilla - La Mancha 0.94368 9 Ceuta 0.95249 8
Cataluña 0.95315 7 Melilla 0.74557 18
Comunitat Valenciana 1.00000 2.5

Obviously, the leading indicators in Table 11 were drastically re-
uced after March 2020, although they still realistically describe the
apabilities of the Spanish hotel sector. As mentioned, a long-term solu-
ion for the regions may be to work jointly to increase competitiveness
nd efficiency in a declining hotel market. Criteria such as geographical
roximity or similar measures for promoting their destinations justify
merger of Spanish regions to act more efficiently in the global hotel
arket. The union of regions naturally implies the availability of all

xisting resources for the whole merger. The relative efficiency score of
uch a merger does not depend exclusively on its members because the
rganizational structure of the agents outside the group also influences
his magnitude. Based on its ability to increase the overall efficiency
9

score in the event of a merger, we rank the 17 autonomous regions
and the 2 autonomous cities of Spain using DEA sum games.

Regarding the sampling approaches, we have used the sampling
fractions in Table 13 for those coalitions 𝑆 ⊆ 𝑁 such that |𝑆| ≤ 11
under the approach of Albizuri et al.. These values ensure the extraction
of more than 950 partitions for each coalition and the theoretical errors
that were obtained using Inequality (A.2.1) in the Online Resource
Section. Otherwise, we are exhaustive in the population and consider
the overall set of partitions as a sample.
Table 13
Sampling fractions, sample sizes and theoretical errors per coalition for estimating
(𝑁, 𝑒).
|𝑆| 1 2 3 4 5 6

𝑓𝑆 1.5 ⋅ 10−9 1.5 ⋅ 10−8 10−7 10−6 5 ⋅ 10−6 4 ⋅ 10−5

𝓁𝑆 1024 1243 1049 1383 955 1106
𝜀 0.04244 0.03852 0.04193 0.03652 0.04395 0.04084

|𝑆| 7 8 9 10 11

𝑓𝑆 2.5 ⋅ 10−4 1.5 ⋅ 10−3 10−2 5 ⋅ 10−2 0.250
𝓁𝑆 1054 1018 1160 1058 1035
𝜀 0.04183 0.04257 0.03988 0.04175 0.04222

Under the approach of Hu and Yang, we use 𝑓 = 10−10 for each
𝑆 ⊆ 𝑁 , which results in a sample size of 584 partitions per coalition.
Inequality (A.1.1) in the Online Resource Section ensures a theoretical
error in estimating ̄̄𝑒 equal to 𝜀 = 0.0562 for this sample size when
𝛼 = 0.05.

Columns 3 and 5 in Table 14 depicts the rankings based on the
Shapley value of the TU games of de Clippel and Serrano (2008) (CS)
and McQuillin (2009) (MQ), and columns 7 and 9 show the rankings
based on the estimated TU games of Albizuri et al. (2005) (A) and of Hu
and Yang (2010) (HY), respectively.

Based on the results, we draw some conclusions about the influence
of the regions involved on the overall efficiency score in the case
of a merger. Illes Balears occupies the first position under the four
considered approaches. Madrid is always in second position in the
rankings, and the Shapley value for the TU games of (MQ), (A), and
(HY) assign the fourth largest component to Comunitat Valenciana.
Under (CS), this region moves up to third. Canarias falls to sixth
position under the approaches of (CS), of (A), and of (HY), whereas
it is last in the ranking obtained under (MQ). Cataluña usually ranks
third except for (CS), where it moves down to fourth place. País Vasco
is in the fifth position except under the approach of (MQ), which
assigns it sixth place. Ceuta occupies positions 8 and 5 under (CS) and
(MQ), respectively, but position 7 under (A) and (HY). Melilla occupies
the fifteenth position under (CS) and (HY), the seventh under (MQ)
and the fourteenth under (A). Andalucía ranks eleventh under (MQ),
fourteenth under (CS) and (HY), and fifteenth under (A). The same

https://www.ine.es/
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Table 14
Rankings under the approaches of de Clippel and Serrano (CS) and McQuillin (MQ), and of Albizuri et al. (A) and
Hu and Yang (HY) with sampling.

Region Exact rankings Estimated rankings

(CS) Rank (MQ) Rank (A) Rank (HY) Rank

Andalucía 0.04017 14 0.05232 11 0.04237 15 0.04133 14
Aragón 0.05117 7 0.05181 15 0.05287 8 0.05202 8
Principado de Asturias 0.03417 17 0.05194 14 0.03704 17 0.03606 17
Illes Balears 0.10943 1 0.05596 1 0.09270 1 0.09902 1
Canarias 0.05665 6 0.05031 19 0.05545 6 0.05620 6
Cantabria 0.03790 16 0.05223 12 0.04122 16 0.03985 16
Castilla y León 0.04094 13 0.05131 17 0.04371 13 0.04266 13
Castilla - La Mancha 0.04737 9 0.05156 16 0.04882 9 0.04791 9
Cataluña 0.07229 4 0.05518 3 0.07094 3 0.07228 3
Comunitat Valenciana 0.07726 3 0.05389 4 0.07076 4 0.07227 4
Extremadura 0.03001 18 0.05205 13 0.03341 18 0.03225 18
Galicia 0.02533 19 0.05094 18 0.02817 19 0.02707 19
Comunidad de Madrid 0.10352 2 0.05537 2 0.08920 2 0.09413 2
Región de Murcia 0.04227 11 0.05243 9 0.04697 11 0.04587 11
Com. Foral de Navarra 0.04212 12 0.05234 10 0.04543 12 0.04426 12
País Vasco 0.05668 5 0.05262 6 0.05802 5 0.05753 5
La Rioja 0.04391 10 0.05245 8 0.04718 10 0.04607 10
Ceuta 0.05090 8 0.05263 5 0.05306 7 0.05214 7
Melilla 0.03793 15 0.05261 7 0.04271 14 0.04109 15
I

scheme is repeated in Murcia, Navarra and La Rioja. Murcia ranks ninth
under (MQ) and eleventh under (CS), (A) or (HY). Navarra occupies
position 10 under (MQ) and falls to position 12 under the remaining
approaches. Moreover, La Rioja occupies position 8 under (MQ) and
position 10 under (CS), (A) and (HY). Aragón occupies position 7 under
(CS), position 8 under (A) and (HY), and position 15 under (MQ).
Asturias occupies position 14 under (MQ) and position 17 under (CS),
(A), and (HY). Cantabria, Castilla 𝑦 León and Castilla - La Mancha rank
sixteenth, thirteen and ninth for all approaches, respectively, except
for the (MQ) approach, under which they move to positions 12, 17,
and 16, respectively. Finally, we consider the cases of Extremadura and
Galicia, which occupy positions 18 and 19 under (CS), (A), and (HY),
respectively, and rise to positions 13 and 18 under (MQ), respectively.
Broadly speaking, the ranking based on (CS) and those obtained from
the Shapley value estimations for the TU games of (A) and (HY) are
quite similar. The biggest differences among the rankings occur under
the (MQ) approach. These conclusions coincide with those derived from
the Spearman’s rank correlation matrix in Table 15.
Table 15
Spearman’s correlation matrix for the rankings of the hotel industry in Spain.

(CS) (MQ) (A) (HY)

(CS) 1.00000 0.60877 0.99474 0.99649
(MQ) 0.60877 1.00000 0.63509 0.62807
(A) 0.99474 0.63509 1.00000 0.99825
(HY) 0.99649 0.62807 0.99825 1.00000

7. Concluding remarks

The data envelopment analysis (DEA) method has received con-
siderable research attention in recent decades due to its multiple ap-
plications. A wide variety of papers has focused on ranking DMUs
according to their relative efficiency scores by distinguishing efficient
DMUs from nonefficient DMUs. In this work, we have analysed the
impact of the direct aggregation of the inputs and the outputs of
DMUs on the overall efficiency score in the event of a merger. In this
framework, this worth can be influenced by an organization of agents
outside of the coalition because all DMUs are considered regardless of
the value of their individual efficiencies. Thus, partition function form
games (Thrall & Lucas, 1963) are considered to model these situations.

The theoretical properties satisfied by the new classes of games are
formally studied. We use some values defined for games in partition
function form to rank DMUs. Specifically, we consider the proposals
of Albizuri et al. (2005), de Clippel and Serrano (2008), Hu and Yang
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(2010), and McQuillin (2009), which are based on the Shapley value of
specific TU games. Due to the difficulties in exactly determining some
of these values, we propose two sampling proposals as an alternative in
these challenging situations. As an application, we use these proposed
methods in the analysis of the hotel sector in Spain in 2019. In accor-
dance with the country’s territorial organization, cooperation among
Spanish regions aims to improve of the overall efficiency score.

As mentioned, our proposal is formulated in terms of the output-
oriented DEA model with constant returns to scale. Further research
should address a comparative study that includes the performance of
alternative DMU ranking methodologies, such as the ones considered
in Labijak-Kowalska and Kadzinski (2021), and several DEA models,
such as those with variable return to scale. In addition, the consid-
eration of alternative values in the context of partition function form
games may be of interest for the task of ranking DMUs. From a compu-
tational perspective, the use of alternative sampling methodologies for
this purpose can be addressed.
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Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.eswa.2022.116571. To facilitate the read-
ability of the paper, the statistical results in Section 5 are reported in
the Online Resource Section provided with this paper.
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