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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• The modified ADM1 improved the pre-
dicted methane and volatile fatty acids 
profiles. 

• The modified ADM1 enhanced free 
ammonia estimation and inhibition 
modelling. 

• The predominant metabolic pathways 
were adequately predicted. 

• kLa and kdis were relevant parameters 
for accurate food waste digestion 
modelling. 

• Model results showed that granular 
activated carbon enhanced hydrogen 
uptake.  
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A B S T R A C T   

Current mechanistic anaerobic digestion (AD) models cannot accurately represent the underlying processes 
occurring during food waste (FW) AD. This work presents an update of the Anaerobic Digestion Model no. 1 
(ADM1) to provide accurate estimations of free ammonia concentrations and related inhibition thresholds, and 
model syntrophic acetate oxidation as acetate-consuming pathway. A modified Davies equation predicted NH3 
concentrations and pH more accurately, and better estimated associated inhibitory limits. Sensitivity analysis 
results showed the importance of accurate disintegration kinetics and volumetric mass transfer coefficients, as 
well as volatile fatty acids (VFAs) and hydrogen uptake rates. In contrast to the default ADM1, the modified 
ADM1 could represent methane production and VFA profiles simultaneously (particularly relevant for propionate 
uptake). The modified ADM1 was also able to predict the predominant acetate-consuming and methane- 
producing microbial clades. Modelling results using data from reactors dosed with granular activated carbon 
showed that this additive improves hydrogen uptake.   

1. Introduction 

Anaerobic digestion (AD) is a key technology for the sustainable 

management of several organic waste streams, including sewage sludge, 
food waste (FW), animal manure, agri-industrial waste, and industrial 
wastewater (Appels et al., 2008). AD is a multistage biochemical process 
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that offers a triple role: (i) waste stabilization, (ii) production of 
renewable energy in the form of biogas, and (iii) nutrient recovery by 
digestate application. These benefits, together with new regulations 
penalizing cheaper alternatives (i.e. landfilling and incineration; Euro-
pean Directive 2018/850) and imposing circular economy action plans 
(European Commission Communication COM(2020)98), ensure a bright 
future for this biotechnology. 

A clear example of the success of AD is the rapidly expanding 
treatment of concentrated wastes, such as FW or animal manure (Banks 
et al., 2008). The case of FW is particularly relevant, as its production is 
rapidly increasing due to population/economic growth, and policies 
imposing separate source selection and FW valorisation are being 
implemented (European Directive 2008/98/CE). These factors call for 
developing sustainable processes that can provide efficient FW valor-
isation, with AD standing among the most suitable options (Capson-Tojo 
et al., 2016). 

AD mathematical modelling is well-stablished, and has largely been 
used for design purposes, operational analysis, technology development 
and process control (Regmi et al., 2019). The IWA Anaerobic Digestion 
Model no. 1 (ADM1), the most used AD model, is a mechanistic model 
based on the underlying biological and physicochemical processes 
(Batstone et al., 2002; Weinrich and Nelles, 2021). The ADM1 was pri-
marily developed to model sewage sludge AD in wastewater treatment 
plants. These digesters are characterised by relatively diluted solid 
concentrations (20–70 g TS⋅L-1; TS being total solids) and by relatively 
low risks of process inhibition and acidification (Appels et al., 2008; 
Astals et al., 2013). Accordingly, the default ADM1 is not able to accu-
rately predict the performance of digesters treating concentrated 
organic streams or leading to high concentrations of inhibitors, such as 
ammonia. To overcome these limitations, several ADM1 modifications 
have been carried out in the last years. Relevant examples are the recent 
modifications of the ADM1 to consider variable mass/volume contents 
during high-solids AD (Pastor-Poquet et al., 2018), to account for non- 
ideal aqueous-phase chemistry (Patón et al., 2018; Solon et al., 2015), 
to include the syntrophic acetate oxidation (SAO) pathway (Montecchio 
et al., 2017; Rivera-Salvador et al., 2014), or to consider trace elements 
(TEs) complexation and precipitation (Flores-Alsina et al., 2016; Frunzo 
et al., 2019; Maharaj et al., 2019). As more research is carried out in AD, 
the knowledge on the underlying mechanisms governing the process 
increases, allowing to improve and modify models to accurately predict 
a broader spectrum of substrates, configurations, and operational 
conditions. 

A challenge in FW AD is free ammonia nitrogen (FAN) inhibition, 
caused by its high biodegradable protein concentrations and the low free 
water availability. High FAN concentrations cause inhibition of aceto-
clastic methanogenesis (AM; the predominant methane-producing 
pathway in digesters fed with sewage sludge). At FAN concentrations 
over 200–400 mg FAN⋅L-1, hydrogenotrophic methanogenesis (HM) 
becomes predominant (Banks et al., 2012), coupled with SAO (Jiang 
et al., 2017). This two-step methane production process relies on acetate 
oxidation to CO2 and H2 by SAO bacteria, followed by their conversion 
into methane by hydrogenotrophic archaea. This process is only ther-
modynamically favourable at low H2 partial pressures (10–80 Pa), and 
constant H2 removal by hydrogenotrophic archaea is crucial for making 
SAO energetically feasible (Rivera-Salvador et al., 2014). SAO has been 
already included into the ADM1, improving the model accuracy in di-
gesters treating poultry litter and pretreated waste sludge (Montecchio 
et al., 2017; Rivera-Salvador et al., 2014). 

AD processes dominated by SAO and HM are known to be prone to 
propionic acid accumulation, a major inhibitor in AD reactors (Banks 
et al., 2012). Syntrophic propionate oxidation (SPO) also requires low 
H2 partial pressures to be thermodynamically favourable, due to 
product-induced inhibition at high H2 levels. For the same reason, SPO 
also depends on the concentrations of acetic acid (Batstone et al., 2002; 
Capson-Tojo et al., 2017). Therefore, AD instabilities leading to in-
creases in the H2 partial pressures can easily result in accumulation of 

acetic acid, which will further favour the accumulation of propionic 
acid. Because of its relevance, SPO is generally considered in mecha-
nistic AD models (Batstone et al., 2002). 

The high ionic strength in FW digesters causes another issue when 
considering traditional AD models, since the ion-pairing behaviour 
cannot be simplified to that of an ideal solution. Studies focusing on 
modelling ion speciation in concentrated AD systems have proved that 
assuming an ideal equilibrium can lead to overestimate FAN concen-
trations by up to 30% (Capson-Tojo et al., 2020; Hafner and Bisogni, 
2009; Patón et al., 2018; Solon et al., 2015). Activity corrections have 
been applied to account for the effect of ionic strength on ion speciation, 
generally using the Davies equation for FAN quantification (Capson- 
Tojo et al., 2020; Patón et al., 2018; Solon et al., 2015). Despite its 
importance, this practice has been frequently omitted in the literature, 
even in publications devoted to FAN inhibition (Capson-Tojo et al., 
2020; Rajagopal et al., 2013). FW digesters have the inherent risk of FAN 
inhibition and therefore a precise quantification of FAN is crucial to 
obtain coherent inhibitory limits that can be used to better predict 
process performance and inhibitory events (De Vrieze et al., 2015). The 
ADM1 does not include the SAO pathway nor the effect of the ionic 
strength on ion speciation. This limits its applicability for FW AD, 
particularly in dry systems. These limitations are particularly relevant as 
full-scale dry digesters (treating undiluted substrates with TS contents 
over 15%) are becoming more common worldwide (Karthikeyan and 
Visvanathan, 2013; Motte et al., 2013). 

Recent efforts on FW AD modelling have improved the ADM1 per-
formance (Montecchio et al., 2019; Poggio et al., 2016; Rathnasiri, 
2016). However, to the best of our knowledge, no previous publication 
on FW AD has assessed the impact of including SAO and media ionic 
strength on the ADM1 performance. Zhao et al. (2019) modified the 
ADM1 to account for FW composition, and calibrated relevant param-
eters after a sensitivity analysis. They concluded that hydrolysis, disin-
tegration, and acetate uptake were the most influential processes on 
methane production. Zhao et al. (2019) did not assess the importance of 
FAN inhibition. Poggio et al. (2016) proposed a substrate characterisa-
tion methodology based on substrate fractionation to enhance the ADM1 
performance. Hydrolysis was also identified as a relevant kinetic pro-
cess, and two particulate fractions were needed to accurately model FW 
AD (i.e. a readily and a slowly particulate biodegradable fraction). 
Poggio et al. (2016) concluded that their approach led to good pre-
dictions for methane yields and solid destruction, being less accurate for 
the prediction of methane flow rates, pH and VFA profiles. Rathnasiri 
(2016) applied the ADM1 after FW dilution with water, and Montecchio 
et al. (2019) for FW co-digestion with sewage sludge, a co-substrate with 
lower N concentration and higher water content. Both approaches 
reduced the impact of TAN concentration on the digester performance, 
which eased fitting the experimental results with the default ADM1. 
Indeed, Montecchio et al. (2019) stated that the ADM1 was only 
adequate for AD at high bacterial and methanogenic activities (achieved 
when co-digesting FW and sludge). 

The main goal of this study was to design a modified ADM1 able to 
accurately simulate FW AD. The ADM1 was modified to consider: (i) 
SAO as acetate-consuming pathway, (ii) FAN estimation using the 
Davies equation (to account for non-ideal behaviour), and (iii) meth-
anogenic inhibition due to FAN using a threshold inhibition function 
(Astals et al., 2018). The modified and default ADM1s were compared, 
considering their ability to predict both the AD performances and the 
predominant microbial communities. The influence of AD additives (e.g. 
granular activated carbon (GAC)) on the resulting model parameters 
was also assessed. 

2. Materials and methods 

2.1. Inoculum source and substrate characteristics 

The inoculum was collected from a territorial-industrial plant in the 
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South of France treating a mixture of different organic streams at high 
total ammonia nitrogen (TAN) concentrations (7.3 ± 0.5 g N⋅L-1). FW 
was used as representative concentrated substrate. The FW was collected 
from different producers from the region of the Grand Narbonne 
(France). A proportional mixture (wet weight) of the different FWs was 
used as substrate. The characteristics of the FW and the inoculum, 
shown in Table 1, correspond to the average from two different FW 
sampling campaigns and to triplicate measurements for the inoculum. 

2.2. Batch anaerobic digestion 

Results from different sets of sequential batch digesters (with a 
working volume of 430 ± 2 mL) treating FW were used as input data to 
calibrate the default and the modified ADM1s (Capson-Tojo et al., 
2018a). Data from the 2nd feeding of the sequential batch reactors was 
used to ensure proper inoculum adaptation and reactor operation. The 
digesters (in triplicate) were started with 60 g of FW as substrate (raw) at 
a substrate to inoculum ratio of 1 g VS⋅g VS-1 (with resulting FW con-
centrations of around 30 g VS FW⋅L-1; VS being volatile solids). The 
reactors were incubated at 37 ± 0.2 ◦C. The incubation system was an 
Automated Methane Potential Testing System (AMPTSII) (Bioprocess 
Control, Sweden) consisting of 15 parallel reactors with a total volume 
of 500 mL (of which 12 were used). To determine the methane flow rate, 
the headspace of each rector was connected to a carbon dioxide trap 
(NaOH 5% solution) and then to a gas flow meter. The reactors were 
automatically stirred for 1 min every 10 min at 40 rpm. Before starting 
the incubation, the headspace was flushed with pure N2 to ensure 
anaerobic conditions. To account for endogenous respiration, a blank 
reactor containing only inoculum was also run (in triplicate). The 
methane production from the blank was subtracted from the biogas 
produced by the reactors fed with FW. The batches were stopped after 
34 days, once the biogas production stopped in all reactors, and the total 
volatile fatty acids (VFAs) concentration was assumed to be negligible. 

To assess the applicability of the proposed model modifications, data 
from reactors working under different conditions were used: (i) control 
conditions (solely fed with FW), and (ii) supplemented with GAC (dosed 
at 10 g⋅L-1). A detailed explanation of the experimental design and the 
sampling procedure can be found in Capson-Tojo et al. (2018a). 

2.3. Analytical methods 

2.3.1. Physicochemical characterization of the FW 
TS and VS contents were measured according to the standard 

methods of the American Public Health Association (APHA, 2017). 
Carbohydrate contents were determined using the Dubois method 
(Dubois et al., 1956), and lipid contents via accelerated solvent extrac-
tion using an ASE®200, DIONEX (California, United States of America) 
coupled to a MULTIVAPOR P-12, BUCHI (Aquon, Netherlands) with 
heptane as solvent (100 bar, 105 ◦C, 5 cycles of 10 min static and 100 s 

purge) (APHA, 2017). Total Kjeldahl Nitrogen (TKN) contents were 
determined with an AutoKjehdahl Unit K-370, BUCHI, and the protein 
contents were estimated from TKN values using a factor of 6.25 g 
protein⋅g organic N− 1 (Galí et al., 2009). The pH was measured using a 
WTW (London, United Kingdom) pHmeter series inoLab pH720. The FW 
biochemical methane potential (BMP) was determined according to 
Motte et al. (2014), following Angelidaki et al. (2009). The chemical 
oxygen demand (COD) content of the FW was estimated from the con-
tents in carbohydrates (1.19 g COD⋅g− 1), proteins (1.42 g COD⋅g− 1) and 
lipids (2.90 g COD⋅g− 1), assuming a 10% of inert COD (based on Bat-
stone et al., (2002), and from the FW biodegradability estimated from 
the BMPs, of 92%). 

2.3.2. Analysis of metabolites, final products, and microbial communities 
A plastic tube connected to the cover of each AMPTSII reactor 

enabled digestate sampling without modifying the composition of the 
gas in the headspace. Samples (5–10 mL) were taken approximately 
every 2 days, with a total of 15 samples per reactor taken during the 
duration of the experiments. The concentrations of volatile fatty acids 
(VFAs) and ionic species (i.e. TAN, PO4

3-, Na+, or K+) in the digestates 
were analysed by gas and ion chromatography, as described in Motte 
et al. (2013). The product yields were corrected to account for the 
digestate removed, by accounting for the mass of substrate removed in 
every sampling. 

The methane flow rates were quantified using CO2 traps and gas flow 
meters connected to the headspace of the reactors. The microbial com-
munities at the beginning and the end of the tests were analysed via 16S 
rRNA sequencing (MiSeq), as described in Moscoviz et al. (2017). 

2.4. ADM1 modifications 

2.4.1. Syntrophic acetate oxidation 
SAO was included into the ADM1 following a similar approach to 

that presented in Rivera-Salvador et al. (2014). Stoichiometry was set 
according to Equation (1), and Monod kinetics were applied for SAO. As 
in Rivera-Salvador et al. (2014), hydrogen inhibition of acetate uptake 
by SAO was considered using a non-competitive inhibition function. 

CH3COO− + 4H2O→2HCO−
3 +H+ + 4H2(g)ΔG

′ ◦
= + 104 kJ⋅mol− 1 (1)  

2.4.2. FAN quantification using a modified Davies equation 
The FAN concentrations were calculated using the modified Davies 

equation proposed in Capson-Tojo et al. (2020). This approach considers 
the pH, temperature and ionic strength of the media, introducing an 
activity coefficient (f) as correction factor into the ideal equilibrium 
equation, resulting in Equation (2) (Stumm and Morgan, 1996). The set 
of expressions used is as follows: 

FAN =
KaÂ⋅f Â⋅TAN

KaÂ⋅f + 10− pH
(2)  

f = 10

(

− AÂ⋅z2
i Â⋅

((

I̅
√

1+ I̅
√

)

− λÂ⋅I

))

(3)  

A = 1.82Â⋅106Â⋅(εÂ⋅T)−
3
2 (4)  

I =
1
2
∑n

i=1
CiÂ⋅z2

i (5)  

where Ka is the acid-base equilibrium constant, I is the ionic strength 
(M), λ is an empirically determined constant (0.1276 according to 
Capson-Tojo et al. (2020)), ε is the dielectric constant of water at the 
working temperature (74.828 and 68.345 at 35 and 55 ◦C, respectively), 
Ci is the concentration of the species i (M), T is the temperature, and zi is 
the corresponding charge. 

Table 1 
Main characteristics (average and standard deviations) of the food waste and the 
inoculum.  

Parameter Food waste mixture Inoculum 

TS (%) 21.0 ± 0.36 6.14 ± 0.62 
VS/TS (%) 90.3 ± 0.76 56.8 ± 3.56 
Carbohydrates (g⋅kg TS-1) 618 ± 23 n.m. 
Proteins (g⋅kg TS-1) 187 ± 10 n.m. 
Lipids (g⋅kg TS-1) 121 ± 21 n.m. 
BMPs (mL CH4⋅g VS-1) 420 ± 5.28 n.m. 
pH 5.02 ± 0.18 8.10 ± 0.10 
TAN (g N⋅L-1) 0.90 ± 0.72 7.27 ± 0.51 
TKN (g N⋅kg TS-1) 30.0 ± 1.64 n.m. 

TS stands for total solids, VS for volatile solids, n.m. for “not measured”, BMP for 
biochemical methane potential, TAN for total ammonia nitrogen, and TKN for 
total Kjeldahl nitrogen. 
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2.4.3. FAN threshold inhibition function 
The inhibition function considered for FAN inhibition on methano-

genic archaea was the threshold inhibition function proposed by Astals 
et al. (2018): 

IFAN =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0; ifFAN ≤ KI,NH3,min

1 − e
− 2.77259

(

(FAN− KI,NH3,min)
(KI,NH3,max − KI,NH3,min)

)2

; ifFAN > KI,NH3,min

(6)  

where IFAN is the inhibition factor related to the presence of FAN, KI,NH3, 

min and KI,NH3,max are the FAN concentrations where inhibition starts 
(onset concentration) and when it is almost complete (specific meth-
anogenic activity (SMA) = 0.06⋅SMAmax), respectively (Astals et al., 
2018). The constant 2.77259 ensures that the midpoint between KI,NH3, 

min and KI,NH3,max equals KI,NH3 (FAN 50% inhibitory concentration for 
acetate uptake by methanogens). 

The threshold function provides a more accurate representation of 
the impact of FAN on AM activity, and it allows to identify a lower and 
an upper inhibition limit (Astals et al., 2018). This inhibition function 
allows defining precise thresholds that can serve to simulate changes in 
the predominant methanogenic pathways according to the FAN 
concentrations. 

2.4.4. Accounting for the different dynamics of butyrate and valerate 
consumption 

The modified ADM1 uncoupled the uptake of butyrate and valerate 
by adding a new bacterial group responsible for valerate uptake (Xc5). In 
this approach, Xc4 were only responsible for the uptake of butyrate 
(opposed to the ADM1, where Xc4 consume both butyrate and valerate). 
The competitive term originally present in the default ADM1 was 
removed in the rate equations for butyrate and valerate uptake. This 
approach was implemented in previous models also dealing with high- 
solids AD, aiming at obtaining an accurate representation of the 
different kinetics of butyrate and valerate uptake (Pastor-Poquet et al., 
2019; Pastor-Poquet et al., 2018). 

2.5. Model calibration and evaluation 

To compare the models (i.e. default vs. modified ADM1s) and to 
evaluate the effects of GAC on the AD performance (see Section 2.2), a 
systematic approach was followed. First, a global sensitivity analysis 
(GSA) was carried out for each model to identify influential parameters 
on the model outputs. Afterwards, these parameters were dynamically 
calibrated to improve the prediction capabilities of the models and to 
compare between the different experimental conditions (i.e. control vs. 
GAC-dosed reactors). The required stoichiometric parameters, biomass 
compositions, biomass yields, and physicochemical parameters were all 
obtained from the literature, as well as the initial values of the kinetic 
parameters (Batstone et al., 2002; Capson-Tojo et al., 2020; Rivera- 
Salvador et al., 2014; Rosen and Jeppsson, 2006). We are willing to 
share the code files corresponding to both the default and the modified 
ADM1s (implemented in MATLAB® (MATLAB R2021a, The MathWorks 
Inc., Natick, MA, USA)). 

2.5.1. Sensitivity analysis 
The GSA methodology implemented was similar to the one described 

in Robles et al. (2014), based on the Morris screening Method (Morris, 
1991). This approach consists in a one-factor-at-a-time method of GSA, 
which evaluates the distribution of the scaled elementary effects of each 
input factor (model parameters) upon model outputs (methane pro-
duction rates and VFAs concentration), which is afterwards used to 
calculate the statistical parameters that provide sensitivity data. The 
variation for each input factor was set to ± 20% of the default value, 
through a resolution of 4p levels. The number of evaluated trajectories 
was 100. The absolute mean (μ*) and the standard deviation (σ) of the 

scaled elementary effects of each distribution were used as sensitivity 
measures (Campolongo et al., 2007). The graphical Morris approach was 
used to systematically differentiate between input factors that could 
significantly influence the model. The μ* and σ obtained for all the 
scaled elementary effects of each distribution were plotted. Factors with 
high μ* and (relatively) small σ were considered to be influential, with 
linear and additive effects on the outputs. Factors with small μ* but high 
σ were considered to be influential, with non-linear or interactive effects 
on the outputs. Factors with low μ and σ were considered as non- 
influential (Morris, 1991). 

2.5.2. Dynamic calibration of the model 
The parameters considered as influential from the GSA results were 

dynamically calibrated by adjusting the relevant simulated data (i.e. 
methane production rates and VFA concentrations) to the experimental 
results. A global constrained optimization was conducted using a genetic 
algorithm (MATLAB R2021a). Bound constrains for variations of model 
inputs were set to ± 95% of default values, except for pH-related inhi-
bition parameters (±10%). The objective function to be minimised 
(standardized residuals) is shown in Eq. (7), where XSIM and XEXP are the 
simulated and measured values for each variable i. No ponderation 
factors were applied. 

∑n

i=1

(
∑ |XSIM i − XEXPi|

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
std(XEXPi)

√

)

(7)  

3. Results and discussion 

3.1. Comparison of the resulting models after sensitivity analysis and 
calibration 

3.1.1. Results from global sensitivity analysis 
The graphical outputs from the GSA for both the default and the 

modified ADM1 for the control reactor are shown in Fig. 1. Regarding 
the methane production rates (QCH4), the results of both models (Fig. 1A 
and 1F) showed that the most relevant parameters were all related to 
acetate uptake (e.g. AM or SAO maximum specific uptake rates (km), and 
AM inhibition parameters, either KI,NH3 or KI,NH3,max,acet (KI,NH3,max for 
acetotrophs) depending on the model). The disintegration and decay 
first order rate constants (kdis and kdec) and the volumetric mass transfer 
coefficient (kLa) also appeared as relevant. The acetate-uptake related 
parameters (i.e. km,ac and km,SAO) illustrate the predominance of this 
VFA as main methane-producing intermediate metabolite, which is in 
agreement with FW AD literature (Capson-Tojo et al., 2017; Jiang et al., 
2017). The relevance of kdis and kLa is explained by the high contents of 
solids in the reactors (the high TS contents in FW, around 20%, often 
lead to TS contents of 5%). With most of the organic matter being pre-
sent as particles, their disintegration appears as a critical process, 
potentially acting as rate limiting step. Furthermore, the high TS con-
tents and consequent lack of water also affect gas transfer and diffusion, 
reason why the kLa is important. 

The model structure also affected the results, with SAO-related pa-
rameters (i.e. km,SAO) appearing as relevant in the modified ADM1. Both 
models showed again similar results regarding the uptake of acetate 
(Fig. 1B and 1G), with parameters related to acetate uptake being 
deemed as relevant (AM or SAO uptake kinetic parameters, or AM in-
hibition parameters). SAO-related parameters were also relevant in the 
modified ADM1, confirming the importance of this pathway. The uptake 
of other VFAs (i.e. propionate, butyrate, and valerate; Fig. 1C-E and 1H- 
J) was governed by the respective Monod kinetic parameters (i.e. cor-
responding km and KS; KS being the saturation constant) and by pa-
rameters related to hydrogen uptake (e.g. hydrogen uptake parameters 
and corresponding inhibitory terms for each VFA). In the modified 
ADM1, kdis was also found relevant, due to the solid nature of FW. 
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Fig. 1. Results of the sensitivity analysis of the control reactor for the five model outputs used for calibration (i.e. methane flow rate and concentrations of acetate, 
propionate, butyrate, and valerate). Results for both the (A-E) default ADM1 and the (F-J) modified ADM1 are presented. 
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3.1.2. Model calibration and comparison of prediction capabilities: Default 
vs. Modified ADM1 

The parameters deemed as relevant according to the GSA were 
calibrated using both models and the control reactor dataset (as in 
Section 3.1.1). The GSA allowed to reduce the number of parameters to 
calibrate from an initial set of 31 in the default ADM1 and 41 in the 
modified ADM1, to 13 and 16, respectively. The calibration results are 
shown in Table 2. 

The parameters deemed as relevant for methane production and/or 
VFA uptake were selected for calibration. Despite the influence of pHUL, 

ac (pH upper limit for acetotrophs) on the resulting methane flow rates 
and acetate uptake rates (see Fig. 1), pHUL,ac and pHLL,ac (pH lower limit 
for acetotrophs) were excluded from the calibration of the modified 
ADM1. pH-related inhibition parameters were deemed as relevant by the 
GSA because, mathematically, AM can be inhibited by modifying the pH 
inhibition limits. Nevertheless, the resulting calibrated values leading to 
AM inhibition by pH were 8.0–8.5 for pHLL,ac and over 9.0 for pHUL,ac, 
which biologically do not make sense (Batstone et al., 2002). Therefore, 
including these parameters in the calibration procedure resulted in 
illogical inhibition limits, affecting the values of other parameters and 
leading to inaccurate results. Furthermore, using the default ADM1, the 
calibrated values for pHUL,ac were 6.4–7.1, which agree with values re-
ported in the literature (Batstone et al., 2002). 

The calibration results showed that FW has a relatively fast disinte-
gration kinetics (>0.6 d-1) compared to other solid substrates, with 
values of kdis higher than those reported in the literature (e.g. 0.24 d-1 for 
cattle manure or 0.10 d-1 for pig manure (Batstone et al., 2002)). This 
result is in agreement with the well-known faster disintegration and 
hydrolysis of FW (Koch et al., 2015). The much lower values of kLa when 
compared to the literature are related to the lack of water and the 
inherent difficult mixing at high solid contents. 

To understand the resulting values of the kinetic parameters for each 

model, their prediction performances and the predicted dominant 
pathways must be analysed in detail. The modelling results are pre-
sented in Fig. 2 (methane flow rates and VFA profiles) and Fig. 3 
(biomass concentrations, and pH and TAN/FAN concentrations). As 
shown in Fig. 2, while both models represented accurately the acetate 
and total VFA profiles (parity plots with R2 of 0.98–0.99), the calibrated 
default ADM1 was not able to represent the methane production rate (R2 

of 0.61) nor the final consumption of propionate (see Fig. 2). In contrast, 
the modified ADM1 provided more accurate predictions in both cases 
(R2 of 0.94 and 0.99, respectively). 

The improved predicting capabilities of the modified ADM1 are 
related to the underlying processes governing AD in each model. In the 
default ADM1, AM is the only acetate-consuming pathway available. 
Therefore, to fit the experimental methane production rates and the total 
VFA and acetate profiles, the FAN inhibitory concentrations for aceto-
clastic archaea (KI,NH3) need to be far above commonly applied inhibi-
tory concentrations (e.g. KI,NH3 values of at 0.0030 vs. 0.0018 M 
(Batstone et al., 2002)). In contrast, the calibration results with the 
modified ADM1 showed a realistic FAN inhibitory limit for acetoclastic 
archaea (i.e. a KI,NH3,max,acet of 0.011 M, as in Capson-Tojo et al. (2020)). 
This value led to inhibition of AM, which can be confirmed when looking 
at the predicted concentrations of methanogenic archaea (Fig. 3). 
Therefore, SAO was the main acetate-consuming pathway, and HM the 
main methane-producing one, which is in agreement with the experi-
mental results (where the presence of acetoclastic archaea at the end of 
the batch tests was negligible, see Capson-Tojo et al. (2018a) for a 
detailed discussion on the microbial communities in the reactors). The 
accurate representation of the underlying microbial processes by the 
modified ADM1 was facilitated by including SAO as metabolic pathway, 
and by using realistic FAN inhibitory limits for acetoclastic archaea. 
These allowed to account for the observed AM inhibition, resulting in 
the dominance of SAO (and HM) despite their slower overall kinetics. 

Table 2 
Calibration results for the control reactor of the relevant parameters in the default and the modified ADM1. The results correspond to the control reactor (no additives 
supplied). The values from the ADM1 are given for mesophilic conditions (35 ◦C).  

Symbol Parameter Units Default 
value 

Source Calibration results 

Default 
ADM1 

Modified 
ADM1 

kdis First order disintegration rate g COD⋅g COD- 

1⋅d-1 
0.5 (Batstone et al., 2002)  0.606  0.975 

kLa Mass transfer coefficient d-1 200 (Rosen and Jeppsson, 
2006)  

0.087  0.390 

km,ac Acetate uptake rate by methanogens g COD⋅g COD- 

1⋅d-1 
8 (Batstone et al., 2002)  10.74  1.292 

km,pro Propionate uptake rate g COD⋅g COD- 

1⋅d-1 
13 (Batstone et al., 2002)  2.926  19.21 

km,h2 Hydrogen uptake rate g COD⋅g COD- 

1⋅d-1 
35 (Batstone et al., 2002)  21.82  4.684 

km,c4 Butyrate/valerate uptake rate 1 g COD⋅g COD- 

1⋅d-1 
20 (Batstone et al., 2002)  1.494  7.147 

km,c5 Valerate uptake rate g COD⋅g COD- 

1⋅d-1 
20 (Batstone et al., 2002)  –  2.894 

km,SAO Acetate uptake rate by SAO g COD⋅g COD- 

1⋅d-1 
3.25 (Rivera-Salvador et al., 

2014)  
–  4.851 

kdec First order biomass decay rate g COD⋅g COD- 

1⋅d-1 
0.02 (Batstone et al., 2002)  0.015  0.039 

KS,c4 Half saturation constant for butyrate/valerate 1 mg COD⋅L-1 0.2 (Batstone et al., 2002)  0.237  0.075 
KS,c5 Half saturation constant for valerate mg COD⋅L-1 0.2 (Batstone et al., 2002)  –  0.390 
KS,h2 Half saturation constant for hydrogen mg COD⋅L-1 7⋅10-6 (Batstone et al., 2002)  3.2⋅10-6  1.2⋅10-5 

KI,h2,c4 H2 50% inhibitory concentration for butyrate/valerate uptake 1 mg COD⋅L-1 1⋅10-5 (Batstone et al., 2002)  1.9⋅10-5  2.9⋅10-6 

KI,h2,c5 H2 50% inhibitory concentration for valerate uptake mg COD⋅L-1 1⋅10-5 (Batstone et al., 2002)  –  8.4⋅10-6 

KI,h2,pro H2 50% inhibitory concentration for propionate uptake mg COD⋅L-1 3.5⋅10-6 (Batstone et al., 2002)  2.4⋅10-7  9.6⋅10-7 

KI,NH3 NH3 50% inhibitory concentration for acetate uptake by 
methanogens 

M 0.0018 (Batstone et al., 2002)  0.0030  – 

KI,NH3,max, 

acet 

FAN concentrations where inhibition of acetate uptake by 
methanogens is almost complete 

M 0.0109 (Capson-Tojo et al., 
2020)  

–  0.011 

pHUL,ac 50% pH upper limit for acetotrophs – 7 (Batstone et al., 2002)  7.12  – 

SAO stands for syntrophic acetate oxidation and FAN for free ammonia nitrogen. 
1. Valerate only in the default ADM1. 
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The low concentrations of syntrophic bacteria predicted by the modified 
ADM1 are caused by their slow growth, generally representing a minor 
part of the total microbial community in digesters (Hao et al., 2020). 
These results agree with previous studies dealing with SAO during AD at 
high N concentrations. Hydrogenotrophic methanogens were also 
dominant in thermophilic AD of poultry litter (Rivera-Salvador et al., 
2014), and Montecchio et al. (2017) did not detect any acetoclastic 
archaea in their reactors treating sludge at 0.3 g FAN⋅L-1. 

The different predominant methanogenic pathways between both 
models explain the inability of the default ADM1 to predict the methane 
production rates. The high H2 concentrations occurring during FW AD 
can potentially make thermodynamically unfavourable the processes in 
which H2 was produced, such as SAO, propionate oxidation, butyrate 
oxidation, and valerate oxidation (accounted for in both models by the 
50% inhibitory concentrations of H2, KI,h2,j). This can lead to the accu-
mulation of VFAs often seen in full-scale FW digesters (Banks et al., 
2012; Capson-Tojo et al., 2017). In the case of propionate, butyrate, and 
valerate, high acetate concentrations might further inhibit their 

consumption (see Batstone et al. (2002) and Capson-Tojo et al. (2017) 
for a deeper discussion on AD thermodynamics). As the modified ADM1 
included SAO and HM, it was able to predict high H2 concentrations and 
partial pressures in the reactor, thus accurately predicting VFA accu-
mulation. The default ADM1 could not predict an AD system dominated 
via SAO and HM, and thus could not predict the consequent high H2 
concentrations and the resulting VFA accumulation. Therefore, to 
represent the VFA profiles, the calibration procedure decreased the kLa 
value in the default ADM1 to values allowing the high H2 concentrations 
required. The kLa estimated by the default ADM1 was much lower than 
the one obtained with the modified ADM1 (0.087 and 0.390 d-1, 
respectively). The low kLa value resulted in the accumulation of, not 
only H2, but also CH4, reason why the methane production rates could 
not be predicted by the default ADM1. 

The phenomena described above can also explain the resulting km 
values. Regarding acetate, the default ADM1 needed a high km,ac value 
of 10.7 g COD⋅g COD-1⋅d-1, while the value in the modified ADM1 was 
1.30 g COD⋅g COD-1⋅d-1, as SAO was the dominant acetate-consuming 

Fig. 2. Experimental data and modelling results corresponding to the methane production curves (QCH4) and the concentrations of acetate, propionate, butyrate, and 
valerate in the control reactor. Modelling results using the (A-F) default ADM1 and the (G-L) modified ADM1 are presented. The R2 given correspond to parity plots. 
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pathway. AM was irrelevant in the modified model (see Fig. 3B), leading 
to biased values of km,ac. Similarly, the less pronounced H2-induced in-
hibition predicted by the default model (due to lower H2 concentrations 
as HM was marginal) resulted in a very low value of km for propionate 
uptake (2.93 g COD⋅g COD-1⋅d-1, far from literature values) to reproduce 
the propionate accumulation observed experimentally. In contrast, the 
km for propionate uptake in the modified ADM1 (19.2 g COD⋅g COD-1⋅d- 

1) was within ranges commonly reported in the literature (Batstone 
et al., 2002). Regarding the H2 uptake rates, the values in the modified 
ADM1 allowed a simultaneous, syntrophic growth of hydrogenotrophic 
archaea and SAO (Fig. 3B). The higher values of km in the default ADM1 
resulted in an initial fast H2 consumption, followed by the death of 
hydrogenotrophic archaea (Fig. 3A). This allowed to reduce the initial 
H2 concentrations to values where there was no VFA accumulation. 
Nevertheless, as in the default ADM1 SAO did not occur, less H2 was 
predicted than in the modified ADM1, which jeopardised the simulta-
neous representation of methane production rates and VFA profiles. 

Butyrate and valerate uptake were separated into two different 
processes in the modified ADM1, aiming at accurately representing their 
profiles. This strategy allowed setting different uptake dynamics for 
each clade, as it was obvious from the experimental data that they had 
different dynamics (more butyrate was initially generated than valerate, 
butyrate was produced faster, and valerate consumption was slower). 
Despite these efforts, both models failed to accurately predict the 
valerate profile (R2 of 0.74–0.82). The most plausible explanation is that 
other processes were taking place, affecting both butyrate and valerate 
concentrations. Several biological reactions involve these compounds as 
substrate or products, and relevant processes such as chain elongation 
are known to occur during fermentation or AD of FW (Capson-Tojo et al., 
2018b). Nonetheless, the low concentrations of valerate during FW AD 
(<5% of the total COD as products) justify the omission of other 
involved processes. If an accurate prediction of valerate concentrations 
in the future is needed, further research should be carried out. 

Another difference between the default and the modified ADM1 is 
the method used for FAN quantification and FAN-related inhibition. 
These differences affected the predicted pH profiles (more accurate in 
the modified ADM1), and thus also the FAN concentrations, which the 
default ADM1 underestimated by up to 55% (Fig. 3C and 3D). This 
underestimated FAN concentrations imply that, under a correct FAN 
calculation, the calibrated value of KI,NH3 in the default ADM1 would be 
considerably higher than those presented in Table 2, leading to even less 
realistic values. It must be considered that these differences between the 
predicted FAN concentrations are not only a consequence of the 
different pH values, but also of including the ionic strength in the FAN 

concentration estimation procedure. 

3.2. Model application: Using the modified ADM1 to explain the effect of 
AD additives 

Carbon conductive materials have been reported to enhance the 
performance of AD reactors, particularly in FAN-rich digesters (Barua 
and Dhar, 2017). Improvements due to GAC addition have been related 
to: (i) allowing direct interspecies electron transfer (DIET) (Barua and 
Dhar, 2017); (ii) the formation of biofilms on its surface (Fagbohungbe 
et al., 2017); (iii) the sorption of inhibitors onto its surfaces (Fagbo-
hungbe et al., 2017); and (iv) an increased buffering capacity (Barua and 
Dhar, 2017). Bioprocess modelling has never been used to increase our 
understanding on this topic, likely because available models did not 
include some of the relevant metabolic pathways occurring in the 
reactors. 

The modified and default ADM1s were calibrated over experiments 
supplemented with GAC (after inoculum adaptation in sequential batch 
reactors). The calibration and modelling results are shown in Table 3 
and Fig. 4, respectively. The modified ADM1 was able to represent the 
total VFA, acetate, and propionate profiles, and the methane production 
rates (R2 values from parity plots of 0.93–0.99). As previously, butyrate 
and valerate concentrations were predicted less accurately. The default 
ADM1 showed the same limitations found with the control reactor, with 
barely any methane production (R2 of 0.16) due to an extremely low kLa 
value. For both models, the corresponding FAN inhibition constants and 
predicted biomass concentrations (not shown, similar to those in Fig. 3) 
confirmed the predominant pathways described for the control reactor, 
i.e. SAO and HM being dominant in the modified ADM1 and AM in the 
default ADM1 (see Table 3 for inhibitory constants). 

The calibration results (Table 3) show that GAC addition signifi-
cantly enhanced the H2 uptake kinetics (km,H2 of 4.7 g COD⋅g COD-1⋅d-1 

in the control reactor and of 24 g COD⋅g COD-1⋅d-1 in the GAC dosed 
reactor), which resulted in a faster uptake of the other VFAs due to a 
lower H2 partial pressure. The kinetics of SAO, propionate, butyrate, or 
valerate uptake were not directly enhanced by GAC addition. These 
results suggest that the improvement observed in AD performance after 
GAC addition is mainly due to a faster HM kinetics. This can be a 
consequence of biofilm formation onto the GAC particles, thus favouring 
syntrophic interactions. Another explanation could be the occurrence of 
DIET, which is a faster electron transfer mechanism than mediated 
transport. As single electrons are not a state variable in the model, DIET 
would simply be translated in the model as a faster HM process. These 
mechanisms have been further discussed in Capson-Tojo et al. (2018a). 

Fig. 3. Predicted biomass concentrations by (A) the default ADM1 and (B) the modified ADM1 with data from the control reactor. The (C) pH and (D) TAN and FAN 
concentrations predicted by both models are also shown. 
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Opposed to these findings, the calibration results using the default 
ADM1 (Table 3) would explain these enhancements via increasing the 
AM and SPO rates. As microbial community analyses showed that the 
relative abundance of AM in the reactors was negligible, the default 
ADM1 would have led to misleading conclusions. 

These results show that the modified ADM1 can be applied to further 
understand the underlying processes governing FW AD. The application 
shown here indicates that the modified ADM1 can be used to explain the 
positive effects that AD additives have on the process kinetics, allowing 
to identify the processes that are more significantly affected. 

3.3. Comparison of the obtained parameters with literature values 

The parameters from the default ADM1 agree with those reported by 
other studies modelling FW without including SAO. Zhao et al. (2019) 
targeted kdec, kdis, khyd,ch, km,ac, and KS,ac for calibration due to their 
significant influence on methane production. The recommended cali-
bration values were 0.001 g COD⋅g COD-1⋅d-1, 0.16 g COD⋅g COD-1⋅d-1, 3 
g COD⋅g COD–1⋅d-1, 1 g COD⋅g COD-1⋅d-1, and 0.23 mg COD⋅L-1, 
respectively. The values of these parameters for both models (presented 
in Tables 2 and 3; km,ac, and KS,ac only for the default ADM1) are within 
the ballpark of those previously reported, confirming their applicability 
(see values from the control reactor for less biased comparisons). The 
obtained kdis values are also close to those recommended in the ADM1 
for food waste, of 0.41 d-1 (Batstone et al., 2002). Regarding inhibitory 
parameters, values of KI,NH3 up to 0.0028 M have been used for AD of the 
organic fraction of municipal solid waste (Pastor-Poquet et al., 2019). As 
the values obtained in this article (up to 0.0035 M), a KI,NH3 of 0.0028 M 
is much higher than the common inhibitory limit applied in the default 
ADM1 (0.0018 M). However, it must be considered that the default 
ADM1 was designed for modelling AD of dilute sewage sludge (TS < 5%) 
from wastewater treatment plants, with lower FAN concentrations, thus 
representing microbial communities unadapted to high FAN concen-
trations. The corresponding inhibitory limit to be used for FAN-adapted 
processes (applied in our modified model) has been estimated around 

0.0057 M (corresponding to values of 4.3⋅10-4 M and 0.0109 M for KI, 

NH3,min,acet and KI,NH3,max,acet in the threshold function) (Capson-Tojo 
et al., 2020). 

The results from sensitivity analyses and model calibrations carried 
out in previous publications including SAO also agree with those pre-
sented in Tables 2 and 3 for the modified ADM1 (Montecchio et al., 
2017; Rivera-Salvador et al., 2014). In previous publications, the kinetic 
parameters (e.g. uptake rates) related to SAO and HM were found to be 
relevant (Montecchio et al., 2017; Rivera-Salvador et al., 2014). For 
comparison purposes, Table 4 shows the values of the uptake rates for 
acetate-uptake related processes (i.e. AM and SAO) and for HM, from the 
literature and from this study. It must be considered that the data used in 
this work (and in most of the studies presented in Table 4) was obtained 
from batch reactors. Therefore, the initial biomass concentrations 
influenced to some extent the values of the obtained kinetic parameters. 

It is important to consider that most previous AD models including 
SAO omitted AM, thus excluding potential interactions between 
competing pathways (Montecchio et al., 2017; Rivera-Salvador et al., 
2014). The modified ADM1 presented here considers both AM and SAO, 
which means that microbial competitions and shifts can be modelled by 
considering environmental factors (e.g. FAN concentration). To the best 
of our knowledge, only Wett et al. (2014) implemented both AM and 
SAO simultaneously, but they did not discuss competitions between 
them, neither their inhibition under different conditions. In practice, 
Wett et al. (2014) virtually omitted AM, since the km values were 
extremely low (0.3 kg COD⋅kg COD-1⋅d-1, see Table 4). 

3.4. Implications for industrial application and further model 
development 

This work shows that to properly model FW AD, key modifications 
must be made to the default ADM1 (i.e. including SAO and the impact of 
ionic strength on ion speciation). These modifications are important for 
the accurate prediction of the performances of digesters treating FW, 
which otherwise could not be achieved (e.g. inaccurate biogas produc-
tion rates and/or acetate and propionate concentrations in the digesters 
by the default ADM1). In FW AD, VFAs accumulation is responsible for 
low performance, or even reactor failure. Their accurate prediction is 
crucial to understand the behaviour of these systems, to improve 
digester design, and to better assess mitigation strategies. 

The accurate representation of methane and the VFA profiles has 
direct implications for optimisation of operational parameters (e.g. 
loading rates and retention times), for simulating scenarios with 
different co-substrates (e.g. predicting the impact of introducing a new 
waste stream into a territorial digester), for predicting AD inhibition 
scenarios, and for optimising the co-substrate proportions. These im-
provements will result in an enhanced waste valorisation. Including 
competing pathways (e.g. AM or SAO as dominant acetate-consuming 
pathway) has further practical benefits, since it allows: (i) to account 
for microbial adaptation without the need of continuous model recali-
bration; and (ii) to model microbial shifts (e.g. from dominant AM to 
HM), which could potentially be used to move away from the traditional 
operational approach of stopping the reactor feed at minimal VFA in-
creases. We consider that the benefits of implementing the modified 
ADM1 presented here outweigh the minor increase in model complexity. 
We recommend the application of the modified ADM1 for any AD system 
where it is suspected that AM might be inhibited due to high FAN 
concentrations (i.e. over 340 mg FAN-N⋅L-1, based on Capson-Tojo et al. 
(2020)). The application of this model is not only restricted to FW AD, 
but can also be extended to any FAN-rich reactor, such as manure di-
gesters. Further work should focus on calibration and validation of the 
modified ADM1 with continuous experiments, testing microbial accli-
mation to FAN and microbial shifts (e.g. from AM to HM). 

AD models (high-solids models in particular) should account for the 
non-ideal behaviour of the solution. Further modifications to include 
activity corrections for chemical species other than FAN, or to consider 

Table 3 
Calibration results for the control reactor and for reactors supplemented with 
granular activated carbon (GAC). The results from parameters deemed as rele-
vant are shown for both the default and the modified ADM1.  

Parameter Units Default ADM1 Modified ADM1 

Control GAC Control GAC 

kdis g COD⋅g COD- 

1⋅d-1  
0.606  0.802  0.975  0.236 

km,ac g COD⋅g COD- 

1⋅d-1  
10.74  14.68  1.291  3.864 

km,pro g COD⋅g COD- 

1⋅d-1  
2.93  9.55  19.21  5.927 

km,h2 g COD⋅g COD- 

1⋅d-1  
21.8  1.75  4.684  24.295 

km,c4 g COD⋅g COD- 

1⋅d-1  
1.49  22.2  7.147  2.261 

km,c5 g COD⋅g COD- 

1⋅d-1  
–  –  2.894  1.945 

km,SAO g COD⋅g COD- 

1⋅d-1  
–  –  4.851  3.125 

kdec g COD⋅g COD- 

1⋅d-1  
0.015  0.009  0.039  0.039 

KS,c4 mg COD⋅L-1  0.237  0.389  0.075  0.138 
KS,c5 mg COD⋅L-1  –  –  0.390  0.234 
KS,h2 mg COD⋅L-1  3.2⋅10-6  4.5⋅10-6  1.2⋅10-5  7.2⋅10-6 

KI,h2,c4 mg COD⋅L-1  1.9⋅10-5  1.1⋅10-5  2.9⋅10-6  1.5⋅10-5 

KI,h2,c5 mg COD⋅L-1  –  –  8.4⋅10-6  1.9⋅10-5 

KI,h2,pro mg COD⋅L-1  2.4⋅10-7  4.0⋅10-6  9.6⋅10-7  1.0⋅10-6 

KI,NH3 M  0.0030  0.0030  –  – 
KI,NH3,max, 

acet 

M  –  –  0.011  0.010 

pHUL,ac –  7.1  6.4  –  – 
kLa d-1  0.087  0.016  0.390  0.374  
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ion pairing, would allow to: (i) improve the pH and model performance 
predictions (Solon et al., 2015); (ii) to accurately predict inhibition by 
other compounds (e.g. H2S) (Durán et al., 2020; Patón et al., 2018); and 
(iii) to model the precise chemical speciation and complexation of 
relevant elements (e.g. P, S or Fe) (Flores-Alsina et al., 2016). Although 
non-ideality considerations are commonly considered by using the 
Debye-Hückel equation, fully defined comprehensive chemistry engines 
(e.g. PHREEQC or MINTEQA2) could also be integrated with AD models 
(Durán et al., 2020). Ion pairing and activity corrections could be 
coupled to a model considering TE complexation and precipitation, 
which would be particularly relevant if TEs are dosed in the digesters 
(Frunzo et al., 2019; Maharaj et al., 2019). Another potential modifi-
cation could be to consider the variable TS contents in the reactors. As 
explained in Pastor-Poquet et al. (2018), the TS content can change in 
high-solids AD reactors due to the conversion of solid organics into 
biogas (up to around 10% with municipal solid waste as substrate). 
Consequently, the concentrations of soluble compounds and solids in the 

Fig. 4. Experimental data and modelling results corresponding to the methane production curves (QCH4) and the concentrations of acetate, propionate, butyrate, and 
valerate for the GAC-supplemented reactor. The modelling results for both the (A-F) modified ADM1 and the (G-L) default ADM1 are shown. The R2 given correspond 
to parity plots. 

Table 4 
Values of uptake rates (km; kg COD⋅kg COD-1⋅d-1) related to acetate and 
hydrogen uptake from the literature and in this study.  

Reference Substrate SAO AM HM 

(Rivera-Salvador 
et al., 2014) 

Poultry litter 1.12 – 13 

(Montecchio et al., 
2017) 

Sludge 7 – 70 

(Wett et al., 2014) Sludge 2.6 0.3 – 
(Dwyer et al., 1988) Butyrate and 

others 
0.037–25.0 – – 

Default ADM1 – – 16 35 
This study (default 

ADM1) 
FW – 10.7–14.7 1.75–21.8 

This study (modified 
ADM1) 

FW 3.13–4.85 1.29–3.86 4.68–24.3 

FW stands for food waste, SAO for syntrophic acetate oxidation, AM for aceto-
clastic methanogenesis, and HM for hydrogenotrophic methanogenesis. 
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reactors can be affected. This effect was not considered in this work 
because the change in volume from the start to the end of the experi-
ments was considered negligible under the working conditions (esti-
mated at 3–5% reactor volume loss). 

The accurate prediction of FAN inhibitory limits is relevant, as it 
allows to compare the obtained values with those from the literature, 
and to obtain accurate limits for different predominant microbial com-
munities. Furthermore, applying a more realistic model can help to 
provide a better understanding of FAN inhibition in anaerobic systems 
and to better predict microbial community shifts due to inhibition. 
Proper modelling of FAN-rich systems (including accurate inhibition 
limits) would improve the predictions of acetic and propionic acid 
profiles, which in turn could be used to better understand the impact of 
additives (e.g. GAC) on AD. This will not only assist in optimising the 
dosage and characteristics of these additives but will also aid to find 
other alternatives. 

4. Conclusions 

Results showed that the modified ADM1 is a suitable approach to 
model FW AD. The modified ADM1 was able to represent the methane 
production rates and the VFA profiles simultaneously, which could not 
be achieved with the default ADM1. The modified model also predicted 
the predominant acetate-consuming and methane-producing microbial 
clades, with SAO and HM being dominant. A modified Davies equation 
accurately estimated FAN concentrations, which improved pH pre-
dictions and provided better estimates for inhibition limits. Finally, the 
modified model showed that the addition of GAC enhances FW AD by 
improving the HM kinetics. 
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