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1. Introduction

There has been a recent surge in the study of Stieltjes differential equations focused on obtaining ap-
plicable results comparable to those available for classical derivatives [2–14,16,17,19]. These works center 
their attention in the procuring of solutions of first order differential equations and systems. The theory 
developed starts with the obtaining of simple solutions, like the solution of the first order linear problem 
[3,4], which is identified with the exponential, in order to, later, prove existence and uniqueness results in 
more general settings [7,13,16]. Some of these works also provide interesting practical applications [5,9] and 
others generalize the framework in several ways, such as allowing for sign changing derivators [4], considering 
several different derivators [16] or generalizing the concept of Stieltjes derivative [15].

In any case, all of the aforementioned works restrict themselves to the first order case. The reason behind 
this is that, in order to study higher order problems, the notion of higher order Stieltjes derivative has to be 
correctly defined, which is not obvious. In fact, the first difficulty lies on the mere definition of the Stieltjes 
derivative, which, to the best of our knowledge, is nowhere defined in the literature on the whole domain of 
definition of the function, something which impedes taking a second derivative.
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In this work we provide this definition, which enables us to study second order problems. First, we consider 
the Stieltjes derivative in the whole of the domain of the function, which allows us to talk about the space 
of continuously Stieltjes-differentiable functions in the same way we speak of the space of continuously 
differentiable functions with the usual derivative. We can then explore the first order problem in this space, 
obtaining existence and uniqueness results that mirror those of the previous works. In fact, we profit from 
the opportunity of revisiting the solution of the first order linear problem to provide a constructive way 
of obtaining its solution. All of these steps are also taken with a further generalization: our functions are 
allowed to take real or complex values. Furthermore, we obtain the explicit expression of the Green’s function 
of the first order linear problem with initial conditions and we construct the Stieltjes versions of the sine 
and cosine functions using the complex version of the Stieltjes exponential.

Once we have studied the first order problem with various degrees of regularity (something the subsequent 
spaces of n-times continuously Stieltjes-differentiable functions allow), we move on to study second order 
problems. First, we present existence and uniqueness results for the homogeneous second order problem 
with constant coefficients and then we study the non homogeneous case with varying degrees of regularity. 
Here we also obtain the explicit expression of the Green’s function of the second order linear problem with 
initial conditions. All this work is then illustrated with an application to the Stieltjes harmonic oscillator 
for which we also analyze the resonance effect. Finally, in order to validate the explicit solutions obtained, 
we compare them with the numerical approximation of the corresponding first order linear system using 
the numerical scheme introduced in [2].

The structure of this work is as follows: In Section 2 we present some preliminary concepts and we 
prove several results related to Lebesgue-Stieltjes integral. In Section 3 we introduce the space of bounded 
Stieltjes differentiable functions and analyze some of its properties. We study the first order linear Stieltjes 
differential equation in Section 4, including in the complex case. In this section we also define the complex 
Stieltjes exponential and the Stieltjes version of the sine and cosine functions. In Section 5 we study the 
homogeneous Stieltjes second order problem with constant coefficients, the non homogeneous case and we 
also obtain an explicit solution for both situations. Finally, in Section 6 we present an application to the 
Stieltjes harmonic oscillator. We obtain the explicit solution of the overdamped, critically damped and 
underdamped cases, and provide an example in which the resonance effect appears. In order to validate the 
explicit solution obtained, we compare it with the numerical solution of the corresponding first order linear 
system.

2. Preliminaries

Let [a, b] ⊂ R be an interval, F the field R or C and g : R → R a left-continuous non-decreasing 
function. We will refer to such functions as derivators. For these functions, we define the set Dg = {dn}n∈Λ
(where Λ ⊂ N) as the set of all discontinuity points of g, namely, Dg = {t ∈ R : Δ+g(t) > 0} where 
Δ+g(t) := g(t+) − g(t), t ∈ R, and g(t+) denotes the right hand side limit of g at t. We also define

Cg := {t ∈ R : g is constant on (t− ε, t + ε) for some ε > 0}.

Observe that Cg is open in the usual topology of R, so we can write

Cg =
⋃
n∈Λ̃

{(an, bn)} (2.1)

where Λ̃ ⊂ N and (ak, bk) ∩ (aj , bj) = ∅ for k �= j. With this notation, we denote N−
g := {an}n∈Λ̃\Dg, 

N+
g := {bn} ˜\Dg and Ng := N−

g ∪N+
g .
n∈Λ
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Remark 2.1. For the aims of this paper, we will assume without loss of generality that g(a) = 0. Furthermore, 
we will also assume that g is continuous at x = a. As pointed out in [3, p. 21] and [12, Proposition 4.28], the 
continuity assumption has no impact in the study of differential equations, which is our final goal. Finally, 
in order to properly define the Stieltjes derivative in the whole [a, b], we will also ask that [a, b] \ Cg �= ∅.

We define gB : R → R as:

gB(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑

s∈[a,t)∩Dg

Δ+g(s), t > a,

−
∑

s∈[t,a)∩Dg

Δ+g(s), t ≤ a.

It is clear that gB is a left-continuous and non-decreasing function. Moreover, the map gC : R → R given 
by

gC(t) := g(t) − gB(t),

is also non-decreasing and continuous. We say gC that is the continuous part of g and gB is the jump part
of g. Observe that both gB and gC are continuous at x = a and gC(a) = gB(a) = 0.

Throughout this work we consider the Lebesgue–Stieltjes measure space (R, Mg, μg), where Mg and μg

are the σ-algebra and measure constructed in an analogous fashion to the classical Lebesgue measure, where 
the length of [c, d) is given by μg([c, d)) = g(d) − g(c). The interested reader may refer to [11] for details 
concerning this measure space. We must emphasize that, in the case of considering g(t) = t, we recover the 
classic Lebesgue measure space that we will denote by (R, L, μ) ≡ (R, MId, μId) where Id is the identity 
function. Furthermore, we can define the measure space associated with the continuous part, (R, MgC , μgC ), 
the jump part, (R, MgB , μgB ), and the one associated with the derivator itself, (R, Mg, μg). If we denote 
by B(τu) the Borel σ-algebra associated to τu, the usual topology of R, we have that B(τu) ⊂ Mg and also 
B(τu) ⊂ MgM , with M = C, B. We must mention that if E ⊂ R, μ∗

gM (E) ≤ μ∗
g(E), for M = C, B, being 

μ∗
gM and μ∗

g the outer measures associated to gM and g respectively, M = C, B. We also have that if E ⊂ R

is a bounded set, then μ∗
g(E) < ∞.

We have the following lemma that, in particular, provides us with a relationship between the σ-algebras 
Mg, MgC and MgB .

Lemma 2.2. The following properties hold for the maps g, gC and gB:

1. Given an element E ∈ Mg there exists H ∈ Gδ (that is, H is a countable intersection of open sets) and 
N ∈ Mg such that E ⊂ H, N ⊂ H, μg(N) = 0 and E = H \N .

2. Given an element E ∈ Mg there exists F ∈ Fσ (that is, F is a countable union of closed sets) and 
N ∈ Mg such that μg(N) = 0, F ∩N = ∅ and E = F ∪N .

3. Mg ⊂ MgC .
4. MgB = P(R).

Proof. Since B(τu) ⊂ Mg and g is left-continuous, we have that

μg(E) = inf
{∑

n∈N
μg([an, bn)) : E ⊂

⋃
n∈N

[an, bn)
}

= inf
{∑

n∈N
μg((an, bn)) : E ⊂

⋃
n∈N

(an, bn)
}
.

Indeed on the one hand given {(an, bn)}n∈N such that E ⊂
⋃

(an, bn), we have that
n∈N



4 F.J. Fernández et al. / J. Math. Anal. Appl. 511 (2022) 126010
μ∗
g(E) ≤ μ∗

g

( ⋃
n∈N

(an, bn)
)

≤
∑
n∈N

μ∗
g((an, bn)),

therefore, μg(E) ≤ inf
{∑

n∈N μg((an, bn)) : E ⊂
⋃

n∈N(an, bn)
}
. On the other hand, given ε > 0 and 

{[an, bn)}n∈N such that E ⊂
⋃

n∈N [an, bn), we have, thanks to the left-continuity of g, that there ex-
ists {(ãn, bn)}n∈N such that [an, bn) ⊂ (ãn, bn) and μ∗

g((ãn, bn)) ≤ μ∗
g([an, bn)) + ε/2n, n ∈ N. Thus, ∑

n∈N μ∗
g(ãn, bn) ≤

∑
n∈N μ∗

g([an, bn)) + ε and we conclude, taking the infimum in both sides of inequality, 
that inf

{∑
n∈N μg((an, bn)) : E ⊂

⋃
n∈N(an, bn)

}
≤ μg(E). Now, we can proceed as in [1, Corollaries 15.5 

and 15.8] to obtain 1 and 2, respectively.
Now, for 3, given an element E ∈ Mg, there exists F ∈ Fσ and N ∈ Mg such that μg(N) = 0, F ∩N = ∅

and E = F ∪ N . Now, F ∈ B(τu) ⊂ Mc and μ∗
gC (N) ≤ μ∗

g(N) = 0 so we have that N ∈ MgC since 
(R, MgC , μgC ) is a complete measure space. Therefore, E ⊂ MgC .

Finally, for E ∈ P(R), we have that E = (E \ DgB ) ∪ (E ∩ DgB ). Now, (E \ DgB ) ⊂ CgB and then 
μ∗
gB (E \ DgB ) = 0, so E \ DgB ∈ MgB . Finally E ∩ DgB ∈ B(τu) ⊂ MgB . Therefore E ∈ MgB , which 

finishes the proof of 4. �
We denote by L1

g([a, b); F) the set of functions f : [a, b) → F such that their real and imaginary parts, 
that is, Re(f) and Im(f) respectively, are measurable and 

∫
[a,b) |f | dμg < ∞. For this class of functions we 

define ∫
[a,b)

f dμg =
∫

[a,b)

Re(f) dμg + i

∫
[a,b)

Im(f) dμg.

Lemma 2.3. Given a function f ∈ L1
g([a, b); F),∫

[a,t)

f dμg =
∫

[a,t)

f dμgC +
∑

s∈[a,t)∩Dg

f(s)Δ+g(s), ∀t ∈ [a, b].

Proof. Given a function f ∈ L1
g([a, b); F), thanks to Lemma 2.2 and the fact that μgC (E) ≤ μg(E) for all 

E ∈ Mg, we have that f ∈ L1
gC ([a, b); F). Now thanks to [18, Theorems 6.3.13, 6.12.3 and 6.12.7], and 

separating the real and imaginary part if necessary, we have the desired result. �
Corollary 2.4. Given E ∈ Mg and taking f = χE (the characteristic function associated to E) in Lemma 2.3
we have that

μg(E) = μgC (E) +
∑

s∈E∩Dg

Δ+g(s).

We now introduce a tool that will allow us to transform Lebesgue-Stieltjes integrals with respect to gC

into the usual Lebesgue ones. In particular, in light of Lemma 2.3, this means that we will have a way of 
transforming any Lebesgue-Stieltjes integral into a Lebesgue one.

Definition 2.5 (Pseudo-inverse of gC). Given an interval [a, b] and a derivator g : R → R, we define the 
pseudo-inverse of the continuous part gC in the interval [0, gC(b)] by:

γ : x ∈ [0, gC(b)] → γ(x) = min
{
t ∈ [a, b] : gC(t) = x

}
∈ [a, b]. (2.2)

In [7, Proposition 5.1] we can find some of the properties of the pseudo-inverse of a continuous derivator 
mapping the real line onto the real line. For our context, by extending linearly the map g outside of the 
interval [a, b] we can obtain the required property, which leads to the following result.
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Proposition 2.6. We have the following properties for the pseudo-inverse of the continuous part gC in the 
interval [0, gC(b)]:

• For all x ∈ [0, gC(b)], gC(γ(x)) = x.
• For all t ∈ [a, b], γ(gC(t)) ≤ t.
• For all t ∈ [a, b], t /∈ CgC ∪N+

gC , γ(gC(t)) = t.
• The map γ is strictly increasing.
• The map γ is left-continuous everywhere and continuous at every x ∈ [0, gC(b)], x /∈ gC(Cg).

Now we are ready to prove the following result.

Proposition 2.7. Given an interval [a, b] and a derivator g : R → R:

1. The continuous part

gC : ([a, b],MgC ) → ([0, gC(b)],L)

is a measurable morphism.1
2. The pseudo-inverse of the continuous part gC

γ : ([0, gC(b)],L) → ([a, b],MgC )

is a measurable morphism.

Proof. Let us prove the two statements separately.
1. Let us consider a subset E ⊂ [0, gC(b)] such that E ∈ L. We have that there exists F ∈ Fσ and N ∈ L

with μ(N) = 0 such that F ∩N = ∅ and E = F ∪N . It is clear that (gC)−1(F ) ∈ B(τu) so, if we prove that 
μ∗
gC ((gC)−1(N)) = 0, where μ∗

gC is the outer Lebesgue-Stieltjes measure, we will have finished.
Now, since μ(N) = 0, given ε > 0, there exists a countable disjoint family {[c̃n, d̃n)}n∈N such that 

N ⊂
⋃

n∈N [c̃n, d̃n) and 
∑

n∈N(d̃n − c̃n) < ε. We have that (gC)−1([c̃k, d̃k)) = [γ(c̃k), γ(d̃k)), for all k ∈ N, 
thus (gC)−1(N) ⊂

⋃
n∈N [γ(c̃n), γ(d̃n)). Finally,

μ∗
gC ((gC)−1N) ≤

∑
n∈N

μ∗
gC [γ(c̃n), γ(d̃n)) =

∑
n∈N

(
gC(γ(d̃n)) − gC(γ(c̃n))

)
=
∑
n∈N

(d̃n − c̃n) < ε.

Since ε > 0 was arbitrarily chosen, we have that μ∗
gC ((gC)−1N) = 0, which finishes the proof of 1.

2. Let us consider a subset E ⊂ [a, b] such that E ∈ MgC . We have that there exists F ∈ Fσ and N ∈ MgC

such that μg(N) = 0, F ∩ N = ∅ and E = F ∪ N . Thus, we conclude that γ−1(E) = γ−1(F ) ∪ γ−1(N). 
Now, since γ is strictly increasing, it is a Borel map, so we have that γ−1(F ) ∈ B(τu) ⊂ L. Hence, if 
we prove that μ∗(γ−1(N)) = 0, where μ∗ is the outer Lebesgue measure, we are done. The proof in this 
case is analogous to the previous one, the only difference lies in that, given an interval [c, d), we have that 
γ−1([c, d)) ⊂ [gC(c), gC(d)], thus μ∗(γ−1([c, d))) ≤ gC(d) − gC(c) = μ∗

gC ([c, d)). �
The following Corollary is in the line of [2, Lemma 1].

1 Given two measurable spaces (X, ΣX) and (Y, ΣY ), we say that a function f : X → Y is a measurable morphism if f−1(F ) ∈ ΣX , 
for all F ∈ ΣY .
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Corollary 2.8. Given a function f ∈ L1
g([a, b); F), for every t ∈ [a, b],

∫
[a,t)

f dμg =
∫

[a,t)

f dμgC +
∑

s∈[a,t)∩Dg

f(s)Δ+g(s) =
∫

[0,gC(t))

f̂ dμ +
∑

s∈[a,t)∩Dg

f(s)Δ+g(s),

where f̂ = f ◦ γ, γ : t ∈ [0, gC(b)] → γ(t) is given by (2.2) and μ denotes the Lebesgue measure.

Proof. We write (X, ΣX) = ([a, t), MgC ) and (Y, ΣY ) = ([0, gC(t)), L). We have, thanks to Proposition 2.7, 
that f̂ : Y → F is a measurable function and gC : (X, ΣX) → (Y, ΣY ) is a measurable morphism, which (cf. 
[20, Exercise 1.4.38]) ensures that

∫
Y

f̂ d gC∗ μgC =
∫
X

(f̂ ◦ gC) dμgC ,

where

gC∗ μgC : E ∈ ΣY → gC∗ μgC (E) = μgC ((gC)−1(E))

is the pushforward measure in (Y, ΣY ). However, given an element (c, d) ⊂ [0, gC(t)), it is clear that 
gC∗ μgC (c, d) = μgC ((gC)−1(c, d)) = d − c. In particular, (cf. [1, Theorem 13.8]) gC∗ μgC = μ. Therefore,

∫
Y

f̂ d gC∗ μgC =
∫

[0,gC(t))

f̂ dμ.

Finally, since μgC (CgC ∪N+
gC ) = 0 and γ(gC(s)) = s for all s ∈ [a, b]\(CgC ∪N+

gC ), we have that

∫
[a,t)

(f̂ ◦ gC) dμgC =
∫

[a,t)

f dμgC . �

Finally, we recall a concept of continuity introduced in [3] as well as some of its properties. To that end 
we define the g-topology, τg, as the family of those sets U ⊂ R such that for every x ∈ U there exists δ > 0
such that if y ∈ R satisfies |g(y) − g(x)| < δ then y ∈ U . Then, the following definition can be understood 
as the continuity of a function f : (I, τg) → (F , τu), see [15, Lemma 6].

Definition 2.9 (g-continuous function). A function f : [a, b] → F is g-continuous at a point t ∈ [a, b], or 
continuous with respect to g at t, if for every ε > 0, there exists δ > 0 such that |f(t) − f(s)| < ε, for every 
s ∈ [a, b] with |g(t) − g(s)| < δ. If f is g-continuous at every point t ∈ [a, b], we say that f is g-continuous 
on [a, b].

Proposition 2.10 ([3, Proposition 3.2]). If f : [a, b] → R is g-continuous on [a, b], then

1. f is continuous from the left at every t0 ∈ (a, b];
2. if g is continuous at t0 ∈ [a, b), then so is f ;
3. if g is constant on some [α, β] ⊂ [a, b], then so is f .

In particular, g-continuous functions on [a, b] are continuous on [a, b] when g is continuous on [a, b).
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3. The space of bounded g-differentiable functions

In the literature –see, for instance, [3,4,11,15]– authors use the following definition of Stieltjes derivative.

Definition 3.1. We define the Stieltjes derivative, or g–derivative, of function f : [a, b] → R at a point 
t ∈ [a, b]\Cg as

f ′
g(t) =

⎧⎪⎪⎨⎪⎪⎩
lim
s→t

f(s) − f(t)
g(s) − g(t) , t /∈ Dg,

lim
s→t+

f(s) − f(t)
g(s) − g(t) , t ∈ Dg,

provided the corresponding limits exist and, in that case, we say that f is g–differentiable at t. In particular, 
for t ∈ N+

g ∪N−
g , the g-derivative at t must be understood in the following sense:

f ′
g(t) =

⎧⎪⎪⎨⎪⎪⎩
lim
s→t+

f(s) − f(t)
g(s) − g(t) , t ∈ N+

g ,

lim
s→t−

f(s) − f(t)
g(s) − g(t) , t ∈ N−

g .

(3.1)

Remark 3.2. Observe that the points of Cg are excluded from the definition of g–derivative. This is because 
the corresponding limit cannot be considered at those points since they are in a neighborhood where the 
corresponding function is not defined. Observe also that the previous definition is also valid for functions 
with values in C.

Remark 3.3. Taking into account Definition 3.1 and given a function f : [a, b] → R, the following conditions 
will be necessary for the existence of the g-derivative in all of the points of [a, b]\Cg:

• If a ∈ [a, b] \ Cg, then a /∈ N−
g . Indeed if a ∈ N−

g , to calculate the g-derivative at a we need to know 
the values of f to the left of a, which are not defined. Observe that Cg ∩Ng = ∅ therefore the previous 
condition is equivalent to a /∈ N−

g .
• If b ∈ [a, b] \ Cg, then b /∈ N+

g ∪Dg. Indeed if b ∈ N+
g ∪Dg, to calculate the g-derivative at b we need 

to know the values of f to the right of b, which are not defined. Observe that Cg ∩Ng = Cg ∩Dg = ∅
therefore the previous condition is equivalent to b /∈ N+

g ∪Dg.
• There exists f(t+) for every t ∈ (a, b) ∩Dg (which is also a sufficient condition for the existence of the 

g-derivative at that point).
• Given t ∈ (a, b) ∩ N−

g and ε > 0, there exists δ > 0 such that, if s < t with g(t) − g(s) < δ then, 
|f(s) − f(t)| < ε. We say, in that case, that f is g-continuous from the left at t. To check this fact it 
is enough to observe that g is left continuous (in the usual sense) at t. The function f might not be 
g-continuous at t. Indeed, take for instance

g : t ∈ R → g(t) =

⎧⎪⎨⎪⎩
t, t ≤ 1,
1, 1 ≤ t ≤ 2,
t− 1, t ≥ 2.

(3.2)

Then,

f : t ∈ [0, 3] → f(t) =
{

t, 0 ≤ t ≤ 1,
t + 1, 1 < t ≤ 3,
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is g-differentiable at t = 1 since

lim
s→1−

f(s) − f(1)
g(s) − g(1) = lim

s→1−

s− 1
s− 1 = 1.

Observe that g is continuous at t = 1, but f is not, so f cannot be g-continuous at that point.
• Given t ∈ (a, b) ∩ N+

g , and ε > 0, there exists δ > 0 such that, if s > t with g(s) − g(t) < δ then, 
|f(s) − f(t)| < ε. We say, in that case, that f is g-continuous from the right at t. To check this fact it 
is enough to observe that g is right continuous (in the usual sense) at t. Observe that, once again, the 
f might not be g-continuous at such points. Indeed, take for instance g as in (3.2) and

f : t ∈ [0, 3] → f(t) =
{

t, 0 ≤ t < 2,
t + 1, 2 ≤ t ≤ 3.

In this case, f is g-differentiable at t = 2 but f is not g-continuous at such point.
• Given t ∈ (a, b)\(Cg ∪ Dg ∪ Ng), f is g-continuous at t. In particular, f is continuous at t since g is 

continuous at those points.

We conclude that, interestingly enough, the g-differentiability of a function at a point of Ng does not 
imply the g-continuity of the function at the point. The g-differentiability of a function only guarantees the 
g-continuity at the points of (a, b)\(Cg ∪Dg ∪Ng).

Definition 3.4 (C1
g([a, b]; F) space). Let g : R → R be such that a /∈ N−

g and b /∈ N+
g ∪ Dg. We say that 

f : [a, b] → F belongs to C1
g([a, b]; F) if the following conditions are met:

1. f ∈ Cg([a, b]; F),
2. ∃f ′

g(x), for every x ∈ [a, b]\Cg,
3. ∃h ∈ Cg([a, b]; F) such that h(x) = f ′

g(x), for every x ∈ [a, b]\Cg.

Unless necessary, we will write C1
g ([a, b]) instead of C1

g([a, b]; F) for brevity.

Let us show now that if we assume that b /∈ Cg (observe that, in that case, the hypothesis [a, b] \Cg �= ∅
is trivially satisfied) the previous definition is consistent insofar as the function given by 3, if it exists, it is 
unique.

Proposition 3.5. Let [a, b] ⊂ R be a closed interval, g : R → R a derivator such that a /∈ N−
g and b /∈

Cg ∪N+
g ∪Dg and f ∈ Cg([a, b]; F) be g-differentiable at every x ∈ [a, b]\Cg. If h1, h2 ∈ Cg([a, b]) are such 

that h1(x) = h2(x) = f ′
g(x), for every x ∈ [a, b]\Cg, then h1 = h2.

Proof. Let us show that h1(x) = h2(x) for every x ∈ Cg. Given x̃ ∈ Cg, there exists a unique connected 
component of Cg, (an, bn), such that x̃ ∈ (an, bn). Let us see that h1(x̃) = h2(x̃) = f ′

g(bn). Indeed, since h1

is g-continuous, we have, by Proposition 2.10, that h1 is constant on (an, bn) and left-continuous, therefore, 
h1(x̃) = h1(bn) = f ′

g(bn) for every x ∈ (an, bn). The case of h2 is proven analogously. �
Remark 3.6. Observe that if b ∈ Cg, given a function f ∈ C1

g([a, b]) the function h ∈ Cg([a, b]) such that 
f ′
g(x) = h(x) for every x ∈ [a, b] \ Cg is not uniquely defined in a neighborhood of point b since we can not 

compute the g-derivative at x = bn, with b ∈ (an, bn) ⊂ Cg.
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A possible way of defining the g-derivative at the points of Cg, which is coherent with the definition 
of the space C1

g , follows from the previous proof. Indeed, we can generalize Definition 3.1 in the following 
terms.

Definition 3.7. Let [a, b] ⊂ R be a closed interval and g : R → R a derivator such that a /∈ N−
g and 

b /∈ Cg ∪N+
g ∪Dg. We define the Stieltjes derivative, or g–derivative, of a function f : [a, b] → F at a point 

t ∈ [a, b] as

f ′
g(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

lim
s→t

f(s) − f(t)
g(s) − g(t) , t /∈ Dg ∪ Cg,

lim
s→t+

f(s) − f(t)
g(s) − g(t) , t ∈ Dg,

lim
s→b+n

f(s) − f(bn)
g(s) − g(bn) , t ∈ (an, bn) ⊂ Cg,

(3.3)

with an, bn as in (2.1); provided the corresponding limits exist. In that case, we say that f is g–differentiable 
at t. The g-derivative in the points Ng must be understood as in (3.1).

Remark 3.8. It follows from the Definition 3.7 that, for t ∈ Dg, f ′
g(t) exists if and only if f(t+) exists and, 

in that case,

f ′
g(t) = f(t+) − f(t)

Δ+g(t) .

Similarly, for any t ∈ (an, bn) ⊂ Cg, we have that f ′
g(t) exists if and only if f ′

g(bn) exists and, in that case, 
f ′
g(t) = f ′

g(bn).

The following result which includes some basic properties of the Stieltjes derivative is a generalization of 
[12, Proposition 3.13].

Proposition 3.9. Let [a, b] ⊂ R be a closed interval and g : R → R a derivator such that a /∈ N−
g and 

b /∈ Cg ∪N+
g ∪Dg. Given an element t ∈ [a, b] we denote by:

t∗ =
{

t, t /∈ Cg,

bn, t ∈ (an, bn) ⊂ Cg,

with an, bn as in (2.1). If f1, f2 are two g-differentiable functions at t, then:

• The function λ1f1 + λ2f2 is g-differentiable at t for any λ1, λ2 ∈ R and

(λ1f1 + λ2f2)′g (t) = λ1 (f1)′g (t) + λ2 (f2)′g (t).

• The product f1f2 is g-differentiable at t and

(f1f2)′g (t) = (f1)′g (t)f2(t∗) + (f2)′g (t)f1(t∗) + (f1)′g (t) (f2)′g (t)Δ+g(t∗). (3.4)

• If f2(t∗) (f2(t∗) + (f2)′g(t) Δ+g(t∗)) �= 0, the quotient f1/f2 is g-differentiable at t and

(
f1

f

)′
(t) =

(f1)′g (t)f2(t∗) − (f2)′g (t)f1(t∗)
f (t∗) (f (t∗) + (f )′ (t) Δ+g(t∗)) (3.5)
2 g 2 2 2 g
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Proof. We only need to show that the result holds for t ∈ Cg as any other case is covered by [12, Proposi-
tion 3.13].

Let t ∈ (an, bn) ⊂ Cg and λ1, λ2 ∈ R. Then, it follows from Remark 3.8 that f1, f2 are g-differentiable at 
bn. Now, [12, Proposition 3.13] ensures that λ1f1 + λ2f2 and f1f2 are g-differentiable at bn and, provided 
that f2(bn) (f2(bn) + (f2)′g(bn) Δ+g(bn)) �= 0, so is f1/f2. Furthermore, we also have that

(λ1f1 + λ2f2)′g (bn) = λ1 (f1)′g (bn) + λ2 (f2)′g (bn),

(f1f2)′g (bn) = (f1)′g (bn)f2(bn) + (f2)′g (bn)f1(bn) + (f1)′g (bn) (f2)′g (bn)Δ+g(bn),(
f1

f2

)′
g

(bn) =
(f1)′g (bn)f2(bn) − (f2)′g (bn)f1(bn)
f2(bn) (f2(bn) + (f2)′g(t) Δ+g(bn)) .

Now the result follows from Remark 3.8 and the fact that t∗ = bn in this case. �
Remark 3.10. Other expressions for (3.4) and (3.5) can be obtained when the functions are also g-continuous 
on [a, b]. Under this condition, we have that

(f1f2)′g (t) = (f1)′g (t)f2(t) + (f2)′g (t)f1(t) + (f1)′g (t) (f2)′g (t)Δ+g(t∗),(
f1

f2

)′
g

(t) =
(f1)′g (t)f2(t) − (f2)′g (t)f1(t)

f2(t) (f2(t) + (f2)′g(t) Δ+g(t∗)) .

Indeed, the formulas are clear for t /∈ Cg, so we shall focus on the case t ∈ (an, bn) ⊂ Cg for some an, bn
in (2.1). In that case, and since g is left-continuous, we have that g is constant on [t, bn], which forces the 
same character onto f1 and f2. Therefore, it follows that f1(t∗) = f1(t) and f2(t∗) = f2(t), from which the 
formulas follow.

Definition 3.11. Let g : R → R be such that a /∈ N−
g and b /∈ Cg ∪ N+

g ∪ Dg. Given k ∈ N, we define 
C0
g([a, b]; F) = Cg([a, b]; F) and Ck

g ([a, b]; F) recursively as

Ck
g ([a, b]) = {f ∈ Ck−1([a, b];F) : (f (k−1)

g )′g ∈ Cg([a, b];F)},

where f (0)
g = f and f (k)

g = (f (k−1)
g )′g, k ∈ N. We also define C∞

g ([a, b]; F) :=
⋂

n∈N Ck
g ([a, b]; F). Unless 

necessary, we will write Ck
g ([a, b]) instead of Ck

g ([a, b]; F) for brevity.

Now we endow Ck
g ([a, b]) with a normed space structure. First, observe that g-continuous functions on 

[a, b] are not necessarily bounded [3, Example 3.3], so we will restrict ourselves to the space BCg([a, b]) of 
bounded g-continuous functions. This is a Banach space [3, Theorem 3.4] with the supremum norm

‖f‖0 = sup{|f(x)| : x ∈ [a, b]}.

Definition 3.12. Let g : R → R be such that a /∈ N−
g and b /∈ Cg ∪N+

g ∪Dg. We define:

BC1
g([a, b];F) := {f ∈ C1

g([a, b];F) : f, f ′
g ∈ BCg([a, b];F)}.

Analogously, given k ∈ N,

BCk
g([a, b];F) = {f ∈ Ck

g ([a, b];F) : f (n)
g ∈ BCg([a, b];F), ∀n = 0, . . . , k}

and we will denote by BC0
g([a, b]; F) = BCg([a, b]; F).
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In the following results we will assume that [a, b] ⊂ R and g : R → R is a derivator such that a /∈ N−
g

and b /∈ Cg ∪N+
g ∪Dg. We have that BCk

g([a, b]) ≡ BCk
g([a, b]; F) is a normed vector space with the norm

‖ · ‖k : BCk
g([a, b]) �→ R

f �→ ‖f‖k =
∑

0≤i≤k

‖f (i)
g ‖0

Before proving it is also a Banach space, we will present the following lemma.

Lemma 3.13. We have the continuous embedding BC1
g([a, b]) ↪→ ACg([a, b]). Furthermore, for every f ∈

BC1
g([a, b]),

f(x) = f(a) +
∫

[a,x)

f ′
g(s) dμg, ∀x ∈ [a, b].

Proof. This is an immediate consequence of [11, Theorem 6.2] and [11, Corollary 6.3]. Indeed, given f ∈
BC1

g([a, b]), it is clear that f ∈ BCg([a, b]). In particular, f is continuous from the left at the points in 
(a, b] ∩Dg and constant at the intervals where g is. On the other hand, f ′

g ∈ BCg([a, b]) ⊂ L1
g([a, b]). Hence, 

by the aforementioned results, f ∈ ACg([a, b]) and, furthermore,

f(x) = f(a) +
∫

[a,x)

f ′
g(s) dμg, ∀x ∈ [a, b]. �

We derive the following result from the previous lemma.

Lemma 3.14. Let h ∈ BCg([a, b]) and consider the function

H : x ∈ [a, b] → H(x) =
∫

[a,x)

h(s) dμg.

We have that H ′
g(x) = h(x), for every x ∈ [a, b] and, therefore, H ∈ BC1

g([a, b]).

Proof. Indeed, on the one hand, given that h ∈ BCg([a, b]) ⊂ L1
g([a, b)), it holds that H ∈ ACg([a, b]), so it 

is enough to prove that H ′
g(x) = h(x) for every x ∈ [a, b] to get the result. We study three different cases:

• For x ∈ Dg, it is clear that

H ′
g(x) = lim

s→x+

H(s) −H(x)
g(s) − g(x) = lim

s→x+

1
g(s) − g(x)

∫
[x,s)

h(s) dμg

= lim
s→x+

1
g(s) − g(x)

⎛⎜⎝∫
{x}

h(s) dμg +
∫

(x,s)

h(s) dμg

⎞⎟⎠ = lim
s→x+

h(x)Δ+g(x)
g(s) − g(x) = h(x).

• For x ∈ [a, b]\(Cg ∪Dg), let us compute the limit

lim H(s) −H(x)
,

s→x g(s) − g(x)
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on the domain of the function, namely, Dx = {s ∈ [a, b] : g(s) �= g(t)}. Fix ε > 0. Since h is g-
continuous and g is continuous at x, there exists δ > 0 such that |h(u) − h(x)| < ε if |u − x| < δ. Define 
�x, s� := [min{x, s}, max{x, s}). Now, for s ∈ [a, b] ∩Dx, |u − s| < δ, we have that

∣∣∣∣H(s) −H(x)
g(s) − g(x) − h(x)

∣∣∣∣ =
∣∣∣∣∣∣∣
sgn(s− x)
g(s) − g(x)

∫
�x,s�

h(u) dμg(u) − h(x)

∣∣∣∣∣∣∣
= 1
|g(s) − g(x)|

∣∣∣∣∣∣∣
∫

�x,s�

(h(u) − h(x)) dμg(u)

∣∣∣∣∣∣∣
≤ 1
|g(s) − g(x)|

∫
�x,s�

|h(u) − h(x)| dμg(u) ≤ 1
|g(s) − g(x)|

∫
�x,s�

ε dμg(u) = ε.

Thus,

lim
s→x

H(s) −H(x)
g(s) − g(x) = h(x).

• Finally, for x ∈ (an, bn) ⊂ Cg, it holds that

H ′
g(x) = H ′

g(bn) = h(bn) = h(x),

where the first equality comes from the definition of the g-derivative at the points of Cg and the last is 
a consequence of the g-continuity of h. �

Theorem 3.15. (BCk
g([a, b]), ‖ · ‖k) is a Banach space.

Proof. Let us check the case k = 1 (the case k ≥ 2 is analogous). Let {fn}n∈N ⊂ BC1
g([a, b]) be a Cauchy 

sequence. Then, {fn}n∈N ⊂ BCg([a, b]) and {(fn)′g}n∈N ⊂ BCg([a, b]) are Cauchy sequences in the Banach 
space BCg([a, b]) so there exist f, h ∈ BCg([a, b]) such that fn → f and (fn)′g → h in BCg([a, b]). Let us 
check that f ′

g(x) exists for every x ∈ [a, b] and that, furthermore, f ′
g = h. Indeed, let ε > 0. Since (fn)′g → h, 

there exists N ∈ N such that ‖(fn)′g − h‖0 ≤ ε/(g(a) − g(b)). Now, using Lemma 3.13, we have that

fn(x) − fn(a) =
∫

[a,x)

(fn)′g(s) dμg, ∀x ∈ [a, b],

whence, for n ≥ N ,∣∣∣∣∣∣∣
∫

[a,x)

(fn)′g(s) dμg −
∫

[a,x)

h(s) dμg

∣∣∣∣∣∣∣ ≤
∫

[a,x)

∣∣(fn)′g(s) − h(s)
∣∣ dμg ≤ ε, ∀x ∈ [a, b].

This means that

lim
n→∞

∫
[a,x)

(fn)′g(s) dμg =
∫

[a,x)

h(s) dμg

uniformly on [a, b]. Thus,
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lim
n→∞

(fn(x) − fn(a)) = lim
n→∞

∫
[a,x)

(fn)′g(s) dμg =
∫

[a,x)

h(s) dμg

uniformly on [a, b]. Hence,

f(x) = f(a) +
∫

[a,x)

h(s) dμg.

Since h ∈ BCg([a, b]), by Lemma 3.14, we get that f ′
g(x) = h(x) for all x ∈ [a, b] as we wanted to show. �

Let us study now the properties of the functions in BCn
g ([a, b]; F).

Remark 3.16. Observe that, given f1, f2 ∈ BC1
g([a, b]), the product f1 f2 /∈ BC1

g([a, b]) in general. This 
happens because the product (f1)′g (t) (f2)′g (t)Δ+g(t∗) might not be g-continuous. Indeed, take the following 
derivator

g : t ∈ R → g(t) =
{

t, t ≤ 0,
t + 2, t > 1,

and the function

f : t ∈ [−1, 1] → f(t) =
{

t, −1 ≤ t ≤ 0,
2, 0 < t ≤ 1.

Observe that Cg = ∅, therefore t∗ = t for all t ∈ [−1, 1]. It is easy to check that f ∈ BCg([a, b]) and its 
derivative,

f ′
g : t ∈ [−1, 1] → f ′

g(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, −1 ≤ t < 0,
f(0+) − f(0)

Δ+g(0) = 1, t = 0,

0, 0 < t ≤ 1,

is also g-continuous. On the other hand,

f2 : t ∈ [−1, 1] → f2(t) =
{

t2, −1 ≤ t ≤ 0,
4, 0 < t ≤ 1,

is g-continuous, but

(f2)′g : t ∈ [−1, 1] → (f2)′g(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2t, −1 ≤ t < 0,
f2(0+) − f2(0)

Δ+g(0) = 2, t = 0,

0, 0 < t ≤ 1,

is not g-continuous since limt→0−(f2)′g(t) = 0 �= 2 = (f2)′g(0). The problem, as mentioned before, relies on 
the g-continuity (or lack thereof) of the term (f)′g (t) (f)′g (t)Δ+g(t∗). Indeed, given an element t ∈ [−1, 1], 
we have that

(f2)′g(t) = 2f ′
g(t) f(t) + (f ′

g(t))2Δ+g(t∗).
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Now, even though

lim
t→0−

2f ′
g(t) f(t) = 2f ′

g(0) f(0),

the same does not happen for

lim
t→0−

(f ′
g(t))2Δ+g(t∗) = 0 �= (f ′

g(0))2Δ+g(0∗) = 2.

The problem in the lack of continuity of the previous term can be solved if one of the functions involved 
in the product is also continuous at the points of the discontinuity of the derivator, that is, if it is also 
continuous in the usual sense, as the following proposition shows.

Proposition 3.17. Given f1 ∈ BC1
g([a, b]) ∩ C([a, b]) and f2 ∈ BC1

g([a, b]), it holds that f1f2 ∈ BC1
g([a, b]) and

(f1f2)′g (x) = (f1)′g (x)f2(x) + (f2)′g (x)f1(x), ∀x ∈ [a, b]. (3.6)

In particular, if f1 ∈ BC1
g([a, b]) ∩ BCgC ([a, b]) and f2 ∈ BC1

g([a, b]), we have that (3.6) holds.

Proof. By the continuity of f1, given x ∈ [a, b] ∩Dg, we have that (f1)′g(x) = 0. Hence, Proposition 3.9 and 
the definition of the g-derivative at the points of Cg imply that

(f1f2)′g(x) = (f1)′g (x)f2(x) + (f2)′g (x)f1(x), ∀x ∈ [a, b].

Therefore, (f1f2)′g ∈ BCg([a, b]) and, thus, f1f2 ∈ BC1
g([a, b]). �

In the following corollary, which can be obtained from Proposition 3.17 using induction, we provide a 
generalization of Proposition 3.17.

Corollary 3.18. Given f1 ∈ BCn
g ([a, b]) ∩ BCn−1

gC ([a, b]) and f2 ∈ BCn
g ([a, b]), we have that f1f2 ∈ BCn

g ([a, b]).

4. First order linear Stieltjes differential equations

To simplify the notation we will work on the interval [a, b] = [0, T ]. In this section we will analyze a 
first order linear Stieltjes differential equation where the coefficients and data are complex valued functions. 
Additionally, we will prove further properties of the solution and we will show that, under some regularity 
conditions for coefficients and data, it is possible to obtain solutions in the space BC1

g([0, T ]; F). In order 
to correctly define the regular solutions in the space BC1

g([0, T ]; F) we will assume that 0 /∈ N−
g and 

T /∈ N+
g ∪ Dg ∪ Cg. This consideration is not necessary when looking for solutions in the space of the 

absolutely continuous functions.

4.1. The homogeneous case

Let us consider the first order homogeneous linear problem{
v′g(t) − β(t) v(t) = 0, g − a.e. t ∈ [0, T ),
v(0) = v0,

(4.1)

where β ∈ L1
g([0, T ]; F) and v0 ∈ F . The solution of problem (4.1) was given, for the first time, in [3] for 

the real case. In this section we will analyze the existence of solution in the complex case and see how to 
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recover the particular cases studied in [3]. Apart from the generalization proposed here for the complex 
case, we present a constructive proof of the expression of the solution which brings light to the nature of 
the structure of the solutions of problem (4.1).

For the work ahead, we will need to use the chain rule for the Stieltjes derivative. In [12, Proposition 3.15]
we can find a version of the result for the derivative of real valued functions at a continuity point of the 
derivator. Here, we introduce the following more general version.

Proposition 4.1. Let t ∈ [0, T ], f : [0, T ] → R and h : R → F . Then, the following hold:

1. If t∗ ∈ [0, T ]\(Dg ∪Cg) (where t∗ is as in Proposition 3.9) and there exist h′(f(t∗)) and f ′
g(t), then h ◦f

is g-differentiable at t and

(h ◦ f)′g(t) = h′(f(t∗))f ′
g(t). (4.2)

2. If t ∈ Dg and

f(s) = f(t), s ∈ (t, t + δ) for some δ > 0, (4.3)

then f ′
g(t) = (h ◦ f)′g(t) = 0. In particular, (4.2) holds provided h′(f(t)) exists.

3. Suppose that t ∈ Dg and condition (4.3) does not hold. If f(t+) exists, h is continuous at f(t+) and the 
limit

lim
s→t+

h(f(s)) − h(f(t))
f(s) − f(t) (4.4)

exists, then there exist f ′
g(t) and (h ◦ f)′g(t) and

(h ◦ f)′g(t) = h(f(t+)) − h(f(t))
f(t+) − f(t) f ′

g(t).

Proof. First, observe that 1 follows directly from [12, Proposition 3.15] in the case t ∈ [0, T ]\(Dg ∪Cg) and 
from the definition of the g-derivative at points of Cg for the case t ∈ (an, bn) ⊂ Cg and bn �∈ Dg. Noting 
that (4.3) guarantees that f(t+) = f(t) and (h ◦ f)(t+) = (h ◦ f)(t) is enough to obtain 2. Finally, for 3, the 
hypotheses ensure that f ′

g(t) exists and

lim
s→t+

h ◦ f(s) = h(f(t+)),

so (h ◦ f)′g(t) also exists. On the other hand, given that (4.3) does not hold, we can find {tn}n∈N ⊂ [0, T ]
such that tn → t, tn > t, and f(tn) �= f(t) for all n ∈ N. Hence, given (4.4), we have that

(h ◦ f)′g(t) = lim
n→∞

h(f(tn)) − h(f(t))
g(tn) − g(t)

= lim
n→∞

h(f(tn)) − h(f(t))
f(tn) − f(t)

f(tn) − f(t)
g(tn) − g(t) = h(f(t+)) − h(f(t))

f(t+) − f(t) f ′
g(t). �

For the following theorem, we will denote by ln(z) := ln |z| + i Arg(z) for z ∈ C the principal branch of 
the complex logarithm where Arg is the principal argument.

Theorem 4.2. Assume μg(Dg\Dg) = 0. Let β ∈ L1
g([0, T ), F) be such that 1 + β(t)Δ+g(t) �= 0 for every 

t ∈ [0, T ) ∩Dg. Then there exists a unique solution v ∈ ACg([0, T ]; F) of problem (4.1) which, furthermore, 
is of the form
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v(t) = vB(t) vC(t),

where vB ∈ ACgB ([0, T ]; F) is the unique solution of the problem{
v′gB (t) − β(t) v(t) = 0, gB − a.e. t ∈ [0, T ),
v(0) = 1,

(4.5)

given by

vB(t) =
∏

s∈[0,t)∩Dg

(
1 + β(s)Δ+g(s)

)
; (4.6)

and vC ∈ ACgC ([0, T ]; F) is the unique solution of{
v′gC (t) − β(t) v(t) = 0, gC − a.e. t ∈ [0, T ),
v(0) = v0,

(4.7)

given by

vC(t) = u(gC(t)), (4.8)

where u ∈ AC([0, T ]; F) is the unique solution of{
u′(t) = β̂(t)u(t), a.e. t ∈ [0, gC(T )),
u(0) = v0,

(4.9)

where β̂ = β ◦ γ and γ is provided by Definition 2.5.
Furthermore, v can be written as

v(t) = v0 exp

⎛⎜⎝ ∫
[0,t)

β̃(s) dμg

⎞⎟⎠ , (4.10)

with

β̃(t) =

⎧⎪⎨⎪⎩
β(t), t ∈ [0, T )\Dg,

ln (1 + β(t)Δ+g(t))
Δ+g(t) , t ∈ [0, T ) ∩Dg.

Proof. Existence and uniqueness: If v solves (4.1), then (x, y) where x := Re v and y := Im v solves the real 
system ⎧⎪⎨⎪⎩

x′
g(t) − Reβ(t)x(t) + Im β(t) y(t) = 0, g − a.e. t ∈ [0, T ),

y′g(t) − Im β(t)x(t) − Reβ(t) y(t) = 0, g − a.e. t ∈ [0, T ),
x(0) = Re v0, y(0) = Im v0,

(4.11)

and vice-versa, that is, the function x + iy, where (x, y) is a solution of (4.11), solves (4.1). Now, it is easy 
to see that (4.11) satisfies the conditions of [6, Theorem 4.3] with L = | Re(β)| + | Im(β)|, so it has a unique 
solution on [0, T ]. Hence, (4.1) has a unique solution there as well.



F.J. Fernández et al. / J. Math. Anal. Appl. 511 (2022) 126010 17
Expression of the solution: Given the nature of problem (4.1) where the g-derivative has to be a multiple 
of itself it is only natural to use an ansatz of the form

v(t) = v0 exp

⎛⎜⎝ ∫
[0,t)

β̃(s) dμg

⎞⎟⎠ ,

with β̃ ∈ L1
g([0, T ); F). Given that Mg ⊂ MgC and Mg ⊂ MgB , it is clear that if β̃ ∈ L1

g([0, T ); F), then 

β̃ ∈ L1
gC ([0, T ); F) and β̃ ∈ L1

gB ([0, T ); F). Furthermore,

v(t) = v0 exp

⎛⎜⎝ ∫
[0,t)

β̃(s) dμgB +
∫

[0,t)

β̃(s) dμgC

⎞⎟⎠
= v0 exp

⎛⎜⎝ ∫
[0,t)

β̃(s) dμgB

⎞⎟⎠ exp

⎛⎜⎝ ∫
[0,t)

β̃(s) dμgC

⎞⎟⎠ = vB(t) vC(t),

where vB(t) := exp
(∫

[0,t) β̃(s) dμB
g

)
and vC(t) := v0 exp

(∫
[0,t) β̃(s) dμC

g

)
. From the definition we deduce 

that vB ∈ ACgB ([0, T ]; F) and vC ∈ ACgC ([0, T ]; F). Hence, given the gB-continuity of vB, we have that 
(vB)′g(t) = 0 for every t ∈ [0, T )\(Dg∪Cg) and, thanks to the gC-continuity of vC , it holds that (vC)′g(t) = 0
for every t ∈ [0, T ) ∩Dg. Thus, by Proposition 3.9,

v′g(t) =
{

(vB)′g(t) vC(t), t ∈ [0, T ) ∩Dg,

vB(t) (vC)′g(t), g − a.e. t ∈ [0, T )\(Dg ∪ Cg).

This implies that we will have a different equation for each of the components of the solution:

(vB)′g(t) = β(t) vB(t), t ∈ [0, T ) ∩Dg, (4.12)

(vC)′g(t) = β(t) vC(t), g − a.e. t ∈ [0, T )\(Dg ∪ Cg). (4.13)

We will start studying equation (4.12). For t ∈ [0, T ) ∩Dg we have that

(vB)′g(t) = vB(t+) − vB(t)
Δ+g(t) = (vB)′gB (t).

Now, if we develop equation (4.12):

vB(t+) − vB(t)
Δ+g(t) = β(t) vB(t)

and we get that

vB(t+) = vB(t)(1 + β(t) Δ+g(t)), t ∈ [0, T ) ∩Dg. (4.14)

In order to get a solution candidate for equation (4.12), define h(t) = ln(1 + β(t)Δ+g(t))/Δ+g(t) if 
t ∈ Dg, h(t) = 0 if t /∈ Dg. Then, taking into account that μgB (t) = 0 for every t /∈ Dg, we define
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H(t) := exp

⎛⎜⎝ ∫
[0,t)

h(t) dμgB

⎞⎟⎠ = exp

⎛⎜⎝ ∫
[0,t)

ln(1 + β(s)Δ+g(s))
Δ+g(s) dμgB

⎞⎟⎠
= exp

⎛⎝ ∑
s∈[0,t)∩Dg

ln(1 + β(s)Δ+g(s))

⎞⎠
= exp

⎛⎝ ∑
s∈[0,t)∩Dg

(
ln
∣∣1 + β(s)Δ+g(s)

∣∣+ i Arg(1 + β(s)Δ+g(s))
)⎞⎠ .

To show that H is well defined, let us check that the series∑
s∈[0,t)∩Dg

ln
∣∣1 + β(s)Δ+g(s)

∣∣ and
∑

s∈[0,t)∩Dg

Arg(1 + β(s)Δ+g(s))

are absolutely convergent. We have that∑
s∈[0,T )∩Dg

∣∣ln ∣∣1 + β(s)Δ+g(s)
∣∣∣∣ =∑

s∈A

∣∣ln ∣∣1 + β(s)Δ+g(s)
∣∣∣∣+∑

s∈B

∣∣ln ∣∣1 + β(s)Δ+g(s)
∣∣∣∣ ,

where

A =
{
s ∈ [0, T ) ∩Dg :

∣∣1 + β(s)Δ+g(s)
∣∣ ≥ 1
}

=
{
s ∈ [0, T ) ∩Dg : ln

∣∣1 + β(s)Δ+g(s)
∣∣ ≥ 0
}
,

B =
{
s ∈ [0, T ) ∩Dg :

∣∣1 + β(s)Δ+g(s)
∣∣ < 1
}

=
{
s ∈ [0, T ) ∩Dg : ln

∣∣1 + β(s)Δ+g(s)
∣∣ < 0
}
.

In order to bound the sum on A it is enough to take into account that 0 ≤ ln(1 +x) ≤ x for every x ∈ [0, ∞):∑
s∈A

∣∣ln ∣∣1 + β(s)Δ+g(s)
∣∣∣∣ =∑

s∈A

ln
∣∣1 + β(s)Δ+g(s)

∣∣ ≤∑
s∈A

ln
(
1 + |β(s)|Δ+g(s)|

)
≤
∑
s∈A

|β(s)|Δ+g(s) < ∞,

because β ∈ L1
gB ([0, T ), F).

Now, let us focus on the sum on B. For any s ∈ B, taking into account that 1 + β(s)Δ+g(s) �= 0, we 
have that

0 <
∣∣1 + β(s) Δ+g(s)

∣∣2 = [1 + Re(β(s)) Δ+g(s)]2 + [Im(β(s)) Δ+g(s)]2
= 1 + 2 Re(β(s)) Δ+g(s) + |β(s) Δ+g(s)|2 < 1.

In particular, 2 Re(β(s)) Δ+g(s) + |β(s) Δ+g(s)|2 < 0 which yields Re(β(s)) < 0. Now, we can consider the 
following sets:

B1 =
{
s ∈ B : 0 < 1 + 2 Re(β(s))Δ+g(s) + |β(s)Δ+g(s)|2 <

1
2

}
,

B2 =
{
s ∈ B : 1

2 ≤ 1 + 2 Re(β(s))Δ+g(s) + |β(s)Δ+g(s)|2 < 1
}
.

Observe that B = B1 ∪B2. The definition of B1 implies that

1 > 2 |Re(β(s))|Δ+g(s) − |β(s)Δ+g(s)|2 >
1
2 , ∀s ∈ B1.

Therefore,
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|Re(β(s))|Δ+g(s) > 1
4 , ∀s ∈ B1.

Hence, we have that B1 is finite since, otherwise, we would have that β /∈ L1
gB ([0, T ), F), which is a 

contradiction. For the elements in the set B2 we have that:

1
2 ≥ 2 |Re(β(s))|Δ+g(s) − |β(s)Δ+g(s)|2 > 0, ∀s ∈ B2.

Thus, if we take into account that ln(1/(1 − x)) ≤ 2x, for every x ∈ [0, 1/2],

∣∣ln ∣∣1 + β(s)Δ+g(s)
∣∣∣∣ = 1

2
∣∣ln (1 + 2 Re(β(s))Δ+g(s) + |β(s)Δ+g(s)|2

)∣∣
= 1

2 ln
(
1/
(
1 + 2 Re(β(s))Δ+g(s) + |β(s)Δ+g(s)|2

))
= 1

2 ln
(
1/
(
1 −
(
2 |Re(β(s))|Δ+g(s) − |β(s)Δ+g(s)|2

)))
≤ 2
(
2 |Re(β(s))|Δ+g(s) − |β(s)Δ+g(s)|2

)
≤ 4|Re(β(s))|Δ+g(s).

Hence, ∑
s∈B

∣∣ln ∣∣1 + β(s)Δ+g(s)
∣∣∣∣ < ∞.

Let us now bound the term associated with the argument. Taking into account that |atan(x)| ≤ |x| for every 
x ∈ R, we have that

∑
s∈[0,T )∩Dg

∣∣Arg(1 + β(s)Δ+g(s))
∣∣ ≤ ∑

s∈[0,T )∩Dg

|Im(β(s))Δ+g(s)|
|1 + Re(β(s))Δ+g(s)| .

Let us divide the set [0, T ) ∩Dg into the subsets

B̃1 =
{
s ∈ [0, T ) ∩Dg : |Re(β(s))|Δ+g(s) > 1/2

}
,

B̃2 = ([0, T ) ∩Dg)\B̃1.

Observe that B̃1 must be of finite cardinality. On the other hand, given t ∈ B̃2,

∣∣1 + Re(β(s))Δ+g(s)
∣∣ ≥ 1

2 .

Thus,

∑
s∈B2

|Im(β(s))Δ+g(s)|
|1 + Re(β(s))Δ+g(s)| ≤ 2

∑
s∈B2

∣∣Im(β(s))Δ+g(s)
∣∣ < ∞.

Hence, we conclude that H is well defined. In order to prove that H is a solution of (4.12), we observe that, 
given t ∈ [0, T ) ∩Dg,

H(t+) = lim
s→t+

exp

⎛⎜⎝ ∫ ln(1 + β(s)Δ+g(s))
Δ+g(s) dμgB

⎞⎟⎠

[0,s)
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= lim
s→t+

exp

⎛⎜⎝ ∫
[0,t)

ln(1 + β(s)Δ+g(s))
Δ+g(s) dμgB + ln(1 + β(t)Δ+g(t)) +

∫
(t,s)

ln(1 + β(s)Δ+g(s))
Δ+g(s) dμgB

⎞⎟⎠

=(1 + β(t)Δ+g(t)) exp

⎛⎜⎝ ∫
[0,t)

ln(1 + β(s)Δ+g(s))
Δ+g(s) dμgB

⎞⎟⎠ = (1 + β(t)Δ+g(t))H(t),

so equation (4.14) holds and vB := H is a solution of (4.12). Observe that, given any set A ⊂ [0, T )\Dg, 
we have A = (A\Dg) ∪ (A ∩ (Dg\Dg)) thus μ∗

gB (A) ≤ μ∗
gB (A\Dg) + μ∗

gB (A ∩ (Dg\Dg)) ≤ μ∗
gB (A\Dg) +

μ∗
g(Dg\Dg) = 0. Therefore vB satisfies (4.5) and, moreover,

vB(t) = exp

⎛⎝ ∑
s∈[0,t)∩Dg

ln(1 + β(s)Δ+g(s))

⎞⎠ =
∏

s∈[0,t)∩Dg

(
1 + β(s)Δ+g(s)

)
.

Let us now study equation (4.13). First, observe that, given an element t ∈ [0, T )\(Dg ∪Cg), there exists 
δ > 0 such that g is continuous on (t − δ, t + δ). In the case t ∈ N−

g we further know that g is strictly 
increasing on the interval (t − δ, t], and constant on (t, t + δ). In the case t ∈ N+

g , g would be constant on 
(t − δ, t) and strictly increasing on [t, t + δ). In any case (observe that, if t ∈ N−

g we have to take the limit 
from the left and in the case t ∈ N+

g the limit from the right, respectively):

(vC)′g(t) = lim
s→t

vC(s) − vC(t)
g(s) − g(t) = lim

s→t

vC(s) − vC(t)
gC(s) − gC(t) = (vC)′gC (t).

Hence, taking into account that μ∗
g(A) = 0 ⇔ μ∗

gC (A) = 0 for any A ⊂ [0, T )\Dg, together with the fact 
that Cg = CgC , we see that equation (4.13) is equivalent to

(vC)′gC (t) = β(t) vC(t), gC − a.e. t ∈ [0, T )\(Dg ∪ CgC ). (4.15)

Let us observe that μgC (Dg ∪ CgC ) ≤ μgC (Dg\Dg) + μgC (Dg) + μgC (CgC ) = 0, since μgC (Dg\Dg) ≤
μg(Dg\Dg) = 0 by hypothesis. Therefore, (4.15) is equivalent to:

(vC)′gC (t) = β(t) vC(t), gC − a.e. t ∈ [0, T ). (4.16)

Now we will see that vC(t) := u(gC(t)), with u ∈ AC([0, gC(T )]; F) the solution of (4.9) satisfies equa-
tion (4.16). On the one hand, we have that β̂ = β ◦ γ ∈ L1([0, gC(T )]; F). Indeed, the measurability is a 
consequence of Proposition 2.7. Now, using a similar argument as the one in the proof of Corollary 2.8:∫

[0,gC(T ))

|β̂| dμ =
∫

[0,T )

|β| dμgC ≤
∫

[0,T )

|β| dμg < ∞.

Thus, (4.9) admits a unique solution

u(t) = v0 exp

⎛⎜⎝ ∫
[0,t)

β̂(s) dμ

⎞⎟⎠ ∈ AC([0, gC(T )];F).

In particular, vC(t) = u(gC(t)) is such that (vC)′g(t) = 0 for every t ∈ Dg. Indeed,
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(vC)′g(t) = lim
s→t+

vC(s) − vC(t)
g(s) − g(t) = lim

s→t+

u(gC(s)) − u(gC(t))
g(s) − g(t) = 0,

thanks to the continuity of the composition u ◦ gC . On the other hand, since u ∈ AC([0, gC(T )]; F) is the 
solution of (4.9), there exists a Lebesgue-null set N ⊂ [0, gC(T )] such that

u′(t) = β̂(t)u(t), ∀t ∈ [0, gC(T )]\N.

In particular,

u′(gC(t)) = β̂(gC(t))u(gC(t)), ∀t ∈ [0, T ]\(gC)−1(N),

whence, by Proposition 4.1,

(vC)′gC (t) = u′(gC(t)) = β̂(gC(t))u(gC(t)), ∀t ∈ [0, T ]\(gC)−1(N).

Taking into account that γ(gC(t)) = t for every t ∈ [0, T ]\(CgC ∪N+
gC ), that μgC (CgC ∪N+

gC ) = 0 and that 
μgC ((gC)−1(N)) = 0 (see the proof of Proposition 2.7), we deduce that

(vC)′gC (t) = β(t) vC(t), gC-a.e. t ∈ [0, T ).

Last, in regard to vC , using a reasoning similar to the one used in the proof of the Corollary 2.8, we have 
that

vC(t) = u(gC(t)) = v0 exp

⎛⎜⎝ ∫
[0,gC(t))

β̂(s) dμ

⎞⎟⎠ = v0 exp

⎛⎜⎝ ∫
[0,t)

β(s) dμgC

⎞⎟⎠ .

Finally, let us check that v := vC vB is in the space ACg([0, T ]; F). To show this, let us define

β̃(t) =

⎧⎪⎨⎪⎩
β(t), t ∈ [0, T )\Dg,

ln (1 + β(t)Δ+g(t))
Δ+g(t) , t ∈ [0, T ) ∩Dg,

and check that

v(t) = v0 exp

⎛⎜⎝ ∫
[0,t)

β̃(s) dμg

⎞⎟⎠ = v0 exp

⎛⎜⎝ ∫
[0,t)\Dg

β̃(s) dμg +
∑

s∈[0,t)∩Dg

β̃(s)Δ+g(s)

⎞⎟⎠ .

Indeed, on the one hand,

v(t) = v0

⎡⎣ ∏
s∈[0,t)∩Dg

(
1 + β(s)Δ+g(s)

)⎤⎦ exp

⎛⎜⎝ ∫
[0,gC(t))

β̂(s) dμ

⎞⎟⎠
= v0 exp

⎛⎜⎝ ∫
[0,gC(t))

β̂(s) dμ +
∑

s∈[0,t)∩Dg

ln (1 + β(s)Δ+g(s))
Δ+g(s) Δ+g(s)

⎞⎟⎠ .

Now, thanks to the fact that μ(Dg) = 0 as it is a countable set, we see that
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∫
[0,gC(t))

(β ◦ γ)(s) dμ =
∫

[0,gC(t))

(β̃ ◦ γ)(s) dμ.

Thus, by Corollary 2.8,∫
[0,t)

β̃(s) dμg =
∫

[0,gC(t))

β̂(s) dμ +
∑

s∈[0,t)∩Dg

ln (1 + β(s)Δ+g(s))
Δ+g(s) Δ+g(s).

Finally, it is clear that β̃ ∈ L1
g([0, T ); F), therefore v ∈ ACg([0, T ); F). �

Remark 4.3. We must take into account the following remarks:
1. If gC is constant, then the solution of (4.1) is reduced to v0 v

B and the hypothesis μg(Dg\Dg) = 0 is 
not necessary.

2. The hypothesis μg(Dg\Dg) = 0 that appears in the statement of Theorem 4.2 has been used to express 
the solution of (4.1) as the product of the solutions of the problems (4.5) and (4.7). This hypothesis is not 
essential to guarantee the existence of a solution of problem (4.1). Even in the case μg(Dg\Dg) �= 0, we will 
have (4.10) is well defined and a valid solution of problem (4.1). Indeed, since β̃ ∈ L1

g([0, T ); F), we have 
that ⎛⎜⎝ ∫

[0,t)

β̃(s) dμg

⎞⎟⎠
′

g

(t) = β̃(t), g-a.e. t ∈ [0, T ).

Therefore, (4.2) ensures that⎛⎜⎝exp

⎛⎜⎝ ∫
[0,t)

β̃(s) dμg

⎞⎟⎠
⎞⎟⎠

′

g

(t) = β(t) exp

⎛⎜⎝ ∫
[0,t)

β(s) dμg

⎞⎟⎠ , g-a.e. t ∈ [0, T ) \Dg. (4.17)

Now, given t ∈ [0, T ) ∩Dg,

lim
s→t+

exp

⎛⎜⎝ ∫
[0,s)

β̃(s) dμg

⎞⎟⎠ = lim
s→t+

exp

⎛⎜⎝ ∫
[0,t)

β̃(s) dμg + ln(1 + β(t)Δ+g(t)) +
∫

(t,s)

β̃(s) dμg

⎞⎟⎠

=(1 + β(t)Δ+g(t)) exp

⎛⎜⎝ ∫
[0,t)

β̃(s) dμg

⎞⎟⎠ ,

so equation (4.17) is also satisfied for the points of Dg.

Remark 4.4. The previous result is a generalization of the results in [3, Section 6] for several reasons.
1. The solution obtained is valid in the complex case, whereas in [3] it is only applied to the real case. 

The generalization to the complex case is immediate considering the complex exponential and the principal 
branch of the complex logarithm.

2. We have proven that the hypothesis∑ ∣∣ln ∣∣1 + β(s)Δ+g(s)
∣∣∣∣ < ∞
s∈[0,T )∩Dg
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occurring in [3, Definition 6.1 and Lemma 6.5] is not necessary, it being a direct consequence of β ∈
L1
g([0, T ); F) and g(T ) < ∞. This was also proven in [13, Lemma 3.1] for the real case.
3. The solution obtained generalizes that in [3, Lemma 6.5]. Indeed, in the particular case β ∈ L1

g([0, T ); R)
and given that 1 + β(t)Δ+g(t) �= 0 for every t ∈ [0, T ) ∩Dg, we have that, for every t ∈ [0, T ) ∩Dg,

Arg(1 + β(t)Δ+g(t)) =
{

π, 1 + β(t)Δ+g(t) < 0,
0, 1 + β(t)Δ+g(t) > 0.

Hence, if we write T−
β := {t ∈ [0, T ) ∩Dg : 1 +β(t)Δ+g(t) < 0} and T+

β = {t ∈ [0, T ) ∩Dg : 1 +β(t)Δ+g(t) >
0} (observe that T−

β is of finite cardinality), we have that

ln
(
1 + β(t)Δ+g(t)

)
=
{

ln
∣∣1 + β(t)Δ+g(t)

∣∣ , t ∈ T+
β ,

ln
∣∣1 + β(t)Δ+g(t)

∣∣+ iπ, t ∈ T−
β .

Taking into account the previous observations,

v(t) = exp

⎛⎜⎝ ∫
[0,t)\Dg

β(s) dμg +
∑

t∈[0,t)∩Dg

ln
∣∣1 + β(t)Δ+g(t)

∣∣+ i
∑

s∈[0,t)∩T−
β

π

⎞⎟⎠
= cos

⎛⎜⎝ ∑
s∈[0,t)∩T−

β

π

⎞⎟⎠ exp

⎛⎜⎝ ∫
[0,t)\Dg

β(s) dμg +
∑

t∈[0,t)∩Dg

ln
∣∣1 + β(t)Δ+g(t)

∣∣
⎞⎟⎠ .

Hence, if T−
β = {t1, . . . , tk} and tk+1 := T , we get

v(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

exp

⎛⎜⎝ ∫
[0,t)\Dg

β(s) dμg +
∑

t∈[0,t)∩Dg

ln
∣∣1 + β(t)Δ+g(t)

∣∣
⎞⎟⎠ , t ∈ [0, t1],

cos(j π) exp

⎛⎜⎝ ∫
[0,t)\Dg

β(s) dμg +
∑

t∈[0,t)∩Dg

ln
∣∣1 + β(t)Δ+g(t)

∣∣
⎞⎟⎠ ,

t ∈ (tj , tj+1],
j = 1, . . . , k,

which is precisely the solution in [3, Lemma 6.5].
4. In the case that there exists some element t ∈ [0, T ) ∩Dg such that 1 + β(t)Δ+g(t) = 0, the set

T 0
β := {t ∈ [0, T ) ∩Dg : 1 + β(t)Δ+g(t) = 0}

is of finite cardinality and, therefore, if we denote by t0β := minT 0
β if T 0

β �= ∅, t0β := T otherwise, we have 
that

v(t) =

⎧⎨⎩ u(gC(t))
∏

s∈[0,t)∩Dg

(
1 + β(s)Δ+g(s)

)
, t ∈ [0, t0β ],

0, t ∈ (t0β , T ].

Taking into account that we are assuming that g is continuous at t = 0, we have that t0β = minT 0
β > 0. 

Thus, v(t) �= 0 for every t ∈ [0, t0β ].
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Definition 4.5. Given an element β ∈ L1
g([0, T ); F) and v0 = 1, we denote the solution of problem (4.1)

constructed in Theorem 4.2 by expg(β; 0, t) ∈ ACg([0, T ]; F) and call it the complex g-exponential map or 
just g-exponential map.

In the following result we present some important properties of the complex g-exponential function.

Proposition 4.6. Let β, β1, β2 ∈ L1
g([0, T ); F). The following properties hold:

1. If a = Reβ and b = Im β then

expg(β; 0, t) =
∏

u∈[0,t)∩Dg

(
1 + a(u)Δ+g(u) + ib(u)Δ+g(u)

)
exp

⎛⎜⎝ ∫
[0,gC(t))

(a ◦ γ) dμ

⎞⎟⎠

·

⎡⎢⎣cos

⎛⎜⎝ ∫
[0,gC(t))

(b ◦ γ) dμ

⎞⎟⎠+ i sin

⎛⎜⎝ ∫
[0,gC(t))

(b ◦ γ) dμ

⎞⎟⎠
⎤⎥⎦ .

(4.18)

2. expg(β; 0, t) = expg(β; 0, t), for every t ∈ [0, T ].
3. Given n ∈ N, expg(β; 0, t)n = expg(pn(β); 0, t) ∈ ACg([0, T ]; F), where

pn(β)(t) = nβ(t) +
n∑

k=2

(
n

k

)
β(t)kΔ+g(t)k−1, n ∈ N.

4. Given n ∈ N, expg(β; 0, t)−n = expg(qn(β); 0, t) ∈ ACg([0, t0β ]; F), where

qn(β)(t) = − pn(β)(t)
1 + pn(β)(t) Δ+g(t) , n ∈ N.

Observe that expg(β; 0, t)−n is not well defined in (t0β, T ] since expg(β; 0, ·) = 0 in that set.
5. For all t ∈ [0, T ),

expg(β1; 0, t) expg(β2; 0, t) = expg(β1 + β2 + β1β2Δ+g; 0, t). (4.19)

Proof. 1. Indeed,

expg(a + bi; 0, t)

= exp

⎛⎜⎝ ∫
[0,t)\Dg

a(s) dμg + i

∫
[0,t)\Dg

b(s) dμg

⎞⎟⎠ exp

⎛⎝ ∑
u∈[0,t)∩Dg

ln(1 + (a(u) + ib(u))Δ+g(u))

⎞⎠

= exp

⎛⎜⎝ ∫
[0,t)\Dg

a(s) dμg

⎞⎟⎠ ∏
u∈[0,t)∩Dg

(
1 + a(u)Δ+g(u) + ib(u)Δ+g(u)

)

·

⎡⎢⎣cos

⎛⎜⎝ ∫
[0,t)\Dg

b(s) dμg

⎞⎟⎠+ i sin

⎛⎜⎝ ∫
[0,t)\Dg

b(s) dμg

⎞⎟⎠
⎤⎥⎦ .

Now the formula is obtained reasoning as in Corollary 2.8.
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2. This property is clear from the definition of the complex conjugate.
3. Observe that pn(β) ∈ L1

g([0, T ); F) since

‖pn(β)‖L1
g([0,T );F) ≤ n ‖β‖L1

g([0,T ) +
n∑

k=2

(
n

k

) ∑
t∈[0,T )∩Dg

(
|β(t)|Δ+g(t)

)k
< ∞.

Thus the solution of problem (4.1) where we consider pn(β) instead of β is given by v = vBvC where

vB(t) =
∏

s∈[0,t)∩Dg

(
1 +
(
nβ(s) +

n∑
k=2

(
n

k

)
β(s)kΔ+g(s)k−1

)
Δ+g(s)

)
,

=
∏

s∈[0,t)∩Dg

(
1 + nβ(s)Δ+g(s) +

n∑
k=2

(
n

k

)
β(s)kΔ+g(s)k

)
,

=
∏

s∈[0,t)∩Dg

(
n∑

k=0

(
n

k

)
β(s)kΔ+g(s)k

)
=
∏

s∈[0,t)∩Dg

(
1 + β(s)Δ+g(s)

)n

=

⎛⎝ ∏
s∈[0,t)∩Dg

(
1 + β(s)Δ+g(s)

)⎞⎠n

,

vC(t) = exp

⎛⎜⎝ ∫
[0,t)

(
nβ(s) +

n∑
k=2

(
n

k

)
β(s)kΔ+g(s)k−1

)
dμgC

⎞⎟⎠ = exp

⎛⎜⎝n ∫
[0,t)

β(s) dμgC

⎞⎟⎠

=

⎡⎢⎣exp

⎛⎜⎝ ∫
[0,t)

β(s) dμgC

⎞⎟⎠
⎤⎥⎦
n

.

Hence, expg(β; 0, t)n = expg(pn(β); 0, t).
4. Observe that qn(β) ∈ L1

g([0, T ); F) since

‖qn‖L1
g([0,t0βT );F) ≤ n ‖β‖L1

g([0,T ) +
∑

t∈[0,T )∩Dg

|pn(β)(t) Δ+g(t)|
|1 + pn(β)(t) Δ+g(t)| < ∞,

because pn(β) ∈ L1
g([0, T ); F). Therefore, the solution to problem (4.1), where we consider qn(β) instead of 

β, is given by v = vBvC where

vB(t) =
∏

s∈[0,t)∩Dg

(
1 −

nβ(s) +
∑n

k=2
(
n
k

)
β(s)kΔ+g(s)k−1

1 +
(
nβ(s) +

∑n
k=2
(
n
k

)
β(s)kΔ+g(s)k−1

)
Δ+g(s)

Δ+g(s)
)
,

=
∏

s∈[0,t)∩Dg

(
1

1 +
(
nβ(s) +

∑n
k=2
(
n
k

)
β(s)kΔ+g(s)k−1

)
Δ+g(s)

)

=

⎛⎝ ∏
s∈[0,t)∩Dg

(
1 + β(s)Δ+g(s)

)⎞⎠−n

,

vC(t) = exp

⎛⎜⎝ ∫ −
nβ(s) +

∑n
k=2
(
n
k

)
β(s)kΔ+g(s)k−1

1 +
(
nβ(s) +

∑n
k=2
(
n
k

)
β(s)kΔ+g(s)k−1

)
Δ+g(s)

dμgC

⎞⎟⎠

[0,t)
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= exp

⎛⎜⎝ ∫
[0,t)

−nβ(s) dμgC

⎞⎟⎠ =

⎛⎜⎝exp

⎛⎜⎝ ∫
[0,t)

β(s) dμgC

⎞⎟⎠
⎞⎟⎠

−n

.

Hence, expg(β; 0, t)−n = expg(qn(β); 0, t).
5. Observe that β̃ = β1 + β2 + β1β2Δ+g ∈ L1

g([0, T ); F). Indeed,

‖β̃‖L1
g([0,T );F) ≤‖β1‖L1

g([0,T );F) + ‖β2‖L1
g([0,T );F) + ‖β1β2Δ+g‖L1

g([0,T );F)

≤‖β1‖L1
g([0,T );F) + ‖β2‖L1

g([0,T );F) + 1
2
∑

s∈[0,T )∩Dg

(
|β1(s)|2Δ+g(s)2 + |β2(s)|2Δ+g(s)2

)
.

Now, since βk ∈ L1
g([0, T ); F), we have that 

∑
s∈[0,T )∩Dg

|βk(s)|Δ+g(s) < ∞, k = 1, 2. Thus it is clear that ∑
s∈[0,T )∩Dg

|βk(s)|2Δ+g(s)2 < ∞, k = 1, 2, and we obtain that ‖β̃‖L1
g([0,T );F) < ∞. Therefore, the solution 

to problem (4.1) associated to β̃ is given by:

expg(β̃; 0, t) =
∏

s∈[0,t)∩Dg

(
1 + β̃(s)Δ+g(s)

)
exp

⎛⎜⎝ ∫
[0,t)

β̃(s) dμgC

⎞⎟⎠

=
∏

s∈[0,t)∩Dg

(
1 + β1(s)Δ+g(s)

) (
1 + β2(s)Δ+g(s)

)
exp

⎛⎜⎝ ∫
[0,t)

(β1(s) + β2(s)) dμgC

⎞⎟⎠

=
∏

s∈[0,t)∩Dg

(
1 + β1(s)Δ+g(s)

)
exp

⎛⎜⎝ ∫
[0,t)

β1(s) dμgC

⎞⎟⎠

×
∏

s∈[0,t)∩Dg

(
1 + β2(s)Δ+g(s)

)
exp

⎛⎜⎝ ∫
[0,t)

β2(s) dμgC

⎞⎟⎠
= expg(β1; 0, t) expg(β2; 0, t). �

Remark 4.7. We must mention that both the expression for the g-exponential (4.10), and the properties 3 
(for n = 2) and 4 (for n = 1) of the Proposition 4.6 can be obtained as particular cases of Proposition 8.5.4 
and Theorems 8.5.6 and 8.5.8 in [18], respectively. In our case we have developed the theory within the 
framework of Stieltjes differential equations to keep it self-contained.

4.2. g-Sine and g-cosine

Let us see now how to use the complex g-exponential map in order to define the g-sine and g-cosine
functions. We observe that the presence of jumps in the derivator prevents us from expressing the exponential 
as the product of its real and imaginary parts. Indeed, thanks to (4.19)

expg(a + bi; 0, t) = expg(a; 0, t) expg

(
i b

1 + aΔ+g
; 0, t
)

�= expg(a; 0, t) expg(i b; 0, t). (4.20)

This fact will have its repercussion when we study the case of second order linear equations. In view of 
expression (4.18), it might be interesting to consider the case a = 0, in order to define the g-sine and 
g-cosine.
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Definition 4.8 (g-sine and g-cosine). Let b ∈ L1
g([0, T ]; F). We define sing(b; 0, t) and cosg(b; 0, t), as the first 

and second components, respectively, of the unique solution in ACg([0, T ]; F2) of the following linear system:⎧⎪⎪⎨⎪⎪⎩
(

sing(b; 0, t)
cosg(b; 0, t)

)′

g

(t) =
(

0 b(t)
−b(t) 0

)(
sing(b; 0, t)
cosg(b; 0, t)

)
, g − a.e. t ∈ [0, T ),

sing(b; 0, 0) = 0, cosg(b; 0, 0) = 1.
(4.21)

Remark 4.9. Observe that (4.21) has, indeed, a unique solution in ACg([0, T ]; F2) as it satisfies the conditions 
of [3, Theorem 7.3] with L = |b|.

Proposition 4.10. Given b ∈ L1
g([0, T ]; R), we have that

sing(b; 0, t) =
expg(bi; 0, t) − expg(−bi; 0, t)

2i ,

cosg(b; 0, t) =
expg(bi; 0, t) + expg(−bi; 0, t)

2 .

(4.22)

Furthermore, developing the previous expressions,

sing(b; 0, t)

=
∏

u∈[0,t)∩Dg

∣∣1 + b(u) iΔ+g(u)
∣∣ sin
⎛⎝ ∑

u∈[0,t)∩Dg

atan(b(u) Δ+g(u))

⎞⎠ cos

⎛⎜⎝ ∫
[0,gC(t))

(b ◦ γ) dμ

⎞⎟⎠

+
∏

u∈[0,t)∩Dg

∣∣1 + b(u) iΔ+g(u)
∣∣ cos

⎛⎝ ∑
u∈[0,t)∩Dg

atan(b(u) Δ+g(u))

⎞⎠ sin

⎛⎜⎝ ∫
[0,gC(t))

(b ◦ γ) dμ

⎞⎟⎠ ,

cosg(b; 0, t)

=
∏

u∈[0,t)∩Dg

∣∣1 + b(u) iΔ+g(u)
∣∣ cos

⎛⎝ ∑
u∈[0,t)∩Dg

atan(b(u) Δ+g(u))

⎞⎠ cos

⎛⎜⎝ ∫
[0,gC(t))

(b ◦ γ) dμ

⎞⎟⎠

−
∏

u∈[0,t)∩Dg

∣∣1 + b(u) iΔ+g(u)
∣∣ sin
⎛⎝ ∑

u∈[0,t)∩Dg

atan(b(u) Δ+g(u))

⎞⎠ sin

⎛⎜⎝ ∫
[0,gC(t))

(b ◦ γ) dμ

⎞⎟⎠ .

Proof. Indeed, differentiating the equations in (4.22),

(sing(b; 0, t))′g (t) = 1
2i
(
ib(t) expg(bi; 0, t) + ib(t) expg(−bi; 0, t)

)
= b(t)1

2
(
expg(bi; 0, t) + expg(−bi; 0, t)

)
= b(t) cosg(b; 0, t), g − a.e. t ∈ [0, T ).

(cos(b; 0, t))′g (t) = 1
2
(
ib(t) expg(bi; 0, t) − ib(t) expg(−bi; 0, t)

)
= −b(t) 1

2i
(
expg(bi; 0, t) − expg(−bi; 0, t)

)
= −b(t) sing(b; 0, t), g − a.e. t ∈ [0, T ).

Observe also that expg(bi; 0, t) = expg(−bi; 0, t). Hence,



28 F.J. Fernández et al. / J. Math. Anal. Appl. 511 (2022) 126010
cosg(b; 0, t) = Re(expg(bi; 0, t)),
sing(b; 0, t) = Im(expg(bi; 0, t)).

In particular, we can obtain the explicit expression of the g-sine and the g-cosine separating the real and 
imaginary parts of expg(bi; 0, t). We have that

sing(b; 0, t) = cos

⎛⎜⎝ ∫
[0,gC(t))

(b ◦ γ) dμ

⎞⎟⎠ Im

⎛⎝ ∏
u∈[0,t)∩Dg

(
1 + b(u) iΔ+g(u)

)⎞⎠
+ sin

⎛⎜⎝ ∫
[0,gC(t))

(b ◦ γ) dμ

⎞⎟⎠ Re

⎛⎝ ∏
u∈[0,t)∩Dg

(
1 + b(u) iΔ+g(u)

)⎞⎠ ,

cosg(b; 0, t) = cos

⎛⎜⎝ ∫
[0,gC(t))

(b ◦ γ) dμ

⎞⎟⎠ Re

⎛⎝ ∏
u∈[0,t)∩Dg

(
1 + b(u) iΔ+g(u)

)⎞⎠
− sin

⎛⎜⎝ ∫
[0,gC(t))

(b ◦ γ) dμ

⎞⎟⎠ Im

⎛⎝ ∏
u∈[0,t)∩Dg

(
1 + b(u) iΔ+g(u)

)⎞⎠ .

Hence, in order to obtain the result it is enough to observe that

∏
u∈[0,t)∩Dg

(
1 + b(u) iΔ+g(u)

)
= exp

⎛⎝ ∑
u∈[0,t)∩Dg

log
(
1 + b(u) iΔ+g(u)

)⎞⎠
=exp

⎛⎝ ∑
u∈[0,t)∩Dg

log
∣∣1 + b(u) iΔ+g(u)

∣∣+ i
∑

u∈[0,t)∩Dg

Arg
(
1 + b(u) iΔ+g(u)

)⎞⎠
=exp

⎛⎝ ∑
u∈[0,t)∩Dg

log
∣∣1 + b(u) iΔ+g(u)

∣∣⎞⎠ exp

⎛⎝i ∑
t∈[0,t)∩Dg

atan
(
b(u) Δ+g(u)

)⎞⎠
=
∏

u∈[0,t)∩Dg

∣∣1 + b(u) iΔ+g(u)
∣∣

·

⎡⎣cos

⎛⎝ ∑
u∈[0,t)∩Dg

atan(b(u) Δ+g(u))

⎞⎠+ i sin

⎛⎝ ∑
u∈[0,t)∩Dg

atan(b(u) Δ+g(u))

⎤⎦⎞⎠ . �

Remark 4.11. Observe that, in a similar way to Remark 4.7, Proposition 4.10 provides the expressions for 
cosdg(t, 0) and sindg(t, 0) given in [18, Definition 8.5.13].

4.3. The non homogeneous case

In this section we will study the linear non homogeneous problem:{
v′g(t) = β(t) v(t) + f(t), g − a.e. t ∈ [0, T ),
v(0) = v0,

(4.23)

where β, f ∈ L1
g([0, T ); F) and v0 ∈ F . We have the following result whose proof can be achieved using the 

techniques employed in [13, Theorems 3.5 and 4.6].
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Proposition 4.12. Let β, f ∈ L1
g([0, T ); F). Then the map v : [0, t0β ] → F defined as:

v(t) = v0 expg(β; 0, t) + expg(β; 0, t)
∫

[0,t)

expg(β; 0, s)−1 f(s)
1 + β(s)Δ+g(s) dμg, (4.24)

is the unique solution in ACg([0, t0β ]; F) of problem (4.23) in the interval [0, t0β).

Remark 4.13. Considering (4.23), observe that the set A = {s ∈ [0, T ) ∩Dg : |1 + β(s)Δ+g(s)| < 1/2} has 
at most finite cardinality since β ∈ L1

g([0, T ]; F). Indeed, given s ∈ [0, T ) ∩Dg such that 1 +β(s)Δ+g(s) �= 0,

0 < |1 + β(s)Δ+g(s)| < 1
2 ⇔ 0 < 1 + 2 Re(β(s))Δ+g(s) + |β(s)Δ+g(s)|2 <

1
4

⇔ 3
4 < 2|Re(β(s))|Δ+g(s) − |β(s)Δ+g(s)|2 < 1,

so | Re(β(s))|Δ+g(s) > 3/8 and then A has finite cardinality. Therefore:

∑
s∈[0,T )∩Dg

|f(s)|Δ+g(s)
|1 + β(s)Δ+g(s)| ≤

∑
s∈A

|f(s)|Δ+g(s)
|1 + β(s)Δ+g(s)| + 2

∑
s∈([0,T )∩Dg)\A

|f(s)|Δ+g(s) < ∞.

Remark 4.14. Observe that, by Proposition 4.12, if we define

G(t, s) = expg(β; 0, t)
expg(β; 0, s)−1

1 + β(s)Δ+g(s)χ[0,t)(s), t, s ∈ [0, T ),

G is the Green’s function associated to problem (4.23), that is, its solution can be expressed as

v(t) = v0 expg(β; 0, t) +
∫

[0,T ]

G(t, s)f(s) dμg(s).

Now, following the same idea as in the previous section, we will see that, under certain hypotheses on the 
set Dg, it is possible to decompose the solution of (4.23) in terms of the solution of two problems associated 
with the continuous and discrete parts of the derivator.

Corollary 4.15. Assume μg(Dg\Dg) = 0 and let β, f ∈ L1
g([0, T ); F). Then the unique g-absolutely continu-

ous solution of (4.23) in the interval [0, t0β) given by (4.24) can be expressed in the following terms:

v(t) = vC(t) ṽB(t) + vB(t) ṽC(t), ∀t ∈ [0, t0β ],

where

• vC ∈ ACgC ([0, t0β ]; F) is the unique solution of (4.7) in the interval [0, t0β) given by (4.8),
• vB ∈ ACgB ([0, t0β ]; F) is the unique solution of (4.5) in the interval [0, t0β) given by (4.6),
• ṽB ∈ ACgB ([0, t0β ]; F) is the unique solution of⎧⎪⎨⎪⎩

(ṽB)′gB (t) = β(t) ṽB(t) + f(t)
vC(t)(1 + β(t)Δ+g(t)) , g

B − a.e. t ∈ [0, t0β),

ṽB(0) = 1
2 ,

(4.25)

given by
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ṽB(t) = vB(t)

⎡⎣1
2 +

∑
s∈[0,t)∩Dg

vB(s)−1 f(s)Δ+g(s)
vC(s)(1 + β(s)Δ+g(s))

⎤⎦ ,
• ṽC ∈ ACgC ([0, t0β ]; F) is the unique solution of⎧⎪⎨⎪⎩ (ṽC)′gC (t) = β(t) ṽC(t) + f(t)

vB(t) , g
C − a.e. t ∈ [0, t0β),

ṽC(0) = v0

2 ,
(4.26)

given by

ṽC(t) = vC(t)

⎡⎢⎣v0

2 +
∫

[0,t)

vC(s)−1 f(s)
vB(s) dμgC

⎤⎥⎦ .
Proof. Let us consider the solution of (4.23) given by (4.24) and the decomposition expg(β; 0, t) = vB(t)vC(t)
given by Proposition 4.2. We have that

v(t) = vB(t) vC(t)

⎡⎢⎣v0 +
∫

[0,t)

vC(s)−1 f(s)
vB(s) dμgC +

∑
s∈[0,t)∩Dg

vB(s)−1 f(s)Δ+g(s)
vB(s)(1 + β(s)Δ+g(s))

⎤⎥⎦

= vB(t) vC(t)

⎡⎢⎣v0

2 +
∫

[0,t)

vC(s)−1 f(s)
vB(s) dμgC (s)

⎤⎥⎦
+vC(t) vB(t)

⎡⎣v0

2 +
∑

s∈[0,t)∩Dg

vB(s)−1 f(s)Δ+g(s)
vB(s)(1 + β(s)Δ+g(s))

⎤⎦
= vB(t) ṽC(t) + vC(t) ṽB(t).

Finally, by Proposition 4.12 we have that ṽC ∈ ACgC ([0, t0β ]; F) is the unique solution of (4.26) and ṽB ∈
ACgB ([0, t0β ]; F) is the unique solution of (4.25). �
4.4. Additional regularity

In order to correctly define regular solutions, throughout this section we will assume that g : R → R is 
a derivator such that 0 /∈ N−

g and T /∈ N+
g ∪Dg ∪ Cg. We also assume that t0β = T , otherwise, we redefine 

T by taking min{T, t0β}.
Let us check now that we can obtain solutions of (4.1) with greater regularity in the case β ∈

BCg([0, T ]; F). We need the following result, which we state for scalar equations.

Proposition 4.16 ([3, Proposition 7.6]). Let x ∈ ACg([0, T ]; R) be a solution of

x′
g(t) = f(t, x(t)), g-a.a. t ∈ [0, T ).

If f(·, x(·)) is g-continuous on [0, T ], then

x′
g(t) = f(t, x(t)) for all t ∈ [0, T )\Cg.
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We have the following corollary.

Corollary 4.17. Let β ∈ BCg([0, T ]; F), then the problem

{
v′g(t) − β(t) v(t) = 0, ∀ t ∈ [0, T ],
v(0) = v0,

(4.27)

admits a unique solution in the space BC1
g([0, T ]; F).

Proof. Indeed, on the one hand, we have that BCg([0, T ]; F) ⊂ L1
g([0, T ); F), so there exists a unique solution 

v ∈ ACg([0, T ]; F) given by (4.10). Let us see that v ∈ BC1
g([0, T ]; F) and that v satisfies equation (4.27) on 

all of the interval [0, T ]. First observe that β v ∈ BCg([0, T ]; F), so, thanks to Proposition 4.16 we have that 
v′g(t) = β(t) v(t) for all t ∈ [0, T ) \Cg. Observe that we can extend the result to t = T thanks to the fact that 
T /∈ N+

g ∪Dg. Finally, thanks to Definition 3.7, we have the desired result since v′g = β v ∈ BCg([0, T ]; F). �
Remark 4.18. In the case where β ∈ BC1

g([0, T ]) we cannot ensure that v ∈ BC2
g([0, T ]; F) since the product 

of two BC1
g([0, T ]; F) functions is not, in general, a BC1

g([0, T ]; F) function. However, if β and its g-derivatives 
are also continuous, we can recover the desired regularity as a consequence of Corollary 3.18.

Corollary 4.19. Let β ∈ BCn
g ([0, T ]; F) ∩ BCn−1

gC ([0, T ]; F), with n ∈ N, then the problem (4.27) admits a 

unique solution in the space BCn+1
g ([0, T ]; F).

Let us now consider the non homogeneous case.

Corollary 4.20. Let β, f ∈ BCg([0, T ]; F), then the problem

{
v′g(t) = β(t) v(t) + f(t), ∀t ∈ [0, T ],
v(0) = v0,

(4.28)

admits a unique solution in the space BC1
g([0, T ]; F).

Corollary 4.21. Let β ∈ BCn
g ([0, T ]; F) ∩ BCn−1

gC ([0, T ]; F) and f ∈ BCn
g ([0, T ]; F), with n ∈ N, then prob-

lem (4.28) admits a unique solution in the space BCn+1
g ([0, T ]; F).

Example 4.22. Consider any derivator g and the equation{
v′g(t) = x v(t) + expg(z; 0, t), ∀t ∈ [0, T ],
v(0) = 1,

(4.29)

where x, z ∈ F are constants. Defining β(t) := x, f(t) := expg(z; 0, t) we have that β, f ∈ BC∞
g ([0, T ]; F). 

By Corollary 4.19, problem (4.29) has a unique solution v ∈ C∞
g ([0, T ]; F), which, by Proposition 4.12, is 

provided by expression (4.24) as

v(t) = expg(x; 0, t) + expg(x; 0, t)
∫

[0,t)

expg(x; 0, s)−1 expg(z; 0, s)
1 + xΔ+g(s) dμg(s).

Now, by Proposition 4.6,
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expg(x; 0, s)−1 expg(z; 0, s) = expg

(
− x

1 + xΔ+g
; 0, s
)

expg(z; 0, s)

= expg

(
− x

1 + xΔ+g
+ z − x z Δ+g

1 + xΔ+g
; 0, s
)

= expg

(
z − x

1 + xΔ+g
; 0, s
)
.

Therefore,∫
[0,t)

expg(x; 0, s)−1 expg(z; 0, s)
1 + xΔ+g(s) dμg(s) =

∫
[0,t)

1
1 + xΔ+g(s) expg

(
z − x

1 + xΔ+g
; 0, s
)

dμg(s)

=(z − x)−1
∫

[0,t)

(
expg

(
z − x

1 + xΔ+g
; 0, ·
))′

g

(s) dμg(s)

=(z − x)−1
[

expg

(
z − x

1 + xΔ+g
; 0, t
)
− expg

(
z − x

1 + xΔ+g
; 0, 0
)]

=(z − x)−1 [ expg(x; 0, t)−1 expg(z; 0, t) − 1
]
.

Finally,

v(t) = expg(x; 0, t) + expg(x; 0, t) (z − x)−1 [ expg(x; 0, t)−1 expg(z; 0, t) − 1
]

= expg(x; 0, t) + (z − x)−1 [ expg(z; 0, t) − expg(x; 0, t)
]
.

Observe that, differentiating v′g again, we obtain that v′′g −(x +z) v′g +x z v = 0, so, for any values P, Q ∈ C, 
taking x = (−P +

√
P 2 − 4Q)/2, z = P − x, v solves the equation v′′g + P v′g + Q v = 0.

This fact illustrates how we can obtain a solution of a second order problem from a first order problem. 
In the next section we study this type of problems.

5. Linear g-differential problems of second order with constant coefficients

In this section we consider g-differential problems of second order with constant coefficients. Since we 
will assume that the coefficients are constant, we will look for solutions in the space BC2

g([0, T ]; F). Once 
again, we assume that 0 /∈ N−

g and T /∈ N+
g ∪Dg ∪ Cg.

5.1. The homogeneous case

Let us consider the second order homogeneous linear Cauchy problem⎧⎪⎨⎪⎩
v′′g (t) + P v′g(t) + Qv(t) = 0, ∀t ∈ [0, T ],
v(0) = x0,

v′g(0) = v0,

(5.1)

where P, Q, x0, v0 ∈ F . We start by defining what we understand as a solution of problem (5.1).

Definition 5.1. We say v ∈ BC2
g([0, T ]; F) is a solution of (5.1) if it satisfies the equation

v′′g (t) + P v′g(t) + Qv(t) = 0, ∀t ∈ [0, T ]

and the initial conditions v(0) = x0 and v′g(0) = v0.

We have the following lemma, whose proof is straightforward from the linearity of the g-derivative.
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Lemma 5.2. Let x0, v0 ∈ F and v1, v2 ∈ BC2
g([0, T ]; F) be such that

(vk)′′g (t) + P (vk)′g(t) + Qvk(t) = 0, ∀t ∈ [0, T ], k = 1, 2. (5.2)

If v1(0) (v2)′g(0) − v2(0) (v1)′g(0) �= 0, then v = c1 v1 + c2 v2 is a solution of (5.1), where

c1 =
(v2)′g(0)x0 − v0 v2(0)

v1(0) (v2)′g(0) − v2(0) (v1)′g(0) ,

c2 =
v0 v1(0) − (v1)′g(0)x0

v1(0) (v2)′g(0) − v2(0) (v1)′g(0) .

Theorem 5.3. For (5.1), the following hold:

• If P 2 − 4 Q �= 0, then, defining λ1 = (−P +
√

P 2 − 4Q)/2 and λ2 = (−P −
√
P 2 − 4Q)/2, we have 

that

v(t) =
(
v0 − λ2 x0

λ1 − λ2

)
expg(λ1; 0, t) −

(
v0 − λ1 x0

λ1 − λ2

)
expg(λ2; 0, t)

is a solution of (5.1). Furthermore, v ∈ BC∞
g ([0, T ]; F) and it is the unique solution in that space.

• If P 2 − 4 Q = 0, then, taking λ = −P/2,

v(t) = x0 expg(λ; 0, t) + (v0 − λx0) expg(λ; 0, t)
∫

[0,t)

1
1 + λΔ+g(s) dμg(s)

is a solution of (5.1). Furthermore, v ∈ BC∞
g ([0, T ]; F) and it is the unique solution in that space.

Proof. We consider the characteristic equation of problem (5.1),

λ2 + P λ + Q = 0.

If P 2 − 4 Q �= 0, let v1 = expg(λ1; 0, t) and v2(t) = expg(λ2; 0, t). By Corollary 4.19 we have that 
v1, v2 ∈ BC∞

g ([0, T ]; F) ⊂ BC2
g([0, T ]; F). Furthermore, it can be checked that both functions satisfy (5.2). 

On the other hand,

v1(0) (v2)′g(0) − v2(0) (v1)′g(0) = λ2 − λ1 �= 0.

Hence, by Lemma 5.2, there exists a solution of problem (5.1) given by

v(t) =
(
v0 − λ2 x0

λ1 − λ2

)
expg(λ1; 0, t) −

(
v0 − λ1 x0

λ1 − λ2

)
expg(λ2; 0, t).

If P 2 − 4 Q = 0 we get the double root λ = −P/2 of the characteristic equation. Observe that the left 
hand side of the equation occurring in (5.1) can be written as (∂g+P/2)2v where ∂g denotes the g-derivative 
operator. Hence, we define v1(t) := expg(λ; 0, t), which is a solution of (∂g + P/2)v = 0 and consider the 
unique solution of {

(v2)′g(t) = λ v2(t) + v1(t), g − a.e. t ∈ [0, T ),
v2(0) = 0.
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Since (∂g + P/2)v1 = 0, it is clear that (∂g + P/2)2v2 = 0. Furthermore, v2(0) = 0 and (v2)′g(0) = 1, so 
v2 is the solution we are looking for. By Corollary 4.19, v1 ∈ BC∞

g ([0, T ]; F) and, applying Corollary 4.21, 
v2 ∈ BC∞

g ([0, T ]; F) as well. Now, thanks to Proposition 4.12, we have that:

v2(t) = expg(λ; 0, t)
∫

[0,t)

1
1 + λΔ+g(s) dμg.

Since v2(0) = 0, (v2)′g(0) = 1 we have that:

v1(0) (v2)′g(0) − v2(0) (v1)′g(0) = 1 �= 0.

Thus, by Lemma 5.2, there exists a solution of problem (5.1) given by

v(t) = x0 expg(λ; 0, t) + (v0 − λx0) expg(λ; 0, t)
∫

[0,t)

1
1 + λΔ+g(s) dμg(s).

Finally, if we define u(t) = v′g(t) ∈ BC∞
g ([0, T ]) we have that the pair of functions (u, v) ∈ [ACg([0, T ]; F)]2

satisfies the following system of differential equations:⎧⎪⎪⎨⎪⎪⎩
(
v
u

)′
g

(t) =
(

0 1
−Q −P

)(
v(t)
u(t)

)
,

v(0) =x0, u(0) = v0.

Thanks to [3, Theorem 7.3] we have that the previous system has a unique solution in [ACg([0, T ]; F)]2, 
therefore v is the unique solution of (5.2) in the space BC∞

g ([0, T ]; F). �
5.2. The non homogeneous case

In this section we focus on the non homogeneous version of the second order linear problem, namely,⎧⎪⎪⎨⎪⎪⎩
v′′g (t) + P v′g(t) + Qv(t) = f(t), ∀t ∈ [0, T ],

v(0) = x0,

v′g(0) = v0,

(5.3)

where P, Q, x0, v0 ∈ F are constant values and f ∈ ACg([0, T ]; F). Since the coefficients are constant, it will 
be the regularity of the term f that determines the additional regularity of the solution. As in the previous 
sections, we will see that it is possible to prove the uniqueness of solution when we consider the solution in 
the space BC2

g([0, T ]; F).

Theorem 5.4. Let f ∈ BCn
g ([0, T ]; F) and assume 1 + λ Δ+g(t) �= 0, for all t ∈ [0, T ) ∩Dg and λ ∈ F such 

that λ2 + P λ + Q = 0. Then, problem (5.3) has a unique solution v ∈ BCn+2
g ([0, T ], F) given by

v(t) =x0 expg(λ2; 0, t) + (v0 − λ2x0) expg(λ2; 0, t) ·
∫

[0,t)

expg(λ2; 0, s)−1

1 + λ2Δ+g(s) expg(λ1; 0, s) dμg(s)

+ expg(λ2; 0, t)
∫

[0,t)

expg(λ2; 0, s)−1

1 + λ2Δ+g(s) expg(λ1; 0, s) ·

⎛⎜⎝ ∫
[0,s)

expg(λ1; 0, r)−1

1 + λ1Δ+g(r) f(r) dμg(r)

⎞⎟⎠ dμg(s),

(5.4)
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where (x − λ1)(x − λ2) = x2 + Px + Q.

Proof. Let be λ1, λ2 the two complex eigenvalues of the characteristic polynomial x2 +Px +Q = 0. Assume 
v2 ∈ Cn+2

g ([0, T ], F) is a solution of problem (5.3). Observe that, if we define v1 = (v2)′g − λ2v2, it is clear 
that v1 ∈ Cn+1

g ([0, T ], F) and (v1)′g − λ1v1 = f , v1(0) = (v2)′g(0) − λ2v2(0) = v0 − λ2x0, so v1 has to solve 
the problem {

(v1)′g(t) = λ1v1(t) + f(t), g − a.e. t ∈ [0, T )
v(0) = v0 − λ2x0.

(5.5)

By Corollary 4.21, problem (5.5) has a unique solution in Cn+1
g ([0, T ], F), so v1 is that unique solution. 

Furthermore, by definition, v1 = (v2)′g − λ2v2 and v2(0) = x0, so v2 solves the problem

{
(v2)′g(t) = λ2v2(t) + v1(t), g − a.e. t ∈ [0, T )
v(0) = x0.

(5.6)

By Corollary 4.21, problem (5.6) has a unique solution in Cn+2
g ([0, T ], F), so v2 is that unique solution. This 

implies that, if a solution in Cn+2
g ([0, T ], F) of problem (5.3) exists, it has to be unique.

In order to obtain that unique solution it is enough to retrace the steps we have taken to prove the 
uniqueness. Let v1 be the unique solution of problem (5.5) in Cn+1

g ([0, T ], F) and let v2 be the unique 
solution of problem (5.6) in Cn+2

g ([0, T ], F). Clearly v2 is a solution of problem (5.3).
In order to obtain the explicit expression of the solution, observe that, by Proposition 4.12, v1 is of the 

form

v1(t) = (v0 − λ2x0) expg(λ1; 0, t) + expg(λ1; 0, t)
∫

[0,t)

expg(λ1; 0, s)−1 f(s)
1 + λ1Δ+g(s) dμg(s),

and v2 of the form

v2(t) = x0 expg(λ2; 0, t) + expg(λ2; 0, t)
∫

[0,t)

expg(λ2; 0, s)−1 v1(s)
1 + λ2Δ+g(s) dμg(s)

= x0 expg(λ2; 0, t) + (v0 − λ2x0) expg(λ2; 0, t)
∫

[0,t)

expg(λ2; 0, s)−1 expg(λ1; 0, s)
1 + λ2Δ+g(s) dμg(s)

+ expg(λ2; 0, t)
∫

[0,t)

expg(λ2; 0, s)−1 expg(λ1; 0, s)
1 + λ2Δ+g(s)

·
( ∫

[0,s)

expg(λ1; 0, r)−1 f(r)
1 + λ1Δ+g(r) dμg(r)

)
dμg(s).

Now, thanks to Proposition 4.6,

expg(λ2; 0, t)−1 expg(λ1; 0, t) = expg(−λ2/(1 + λ2 Δ+g(t)); 0, t) expg(λ1; 0, t)

= expg((λ1 − λ2)/(1 + λ2 Δ+g(t)); 0, t).

Thus,
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v2(t) =x0 expg(λ2; 0, t) + (v0 − λ2x0) expg(λ2; 0, t)
∫

[0,t)

1
1 + λ2Δ+g(s) expg

(
λ1 − λ2

1 + λ2 Δ+g
; 0, s
)

dμg(s)

+ expg(λ2; 0, t)
∫

[0,t)

1
1 + λ2Δ+g(s) expg

(
λ1 − λ2

1 + λ2 Δ+g
; 0, s
)

·
( ∫

[0,s)

expg(λ1; 0, r)−1 f(r)
1 + λ1Δ+g(r) dμg(r)

)
dμg(s). �

Remark 5.5. Note that, for λ ∈ F such that λ2 + P λ + Q = 0, the condition 1 + λ Δ+g(t) = 0 can only 
happen for a finite number of t ∈ [0, T ) ∩Dg.

Remark 5.6. From the previous expression we can derive the expression of Green’s function of problem (5.3)
just by equating

∫
R

G(t, r)f(r) dμg(r) = expg(λ2; 0, t)
∫

[0,t)

1
1 + λ2Δ+g(s) expg

(
λ1 − λ2

1 + λ2 Δ+g
; 0, s
)

·
( ∫

[0,s)

expg(λ1; 0, r)−1 f(r)
1 + λ1Δ+g(r) dμg(r)

)
dμg(s).

(5.7)

Now, if we consider the product measure space ([0, T ], Mg ·Mg, μg · μg), we have, by Fubini’s Theorem [1, 
Theorem 10.10],

∫
R

G(t, r)f(r) dμg(r) = expg(λ2; 0, t)
∫

[0,T ]·[0,T ]

1
1 + λ2Δ+g(s) expg

(
λ1 − λ2

1 + λ2 Δ+g
; 0, s
)

· expg(λ1; 0, r)−1 f(r)
1 + λ1Δ+g(r) χ[0,s)(r)χ[0,t)(s) dμg · dμg

= expg(λ2; 0, t)
∫

[0,T ]

∫
[0,T ]

expg(λ1; 0, r)−1 expg

(
λ1 − λ2

1 + λ2 Δ+g
; 0, s
)

· (1 + λ1Δ+g(r))−1 (1 + λ2Δ+g(s))−1 f(r)χ(r,t)(s)χ[0,t)(r) dμg(s) dμg(r)

= expg(λ2; 0, t)
∫

[0,t)

expg(λ1; 0, r)−1 f(r)
1 + λ1 Δ+g(r)

·

⎛⎜⎝ ∫
(r,t)

1
1 + λ2 Δ+g(s) expg

(
λ1 − λ2

1 + λ2 Δ+g
; 0, s
)

dμg(s)

⎞⎟⎠ dμg(r).

Therefore, for t, r ∈ [0, T ],
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G(t, r) = expg(λ2; 0, t) expg(λ1; 0, r)−1 (1 + λ1Δ+g(r))−1 χ[0,t)(r)

·
∫

(r,t)

1
1 + λ2 Δ+g(s) expg

(
λ1 − λ2

1 + λ2 Δ+g
; 0, s
)

dμg(s)

= expg(λ2; 0, t) expg(λ1; 0, r)−1 (1 + λ1Δ+g(r))−1 χ[0,t)(r)

·
∫

[r,t)

1
1 + λ2 Δ+g(s) expg

(
λ1 − λ2

1 + λ2 Δ+g
; 0, s
)

dμg(s)

− expg(λ2; 0, t) expg(λ2; 0, r)−1 (1 + λ1Δ+g(r))−1 (1 + λ2Δ+g(r))−1 Δ+g(r)χ[0,t)(r).

Observe that:

• If λ1 �= λ2,

v(s) = expg

(
λ1 − λ2

1 + λ2 Δ+g
; 0, s
)

∈ ACg([r, T ];F)

is the solution of ⎧⎪⎪⎪⎨⎪⎪⎪⎩
v′g(s) = λ1 − λ2

1 + λ2 Δ+g(s) v(s), g − a.e. s ∈ [r, T ),

v(r) = expg

(
λ1 − λ2

1 + λ2 Δ+g
; 0, r
)
.

Therefore, ∫
[r,t)

λ1 − λ2

1 + λ2 Δ+g(s) expg

(
λ1 − λ2

1 + λ2 Δ+g
; 0, s
)

dμg(s)

= expg

(
λ1 − λ2

1 + λ2 Δ+g
; 0, t
)
− expg

(
λ1 − λ2

1 + λ2 Δ+g
; 0, r
)

=expg(λ1; 0, t) expg(λ2; 0, t)−1 − expg(λ1; 0, r) expg(λ2; 0, r)−1.

Thus, the Green’s function in the case λ1 �= λ2 has the following expression:

G(t, r) = expg(λ2; 0, t) expg(λ1; 0, r)−1 (1 + λ1Δ+g(r))−1 χ[0,t)(r)

· (λ1 − λ2)−1 (expg(λ1; 0, t) expg(λ2; 0, t)−1 − expg(λ1; 0, r) expg(λ2; 0, r)−1)
− expg(λ2; 0, t) expg(λ2; 0, r)−1 (1 + λ1Δ+g(r))−1 (1 + λ2Δ+g(r))−1 Δ+g(r)χ[0,t)(r)

= + (λ1 − λ2)−1 expg(λ1; 0, t) expg(λ1; 0, r)−1 (1 + λ1Δ+g(r))−1 χ[0,t)(r)

− (λ1 − λ2)−1 expg(λ2; 0, t) expg(λ2; 0, r)−1 (1 + λ1Δ+g(r))−1 χ[0,t)(r)

− expg(λ2; 0, t) expg(λ2; 0, r)−1 (1 + λ1Δ+g(r))−1 (1 + λ2Δ+g(r))−1 Δ+g(r)χ[0,t)(r)

= + (λ1 − λ2)−1 expg(λ1; 0, t) expg(λ1; 0, r)−1 (1 + λ1Δ+g(r))−1 χ[0,t)(r)

− (λ1 − λ2)−1 expg(λ2; 0, t) expg(λ2; 0, r)−1 (1 + λ2Δ+g(r))−1 χ[0,t)(r).

(5.8)

• If λ1 = λ2, we have the following expression for the Green’s function:

G(r, t) = expg(λ; 0, t) expg(λ; 0, r)−1 (1 + λΔ+g(r))−1 χ[0,t)(r) ·
∫ 1

1 + λΔ+g(s) dμg(s)

(r,t)
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= expg(λ; 0, t) expg(λ; 0, r)−1 (1 + λΔ+g(r))−1 χ[0,t)(r)

·

⎛⎜⎝ ∫
[0,t)

1
1 + λΔ+g(s) dμg(s) −

∫
[0,r)

1
1 + λΔ+g(s) dμg(s) −

Δ+g(r)
1 + λΔ+g(r)

⎞⎟⎠ (5.9)

= + expg(λ; 0, t)

⎛⎜⎝ ∫
[0,t)

1
1 + λΔ+g(s) dμg(s)

⎞⎟⎠ expg(λ; 0, r)−1 (1 + λΔ+g(r))−1 χ[0,t)(r)

− expg(λ; 0, t)

⎛⎜⎝ ∫
[0,r)

1
1 + λΔ+g(s) dμg(s)

⎞⎟⎠ expg(λ; 0, r)−1 (1 + λΔ+g(r))−1 χ[0,t)(r)

− expg(λ; 0, t) expg(λ; 0, r)−1 (1 + λΔ+g(r))−2 Δ+g(r)χ[0,t)(r).

Remark 5.7. Observe that we can arrive to expressions (5.8) and (5.9) using an integration by parts argument 
in formula (5.7). Indeed, given two elements h1, h2 ∈ ACg([0, T ]; F) we have that h1 h2 ∈ ACg([0, T ]; F) and

(h1 h2)′g(t) = (h1)′g(t)h2(t) + h1(t) (h2)′g(t) + (h1)′g(t) (h2)′(t) Δ+g(t), g − a.e. t ∈ [0, T ].

Observe that we are explicitly excluding the points of Cg in the above formula. In particular, for t ∈ [0, T ],

h1(t)h2(t) − h1(0)h2(0) =
∫

[0,t)

(h1)′g(s)h2(s) dμg(s) +
∫

[0,t)

h1(s) (h2)′g(s) dμg(s)

+
∫

[0,t)

(h1)′g(s) (h2)′(s) Δ+g(s) dμg(s).
(5.10)

Now we study two cases:

• Case λ1 �= λ2. Let us consider

h1(t) = (λ1 − λ2)−1 expg(λ1; 0, t) expg(λ2; 0, t)−1,

h2(t) =
∫

[0,t)

expg(λ1; 0, r)−1

1 + λ1Δ+g(r) f(r) dμg(r).

We have that h1, h2 ∈ ACg([0, T ]; F), so

∫
[0,t)

expg(λ2; 0, s)−1

1 + λ2Δ+g(s) expg(λ1; 0, s)

⎛⎜⎝ ∫
[0,s)

expg(λ1; 0, r)−1

1 + λ1Δ+g(r) f(r) dμg(r)

⎞⎟⎠ dμg(s)

=(λ1 − λ2)−1 expg(λ1; 0, t) expg(λ2; 0, t)−1
∫

[0,t)

expg(λ1; 0, r)−1

1 + λ1Δ+g(r) f(r) dμg(r)

−
∫

[0,t)

(λ1 − λ2)−1 expg(λ1; 0, s) expg(λ2; 0, s)−1 expg(λ1; 0, s)−1

1 + λ1Δ+g(s) f(s) dμg(s)

−
∫ expg(λ2; 0, s)−1

1 + λ2Δ+g(s) expg(λ1; 0, s)
expg(λ1; 0, s)−1

1 + λ1Δ+g(s) f(s) Δ+g(s) dμg(s),

(5.11)
[0,t)
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and we recover the expression of Green’s function in (5.8). Observe that by substituting (5.11) in (5.4)
we obtain

v2(t) =
(
v0 − λ2x0

λ1 − λ2

)
expg(λ1; 0, t) −

(
v0 − λ1x0

λ1 − λ2

)
expg(λ2; 0, t)

+ (λ1 − λ2)−1 expg(λ1; 0, t)
∫

[0,t)

expg(λ1; 0, s)−1

1 + λ1 Δ+g(s) f(s) dμg

− (λ1 − λ2)−1 expg(λ2; 0, t)
∫

[0,t)

expg(λ2; 0, s)−1

1 + λ2 Δ+g(s) f(s) dμg.

(5.12)

We have that

vh(t) =
(
v0 − λ2x0

λ1 − λ2

)
expg(λ1; 0, t) −

(
v0 − λ1x0

λ1 − λ2

)
expg(λ2; 0, t) ∈ BC∞

g ([0, T ];F)

is the solution of the homogeneous equation (5.1) and

vp(t) = + (λ1 − λ2)−1 expg(λ1; 0, t)
∫

[0,t)

expg(λ1; 0, s)−1

1 + λ1 Δ+g(s) f(s) dμg

− (λ1 − λ2)−1 expg(λ2; 0, t)
∫

[0,t)

expg(λ2; 0, s)−1

1 + λ2 Δ+g(s) f(s) dμg

is a particular solution in the space BCn+2
g ([0, T ], F) of the non homogeneous equation (5.3) that satisfies 

vp(0) = (vp)′g(0) = 0.
• Case λ1 = λ2. We have that expression (5.4) reduces to

v2(t) = x0 expg(λ; 0, t) + (v0 − λx0) expg(λ; 0, t)
∫

[0,t)

1
1 + λΔ+g(s) dμg(s)

+ expg(λ; 0, t)
∫

[0,t)

1
1 + λΔ+g(s)

⎛⎜⎝ ∫
[0,s)

expg(λ; 0, r)−1

1 + λΔ+g(r) f(r) dμg(r)

⎞⎟⎠ dμg(s).

(5.13)

Define

h1(t) =
∫

[0,t)

1
1 + λΔ+g(s) dμg(s),

h2(t) =
∫

[0,t)

expg(λ; 0, s)−1

1 + λΔ+g(s) f(s) dμg(s).

We have that h1, h2 ∈ ACg([0, T ]; F). Hence, by formula (5.10),

∫ 1
1 + λΔ+g(s)

⎛⎜⎝ ∫ expg(λ; 0, r)−1

1 + λΔ+g(r) f(r) dμg(r)

⎞⎟⎠ dμg(s)

[0,t) [0,s)
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=
∫

[0,t)

1
1 + λΔ+g(s) dμg(s)

∫
[0,t)

expg(λ; 0, s)−1

1 + λΔ+g(s) f(s) dμg(s) (5.14)

−
∫

[0,t)

⎛⎜⎝ ∫
[0,s)

1
1 + λΔ+g(r) dμg(r)

⎞⎟⎠ expg(λ; 0, s)−1

1 + λΔ+g(s) f(s) dμg(s)

−
∫

[0,t)

expg(λ; 0, s)−1

(1 + λΔ+g(s))2 f(s) Δ+g(s) dμg(s).

Substituting expression (5.14) in (5.13) we obtain

v2(t) =x0 expg(λ; 0, t) + (v0 − λx0) expg(λ; 0, t)
∫

[0,t)

1
1 + λΔ+g(s) dμg(s)

+ expg(λ; 0, t)
∫

[0,t)

1
1 + λΔ+g(s) dμg(s)

∫
[0,t)

expg(λ; 0, s)−1

1 + λΔ+g(s) f(s) dμg(s)

− expg(λ; 0, t)
∫

[0,t)

⎛⎜⎝ ∫
[0,s)

1
1 + λΔ+g(r) dμg(r)

⎞⎟⎠ expg(λ; 0, s)−1

1 + λΔ+g(s) f(s) dμg(s)

− expg(λ; 0, t)
∫

[0,t)

expg(λ; 0, s)−1

(1 + λΔ+g(s))2 f(s) Δ+g(s) dμg(s).

Observe that

vh(t) = x0 expg(λ; 0, t) + (v0 − λx0) expg(λ; 0, t)
∫

[0,t)

1
1 + λΔ+g(s) dμg(s) ∈ BC∞

g ([0, T ];F)

is the solution of the homogeneous equation (5.3) and

vp(t) = expg(λ; 0, t)
∫

[0,t)

1
1 + λΔ+g(s) dμg(s)

∫
[0,t)

expg(λ; 0, s)−1

1 + λΔ+g(s) f(s) dμg(s)

− expg(λ; 0, t)
∫

[0,t)

⎛⎜⎝ ∫
[0,s)

1
1 + λΔ+g(r) dμg(r)

⎞⎟⎠ expg(λ; 0, s)−1

1 + λΔ+g(s) f(s) dμg(s)

− expg(λ; 0, t)
∫

[0,t)

expg(λ; 0, s)−1

(1 + λΔ+g(s))2 f(s) Δ+g(s) dμg(s)

is a particular solution of the non homogeneous equation (5.3) in the space BCn+2
g ([0, T ], F) that satisfies 

vp(0) = (vp)′g(0) = 0.

6. The Stieltjes harmonic oscillator

In this section we present an application related to the real solution of the Stieltjes harmonic oscillator 
(g-harmonic oscillator). Let g : R → R be a derivator such that 0 /∈ N−

g and T /∈ N+
g ∪Dg ∪Cg and denote 

by gC its continuous part. We consider the following equation:
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⎧⎪⎪⎨⎪⎪⎩
v′′g (t) + 2 ζ ω0 v

′
g(t) + ω2

0 v(t) = 0, g − a.e. t ∈ [0, T ),

v(0) = x0,

v′g(0) = v0,

(6.1)

where x0 and v0 are real numbers and:

• ω0 is the undamped angular frequency of the oscillator,

ω0 =
√

k

m
,

where m > 0 is the mass of the oscillator and k > 0 is a measure of the stiffness of the spring;
• ζ is the damping ratio,

ζ = c

2
√
mk

,

with c > 0, the viscous damping coefficient (resistance of the medium). If ζ > 1 we have an overdamped 
oscillator, if ζ = 1 the oscillator is critically damped and, if ζ < 1, the oscillator is underdamped. 
Observe that the solutions of the characteristic equation are given by:

λ =1
2

(
−2 ζ ω0 ±

√
4 ζ2 ω2

0 − 4ω2
0

)
= −ζ ω0 ± ω0

√
ζ2 − 1.

Assume that 1 +λ Δ+g(t) �= 0 for all t ∈ [0, T ) ∩Dg and for all λ solution of the characteristic equation.

We have the following real solution of the g-harmonic oscillator in terms of the damping ratio:

• If ζ > 1, we have two real solutions of the characteristic equation, λ1 = −ζ ω0 − ω0
√

ζ2 − 1 and 
λ2 = −ζ ω0 + ω0

√
ζ2 − 1. Thus, the solution of (6.1) is given by

v(t) =
(
v0 − λ2 x0

λ1 − λ2

)
expg(λ1; 0, t) −

(
v0 − λ1 x0

λ1 − λ2

)
expg(λ2; 0, t),

=
(
v0 − λ2 x0

λ1 − λ2

)
exp(λ1 gC(t))

∏
s∈[0,t)∩Dg

(
1 + λ1 Δ+g(s)

)
−
(
v0 − λ1 x0

λ1 − λ2

)
expg(λ2 gC(t))

∏
s∈[0,t)∩Dg

(
1 + λ2 Δ+g(s)

)
.

• If ζ = 1, we have one real solution of the characteristic equation, λ = −ζ ω0. Thus, the solution of (6.1)
is given by

v(t) =x0 expg(λ; 0, t) + (v0 − λx0) expg(λ; 0, t)
∫

[0,t)

1
1 + λΔ+g(s) dμg,

=exp(λ gC(t))
∏

s∈[0,t)∩Dg

(
1 + λΔ+g(s)

)
·

⎡⎣x0 + (v0 − λx0)

⎛⎝gC(t) +
∑

s∈[0,t)∩Dg

Δ+g(s)
1 + λΔ+g(s)

⎞⎠⎤⎦ .
• If ζ < 1, we have a pair of conjugate complex solutions, λ1 = −ζ ω0 + i ω0

√
1 − ζ2 and λ2 = −ζ ω0 −

i ω0
√

1 − ζ2. If we denote by a = −ζ ω0 and b = ω0
√

1 − ζ2, we have that the solution is given by
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Fig. 6.1. Derivators g1 and g2 associated to l ∈ {0, 1/33, 1/32, 1/31, 1/30} (vertical lines have to be understood as jumps and not as 
a multivalued function). (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

v(t) =
(
v0 − a x0 + b i x0

2 b i

)
expg(a + b i; 0, t) −

(
v0 − a x0 − b i x0

2 b i

)
expg(a− b i; 0, t).

If we take into account expression (4.20),

v(t) = expg(a; 0, t)
[(

v0 − a x0

b

)
1
2 i

(
expg

(
i b

1 + aΔ+g
; 0, t
)
− expg

(
−i b

1 + aΔ+g
; 0, t
))

+ x0
1
2

(
expg

(
i b

1 + aΔ+g
; 0, t
)

+ expg

(
−i b

1 + aΔ+g
; 0, t
))]

= expg(a; 0, t)
[(

v0 − a x0

b

)
sing

(
b

1 + aΔ+g
; 0, t
)

+ x0 cosg
(

b

1 + aΔ+g
; 0, t
)]

.

Example 6.1. Let us study the behavior of the g-harmonic oscillator in the particular case ω0 = 2, x0 =
v0 = 1. We consider the following derivators:

g1(t) =gC1 (t) + gB1 (t),

g2(t) =gC2 (t) + gB2 (t),

where gC1 (t) = t,

g2(t) =

⎧⎪⎪⎨⎪⎪⎩
1
2 + [t]

2 , [t] + 1 = 2 k, k ∈ N,

t− [t]
2 , [t] + 1 = 2 k − 1, k ∈ N,

[·] denotes the floor function,

gB1 (t) = gB2 (t) =
∑

s∈[0,t)∩D

l,

with D = {s ∈ [0, +∞) : s = kπ/4, k ∈ N} and l ≥ 0 (observe that gB1 (t) = gB2 (t) < ∞, for all t ∈ [0, ∞)). 
In order to compare the effect that discontinuities in the derivator have on the solution, we have considered 
the cases where l ∈ {0, 1/33, 1/32, 1/31, 1/30}. Observe that the solution associated to the derivator g1 and 
l = 0 corresponds to the classical solution of the harmonic oscillator. In Fig. 6.1 we can see a graphical 
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Fig. 6.2. Solution of the g-harmonic oscillator for ζ = 1.5 (overdamped oscillator) associated to g1 and g2 (vertical lines have to be 
understood as jumps and not as a multivalued function).

Fig. 6.3. Solution of the g-harmonic oscillator for ζ = 1 (critically damped oscillator) associated to g1 and g2 (vertical lines have to 
be understood as jumps and not as a multivalued function).

representation of the derivators considered. Now, we present a graphical representation of the solution 
associated to ζ = 1.5 (overdamped oscillator, Fig. 6.2), ζ = 1 (critically damped oscillator, Fig. 6.3) and 
z = 0.5 (underdamped oscillator, Fig. 6.4).

Now we will study the effect of a g-periodic source term with the same frequency as the natural frequency 
of the oscillator. We will consider the non-homogeneous g-harmonic oscillator with c = 0 and we will consider 
as a source term f(t) = cosg(ω0; 0, t); that is,

⎧⎪⎪⎨⎪⎪⎩
v′′g (t) + ω2

0 v(t) = cosg(ω0; 0, t), g − a.e. t ∈ [0, T ),

v(0) = x0,

v′g(0) = v0.

(6.2)

Observe that in the case g(t) = t we recover the classical resonance effect. It is reasonable to expect that 
in the case of having a generic derivator the amplitude of the oscillations increases with t. Indeed we have 
that the solution v is given by
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Fig. 6.4. Solution of the g-harmonic oscillator for ζ = 0.5 (underdamped oscillator) associated to g1 and g2 (vertical lines have to 
be understood as jumps and not as a multivalued function).

v(t) = vh(t) + vp(t),

where vh is the solution of the homogeneous equation, namely,

vh(t) =
(
v0 + i ω0 x0

2 i ω0

)
expg(i ω0; 0, t) −

(
v0 − i ω0 x0

2 i ω0

)
expg(−i ω0; 0, t)

=x0 cosg(ω0; 0, t) + v0

ω0
sing(ω0; 0, t);

and vp is a particular solution that satisfies vp(0) = (vp)′g(t) = 0 given by

vp(t) = + (2 i ω0)−1 expg(+i ω0; 0, t)
∫

[0,t)

expg(+i ω0; 0, s)−1

1 + i ω0 Δ+g(s) cosg(ω0; 0, s) dμg

− (2 i ω0)−1 expg(−i ω0; 0, t)
∫

[0,t)

expg(−i ω0; 0, s)−1

1 − i ω0 Δ+g(s) cosg(ω0; 0, s) dμg.

Now, ∫
[0,t)

expg(+i ω0; 0, s)−1

1 + i ω0 Δ+g(s) cosg(ω0; 0, s) dμg

=1
2

∫
[0,t)

expg(+i ω0; 0, s)−1

1 + i ω0 Δ+g(s)
(
expg(i ω0; 0, s) + expg(−i ω0; 0, s)

)
dμg

=1
2

∫
[0,t)

1
1 + i ω0 Δ+g(s) dμg + 1

2

∫
[0,t)

expg(−i ω0; 0, s)
expg(+i ω0; 0, s)−1

1 + i ω0 Δ+g(s) dμg

=1
2

∫
[0,t)

1
1 + i ω0 Δ+g(s) dμg + 1

2

∫
[0,t)

1
1 + i ω0 Δ+g(s) expg

(
−2 i ω0

1 + i ω0 Δ+g
; 0, s
)

dμg

=1
2

∫ 1
1 + i ω0 Δ+g(s) dμg −

1
4 i ω0

[
expg

(
−2 i ω0

1 + i ω0 Δ+g
; 0, t
)
− 1
]
.

[0,t)
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On the other hand,

∫
[0,t)

expg(−i ω0; 0, s)−1

1 − i ω0 Δ+g(s) cosg(ω0; 0, s) dμg

=1
2

∫
[0,t)

expg(−i ω0; 0, s)−1

1 − i ω0 Δ+g(s)
(
expg(+i ω0; 0, s) + expg(−i ω0; 0, s)

)
dμg

=1
2

∫
[0,t)

expg(+i ω0; 0, s)
expg(−i ω0; 0, s)−1

1 − i ω0 Δ+g(s) dμg + 1
2

∫
[0,t)

1
1 − i ω0 Δ+g(s) dμg

=1
2

∫
[0,t)

1
1 − i ω0 Δ+g(s) expg

(
2 i ω0

1 − i ω0 Δ+g
; 0, s
)

dμg + 1
2

∫
[0,t)

1
1 − i ω0 Δ+g(s) dμg

= 1
4 i ω0

[
expg

(
2 i ω0

1 − i ω0 Δ+g
; 0, t
)
− 1
]

+ 1
2

∫
[0,t)

1
1 − i ω0 Δ+g(s) dμg.

Thus,

vp(t) = + 1
4 i ω0

expg(+i ω0; 0, t)
∫

[0,t)

1
1 + i ω0 Δ+g(s) dμg

+ 1
8ω2

0
expg(+i ω0; 0, t)

[
expg

(
−2 i ω0

1 + i ω0 Δ+g
; 0, t
)
− 1
]

− 1
4 i ω0

expg(−i ω0; 0, t)
∫

[0,t)

1
1 − i ω0 Δ+g(s) dμg

+ 1
8ω2

0
expg(−i ω0; 0, t)

[
expg

(
2 i ω0

1 − i ω0 Δ+g
; 0, t
)
− 1
]
.

Now, taking into account that

expg

(
−2 i ω0

1 + i ω0 Δ+g
; 0, t
)

=expg(−i ω0; 0, t) expg(+i ω0; 0, t)−1,

expg

(
2 i ω0

1 − i ω0 Δ+g
; 0, t
)

=expg(+i ω0; 0, s) expg(−i ω0; 0, s)−1,

we obtain the following expression for the particular solution:

vp(t) = + 1
4 i ω0

expg(+i ω0; 0, t)
∫

[0,t)

1
1 + i ω0 Δ+g(s) dμg

− 1
4 i ω0

expg(−i ω0; 0, t)
∫

[0,t)

1
1 − i ω0 Δ+g(s) dμg

+ 1
8ω2

0
expg(−i ω0; 0, t) −

1
8ω2

0
expg(+i ω0; 0, t)

+ 1
2 expg(+i ω0; 0, s) −

1
2 expg(−i ω0; 0, t).
8ω0 8ω0
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Thus,

vp(t) = + 1
4 i ω0

expg(+i ω0; 0, t)
∫

[0,t)

1
1 + i ω0 Δ+g(s) dμg

− 1
4 i ω0

expg(−i ω0; 0, t)
∫

[0,t)

1
1 − i ω0 Δ+g(s) dμg.

In order to simplify the previous expression let us consider the following computations:∫
[0,t)

1
1 + i ω0 Δ+g(s) dμg =

∫
[0,t)

1 − i ω0 Δ+g(s)
1 + ω2

0 Δ+g(s)2 dμg

=
∫

[0,t)

1
1 + ω2

0 Δ+g(s)2 dμg − i ω0

∫
[0,t)

Δ+g(s)
1 + ω2

0 Δ+g(s)2 dμg,

∫
[0,t)

1
1 − i ω0 Δ+g(s) dμg =

∫
[0,t)

1 + i ω0 Δ+g(s)
1 + ω2

0 Δ+g(s)2 dμg

=
∫

[0,t)

1
1 + ω2

0 Δ+g(s)2 dμg + i ω0

∫
[0,t)

Δ+g(s)
1 + ω2

0 Δ+g(s)2 dμg.

Therefore,

vp(t) = + 1
2ω0

∫
[0,t)

1
1 + ω2

0 Δ+g(s)2 dμg

[
1
2 i
(
expg(+i ω0; 0, t) − expg(−i ω0; 0, t)

)]

− 1
2

∫
[0,t)

Δ+g(s)
1 + ω2

0 Δ+g(s)2 dμg

[
1
2
(
expg(+i ω0; 0, t) + expg(−i ω0; 0, t)

)]

= 1
2ω0

sing(ω0; 0, t)
∫

[0,t)

1
1 + ω2

0 Δ+g(s)2 dμg

− 1
2 cosg(ω0; 0, t)

∫
[0,t)

Δ+g(s)
1 + ω2

0 Δ+g(s)2 dμg.

Finally, the solution of (6.2) is given by

v(t) =x0 cosg(ω0; 0, t) + v0

ω0
sing(ω0; 0, t) + 1

2ω0
sing(ω0; 0, t)

∫
[0,t)

1
1 + ω2

0 Δ+g(s)2 dμg

− 1
2 cosg(ω0; 0, t)

∫
[0,t)

Δ+g(s)
1 + ω2

0 Δ+g(s)2 dμg.

(6.3)

Observe that if g(t) = t, we recover the classical solution and the amplitude of oscillations grows with t.

Example 6.2. Let us take the same data and derivators considered in Example 6.1. In Fig. 6.5 we can see 
the solution of (6.2) for some of the derivators considered in Example 6.1.
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Fig. 6.5. Solution of the g-harmonic oscillator associated to g1 and g2 (resonance effect) (vertical lines have to be understood as 
jumps and not as a multivalued function).

Table 1
Numerical errors eh = max{|v(tj) − y2,j | : j = 0, . . . , N + 1} for different values of h.

h 1.e − 1 1.e − 2 1.e − 3 1.e − 4 1.e − 5 1.e − 6
eh 4.5260e − 01 3.8906e − 03 3.8335e − 05 3.8274e − 07 3.8273e − 09 3.6102e − 11

In order to validate the exact solution (6.3), let us compare the solution (6.3) with the numerical solution 
of the system:

⎧⎪⎪⎨⎪⎪⎩
(
u

v

)′

g

(t) =
(

0 −ω2
0

1 0

)(
u(t)
v(t)

)
+
(

cosg(ω0; 0, t)
0

)
,

u(0) = v0, v(0) = x0.

The numerical approximation of the solution of a system of Stieltjes differential equations was introduced 
in [2], where the authors presented a predictor-corrector numerical scheme to approximate the solution 
of a Stieltjes differential equation (also for systems) from a quadrature formula for the Lebesgue Stieltjes 
integral. For this, a finite set of times {tj}N+1

j=0 ⊂ [0, T ] is considered such that Dg ⊂ {tj}N+1
j=0 , t0 = 0, 

tN+1 = T and tk+1 − tk = h > 0, for every k = 1, . . . , N . The application of the numerical method to our 
case is as follows. Given an element y0 = (v0, x0), we compute {(y+

j−1, y∗
j , yj)}N+1

j=1 as

⎧⎪⎪⎪⎨⎪⎪⎪⎩
y+
i,j = yi,k + Fi(tj ,yj) Δ+g(tj),

y∗i,j+1 = y+
i,k + Fi(t+j ,y

+
j ) (g(tj+1) − g(t+j )),

yi,j+1 = y+
i,j + 1

2
(
Fi(t+j ,y

+
j ) + Fi(t−j+1,y

∗
j+1)
)

(g(tj+1) − gs(t+j )),

for every j = 0, . . . , N and i = 1, 2, being yj = (x1,j , x2,j) and

F(t,y) =
(

cosg(ω0; 0, t) − ω2
0 y2

y1

)
.

In Table 1 we can see the numerical errors eh = max{|v(tj) − y2,j | : j = 0, . . . , N + 1} for different values 
of h, taking g(t) = gC2 (t) + gB(t), with Δ+g = 1/3 (see Example 6.1 for the definitions of gC2 and gB). 
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Fig. 6.6. Comparison between the exact solution and the numerical approximation (vertical lines have to be understood as jumps 
and not as a multivalued function).

Finally, in Fig. 6.6, we can see the comparison between the exact solution and the numerical approximation 
for h = 1.e − 1 and h = 1.e − 2.
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