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A B S T R A C T   

Terrestrial Laser Scanning (TLS) devices show great potential for application in Forest Inventories (FIs) as they 
are capable of registering high resolution point clouds rapidly and automatically. Nevertheless, operational use 
of TLS for FI purposes has been hampered by the absence of algorithms for processing the acquired data, 
particularly in the single-scan mode, as occlusions result in loss of information. The R package FORTLS has been 
developed to overcome this obstacle, as it automates the processing of single-scan TLS point cloud data for 
forestry purposes and includes several features that deal with occlusions. FORTLS makes use of the main 
advantage of the single-scan scenario in FI, thus improving the efficiency of data acquisition and post-processing. 
All of these features of the FORTLS package are potentially valuable for the operational use of TLS in FIs, in 
combination with inference techniques derived from model-based and model-assisted approaches.   

1. Introduction 

Information about forest resources is essential for sustainable forest 
management and development of forest policies, and forest inventories 
(FIs) are fundamental for estimating and monitoring the state and evo
lution of forest resources at both global and regional scales (Tomppo 
et al., 2010). FIs have improved since they were first introduced, owing 
to the continuous appearance of new technologies, especially in the last 
few decades since the emergence of remote and proximal sensing. In this 
technological context, light detection and ranging (LiDAR) systems 
provide 3-dimensional point clouds, which are suitable for estimating 
tree attributes and are very useful for many forestry applications 
(Dubayah and Drake, 2000). This technology has proved operationally 
viable for estimating essential FI variables at stand level, such as 

arithmetic mean height (h, m), basal area (G, m2 ha− 1) and volume (V, 
m3 ha− 1), with airborne laser scanning (ALS) devices (Wulder et al., 
2012; White et al., 2016). Terrestrial laser scanning (TLS) devices, such 
as LiDAR devices with millimetric precision, are considered to show 
great potential for enhancing FIs (Dassot et al., 2011; White et al., 2016) 
and also forest ecology research (Calders et al., 2020; Danson et al., 
2018). Apart from much higher spatial resolution under canopy, the 
main advantages of using TLS data rather than ALS data are better 
observation of near-ground vegetation (White et al., 2016) and thus 
better trunk coverage for estimating the woody component, which is one 
of the most important components in FIs. In fact, TLS-based approaches 
can provide very accurate estimates of the diameter at breast height 
(dbh, measured at 1.3 m from the ground) and the stem curve; with the 
single-scan approach yielding values of 1–4 and 1.3–6 cm respectively, 
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depending on the stand conditions (Liang et al., 2018a), which are close 
to the values required in practical applications such as FIs. However, TLS 
devices have not been yet adopted in FIs, for several reasons: (i) diffi
culties in the automation of data processing to provide reliable mea
surements of important forest variables, (ii) high acquisition costs; (iii) 
limited software; and (iv) lack of trained personnel (Liang et al., 2016). 
Many researchers agree that affordability is the main key challenge to 
overcome, emphasizing that automation of point cloud processing with 
attainable and easy-to-use software able to extract information related 
to important forest attributes is essential (Dassot et al., 2011; Newnham 
et al., 2015; White et al., 2016; Liang et al., 2016, 2018a). 

As TLS data sets comprise millions of points, sophisticated methods 
for automatic processing are required. Many algorithms with a high 
level of automation and that are able to extract tree attributes, such as 
dbh, total height (h, m) and stem volume (v, m3), have been developed in 
the last few decades (Cabo et al., 2018; Liang et al., 2012, 2018b; 
Olofsson et al., 2014; Olofsson and Holmgren, 2016; Zhang et al., 2019). 
Although most algorithms yield acceptable dbh and stem curve estima
tions according to FI requirements, stem detection and estimation of h 
cause bottlenecks in the process, especially with single scans (Krok et al., 
2020; Liang et al., 2018a). Some of the algorithms developed have also 
been included in software applications, such as SimpleForest (Hacken
berg et al., 2015), 3D Forest (Trochta et al., 2017) and AutoStem™ 
(Bienert et al., 2007), among others (Krok et al., 2020). However, these 
programs have some drawbacks for use in FIs: (i) they focus on 
single-tree rather than stand-level approaches (SimpleForest); (ii) they 
involve semi-automatic processing (3D Forest); and (iii) the software is 
only available commercially (AutoStem™) (i.e. it is not free or open 
source). Furthermore, the previous studies have mainly focused on 
replicating plot-based measurements, which does not extend conven
tional inventory approaches from a sampling perspective and thus limits 
the utility of TLS in FIs, the main purpose of which is to estimate 
important forest variables at larger scales (e.g. stand and regional) than 
tree and plot levels (Newnham et al., 2015; White et al., 2016). Methods 
that enable TLS to be used for FI purposes must therefore contemplate 
the use of different approaches (Newnham et al., 2015), and other 
procedures in which not all trees in the sample plots are measured may 
be feasible (Liang et al., 2018a). Thus, further research is required to 
address the challenges in the operational use of TLS (Liang et al., 2018a). 

Here we present FORTLS (Molina-Valero et al., 2021), an R package 
developed with the objective of automating TLS point cloud data pro
cessing and estimating variables for forestry purposes. To fulfil this 
objective, FORTLS enables (i) detection of trees and estimation of dbh 
and other tree attributes, (ii) estimation of some stand variables (e.g. h, 
G, V), (iii) computation of metrics related to important tree attributes 
estimated in FIs at stand-level, and (iv) optimization of plot design for 
combining TLS data and field measured data. The package also includes 
several features for correcting occlusion problems to improve the esti
mation of stand variables. The current version of FORTLS is based on 
single-scan TLS data, with the aim of facilitating operational use, and it 
has been designed as relatively easy-to-use open-source software aimed 
at use by both scientists and technical users. Relative to multi-scan and 
multi-single-scan approaches, the single-scan approach improves data 
acquisition, shortens the processing time and increases the sample size 
in a cost-efficient manner, mainly because it does not require 
pre-scanning tasks involving location of artificial reference objects 
(Holopainen et al., 2014) or automated post-processing matching 
methods (Liu et al., 2017). Finally, and as a case study, we have tested 
FORTLS for estimating common forestry variables in an experimental 
plot of 1 ha located in an even-aged Pinus sylvestris L. stand in northern 
Spain. These features of the FORTLS package may enable the operational 
use of TLS in FIs, in combination with model-based or model-assisted 
inference approaches. 

2. Methods 

2.1. Software design 

FORTLS (Molina-Valero et al., 2021) has been developed as an R 
package (R Core Team, 2021) because R is free statistical software which 
is accessible to any user interested in this tool. The initial stages of 
development of this package were outlined in Molina-Valero et al. 
(2020), although the first version of FORTLS was not available until 
March 2021. Currently, both the most recent stable version of the 
package and the most up-to-date version can be downloaded free of 
charge, from respectively the CRAN (https://CRAN.R-project.org/packa 
ge=FORTLS) and GitHub development (https://github.com/Mo 
lina-Valero/FORTLS/tree/devel) repositories. 

The R package FORTLS has been optimized by implementing C++

code in the most demanding computing processes by means of the Rcpp 
package (Eddelbuettel, 2013; Eddelbuettel and Balamuta, 2018; Eddel
buettel and François, 2011) and the RcppEigen package (Bates and 
Eddelbuettel, 2013), which enables integration of the Eigen C++ library 
for specific matrix calculation. For operations with objects in spatial 
data classes, both the raster (Hijmans, 2020) and sp (Bivand et al., 2013; 
Pebesma and Bivand, 2005) packages have been used. For obtaining 
Voronoi polygons, the ggvoronoi package (Garrett et al., 2021) has been 
used in the simulations and metrics.variables functions. As TLS point 
clouds represent large data sets, FORTLS also imports the vroom pack
age (Hester and Wickham, 2020) for accelerating loading and saving .txt 
files. We have used other important packages to generate and save 
interactive graphics, namely plotly (Sievert, 2020) and htmlwidgets 
(Vaidyanathan et al., 2020). Apart from the packages included in R base 
distribution and other accessory packages such as progress (Csárdi and 
FitzJohn, 2019), scales (Wickham and Seidel, 2020) and tidyr (Wick
ham, 2021), the other external R packages used for more specific 
functions are mentioned below, with their respective functions. 

The functions and results compiled in this work are based on the 
stable version 1.0.6 of the FORTLS package available in CRAN. In the 
following sections, all steps involved in TLS point cloud data processing 
with FORTLS, as well as the most relevant algorithms, are described: (i) 
normalization; (ii) tree detection; and (iii) estimation of metrics and 
variables at stand-level. 

2.1.1. Normalization 
The normalization process is a necessary first step in processing point 

cloud data, and it is implemented in the normalize function (Table 1), 
which for some processes uses the functions readLAS, clip_circle, clas
sify_ground, grid_terrain and normalize_height included in the lidR 
package (Roussel et al., 2020; Roussel and Auty, 2020). Normalization 
involves obtaining the coordinates relative to plot centre for TLS point 
clouds supplied as .las or .laz files. The process includes the following 
steps: (i) classification of points as “ground”; (ii) generation of a digital 
terrain model (DTM); (iii) computation of coordinates relative to DTM 
(Cartesian, cylindrical and spherical); and (iv) reduction of point cloud 
density by the point cropping process (PCP). 

In the initial step, points are classified as “ground” or “not ground” 
with the Cloth Simulation Filter (CSF) algorithm (Zhang et al., 2016). 
The DTM is then generated by spatial interpolation of “ground” points. 
Two methods are available for executing this process: (i) spatial inter
polation based on Delaunay triangulation (by default); and (ii) spatial 
interpolation using a k-nearest neighbour approach with 
inverse-distance weighting. The point cloud is then normalized by 
subtracting the DTM created. Once the point cloud has been normalized, 
Cartesian, cylindrical and spherical coordinates are calculated relative 
to the sampling point (TLS device establishment point). Finally, the 
normalize function applies the PCP algorithm developed by Molina-
Valero et al. (2019) to reduce the point density and thus produce a 
spatially homogeneous point cloud in which the distribution of points is 
proportional to the object size. During execution of the PCP, a selection 
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probability prob(p) is assigned to each cloud point p according to Eq. (1) 
(Fig. 1): 

prob(p) =
rp

rmax
(1)  

where rp is the radial distance of the point p from the plot centre, and 
rmax is the radial distance of the farthest point from the plot centre. 
Finally, the point is selected if the selection probability is equal to or 
higher than a random value generated from the uniform distribution for 
the interval [0, 1]. 

2.1.2. Tree detection 
Tree detection represents a very important and challenging step in 

estimating variables of interest in TLS-assisted FIs. This is partly due to 
occlusions, which are much more important when working with single 
scans. This process of tree detection is implemented in the tree.detection 
function (Table 1), which has been designed to detect as many trees as 
possible from point cloud data obtained as normalize function output. 

In the tree detection process, one or several horizontal slices from the 
original point cloud are extracted. Slices at heights of 1.0, 1.3 and 1.6 m 
± 5 cm over the terrain (all around 1.3 m as reference section to estimate 
dbh) are considered by default in tree.detection. The probability of 
detecting trees increases when more than one slice is considered. 
However, the tree.detection function can also extract (if specified in the 
arguments) slices at other heights when trees are not identifiable at 
these pre-established values. Each horizontal slice is processed by al
gorithms that are able to (i) remove branches and foliage points, (ii) 
detect point clusters corresponding to potential tree sections, and (iii) 
classify detected point clusters as tree sections, or not, according to 
several tests. The tree sections detected for all horizontal slices are then 
merged, and for each tree detected the tree.detection function estimates 
certain attributes by: (i) calculating the coordinates corresponding to 
tree normal section centre (1.3 m above ground level) and its horizontal 
distance from plot centre; (ii) estimating the dbh; (iii) classifying the tree 
as fully visible or partially occluded; and (iv) obtaining the number of 
points corresponding to normal section slice (1.3 m ± 5 cm) for both 
original and reduced (by applying PCP) point clouds. 

The main steps involved in the previously mentioned algorithms for 
detecting tree sections for each horizontal slice and for estimating 
metrics and variables related to detected trees attributes are described in 
the following subsections and summarized in Fig. 2. 

2.1.2.1. Removing branches and foliage points. For each horizontal slice, 
this first step aims to remove points corresponding to fine branches and 
foliage (e.g. leaves and shrubs) and mainly to retain stem points, for 
which we considered local surface variation, also known as the normal 
change rate (NCR). This is a quantitative measure of curvature feature 
useful for discerning some “noisy” points (Pauly et al., 2002) with higher 
values representing more curved surfaces (predictably fine branches and 
foliage). 

The NCR index is estimated at point level considering a local 
neighbourhood, as follows. Given a fixed radius r, the set of local 

Table 1 
Main functions included in the FORTLS package.  

Function (arguments) Description 

correlations(simulations, 
variables = c 
("N","G","V","d","dg","d.0","h","h.0"), 
method = c("pearson","spearman”), save.result 
= TRUE, dir.result = NULL) 

Correlation between field 
estimates and TLS metrics 

distance.sampling(tree.list.tls, 
id.plots = NULL, strata.attributes = NULL) 

Distance sampling methods for 
correcting occlusion effects 

estimation.plot.size(tree.list.tls, 
plot.parameters = list( 
radius.max = 25, k.tree.max = 50, BAF.max =
4), 
average = FALSE, all.plot.designs = FALSE) 

Assessment of consistency of 
metrics for simulated TLS plots 

metrics.variables(tree.list.tls, 
distance.sampling = NULL, plot.parameters, 
dir.data = NULL, save.result = TRUE, dir. 
result = NULL) 

Computation of metrics and 
variables for TLS plots 

normalize(las, 
x.center = NULL, y.center = NULL, 
max.dist = NULL, min.height = NULL, max. 
height = NULL, 
algorithm.dtm = "tin”, res.dtm = 0.2, 
csf = list(cloth_resolution = 0.5), 
id = NULL, file = NULL, 
dir.data = NULL, save.result = TRUE, dir. 
result = NULL) 

Production of relative 
coordinates and density 
reduction for TLS point clouds 

optimize.plot.design(correlations, 
variables = c 
("N","G","V","d","dg","d.0","h","h.0"), 
dir.result = NULL) 

Optimization of plot design 
based on optimal correlations 

relative.bias(simulations, 
variables = c 
("N","G","V","d","dg","d.0","h","h.0"), 
save.result = TRUE, dir.result = NULL) 

Relative bias between field 
estimates and TLS metrics 

simulations( 
tree.list.tls, distance.sampling = NULL, tree. 
list.field, 
plot.parameters = list( 
radius.max = 25, k.tree.max = 50, BAF.max =
4), 
dir.data = NULL, save.result = TRUE, dir. 
result = NULL) 

Computation of metrics and 
variables for simulated TLS and 
field plots 

tree.detection(data, 
dbh.min = 7.5, dbh.max = 200, ncr.threshold 
= 0.1, 
tls.resolution = list(), breaks = c(1.0,1.3,1.6), 
plot.attributes = NULL, 
save.result = TRUE, dir.result = NULL) 

Tree detection and cross section 
estimation 

tree.detection.multiple(las.list, 
id = NULL, file = NULL, 
normalize.arguments = list( 
max.dist = NULL, min.height = NULL, max. 
height = NULL, 
algorithm.dtm = "tin”, res.dtm = 0.2), 
tree.detection.arguments = list( 
dbh.min = 7.5, dbh.max = 200, 
ncr.threshold = 0.1, tls.resolution = list(), 
breaks = c(1.0,1.3,1.6), 
plot.attributes = NULL), 
dir.data = NULL, save.result = TRUE, dir. 
result = NULL) 

Tree detection and cross section 
estimation for multiple plots  

Fig. 1. Selection probability of points corresponding to a single-scan according 
to the radial distance from the plot centre, implemented in the 
normalize function. 
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neighbours of a point p is denoted by {pi}i∈Np,r
, where Np,r is the index set 

of all cloud points satisfying the condition that d(p, pi) < r (where d is 
the Euclidean distance). The NCR for point p is then estimated by 
eigenanalysis of the 3 × 3 covariance matrix Cp of its local neighbour
hood (Eq. (2)): 

Cp =
1

Np,r

∑

i∈Np,r

(pi − p)(pi − p)T (2)  

where p is the centroid of the local neighbourhood of p. Obtaining the 
eigenvalues {λi}

2
i=0 by singular value decomposition of Cp and assuming 

that λ0 ≤ λ1 ≤ λ2, λ0 describes the variation along the normal surface, 
the extent to which the points deviate from the tangent plane is esti
mated (Pauly et al., 2002). Hence, the NCR index for radius r at point p is 
defined as follows (Eq. (3)): 

NCRr(p)=
λ0

λ0 + λ1 + λ2
(3) 

Once NCR is computed, p is retained as a stem point if its NCR value 
is lower than a pre-established threshold (Fig. 3a). In accordance with 
other studies, in the tree.detection function, the neighbourhood was 
established by a radius of 5 cm as suitable for calculating NCR for the 
stem separation in forests (Ma et al., 2016; Xia et al., 2015). The 
threshold value of NCR used to remove branches and foliage points was 
established as 0.1 by default, also according to other studies in which the 
index has already been used with the same objective and obtaining good 
results (e.g. Jin et al., 2016; Zhang et al., 2019). Nevertheless, other NCR 
thresholds can be specified by users in the corresponding argument of 
the tree.detection function. 

2.1.2.2. Detection of point clusters. Once branches and foliage points 

have been removed from the horizontal slice, the next step is to detect 
point clusters corresponding to potential tree sections. This process in
volves several steps: (i) a clustering process is first applied to the hori
zontal projection of Cartesian coordinates of points; (ii) points 
corresponding to possible branches are then removed using surface 
density approaches; and (iii) clusters receiving fewer points than ex
pected for a full visible stem are discarded. 

As mentioned above, potential tree sections are first detected 
through a clustering process applied to the horizontal projection of 
Cartesian coordinates. This clustering process is performed by the 
Density-Based Spatial Clustering of Applications based on the Noise 
(DBSCAN) method (Ester et al., 1996) and applied with the dbscan 
function in the R package dbscan (Hahsler et al., 2019). The size of the 
epsilon neighbourhood is established as the minimum distance between 
two consecutive points at the farthest distance from TLS in the respective 
horizontal slice, and a minimum of 5 points required in that epsilon 
neighbourhood. This algorithm detects as many as possible sections 
corresponding to trees (according to occlusion conditions), as well as 
other possible clusters generated by other items (branches, shrubs, etc.), 
and it has been used in previous studies of TLS with the same objective 
(Ferrara et al., 2018; Molina-Valero et al., 2019). 

For refining extracted stem points, we used a similar approach to that 
proposed by Zhang et al. (2019) in order to remove any branches 
remaining in the clusters, based on the principle that stems should 
generate more points than other parts of the tree (due to the fractal-size 
distribution according to West et al., 1999); in addition, these points 
should have a predominantly vertical distribution. Thus, if the point 
cloud is vertically projected and rasterized in a grid, cells over stems 
usually include more points than those located over branches and fo
liage. Each cluster is thus rasterized on the horizontal plane (Cartesian 
coordinates) with an adapted grid step size of twice the distance 

Fig. 2. FORTLS workflow for normalization (red) and tree detection (green) processes. All of the processes included here are described in sections 2.1.1 and 2.1.2.  
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between two consecutive points at mean cluster distance from TLS, and 
those points included in cells with fewer points than the median value of 
the number of points per cell will be removed (Fig. 3b). 

At this point of the process, several tests were used to distinguish 
those clusters belonging to tree sections. Each cluster was first projected 
vertically with cylindrical coordinates (φ, z) and divided into regular 
strips bound by vertical scan resolution (αv) (Fig. 3c). As stems 
completely visibly from TLS must generate the maximum possible 
number of points according to scan resolution and distance from the TLS 
instrument, we estimated the approximate number of points that each 
strip must include if the section corresponds to a fully visible tree. As 
normalized coordinates are projected on a horizontal plane, the slope 
effect was first corrected to calculate the vertical resolution (Δv) in co
ordinate z at cluster real distance from TLS (m), as follows (Eq. (4)): 

Δv = 2 ×
tan(αv/2)

rcluster/cos(slope)
(4)  

where αv is the vertical scan resolution (rad), rcluster is the mean radial 
distance in spherical coordinates from TLS to cluster (m), and slope is the 
mean slope of cluster according to DTM (rad). The number of points n 
that each strip must contain in fully visibility conditions is then 
computed as follows (Eq. (5)): 

n=
Δz
Δv

(5)  

where Δz is the slice thickness (m), and Δv is the previously defined 
vertical resolution (Eq. (4)). Finally, we reduced the predicted number 
of points by 30% in very stepped terrains (>0.5 rad). Only those clusters 
with at least one strip containing the number of points n that every strip 

Fig. 3. Detection of potential tree sections implemented in the tree.detection function: a) points corresponding to branches and foliage (green) removed by applying 
the NCR index for a threshold of 0.025; b) refinement of extracted stem points where those points included in grid cells with fewer points than the median (red points) 
are removed; c) estimation of the approximate number of points (n) that each strip must contain if the section corresponds to a tree fully viewed by TLS, the green 
points represent those cells containing more or equal points than n; and d) estimated location of tree section centre (green point) and radius calculated (green wide 
arrow) as the average of all distances (red fine arrows) between cluster points and the grid intersection allocated as the tree centre. 
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must contain in fully visibility conditions were selected. 
Once clusters have fulfilled all of the previous checks, the next step 

involves obtaining the centre of the potential tree section. With this aim, 
regular square grids of 1 cm were overlapped on each cluster selected. 
The tree section centre was then considered as the intersection grid point 
where the variance of the distances between this intersection and all the 
cluster points reaches the lowest value (Fig. 3d), considered to occur 
when the coefficient of variation of distances is smaller than 0.1, 
otherwise the cluster is dismissed. Finally, the radius of the tree section 
was computed as the average of all the distances between the estimated 
centre and remaining cluster points at the moment of algorithm 
processing. 

2.1.2.3. Cluster classification. This step consists of checking multiple 
geometrics features and indices to verify which clusters finally corre
spond to tree sections. Most criteria used are based on those determined 
by Molina-Valero et al. (2019), and they were applied to each cluster. 
The first test involves checking whether the centre is located behind the 
cluster points relative to TLS. This is considered fulfilled when at least 

95% of the cluster points have a lower cylindrical coordinate ρ (hence 
closer than plot centre) than the tree centre. The second test consists of 
checking for the absence of points behind the tree surface, which is 
considered true when at least 95% of the distances between cluster 
points and the tree centre are greater than half of the estimated radius. 
This may be visually checked by means of a distance histogram (Fig. 4a). 
The similarity between the cluster shape and the circumference arc is 
then assessed, checking that extreme points in cylindrical coordinate ρ 
are farther from TLS than central points (Fig. 4b). This is possible when 
trees are largely visible from TLS, but otherwise will not be possible due 
to partial occlusions. In such cases, the clusters were checked to deter
mine whether they form a smaller arc of a circle (Fig. 4c). For this 
purpose, we calculated the Pearson coefficient correlations for φ values 
in increasing order and the correlative numbering (Fig. 4d). Those 
clusters with values below 0.995 were removed. 

2.1.2.4. Estimating tree attributes. When several sections are identified 
at different heights, those corresponding to the same trees are joined 
using the DBSCAN algorithm on the horizontal projection, and some tree 

Fig. 4. Representation of some of the tests implemented in the tree.detection function to distinguish those clusters corresponding to tree sections: a) histogram of 
distances between cluster points and estimated tree centre to check for the absence of points behind tree surface; b) mean coordinates of points included in first and 
last φ coordinate percentiles (red points) and in the middle cluster φ ± TLS angle aperture (red triangle); c) tree partially occluded; and d) assessment of the Pearson’s 
correlation between φ values in increasing order and their corresponding correlative numbers. 
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attributes are obtained: coordinates of normal section centre and hori
zontal distance from plot centre, estimated dbh, indicator of partial oc
clusion and number of points corresponding to normal section for 
original and reduced point clouds. 

When trees are exclusively detected at 1.3 m, the dbh is estimated 
directly as twice the radius estimated at this height. Conversely, when 
trees are detected from other section(s) (including 1.3 m or not), a linear 
taper equation is fitted with radius as the response variable radius and 
section height (hsechsec) as the explanatory variable (Eq. (6)): 

radius = β0 + β1⋅hsec (6) 

The radius at 1.3 m is then predicted, as follows (Eq. (7)): 

̂radius1.3 = radiusi + β̂1⋅(1.3 − hseci ) (7)  

where radiusi and hseci are the estimated radius and the height corre
sponding to section i, and β̂1 is the slope parameter fitted in the linear 
regression (Eq. (6)). Hence, dbh is computed as twice the averaged 
predicted radius. 

Finally, the number of points (num.points) corresponding to a normal 
section (+/- 5 cm) in the original point cloud is computed and also 
estimated for each detected tree j by using the dbh values previously 
computed as follows (Eq. (8)): 

num.points.estj = dbhj

∑
i∈I

num.pointsi
dbhi

#I
(8)  

where the index set I corresponds to all detected trees fully visible at 1.3 
m, and #I is the number of trees fully visible at 1.3 m. The number of 
points and the estimated number of points for the point cloud reduced by 
PCP are obtained in a similar way. 

2.1.3. Computing TLS metrics and variables at stand level 
Once normalization and tree detection processes for each point cloud 

are completed, TLS metrics and variables can be estimated at stand level 
for three different plot designs, all of which are included in the metrics. 
variables function (Table 1). These plot designs are circular fixed area, k- 
tree and angle-count (Bitterlich, 1948) plots (Fig. 5), each of which is 
defined by a unique design parameter (radius, k and basal area factor 
(BAF), respectively) that must be specified in the function arguments. 

The metrics and variables computed for each plot design are sum
marized in Table 2, and more details are compiled below. The two ap
proaches for optimizing plot design by means of FORTLS functions are 
also described. 

2.1.3.1. Stand-level metrics. Metrics are computed using points directly 
from normalized point cloud in a relatively similar way as in the 
FUSION/LDV software for LiDAR data analysis and visualization 
(McGaughey, 2009). These are statistical descriptive measures such as 
percentiles or only number of points belonging to specific sections of 
point cloud. The following metrics are available:  

- Total number of points corresponding to the normal section (+/- 5 
cm) of trees detected after removing some noisy points with NCR and 
refinement of extracted stem points processes (see section 2.1.2). 
These can be computed for raw point clouds (num.points) and 
reduced point clouds (num.points.hom).  

- Number of estimated points corresponding to the normal section 
(+/- 5 cm) of trees detected. The number of points corresponding to 
each tree can be estimated according to Eq. (8) for raw point clouds 
(num.points.est) and, analogously, for reduced point clouds (num. 
points.hom.est).  

- Percentiles of z coordinate (m). Computed percentiles are P01, P05, 
P10, P20, P25, P30, P40, P50, P60, P70, P75, P80, P90, P95 and P99.  

- Descriptive statistics of z coordinate distribution: mean, maximum 
(max), minimum (min), standard deviation (sd), variance (var), 
mode, kurtosis and skewness. 

- Percentage of points above mode (perc_on_mode) and mean (per
c_on_mean) values of z coordinates.  

- Scale (weibull_b) and shape (weibull_c) parameters of a Weibull 
distribution fitted to z coordinates distribution. 

2.1.3.2. Stand-level variables. Variables represent estimates based on 
the attributes of trees detected from TLS point cloud data, further 
aggregated at stand-level, and finally expanded to unit area (ha). The 
following variables are available:  

- Apparent stand density (N.tls, trees ha− 1), which is estimated for 
trees detected in a similar procedure to that used in conventional 
inventories for circular fixed area and k-tree plots (Eq. (9)) and 
angle-count plots (Eq. (10)): 

N.tls=
10000
πR2 ⋅n (9)  

N.tls=
∑n

i=1

BAF
gi

(10)  

where R is the plot radius (m), n is the number of trees detected in the 
corresponding plot design, BAF is the basal area factor (m2 ha− 1), and gi 
is the basal area of the tree i (m2).  

- Apparent stand basal area (G.tls, m2 ha− 1), which is estimated for 
trees detected in a similar procedure as that used in conventional 
inventories for circular fixed area and k-tree plots (Eq. (11)) and 
angle-count plots (Eq. (12)): 

G.tls=
10000
πR2

∑n

i=1
gi (11) 

Fig. 5. Example of the three plot designs considered in FORTLS for the same 
sampling point. Circular fixed area plot of 10 m radius (red) includes 7 trees; k- 
tree plot for k = 8 (green) yields a larger radius than circular fixed area; and 
angle-count plot (blue) with a particular BAF includes 7 trees. 
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G.tls=BAF⋅n (12)    

- Apparent stand stem volume (V.tls, m3 ha− 1), which is estimated for 
trees detected by modelling stem profile as a paraboloid and calcu
lating the volumes of revolution for fixed area and k-tree plots (Eq. 
(13)) and angle-count plots (Eq. (14)): 

V.tls=
10000
πR2

∑n

i=1
π⋅

h2
P99

i
2

⋅

(

dbhi

/2

)2

(
hP99i

− 1.3
)2 (13)  

V.tls=
∑n

i=1

BAF
gi

⋅π⋅
h2

P99
i

2
⋅

(

dbhi

/2

)2

(
hP99i

− 1.3
)2 (14)  

where hP99 i and dbhi are the 99th percentile of points delimited by 
Voronoi polygons (m) (i.e. estimates of h) and dbh (m) for tree i, 
respectively. 

- Mean and dominant diameters (cm), which are estimated for arith
metic, quadratic, geometric and harmonic means. In the case of 
dominant diameters, only the n largest trees per ha (according to 
dbh) are considered. Although it can be specified in the arguments, 
the 100 largest trees per ha are considered by default.  

- Mean and dominant heights (m), which are estimated for arithmetic, 
quadratic, geometric and harmonic means. In the case of dominant 
heights, only the n largest trees per ha (according to dbh) are 

considered. Although the number of trees can be specified in the 
arguments, the 100 largest trees per ha are considered by default. 

In the previous calculations, for the k-tree design, the plot radius R is 
defined as the mean of horizontal distances of trees k and k+1 (Kleinn 
and Vilčko, 2006). 

2.1.3.3. Dealing with occlusions. All FORTLS functions used for esti
mating stand variables also include correction of occlusions approaches. 
In the case of angle-count plots, occlusion corrections are based on gap 
probability attenuation with distance from TLS depending on a Poisson 
distribution. In the case of circular fixed area and k-tree plots, distance 
sampling methods and shadowing effect correction are considered. In 
order to obtain occlusion corrections based on distance sampling 
methods, the distance.sampling function must be executed previously 
and the values obtained must be incorporated as an argument for 
functions which compute stand variables, whereas the other corrections 
are computed by default. A brief description of the implemented oc
clusion corrections is given below. 

2.1.3.4. Poisson attenuation model. This method has been used in mea
surements with TLS (Strahler et al., 2008; Lovell et al., 2011) and optical 
(Montes et al., 2019) instruments to reduce the device-related bias in the 
relascope-based approach. It is based on geometric gap probability 
(Pgap), which decreases exponentially following a Poisson distribution 
(Eq. (15)): 

Pgap(λ,DE,R)= e(− λDER) (15)  

where λ is the number of trees per m2, DE is the effective dbh and R is the 

Table 2 
FORTLS metrics and variables.  

Metrics and variables Description 

Na/N.tls Stand density (N, trees ha− 1) 
N.hnb, N.hrb, N.hn.covb, N.hr.covb Stand density (N, trees ha− 1) with occlusion corrections based on distance sampling methodologies 
N.shb Stand density (N, trees ha− 1) with correction of the shadowing effect 
N.pamc Stand density (N, trees ha− 1) with occlusion correction based on a Poisson attenuation model 
Ga/G.tls Stand basal area (G, m2 ha− 1) 
G.hnb, G.hrb, G.hn.covb, G.hr.covb Stand basal area (G, m2 ha− 1) with occlusion corrections based on distance sampling methodologies 
G.shb Stand basal area (G, m2 ha− 1) with correction of the shadowing effect 
G.pamc Stand basal area (G, m2 ha− 1) with occlusion correction based on a Poisson attenuation model 
Va/V.tls Stand volume (V, m3 ha− 1) 
V.hnb, V.hrb, V.hn.covb, V.hr.covb Stand volume (V, m3 ha− 1) with occlusion corrections based on distance sampling methodologies 
V.shb Stand volume (V, m3 ha− 1) with correction of the shadowing effect 
V.pamc Stand volume (V, m3 ha− 1) with occlusion correction based on a Poisson attenuation model 
num.points, num.points.est, num.points.hom, num. 

points.hom.est 
Number of points and estimated number of points corresponding to normal sections (+/- 5 cm) of trees in the original point 
cloud (num.points and num.points.est, respectively); and number of points and estimated number of points (points) 
corresponding to normal sections (+/- 5 cm) of trees in the reduced point cloud (num.points.hom and num.points.hom.est, 
respectively). 

da, dga, dgeoma, dharma/d.tls, dg.tls, dgeom.tls, 
dharm.tls 

Stand mean dbh, using arithmetic mean (d, cm), quadratic mean (dg, cm), geometric mean (cm), and harmonic mean (cm), 
respectively.  

ha, hga, hgeoma, hharma/h.tls, hg.tls, hgeom.tls, 
hharm.tls 

Stand mean h, using arithmetic mean (h, m), quadratic mean (m), geometric mean (m), and harmonic mean (m), respectively.  

d.0a, dg.0a, dgeom.0a, dharm.0a/d.0.tls, dg.0.tls, 
dgeom.0.tls, dharm.0.tls 

Stand dominant mean dbh, using arithmetic mean (d0, cm), quadratic mean (cm), geometric mean (cm), and harmonic mean 
(cm), respectively. 

h.0a, hg.0a, hgeom.0a, hharm.0a/h.0.tls, hg.0.tls, 
hgeom.0.tls, hharm.0.tls 

Stand dominant mean h, using arithmetic mean (H0, m), quadratic mean (m), geometric mean (m), and harmonic mean (m), 
respectively. 

P01, P05, P10, P20, P25, P30, P40, P50, P60, P70, 
P75, P80, P90, P95, P99 

Height percentiles (m) derived from z coordinates of TLS point clouds relative to ground level. 

meand, maxd, mind, sdd, vard, moded, kurtosisd, 
skewnessd 

Descriptive statistics of z coordinates distribution of TLS point clouds relative to ground level: mean, maximum, minimum, 
standard deviation, variance, mode, kurtosis and skewness, respectively. 

perc.on.moded, perc.on.meand Percentage of points above mode and mean values of z coordinates of TLS point clouds relative to ground level. 
weibull_bd, weibull_cd Scale and shape parameters, respectively, for Weibull distribution fitted for z coordinates of TLS point clouds relative to 

ground level.  

a Variables estimated from field measurement data. 
b Variables only estimated for circular fixed area and k-tree plot design. 
c Variables only estimated for angle-count plot design. 
d Variables not included in FORTLS example data because they were included in the previous version (1.0.3). 
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horizontal distance to the farthest tree. The corrected stand density (N. 
pam, trees ha− 1) for angle-count plots is then obtained as follows (Eq. 
(16)): 

N.pam=N.tls /F(λDER) (16)  

where F is a function defined as F(t) = 2
t2 (1 − e− t(1 + t)), with t = λDED

2
̅̅̅̅̅̅̅
BAF

√ : 
see Strahler et al. (2008) and Lovell et al. (2011) for further details. 
Similarly, corrected stand basal area (G.pam, m2 ha− 1) and volume (V. 
pam, m3 ha− 1) are computed. 

2.1.3.5. Point transect sampling. This approach is based on the point 
transects method from distance sampling methods (Buckland et al., 
2001). These methods use detection functions g(r, θ) with variable r 
(distance from sampling point) and parameter θ, which describe how the 
probability of detection decreases as distance increases. We used 
Half-Normal (Eq. (17)) and Hazard-Rate (Eq. (18)) functions as these 
have been successfully used in measurements with TLS (Astrup et al., 
2014) and optical (Montes et al., 2019) devices: 

g(r, θ) = e

(

− r2
2σ2

)

(17)  

g(r, θ) = 1 − e
−

(
r
σ

)− b

(18) 

Parameter θ includes the shape (b) (only in the Hazard-Rate func
tion) and the scale (σ), which was also expanded with dbh as a covariate 
into an exponential function (Eq. (19)) according to Ducey and Astrup 
(2013) and Astrup et al. (2014): 

σ = α0e(α1dbh) (19) 

Parameter θ is estimated by maximum likelihood (Marques and 
Buckland, 2003; Miller and Thomas, 2015; Clark, 2016) with data 
left-truncated at 1 m according to Astrup et al. (2014). The fitting pro
cess is carried out by means of the ds function included in the R package 
Distance (Miller et al., 2019). Once the parameters of detection func
tions are estimated, the probability of tree detection (Pi) is estimated 
with Eq. (20), which is implemented in the expansion factor of circular 
fixed area and k-tree plots as in Eq. (21): 

Pi =
2
R2

∫R

0

rg(r, θ̂) (20)  

EF =
∑n

i=1

10000
(
PiπR2

) (21)  

where R is the plot radius (m), and EF is the expansion factor. Multi
plying N.tls by these EFs yields corrected stand densities (N.hn, N.hr, N. 
hn.cov, N.hr.cov, trees ha− 1). Similarly, corrected stand basal area (G. 
hn, G.hr, G.hn.cov, G.hr.cov, m2 ha− 1) and volume (V.hn, V.hr, V.hn. 
cov, V.hr.cov, m3 ha− 1) are computed. 

All of these estimates are obtained by previously executing the dis
tance.sampling function (Table 1), which returns Pi and also values of 
parameter estimates of detection functions and the corresponding 
Akaike information criterion (AIC) of these fits. 

2.1.3.6. Correcting the shadowing effect. This approach was developed 
by Seidel and Ammer (2014) for single-scan mode. These authors used 
the approach to correct the shadowing effect, which generates shaded 
unsampled areas (Eq. (22)), according to the shaded area percentage 
related to the total area sampled: 

Ashadow =

[( πR2
)
−
(
πr2

tree

)

360◦

(
dbh
rtree

) ]

−

⎡

⎢
⎢
⎢
⎣

π
(

dbh /2

)2

2

⎤

⎥
⎥
⎥
⎦

(22)  

where R is the radius of the plot (m), and rtree is the distance between the 
TLS instrument and the tree centre. This method is implemented for 
circular fixed area and k-tree plots and yields an expansion factor used to 
compute corrected estimates for stand density (N.sh, trees ha− 1), basal 
area (G.sh, m2 ha− 1) and volume (V.sh, m3 ha− 1). 

2.1.3.7. Optimizing the plot design. Two different approaches can be 
used to find the best possible plot design depending on whether vali
dation field data are available or not. The approaches are represented in 
the FORTLS workflow (Fig. 6) and detailed below. 

2.1.3.8. Analysis of estimation stability. The function estimation.plot. 
size estimates both apparent tree density (N.tls, trees ha− 1) and apparent 
basal area (G.tls, m2 ha− 1) for all of the aforementioned plot designs. In 
the case of circular fixed area plot design, concentric plots, in regular 
increments of 0.1 m radius (by default) to the maximum radius specified 
in the arguments, are simulated for computing N.tls and G.tls. As a 
result, line charts with estimates through plot size are obtained. For k- 
tree design, all possible plots are defined by k = {1, 2, …, n}, where 1 is 
the nearest tree and n the farthest tree considered in the argument k.tree. 
max (or the farthest detected/existing tree if the argument is not spec
ified). Finally, for the angle-count design, variables will be estimated for 
regular BAF increments comprised from 0.1 to the BAF.max specified in 
the arguments. All of these line charts were inspired by Fig. 3 in Brunner 
and Gizachew (2014). 

2.1.3.9. Validation with field measurements. For cases when field data 
are available, we designed a set of interconnected functions able to 
assess the performance of processed TLS data relative to the corre
sponding field data: simulations, relative.bias and correlations. 

The field data necessary to conduct the analysis described herein
after are tree dimensions (dbh and h) and positions relative to the TLS 
scanner. Analysis of the performance is based on comparisons between 
these two data sources for the different plot designs and sizes. The first 
function is simulations, which computes (in a similar way as estimation. 
plot.size) all of the metrics and variables aforementioned for TLS data 
2.1.3and the corresponding variables based on field data (Table 2). 

The relative.bias function was designed for direct comparison of TLS- 
based estimates and field based measurements, by means of relative bias 
(Eq. (23)). 

Relative bias=
1
n

∑n
i=1yi −

1
n

∑n
i=1xi

1
n

∑n
i=1xi

(23)  

where xi and yi are the values of the field estimate and its TLS coun
terpart, respectively, corresponding to plot i for i = 1, …, n. Relative bias 
is assessed for all the simulations to find the best possible plot design for 
each variable of interest. 

For other possible approaches apart from direct variables estima
tions, the package has other functions that assess the best possible plot 
designs according to the correlations between variable estimates from 
field data and metrics/variables derived from TLS. The correlations 
function computes both Pearson and Spearman correlation coefficients 
for common set of plots and all simulations and plot designs considered. 
For each variable of interest, this function produces the optimum cor
relations for all simulations. The optimize.plot.design function then 
produces a graphical representation of the strongest correlations for all 
variables of interest. 
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Fig. 6. Workflow of FORTLS, representing (i) tree detection (red), estimation of variables related to forest attributes (ii.a) with no field data available (green) and (ii. 
b) with field data available (blue); optional functions (grey), and initial input files and final output files (orange). 

Fig. 7. Experimental sample plot used for software testing. The plot, of area 1 ha (100 × 100 m), is located in a pure, even-aged Pinus sylvestris stand located in La 
Rioja (Spain). Blue circles represent the 16 simulated subplots for both field data and processed TLS data. 
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2.2. Case study 

The functionality of the FORTLS package was tested in a fully 
mapped case study plot of 1 ha (100 × 100 m) in a pure, even-aged 
P. sylvestris stand located in La Rioja (Spain) (Fig. 7). All trees in the 
plot (live and standing dead) with dbh greater than 7.5 cm were 
measured. UTM coordinates and elevation of the plot corners were 
measured with a high accuracy GNSS receiver (Trimble R2), and trees 
were located in the plot with a total station Nikon DTM-332. The dbh of 
all trees was measured with a diameter tape to the nearest 0.1 cm, and 
for live trees only, h was measured with a digital hypsometer (Vertex IV, 
Haglöf Sweden) to the nearest 0.1 m. Main stand variables estimated 
from field data are shown in Table 3. After conventional inventory, we 
scanned each intersection point defined by a regular 20 m squared grid 
(16 points sampling) with a TLS FARO Laser Scanner Focus3D X 130, 
covering the full horizontal (0-360◦) and vertical ranges (− 60-90◦) with 
a resolution of 7.67 mm at 10 m in both, horizontal and vertical angular 
apertures. All of the single scans were then processed with FORTLS, 
clipping the point clouds at 20 m radius from the plot centre. Finally, to 
compare stand variables derived from TLS data and from field inventory, 
we also extracted the trees measured at the same 16 points sampling 
scanned considering 20 m radius. All of these data can be found as 
example data in FORTLS as a list named “Rioja.data”, in which the first 
element corresponds to the list of trees detected from TLS in each plot 
(“tree.list.tls”), and the second element corresponds to the list of trees 
measured in each plot in the field (“tree.list.field”). 

3. Results 

The steps involved in processing the TLS data with FORTLS are 
described below, along with the different operations and arguments of 
the functions. Finally, the results of TLS data processing with FORTLS 
are presented for the aforementioned case study. 

3.1. FORTLS implementation 

Users can install the released version of FORTLS from CRAN 
(https://CRAN.R-project.org/package=FORTLS) or they can install the 
most currently developed version from Github (https://github.com/Mo 
lina-Valero/FORTLS/tree/devel) using the install_github function of the 
devtools package (Wickham et al., 2021). A list with a brief description 
of the 10 main functions available in FORTLS 1.0.6, together with their 
default argument values, is given in Table 1. The functions were 
designed to obtain two main uses from TLS data: (1) conservative tree 
detection (in which the algorithm gives preference to accuracy), and (2) 
computation of metrics and variables related to forest attributes (2.1) 
with no field data available and (2.2) with the corresponding field data 
available. The workflow of functions involved in these approaches is 
illustrated schematically in Fig. 6. 

Although the workflow can be processed directly in the current R 
session, most functions are designed to import data and save results to a 
specific working directory, that should be specified in dir.data and dir. 
result arguments to facilitate efficient operation. In this respect, it is 

important to highlight that outputs from previous functions in the 
workflow (Fig. 6) are usually inputs in the following functions. Thus, 
systematization of the work will be enhanced when the data working 
directory corresponds to the results working directory. Script with a full 
example of workflow is supplied as supplementary material (S1), which 
should be consulted while reading the following sections. 

3.1.1. Tree detection 
This approach is encompassed by point cloud normalization (section 

2.1.1) and tree detection processes (section 2.1.2), which are executed 
by the normalize and tree.detection (or tree.detection.multiple for the 
cases with several scans) functions respectively. 

TLS data must be supplied as .las or .laz files in normalize. Note that 
point cloud centre Cartesian (x, y) coordinates (relative to TLS sampling 
point) can be defined, otherwise the function will use the file centre 
coordinates as default. The maximum radial distance from the plot 
centre, and the minimum and maximum heights of the z coordinate can 
also be defined in the arguments. This enables possible outliers and 
unnecessary information to be discarded and decreases the computing 
time. The normalize function will return a data frame with a normalized 
point cloud, which will be saved in dir.result as a .txt file (otherwise 
specified save.result = FALSE) but with point density reduced by 
applying PCP. 

This normalized point cloud is necessary as data input in tree. 
detection. Note that supplying the original (not the reduced) point cloud 
is highly recommended for detection of a greater number of trees. Pa
rameters of TLS resolution are necessary in the tree.detection function, 
defined according to either angle resolution (rad) or distance between 
two consecutive points (mm) at a determinate distance from TLS (m). 
Some inventory parameters such as minimum and maximum dbh can 
then be specified in the arguments to prevent detection of smaller and/ 
or larger desirable trees. Other parameters of the algorithm, such as NCR 
(see section 2.1.2) and plot level attributes, can be specified in the 
respective arguments (ncr.threshold and plot.attributes respectively). 
This function will return a data frame with the tree centre location in 
Cartesian (x, y) and cylindrical (ρ (as horizontal distance), φ) co
ordinates, number of points corresponding to normal section (raw and 

Table 3 
Main stand variables in the study plot.  

Variable Stand value 

N live trees (trees ha− 1)  322.00 
N dead trees (trees ha− 1)  4.00 
G live trees (m2 ha− 1)  25.29 
d live trees (cm)   31.11 

dg live trees (cm)  31.62 
h live trees (m)   15.61 

d0 live trees (cm)  36.69 
H0 live trees (m)  16.42  

Fig. 8. Trees detected from point cloud data with the tree.detection function 
(black) and trees measured in the field (red). Tree sizes are proportional to the 
estimated/measured dbh. 
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estimated) and partial occlusion, for all detected trees. The data frame 
will be saved as a .csv file in the working directory provided in the dir. 
result argument (otherwise specified save.result = FALSE). In the first 
plot of the example (top left in Fig. 7) and considering a radius of 20 m, 
38 out of 44 trees were detected. However, some angular deviation due 
to the internal compass of TLS can be observed (Fig. 8). Considering all 
of the simulated plots, our algorithm detected 598 out 659 trees, i.e. 
91% of detected trees. 

When sequential analysis of several scans is required, tree.detection. 
multiple will be the most appropriate function. This function includes 
both normalize and tree detection processes, enabling detection of trees 
for a set of plots in a single function. These must be included in the same 
working directory (specified in dir.data) as .las or .laz files. The output 
will be a similar data frame as the aforementioned data frame but that 
includes all of the plots processed. As before, a .csv file containing the 
data frame information will be saved by default in the working directory 
specified in dir.result, and the normalized point clouds reduced by PCP 
will be saved as .txt files. An example of a reduced point cloud, named 
“pcd”, corresponding to the first plot in the case study can be found in 
the supplementary material (S5) as a .txt file. All trees detected with 
tree.detection.multiple for the 16 TLS sampling points (up to 20 m 
radius) in the case study (Fig. 7) and the list of trees measured in the field 
for these sampling points are included in supplementary material (S5) as 
.csv files and named “tree.list.tls” and “tree.list.field” respectively. 

3.1.2. Estimating metrics and variables related to forest attributes 
The metrics.variables function performs this process by computing a 

set of TLS metrics and variables from point cloud data. However, other 
complementary functions play an important role in improving these 
estimates based on correction of the occlusion effect and choice of a 
more appropriate plot design. In the first case, distance sampling ap
proaches based on point transect sampling methods (Buckland et al., 
2001) can be applied by means of the distance.sampling function. These 
approaches are used for the list of trees detected, which must be pro
vided to the function as a data frame with the same format and include 
the tree.detection value. The function works for all the plot designs 
included by default (if no arguments are specified), but can also only 
consider a set of specified plots (argument id.plots must contain this 
information), or even plots distinguished by strata (reachable by using 
the argument strata.attributes). The function will generate a list with 3 
elements: (i) probability of tree detection for the different detection 
functions and strata (if specified); (ii) parameters estimated for detec
tion functions; and (iii) AIC estimator obtained for each detection 
probability function as the criteria for selecting the best fit. Regarding 
the second case, i.e. the optimization of plot design, more details can be 
found below. 

At this stage, the input data sets for metrics.variables will be as fol
lows: (i) list of trees detected; (ii) reduced normalized point clouds 
(loaded from dir.data); and optionally (iii) the list with probabilities of 
tree detection according to distance sampling methods. Plot parameters 
considered for estimating metrics and variables are implemented in the 
plot.parameters argument. This is a data frame containing the columns 
named radius, k.tree and BAF in reference to circular fixed area, k-tree 
and angle-count plot design parameters. The absence of parameter 
values rules out the corresponding plot design. It is also possible to 
include a column named num.trees that specifies the number of domi
nant trees per ha considered to estimate dominant dbh and h (otherwise 
it will be considered as 100 largest trees ha− 1 in terms of dbh). Any plots 
that are grouped by strata in the tree list input can be identified in a 
column named stratum to consider different plot design parameters for 
each stratum. In this case, another column, also named stratum and 
coinciding with its homologue from the tree list data in the strata coding, 
can be included in the plot.parameters argument. After execution of 
metrics.variables, a list with as many elements as plot designs consid
ered will be returned. The elements will include the TLS metrics and 
variables computed for each plot design indicated. By default, this list 

will be saved as separate .csv files for each specified plot design in dir. 
result (otherwise specified save.result = FALSE). An example corre
sponding to circular fixed area, k-tree and angle-count plots of 15 m 
radius, 12 trees and BAF = 1 respectively, from the case study, can be 
found in supplementary material (S5) as .csv files named “metrics.var
iables.fixed.area.plot”, “metrics.variables.k.tree.plot” and “metrics.var
iables.angle.count.plot”. 

3.1.2.1. Field data not available. When field data are not available, it is 
not possible to determine how well the TLS metrics and variables 
perform in estimating the corresponding variables. In this case, the most 
reliable estimates can be obtained with those plot designs in which es
timates are stable for different plot design sizes. The estimation.plot.size 
function can be used to assess whether the plot designs considered will 
reach stable values and can thus use the corresponding parameters in 
metrics.variables. This function contemplates a fixed circular area, k- 
tree and angle-count plot designs, represented by line charts with esti
mated values of N.tls and G.tls (y axes) through plot sizes (x axes). The 
maximum sizes considered for each plot design must be specified in the 
plot.parameters argument. As in other functions, the absence of any of 
these arguments rules out the corresponding plot design. These charts 
can be generated for all the plots individually (no arguments specified) 
or for mean values across all plots or strata, including the standard de
viation area (argument mean = TRUE). It is also possible to distinguish 
strata if they are included in a column named stratum, which must be 
given in the tree list input. The last function enables representation in 
the same chart of estimates of mean values for the different plot designs 
considered (Fig. 9), which can be executed by setting the argument all. 
plot.designs as TRUE. 

3.1.2.2. Field data available. When field data are available, FORTLS also 
includes functions for determining the best possible plot design for 
yielding maximum correspondence between TLS-based and field esti
mates. These functions are based on comparison between TLS and their 
corresponding field data, and they form one of the main branches in the 
workflow (Fig. 6). The simulations function represents the first, 
compulsory step, which generates estimates of metrics and variables for 
a set of field plots and their TLS counterparts for circular fixed area, k- 
tree and angle-count plots. Thus, the list of trees detected in the point 
cloud and list of trees measured in the field are necessary as input data. 
In addition, probability based on distance sampling methods can be 
included as an optional argument if these methods are applied. Simu
lations are computed for continuous plot size increments of 0.1 m, 1 tree 
and 0.1 BAF by default, although other increments can be specified in 
the plot.parameters argument. The maximum value of plot parameter 
simulation must be specified for the respective elements radius.max, k. 
tree.max and BAF.max of the same argument, and, as in other functions, 
the absence of any of these arguments rules out the corresponding plot 
design. The number of largest trees per ha implemented in dominant 
variables can thus be specified in the num.trees element of the plot. 
parameters argument (by default 100 trees per ha). The simulations 
function will return a list with many elements (data.frame objects) as 
plot designs considered, in which each row will correspond to a simu
lated pair (plot, radius/k/BAF), and the columns will include all the 
metrics and variables estimates based on field and TLS data (Table 2). By 
default, these elements will be saved as separate .csv files in dir.result 
(otherwise specifying save.result = FALSE). 

After generating simulations, two possible processes can be con
ducted (Fig. 6). One process assesses bias among variables estimated 
from TLS data and their counterpart estimated from field data and is 
carried out by the relative.bias function, which computes relative bias 
between field and TLS estimates (Eq. (23)). This will be executed with 
the simulated data generated previously in simulations, which are the 
input data of this function. The objective variables can be indicated in 
the variables argument, but by default those most conventionally used in 

J.A. Molina-Valero et al.                                                                                                                                                                                                                      



Environmental Modelling and Software 150 (2022) 105337

13

forestry will be considered (N, G, V, d, dg, d.0, h and h.0). This function 
will return a list with as many elements (data frame objects) as plot 
designs considered, with rows corresponding to simulated pairs (plot, 
radius/k/BAF), and columns including relative bias between field and 
TLS variables estimates. By default, these elements will be saved as 
separate .csv files in dir.result (otherwise specified save.result = FALSE). 
In addition, interactive line charts with relative bias through size plot 
design will be generated by groups of variables (N, G, V, etc.) and plot 
design (supplementary material S2). These charts are very intuitive for 
assessing the best plot design and size for estimating variables directly 
from TLS data. 

The other approach consists of evaluating the correlations between 
all metrics and variables estimated from TLS data and variables of in
terest estimated from field data: both Pearson and Spearman correlation 
coefficients are available. This is achieved with the correlations func
tion, by means of the simulations with different previously generated 
plot design sizes. The target variables can be indicated in the variables 
argument, but by default those most commonly used in conventional 
forest inventories will be considered (N, G, V, d, dg, d.0, h and h.0). This 
function will return a list including the following: (i) correlation values 
for each method and plot design; (ii) another element with the same 
structure including the p-values of test for association corresponding to 
these correlations; and (iii) the strongest correlations for each set of 
simulations and the names of the TLS metrics or variables to which they 
correspond. The first and third elements will be saved as independent . 
csv files, one per correlation method and plot design (otherwise speci
fied save.result = FALSE). This function will also generate interactive 
line charts, which will show the correlations between field variables of 
interest and all the TLS metrics and variables computed through regular 
continuous increase of plot size (supplementary material S3). 

Finally, all the variables of interest can be assessed together ac
cording to the highest correlations achieved by means of interactive 
heatmaps using the optimize.plot.design function (Supplementary ma
terial S4). The input data will be the list including the strongest corre
lations obtained previously (third element of the list returned by 
correlations). The objective variables can be indicated in the variables 
argument, but by default those most commonly used in forest in
ventories will be considered (N, G, V, d, dg, d.0, h and h.0). The opti
mize.plot.design function is very useful for determining the most 
suitable plot design and size for all the variables of interest considered. 

3.2. Experimental test case 

We used the study plot to explore the potential of FORTLS to estimate 
forestry variables at stand level. We present some of the most important 
results here, but all of the analyses and outputs are reported in more 
detail in supplementary material (S1–S5). 

3.2.1. Estimation without field data available 
As TLS plots are established on the basis of a systematic design 

sampling inventory and covering the same stand conditions, we 
considered assessing mean values across all TLS sampling points using 
the estimation.plot.size function and comparing all the plot designs in 
the same chart. Regarding N.tls, all of the plot designs yielded stable 
estimates from a given plot design size onwards. These estimates were 
12–16 m for circular fixed area, 3–16 trees for k-tree, and 0.8–2 BAF in 
angle-count plots (Fig. 9). According to the standard deviation, different 
trends were observed in plot parameter values, which were quite stable 
in a circular fixed area, decreasing in k-tree, and increasing in angle- 
count plots. The patterns were very similar for G.tls estimates. In this 
case study, estimates in the stable zones reached very similar values for 
the three different designs. The stable zones showed similar pattern 
estimates for both N.tls and G.tls. For N.tls estimates, the estimated 
patterns almost completely coincided for a fixed radius of 13–17 m, 
12–36 for k with the k-tree approach, and 1.2–1.6 for BAF, reaching 
approximately the value of 315 trees ha− 1 in all of these plot design, 
which is very close to 322 live trees ha− 1 measured in the field (Table 3). 
Regarding G.tls, estimates were similar for fixed radius of 13–17 m, 
12–36 for k and 0.8–1.2 for BAF, reaching a slightly higher value than 
23 m2 ha− 1, which is lower than 25.29 m2 ha− 1 estimated from field 
measurements (Table 3). Thus, in both cases the estimates slightly 
underestimated the stable sections of the curves relative to stand vari
ables obtained from field measures. 

3.2.2. Estimation with field data available 
Although all the variables and plot designs are assessed in supple

mentary material (S2), we focused here on G and circular fixed area 
plots to study relative bias in more detail. All of the variables estimated 
from TLS data showed positive values of relative bias for smaller plot 
sizes and negative values as plot size increased, with peaks reaching 
even higher than 50% for very small plots (Fig. 10). These peaks were 

Fig. 9. Line charts output obtained with the estimation.plot.size function, with mean values of density (N.tls, trees ha− 1) and basal area (G.tls, m2 ha− 1) estimates, 
derived from simulated TLS plots, for comparing circular fixed area, k-tree and angle-count plot designs. 
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followed by a first sharp decrease until approximately 8 m radius and 
then a less steep decrease until the largest plot size. The best results were 
achieved with variables estimated with occlusion corrections methods, 
with most of them reaching low constant values of relative bias of radius 
between 15 and 17 m. However, the most stable estimates and lowest 
relative bias were based on half-normal detection function between 17.5 
and 19 m radius, with relative bias below 1%. 

Although all of the variables, plot designs and correlations methods 
(Pearson and Spearman) are assessed in supplementary material (S3), 
here we evaluated the Pearson correlation between arithmetic mean 
dominant height estimates based on field data (h.0) and the other 
metrics and variables obtained for TLS data for angle-count plots. In this 
case, the highest correlations were obtained with metrics corresponding 
to z coordinate percentiles, especially P95, which yielded correlations 

Fig. 10. Line chart output obtained with the relative.bias function for basal area (G, m2 ha− 1) estimates, derived from simulated TLS and field plots, for circular fixed 
area plot design according to 0.1 m radius regular increments. The TLS variables assessed (legend) are explained in Table 2. 

Fig. 11. Line chart output obtained with the correlations function for arithmetic mean dominant height (H0, m) estimates, derived from simulated TLS and field 
plots, for angle-count plot design according to regular 0.1 m2 ha− 1 increments in BAF (between 0.5 and 4, as the most usual values in forest inventory). The TLS 
variables and metrics assessed (legend) are explained in Table 2. 
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above 0.94, and h.0 estimates based on TLS data (Fig. 11). The general 
trend for all the metrics and variables was a slow decrease until a value 
of 1.9 BAF, with the highest correlations achieved in this BAF range. The 
decrease then became steeper until reaching values below 0.8. Inter
estingly, P95 performed better than the other metrics, with a less pro
nounced decrease. 

In terms of correlation, the most suitable plot design considering 
performance of all the variables of interest can be assessed with opti
mize.plot.design. Again, this is evaluated for all plot design and corre
lation in supplementary information (S4), but here we only assessed the 
case of k-tree plot and Pearson correlation. Different trends differenti
ated groups of field variables. First, both h.0 and h yielded higher cor
relations when more trees were included and were reached for h earlier 
than for h.0 (Fig. 12). Once high correlations were reached, they 
remained stable above 0.9 until the largest k-tree plot. The diameter 
variables (d.0, dg and d) remained fairly stable across all plot sizes, with 
slightly higher values in smaller plots. However, the correlations were 
not very high, with values of between 0.6 and 0.8. For the other vari
ables (V, G and N), the strongest correlations were obtained for smaller 
plots, with the highest values reached for plots of 6–10 trees, and they 
then decreased slightly before remaining stable. In the case of N, good 
correlations were also achieved for between 13 and 17 trees. 

4. Discussion 

Although some algorithms and applications have been developed for 
processing TLS point clouds for forestry purposes (Liang et al., 2018a; 
Krok et al., 2020), TLS has not yet been established as an operational 
device in FIs (Liang et al., 2016). To overcome this challenge, most re
searchers agree that automation of point cloud processing with attain
able and easy-to-use software able to extract information related to 
important forest attributes is essential (Dassot et al., 2011; Newnham 
et al., 2015; White et al., 2016; Liang et al., 2016, 2018a). FORTLS 
contributes to making progress in this challenge by automating the 
processing of TLS point clouds for estimating FI variables. This is ach
ieved by detecting trees and estimating some of their attributes and also 

generating metrics and/or variables related to conventional forestry 
variables at stand level. In addition, some of the functions enable 
assessment of the performance of metrics and variables estimates for 
different plot designs based on comparison with corresponding field 
data, thus allowing the best possible plot design to be established in each 
situation. This functionality confers flexibility to FORTLS in statistical 
inference for FIs, representing the main difference relative to similar 
applications (Bienert et al., 2007; Trochta et al., 2017). 

Unlike other existing applications which extract tree attributes in 
high detail, such as Computree (Othmani et al., 2013), SimpleForest 
(Hackenberg et al., 2015), AdTree (Du et al., 2019) and TreeGSM 
(Raumonen et al., 2013), FORTLS mainly focuses on providing metrics 
and variables related to forestry attributes at stand-level. This approach, 
together with field implementation based on single scans, enables larger 
areas to be covered, although at the expense of lower detail at tree-level. 
We therefore consider that our approach perceives TLS devices as 
sampling rather than measurement instruments, and applications with 
similar perspective to ours are very scarce, e.g. 3D Forest (mainly 
developed for describing forest 3D structure) and AutoStem™ (mainly 
focused on timber production). Although use of these tools cannot be 
directly compared with our case study, because the methods and stands 
conditions are different, some useful information can be obtained. 
Regarding 3D Forest, the case study was framed in a stand characterized 
by highly variable canopy openness and dominated by sessile oak 
(Quercus petraea Matt.) with a mixture of other broadleaf species 
(Trochta et al., 2017). The authors sampled a plot of 2.4 ha in which the 
dbh of all the trees with dbh ≥ 10 cm (824) and h of 181 trees were 
measured. The plot was then scanned with a resolution of 2 mm at 10 m 
by multiple scans set at 44 × 44 m, which were co-registered before 
processing data in 3D Forest. The best results yielded a relative bias of 
1% (positive) and 0.8% (negative) for d and h respectively. In our case, 
the relative bias for d was negative and slightly higher than in Trochta 
et al. (2017), with the best performance obtained for angle-count plot 
design, reaching peaks with lower relative bias than 1% for low values of 
BAF (S2). However, although the quadratic mean dbh (dg) yielded the 

Fig. 12. Heat map output obtained with the optimize.plot.design function for estimates of density (N, trees ha− 1), basal area (G, m2 ha− 1), volume (V, m3 ha− 1), 
arithmetic mean dbh (d, cm), quadratic mean dbh (dg, cm), arithmetic mean dominant dbh (d0, cm), arithmetic mean height (h, m), and arithmetic mean dominant 
height (H0, m), derived from simulated TLS and field plots, for k-tree plot design. 
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best performance in all cases, h was always underestimated, reaching 
similar relative bias only for circular fixed area plots of around 18 m 
radius (S2). This again shows that height variables are systematically 
underestimated (Liang et al., 2016, 2018a; Krok et al., 2020). On the 
other hand, AutoStem™ was assessed for a stand planted with Picea 
sitchensis (Bong.) Carr. with a current density of 600 trees per ha 
(Mengesha et al., 2015). This was measured in nine randomly located 
plots of 15 m radius, in which all trees were measured by conventional 
methods and single TLS scans were made from the plot centre with a 
resolution of 6.28 mm at 10 m. The overall difference between 
TLS-derived and conventional volume estimates was 5.6% when 
occluded trees (not detected by TLS) were excluded from the analysis of 
both sources, i.e. TLS and field data, and 10.2% when estimates based on 
TLS were corrected by simple correction factors. FORTLS yielded much 
lower relative bias in volume estimates, especially for the k-tree plot 
design and estimates corrected with distance sampling methods (G.hr. 
cov), which yielded values of around 0% for 12–14 trees (S2). In any 
case, comparison with these findings should be done with caution, as we 
used paraboloid function for estimating volume, in contrast to Mengesha 
et al. (2015), who applied methods based on retrieved stem profiles. 
Nevertheless, this is the most interesting comparison because the 
aforementioned authors used a very similar sampling methodology, 
with single randomly located scans (systematic in our case) and the 
corresponding field plot measurements. 

All plot designs considered (circular fixed area, k-tree and angle- 
count plots) yielded stable estimates in N.tls and G.tls for certain plot 
size ranges (Fig. 9), as occurred for G estimates using a 2D TLS device 
(Fig. 3, Brunner and Gizachew, 2014). However, the variables were 
slightly underestimated, unlike in Brunner and Gizachew (2014), in 
which unbiased G estimates between real and scan basal area were 
observed for 5–10 m radius plot size (only for one of the studied stands). 
However, our findings are generally consistent with the most recent 
findings, which indicate underestimation of N and G due to deficit in tree 
detection caused by occlusions, especially for single scans (Liang et al., 
2016, 2018a; Krok et al., 2020). In our study, uncorrected estimates (G. 
tls) yielded lower bias for smaller plot sizes, due to lower occlusion rates, 
which is consistent with the findings of Corona et al. (2019), who 
concluded that under easy-to-measure stand conditions, plots of 10 m 
radius in which occlusion corrections are not considered may be good 
enough for estimating G. 

To overcome underestimates derived from occlusion effects, we 
incorporated several methods applied in TLS single scans in other 
studies, which improved estimations in larger plot sizes, where G.hn 
yielded the best estimates for 17.5–19 m radius (Fig. 10). This finding is 
consistent with those of Astrup et al. (2014) who reported that a larger 
detection radius seems to improve estimates when distance sampling 
methods are applied. The results presented here indicate that correction 
occlusion methods can improve estimates as observed for G in 
angle-count (Strahler et al., 2008; Lovell et al., 2011) and circular fixed 
area plots (Seidel and Ammer, 2014; Astrup et al., 2014). Because these 
methods can be assessed in FORTLS in terms of relative bias through 
continuous plot size increment and different plot designs, this represents 
an advantage for determining the best possible plot design in execution 
of a single workflow. 

FORTLS also evaluates correlations between variables of interest and 
TLS-derived metrics and variables. This contribution implies a new 
perspective, enabling selection of the best possible plot design according 
to statistical correlation measures instead of measurement accuracy. 
This approach may be considered for estimating forestry variables 
assisted by or based on models, in a similar way as ABA inference 
developed for ALS devices (Næsset, 2002). In some cases, simple linear 
regressions may be fitted when strong relationships are observed for 
only one TLS metrics and/or variables, as between h.0 and P95 for the 
study case, with correlations above 0.94 (Fig. 11). In this case the plot 
design considered was an angle-count plot for a BAF value of 1.3. In 

addition, this concept provides an opportunity to solve the systematic 
problem regarding underestimation of height variables derived from 
TLS measurements (Liang et al., 2016, 2018a; Krok et al., 2020). 

Different groups of variables yielded the highest correlations at 
different plot sizes (Fig. 12); when the correlations for height variables 
were strongest in larger plots, diameter variables retained approximate 
stable correlations, and the highest correlations for other variables (N, G 
and V) were reached in smaller plots. Thus, the plot design could be 
adapted to our stand conditions and target variables for more efficient 
sampling. 

Here we have demonstrated the utility of the R package FORTLS in 
FIs in a case study. As FORTLS works with single scan data, co- 
registration of point clouds in specific software and placement of tar
gets for field measurements are not required. This improves data 
acquisition and shortens the processing time, as well as enabling the 
sample size to be increased in a cost-efficient manner, which is one of the 
most desirable features of TLS in FIs (Liang et al., 2016). Further 
research to consolidate FORTLS for the approaches mentioned here 
should encompass the following: (i) larger and more complex study 
cases; (ii) consideration of more metrics and variables with high po
tential for correlation with other forest attributes (leaf area index, spe
cies, etc.); (iii) exploration of the possibility of making inferences 
assisted by models, by developing an adequate sampling methodology; 
and (iv) improvement of the computation process as much as possible, in 
relation to both algorithms and computing time. 

5. Conclusions 

The R package FORTLS is useful software for processing TLS data for 
forestry purposes. It has the advantage of working with single scans and 
conducting automatic data processing, which may overcome the major 
challenge of affordability in data acquisition and data processing. It has 
yielded good results for conventional variables, based on a preliminary 
case study with direct estimates, as well as good correlations between 
field-derived variables and TLS-derived metrics and variables. However, 
its potential for producing model-assisted inferences from metrics and/ 
or variables has not yet been demonstrated. In addition, one of the most 
valuable features of the software is its flexibility to adapt to the best 
possible plot design for each variable, enabling multiple plot designs to 
be used in a single sampling design. Further research considering larger 
and more complex case studies is necessary to consolidate FORTLS as an 
operational tool in FIs, as well as to develop new metrics and variables. 

6. Software availability 

Name of software: FORTLS 1.0.6 
Developers: Juan Alberto Molina-Valero, María José Ginzo Villa

mayor, Manuel Antonio Novo Pérez, Adela Martínez-Calvo, Juan 
Gabriel Álvarez-González, Fernando Montes, César Pérez-Cruzado 

Contact Address: Unit for Sustainable Environmental and Forest 
Management (UXAFORES), Department of Agroforestry Engineering, 
Higher Polytechnic Engineering School, Universidade de Santiago de 
Compostela, Benigno Ledo s/n, Campus Terra, 27002 Lugo, Spain. 
Email: juanalberto.molina.valero@usc.es 

Software required: R ≥ 3.5.0 
First available: March 2, 2021 
Availability: https://CRAN.R-project.org/package=FORTLS 
Installation in R: install.packages(‘FORTLS’) 
Program languages: R and C++

License: GPL 3 
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