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A B S T R A C T

This paper presents the design of a GeoSPARQL query processing solution for scientific raster array data,
called GeoLD. The solution enables the implementation of SPARQL endpoints on top of OGC standard Web
Coverage Processing Services (WCPS). Thus, the semantic querying of scientific raster data is supported without
the need of specific raster array functions in the language. To achieve this, first Coverage to RDF mapping
solutions were defined, based on the well-known W3C standard mappings for relational data. Next, the SPARQL
algebra is extended with a new operator that delegates part of the GeoSPARQL query in WCPS services. Query
optimization replaces those parts of the SPARQL query plan that may be delegated to a WCPS service by
instances of such new WCPS operator. A first prototype has been implemented by extending the ARQ SPARQL
query engine of Apache Jena. Petascope was used as the WCPS implementation on top of the Rasdaman raster
array database. An initial evaluation with real meteorological data shows, as it was initially expected, that the
approach outperforms an existing reference relational database based GeoSPARQL implementation.
1. Introduction

Three main sources of geospatial big data may be identified, namely,
volunteered geographic information (VGI), data generated by mobile
devices, and data generated by earth observation and modelling infras-
tructures. The first two types of data have usually the form of vector
features, i.e., data about geospatial entities. On the other hand, a large
amount of the environmental data that is currently being generated
comes from remote sensing devices and environmental modelling pro-
cesses, and it has the form of very large raster coverages, i.e., very large
numerical arrays with spatial and temporal dimensions.

The open data infrastructures used in the geospatial (Foley, 2009)
and environmental domain (Nativi et al., 2015) provide data discovery
facilities and data access mechanisms for vector features (Vretanos,
2010) and raster coverages (OGC, 2018; Baumann, 2009). Important to
achieve interoperability in these infrastructures is the definition of stan-
dard interfaces and formats, like those proposed by the Open Geospatial
Consortium (OGC)1 and UNIDATA.2 The use of these infrastructures is
mainly restricted to experts in Geographic Information Systems (GIS)
and to scientists of the environmental domain.

General purpose open data infrastructures, on the other hand, are
based on semantic web and linked data (Bizer et al., 2009) standards
defined by the World Wide Web Consortium (W3C).3 Therefore, to

∗ Corresponding author.
E-mail address: jrr.viqueira@usc.es (J.R.R. Viqueira).

1 https://www.ogc.org/.
2 https://www.unidata.ucar.edu/.
3 https://www.w3.org/.

enable geospatial and environmental data to be accessible through
these infrastructures and used by ITC practitioners, both their data
models (Resource Description Framework—RDF (Schreiber and Rai-
mond, 2014) and Web Ontology Language—OWL (Hitzler et al., 2012))
and their data access interface (SPARQL Protocol and RDF Query
Language Harris and Seaborne, 2013) must be extended with geospa-
tial capabilities. Many applications could benefit from the available
geospatial and environmental data if they were appropriately acces-
sible through standard Linked Data technologies. One such example
is tourism, where already existing linked data repositories might be
combined with geospatial entity-based data of locations, hotels, restau-
rants, or site seeing and with meteorological predictions modelled as
large spatiotemporal coverages. Queries such as ‘‘What is the pre-
dicted average of temperature of each municipality of Spain for the
next week?’’ might be formulated and resolved by combining vec-
tor feature sources (municipality geometries), raster coverage sources
(meteorological data), and linked data sources like DBPedia.

Geospatial vector features may already be represented and manipu-
lated using a geospatial extension of SPARQL, called GeoSPARQL (Perry
and Herring, 2012), proposed by the OGC. Efficient implementations
of GeoSPARQL are also available (Kyzirakos et al., 2012), which lever-
age mature spatial database technologies. Raster coverage data access
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through linked data infrastructures is usually restricted to the querying
of their vector-based metadata (Koubarakis et al., 2012). Some specific
extensions (Andrejev et al., 2013; Homburg et al., 2020) have been
designed to query raster data with SPARQL. However, their raster
capabilities rely on collections of raster-specific functions defined on a
raster data type, which demand specific training to use them, narrowing
their use again to geographic and environmental data related experts.

In this paper, we present the design and first prototype implemen-
tation of a GeoSPARQL query processing approach for scientific raster
array data, called GeoLD. Raster coverage data is mapped to RDF,
without requiring any additional data type, using coverage to RDF
mapping solutions, which are based on the already existing mapping
approaches for relational data proposed by the W3C, namely direct
mapping (Arenas et al., 2012) and R2RML (Das et al., 2012). Data
querying is done with GeoSPARQL statements, without the need for
any additional raster or array function or predicate. Therefore, it is
expected that it may be used without any additional training. Enabling
raster coverage access in GeoSPARQL automatically provides support
for federated vector–raster geospatial querying in SPARQL. However,
further work is still required to achieve an efficient implementation of
such federated querying. The efficient access to raster coverage data
is based on the incorporation of a new operator in the SPARQL query
engine, which enables the delegation of part of the query in standard
Web Coverage Processing Services (WCPS) (Baumann, 2009, 2010).
As it was expected, the implementation outperforms the reference
GeoSPARQL implementation (Kyzirakos et al., 2012). GeoLD is also
more efficient than currently available SPARQL raster extensions such
as SciSPARQL (Andrejev and Risch, 2012; Andrejev et al., 2013) and
GeoSPARQL+ (Homburg et al., 2020) in the data access stage, despite
not requiring specific array syntax in its language, due to the lack
of efficient array data storage and access approaches in their current
implementations.

The main contributions of this work are the following: (i) the
definition of coverage data to RDF mapping solutions, based on W3C
standards; (ii) the definition of a SPARQL query processing approach in
the form of a new SPARQL operator that enables the delegation of raster
data access in OGC standard WCPS services; and (iii) the definition of
a query optimization strategy that identifies maximum SPARQL query
trees to be replaced by WCPS operator instances.

The rest of the paper is organized as follows. Section 2 discusses
related work. Section 3 describes the main components of the system
architecture. Two approaches to map raster coverages to RDF are dis-
cussed in Section 4. The query GeoSPARQL query processing solution is
explained in Section 5. Section 6 shows performance evaluation results,
and Section 7 concludes the paper and outlines future work.

2. Related work

Discovering, accessing, and browsing are key functionalities that
must be provided by open data infrastructures to enable data-driven de-
cision making. Semantic web technologies play a key role in the enable-
ment of those functionalities by supplying amongst others: (i) ground
data representation models and languages, namely RDF (Schreiber and
Raimond, 2014) and OWL (Hitzler et al., 2012); (ii) ontologies to
represent different types of metadata, such as DCAT (Albertoni et al.,
2020) for general dataset metadata, PROV-O (Belhajjamey et al., 2013)
for provenance metadata, and DQV (Debattista et al., 2016) for quality
metadata; (iii) a set of specifications and languages called SPARQL
that include a query language (Harris and Seaborne, 2013), formats
for query results, a syntax for federated queries over external data
sources (Prud’hommeaux and Buil-Aranda, 2013), a transactional lan-
guage to perform updates and HTTP based protocols for client-service
communications; and (iv) languages to support the mapping between
the RDF and the relational model (Das et al., 2012; Arenas et al., 2012).

Spatial Data Infrastructures (SDIs) (Foley, 2009) must also provide
services and/or components to support data discovery, access, and
2

browsing. ISO and OGC standards are commonly adopted to achieve
interoperable SDIs. ISO 19115 (ISO, 2014) is used for geographic
metadata representation and the OGC CSW (Nebert et al., 2016) service
specification for metadata querying. Geospatial vector features are
accessed through web services with WFS (Vretanos, 2010) interface,
and their geometric properties are usually implemented following the
Simple Feature Access (SFA) (Herring, 2011). Basic geospatial raster
coverage data access support is given by the WCS (OGC, 2018) web
service interface, and more complex queries with some declarative
processing are supported by the Web Coverage Processing Service
(WCPS) (Baumann, 2009, 2010). Two recent examples of projects
that include amongst their objectives the development of Spatial Data
Infrastructures are TRAFAIR (http://trafair.eu/) and RADAR-ON-RAIA
(http://radaronraia.eu/), the former in the scope of urban scale air
quality observation and prediction and the later for HF-Radar ocean
data.

Challenges for the application of semantic technologies in the
geospatial domain have already been identified (Patroumpas et al.,
2014), and the importance of their incorporation in SDIs has already
been stressed ten years ago (Janowicz et al., 2010). During the last
years, many efforts were devoted to the creation of ontologies, and
it is expected that new projects will focus more on their use to solve
the problems that arise during data discovery and access (Narock and
Wimmer, 2017). Examples of ontologies in the geospatial domain arise
in many different application domains, including hydrology (Essawy
et al., 2017), geology (Ma et al., 2011) or mining (Ma et al., 2010).
More generic are the attempts to achieve geospatial provenance meta-
data ontologies (Ma et al., 2014; Jiang et al., 2018) and their use for
the representation of image classification rules (Andrés et al., 2017).
The Semantic Web for Earth and Environment Technology Ontology
(SWEET) (Raskin and Pan, 2005), created by NASA, is an example of a
general-purpose vocabulary in the environmental domain.

Initial solutions that apply semantic technologies to the data discov-
ering stage have already been reported in the literature (Zhao et al.,
2009; Yue et al., 2007; Stock et al., 2012; Athanasis et al., 2009; Ga-
hegan et al., 2009). In general, geospatial metadata is represented and
encoded with ontologies, and semantic technologies are next applied to
address semantic matching with query specifications. Additionally, the
semantic representation of the metadata enables a more precise seman-
tic interpretation of the retrieved datasets. Regarding data access, the
main advantage is that new possibilities are open for the resolution of
semantic conflicts during data integration (Wang et al., 2018; Buccella
et al., 2009; Lutz et al., 2009; Graybeal et al., 2012; Regueiro et al.,
2015, 2017).

Recently, challenges related to the development of geospatial se-
mantic technologies have been identified in the scope of the con-
struction of smart environmental open data infrastructures (Viqueira
et al., 2020). Regarding data representation and querying, RDF support
for geospatial vector features and related query capabilities is already
provided by the GeoSPARQL standard (Perry and Herring, 2012), which
is implemented by some existing data management tools (Kyzirakos
et al., 2012). The RDF Cube Vocabulary (Cyganiak and Reynolds,
2014) has been designed to represent multidimensional data in data
warehouses; however, it is not adequate to efficiently support the
sampling spatial and temporal dimensions of coverages. GeoSPARQL
may be used to represent and query geospatial coverage metadata,
but it is not suitable for their data (Koubarakis et al., 2012). Finally,
to the best of our knowledge, only SciSPARQL (Andrejev and Risch,
2012; Andrejev et al., 2013) and GeoSPARQL+ (Homburg et al., 2020)
aim at providing SPARQL support for scientific array data and raster
coverages. Raster arrays are represented with new array or raster data
types. Such a nested representation of the arrays into a conventional
data model has also been adopted by spatial DBMSs, which show
poor performance when they are compared with specialized raster
engines. Besides, the user must know a set of array data operators,

in addition to the underlying SPARQL syntax, to be able to perform

http://trafair.eu/
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Fig. 1. Extended SPARQL query engine architecture.

ueries. Regarding data integration and federated querying, already
xisting relational mappings (Das et al., 2012; Arenas et al., 2012) and
elevant geospatial extensions may be used either to query directly
patial databases with SPARQL (Bereta et al., 2019) or to generate
DF from geospatial formats (Kyzirakos et al., 2014). Few geospatial

ederated query solutions have been proposed (Green et al., 2008), and
hey are also restricted to vector feature data.

. System architecture

The architecture of GeoLD, the extended SPARQL query engine
esigned in the present work, is graphically shown in Fig. 1. As with
ny other query engine, first the query must be parsed to generate an
ppropriate tree of RDF algebra operations. Next, an optimizer chooses
he best evaluation plan, i.e., a tree of operator algorithms that it is
stimated to reach the best performance. Finally, the evaluation engine
xecutes the query plan to generate the expected results from the input
ata. Few more details of each of the query engine layers are described
elow, focusing on the contributions of the present work with respect
o already existing SPARQL query engines.

The SPARQL Query Parser is a conventional SPARQL parser that
identifies the user defined functions and predicates specified in the
GeoSPARQL standard (Perry and Herring, 2012). The output of this
component is a tree whose nodes represent SPARQL algebra opera-
tors (Harris and Seaborne, 2013). Examples of these operators are
the BGP, which generates an RDF triple (subject, predicate, object)
sequence from a Basic Graph Pattern, and JOIN, which enables the
combination of two sequences of triples.

The SPARQL Optimizer processes the SPARQL algebra tree generated
by the parser to obtain an efficient query evaluation plan. An evaluation
plan is also a tree, but now each node contains an algorithm that
provides an implementation for a specific SPARQL algebra operator.
A main contribution of the present work in this component is the
implementation of an optimizer (WCPS Query Generator) that identifies
parts of the evaluation plan that may be delegated to be executed by an
underlying OGC WCPS service. Those parts are rewritten in the query
plan with a new operator (WCPS Operator). To help to the identification
of those tree parts and also to enable the mapping from the OGC raster
coverage model to RDF, relevant mapping languages have been defined
in this work. Further details are given in Section 4.

The SPARQL Evaluation Engine coordinates the execution of the
algorithm of each node of the query plan to generate the expected
3

output sequence of RDF triples. A main contribution of the present a
work with respect to already existing SPARQL query engines is the
implementation of the new WCPS Operator. In the current implementa-
tion, this operator enables the querying of a WCPS service to perform
spatial, temporal, or spatio-temporal filtering over an existing raster
coverage, and to generate an output sequence of RDF triples, according
to the specified coverage to RDF mapping. Further details related to the
query rewriting process that generates WCPS operator nodes and to the
implementation of this operator are given in Section 5.

4. Mapping geospatial raster coverages to RDF

The proposed solution for the definition of mappings between
geospatial raster coverages and RDF triples is based on the already ex-
isting mappings languages defined by W3C between relational data and
RDF, namely the direct mapping (Arenas et al., 2012) and R2RML (Das
et al., 2012). A brief description of these relational to RDF mappings
is first given. Let obs(sensor, time, rain) be the scheme of a relation
that records time series of rainfall measurements generated by different
sensors. Let also (𝑠𝑒𝑛𝑠𝑜𝑟, 𝑡𝑖𝑚𝑒) be the primary key. For each tuple (𝑠, 𝑡, 𝑟)
of 𝑜𝑏𝑠, a direct mapping generates the following RDF triples:

<obs/sensor=s;time=t> rdf:type <obs>.
<obs/sensor=s;time=t> <obs#sensor> s.
<obs/sensor=s;time=t> <obs#time> t.
<obs/sensor=s;time=t> <obs#rain> r.

The generation of triples for foreign keys and tuples of relations without
primary keys are omitted due to space limitations.

Contrary to the direct mappings, which use the relation and at-
tribute names as part of the output RDF vocabulary, the R2RML lan-
guage enables the user to control the vocabulary of the output. Each
relation is mapped to RDF using rules called TriplesMap. Each rule has
three parts: (i) a LogicalTable that may be either a table name, view
name, or SQL statement, which defines the input tuples to be mapped;
(ii) a SubjectMap that generates the triple that specifies the rdf:type
of each tuple and the subject part of all the triples. Usually, IRIs are
generated using templates where primary key attributes are used as
parameters; (iii) a sequence of PredicateObjectMap that generates the
predicate and object part of all the triples. Each PredicateObjectMap is
urther decomposed into two parts, one that enables the generation of
he triple predicate and another that generates the triple object.

Geospatial coverages are conceptually modelled as collections of
appings. Each coverage field (or attribute) is modelled as a mapping,
hose domain is the Cartesian Product of the coverage dimensions

a spatial dimension and optionally also a temporal one) and whose
ange is the data type of the field (in practice most of the raster cov-
rages have fields of real types). Fig. 2(a) illustrates a spatio-temporal
overage called 𝑀𝑒𝑡𝑒𝑜 that contains two fields of meteorological data,
amely 𝑇 𝑒𝑚𝑝 (Temperature) and 𝐻𝑢𝑚 (Humidity). Based on the above

conceptual modelling assumption, the proposed direct mapping ap-
proach for coverages generates, for each coverage raster cell, one triple
to represent its type, and one triple for each field to represent their
values. Fig. 2(b) shows the graphical representation of the triples gen-
erated for two of the raster cells of the 𝑀𝑒𝑡𝑒𝑜 coverage. It is first noticed
that 𝑀𝑒𝑡𝑒𝑜 is defined as an subclass of geo:Coverage, which in turn is a
ubclass of the GeoSPARQL geo:Feature class. Each raster cell is defined
s an instance of 𝑀𝑒𝑡𝑒𝑜, with a geometric property (hasLocation), a
emporal property (hasTime), and a property of a conventional data
ype for each coverage field. OGC Well Known Text (WKT) representa-
ion is used for geometric literals; therefore, the generated RDF is fully
ompatible with the GeoSPARQL ontology.

The Coverage to RDF Mapping Language (C2RML) gives more con-
rol to the user over the RDF generation process, enabling both slicing
nd trimming over the input coverage and also letting the user define its
wn RDF vocabulary. TripleMap rules of C2RML are similar to those of
2RML. The main difference is that R2RML LogicalTable is replaced by
new Coverage section, which specifies the name of the input coverage

nd optionally defines trimming and/or slicing operations over its
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Fig. 2. Illustration of geospatial raster coverage to RDF mappings.
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dimensions. Fig. 2(c) illustrates the RDF generated by a specific C2RML
mapping applied to coverage 𝑀𝑒𝑡𝑒𝑜. In this example, the Coverage
section of the mapping defines a trimming over the spatial dimension
of the coverage (Location x between 4 and 5 and Location y between −4
and −3). It also specifies a slicing over the temporal dimension (time =
t0). To generate the subjects of all the RDF triples the SubjectMap uses
the following template

𝑇 𝑒𝑚𝑝𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒∕𝐿𝑜𝑐 = {𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛}

where the parameter 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 is replaced by the coordinates of each
raster cell. Finally, two PredicateObjectMap are used to generate the
ℎ𝑎𝑠𝐿𝑜𝑐 and ℎ𝑎𝑠𝑇 𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 properties, from the coverage spatial di-
mension and the 𝑇 𝑒𝑚𝑝 (Temperature) field, respectively.

5. Query processing

The description of the query processing solution that enables the
efficient querying of raster coverages is described in the following
subsections. Broadly speaking, first the query optimizer identifies those
parts of the query execution plan that may be delegated to the underly-
ing WCPS. Those parts of the query plan are replaced by calls to a new
WCPS operator. In the current version, this new operator supports only
filtering, including dimension trimming and slicing and field filtering.
The current implementation is based on the combination of ARQ,4 the
SPARQL Processor of Apache Jena, with Petascope (Aiordăchioaie and
Baumann, 2010), the OGC standards-based coverage geospatial server
of the raster server rasdaman (Baumann et al., 1998).

4 https://jena.apache.org/documentation/query/index.html.
4

5.1. SPARQL algebra

The SPARQL specification (Harris and Seaborne, 2013) includes
the definition of an algebra for the evaluation of the queries. A full
description of all the SPARQL algebra operations is out of the scope
of this paper, thus the discussion will restrict to the most important
ones required to evaluate the running example GeoSPARQL query of
Fig. 3(a). This query combines data from three sources: (i) a geospatial
feature collection feat:municipality that records data of municipalities,
ncluding their name, geometry and reference to their DBPedia node;
ii) DBPedia, which contains additional data of municipalities, in-
luding a textual description in property dbo:abstract ; (iii) the raster
overage cov:Meteo illustrated in Fig. 2(a). For each municipality, the

data of coverage cov:Meteo is queried, restricting the time dimension
to values between 𝑡1 and 𝑡2, and restricting the spatial dimension to
ells contained in the municipality geometry. The coverage temperature
alues are aggregated using functions average, minimum and maximum
alues, and combined with the name and the abstract of the municipal-
ty to generate the final result, i.e., aggregated meteorological data for
ach municipality.

Fig. 3(b) shows part of a possible query plan for the above
eoSPARQL query. The output of a SPARQL query, and also of a
PARQL operation of its algebra, is a sequence of solution mappings,
here each solution mapping is a function that associates a variable
f the query with an RDF term, i.e, either an RDF literal, a resource
dentifier (IRI) or a blank node. Operators that may appear as leaf
odes in query plans generate solution mappings from the input RDF
raphs. Thus, for example, the BGP operator at the bottom left part of
he Fig. 3(b), generates a sequence of solution mappings for variables
?𝑚𝑢𝑛, ?𝑚𝑛𝑎𝑚𝑒, ?𝑚𝑔𝑒𝑜, ?𝑚𝑑𝑏𝑝𝑒𝑑𝑖𝑎), applying a list of triple patterns to
he input RDF graph. On the other hand, all the other operators
ransform input solution mapping sequences into output sequences.

https://jena.apache.org/documentation/query/index.html
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Fig. 3. Example of a GeoSPARQL query and its corresponding SPARQL query plan.
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Thus, for example, the first JOIN operator at the bottom left part
of Fig. 3(b) combines the above sequence of solution mappings with
the sequence generated for variables (?𝑚𝑑𝑏𝑝𝑒𝑑𝑖𝑎, ?𝑎𝑏𝑠) by operators
BGP and SERVICE. The FILTER operator selects the input solution
mappings on which a given condition holds. Thus, for example, the
filter operator at the bottom right part of the query plan of the figure
restrict the solution mappings of variables (?𝑠, ?𝑠𝑙𝑜𝑐, ?𝑡𝑒𝑚𝑝, ?𝑡𝑖𝑚𝑒) to
those where variable ?𝑡𝑖𝑚𝑒 has values between 𝑡1 and 𝑡2. Finally,
the GROUP operator at the top of the Fig. 3(b), generates mappings
for variables (?𝑛𝑎𝑚𝑒, ?𝑎𝑏𝑠, ?𝑡𝑖𝑚𝑒, ?.0, ?.1, ?.2), where values of variables
(?.0, ?.1, ?.2) are computed by aggregating (through functions 𝑎𝑣𝑔, 𝑚𝑖𝑛
and 𝑚𝑎𝑥) values of the variable ?𝑡𝑒𝑚𝑝 obtained from mappings with
identical values for variables (?𝑛𝑎𝑚𝑒, ?𝑎𝑏𝑠, ?𝑡𝑖𝑚𝑒).

5.2. WCPS operator

To enable the delegation of raster coverage querying on WCPS ser-
vices (Baumann, 2009, 2010), a new leaf SPARQL operator was defined
and implemented, namely, the WCPS operator. Broadly, this operator
allows the execution of raster coverage processing statements on a
WCPS service to generate solution mappings for variables representing
coverage dimensions and coverage fields. Clearly, delegating part of
the query in the data source moves the processing closer to the data,
which is one of the basic principles to follow to achieve efficient query
processing.

The WCPS coverage processing language (Baumann, 2010) is pow-
erful enough to support the evaluation of different types of filters and
aggregations on input coverages. The current implementation of the
WCPS operator restricts to filtering, and therefore the description below
restricts to WCPS coverage processing language expressions for filtering
over dimensions and fields.

Dimension filtering is performed in WCPS with slicing and trimming
operations. Thus, for example, the following expression retrieves a
coverage of temperature values from coverage Meteo in Fig. 2(a), by
trimming the spatial dimensions and by slicing the temporal dimension.
The result is encoded in CSV format.
5
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For $m in (Meteo)
Return encode($m.Temp[x(−3,2),y(1,4),time(t2)],

"CSV").
Spatial, temporal and spatio-temporal filter expressions are used to

generate appropriate WCPS slicing and trimming expressions. Spatial
and temporal coordinates used at SPARQL level must be adapted to
the spatial and temporal resolution of the data source. Thus, a con-
dition of the form ‘‘𝑔𝑒𝑜𝑓 : 𝐸𝑞𝑢𝑎𝑙𝑠(?𝑠𝑙𝑜𝑐, 𝑝)’’, where ?𝑠𝑙𝑜𝑐 is a variable
eferencing the spatial dimension of the coverage and 𝑝 a point lit-
ral, must retrieve data despite the fact that 𝑝 coordinates might not
atch exactly the coordinates of the centroid of any cell of the cov-

rage. Besides, subsequent post-processing of the WCPS results might
e needed in some cases. For example, the evaluation of a predicate

‘𝑔𝑒𝑜𝑓 : 𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑠(𝑝, ?𝑠𝑙𝑜𝑐)’’, where 𝑝 is a polygon literal, requires a spatial
rimming over the minimum bounding rectangle (mbr) of 𝑝, done by
he WCPS expression, and a post-processing that discards cells that lie
nside the mbr but are not contained in 𝑝.

Filtering with conditions different from those of trimming and slic-
ng over dimensions is not possible in WCPS, as it is also not possible to
ilter over coverage fields. However, it is possible to generate a special
alue (Not a Number—NaN) in cells where the condition does not hold,
y using a ‘‘switch’’ statement. Those NaN cells are discarded by the
CPS operator after querying the WCPS service. Thus, for example,

he following WCPS expression obtains a coverage with data only at
reas with temperatures between 10 and 15.
For $m in (Meteo)
Return encode(switch

case $>= 10 and $m.Temp <=15
return $m.Temp

default return nan, "CSV")

.3. Query optimization

The SPARQL query optimizer of ARQ transforms the initial query
lan produced by the SPARQL query parser into another query plan

hat is expected to achieve a better performance. An example of a
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Table 1
Notation used in the WCPS tagging algorithm pseudocode.

Notation Description

𝑊𝐶𝑃𝑆𝑇𝑎𝑔𝑔𝑒𝑟(𝑃 ) Returns a tagged version of query plan tree 𝑃 .
𝐵𝐺𝑃𝑇𝑎𝑔𝑔𝑒𝑟(𝑃 ) 𝑃 must be a BGP node. It creates a tagged query tree where triples related to a single coverage are isolated into a single BGP.
𝑃 Query plan tree.
𝑁 BGP leaf node.
𝑖𝑠𝑏𝑔𝑝(𝑃 ) Returns true if 𝑃 is a BGP node.
𝑖𝑠𝐹 𝑖𝑙𝑡𝑒𝑟(𝑃 ) Returns true if 𝑃 is a Filter node.
𝑐ℎ𝑖𝑙𝑑(𝑃 ) It returns the single child node of node 𝑃 .
𝑠𝑒𝑡𝐶ℎ𝑖𝑙𝑑(𝑃 1, 𝑃2) It sets node 𝑃 2 as the single child of node 𝑃 1.
𝑠𝑒𝑡𝑇 𝑎𝑔(𝑃 , 𝑡) It sets text 𝑡 as the tag for node 𝑃 .
𝑡𝑎𝑔(𝑃 ) It obtains the tag of node 𝑃 .
𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑃 ) It returns the collection of child nodes of 𝑃 .
𝑎𝑝𝑝𝑒𝑛𝑑(𝐶, 𝑒) It appends element 𝑒 to collection 𝐶.
𝑠𝑒𝑡𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑃 , 𝐶) It sets the collection of nodes 𝐶 as the children of node 𝑃 .
𝑐𝑟𝑒𝑎𝑡𝑒𝐵𝐺𝑃𝑆(𝑁,𝐶, 𝑠) It processes a BGP node 𝑁 to create: (i) a collection 𝐶 of BGP nodes, one for each coverage 𝑐 referenced in a triple pattern of the form (?a

rdf:type c) and (ii) a single BGP node 𝑠 with all the remainder triple patterns of the form (?a rdf:type b).
𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑦𝑇 𝑟𝑖𝑝𝑙𝑒𝑠(𝑁,𝐶, 𝑠) It processes a BGP node 𝑁 to classify its triple patterns. If a triple pattern is related to only one coverage, then it is added to the relevant

BGP node in 𝐶, otherwise it is added to 𝑠.
𝑐𝑟𝑒𝑎𝑡𝑒𝐽𝑜𝑖𝑛(𝐶, 𝑠) It creates a query plan that joins the results of all the BGP nodes in collection 𝐶 with the BGP node in BGP node 𝑠, using SPARQL SEQUENCE

operations.
t
B

r
o
a
s
v
c

general heuristic applied during the optimization is to move the Filter
operations as much as possible down in the query plan tree. As an ex-
ample, the condition ‘‘?𝑡𝑖𝑚𝑒 >= 𝑡1&&?𝑡𝑖𝑚𝑒 <= 𝑡2’’ of the GeoSPARQL of
Fig. 3(a) is placed after optimization in a FILTER operator immediately
on top of the BGP operator of the bottom right part of Fig. 3(b). This
way, the data corresponding to time instants out of the range [t1,t2]
does not have to be processed by the JOIN operator, which leads to a
more efficient query plan.

Once the above optimizations, already supported by ARQ, are ap-
plied, a new optimization step was added to enable the use of the WCPS
operator at the appropriate place. To achieve this, maximum subtrees,
starting from leaf nodes, must be identified, whose functionality may
be replaced by a WCPS processing statement and, therefore, they may
be replaced by a WCPS operator. In the current implementation, those
maximum subtrees include only a BGP operator, with an optional
FILTER on top of it.

Algorithm 1 WCPS tagging algorithm
1: function WCPSTagger(𝑃 )
2: if 𝑖𝑠𝑏𝑔𝑝(𝑃 ) then return 𝐵𝐺𝑃𝑇𝑎𝑔𝑔𝑒𝑟(𝑃 )
3: else if 𝑖𝑠𝐹 𝑖𝑙𝑡𝑒𝑟(𝑃 ) then
4: 𝑇 𝑎𝑔𝑔𝑒𝑑𝐶ℎ𝑖𝑙𝑑 = 𝑊𝐶𝑃𝑆𝑇𝑎𝑔𝑔𝑒𝑟(𝑐ℎ𝑖𝑙𝑑(𝑃 ))
5: 𝑠𝑒𝑡𝐶ℎ𝑖𝑙𝑑(𝑃 , 𝑇 𝑎𝑔𝑔𝑒𝑑𝐶ℎ𝑖𝑙𝑑)
6: 𝑠𝑒𝑡𝑇 𝑎𝑔(𝑃 , 𝑡𝑎𝑔(𝑇 𝑎𝑔𝑔𝑒𝑑𝐶ℎ𝑖𝑙𝑑))
7: return 𝑃
8: else
9: 𝐶 = 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑃 )

10: for all 𝑐 ∈ 𝐶 do
11: 𝑎𝑝𝑝𝑒𝑛𝑑(𝑝𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛,𝑊 𝐶𝑃𝑆𝑇𝑎𝑔𝑔𝑒𝑟(𝑐))
12: end for
13: 𝑠𝑒𝑡𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑃 , 𝑝𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛)
14: 𝑠𝑒𝑡𝑇 𝑎𝑔(𝑃 , ‘‘SPARQL’’)
5: return 𝑃
6: end if
7: end function
8: function BGPTagger(𝑁)
9: 𝑐𝑟𝑒𝑎𝑡𝑒𝐵𝐺𝑃𝑆(𝑁, 𝑐𝑏𝑔𝑝𝑠, 𝑠𝑏𝑔𝑝)
0: 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑦𝑇 𝑟𝑖𝑝𝑙𝑒𝑠(𝑁, 𝑐𝑏𝑔𝑝𝑠, 𝑠𝑏𝑔𝑝)
1: return 𝑐𝑟𝑒𝑎𝑡𝑒𝐽𝑜𝑖𝑛(𝑐𝑏𝑔𝑝𝑠, 𝑠𝑏𝑔𝑝)

22: end function

First, each node of the query plan tree is tagged with a string. Leaf
GP nodes that may be translated to a WCPS request are tagged with
he name of the relevant raster coverage. If a BGP operator combines
riple patterns corresponding to a raster coverage, with triple patterns
6

a

corresponding to either other coverages or other data sources, then it
has to be split to be tagged appropriately. The result of the generated
BGPs has to be combined with a SEQUENCE operator, which is a
special type of n-ary JOIN. The algorithm for this node tagging process
is illustrated by the pseudocode of Algorithm 1, whose notation is
described in Table 1. Function WCPSTagger recursively tags the nodes
of the query plan tree as follows: (i) if the node is a leaf BGP then
function BGPTagger is used to process it (line 2); (ii) if the node
is a Filter (lines 3–7), then its child is recursively tagged using the
same function and the Filter is tagged with the same tag of its child;
(iii) if the node is of any other operator (lines 9–14), then all the
children are tagged recursively, and the node is tagged as ‘‘SPARQL’’.
Function BGPTagger processes BGP nodes as follows. First (line 17),
he list of BGP triple patterns is processed to create a list of coverage
GPs (𝑐𝑏𝑔𝑝𝑠), i.e., BGPs corresponding to a single coverage, and a

SPARQL BGP (𝑠𝑏𝑔𝑝), containing all the triple patterns that do not
correspond to any coverage. The former are tagged with the name of
the corresponding coverage and the latter are tagged as ‘‘SPARQL’’. The
triple patterns with predicates rdf:type and the existing coverage to RDF
mappings (see Section 4) are used to determine when a new coverage
BGP has to be created. In a second step (line 18), all the remainder
triple patterns are classified to be added to one of the created BGPs.
Finally, all the created BGPs (in case more than one is created) are
combined using a SEQUENCE operator (line 19), which is tagged as
‘‘SPARQL’’. At the end of this tagging process, the operator nodes that
have to be used to generate a WCPS operator are tagged with the name
of the corresponding coverage. As an example, the FILTER and BGP
operators at the bottom right part of Fig. 3(b) are tagged with the name
of coverage ‘‘Meteo’’.

Once the query plan tree has been tagged, it has to be processed
to insert WCPS operators at the required places. In particular, each
BGP operator (or sequence of BGP and FILTER operators) tagged with
the name of a coverage must be replaced by a WCPS operator which
contains a WCPS processing statement that obtains the required raster
coverage data. As an example, the FILTER and BGP operators that are
the bottom right part of Fig. 3(b) will be replaced by a WCPS operator
with the following processing statement:

For $c in (Meteo)
Return encode($c.Temp[time(t1,t2)],"CSV").
Additional optimizations considered as part of future work would

equire the implementation of specific spatial join and aggregation
perators that leverage the underlying processing capabilities of vector
nd raster subsystems. As an example, in the query of Fig. 3, specific
patial join and aggregation operations could be used to combine the
ector data of the municipalities (left part of the tree) and the raster
overage (right part of the tree), leveraging the spatial filtering and

ggregation capabilities of the WCPS engine.
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Fig. 4. Performance evaluation scaling the temporal dimension.
T

. Performance evaluation

To demonstrate the clear benefits in terms of performance that
rings to GeoLD the delegation of raster data access in specialized
echnologies, an evaluation was undertaken that compared the re-
ponse times of four different SPARQL implementations, namely, STRA-
ON (Kyzirakos et al., 2012), SciSPARQL (Andrejev and Risch, 2012;
ndrejev et al., 2013), GeoSPARQL+ (Homburg et al., 2020) and
eoLD.

All the software was installed in a 32 bit virtual machine with
buntu 16.04, since SciSPARQL was only available for 32 bit archi-

ectures. The hardware specification used by the virtual machine was
7

the following: 4 processors Intel core i7 3.40 GHz and 8 GB of RAM.
In general, five different types of queries were performed over all the
datasets:

Space Point Query: It retrieves the time series of all the cell values
(temperature values in our experiment) whose cells intersect the
query spatial point, i.e., it performs a slicing over the spatial
dimension of the coverage.

ime Point Query: It retrieves the spatial raster coverage valid at a
query time instant, i.e., it performs a slicing over the temporal
dimension of the coverage.
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Space Range Query: It obtains the spatio-temporal coverage whose
spatial extension is restricted to the query rectangle, i.e., it
performs a trimming over the spatial dimension.

ime Range Query: It obtains the spatio-temporal coverage whose
temporal extension is restricted to the query time period, i.e., it
performs a trimming over the temporal dimension.

ield Range Query: It obtains the triples (space point, time instant,
value) obtained from the input coverage such that the value
(temperature value in our experiment) lies inside a given query
range.

All the queries were evaluated with a cold cache system status, to
avoid the undesirable effects in the response time of the buffer cache of
the DBMS PostgreSQL used by STRABON, which is not present in none
of the other solutions.

Two different evaluation experiments were done aiming at evalu-
ating the scalability of the approach when either temporal or spatial
dimensions of the datasets grow. The spatio-temporal coverages used
to test scalability over the time dimension were generated from histor-
ical numeric weather predictions of MeteoGalicia,5 the meteorological
agency of the Spanish region of Galicia. Five coverages with time
dimensions ranging from 10 to 50 time instants and space dimension
of 117 × 142 pixels were used, whose overall size ranged from 664.k
to 3.3M data elements (spatio-temporal cells). Those coverages were
loaded in rasdaman to be used by GeoLD and also transformed to RDF
to be loaded in the different SPARQL engines.

An overview of the achieved results is shown in Fig. 4. For each of
the above query types, the charts provide the SPARQL syntax, the WCPS
query generated by GeoLD for the WCPS operator, and the response
times of the evaluated solutions for each database size (in number
of time instants). All the queries could be implemented in GeoLD,
STRABON and SciSPARQL. On the other hand, only time point queries,
as defined above, could be implemented in the current proof of concept
implementation of GeoSPARQL+. This was mainly due to the lack of
appropriate implementation of raster data type functions to extract
cell values from tiles. Spatial and temporal point and range queries,
with fixed query selectivity (fixed temporal query period and spatial
rectangle size) are solved in constant time (with respect to the database
size) by GeoLD, as it is shown in the figure. This is due to the direct
access to the data elements through array dimensions provided by the
rasdaman raster storage structures, which is invoked by the GeoLD
WCPS operator. Furthermore, as it was expected, field range queries
increase with the database size. Response times of SciSPARQL are two
orders of magnitude worse than those of GeoLD. As an example, for
a database size of 20 time instants, response times range from 110 to
23 s, depending on the query type. For this reason, those results are not
shown in the Figure. Regarding GeoSPARQL+, for time point queries,
two different encodings were tested for the output raster coverage tiles.
The use of a text encoding of the result tiles gives a performance clearly
worse than GeoLD, and even worse than STRABON for small coverage
sizes. On the other hand, using a more compact raster representation
(well-known-binary hexadecimal in our experiment) enables a much
more efficient encoding of the result. This shows the importance of the
incorporation of specific efficient compact encodings to be used when
the result of the query is a coverage. The design and implementation
of such compact raster representations is part of future work in GeoLD.
All the other query types could not be implemented, however, the
evaluation of a query that retrieves the time instants of raster tiles
that intersect a given query point showed response times of around
4 s, which is worse than GeoLD and also worse than STRABON, despite
not having to access the raster tiles to obtain the cell values. Finally,
regarding STRABON, the spatial relational DBMS-based data storage

5 https://www.meteogalicia.gal/modelos.
8

Fig. 5. Performance evaluation of spatial range queries scaling the spatial dimension.

layer enables the use of specific indexing structures, such as R-Trees
for 2D spatial dimensions and B+-trees for 1D dimensions. In spite of
this, as it is also shown in the figure, these structures do not enable
achieving a performance with raster data similar to that of a specialized
raster engine.

The scalability over the space dimension was tested using coverages
generated from a Digital Elevation Model (DEM) of Galicia with 100
metres of spatial resolution. In particular, four datasets were used with
resolutions of 800, 400, 400 and 100 m, and with sizes (in number of
data elements) ranging from around 72 k (800 m resolution) to 4.6 M
(100 m resolution). Various space range queries using query squares
of increasing sizes (ranging from 15 km to 60 km of side length) were
evaluated on GeoLD and STRABON. The results are shown in Fig. 5.
Clearly, GeoLD outperforms STRABON in all cases, due to the better
performance provided by rasdaman for raster data access.

7. Conclusion

The design and first GeoSPARQL query engine for scientific raster
array data, called GeoLD, was briefly described. The system analyses
optimized SPARQL algebra trees, generated by state of the art technolo-
gies, and identifies maximum parts that may be evaluated by a standard
WCPS service. To achieve this, Coverage to RDF mapping solutions
(both direct mapping and C2RML) were defined, which are based on
the well-known W3C standard used for relational data. A first prototype
of the system was implemented as an extension of the ARQ SPARQL
engine of Apache Jena. The Rasdaman array database was used to
record the raster data and its WCPS implementation Petascope was used
to access it through the web. GeoLD enables accessing scientific raster
data with conventional linked data technologies, opening the possibility
to incorporate scientific datasets to conventional applications with little
effort. As it was initially expected, both from these authors intuition
and other authors asserts, the solution outperforms an already existing
GeoSPARQL implementation, which is based on relational technology.
Besides, it does not require specific array extensions, as SciSPARQL
and GeoSPARQL+ do. Currently, GeoLD outperforms also SciSPARQL
and GeoSPARQL+ in the data access stage, due to their lack of specific
aster data storage and access technologies. GeoSPARQL+ however,
hows the importance of providing specific raster data encodings to
e used when raster coverages are retrieved. Future work is related
o (i) completing the generation of WCPS queries for other SPARQL
perations (beyond BGP and FILTER), for example aggregates, (ii) the
fficient implementation of spatial JOIN operations between vector

https://www.meteogalicia.gal/modelos
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and raster datasets and (iii) the incorporation of mechanisms to use
standard efficient encodings for raster coverages (such as GeoTIFF and
NetCDF) in query results.
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