
remote sensing  

Article

Can Landsat-Derived Variables Related to Energy
Balance Improve Understanding of Burn Severity
From Current Operational Techniques?

Alfonso Fernández-Manso 1,2, Carmen Quintano 2,3,4,* and Dar A. Roberts 2

1 Agrarian Science and Engineering Department, University of León, Av. Astorga s/n.,
24400 Ponferrada, Spain; alfonso.manso@unileon.es

2 Department of Geography, University of California, Santa Barbara, CA 93106, USA; dar@geog.ucsb.edu
3 Electronic Technology Department, University of Valladolid, Paseo del Cauce, 59, 47011 Valladolid, Spain
4 Sustainable Forest Management Research Institute, University of Valladolid-Spanish National Institute for

Agricultural and Food Research and Technology, 34004 Palencia, Spain
* Correspondence: carmen.quintano@uva.es

Received: 20 February 2020; Accepted: 9 March 2020; Published: 10 March 2020
����������
�������

Abstract: Forest managers rely on accurate burn severity estimates to evaluate post-fire damage
and to establish revegetation policies. Burn severity estimates based on reflective data acquired
from sensors onboard satellites are increasingly complementing field-based ones. However, fire
not only induces changes in reflected and emitted radiation measured by the sensor, but also on
energy balance. Evapotranspiration (ET), land surface temperature (LST) and land surface albedo
(LSA) are greatly affected by wildfires. In this study, we examine the usefulness of these elements of
energy balance as indicators of burn severity and compare the accuracy of burn severity estimates
based on them to the accuracy of widely used approaches based on spectral indexes. We studied
a mega-fire (more than 450 km2 burned) in Central Portugal, which occurred from 17 to 24 June 2017.
The official burn severity map acted as a ground reference. Variations induced by fire during the first
year following the fire event were evaluated through changes in ET, LST and LSA derived from
Landsat data and related to burn severity. Fisher’s least significant difference test (ANOVA) revealed
that ET and LST images could discriminate three burn severity levels with statistical significance
(uni-temporal and multi-temporal approaches). Burn severity was estimated from ET, LST and LSA
using thresholding. Accuracy of ET and LST based on burn severity estimates was adequate (κ = 0.63
and 0.57, respectively), similar to the accuracy of the estimate based on dNBR (κ = 0.66). We conclude
that Landsat-derived surface energy balance variables, in particular ET and LST, in addition to acting
as useful indicators of burn severity for mega-fires in Mediterranean ecosystems, may provide critical
information about how energy balance changes due to fire.

Keywords: burn severity; Landsat; Mediterranean; energy balance; evapotranspiration; land surface
temperature; land surface albedo; dNBR

1. Introduction

Fire is one of the major disturbance processes in many ecosystems and is particularly prevalent
in Mediterranean ecosystems, where it impacts biodiversity [1,2] and other important ecosystem
properties. The frequency, severity and size of fires have been increasing in recent decades in
Mediterranean ecosystems, due mainly to climate change and modifications in land use [3]. To evaluate
fire damage, one of the most commonly used metrics is fire/burn severity [4]. Burn severity groups
short- and long-term fire effects on vegetation and soil [5]. Key and Benson [6] distinguished between
initial assessment of burn severity, which aims to map burn severity immediately after fire, from
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an extended assessment, whose goal is to map burn severity when survivorship and mortality are
detectable. Increases in burn severity due to changes in climate and land cover may modify vegetation
characteristics (composition, resilience, structure) and soil attributes, even in Mediterranean ecosystems
that are well adapted to fire [7,8].

Fire reduces evapotranspiration (ET) and increases surface runoff following rainfall [9]. Usually,
the increase in surface runoff is lower than the decrease in ET, causing an increase in soil moisture
documented by different studies (e.g., [10,11]). However, forested areas affected by high burn severity
show a decrease in soil moisture. In this case, the increase in surface runoff exceeds the reduction
in ET and leads to drier post-fire soils [9,12]. Post-fire changes in vegetation, soil and water balance
corroborate wildfires impact on energy balance [13–15]. Fire-induced modifications in vegetation
structure and species composition alter latent heat flux and other variables of the energy balance
equation [16,17]. Changes in Land Surface Temperature (LST), an important parameter of ET, have
been recently identified as a potential indicator of burn severity [18–21]. Similarly, previous research
studies showed the relationship between fire damage and land surface albedo (LSA) [20,22–24]. LSA
determines the total amount of solar radiation that an ecosystem absorbs [25] and it is subject to
seasonality [20]. To our knowledge, there is a lack of studies relating to all three elements of energy
balance (ET, LST, and LSA) to burn severity, in particular in Mediterranean forest ecosystems. However,
understanding their interactions is critical to evaluating the role of fire on Earth. The loss of vegetation
modifies rainfall and water availability (more than 40% of rainfall over Earth’s land is due to ET on
average) and has an impact on warming at local scales as well [26]. Forest fires may have an influence
on regional climate by modifying energy balance [27,28], and some studies suggest that this may affect
climate at global scales [29,30].

There is a variety of approaches to compute LST from thermal satellite data with a satisfactory
accuracy (1K or better) and spatial resolution (30 × 30m) [31,32]. Similarly, LSA may be computed from
reflective satellite data with a low residual error (less than 0.02) at the same fine spatial resolution [33,34].
However, many previous studies relating to fire effects and ET [13,15,35,36] were based on surface
fluxes measured in the field, as it is difficult to estimate ET from satellite data with an adequate accuracy
and spatial resolution. Thus, these results are only valid for vegetation similar to the vegetation
analyzed by the instrument on a local scale [37]. ET requires a relatively high number of parameters
to be computed with reasonable accuracy. Thus, a high temporal resolution (daily frequency or
higher) is needed, whereas a fine spatial resolution is advisable. For this reason, different satellite
sensors combined with meteorological ground stations are usually needed to estimate ET from satellite
data [38]. Among the remote sensing-based ET models, surface energy balance techniques based on
LST from thermal infrared data are widely used. Mapping EvapoTranspiration at high Resolution with
Internalized Calibration (METRIC) [39] is a well-established surface energy balance-based model [40].
One of the main limitations of METRIC is, however, the need for a well-trained expert to calibrate
and run the model [41]. The calibration of METRIC requires the identification of maximum and
minimum ET within a satellite image. Some automatic calibration algorithms for the METRIC model
have, however, been developed to avoid this limitation (e.g., [42,43]). Among them, the Earth Engine
Evapotranspiration Flux (EEFlux) application was designed and implemented in the Google Earth
Engine (GEE) platform [44]. The ECOsystem Spaceborne Thermal Radiometer Experiment on Space
Station (ECOSTRESS) mission has ET as one of the primary output variables [45,46], although at
the present it only collects data over the conterminous United States (CONUS) as well as key biomes
and agricultural zones around the world and selected FLUXNET [47] validation sites.

Similarly, remote sensing techniques provide a widely used alternative to field-measured burn
damage [14,48–53]. Operational examples include the European Forest Fire Information System (EFFIS)
and the Monitoring Trends in Burn Severity (MTBS) project in the USA. Among the most widely
used techniques to estimate burn severity from satellite data, spectral indices stand out due to their
simplicity [52–58]. In particular, using thresholds to classify differenced Normalized Burn Ratio
(dNBR) [6] has become a standard to estimate burn severity from optical remotely sensed data [59],
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specifically from Landsat data [57,60,61]. Additionally, differenced Normalized Difference Vegetation
Index (dNDVI) may be used to map burn severity when it is not possible to calculate dNBR due to
sensor characteristics [62]. As most of the sensors onboard Unmanned Aerial Vehicles (UAVs) do not
record information in shortwave infrared wavelengths, NDVI, and in particular dNDVI, is emerging
as an accurate index to estimate burn severity [63]. However, some studies have pointed out some
limitations of using spectral indices as a base to estimate burn severity: their interpretation in terms
of fire damage is not easy due to the absence of standardized units [64,65] and due to a nonlinear
relationship to burn severity [66].

In this context, this research work aims to analyze the relationship between burn severity and
variations in ET, LST and LSA after large fires in Mediterranean forests at fine spatial resolution
and to verify whether they may act as indicators of burn severity (initial and extended) in these
ecosystems. Spectral indexes widely used to estimate burn severity (dNDVI, dNBR) were used as
additional variables. In particular, our specific objectives are: (1) to evaluate the changes due to fire
in the five variables (ET, LST, LSA, NDVI and NBR) over time: immediately after fire, a month after
fire, two months after fire, and one year after fire; (2) to determine whether the five variables can be
regarded as indicators of burn severity (initial and extended assessments) from both uni-temporal and
multi-temporal perspectives and how many burn severity levels may be distinguished by each variable;
(3) to identify pre-fire factors that may also cause changes in the variables: in particular, pre-fire species
composition (highly related to fuel model), climate and topography; and 4) to determine the accuracy
of the burn severity estimates from these variables. We structured Results and Discussion sections by
three main questions that are closely related to these specific objectives: (1) How does fire modify ET,
LST, LSA, NDVI and NBR?; (2) How are ET, LST, LSA, NDVI and NBR post-fire images influenced
by burn severity and pre-fire factors?; and (3) Is it possible to accurately estimate burn severity from
the ET, LST and LSA images?

2. Materials

2.1. Study Area

Our study area is the mega-fire of Pedrogão Grande and environs that burned in 2017 in central
Portugal (Figure 1, left). The Joint Research Centre of the European Commission included this fire
in its annual report as the fire that caused a total of 66 deaths and important losses in term of forest
areas and buildings [67]. In particular, 263 structures were inventoried as being damaged by Ribeiro et
al. [68]. The Pedrogão Grande fire burned 458.93 km2 between June 17th 2017 and June 24th 2017 [69].
After months with low rainfall and high temperatures, 80% of the region was in extreme drought on
June 17th according to the Instituto Português do Mar e da Atmosfera (IPMA). With these conditions,
a multi-cell thunderstorm emerged, and lightning and strong winds caused the fire to burn out of
control [70,71].

Climate in the area can be described as a mix of Csa (typical Mediterranean) and Csb (humid
Mediterranean) Köppen-Geiger classes [72]. Rainy winters and hot and dry summers characterize
the typical Mediterranean climate (annual precipitation is between 400–750mm). The humid
Mediterranean climate, however, shows a higher annual precipitation (750–2000mm), with summers
that are mild and dry.

The highest elevations are to the north and northwest of the affected area. In progression to
the south, lower elevations predominate (approximately 400m around Pedrógão Grande). Orography
is very heterogeneous. Very steep slopes with values between 45% and 60% or higher predominate
in the north and northeast, whereas the area is flatter, with gentle slopes between 0% and 15%, in
the south and southwest (basin of Zêzere river). In the extreme Southeast, there are slopes between
30% and 40%.
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Figure 1. Left: location of study area; right: vegetation species map (upper), climatic map (center);
altitude map (lower).

The Pedrógão Grande area is integrated into the Interior North Pinhal Zone, the largest forest
spot in Europe before the fire. It is contained between the basins of the Zêzere and Unhais rivers and
the banks of the Pêra and Mega rivers. In this area, plantations of eucalyptus (Eucalyptus globulus
Labill.), and maritime pine forest (Pinus pinaster Ait.) are dominant (Figure 1, upper right). However,
it is still possible to find cork oak forests (Quercus suber L.), chestnut trees (Castanea sativa Mill.),
strawberry trees (Arbutus unedo L.) and shrubs such as gorse (Ulex europaeus L.), red heather (Erica
australis L.), white heather (Erica arborea L.), and broom (Cytisus scoparius L.). Acacias and olive trees
have great importance in the local economy. Agricultural areas were located close to villages, although
both agriculture and grazing activities were low (1–3 livestock units per ha) [71].

2.2. Materials

We downloaded USGS Landsat 8 Operational Land Imager (OLI)/ Thermal InfraRed Sensor
(TIRS) surface reflectance images (path/row 204/32, higher-level data product on demand) acquired
on 15 June 2017; 1 July 2017; 17 July 2017; 2 August 2017; 18 August 2017; 19 September 2017;
5 August 2018; and 8 October 2018. From them, we computed NDVI, NBR, LST and LSA. METRIC
daily ET images were obtained by using the software developed by University of Nebraska-Lincoln [44].

The official fire perimeter and burn severity map (three severity levels) were used as
ground reference (estimated geometric accuracy 5m CE90 or better). They were based on
Copernicus—Emergency Management Service maps (built using SPOT 6 and 7 imagery) verified in
the field and from photointerpretation of Sentinel 2 MSI data by the Portuguese Study Center of Forest
Fires [69].

As potential pre-fire factors that may also influence the variables related to energy balance, we
included in the study: pre-fire species composition, climate and topography. The official Portuguese
Land Cover Map (Carta de Ocupação do Solo, COS15) enabled us to define pre-fire vegetation species
composition. COS15 has 48 classes in vector format and has a minimum cartographic unit of one hectare
and a minimum distance between lines of 20 meters [73]. Köppen-Geiger climate classes [72] of the study
area were extracted from the updated world map of the Köppen-Geiger climate classification [74].
Finally, a 30m Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global
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Digital Elevation Model Version 2 (GDEM V2) provided by USGS (https://search.earthdata.nasa.gov)
was employed to derive three topographic factors (elevation, aspect and slope).

3. Methods

3.1. LST Calculation

As in previous studies [75,76], LST was calculated based on the single-channel method proposed
by Yu et al. [77]. This method is based on the radiative transfer equation (Equation (1)). See the review
work of Li et al. [32] for detailed information on satellite-based methods to obtain LST. Calculations
were implemented in the R statistical program (release 3.4.3) [78]

B(Ts) =

[
(B(T) − I ↑)

τ(θ)
− I ↓ (1− ε)

]
1
ε

(1)

where B(Ts) represents ground radiance; B(T), radiance of thermal band 10 with brightness temperature
T; τ(θ), atmospheric transmittance for a view zenith angle θ; I↓, and I↑ respectively, denote downwelling
and upwelling path radiance; and ε, land surface emissivity calculated from Sobrino et al. [79]. LST is
computed from ground radiance according to Planck’s law using Equation (2)

LST =
K2

ln(1 + K1/B(Ts))
(2)

where K1 and K2 are thermal constants defined in metadata of Landsat 8 OLI/TIRS images.

3.2. LSA Calculation

Similar to previous works [23,24], LSA was estimated from surface reflectance based on Liang [80]
and Liang et al. [34]. We only considered the total shortwave broadband LSA (LSA) (Equation (3))

LSA = 0.356α1 + 0.130α3 + 0.373α4 + 0.085α5 + 0.072α7 − 0.0018 (3)

where αi indicates the albedo in the ‘i’ Landsat 8 OLI band that is approximated by reflectance.

3.3. ET (METRIC Model)

We include here a summary of the METRIC model. More detailed information about
the METRIC-model can be found in Allen et al. [39] and Irmak et al. [81]. In the METRIC model,
the energy consumed by the ET process is determined from satellite imagery using the surface energy
balance equation (Equation (4)) on a pixel by pixel basis

LE = Rn −G−H (4)

where LE represents latent energy consumed by actual ET (i.e., heat energy used by water in its phase
change from liquid to gas during the ET process); Rn, net radiation flux density (W/m2); G, ground
heat flux density or sensible heat conducted into the ground) (W/m2); and H, sensible heat flux density
convected into the air (W/m2). In METRIC, these three key variables (Rn, G and H) are estimated
from satellite data. In particular: Rn from narrow-band reflectance and surface temperature; G, from
Rn, surface temperature, and vegetation indices; and H, from surface temperature ranges, surface
roughness, and wind speed (see [39]). Next, instantaneous ET (ETi, expressed in mm/h) is calculated
for each pixel using Equation (5)

ETi = 3600
LE
λρw

(5)

https://search.earthdata.nasa.gov
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where 3600 is a constant that converts seconds to hours; ρw is the density of water (Kg/m3); and λ, is
the latent heat of vaporization, expressed in J/Kg, and estimated from surface temperature, expressed
in K.

From ETi, reference ET fraction (ETrF) is calculated as the ratio of ETi to the instantaneous tall
crop reference ET (ETr) computed from weather data (Equation (6)). Alfalfa is the tall crop used for
METRIC as the tall alfalfa reference resembles maximum energy-limited ET from a well-watered,
extensive surface of vegetation.

ETrF =
ETi
ETr

(6)

ETrF is used for extrapolating instantaneous ET to daily ET (ET) expressed in mm/day (Equation (7)).
In the METRIC process, it is assumed that the instantaneous ETrF calculated at image time is constant
for the 24-hour period. This assumption is generally valid for agricultural crops (developed to
maximize photosynthesis and thus stomatal conductance). For some native vegetation under water
stress, however, ETrF may reduce its value during the afternoon. In this case, ETrF is modeled from
instantaneous ETrF by developing the appropriate functions.

ET = Crad × ETrF× ETr−24 (7)

where Crad represent the correction term used in sloping terrain, in horizontal areas Crad equals 1.0;
and ETr−24, cumulative 24 h ETr for the day of the image.

3.4. Database Construction

As a preliminary step to database construction, NBR [82] and NDVI [83] were computed from
Landsat surface reflectance images. Additionally, we calculated the difference between pre- and
post-fire situations to perform a multi-temporal analysis. In particular, we subtracted post-fire variables
from pre-fire ones for ET, LSA, NBR and NDVI, and pre-fire variables from post-fire ones for LST.
Variables ending with “_i” represent the initial assessment (difference between pre-fire -06/15/17- and
immediately after fire images -07/01/17-), and “_e” an extended assessment (difference between pre-fire
-06/15/17- and 1-year after fire images -08/05/18-).

We applied a mean 3 × 3 filter to satellite-derived images before extracting the digital values
for the sampling points to minimize positional errors [6,19]. As recommended by Congalton and
Green [84], a stratified random sampling was adopted. The number of training samples was related to
the surface that each burn severity level occupies on the ground reference map: 2532 samples for high
burn severity, 1638 for moderate burn severity and 721 for low burn severity. In addition, the zone
outside the fire perimeter was sampled to define the unburned class; we defined 1213 sampling points
for the unburned class. A kurtosis normality test enabled us to check its normality.

3.5. Statistical Analysis

After evaluating the statistical characteristics of the variables of interest (ET, LST, LSA NDVI
and NBR) over time as a preliminary analysis, we aim to determine how spatial variation in the five
variables is related to burn severity. One-way Analysis of Variance (ANOVA) was applied by grouping
values into each burn severity level. A Fisher’s least significant difference (LSD) test determined
which sample means were significantly different from the others. These analyses were performed at
different moments to analyze the temporal evolution of variables: immediately after fire, a month after
fire, two months after fire and 1-year after fire (summer and fall). ANOVA analysis enabled us to
identify the number of burn severity levels that may be distinguished with statistical significance from
the images and to determine whether those variables could be used as indicators of burn severity. In
addition, to the uni-temporal post-fire analysis, a similar multi-temporal analysis was performed by
subtracting the pre-fire image from the immediately after fire and 1-year after fire images (initial and
extended assessment respectively).
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Pre-fire conditions also have an influence on the variables of interest. To evaluate the contribution
of those determining factors on the variables, a multifactor analysis of variance was performed. It
searched for significant interactions amongst the factors. The p-value tests the statistical significance of
the contribution of each measured factor, having removed the effects of all other factors. We included as
pre-fire factors: dominant vegetation species; Köppen climate category and topographic variables (in
particular, elevation, slope and aspect). Vegetation species is usually related to fire damage, although
it is not a true measure of fuel state [85]. Specifically, three categories were taken into account in
the vegetation species factor—eucalyptus, pine and shrubland—and two Köppen classes in the climate
factor—Csa (Mediterranean climate) and Csb (humid Mediterranean climate). Regarding topographic
factors, we defined five classes in elevation: 0- 300m, 301-600m, 601-900m and 901m-highest value;
five classes in slope: 0◦–5◦, 5◦–10◦, 10◦–20◦, 20◦–30◦, 30◦–highest value; and eight classes in aspect:
north (0◦–22.5◦ and 337.5◦–360◦), northeast (22.5◦–67.5◦), east (67.5◦–112.5◦), southeast (112.5◦–157.5◦),
south (157.5◦–202.5◦), southwest (202.5◦–247.5◦), west (247.5◦–292.5◦), and northwest (292.5◦–337.5◦).

The relationship amongst the five variables was evaluated as well. As in previous studies
(e.g., [19,86,87] Pearson’s correlation analysis was utilized to analyze the interactions among the five
variables taken into account.

3.6. Burn Severity Mapping

Burn severity (initial assessment) was mapped from both uni-temporal (immediately after
fire images) and multi-temporal (pre- and post-fire difference images) perspectives. Classification
of the continuous images into four classes—high, moderate and low burn severity levels and
unburned—was based on thresholds. The halfway values between the mean values of consecutive
classes (computed from the training samples) acted as initial thresholds. These initial thresholds were
refined manually to minimize the number of errors of classification [88].

Our study used error matrices and κ statistics [84] to measure the accuracy of each burn severity
estimate. In addition, Overall Accuracy (OA), Producer’s Accuracy (PA) (omission error) and User’s
Accuracy (UA) (commission error) were computed as well. Prior to error matrix computation, a new
stratified random disproportional sampling was applied to the ground reference and to the classified
images. In this case we defined 2357 sampling points for high burn severity, 1694 for moderate burn
severity, 661 for low burn severity level, and 1140 for the unburned class.

4. Results

4.1. How Does Fire Modify ET, LST, LSA, NDVI and NBR?

Notable differences between burned and unburned areas in every post-fire variable are visually
apparent (Figure 2). The images immediately after the fire (second column of Figure 2) showed such
differences more clearly. The images one month and two months after the fire (third and fourth column)
also enabled us to clearly distinguish burned from unburned areas. Moreover, the two months after
the fire image (19 September 2017) enabled us to visually identify a new forest fire in the lower right
corner. Even 1-year after fire (right column), burned areas were readily identified in every image
except LSA. Moreover, a large forest fire (332 km2) which happened in Ponte das Portelinhas (Sertã) in
2 November 2017 is still evident in the 1-year after fire images. In addition, the capability of ET images
to clearly delineate riparian vegetation along the Zêzere River should be noted. Spatial differences
inside of the burn perimeter could be noticed as well in the five variables (more clearly in the images
closer to the fire date), which suggests sensitivity to burn severity levels.
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Figure 2. Temporal evolution of evapotranspiration (ET) (upper row), land surface temperature (LST)
(second row), land surface albedo (LSA) (third row); normalized difference vegetation index (NDVI)
(forth row) and normalized burn ratio (NBR) (lower row) images. Left column: 06/15/17 second
column: 07/01/17, third column: 08/02/17, fourth column 09/19/17, right column 08/05/18.

Table 1 displays the statistical characteristics (mean values and standard deviation) of ET, LST, LSA,
NDVI and NBR for burned and unburned samples at different times: before the fire (only unburned
samples), immediately after fire, one month, two months and 1-year after fire. Knowing the mean
values of the burned and unburned samples for each image enabled us to minimize the influence of
external and meteorological parameters in the fire-induced changes in the five variables. Fire caused an
important initial ET decrease, which eventually reduced its value. ET declined seasonally in unburned
samples as well. Patterns of LST variation after fire were similar to the ET trend, but showed a reverse
pattern. LST values increased in burned samples. The increase was higher immediately after fire,
although it could be observed even a year after the fire. Regarding LSA, burned areas decreased
immediately after they burned relative to unburned areas, with the difference decreasing over time.
A year after fire, LSA in burned samples increased relative to unburned samples, mainly due to
vegetation regrowth. Finally, both NDVI and NBR showed the same tendency: a strong decrease in
the burned samples immediately after the fire. These differences declined in the year after fire image.
The standard deviation of burned samples immediately after fire was the highest of all images and
implies a high spatial heterogeneity that could be related to burn severity.
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Table 1. Temporal evolution of statistical characteristics of ET. LST. LSA. NDVI and NBR for burned
and unburned samples.

06/15/17 07/01/17 08/02/17 09/19/17 08/05/18

µ σ µ σ µ σ µ σ µ σ

ET
(mm/day)

Burned - - 1.62 1.62 1.62 0.95 1.52 0.98 1.76 1.01

Unburned 5.58 1.34 6.65 1.16 3.47 0.94 3.26 0.79 3.13 1.21

LST
(K)

Burned - - 315.79 4.90 319.51 4.72 308.96 3.99 315.25 2.47

Unburned 305.13 3.80 299.36 3.24 304.10 3.91 298.38 4.05 309.57 4.19

LSA
Burned - - 0.08 0.02 0.09 0.03 0.09 0.02 0.16 0.01

Unburned 0.12 0.03 0.12 0.03 0.11 0.03 0.10 0.03 0.15 0.01

NDVI
Burned - - 0.29 0.12 0.30 0.12 0.37 0.11 0.41 0.07

Unburned 0.72 0.12 0.73 0.13 0.72 0.13 0.68 0.14 0.51 0.11

NBR
Burned - - -0.12 0.24 -0.06 0.22 0.07 0.21 0.29 0.10

Unburned 0.57 0.16 0.55 0.17 0.55 0.18 0.55 0.22 0.45 0.15

µ: mean value in sampling plots; σ: standard deviation in sampling plots; ET: evapotranspiration; LST: land surface
temperature; LSA: land surface albedo; NDVI: normalized difference vegetation index; NBR: normalized burn ratio

4.2. How Are ET, LST, LSA, NDVI and NBR Post-Fire Images Influenced by Burn Severity and Pre-Fire
Factors?

The results of one-way ANOVA applied to each post-fire image (Table 2) indicated that the five
variables tested showed significant differences (p < 0.01) among the mean values of each burn severity
level when the 2017 images were taken into account, with the exception of LSA, whose low burn severity
and unburned mean values could not be distinguished in the last two 2017 images. Therefore, three
burn severity levels could be distinguished in all immediately post-fire and a month after fire images.

Table 2. Fisher’s least significant difference test for post-fire ET, LST, LSA, NDVI and NBR images and
burn severity levels.

Evapotranspiration (ET, mm/day)

S 07/01/17 07/17/17 08/02/17 08/18/17 09/19/17 08/05/18 10/08/18

µ HG µ HG µ HG µ HG µ HG µ HG µ HG

H 0.94 a 1.32 a 1.45 a 0.98 a 1.16 a 1.50 a 1.03 a

M 1.89 b 1.52 b 1.70 b 1.19 b 1.74 b 1.90 b 1.17 b

L 3.36 c 1.73 c 2.04 c 1.51 c 2.26 c 2.31 c 1.45 c

U 6.65 d 2.80 d 3.47 d 2.76 d 3.26 d 3.13 d 1.84 d

Land Surface Temperature (LST, K)

S 07/01/17 07/17/17 08/02/17 08/18/17 09/19/17 08/05/18 10/08/18

µ HG µ HG µ HG µ HG µ HG µ HG µ HG

H 318.7 a 325.9 a 322.1 a 321.6 a 310.9 a 315.8 a 302.9 a

M 314.5 b 321.8 b 318.4 b 318.2 b 308.1 b 315.1 b 302.5 a

L 309.4 c 317.5 c 314.3 c 314.6 c 305.0 c 313.5 c 300.8 b

U 299.1 d 307.6 d 303.9 d 305.6 d 298.4 d 309.5 d 297.7 c
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Table 2. Cont.

Land Surface Reflectance (LSA)

S 07/01/17 07/17/17 08/02/17 08/18/17 09/19/17 08/05/18 10/08/18

µ HG µ HG µ HG µ HG µ HG µ HG µ HG

H 0.07 a 0.08 a 0.08 a 0.08 a 0.08 a 0.16 a 0.10 a

M 0.08 b 0.10 b 0.10 b 0.10 b 0.09 b 0.16 a 0.10 a

L 0.10 c 0.11 c 0.11 c 0.11 c 0.10 c 0.16 a 0.10 a

U 0.12 d 0.12 d 0.11 d 0.11 c 0.10 c 0.15 b 0.08 b

Normalized Difference Vegetation Index (NDVI)

S 07/01/17 07/17/17 08/02/17 08/18/17 09/19/17 08/05/18 10/08/18

µ HG µ HG µ HG µ HG µ HG µ HG µ HG

H 0.21 a 0.21 a 0.25 a 0.28 a 0.33 a 0.40 a 0.54 a

M 0.30 b 0.29 b 0.32 b 0.34 b 0.38 b 0.41 a 0.55 a

L 0.49 c 0.44 c 0.48 c 0.49 c 0.51 c 0.45 b 0.62 b

U 0.74 d 0.71 d 0.73 d 0.72 d 0.69 d 0.51 c 0.71 c

Normalized Burn Ratio (NBR)

S 07/01/17 07/17/17 08/02/17 08/18/17 09/19/17 08/05/18 10/08/18

µ HG µ HG µ HG µ HG µ HG µ HG µ HG

H -0.28 a -0.21 a -0.21 a -0.15 a 1.10 a 0.28 a 0.29 a

M -0.05 b 0.00 b 0.01 b 0.06 b 1.69 b 0.29 a 0.30 a

L 0.23 c 0.22 c 0.26 c 0.29 c 2.26 c 0.35 b 0.41 b

U 0.57 d 0.55 d 0.56 d 0.56 d 3.25 d 0.46 c 0.53 c

S: burn severity level; H: high burn severity level; M: moderate burn severity level; L: low burn severity level;
U: unburned; µ: mean value; HG: homogeneous groups, different letters in each HG column indicate a group of
means within which there are no significant differences, showing significant differences among group means; white
background: four levels were discriminated; light grey background: three levels were discriminated; dark grey
background: two levels were discriminated

Regarding the 2018 images, only ET and LST could discriminate three burn severity levels with
statistical significance. ET displayed significant differences among all burn severity levels in the two
2018 images (summer and fall). LST, however, was not distinct between high and moderate burn
severity levels in the image acquired in fall 2018 (8th October 2018). Similarly, NDVI and NBR only
discriminated two burn severity levels (high-moderate and low) in the 2018 images. LSA showed
the worst performance in the ANOVA analysis as it could only discriminate between the burned and
unburned class in both 2018 images. Consequently, ET and LST were the only variables that enabled
us to distinguish the three burn severity levels in the 1-year after fire summer image, and ET could also
discriminate the three burn severity levels in the 1-year after fire fall image.

Table 3 displays the results of the one-way ANOVA from a multi-temporal perspective. Regarding
the initial assessment (difference between pre-fire and immediately post-fire image), the five variables
(ET, LST, LSA, NBR and NDVI) performed similarly. All of them could discriminate the three burn
severity levels with statistical significance. However, regarding the extended assessment (difference
between pre-fire and 1-year after fire image), only dET_e and dLST_e could discriminate them. dLSA_e,
dNBR_e, and dNDVI_e enabled only the discrimination of two burn severity levels (high-moderate
and low). These results are in accordance with the results of the one-way ANOVA from uni-temporal
perspective (Table 2).
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Table 3. Fisher’s least significant difference test for the difference between pre-fire and post-fire ET,
LST, LSA, NBR and NDVI images and burn severity levels.

Initial Assessment (06/15/17–07/01/17)

S dET_i dLST_i dLSA_i dNBR_i dNDVI_i

µ HG µ HG µ HG µ HG µ HG

H 3.76 a 9.52 a 0.05 a 0.78 a 0.46 a

M 3.02 b 5.57 b 0.04 b 0.56 b 0.38 b

L 1.52 c 1.04 c 0.03 c 0.32 c 0.22 c

U -1.07 d -5.77 d 0.01 d 0.02 d -0.01 d

Extended assessment (06/15/17 - 08/05/18)

S dET_e dLST_e dLSA_e dNBR_e dNDVI_e

µ HG µ HG µ HG µ HG µ HG

H 3.20 a 6.84 a -0.03 a 0.22 a 0.28 a

M 3.00 b 6.27 b -0.04 a 0.23 a 0.28 a

L 2.57 c 4.98 c -0.03 b 0.20 b 0.26 b

U 2.46 d 4.44 d -0.03 b 0.12 c 0.21 c

S: burn severity level; H: high burn severity level; M: moderate burn severity level; L: low burn severity level;
U: unburned; µ: mean value; HG: homogeneous groups, different letters in each HG column indicate a group of
means within which there are no significant differences, showing significant differences among group means; white
background: four levels were discriminated; light grey background: three levels were discriminated; dark grey
background: two levels were discriminated

Table 4 displays the results of the multifactor analysis of variance for ET, LST, LSA, NDVI and
NBR that used post-fire burn severity, pre-fire vegetation species, climate, elevation, slope and aspect
as factors. We observed that burn severity contributes to more than 80% of ET, LST, NDVI and NBR
images (see Table 4, initial assessment), with pre-fire vegetation species and aspect being the next two
factors with a high contribution. The total variance explained for the factors in those four variables
was approximately 90%. With regards to the extended assessment (images acquired 1-year after
fire), the total explained variance showed a decrease when compared to the initial assessment. Burn
severity contribution also decreased. The topographic contribution increased for all of the variables.
The vegetation species factor also increased its contribution to all variables except ET. Climate only
had a relevant contribution to ET variance. LSA displayed the lowest values for the total explained
variance. In addition, the contribution of burn severity to LSA was relatively low compared to its
contribution to the rest of the variables, and the contribution of pre-fire vegetation was relatively high.

Table 4. Multifactor analysis of variance for ET, LST, LSA, NDVI and NBR. Initial and extend assessment.

Initial Assessment (07/01/17)

ET LST LSA NDVI NBR

Factors p-value % p-value % p-value % p-value % p-value %

Burn severity 0.000 83.90 0.000 83.87 0.000 40.53 0.000 85.60 0.000 85.66

Climate 0.107 0.00 0.000 0.43 0.197 0.00 0.415 0.00 0.170 0.00

Vegetation 0.000 1.49 0.000 0.77 0.000 17.47 0.000 1.60 0.000 1.22

Elevation 0.085 0.44 0.000 1.65 0.000 1.27 0.000 0.79 0.000 0.94

Slope 0.000 0.58 0.000 0.07 0.000 0.93 0.007 0.63 0.009 1.07

Aspect 0.000 6.20 0.000 4.44 0.000 8.75 0.000 2.04 0.000 0.24
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Table 4. Cont.

Total explained 92.61 91.23 68.95 90.66 89.13

Total error 7.39 8.76 31.05 9.34 10.87

Extended assessment (08/05/17)

ET LST LSA NDVI NBR

Factors p-value % p-value % p-value % p-value % p-value %

Burn severity 0.000 37.32 0.000 47.24 0.000 2.52 0.000 27.13 0.000 32.47

Climate 0.000 8.01 0.564 0.00 0.567 0.00 0.074 0.00 0.323 0.00

Vegetation 0.000 0.65 0.000 6.02 0.000 20.13 0.000 10.70 0.000 11.08

Elevation 0.000 10.49 0.000 4.38 0.000 6.17 0.002 5.78 0.006 4.17

Slope 0.000 4.23 0.000 1.75 0.000 5.32 0.000 0.94 0.001 1.06

Aspect 0.000 4.98 0.000 8.85 0.000 6.43 0.000 3.05 0.000 4.03

Total explained 65.68 68.24 40.57 47.60 52.81

Total error 34.32 31.75 59.43 52.40 47.19

p-value: p-values test the statistical significance of each of the factors, p-value < 0.01 indicates a significant
contribution at the 99% confidence level; %: percentage of variance contributed by each of the factors

Table 5 summarizes the mean values of ET, LST, LSA, NDVI and NBR before the fire for every
class, defined in climate, vegetation species and topographic factors. As expected, higher mean values
of ET, NDVI and NBR (and lower of LST) were found in the humid Mediterranean climate (Csb class),
at lower elevation (0–300m, 300–600m classes) and at lower slope (0◦–5◦, 5◦–10◦) ranges because of
a high water availability due to the close proximity to the Zêzere River, and on North aspect slopes
(more humid). Regarding vegetation species, differences in mean values of the variables were smaller.

Table 5. Mean values of pre-fire (06/15/17) ET, LST, LSA, NDVI and NBR images in different classes
taken into account for climate, vegetation species, elevation, slope and aspect.

ET (mm/day) LST (K) LSA NDVI NBR

Climate
Csa 4.85 307.44 0.13 0.62 0.44

Csb 5.31 306.64 0.13 0.63 0.44

Vegetation

Eucalyptus 4.92 307.47 0.12 0.66 0.49

Pine 4.82 308.03 0.11 0.67 0.49

Shrub 4.74 307.98 0.12 0.65 0.43

Elevation
(m)

0-300 6.34 305.82 0.14 0.64 0.46

301-600 5.35 307.51 0.13 0.66 0.50

601-900 4.94 306.61 0.13 0.64 0.47

>900 3.69 308.21 0.13 0.56 0.33

Slope (º)

0-5 5.63 305.57 0.12 0.65 0.46

5-10 5.20 306.72 0.13 0.63 0.44

10-20 4.87 307.59 0.13 0.62 0.43

20-30 4.88 307.57 0.14 0.62 0.44

>30 4.82 307.74 0.14 0.61 0.42
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Table 5. Cont.

ET (mm/day) LST (K) LSA NDVI NBR

Aspect

North 5.42 305.83 0.13 0.66 0.48

Northeast 4.97 307.33 0.14 0.64 0.45

East 4.73 308.16 0.14 0.63 0.43

Southeast 4.70 308.44 0.14 0.60 0.40

South 4.92 307.68 0.13 0.61 0.42

Southwest 5.03 307.20 0.13 0.60 0.42

West 5.38 306.12 0.13 0.62 0.44

Northwest 5.49 305.54 0.13 0.64 0.46

4.3. Is it Possible to Estimate Accurately Burn Severity From the ET, LST and LSA Images?

A summary of the accuracy measures of the burn severity estimates from each variable taken into
account (uni-temporal and multi-temporal perspective) is displayed in Table 6. From a uni-temporal
perspective, all burn severity estimates except the LSA-based one showed adequate accuracy.
The post-fire ET-based estimate achieves the highest κ statistic (0.63), followed by the post-fire
the NBR-based estimate (κ = 0.61). When a multi-temporal perspective was adopted, both burn severity
estimates based on dET and dLST decreased their accuracy slightly, whereas burn severity estimates
based on dNDVI and dNBR increased their accuracy slightly. Consequently, some differences in
accuracy were observed in this case: κ statistic was 0.55 in dET-based estimate, and 0.51 in dLST-based,
compared to 0.65 and 0.66 in dNDVI- and dNBR-based ones, respectively. The dLSA-based burn
severity estimate showed approximately the same accuracy as the LSA-based one in the uni-temporal
perspective (too low to be acceptable).

Table 6. Accuracy summary of the burn severity estimates from ET, LST, LSAT, NDVI and NBR
(uni-temporal and multi-temporal perspective).

Uni-Temporal Perspective
(07/01/2017)

Multi-Temporal Perspective
(06/15/17–07/01/2017)

ET LST LSA NDVI NBR dET_i dLST_i dLSA_i dNDVI_i dNBR_i

κ 0.63 0.57 0.44 0.59 0.61 0.55 0.52 0.45 0.65 0.66

PA 0.69 0.65 0.49 0.67 0.70 0.66 0.63 0.58 0.70 0.71

UA 0.68 0.66 0.51 0.70 0.69 0.62 0.60 0.55 0.72 0.70

OA 0.73 0.69 0.61 0.72 0.72 0.67 0.64 0.60 0.75 0.76

Figure 3 provides a visual comparison of burn severity (initial assessment) maps based on
immediately post-fire ET and dNBR_i (used as a reference). From it, we can verify a high level of
similarity between the two burn severity maps. A small variation in burn severity level actually
associated to aspect changes may be observed in the upper right corner of the ET-based map. We
should remember that this aspect contributed 6.20% to the variance in immediately after fire ET image
(Table 4).
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Figure 3. Burn severity maps. Initial assessment. Left: based on ET (uni-temporal perspective); right:
based on dNBR_i (multi-temporal perspective).

5. Discussion

5.1. How Does Fire Modify ET, LST, LSA, NDVI and NBR?

Our results agree with previous studies showing that ET decreases after a fire event (e.g. [9,89]
in semi-arid; [15,90] in boreal forests; and [13,35,91] in temperate conifer forests). In Mediterranean
ecosystem, Sánchez et al. [17] studied the temporal evolution of changes insurface energy balance over
an eleven-year period following fire in a maritime pine-shrub mixed forest (Spain). They observed
that, after 6 to 7 years, energy fluxes recovered to their pre-fire values in shrubs, while maritime
pine forest needed 9 years. Häusler et al. [37], in a forested area near our study area, observed that,
similar to maritime pine forest, ET decreased after fire in the Mediterranean Eucalyptus dominated
forests, in particular at moderate and high burn severity levels. In eucalypt forests, but in Australia,
Nolan et al. [92] found that ET decreased after fire and was higher in forests burned at high severity
compared to moderate levels.

Patterns of variation due to fire in LST were similar to ET but inversed. The increase in LST
was higher at high burn severity levels than in moderate and low ones. This increase was also
observed one year after the fire. These results are consistent with previous studies concluding that LST
shows an increase immediately after wildfire that may persist even years after the event [19,21,93–97].
Liu et al. [25] observed that burned forested areas showed a higher LST mean and variability than
unburned areas in boreal forest. In our study, variability was higher in burned areas than in unburned
ones in only the first year after the fire. In contrast, variance in unburned areas in 2018 exceeded
the variability of burned areas. The 2018 decrease in LST variance in burned areas suggests a reduction
in the number of burn severity levels that may be differentiated between, as burn severity determines
the magnitude of post-fire changes in LST [90].

Immediately after a fire, ash and charcoal accumulation over soil and charred surfaces causes
a decrease in LSA [98,99] whose amplitude is influenced by burn severity [22]. However, both 2018
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LSA images displayed higher values for burned areas than for unburned ones. The principal reason for
this increase is strong regeneration of Mediterranean vegetation following a fire event [100]. Shrubs
begin to regrow in a few weeks after the fire event [101]. E. globulus, one of the dominant species in our
study area, has a high resprouting capacity, mainly due to a high epicormic bud initiation potential and
to the presence of a lignotuber [102]. By contrast, P. pinaster, the other dominant species, is a seeder,
with a rapid seed dispersal from the beginning of fire until some months after its extinction [103].
LSA values in the summer 2018 summer image were also observed to be higher than those of the fall
image, suggesting that LSA is greatly influenced by seasonality [20]. Ecosystem type and fire regimes,
however, also have an important influence on LSA changes in duration, sign and magnitude [25,99].

Mean NDVI and NBR values in burned and unburned surfaces displayed a similar trend: a fall
immediately after the fire, whose amplitude followed a decreasing pattern over time. This pattern
responds to the changes in radiation recorded by satellite sensors due to both the removal of healthy
vegetation and the presence of ash and charcoal [104]. Healthy vegetation absorbs red radiation
and reflects NIR radiation. Conversely, burned vegetation reflects more radiation in red and SWIR
wavelengths and absorbs NIR radiation, making their spectral signature flatter than the signature of
healthy vegetation [6]. However, NDVI is not the most appropriate index to map burned areas in
Mediterranean-type regions [105], as it has not been designed to discriminate ash and char, predominant
materials in areas recently affected by fire [106]. The main advantage of NDVI is that it can be computed
from almost all existing sensors [107]. Although thresholding the differenced form of NBR (dNBR) [6]
has become a standard method to estimate burn severity due to its easy computation [60], some
limitations of this method have been pointed out (see [66]) and new alternatives have been proposed.
Among them, the ones based on char fraction from unmixing reflective bands stand out [66,75,108–110].

5.2. How Are ET, LST, LSA, NDVI and NBR Post-Fire Images Influenced by Burn Severity and Pre-Fire
Factors?

We clearly observed the dependence of ET, LST, NDVI and NBR on burn severity in our study
(Table 4). Fisher’s least significant difference showed that, from an uni-temporal point of view, the three
energy balance related variables and the two spectral indices discriminated three burn severity levels
with statistical significance the year of the fire event. Conversely, 1-year after fire, only ET (summer and
fall images) and LST (summer image) enabled such discrimination (Table 2). From a multi-temporal
approach, results similar to the uni-temporal procedure were obtained. Although energy balance
variables showed a strong dependence on burn severity, pre-fire vegetation species, and especially
topographic factors, also had a relatively important contribution. Climate (Köppen-Geiger classes, [72])
did not contribute to explain the variance in any of the variables used in our study, except ET in
the extended assessment. Our study area is a transition zone between Mediterranean (Csa) and humid
Mediterranean (Csb), and there is no clear border between these two climatic classes. We believe that
the climatic fuzziness resulted in the climate having almost no influence on the five studied variables.

Vegetation species type has an important influence on energy and water exchange between
atmosphere and land [25,89,111]. However, in our study vegetation species had a low to moderate
contribution to ET, LST, NDVI and NBR in the initial assessment, and a higher contribution to
the extended one. We found very similar ET and LSA values in the main pre-fire vegetation species,
although broadleaf trees usually show higher values in ET and LSA than coniferous trees [25]. However,
Eucalyptus cannot be =considered a broadleaf tree, and thus its ET values are close to the ET values
found in pines (Table 5). With regards to topographic factors, they had a reasonable contribution to ET
and LSA, and a lower one to the spectral indices. Aspect was the most influential topographic factor
in the initial assessment, with elevation together with aspect forming the most relevant topographic
factors in the extended one. Previous studies [92,112] have already demonstrated the important effect
of topography on ET, through its influence on evaporative demand and forest structure. Furthermore,
topography also influences the recovery pattern ET following the fire event, as vegetation regrow relies
partly on elevation [91].
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5.3. Is it Possible to Accurately Estimate Burn Severity From the ET, LST and LSA Images?

From a uni-temporal perspective, burn severity estimates based on ET achieved the highest
accuracy, with (κ = 0.63) being the acceptable accuracy of LST-based estimates (κ = 0.57). From
a multi-temporal perspective, both dET_i- and dLST_i-based estimates showed a lower accuracy than
dNDVI_i- and dNBR_i-based ones (multi-temporal approach) (Table 6). The obtained accuracy values
were in accordance with accuracy values found in previous studies (e.g., [18,60,75,113–117]).

In our study, burn severity estimates based on variables related to energy balance reached similar
accuracies to estimates based on commonly used spectral indices. However, according to Parks et
al. [118], these variables should be included to model burn severity across broad regions, due to
the difficulty in interpreting models based on spectral indices [64,118,119]. Moreover, these variables
provide critical information about the alterations in energy balance caused by fire, and in particular,
information on water balance. Fire has a clear impact on stand water cycle [120] and hydrology at
watershed scale [121]. Forest wildfires, importantly, alter the hydrological processes, which may impact
on the growth of the forest and climate at regional scale [122,123].

5.4. Final Considerations and Future Work

Most previous studies on the impact of fire on energy balance have been based on field-measured
surface fluxes, and are only valid at very local scales [13,15,91,92,124]. Others rely on variables derived
from coarse spatial resolution satellites (e.g., MODIS), and are only valid at global scales [90,125,126].
There are very few studies (e.g., [17,37]) that use satellite-data-derived variables at a fine spatial
resolution. The availability of these data makes it possible not only to work at a local-regional scale, but
also to study the potential of these energy balance variables as indicators of burn severity. In our study,
ANOVA analysis showed that ET, LST and LSA could discriminate three burn severity levels with
statistical significance at initial assessment (both from uni- and multi-temporal perspectives). Burn
severity estimates from post-fire ET not only reached almost the same accuracy as the widely used
method proposed by Key and Benson [6], but also highlighted the important impact of fire on water
balance. Since forests absorb and keep rainfall to make it available during dry season [127], wildfires
alter the volume stored by forests by removing the vegetation cover [128]. The consequences of that
change on water balance may include: modifications of ET from burned soil and vegetation versus
unburned ones [37]; alterations in soil moisture [129]; an increase in the volume of precipitation [130];
a post-fire increase in soil erosion (due to higher surface runoff) [131]; lower water quality caused by
an increase in suspended sediments [132] and modifications to surface hydrology [128]. Furthermore,
unlike spectral indices, ET has a physical meaning, which makes it easier to interpret than spectral
indices. Moreover, procedures based on variables related to energy balance such as ET or LST, estimated
from fine-scale remotely sensed data, might reduce over-dependence on spectral indices to infer burn
severity [65].

Thus, future research studies about the relationship between burn severity and satellite-derived
variables related to water balance should be focused on three areas. First, the classification procedure
of the variables related to energy balance needs to be revisited, and other classification algorithms
should be tested. Second, future studies should evaluate the integration of post-fire energy balance
measures with widely used spectral information to increase the accuracy of burn severity estimates.
Third, it is necessary to verify the potential use of these variables as indicators of burn severity in other
ecosystems and fire regimes.

6. Conclusions

Wildfires not only modify surface reflectance but also induce changes in energy balance. Our study
proved the usefulness of Landsat-derived variables related to energy balance to estimate burn severity
with a similar accuracy to other well-established satellite-based methods, with the added advantage of
providing a better understanding of fire-induced changes in energy balance. We analyzed the post-fire
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temporal changes in energy fluxes by means of three variables—ET, LST and LSA—within the area
affected by a mega-fire in Mediterranean forests, contributing to the evaluation of their important
ecological consequences. Although the relationship between these variables and burn severity has
been previously recognized, this is the first study that showed their potential as indicators of burn
severity and that used them to estimate accurately burned severity.

Our results revealed that fire has a strong impact on energy balance variables at a regional-local
scale during the first year after fire: ET decreased and LST and LSA increased. We showed that
the fire-induced changes in these variables were related to burn severity. Three burn severity levels
could be distinguished with statistical significance from ET and LST images using uni-temporal and
multi-temporal approaches. Thus, the proven relationship between ET and fire damage may provide
a physical meaning to burn severity in terms of changes in water balance.

We mapped burn severity from each potential indicator using thresholds based on the mean values
for each class. Accuracy of burn severity estimated using ET was the highest from an uni-temporal
perspective, although the dNBR-based burn severity map had the highest accuracy from a multitemporal
one. We conclude that the three Landsat-derived energy balance variables analyzed (especially ET and
LST) can be seen as effective indicators of burn severity in mega-fires in Mediterranean ecosystems. In
addition, these variables in themselves provide important measures of the impact of fire on energy
balance. The proposed method for estimating burn severity may help advance burn severity assessment
and our understanding of burn severity patterns. Finally, it takes advantage of new satellites with
a similar spatial resolution to Landsat, equipped to provide an accurate estimate of daily ET, such
as ECOSTRESS.
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