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ABSTRACT

Background and Objective. Brain-computer interfaces (BCI) based on event-related potentials (ERP) are a
promising technology for alternative and augmented communication in an assistive context. However,
most approaches to date are synchronous, requiring the intervention of a supervisor when the user
wishes to turn his attention away from the BCI system. In order to bring these BCIs into real-life ap-
plications, a robust asynchronous control of the system is required through monitoring of user attention.
Despite the great importance of this limitation, which prevents the deployment of these systems out-
side the laboratory, it is often overlooked in research articles. This study was aimed to propose a novel
method to solve this problem, taking advantage of deep learning for the first time in this context to
overcome the limitations of previous strategies based on hand-crafted features. Methods. The proposed
method, based on EEG-Inception, a novel deep convolutional neural network, divides the problem in 2
stages to achieve the asynchronous control: (i) the model detects user’s control state, and (ii) decodes the
command only if the user is attending to the stimuli. Additionally, we used transfer learning to reduce
the calibration time, even exploring a calibration-less approach. Results. Our method was evaluated with
22 healthy subjects, analyzing the impact of the calibration time and number of stimulation sequences
on the system’s performance. For the control state detection stage, we report average accuracies above
91% using only 1 sequence of stimulation and 30 calibration trials, reaching a maximum of 96.95% with
15 sequences. Moreover, our calibration-less approach also achieved suitable results, with a maximum
accuracy of 89.36%, showing the benefits of transfer learning. As for the overall asynchronous system,
which includes both stages, the maximum information transfer rate was 35.54 bpm, a suitable value for
high-speed communication. Conclusions. The proposed strategy achieved higher performance with less
calibration trials and stimulation sequences than former approaches, representing a promising step for-
ward that paves the way for more practical applications of ERP-based spellers.

© 2022 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

1. Introduction

ternal visual stimuli, which generates waveforms that can be de-
tected in the electroencephalography (EEG) [1]. There are many

Brain-computer interfaces (BCI) based on visual event-related
potentials (ERP) are a promising technology for alternative and
augmented communication in an assistive context, directly decod-
ing the user’s brain signals to provide a new channel of commu-
nication for people with severe motor disabilities [1]. These sys-
tems take advantage from the natural response of the brain to ex-

* Corresponding author.

E-mail addresses: eduardo.santamaria@gib.tel.uva.es (E. Santamaria-Vazquez),
victor.martinez@gib.tel.uva.es (V. Martinez-Cagigal), sergio.perez@gib.tel.uva.es (S.
Pérez-Velasco), diego.marcos@gib.tel.uva.es (D. Marcos-Martinez), robhor@tel.uva.es
(R. Hornero).

https://doi.org/10.1016/j.cmpb.2022.106623

stimulation paradigms that elicit ERPs with different characteris-
tics, but the most extended in BCI is the oddball paradigm [2]. In
this paradigm, the subject has to identify and respond to an in-
frequent target stimulus amid different and more frequent stimuli,
triggering an ERP known as P300 for its distinctive positive peak
300 ms after the target stimulus onset [2]. A common implemen-
tation of the oddball paradigm is the ERP-based speller, which dis-
plays on a screen several options or commands that are sequen-
tially highlighted [3]. To select one of the options, the user has to
stare at the desired command, triggering a P300 response when-
ever they perceive the target stimulus [3]. Then, the system de-
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tects these ERPs and decodes the command that the user wanted
to select. Of note, each target is usually highlighted several times
in each trial to increase the robustness of the system due to the
low signal-to-noise ratio (SNR) of the ERPs [3]. Using this strategy,
ERP-based spellers have shown advantages in comparison to other
BCIs for their high accuracy, large number of possible choices and
adaptability to different contexts, allowing to control complex ap-
plications such as web browsers or home automation systems [4].
Moreover, recently developed models based on deep learning have
improved the performance of these systems significantly, showing
very promising results [5,6].

Despite these advances, there is still a major drawback that is
often overlooked: ERP-based spellers are synchronous systems. By
default, it is assumed that the user is always interacting with the
speller (i.e., control state), systematically selecting a command in
each trial [7]. This synchronous behaviour is not suitable for prac-
tical applications, where the user should be able to switch between
different tasks swiftly by simply ignoring the stimuli (i.e., non-
control state) without the intervention of a supervisor [7]. In fact,
for ERP-based spellers to be successful in real-world environments,
a robust asynchronous control is a key requirement. An illustra-
tive example would be a system for wheelchair control, where the
user will only interact with the system when he wants to move.
In this context, an undesired selection (e.g., move forward, move
back, etc) is not acceptable. Unfortunately, this issue is still far
from being fully resolved, and the dynamic detection of the user’s
control state over the system through monitoring of user attention
has proven to be a challenge as hard as command decoding [7].

The ideal solution to this problem is the dynamic detection
of the user’s control state for each trial to turn the inherently
synchronous behaviour of ERP-based spellers into asynchronous,
avoiding undesired selections when the user is not interacting with
the system [8]. In recent years, several studies addressed this lim-
itation. Table 1 summarizes the key points of these studies, which
followed 2 main strategies. The most extended approach is to de-
fine a threshold on the output score of the command decoding
algorithm [7-13]. These methods assume that the command se-
lection has low confidence (i.e., score below the defined thresh-
old) whenever the user is not attending the stimuli, allowing the
system to ignore the selection. Nevertheless, these approaches are
greatly affected by non-stationary properties of the EEG over time
that modify the probability distribution of the classifier scores for
ERP detection [1]. Even slight differences in amplitude and la-
tency of ERPs or impedance and position of sensors can invali-
date the threshold. In our own experience, the performance of this
approach is reduced drastically in short periods of time and re-
quires frequent recalibration, making them unpractical [9,13]. More
advanced techniques used specific neural activity associated with
the operation of ERP-based spellers [14-17]. These studies showed
that there are measurable patterns in the EEG that can be detected
only when the user is interacting with the system, allowing to dis-
criminate the control state using features based on fast Fourier
transform (FFT), canonical correlation analysis (CCA), power spec-
tral density (PSD) and sample entropy (SampEn). In general, these
methods showed greater robustness and performance than thresh-
olds [15]. However, the design of hand-crafted features to discrim-
inate the user’s control state in ERP-based spellers is complex, es-
pecially taking into account the effect of inter-subject and inter-
session variability. Therefore, the probability of loosing discrimina-
tive information in this process is high, often resulting in a subop-
timal feature set.

In this context, novel approaches for control state detection
could help to overcome current limitations. Particularly, deep-
learning models showed excellent results in other BCI areas, such
as ERP, SMR and SSVEP classification, for their ability to extract
complex features from raw signals [18]. In fact, these methods not
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only increase the classification accuracy in these tasks, but also can
take advantage from cross-subject transfer learning to reduce the
calibration time [6]. Thus, deep-learning approaches have great po-
tential to improve the control state detection stage. Nonetheless,
to the best of our knowledge, deep-learning models have not been
explored for this purpose yet.

The main goal of this study is to design, develop and vali-
date a novel method to achieve an accurate asynchronous control
of ERP-based spellers by means of deep learning. Concretely, the
proposed method is based on EEG-Inception, a novel deep convo-
lutional neural network (CNN) specifically designed for EEG pro-
cessing [6]. To this end, we divide the problem in two stages:
control state detection and command decoding. Each stage uses a
specialized model, allowing to detect the user’s control state in-
dependently of the command decoding task. This approach has
been validated in an experiment that involved 22 healthy sub-
jects, the largest sample among related studies, assuring the gen-
eralization of our results. In order to promote future research in
the field, the dataset, along with useful code to replicate the re-
sults presented in this paper, has been made publicly available at
https://www.kaggle.com/esantamaria/asynchronous-erpbased-bci.

2. Methods
2.1. Subjects and signals

Twenty-two healthy subjects (age: 24.7+4.3 years; 15 males)
participated in the experiments. All participants had normal or
corrected-to-normal vision. The experimental protocol was ap-
proved by the local ethics committee and all participants gave their
informed consent.

Signals were recorded using a g.USBampg (g.tec medical engi-
neering, Austria) with a sample frequency of 256 Hz and using 8
active electrodes in positions Fz, Cz, Pz, P3, P4, PO7, P08, Oz ac-
cording to the international 10-10 system. The ground and refer-
ence were placed at FPz and the earlobe, respectively. This mon-
tage was proposed by Krusienski et al. [19] for ERP detection and is
commonly used for ERP-based spellers. A novel python-based BCI
platform, called Medusa, was used to record the signals and dis-
play the stimulation paradigm [20].

2.2. Experimental setup

Participants were sat on a comfortable chair in front of 2
screens keeping a distance of 50 cm, as displayed in Fig. 1a.
The screen on the right showed the BCI application, whereas the
screen on the left displayed a web browser. Accordingly, the exper-
iment comprised 2 different procedures: the control task and the
non-control task. In the control task, participants were asked to
make selections with an ERP-based speller using the row-column
paradigm (RCP) [3]. In this paradigm, commands are displayed in
a matrix, whose rows and columns are highlighted sequentially in
random order. When each row and column is highlighted once, the
algorithm completes a sequence. Thus, participants had to stare at
the desired command, which was indicated by the supervisor. Of
note, participants were instructed to mentally count the stimuli
on the target to maintain the concentration [19]. For this task, we
used the 6 x 6 matrix displayed in Fig. 1a, with an inter-stimulus
interval (ISI) of 100 ms and a stimulus duration (SD) of 75 ms. The
target commands were selected randomly. In the non-control task,
participants had to use the web browser at their will to read a
document or watch a video while ignoring the stimuli on the right
screen, simulating the real use of the system for assistive applica-
tions.

The experiment flow is described in Fig. 1b. The experiment
comprised 2 sessions of 10 runs (i.e., 5 control and 5 non-control),
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Table 1

Summary of former asynchronous ERP-based spellers.
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Study

Paradigm  Strategy

Description of the
method for control
state detection

Zhang et al. 2008 [7]

RSVP Analysis of
output

scores for

ROC threshold using
SVM scores for ERP
detection

Aloise et al. 2011 [8] RCP

Martinez-Cagigal et al. 2017 [9] RCP

He et al. 2017 [11] RCP

Tang et al. 2018 [10] RCP

Aydin et al. 2018 [12] RBP

Martinez-Cagigal et al. 2019 [13] RCP

Pinegger et al. 2015 [14] RCP

Martinez-Cagigal et al. 2019 [16] RCP

Santamaria-Vazquez et al. 2019 [15] RCP

Gong et al. 2020 [17] RCP

ERP
detection

ROC threshold using
LDA scores for ERP
detection

ROC threshold using
LDA scores for ERP
detection
Classification of SVM
scores for ERP
detection using an
additional SVM

ROC threshold using
LDA scores for ERP
detection

ROC threshold using
classifier labels for ERP
detection

ROC threshold using
LDA scores for ERP
detection

Threshold using FFT
features combined
with ROC threshold
using LDA scores
SampEn features and
LDA classification
PSD and CCA features
and LDA classification
FFT features and LDA
classification

Hand-
crafted
features

RSVP: rapid serial visualization paradigm; RCP: row-column paradigm; RBP: region-based
paradigm; ROC: receiver operating characteristic; SVM: support vector machine; LDA: linear dis-
criminant analysis; ERP: event-related potentials; SSVEP: steady-state visual evoked potentials;
SMR: sensorimotor rhythms; FFT: fast Fourier transform; SampEn: sample entropy; PSD: power
spectral density; CCA: canonical correlation analysis.

Control

Non-control / \
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Fig. 1. Experimental setup. (a) Schematic representation of the subject and both screens. The screen on the left displayed the browser that was used during the non-control
task, whereas the speller was showed on the right screen. Although the paradigm was active during both tasks, subjects only had to attend to the stimuli during the control
task. (b) Overview of the experiment, which comprised 2 sessions of 10 runs, 6 trials of 15 sequences each. Both tasks were intercalated to avoid excessive fatigue of the

subject.

which had 6 trials of 15 sequences each. Noteworthy, the tasks
were intercalated in order to avoid excessive fatigue. Therefore, the
database was composed by 60 control trials and 60 non-control tri-
als for each subject.

2.3. Proposed method for control state detection

In this study, EEG-Inception was used to detect the user’s con-
trol state and decode the commands in the proposed BCI. This
CNN, specifically designed for EEG processing, was presented in
our previous work [6], showing excellent results for synchronous

ERP-based spellers. Nevertheless, to the best of our knowledge,
neither EEG-Inception nor any other deep-learning model has been
used to discriminate the user’s control state in ERP-based spellers
yet.

The architecture of EEG-Inception, which is shown in Fig. 2, is
composed by 2 Inception modules and an output block. The first
Inception module includes 3 branches that perform 2D convolu-
tions in the temporal axis (i.e., EEG samples) followed by depth-
wise convolutions in the spatial axis (i.e, EEG channels). Each
branch has filters with different receptive fields (i.e., kernel sizes)
to process the signal in different temporal scales. The second In-



E. Santamaria-Vdzquez, V. Martinez-Cagigal, S. Pérez-Velasco et al.

Inception module 1

Computer Methods and Programs in Biomedicine 215 (2022) 106623

Inception module 2 Output module

Average
: pooling
—_—

Depthwise
. “conv
 p—

_——

Average
pooling

Average
pooling

Average
pooling

.

Conv20
M

Fig. 2. Schematic representation of EEG-Inception. All convolutional layers (i.e., Conv2D and Depthwise convolutions) include batch normalization, ELU activation and

dropout.

ception module only includes temporal convolutions, extracting
features in the same temporal scales but taking into account the
available spatial information. Finally, the output block synthesizes
the information extracted by the previous modules in few high-
level features that are classified with a softmax output, following a
bottleneck structure specifically designed to avoid overfitting. Ad-
ditionally, average pooling, batch normalization, exponential linear
unit (ELU) activations and dropout normalization were used to im-
prove the performance of the model [6]. Please refer to the original
study for additional information and an open source implementa-
tion [6].

In contrast to preceding deep-learning models for EEG process-
ing, which implemented single-scale approaches, EEG-Inception
process the input signal in multiple temporal scales, increasing its
adaptability to different tasks [6]. Thus, we hypothesized that this
architecture could be applied to provide a robust asynchronous
control of ERP-based spellers, targeting different patterns associ-
ated with the operation of ERP-based spellers, such as steady-
state visual evoked potentials (SSVEPs) provoked by stimuli at con-
stant rates [14], or measurable differences in the EEG complex-
ity, especially in the prefrontal cortex, related to the concentration
state of the user [16]. To this end, the signal processing pipeline
must be adapted to facilitate the integration of EEG-Inception for
this task. As exposed in the introduction, previous approaches
based on hand-crafted features [14-17] used 2 separated process-
ing pipelines with different preprocessing, feature extraction and
classification methods: one to detect the control state and the
other to decode commands. This implies duplicating the comput-
ing cost and increasing the complexity of the system, which could
be a limitation in online experiments, especially for BCIs imple-
mented in portable devices (e.g., smartphones and tablets) [13].
In order to avoid this problem, our method uses the same obser-
vations for both classification tasks, using the same preprocessing

and signal conditioning. Then, 2 different EEG-Inception instances
are used for each of the 2 classification tasks. The complete pro-
cessing pipeline has 4 stages:

2.3.1. Preprocessing.

In this stage, raw EEG is preprocessed to increase the SNR of the
target signals. First, the signal is filtered between 0.5 and 45 Hz
with a finite impulse response filter and resampled to 128 Hz,
keeping the most discriminative information for control state and
ERP classification [15]. Then, common average reference (CAR) is
used to remove noisy artifacts [21].

2.3.2. Feature extraction.

Deep CNNs extract features from raw EEG automatically thanks
to their multi-layer design, learning hierarchical representations of
the data at different levels of abstraction [22]. Nevertheless, the in-
put signal must be prepared to make observations with the shape
expected by the model. To this end, we extracted the epochs of sig-
nal for each stimulus from 0 to 1000 ms after the onset. Addition-
ally, z-score normalization was applied taking a baseline window
of 250 ms before the stimulus onset. At the end of this process,
each observation had 128 samples x 8 channels, which are the in-
put dimensions required by EEG-Inception [6]. Taking into account
that the experiment comprised 2 sessions per subject, 10 runs per
session, 6 trials per run, 15 sequences per trial and 12 stimuli per
sequence (6 rows and 6 columns), the total number of EEG epochs
for each subject was 21,600. This makes a total of 475,200 obser-
vations for the 22 subjects.

2.3.3. Control state detection.

This stage dynamically detects the user’s control state to turn
the speller into an asynchronous system. The workflow in this
stage is as follows: (i) the epochs of each trial are fed to the model
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trained to discriminate between control and non-control states; (ii)
the model outputs one score between 0 and 1 per observation,
representing the probability of each state; (iii) the scores of the
trial are averaged in a post-processing stage that determines non-
control state if the probability is less than 0.5 and control state
otherwise. If non-control state is determined, the system starts a
new trial without selecting a command or giving feedback to the
user. On the other hand, if control state is determined, the system
continues to the next stage to decode the command. Note that the
algorithm assumes that all the observations of each trial have the
same control state. Therefore, the user should not switch tasks be-
fore the trial ends.

2.3.4. Command decoding.

Once the system has determined the control state for a trial,
this stage decodes the command the user wanted to select. The
strategy is similar to the control state detection stage. The obser-
vations are fed into the model trained to discriminate between tar-
get, which are characterized by an ERP with the P300 response,
and non-target epochs. Therefore, the output is again a score be-
tween O and 1 representing the probability of each case [6]. In this
case, the output scores are associated with the row and column
that were highlighted and thus, they are averaged according to this
association. The command corresponding to the row and column
with maximum score is then selected by the system, which gives
the proper feedback to the user. After this stage, a new trial begins
and the cycle is repeated.

2.4. Training/testing strategy and model validation

In order to train and validate our approach, we simulated the
real use of the speller using leave-one-subject-out (LOSO) cross
validation combined with cross-subject transfer learning and fine-
tuning [23,24]. For each iteration of the LOSO algorithm, the mod-
els for control state detection and command decoding were initial-
ized with the training subjects. This means that the control state
detection model was initialized with 453,600 observations (21 sub-
jects x 120 trials x 180 observations/trial), whereas the command
decoding model was initialized with 226,800 observations (21 sub-
jects x 60 control trials x 180 observations/trial). Then, the models
were fine-tuned using N = {0, 5, 10, 20, 30} control trials from the
test subject for the command decoding model, and 2N, N control
and N non-control, for the control state detection model. The fine-
tuning trials were randomly selected and were not used for test-
ing. Therefore, the number of test trials for each N was the total
number of trials minus the number of fine-tuning trials. This pro-
cedure was repeated 100 times for each subject, averaging results
to achieve a robust validation. This analysis allows to study the de-
pendence of the system’s performance on the number of training
trials, where N =0 simulates a plug-and-play device and N = 30
requires a calibration session of approximately 30 minutes, includ-
ing control and non-control trials.

Regarding the training process, both models were trained sepa-
rately with different labels. In the case of the control state detec-
tion model, EEG epochs were labelled according to the control and
non-control classes. Specifically, the epochs where the user was
attending to the stimuli were labelled as control (positive class),
whereas the epochs where the user was using the web browser
were labelled as non-control (negative class), resulting in a bal-
anced dataset. For the command decoding model, only control tri-
als were used for training. In this case, target epochs were labelled
as P300 (positive class), and the epochs corresponding to non-
target commands were labelled as non-P300 (negative class). Mod-
els were trained using the same configuration: Adam optimizer
with default hyperparameters 8; = 0.9 and B, = 0.999; categori-
cal cross-entropy loss; batch size of 1024; and a maximum of 500
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training iterations over the entire dataset, applying early stopping
when the validation loss did not improve for 10 consecutive itera-
tions and restoring the weights that minimized this metric [6].

The proposed training/testing approach has several advantages.
For instance, it allows to have subject specific models with very
few training trials by exploiting cross-subject transfer learning [6].
Ideally, in the initialization phase, the model will learn common
features across subjects to detect the target patterns in each case.
Then, in the fine-tuning phase, the model will particularize these
features to the specific characteristics of each subject, resulting in
an improved performance [24]. In fact, this strategy proved to be
more adequate for deep-learning approaches in BCI than the classic
intra-subject or cross-subject training methods, since these models
are able to extract high-level features robust to inter-subject vari-
ability [6]. At the same time, this method allows to take advantage
from all the available signals, improving its scalability for real use,
where data from new subjects could be incorporated to the models
to increase their performance.

3. Results
3.1. Control state detection

Fig. 3 and Table 2 summarize the results of the cross valida-
tion experiment for control state detection, showing the normal-
ized confusion matrices and accuracy averaged across all subjects
broken down by the number of fine-tuning trials and stimulation
sequences. Both analysis give a complete overview of the system’s
performance in this task. Accuracy is the most widely used metric,
accounting for the percentage of trials correctly classified. There-
fore, it allows easy and direct comparison with former works. On
the other hand, confusion matrices provide more complete infor-
mation about the model performance with useful insight on the
distribution of false positives and false negatives that can help to
understand the system dynamics. Additionally, Fig. 4 characterizes
the EEG in time and frequency to analyze differences between cor-
rectly and incorrectly classified trials in the control state detection
task and understand which could be the main factors affecting the
performance of the model.

Overall, the proposed method was able to discriminate the con-
trol state with high accuracy. As expected, a greater number of se-
quences, which implies more observations for each trial, allowed
to increase the confidence of the selection and reduce the im-
pact of outliers, thus increasing the system’s performance. On the
other hand, more stimulation sequences imply to reduce the se-
lection speed of the system. Our approach stands out especially in
this point, reaching accuracies above 91% with only 1 sequence of
stimulation for N = 20 and N = 30, a suitable value for high-speed
communication. The number of fine-tuning trials also proved to be
important to achieve peak performance in exchange for increas-
ing the calibration time. Nevertheless, the proposed approach also
reached suitable accuracies even with none or very few obser-
vations. In fact, for N =0, which simulates a plug-and-play de-
vice with no calibration for the test subject, the model already
achieved accuracies near 90%. This proves the efficacy of our train-
ing strategy, which uses cross-subject transfer learning to initial-
ize the model with different subjects. Furthermore, the fine-tuning
process for N > 0 was able to adapt the model to the individual
characteristics of each test subject, increasing the performance of
the method after a short calibration. For instance, the accuracy for
control state detection with N = 30 achieved 91.91% and 96.95% us-
ing 1 and 15 sequences of stimulation, respectively. In this regard,
Fig. 5 shows the training graphs for 1 subject for each N and aver-
aged across the 100 repetitions. As can be seen, the convergence of
the model is more consistent for higher values of N. Nevertheless,
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Fig. 3. Normalized confusion matrices averaged across subjects.
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Table 2

Control state detection accuracy (%).

No. Sequences

N 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15

0 81.4 8523 86.63 86.89 87.01 87.69 8826 8822 8795 8848 89.02 89.05 89.28 89.13 89.36
5 86.11 88.96 89.99 90.62 90.98 91.06 91.29 9145 91.63 91.74 91.89 91.91 9198 92 92.05
10 8833 91.16 9227 9284 9323 9347 93.61 93.82 9405 9414 9423 943 9429 9442  94.48
20 9124 9437 9531 95.76  96.06  96.31 96.45 96.6 96.69 96.83 96.98 97.06 97.07 97.21 97.28
30 9191 94.41 9523 9567 96.02 9633 9653 9653 9652 96.66 96.77 96.76 96.85 96.88  96.95

N: number of fine-tuning trials in control state for each subject. Thus, the total number of calibration trials used to fine-tune the model for this task
was 2N (i.e., N control, N non-control). Test accuracy (%) for the control state detection task averaged over the 22 subjects.

the fine-tuning process is beneficial even with very few training
examples, and helps the model to learn subject-specific features.
Regarding the normalized confusion matrices, Fig. 3 shows that
the percentage of false negatives tend to be higher than the per-
centage of false positives, especially for lower values of N. This
difference can be explained taking into account the workflow of

the system. During control trials, subjects had to stare at the de-
sired command to select it, a task that requires a high level of
concentration and mental effort. Conversely, for non-control tri-
als, subjects had to ignore the stimuli of the RCP while watching
a video or reading a web page. Therefore, we hypothesize that if
the subject loses concentration their EEG would be similar to that
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Fig. 5. Training graphs for one subject averaged across the 100 iterations of the cross-validation algorithm. The convergence of the model is more consistent for higher

values of N.

during the non-control task, confusing the model (false negative).
The opposite is more unlikely because the visual stimulation re-
ceived by the subject provokes specific patterns on the EEG that
are not present in non-control trials, such as ERPs and SSVEPs [15].
This hypothesis is supported by the characterization of the EEG for
control state detection task shown in Fig. 4. As can be seen, the
averaged waveforms associated to the control state were weaker
for misclassified epochs. The amplitude of the ERP was lower and
the shape was less clear in these trials (see green curve in time
graphs). Similarly, the SSVEP was noisy and with significantly less
power too (see the orange curve in time graphs and the peaks at
5.71 Hz and harmonic at 11.42 Hz in frequency graphs). In this re-
gard, the frequency of the SSVEP corresponds to the stimulation
rate in our experiment, which was 1 / (ISI + SD) = 1 / (0.1 + 0.075)
= 5.71 Hz. These differences may be caused by fatigue and mo-
mentary loss of concentration during the control task due to the

strong visual stimulation, which has proven to be an issue in pre-
vious synchronous ERP-based spellers [25].

3.2. Overall system

Table 3 shows results including both stages for control state de-
tection and command decoding, considering that both classifica-
tions must be correct at the same time. Therefore, if one stage fails,
it is considered as a mistake. As before, the accuracy is averaged
across subjects and broken down by the number of fine-tuning tri-
als and stimulation sequences. Additionally, Fig. 6 shows the theo-
retical information transfer rate (ITR) reached by the asynchronous
speller in bits per minute (bpm). This metric takes into account the
speed and the accuracy of the system, allowing a direct compari-
son between different BCIs [26]. The ITR was calculated with the
following equation [26]:

ITR = <log2 N; 4+ Plog, P+ (1 — P) log, ﬁ)S (1)
T
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Table 3

Overall system accuracy, including control state detection and command decoding. (%).
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No. Sequences

N

1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
0 52.05 6049 66.7 70.00 7345 7549 7777 7943 79.62 8095 8220 8326 8394 8424 85.38
5 59.70 7030 76.05 80.77 8348  85.11 86.47 87.76  88.6 89.22  89.72 90.09 90.33 90.68  90.99
10 6263 7373 8034 84,55 87.09 88.75 90.07 91.27 9199 9244 9278 93.11 9320 93,58 93.79
20 6490 7734 8398 8820 90.73 9232 9332 9442 9498 9549 9582 96.21 96.20  96.51 96.68
30 6649 7820 8433 8869 9130 9296 93.71 94.61 9495 9534 9570 96.01 96.09 9630  96.47

N: number of fine-tuning trials in control state for each subject. Thus, the total number of calibration trials used to fine-tune the model for control
state detection was 2N (i.e., N control, N non-control), whereas the model for command decoding only used N control trials. Overall test accuracy (%)
for the control state detection and command decoding tasks averaged over the 22 subjects. Noteworthy, one trial is considered correct only if both

conditions were correctly classified at the same time.
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Fig. 6. ITR: information transfer rate (bpm); N: number of fine-tuning trials in con-
trol state for each subject. Average ITR including control state detection and com-
mand decoding stages and only considering control trials.

where N; is the total number of targets, P is the accuracy, and S is
the number of selections per minute. It should be noted that the
ITR was calculated only for control trials but considering the over-
all accuracy, including control state detection and command de-
coding stages.

As shown in Table 3, the system also achieved high overall
performance. For instance, a test accuracy of 91.3% with N =30
and 5 stimulation sequences could be a suitable value for prac-
tical applications, taking into account that the system would be
fully asynchronous. Moreover, as can be seen in Fig. 6, the system
reached a maximum average ITR of 35.54 bpm for N =30 and 1
sequence, with a peak ITR of 88.60 bpm for one subject. Regarding
our calibration-less approach (i.e., N =0), the maximum accuracy
was 85.38%, and the maximum ITR 13.57 bpm.

4. Discussion
4.1. Comparative analysis

The proposed method achieved promising results in the control
state detection and command decoding tasks. Moreover, this was
achieved with the largest number of subjects among related stud-
ies, which assures the generalization of our results. Nevertheless, a
direct comparison with previous studies [7-17] is difficult in many
cases due to important differences in experimental setups, analy-
ses and number of subjects. For these reasons, we only compare
results with studies that used the RCP as stimulation paradigm.
Statistical differences were evaluated with Mann-Whitney U-test
when results broken down by subject were available, correcting
the False Discovery Rate for multiple comparisons with Benjamini-
Hochberg approach.

The performance for the control state detection task was sig-
nificantly higher than preceding approaches based on hand-crafted
features. Pinegger et al. [14] reached 79.5% accuracy with 15 se-
quences of stimulation using FFT features, compared to 96.95% in
this work (p-value < 0.01). Similarly, the proposed method also

outperformed approaches based on PSD, CCA and SampEn features
with paired number of sequences and N =30 (p-value < 0.05)
[15,16]. Interestingly, these differences are maximized for few stim-
ulation sequences. In fact, taking results from 1 and 5 stimula-
tion sequences, the average accuracy was improved in this work
by 10.41% and 19.60% with respect to these 2 studies. Therefore,
the proposed strategy is a significant step forward towards practi-
cal asynchronous ERP-based spellers that require high-speed com-
munication.

With respect to the overall system results, there are also some
points that are worth discussing. The analyzed studies reached
lower performance in terms of overall accuracy and ITR, demon-
strating the superiority of our proposal. In this work, the maximum
average ITR was 35.54 bpm. In comparison, Zhang et al. [7], Aloise
et al. [8] and Santamaria-Vazquez et al. [15] reported maximum
ITRs of 15.0 bpm, 11.2 bpm (p-value < 0.01) and 12.3 bpm (p-value
< 0.01), respectively. On the other hand, Tang et al. [10] reported a
maximum average accuracy of 90.30% compared to 96.47% in this
study.

Regarding the calibration time, this is the first work that ex-
plored an asynchronous ERP-based speller without calibration for
the test subject (i.e., N =0). This approach achieved satisfactory
performance for the control state detection and command decod-
ing tasks, with a maximum overall accuracy of 85.38% and maxi-
mum ITR of 13.57 bpm. These results are above the minimum per-
formance of 70% required for successful control of BCIs [27]. In
our opinion, the reduction, and even suppression, of the calibra-
tion stage is key for the development of asynchronous ERP-based
spellers outside the laboratory, increasing their usability for prac-
tical applications. Therefore, we consider this point as one of the
strengths of our study, paving the way for future efforts in this
line.

4.2. Contributions

This study puts forward a novel and more practical signal pro-
cessing framework to achieve a robust asynchronous control of
ERP-based spellers taking advantage of deep-learning to avoid the
use of thresholds or hand-crafted features. The proposed method
not only reached higher performance than the approaches pre-
sented in related studies, but also solved some of the main draw-
backs that limited the use of these systems for practical appli-
cations. Firstly, the control state detection and command decod-
ing stages are independent, solving the instability and calibra-
tion complexity of coupled methods based on thresholds, which
are vulnerable to the dynamic properties of the EEG over time
and need to be recalibrated several times per session to main-
tain peak accuracy, especially with challenging subjects [7-13].
Secondly, the automatic extraction of optimal features using EEG-
Inception solves the limitation of methods based on FFT, PSD, CCA
and SampEn, whose accuracy is drastically reduced for few stimu-
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lation sequences, where our method showed clear advantages [14-
17]. Finally, it should be noted that none of the related works ex-
plored the benefits of cross-subject transfer learning or fine tun-
ing so far. Therefore, our proposal is the first to take advantage of
these methods to reduce the number of calibration trials in asyn-
chronous ERP-based spellers, even simulating a plug-and-play de-
vice with fair results. Ideally, this training strategy could rise the
accuracy of calibration-less approaches to the level of fine-tuned
models, given the ability of deep neural networks to make the
most of large amounts of data to reach robust classification [22].

4.3. Limitations and future work

Despite the successful results achieved in this work, several
limitations must be considered. For instance, we did not test the
designed speller with motor disabled subjects, the target users of
these systems [26]. In this regard, numerous studies proved that
field experiments outside the laboratory with real applications and
users could affect the final performance of the system [9,13]. For
this reason, additional experiments are needed to study the ro-
bustness of EEG-Inception for control state detection in different
scenarios and databases. Moreover, our framework has been tested
with the RCP. However, more engaging stimulation paradigms, such
as the Face Speller [28] or motion-VEP-based systems [29], can
help to decrease the false negative rate due to fatigue or loss of
concentration. As the confusion matrices showed, this effect had
an important impact on our experiments. Therefore, the use of
these stimulation paradigms, rather than the RCP, could help to in-
crease the performance by improving the subject’s attention level.
In fact, to the best of our knowledge, the asynchronous control of
these BCIs has not been tested yet, representing a promising future
research line.

5. Conclusion

In this study, we explored a novel method to achieve effective
asynchronous control of ERP-based spellers using deep learning.
The proposed speller takes advantage of EEG-Inception, a novel
CNN specifically designed for EEG processing and ERP detection,
to reach significantly higher performance than previous works. We
reported accuracies above 91% for the control state detection with
1 sequence of stimulation, a suitable value for high-speed commu-
nication with asynchronous ERP-based spellers, and a maximum
ITR of 35.54 bpm for the overall asynchronous system. Moreover,
we used a novel training strategy based on cross-subject transfer
learning and fine tuning to reduce the calibration time in compari-
son to previous studies, even exploring a calibration-less approach.
Additionally, the proposed signal processing framework simplifies
the design of the system and solves the main limitations of former
approaches, increasing its feasibility for practical applications.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgements

This research has been developed under the grants PID2020-
115468RB-I00 and RTC2019-007350-1 funded by 'Minis-
terio de Ciencia e Innovacién/Agencia Estatal de Investi-
gacion/10.13039/501100011033/" and European Regional Devel-
opment Fund (ERDF) A way of making Europe; under the R+D+i
project 'Andlisis y correlacién entre la epigenética y la actividad
cerebral para evaluar el riesgo de migrafia crénica y episédica en

Computer Methods and Programs in Biomedicine 215 (2022) 106623

mujeres’ (‘Cooperation Programme Interreg V-A Spain-Portugal
POCTEP 2014-2020’) funded by ‘European Commission’ and ERDF;
and by ‘Centro de Investigaciéon Biomédica en Red en Bioingenieria,
Biomateriales y Nanomedicina (CIBER-BBN)' through ‘Instituto de
Salud Carlos III' co-funded with ERDF funds. E. Santamaria-
Vazquez, S. Pérez-Velasco and D. Marcos-Martinez were in a
receipt of a grant from the ‘Consejeria de Educacién de la Junta de
Castilla y Leén’, and the European Social Fund.

References

[1] J. Wolpaw, E.W. Wolpaw, Brain-computer interfaces: Principles and practice,

OUP USA, 2012.

J. Polich, Updating P300: an integrative theory of P3a and P3b, Clinical Neuro-

physiology 118 (10) (2007) 2128-2148.

L.A. Farwell, E. Donchin, Talking off the top of your head: toward a men-

tal prosthesis utilizing event-related brain potentials, Electroencephalogr Clin

Neurophysiol 70 (6) (1988) 510-523.

L.E. Nicolas-Alonso, ]. Gomez-Gil, Brain computer interfaces, a review, Sensors

12 (2) (2012) 1211-1279.

[5] VJ. Lawhern, AJ. Solon, N.R. Waytowich, S.M. Gordon, C.P. Hung, B.J. Lance,
EEGNet: A compact convolutional neural network for EEG-based brain-com-
puter interfaces, ] Neural Eng 15 (056013) (2018) 1-17.

[6] E. Santamaria-Vazquez, V. Martinez-Cagigal, F. Vaquerizo-Villar, R. Hornero,

EEG-Inception: A Novel Deep convolutional neural network for assistive ER-

P-based brain-Computer interfaces, IEEE Trans. Neural Syst. Rehabil. Eng. 28

(12) (2020) 2773-2782.

H. Zhang, C. Guan, C. Wang, Asynchronous P300-based brain-computer inter-

faces: a computational approach with statistical models, IEEE Trans Biomed

Eng 55 (6) (2008). 1754-63

F. Aloise, F. Schettini, P. Arico, F. Leotta, S. Salinari, D. Mattia, F. Babiloni,

F. Cincotti, P300-Based brain-computer interface for environmental control: an

asynchronous approach, ] Neural Eng 8 (2) (2011).

[9] V. Martinez-Cagigal, J. Gomez-Pilar, D. Alvarez, R. Hornero, An asynchronous
P300-Based brain-Computer interface web browser for severely disabled peo-
ple, IEEE Trans. Neural Syst. Rehabil. Eng. 25 (8) (2017) 1332-1342.

[10] J. Tang, Y. Liu, ]. Jiang, Y. Yu, D. Hu, Z. Zhou, Toward brain-Actuated mobile
platform, Int ] Hum Comput Interact 30 (10) (2019) 846-858.

[11] S. He, R. Zhang, Q. Wang, Y. Chen, T. Yang, Z. Feng, Y. Zhang, M. Shao, Y. Li,
A P300-Based threshold-Free brain switch and its application in wheelchair
control, IEEE Trans. Neural Syst. Rehabil. Eng. 25 (6) (2017) 715-725.

[12] E.A. Aydin, O.F. Bay, I. Guler, P300-Based Asynchronous brain computer inter-
face for environmental control system, IEEE ] Biomed Health Inform 22 (3)
(2018) 653-663.

[13] V. Martinez-Cagigal, E. Santamaria-Vazquez, ]. Gomez-Pilar, R. Hornero, To-
wards an accessible use of smartphone-based social networks through brain-
computer interfaces, Expert Syst Appl 120 (2019) 155-166.

[14] A. Pinegger, ]. Faller, S. Halder, S.C. Wriessnegger, G.R. Miiller-Putz, Control or
non-control state: that is the question! an asynchronous visual P300-based BCI
approach, ] Neural Eng 12 (1) (2015) 014001.

[15] E. Santamaria-Vdzquez, V. Martinez-Cagigal, ]. Gomez-Pilar, R. Hornero, Asyn-
chronous control of ERP-Based BCI spellers using steady-State visual evoked
potentials elicited by peripheral stimuli, [EEE Trans. Neural Syst. Rehabil. Eng.
27 (9) (2019) 1883-1892.

[16] V. Martinez-Cagigal, E. Santamaria-Vazquez, R. Hornero, Asynchronous control
of P300-Based brain-Computer interfaces using sample entropy, Entropy 21 (3)
(2019) 230.

[17] M. Gong, G. Xu, M. Li, F. Lin, An idle state-detecting method based on tran-
sient visual evoked potentials for an asynchronous ERP-based BCI, ]J. Neurosci.
Methods 337 (March) (2020) 108670.

[18] A. Craik, Y. He, J.L. Contreras-Vidal, Deep learning for electroencephalogram
(EEG) classification tasks: a review, ] Neural Eng 16 (3) (2019).

[19] DJ. Krusienski, EW. Sellers, D.J. McFarland, T.M. Vaughan, J.R. Wolpaw, To-
ward enhanced P300 speller performance, J. Neurosci. Methods 167 (1) (2008)
15-21.

[20] E. Santamaria-Vazquez, V. Martinez-Cagigal, R. Hornero, MEDUSA: Una nueva
herramienta para el desarrollo de sistemas brain-Computer interface basada en
python, Cognitive Area Networks 5 (1) (2018) 87-92.

[21] D.J. McFarland, L.M. McCane, S.V. David, J.R. Wolpaw, Spatial filter selection
for EEG-based communication, Electroencephalogr Clin Neurophysiol 103 (3)
(1997) 386-394.

[22] Y. Lecun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (7553) (2015)
436-444.

[23] LH. Witten, E. Frank, M.A. Hall, Data mining: practical machine learning tools
and techniques, Acm Sigmod Record, 2006.

[24] 1. Goodfellow, Y. Bengio, A. Courville, Deep learning, MIT Press, 2016.

[25] M. Xu, X. Xiao, Y. Wang, H. Qi, T.P. Jung, D. Ming, A brain-Computer interface
based on miniature-Event-Related potentials induced by very small lateral vi-
sual stimuli, IEEE Trans. Biomed. Eng. 65 (5) (2018) 1166-1175.

[26] J.R. Wolpaw, N. Birbaumer, D.J. McFarland, G. Pfurtscheller, TM. Vaughan, Brain
computer interfaces for communication and control, Clinical neurophysiology
4 (113) (2002) 767-791.

2

3

[4

[7

(8


http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0001
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0001
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0001
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0002
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0002
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0003
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0003
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0003
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0004
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0004
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0004
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0005
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0005
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0005
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0005
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0005
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0005
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0005
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0006
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0006
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0006
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0006
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0006
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0007
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0007
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0007
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0007
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0007
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0008
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0008
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0008
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0008
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0008
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0008
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0008
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0008
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0008
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0009
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0009
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0009
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0009
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0009
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0010
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0010
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0010
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0010
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0010
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0010
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0010
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0011
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0011
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0011
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0011
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0011
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0011
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0011
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0011
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0011
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0011
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0012
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0012
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0012
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0012
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0013
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0013
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0013
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0013
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0013
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0014
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0014
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0014
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0014
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0014
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0014
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0015
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0015
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0015
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0015
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0015
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0016
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0016
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0016
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0016
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0017
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0017
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0017
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0017
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0017
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0018
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0018
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0018
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0018
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0019
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0019
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0019
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0019
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0019
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0019
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0020
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0020
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0020
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0020
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0021
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0021
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0021
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0021
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0021
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0022
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0022
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0022
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0022
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0023
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0023
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0023
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0023
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0024
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0024
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0024
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0024
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0025
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0025
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0025
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0025
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0025
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0025
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0025
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0026
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0026
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0026
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0026
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0026
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0026

E. Santamaria-Vdzquez, V. Martinez-Cagigal, S. Pérez-Velasco et al.

[27] A. Kiibler, N. Neumann, B. Wilhelm, T. Hinterberger, N. Birbaumer, Pre-
dictability of brain-computer communication, ] Psychophysiol 18 (2/3) (2004)
121-129.

[28] J. Jin, B.Z. Allison, Y. Zhang, X. Wang, A. Cichocki, An ERP-based BCI using an
oddball paradigm with different faces and reduced errors in critical functions,
Int ] Neural Syst 24 (08) (2014) 1450027.

10

Computer Methods and Programs in Biomedicine 215 (2022) 106623

[29] S. Schaeff, M.S. Treder, B. Venthur, B. Blankertz, Exploring motion VEPs for
gaze-independent communication, J Neural Eng 9 (4) (2012), doi:10.1088/
1741-2560/9/4/045006.


http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0027
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0027
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0027
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0027
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0027
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0027
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0028
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0028
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0028
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0028
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0028
http://refhub.elsevier.com/S0169-2607(22)00008-6/sbref0028
https://doi.org/10.1088/1741-2560/9/4/045006

	Robust asynchronous control of ERP-Based brain-Computer interfaces using deep learning
	1 Introduction
	2 Methods
	2.1 Subjects and signals
	2.2 Experimental setup
	2.3 Proposed method for control state detection
	2.3.1 Preprocessing.
	2.3.2 Feature extraction.
	2.3.3 Control state detection.
	2.3.4 Command decoding.

	2.4 Training/testing strategy and model validation

	3 Results
	3.1 Control state detection
	3.2 Overall system

	4 Discussion
	4.1 Comparative analysis
	4.2 Contributions
	4.3 Limitations and future work

	5 Conclusion
	Declaration of Competing Interest
	Acknowledgements
	References


