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a b s t r a c t 

Background and Objective . Brain-computer interfaces (BCI) based on event-related potentials (ERP) are a 

promising technology for alternative and augmented communication in an assistive context. However, 

most approaches to date are synchronous, requiring the intervention of a supervisor when the user 

wishes to turn his attention away from the BCI system. In order to bring these BCIs into real-life ap- 

plications, a robust asynchronous control of the system is required through monitoring of user attention. 

Despite the great importance of this limitation, which prevents the deployment of these systems out- 

side the laboratory, it is often overlooked in research articles. This study was aimed to propose a novel 

method to solve this problem, taking advantage of deep learning for the first time in this context to 

overcome the limitations of previous strategies based on hand-crafted features. Methods . The proposed 

method, based on EEG-Inception, a novel deep convolutional neural network, divides the problem in 2 

stages to achieve the asynchronous control: ( i ) the model detects user’s control state, and ( ii ) decodes the 

command only if the user is attending to the stimuli. Additionally, we used transfer learning to reduce 

the calibration time, even exploring a calibration-less approach. Results . Our method was evaluated with 

22 healthy subjects, analyzing the impact of the calibration time and number of stimulation sequences 

on the system’s performance. For the control state detection stage, we report average accuracies above 

91% using only 1 sequence of stimulation and 30 calibration trials, reaching a maximum of 96.95% with 

15 sequences. Moreover, our calibration-less approach also achieved suitable results, with a maximum 

accuracy of 89.36%, showing the benefits of transfer learning. As for the overall asynchronous system, 

which includes both stages, the maximum information transfer rate was 35.54 bpm, a suitable value for 

high-speed communication. Conclusions . The proposed strategy achieved higher performance with less 

calibration trials and stimulation sequences than former approaches, representing a promising step for- 

ward that paves the way for more practical applications of ERP-based spellers. 

© 2022 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Brain-computer interfaces (BCI) based on visual event-related 

otentials (ERP) are a promising technology for alternative and 

ugmented communication in an assistive context, directly decod- 

ng the user’s brain signals to provide a new channel of commu- 

ication for people with severe motor disabilities [1] . These sys- 

ems take advantage from the natural response of the brain to ex- 
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ernal visual stimuli, which generates waveforms that can be de- 

ected in the electroencephalography (EEG) [1] . There are many 

timulation paradigms that elicit ERPs with different characteris- 

ics, but the most extended in BCI is the oddball paradigm [2] . In

his paradigm, the subject has to identify and respond to an in- 

requent target stimulus amid different and more frequent stimuli, 

riggering an ERP known as P300 for its distinctive positive peak 

00 ms after the target stimulus onset [2] . A common implemen- 

ation of the oddball paradigm is the ERP-based speller, which dis- 

lays on a screen several options or commands that are sequen- 

ially highlighted [3] . To select one of the options, the user has to 

tare at the desired command, triggering a P300 response when- 

ver they perceive the target stimulus [3] . Then, the system de- 
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ects these ERPs and decodes the command that the user wanted 

o select. Of note, each target is usually highlighted several times 

n each trial to increase the robustness of the system due to the 

ow signal-to-noise ratio (SNR) of the ERPs [3] . Using this strategy, 

RP-based spellers have shown advantages in comparison to other 

CIs for their high accuracy, large number of possible choices and 

daptability to different contexts, allowing to control complex ap- 

lications such as web browsers or home automation systems [4] . 

oreover, recently developed models based on deep learning have 

mproved the performance of these systems significantly, showing 

ery promising results [5,6] . 

Despite these advances, there is still a major drawback that is 

ften overlooked: ERP-based spellers are synchronous systems. By 

efault, it is assumed that the user is always interacting with the 

peller (i.e., control state), systematically selecting a command in 

ach trial [7] . This synchronous behaviour is not suitable for prac- 

ical applications, where the user should be able to switch between 

ifferent tasks swiftly by simply ignoring the stimuli (i.e., non- 

ontrol state) without the intervention of a supervisor [7] . In fact, 

or ERP-based spellers to be successful in real-world environments, 

 robust asynchronous control is a key requirement. An illustra- 

ive example would be a system for wheelchair control, where the 

ser will only interact with the system when he wants to move. 

n this context, an undesired selection (e.g., move forward, move 

ack, etc) is not acceptable. Unfortunately, this issue is still far 

rom being fully resolved, and the dynamic detection of the user’s 

ontrol state over the system through monitoring of user attention 

as proven to be a challenge as hard as command decoding [7] . 

The ideal solution to this problem is the dynamic detection 

f the user’s control state for each trial to turn the inherently 

ynchronous behaviour of ERP-based spellers into asynchronous, 

voiding undesired selections when the user is not interacting with 

he system [8] . In recent years, several studies addressed this lim- 

tation. Table 1 summarizes the key points of these studies, which 

ollowed 2 main strategies. The most extended approach is to de- 

ne a threshold on the output score of the command decoding 

lgorithm [7–13] . These methods assume that the command se- 

ection has low confidence (i.e., score below the defined thresh- 

ld) whenever the user is not attending the stimuli, allowing the 

ystem to ignore the selection. Nevertheless, these approaches are 

reatly affected by non-stationary properties of the EEG over time 

hat modify the probability distribution of the classifier scores for 

RP detection [1] . Even slight differences in amplitude and la- 

ency of ERPs or impedance and position of sensors can invali- 

ate the threshold. In our own experience, the performance of this 

pproach is reduced drastically in short periods of time and re- 

uires frequent recalibration, making them unpractical [9,13] . More 

dvanced techniques used specific neural activity associated with 

he operation of ERP-based spellers [14–17] . These studies showed 

hat there are measurable patterns in the EEG that can be detected 

nly when the user is interacting with the system, allowing to dis- 

riminate the control state using features based on fast Fourier 

ransform (FFT), canonical correlation analysis (CCA), power spec- 

ral density (PSD) and sample entropy (SampEn). In general, these 

ethods showed greater robustness and performance than thresh- 

lds [15] . However, the design of hand-crafted features to discrim- 

nate the user’s control state in ERP-based spellers is complex, es- 

ecially taking into account the effect of inter-subject and inter- 

ession variability. Therefore, the probability of loosing discrimina- 

ive information in this process is high, often resulting in a subop- 

imal feature set. 

In this context, novel approaches for control state detection 

ould help to overcome current limitations. Particularly, deep- 

earning models showed excellent results in other BCI areas, such 

s ERP, SMR and SSVEP classification, for their ability to extract 

omplex features from raw signals [18] . In fact, these methods not 
2 
nly increase the classification accuracy in these tasks, but also can 

ake advantage from cross-subject transfer learning to reduce the 

alibration time [6] . Thus, deep-learning approaches have great po- 

ential to improve the control state detection stage. Nonetheless, 

o the best of our knowledge, deep-learning models have not been 

xplored for this purpose yet. 

The main goal of this study is to design, develop and vali- 

ate a novel method to achieve an accurate asynchronous control 

f ERP-based spellers by means of deep learning. Concretely, the 

roposed method is based on EEG-Inception, a novel deep convo- 

utional neural network (CNN) specifically designed for EEG pro- 

essing [6] . To this end, we divide the problem in two stages: 

ontrol state detection and command decoding. Each stage uses a 

pecialized model, allowing to detect the user’s control state in- 

ependently of the command decoding task. This approach has 

een validated in an experiment that involved 22 healthy sub- 

ects, the largest sample among related studies, assuring the gen- 

ralization of our results. In order to promote future research in 

he field, the dataset, along with useful code to replicate the re- 

ults presented in this paper, has been made publicly available at 

ttps://www.kaggle.com/esantamaria/asynchronous- erpbased- bci . 

. Methods 

.1. Subjects and signals 

Twenty-two healthy subjects (age: 24.7 ±4.3 years; 15 males) 

articipated in the experiments. All participants had normal or 

orrected-to-normal vision. The experimental protocol was ap- 

roved by the local ethics committee and all participants gave their 

nformed consent. 

Signals were recorded using a g.USBampg (g.tec medical engi- 

eering, Austria) with a sample frequency of 256 Hz and using 8 

ctive electrodes in positions Fz, Cz, Pz, P3, P4, PO7, PO8, Oz ac- 

ording to the international 10-10 system. The ground and refer- 

nce were placed at FPz and the earlobe, respectively. This mon- 

age was proposed by Krusienski et al. [19] for ERP detection and is 

ommonly used for ERP-based spellers. A novel python-based BCI 

latform, called Medusa, was used to record the signals and dis- 

lay the stimulation paradigm [20] . 

.2. Experimental setup 

Participants were sat on a comfortable chair in front of 2 

creens keeping a distance of 50 cm, as displayed in Fig. 1 a. 

he screen on the right showed the BCI application, whereas the 

creen on the left displayed a web browser. Accordingly, the exper- 

ment comprised 2 different procedures: the control task and the 

on-control task. In the control task, participants were asked to 

ake selections with an ERP-based speller using the row-column 

aradigm (RCP) [3] . In this paradigm, commands are displayed in 

 matrix, whose rows and columns are highlighted sequentially in 

andom order. When each row and column is highlighted once, the 

lgorithm completes a sequence. Thus, participants had to stare at 

he desired command, which was indicated by the supervisor. Of 

ote, participants were instructed to mentally count the stimuli 

n the target to maintain the concentration [19] . For this task, we 

sed the 6 × 6 matrix displayed in Fig. 1 a, with an inter-stimulus 

nterval (ISI) of 100 ms and a stimulus duration (SD) of 75 ms. The 

arget commands were selected randomly. In the non-control task, 

articipants had to use the web browser at their will to read a 

ocument or watch a video while ignoring the stimuli on the right 

creen, simulating the real use of the system for assistive applica- 

ions. 

The experiment flow is described in Fig. 1 b. The experiment 

omprised 2 sessions of 10 runs (i.e., 5 control and 5 non-control), 

https://www.kaggle.com/esantamaria/asynchronous-erpbased-bci
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Table 1 

Summary of former asynchronous ERP-based spellers. 

Study Paradigm Strategy 

Description of the 

method for control 

state detection 

Zhang et al. 2008 [7] RSVP Analysis of 

output 

scores for 

ERP 

detection 

ROC threshold using 

SVM scores for ERP 

detection 

Aloise et al. 2011 [8] RCP ROC threshold using 

LDA scores for ERP 

detection 

Martínez-Cagigal et al. 2017 [9] RCP ROC threshold using 

LDA scores for ERP 

detection 

He et al. 2017 [11] RCP Classification of SVM 

scores for ERP 

detection using an 

additional SVM 

Tang et al. 2018 [10] RCP ROC threshold using 

LDA scores for ERP 

detection 

Aydin et al. 2018 [12] RBP ROC threshold using 

classifier labels for ERP 

detection 

Martínez-Cagigal et al. 2019 [13] RCP ROC threshold using 

LDA scores for ERP 

detection 

Pinegger et al. 2015 [14] RCP Hand- 

crafted 

features 

Threshold using FFT 

features combined 

with ROC threshold 

using LDA scores 

Martínez-Cagigal et al. 2019 [16] RCP SampEn features and 

LDA classification 

Santamaría-Vázquez et al. 2019 [15] RCP PSD and CCA features 

and LDA classification 

Gong et al. 2020 [17] RCP FFT features and LDA 

classification 

RSVP: rapid serial visualization paradigm; RCP: row-column paradigm; RBP: region-based 

paradigm; ROC: receiver operating characteristic; SVM: support vector machine; LDA: linear dis- 

criminant analysis; ERP: event-related potentials; SSVEP: steady-state visual evoked potentials; 

SMR: sensorimotor rhythms; FFT: fast Fourier transform; SampEn: sample entropy; PSD: power 

spectral density; CCA: canonical correlation analysis. 

Fig. 1. Experimental setup. (a) Schematic representation of the subject and both screens. The screen on the left displayed the browser that was used during the non-control 

task, whereas the speller was showed on the right screen. Although the paradigm was active during both tasks, subjects only had to attend to the stimuli during the control 

task. (b) Overview of the experiment, which comprised 2 sessions of 10 runs, 6 trials of 15 sequences each. Both tasks were intercalated to avoid excessive fatigue of the 

subject. 
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hich had 6 trials of 15 sequences each. Noteworthy, the tasks 

ere intercalated in order to avoid excessive fatigue. Therefore, the 

atabase was composed by 60 control trials and 60 non-control tri- 

ls for each subject. 

.3. Proposed method for control state detection 

In this study, EEG-Inception was used to detect the user’s con- 

rol state and decode the commands in the proposed BCI. This 

NN, specifically designed for EEG processing, was presented in 

ur previous work [6] , showing excellent results for synchronous 
3 
RP-based spellers. Nevertheless, to the best of our knowledge, 

either EEG-Inception nor any other deep-learning model has been 

sed to discriminate the user’s control state in ERP-based spellers 

et. 

The architecture of EEG-Inception, which is shown in Fig. 2 , is 

omposed by 2 Inception modules and an output block. The first 

nception module includes 3 branches that perform 2D convolu- 

ions in the temporal axis (i.e., EEG samples) followed by depth- 

ise convolutions in the spatial axis (i.e., EEG channels). Each 

ranch has filters with different receptive fields (i.e., kernel sizes) 

o process the signal in different tem poral scales. The second In- 
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Fig. 2. Schematic representation of EEG-Inception. All convolutional layers (i.e., Conv2D and Depthwise convolutions) include batch normalization, ELU activation and 

dropout. 
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eption module only includes temporal convolutions, extracting 

eatures in the same temporal scales but taking into account the 

vailable spatial information. Finally, the output block synthesizes 

he information extracted by the previous modules in few high- 

evel features that are classified with a softmax output, following a 

ottleneck structure specifically designed to avoid overfitting. Ad- 

itionally, average pooling, batch normalization, exponential linear 

nit (ELU) activations and dropout normalization were used to im- 

rove the performance of the model [6] . Please refer to the original 

tudy for additional information and an open source implementa- 

ion [6] . 

In contrast to preceding deep-learning models for EEG process- 

ng, which implemented single-scale approaches, EEG-Inception 

rocess the input signal in multiple temporal scales, increasing its 

daptability to different tasks [6] . Thus, we hypothesized that this 

rchitecture could be applied to provide a robust asynchronous 

ontrol of ERP-based spellers, targeting different patterns associ- 

ted with the operation of ERP-based spellers, such as steady- 

tate visual evoked potentials (SSVEPs) provoked by stimuli at con- 

tant rates [14] , or measurable differences in the EEG complex- 

ty, especially in the prefrontal cortex, related to the concentration 

tate of the user [16] . To this end, the signal processing pipeline 

ust be adapted to facilitate the integration of EEG-Inception for 

his task. As exposed in the introduction, previous approaches 

ased on hand-crafted features [14–17] used 2 separated process- 

ng pipelines with different preprocessing, feature extraction and 

lassification methods: one to detect the control state and the 

ther to decode commands. This implies duplicating the comput- 

ng cost and increasing the complexity of the system, which could 

e a limitation in online experiments, especially for BCIs imple- 

ented in portable devices (e.g., smartphones and tablets) [13] . 

n order to avoid this problem, our method uses the same obser- 

ations for both classification tasks, using the same preprocessing 
4 
nd signal conditioning. Then, 2 different EEG-Inception instances 

re used for each of the 2 classification tasks. The complete pro- 

essing pipeline has 4 stages: 

.3.1. Preprocessing. 

In this stage, raw EEG is preprocessed to increase the SNR of the 

arget signals. First, the signal is filtered between 0.5 and 45 Hz 

ith a finite impulse response filter and resampled to 128 Hz, 

eeping the most discriminative information for control state and 

RP classification [15] . Then, common average reference (CAR) is 

sed to remove noisy artifacts [21] . 

.3.2. Feature extraction. 

Deep CNNs extract features from raw EEG automatically thanks 

o their multi-layer design, learning hierarchical representations of 

he data at different levels of abstraction [22] . Nevertheless, the in- 

ut signal must be prepared to make observations with the shape 

xpected by the model. To this end, we extracted the epochs of sig- 

al for each stimulus from 0 to 10 0 0 ms after the onset. Addition-

lly, z-score normalization was applied taking a baseline window 

f 250 ms before the stimulus onset. At the end of this process, 

ach observation had 128 samples × 8 channels, which are the in- 

ut dimensions required by EEG-Inception [6] . Taking into account 

hat the experiment comprised 2 sessions per subject, 10 runs per 

ession, 6 trials per run, 15 sequences per trial and 12 stimuli per 

equence (6 rows and 6 columns), the total number of EEG epochs 

or each subject was 21,600. This makes a total of 475,200 obser- 

ations for the 22 subjects. 

.3.3. Control state detection. 

This stage dynamically detects the user’s control state to turn 

he speller into an asynchronous system. The workflow in this 

tage is as follows: ( i ) the epochs of each trial are fed to the model



E. Santamaría-Vázquez, V. Martínez-Cagigal, S. Pérez-Velasco et al. Computer Methods and Programs in Biomedicine 215 (2022) 106623 

t

t

r

t

c

o

n

u

c

a

s

f

2

t

s

v

g

a

t  

c

t

a

w

t

a

2

r

v

t

e

i

d

j

d

j

w  

t

a

t

i

n

c

t

p

t

r

i

r

t

n

a

w

w

a

a

a

t

e

w  

c

t

w

t

F

f

I

f

T

f

a

m

i

a

a

f

w

t

3

3

t

i

b

s

p

a

f

t

m

d

u

t

r

t

p

t

q

t

p

o

l

t

s  

c

i

i

r

v

v

a

i

i

p

c

t

c

i

F

a

t

rained to discriminate between control and non-control states; ( ii ) 

he model outputs one score between 0 and 1 per observation, 

epresenting the probability of each state; ( iii ) the scores of the 

rial are averaged in a post-processing stage that determines non- 

ontrol state if the probability is less than 0.5 and control state 

therwise. If non-control state is determined, the system starts a 

ew trial without selecting a command or giving feedback to the 

ser. On the other hand, if control state is determined, the system 

ontinues to the next stage to decode the command. Note that the 

lgorithm assumes that all the observations of each trial have the 

ame control state. Therefore, the user should not switch tasks be- 

ore the trial ends. 

.3.4. Command decoding. 

Once the system has determined the control state for a trial, 

his stage decodes the command the user wanted to select. The 

trategy is similar to the control state detection stage. The obser- 

ations are fed into the model trained to discriminate between tar- 

et, which are characterized by an ERP with the P300 response, 

nd non-target epochs. Therefore, the output is again a score be- 

ween 0 and 1 representing the probability of each case [6] . In this

ase, the output scores are associated with the row and column 

hat were highlighted and thus, they are averaged according to this 

ssociation. The command corresponding to the row and column 

ith maximum score is then selected by the system, which gives 

he proper feedback to the user. After this stage, a new trial begins 

nd the cycle is repeated. 

.4. Training/testing strategy and model validation 

In order to train and validate our approach, we simulated the 

eal use of the speller using leave-one-subject-out (LOSO) cross 

alidation combined with cross-subject transfer learning and fine- 

uning [23,24] . For each iteration of the LOSO algorithm, the mod- 

ls for control state detection and command decoding were initial- 

zed with the training subjects. This means that the control state 

etection model was initialized with 453,600 observations (21 sub- 

ects × 120 trials × 180 observations/trial), whereas the command 

ecoding model was initialized with 226,800 observations (21 sub- 

ects × 60 control trials × 180 observations/trial). Then, the models 

ere fine-tuned using N = { 0 , 5 , 10 , 20 , 30 } control trials from the

est subject for the command decoding model, and 2 N , N control 

nd N non-control, for the control state detection model. The fine- 

uning trials were randomly selected and were not used for test- 

ng. Therefore, the number of test trials for each N was the total 

umber of trials minus the number of fine-tuning trials. This pro- 

edure was repeated 100 times for each subject, averaging results 

o achieve a robust validation. This analysis allows to study the de- 

endence of the system’s performance on the number of training 

rials, where N = 0 simulates a plug-and-play device and N = 30 

equires a calibration session of approximately 30 minutes, includ- 

ng control and non-control trials. 

Regarding the training process, both models were trained sepa- 

ately with different labels. In the case of the control state detec- 

ion model, EEG epochs were labelled according to the control and 

on-control classes. Specifically, the epochs where the user was 

ttending to the stimuli were labelled as control (positive class), 

hereas the epochs where the user was using the web browser 

ere labelled as non-control (negative class), resulting in a bal- 

nced dataset. For the command decoding model, only control tri- 

ls were used for training. In this case, target epochs were labelled 

s P300 (positive class), and the epochs corresponding to non- 

arget commands were labelled as non-P300 (negative class). Mod- 

ls were trained using the same configuration: Adam optimizer 

ith default hyperparameters β1 = 0 . 9 and β2 = 0 . 999 ; categori-

al cross-entropy loss; batch size of 1024; and a maximum of 500 
5 
raining iterations over the entire dataset, applying early stopping 

hen the validation loss did not improve for 10 consecutive itera- 

ions and restoring the weights that minimized this metric [6] . 

The proposed training/testing approach has several advantages. 

or instance, it allows to have subject specific models with very 

ew training trials by exploiting cross-subject transfer learning [6] . 

deally, in the initialization phase, the model will learn common 

eatures across subjects to detect the target patterns in each case. 

hen, in the fine-tuning phase, the model will particularize these 

eatures to the specific characteristics of each subject, resulting in 

n improved performance [24] . In fact, this strategy proved to be 

ore adequate for deep-learning approaches in BCI than the classic 

ntra-subject or cross-subject training methods, since these models 

re able to extract high-level features robust to inter-subject vari- 

bility [6] . At the same time, this method allows to take advantage 

rom all the available signals, improving its scalability for real use, 

here data from new subjects could be incorporated to the models 

o increase their performance. 

. Results 

.1. Control state detection 

Fig. 3 and Table 2 summarize the results of the cross valida- 

ion experiment for control state detection, showing the normal- 

zed confusion matrices and accuracy averaged across all subjects 

roken down by the number of fine-tuning trials and stimulation 

equences. Both analysis give a complete overview of the system’s 

erformance in this task. Accuracy is the most widely used metric, 

ccounting for the percentage of trials correctly classified. There- 

ore, it allows easy and direct comparison with former works. On 

he other hand, confusion matrices provide more complete infor- 

ation about the model performance with useful insight on the 

istribution of false positives and false negatives that can help to 

nderstand the system dynamics. Additionally, Fig. 4 characterizes 

he EEG in time and frequency to analyze differences between cor- 

ectly and incorrectly classified trials in the control state detection 

ask and understand which could be the main factors affecting the 

erformance of the model. 

Overall, the proposed method was able to discriminate the con- 

rol state with high accuracy. As expected, a greater number of se- 

uences, which implies more observations for each trial, allowed 

o increase the confidence of the selection and reduce the im- 

act of outliers, thus increasing the system’s performance. On the 

ther hand, more stimulation sequences imply to reduce the se- 

ection speed of the system. Our approach stands out especially in 

his point, reaching accuracies above 91% with only 1 sequence of 

timulation for N = 20 and N = 30 , a suitable value for high-speed

ommunication. The number of fine-tuning trials also proved to be 

mportant to achieve peak performance in exchange for increas- 

ng the calibration time. Nevertheless, the proposed approach also 

eached suitable accuracies even with none or very few obser- 

ations. In fact, for N = 0 , which simulates a plug-and-play de- 

ice with no calibration for the test subject, the model already 

chieved accuracies near 90%. This proves the efficacy of our train- 

ng strategy, which uses cross-subject transfer learning to initial- 

ze the model with different subjects. Furthermore, the fine-tuning 

rocess for N > 0 was able to adapt the model to the individual 

haracteristics of each test subject, increasing the performance of 

he method after a short calibration. For instance, the accuracy for 

ontrol state detection with N = 30 achieved 91.91% and 96.95% us- 

ng 1 and 15 sequences of stimulation, respectively. In this regard, 

ig. 5 shows the training graphs for 1 subject for each N and aver- 

ged across the 100 repetitions. As can be seen, the convergence of 

he model is more consistent for higher values of N. Nevertheless, 
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Fig. 3. Normalized confusion matrices averaged across subjects. 

Table 2 

Control state detection accuracy (%). 

N 

No. Sequences 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 81.4 85.23 86.63 86.89 87.01 87.69 88.26 88.22 87.95 88.48 89.02 89.05 89.28 89.13 89.36 

5 86.11 88.96 89.99 90.62 90.98 91.06 91.29 91.45 91.63 91.74 91.89 91.91 91.98 92 92.05 

10 88.33 91.16 92.27 92.84 93.23 93.47 93.61 93.82 94.05 94.14 94.23 94.3 94.29 94.42 94.48 

20 91.24 94.37 95.31 95.76 96.06 96.31 96.45 96.6 96.69 96.83 96.98 97.06 97.07 97.21 97.28 

30 91.91 94.41 95.23 95.67 96.02 96.33 96.53 96.53 96.52 96.66 96.77 96.76 96.85 96.88 96.95 

N: number of fine-tuning trials in control state for each subject. Thus, the total number of calibration trials used to fine-tune the model for this task 

was 2N (i.e., N control, N non-control). Test accuracy (%) for the control state detection task averaged over the 22 subjects. 
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t

he fine-tuning process is beneficial even with very few training 

xamples, and helps the model to learn subject-specific features. 

Regarding the normalized confusion matrices, Fig. 3 shows that 

he percentage of false negatives tend to be higher than the per- 

entage of false positives, especially for lower values of N. This 

ifference can be explained taking into account the workflow of 
6 
he system. During control trials, subjects had to stare at the de- 

ired command to select it, a task that requires a high level of 

oncentration and mental effort. Conversely, for non-control tri- 

ls, subjects had to ignore the stimuli of the RCP while watching 

 video or reading a web page. Therefore, we hypothesize that if 

he subject loses concentration their EEG would be similar to that 
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Fig. 4. n.u: normalized units. Characterization of correctly and incorrectly classified trials for the control state detection task. The upper graphs show the averaged EEG 

epochs for the 3 different conditions: non-control, control non-target and control target. The lower graphs show the power spectral density of the entire trials. 

Fig. 5. Training graphs for one subject averaged across the 100 iterations of the cross-validation algorithm. The convergence of the model is more consistent for higher 

values of N. 
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uring the non-control task, confusing the model (false negative). 

he opposite is more unlikely because the visual stimulation re- 

eived by the subject provokes specific patterns on the EEG that 

re not present in non-control trials, such as ERPs and SSVEPs [15] . 

his hypothesis is supported by the characterization of the EEG for 

ontrol state detection task shown in Fig. 4 . As can be seen, the

veraged waveforms associated to the control state were weaker 

or misclassified epochs. The amplitude of the ERP was lower and 

he shape was less clear in these trials (see green curve in time 

raphs). Similarly, the SSVEP was noisy and with significantly less 

ower too (see the orange curve in time graphs and the peaks at 

.71 Hz and harmonic at 11.42 Hz in frequency graphs). In this re- 

ard, the frequency of the SSVEP corresponds to the stimulation 

ate in our experiment, which was 1 / (ISI + SD) = 1 / (0.1 + 0.075)

 5.71 Hz. These differences may be caused by fatigue and mo- 

entary loss of concentration during the control task due to the 
I

7 
trong visual stimulation, which has proven to be an issue in pre- 

ious synchronous ERP-based spellers [25] . 

.2. Overall system 

Table 3 shows results including both stages for control state de- 

ection and command decoding, considering that both classifica- 

ions must be correct at the same time. Therefore, if one stage fails, 

t is considered as a mistake. As before, the accuracy is averaged 

cross subjects and broken down by the number of fine-tuning tri- 

ls and stimulation sequences. Additionally, Fig. 6 shows the theo- 

etical information transfer rate (ITR) reached by the asynchronous 

peller in bits per minute (bpm). This metric takes into account the 

peed and the accuracy of the system, allowing a direct compari- 

on between different BCIs [26] . The ITR was calculated with the 

ollowing equation [26] : 

T R = 

(
log 2 N s + P log 2 P + (1 − P ) log 2 

1 − P 

N − 1 

)
S , (1) 
s 
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Table 3 

Overall system accuracy, including control state detection and command decoding. (%). 

N 

No. Sequences 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 52.05 60.49 66.7 70.00 73.45 75.49 77.77 79.43 79.62 80.95 82.20 83.26 83.94 84.24 85.38 

5 59.70 70.30 76.05 80.77 83.48 85.11 86.47 87.76 88.6 89.22 89.72 90.09 90.33 90.68 90.99 

10 62.63 73.73 80.34 84.55 87.09 88.75 90.07 91.27 91.99 92.44 92.78 93.11 93.20 93.58 93.79 

20 64.90 77.34 83.98 88.20 90.73 92.32 93.32 94.42 94.98 95.49 95.82 96.21 96.20 96.51 96.68 

30 66.49 78.20 84.33 88.69 91.30 92.96 93.71 94.61 94.95 95.34 95.70 96.01 96.09 96.30 96.47 

N: number of fine-tuning trials in control state for each subject. Thus, the total number of calibration trials used to fine-tune the model for control 

state detection was 2N (i.e., N control, N non-control), whereas the model for command decoding only used N control trials. Overall test accuracy (%) 

for the control state detection and command decoding tasks averaged over the 22 subjects. Noteworthy, one trial is considered correct only if both 

conditions were correctly classified at the same time. 

Fig. 6. ITR: information transfer rate (bpm); N: number of fine-tuning trials in con- 

trol state for each subject. Average ITR including control state detection and com- 

mand decoding stages and only considering control trials. 
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here N s is the total number of targets, P is the accuracy, and S is 

he number of selections per minute. It should be noted that the 

TR was calculated only for control trials but considering the over- 

ll accuracy, including control state detection and command de- 

oding stages. 

As shown in Table 3 , the system also achieved high overall 

erformance. For instance, a test accuracy of 91.3% with N = 30 

nd 5 stimulation sequences could be a suitable value for prac- 

ical applications, taking into account that the system would be 

ully asynchronous. Moreover, as can be seen in Fig. 6 , the system 

eached a maximum average ITR of 35.54 bpm for N = 30 and 1 

equence, with a peak ITR of 88.60 bpm for one subject. Regarding 

ur calibration-less approach (i.e., N = 0 ), the maximum accuracy 

as 85.38%, and the maximum ITR 13.57 bpm. 

. Discussion 

.1. Comparative analysis 

The proposed method achieved promising results in the control 

tate detection and command decoding tasks. Moreover, this was 

chieved with the largest number of subjects among related stud- 

es, which assures the generalization of our results. Nevertheless, a 

irect comparison with previous studies [7–17] is difficult in many 

ases due to important differences in experimental setups, analy- 

es and number of subjects. For these reasons, we only compare 

esults with studies that used the RCP as stimulation paradigm. 

tatistical differences were evaluated with Mann-Whitney U-test 

hen results broken down by subject were available, correcting 

he False Discovery Rate for multiple comparisons with Benjamini- 

ochberg approach. 

The performance for the control state detection task was sig- 

ificantly higher than preceding approaches based on hand-crafted 

eatures. Pinegger et al. [14] reached 79.5% accuracy with 15 se- 

uences of stimulation using FFT features, compared to 96.95% in 

his work ( p -value < 0.01). Similarly, the proposed method also 
8 
utperformed approaches based on PSD, CCA and SampEn features 

ith paired number of sequences and N = 30 ( p -value < 0.05) 

15,16] . Interestingly, these differences are maximized for few stim- 

lation sequences. In fact, taking results from 1 and 5 stimula- 

ion sequences, the average accuracy was improved in this work 

y 10.41% and 19.60% with respect to these 2 studies. Therefore, 

he proposed strategy is a significant step forward towards practi- 

al asynchronous ERP-based spellers that require high-speed com- 

unication. 

With respect to the overall system results, there are also some 

oints that are worth discussing. The analyzed studies reached 

ower performance in terms of overall accuracy and ITR, demon- 

trating the superiority of our proposal. In this work, the maximum 

verage ITR was 35.54 bpm. In comparison, Zhang et al. [7] , Aloise 

t al. [8] and Santamaría-Vázquez et al. [15] reported maximum 

TRs of 15.0 bpm, 11.2 bpm ( p -value < 0.01) and 12.3 bpm ( p -value

 0.01), respectively. On the other hand, Tang et al. [10] reported a 

aximum average accuracy of 90.30% compared to 96.47% in this 

tudy. 

Regarding the calibration time, this is the first work that ex- 

lored an asynchronous ERP-based speller without calibration for 

he test subject (i.e., N = 0 ). This approach achieved satisfactory 

erformance for the control state detection and command decod- 

ng tasks, with a maximum overall accuracy of 85.38% and maxi- 

um ITR of 13.57 bpm. These results are above the minimum per- 

ormance of 70% required for successful control of BCIs [27] . In 

ur opinion, the reduction, and even suppression, of the calibra- 

ion stage is key for the development of asynchronous ERP-based 

pellers outside the laboratory, increasing their usability for prac- 

ical applications. Therefore, we consider this point as one of the 

trengths of our study, paving the way for future efforts in this 

ine. 

.2. Contributions 

This study puts forward a novel and more practical signal pro- 

essing framework to achieve a robust asynchronous control of 

RP-based spellers taking advantage of deep-learning to avoid the 

se of thresholds or hand-crafted features. The proposed method 

ot only reached higher performance than the approaches pre- 

ented in related studies, but also solved some of the main draw- 

acks that limited the use of these systems for practical appli- 

ations. Firstly, the control state detection and command decod- 

ng stages are independent, solving the instability and calibra- 

ion complexity of coupled methods based on thresholds, which 

re vulnerable to the dynamic properties of the EEG over time 

nd need to be recalibrated several times per session to main- 

ain peak accuracy, especially with challenging subjects [7–13] . 

econdly, the automatic extraction of optimal features using EEG- 

nception solves the limitation of methods based on FFT, PSD, CCA 

nd SampEn, whose accuracy is drastically reduced for few stimu- 
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ation sequences, where our method showed clear advantages [14–

7] . Finally, it should be noted that none of the related works ex- 

lored the benefits of cross-subject transfer learning or fine tun- 

ng so far. Therefore, our proposal is the first to take advantage of 

hese methods to reduce the number of calibration trials in asyn- 

hronous ERP-based spellers, even simulating a plug-and-play de- 

ice with fair results. Ideally, this training strategy could rise the 

ccuracy of calibration-less approaches to the level of fine-tuned 

odels, given the ability of deep neural networks to make the 

ost of large amounts of data to reach robust classification [22] . 

.3. Limitations and future work 

Despite the successful results achieved in this work, several 

imitations must be considered. For instance, we did not test the 

esigned speller with motor disabled subjects, the target users of 

hese systems [26] . In this regard, numerous studies proved that 

eld experiments outside the laboratory with real applications and 

sers could affect the final performance of the system [9,13] . For 

his reason, additional experiments are needed to study the ro- 

ustness of EEG-Inception for control state detection in different 

cenarios and databases. Moreover, our framework has been tested 

ith the RCP. However, more engaging stimulation paradigms, such 

s the Face Speller [28] or motion-VEP-based systems [29] , can 

elp to decrease the false negative rate due to fatigue or loss of 

oncentration. As the confusion matrices showed, this effect had 

n important impact on our experiments. Therefore, the use of 

hese stimulation paradigms, rather than the RCP, could help to in- 

rease the performance by improving the subject’s attention level. 

n fact, to the best of our knowledge, the asynchronous control of 

hese BCIs has not been tested yet, representing a promising future 

esearch line. 

. Conclusion 

In this study, we explored a novel method to achieve effective 

synchronous control of ERP-based spellers using deep learning. 

he proposed speller takes advantage of EEG-Inception, a novel 

NN specifically designed for EEG processing and ERP detection, 

o reach significantly higher performance than previous works. We 

eported accuracies above 91% for the control state detection with 

 sequence of stimulation, a suitable value for high-speed commu- 

ication with asynchronous ERP-based spellers, and a maximum 

TR of 35.54 bpm for the overall asynchronous system. Moreover, 

e used a novel training strategy based on cross-subject transfer 

earning and fine tuning to reduce the calibration time in compari- 

on to previous studies, even exploring a calibration-less approach. 

dditionally, the proposed signal processing framework simplifies 

he design of the system and solves the main limitations of former 

pproaches, increasing its feasibility for practical applications. 
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