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Abstract: This paper is devoted to the approximation of matrix pth roots. We present and analyze a
family of algorithms free of inverses. The method is a combination of two families of iterative methods.
The first one gives an approximation of the matrix inverse. The second family computes, using the
first method, an approximation of the matrix pth root. We analyze the computational cost and the
convergence of this family of methods. Finally, we introduce several numerical examples in order to
check the performance of this combination of schemes. We conclude that the method without inverse
emerges as a good alternative since a similar numerical behavior with smaller computational cost
is obtained.

Keywords: matrix pth root; inverse operator; iterative method; order of convergence; stability;
semilocal convergence
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1. Introduction

The computation of operators on a matrix appears in many applications. The use
of iterative methods has emerged as a useful technique to approximate it. This paper is
devoted to the approximation of the matrix pth root. We recall that the principal pth root
of a matrix A ∈ Cr×r, where C is a set of complex numbers, without positive eigenvalues
in R, as the unique solution X of

Xp − A = 0,

with an argument of the eigenvalues in modulus lower than

π

p
.

For this kind of problem, the well-known and famous Newton method takes the
following form

X0 given, Xn+1 =
(p− 1)Xn + AX1−p

n
p

, n ≥ 0.

This formula is a direct extension of the method applied to the scalar equation
xp − a = 0. In this form, the method achieves quadratic convergence, but unfortunately,
it is unstable [1]. However, as can be in seen in [2], a stable version can be found.

In fact, several applications of the Newton method exist for finding the pth root matrix,
see this incomplete list of references [1–6].
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Similarly, we can derive the third-order Chebyshev method as

X0 ∈ Θ, Xn+1 =
2p2 − 3p + 1

2p2 Xn +
2p− 1

p2 AX1−p
n − p− 1

2p2 A2X1−2p
n , n ≥ 0, (1)

where Θ = B ∈∈ Cr×r s.t. B has no nonpositive real eigenvalues.
In our paper [7], we proposed stable versions of this algorithm, we presented some

numerical advantages of it with respect to Newton and other third-order methods such as
Halley’s method [8,9], and finally, we developed a general family of any order that includes
both the Newton and Chebyshev methods.

In order to develop a method avoiding the use of inverses of the different iterates,
we can consider the approximation of this less natural equation 1

xp − 1
a = 0. In this case,

the method presented in [7] has the form
X0 given,

Xn+1 = Xn

m

∑
k=0

dk
k!

(
I − A−1Xp

n

)k
, n ≥ 0,

(2)

where

d0 = 1 and dk =
k−1

∏
i=0

(
1
p
+ i
)

, k ≥ 1.

This method has order m, and in particular, for m = 2 and m = 3, we recover the
Newton and Chebyshev methods.

In the above Formula (2), we only need to compute the inverse of A. In the present
paper, we propose to approximate the inverse of A by another iterative method. We can
use our family introduced in [10] that has the form

Y0 given,

Yn+1 =
m

∑
k=0

(
m + 1
k + 1

)
(−1)kYn(AYn)

k, n ≥ 0.
(3)

Our goal is to see that the new approach yields a similar numerical behavior but
with the advantage that it is free of inverse operators, and in particular, has a smaller
computational cost, which means that it requires fewer operations.

The computation of the pth root of a matrix appears, for example, in fractional dif-
ferential equations, discrete representations of norms corresponding to finite element
discretizations of fractional Sobolev spaces, and the computation of geodesic-midpoints in
neural networks (see [11] and the references therein).

2. A General Method for Approximating the Matrix pth Root Free of Inverse Operators

As we mentioned in the introduction, for approximating A
1
p , we propose the use of a

combination of two families. One for the approximation of A−1 and other, that use this
approximation, for the approximation of the matrix pth root.

First step: for approximating A−1


Y0 given,

Yn+1 =
m

∑
k=0

(
m + 1
k + 1

)
(−1)kYn(AYn)

k, n = 0, . . . , L.
(4)
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Second step: for approximating A
1
p

X0 given,

Xn+1 = Xn

m

∑
k=0

dk
k!

(
I −YLXp

n

)k
, n ≥ 0,

(5)

where YL denotes the final iteration computed by the above method (4) in the first step.

2.1. Convergence

To establish the convergence of the general method (5), we observe that

I − A−1Xp
n = I −YLXp

n + YLXp
n − A−1Xp

n

= (I −YLXp
n) + (YL − A−1)Xp

n . (6)

Now, suppose that, from method (4), we consider n0 ∈ N such that Yn0 = YL. Then,
for the iterative process (4), using Theorem 3.2 in [10], we obtain

‖YL − A−1‖ ≤ ‖A‖m‖Yn0−1 − A−1‖m+1 ≤ . . . ‖A‖(m+1)n0−1‖Y0 − A−1‖(m+1)n0 . (7)

On the other hand, for the iterative process (2), from Theorem 4.1 in [7], we have

‖I −YLXp
n‖ < ‖I −YLXp

n−1‖
m+1 < · · · < ‖I −YLXp

0‖
(m+1)n

. (8)

Finally, fixed YL we take X0 such that ‖I −YLXp
0‖ < 1. Then, from Theorem 4.1 in [7],

the sequence {Xn}, given by the general method (5), converges to (YL)
1
p ; therefore, {Xn}

is bounded. So, there exists M > 0 such that ‖Xn‖ ≤ M for all n ∈ N.

Theorem 1. Suppose Y0 with ‖Y0 − A−1‖ < 1 and n0 ∈ N such that, from (4), we consider
YL = Yn0 . If X0 is such that ‖I − YLXp

0‖ < 1, then for all tolerance Tol > 0 given, there exists
n∗ ∈ N such that ‖I − A−1Xp

n‖ < Tol for n > n∗.

Proof. Given Tol > 0, from (8), there exists n1 ∈ N such that ‖I − YLXp
n‖ < Tol

2 for all
n > n1.

On the other hand, as Xn converges to (YL)
1
p , from Theorem 4.1 in [7], there exists

n2 ∈ N such that ‖(YL)
1
p − Xn‖ < Tol, for all n > n2. Then, ‖Xn‖ ≤ Tol + ‖(YL)

1
p ‖ for all

n > n2.

Moreover, from (7), given
Tol

2(Tol + ‖(YL)
1
p )

> 0, there exists n3 ∈ N such that ‖YL −

A−1‖ < Tol
2 for all n > n3.

Therefore, from (6), there exists n∗ = max{n1, n2, n3} ∈ N such that ‖I − A−1Xp
n‖ <

Tol for all n > n∗.

2.2. Computational Cost and Efficiency

If A is a matrix q× q, and taking into account that the computational cost of the product
of two matrices is q3 and that adding or subtracting two matrices has a computational cost
of q2, then the computational cost of

• the computation of matrix YL, given by means of using (4), is CCI(m, q) = mq2 + (m + 1)q3

and its computational efficiency is CEI(m, q) = (m + 1)
1

mq2+(m+1)q3

• the computation of method (2) has a computational cost of CCR(m, q) = mq2 + (p + m)q3

and its computational efficiency is CER(m, q) = (m + 1)
1

mq2+(p+m)q3
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• the computational cost of method (5) is obtained directly by CC(m, q) = 2mq2 + (p +

2m + 1)q3 and its computational efficiency is CE(m, q) = (m + 1)
1

2mq2+(p+2m+1)q3 .

In Figures 1 and 2 the computational efficiency for fixed p = 2 and p = 3 respectively
and different values of q and m are shown.

Figure 1. Computational Efficiencies for p = 2 and different values of q and m.

Figure 2. Computational Efficiencies for p = 2 and different values of q and m.

In most cases, when working with a family of methods, the best one is related to the
problem considered (see the next figures) and the main way used to solve the problem. For
example, the most efficient method (in terms of computation) for solving sparse problems,
which appear when discretizing differential equations, is Chebyshev’s method [7,10].

In Figures 3 and 4 the computational efficiency for fixed q = 15 and q = 20 respectively
and different values of p and m are shown.
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Figure 3. Computational Efficiencies for q = 15 and different values of p and m.

Figure 4. Computational Efficiencies for q = 20 and different values of p and m.

3. Applications Related to Differential Equations

In this section, we present a comparison of the original method (2) using A−1 and the
new proposal (5), avoiding the use of any inverse operator. We refer to our paper [7] in
order to see the advantages of the original method in comparison with other methods that
appear in the literature.

We consider the approximation of the pth root of two matrices related to the discretiza-
tion of differential equations. This type of matrix operations appears in the approximation
of space-fractional diffusion problems [12].
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We start with the following matrix

A =



C D

B C D 0

B C D

. . . . . . . . .

0 B C D

B C


, (9)

where B = −1− h
2 w, C = 2 + h2v and D = −1 + h

2 w.
The matrix (9) can be seen as the result of applying a discretization process, using

finite differences to the boundary value problem defined as

x′′(t) = v · x(t) + w · x′(t),

where
x(a) = xa and x(b) = xb,

Since the matrix A is sparse, the most efficient methods in both families are Chebyshev-
like methods.

In Table 1, we compare our original method using A−1 (2) and the new combination
using the approximation YL of the inverse (5). We observe a similar numerical behavior of
both methods. Thus, the approximation of the inverse seems a good alternative since has
similar errors with smaller computational cost.

Table 1. Error for the approximation of A1/p, taking (m, h, v, w) = (100, 0.01, 20,000, −10) and
four iterations.

p Original Method Computing A−1 New Combined Method with Smaller Cost

2 1.4845× 10−11 1.4845× 10−11

4 3.6643× 10−13 3.6639× 10−13

6 3.1660× 10−13 3.1655× 10−13

8 3.2326× 10−13 3.2326× 10−13

Finally, we compute the pth matrix roots for the matrix

A =



1− 2λ λ

λ 1− 2λ λ 0

λ 1− 2λ λ

. . . . . . . . .

0 λ 1− 2λ λ

λ 1− 2λ


This matrix is related to the discretization, using finite differences, of the laplacian

operator that appear in many mathematical models. In Table 2, we observe again a similar
numerical behavior of both schemes.
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Table 2. Error for the approximation of A1/p taking m = 100, k = 2× 10−6, k/h2 = 2× 10−2 and
three iterations.

p Original Method Computing A−1 New Combined Method with Smaller Cost

2 2.1204× 10−14 2.1208× 10−14

4 1.8486× 10−14 1.8484× 10−14

6 1.7260× 10−14 1.7261× 10−14

8 2.0723× 10−14 2.0724× 10−14

4. Conclusions

The function evaluation of a matrix appears in a large and growing number of ap-
plications. We have presented and studied a general family of iterative methods without
using inverse operators, for the approximation of the matrix pth root. The family incorpo-
rates the approximation of A−1, by an iterative method, into another iterative method for
approximating A1/p. The family includes methods of every order of convergence.

As it appears in [7,10], the most efficient method, in computational terms, for solv-
ing sparse problems, which appears when discretizing differential equations, is Cheby-
shev’s method.

Some numerical examples related to the discretization of differential equations have
been presented. We have concluded that the new approach (5) has a similar numerical
behavior to that of (2) but with the advantage that it is free of inverse operators, and in
particular, has a lower computational cost. Finally, we care to mention the existence of
other strategies for computing fractional powers of a matrix, which do not use matrix
iterations [13,14] or even take into account other techniques such as those appearing in [15].
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