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Abstract: In this paper, we analyze the behavior of a nonlinear reconstruction operator called PPH
around discontinuities. The acronym PPH stands for Piecewise Polynomial Harmonic, since it uses
piecewise polynomials defined by means of an adaption based on the use of the weighted Harmonic
mean. This study is carried out in the general case of nonuniform grids, although for some results
we restrict to σ quasi-uniform grids. In particular we analyze the numerical order of approximation
close to jump discontinuities and the elimination of the Gibbs effects. We show, both theoretically
and with numerical examples, that the numerical order is reduced but not completely lost as it is the
case in their linear counterparts. Moreover we observe that the reconstruction is free of any Gibbs
effects for sufficiently small grid sizes.

Keywords: interpolation; reconstruction; nonlinearity; nonuniform; σ quasi-uniform; adaption;
discontinuities; Gibbs effects

1. Introduction

Due to the extended use of reconstruction operators in many fields of application,
ranging from hyperbolic conservation laws to computer aided geometric design, it is of
great importance to dispose of efficient methods to build them for different situations.
In general, and for the sake of simplicity, the considered functions are polynomials. High
degree polynomials are, however, usually avoided because they are known to generate
oscillations and undesirable effects.

Linear operators behave improperly in presence of jump discontinuities, so that differ-
ent nonlinear operators have emerged to deal with this problematic. Recent approaches
to deal with similar problems of functions affected by discontinuities can be found for
example in [1–5]. And these nonlinear methods also give rise to interesting applications.
To mention some of them one can refer to [6–11].

In this article we pay attention to one of these operators that was defined in [12] under
the name PPH (Piecewise Polynomial Harmonic). This operator can be seen as a nonlinear
counterpart of the classical four points piecewise Lagrange interpolation. The theoretical
analysis as much as the practical applications were developed in uniform grids in previous
articles (see, for example, [12–18]). In turn these reconstruction operators are the heart of
the definition of associated subdivision and multiresolution schemes [5,19–21].

In this paper, we extend the definition of the PPH reconstruction operator to data over
non uniform grids and we study some properties of this operator. In particular, we analyze
the behavior of the operator in presence of jump discontinuities. We prove adaption to the
jump discontinuity in the sense that some order of approximation is maintained in the area
close to the discontinuity, on the contrary to what happens with linear operators that lose
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completely the approximation order. We also prove, as much theoretically as in numerical
experiments, the absence of any Gibss phenomena.

The paper is organized as follows—in Section 2 we remind the nonlinear PPH recon-
struction operator [22] on nonuniform grids. Section 3 is dedicated to study the adaption
of the operator to the presence of jump discontinuities, making some emphasis in the order
of approximation. In Section 4 we analyze the behavior of the operator with respect to the
Gibbs phenomena. In Section 5 we present some numerical tests. Finally, some conclusions
are given in Section 6.

2. A Nonlinear PPH Reconstruction Operator on Non Uniform Grids

In this section we recall the definition of the nonlinear PPH reconstruction operator
on nonuniform grids, see [22]. We include the necessary elements for the rest of the article.
In [22] the reconstruction operator is designed to deal with strictly convex functions, albeit
it is also of interest in the case of working with piecewise smooth functions affected by
isolated jump discontinuities. This will be our case of interest in this section and in the rest
of the article.

Let us define a nonuniform grid X = (xi)i ∈ Z in R. Let us also denote hi := xi − xi−1,
the nonuniform spacing between abscissae. We consider underlying piecewise continuous
functions f (x) with at most a finite set of isolated corner or jump discontinuities, and let
us call fi := f (xi) the ordinates corresponding to the point values of the function at the
given abscissae. We also introduce the following notations. In first place, the second order
divided differences

Dj := f [xj−1, xj, xj+1] =
f j−1

hj(hj + hj+1)
−

f j

hjhj+1
+

f j+1

hj+1(hj + hj+1)
,

Dj+1 := f [xj, xj+1, xj+2] =
f j

hj+1(hj+1 + hj+2)
−

f j+1

hj+1hj+2
+

f j+2

hj+2(hj+1 + hj+2)
,

(1)

in second place a weighted arithmetic mean of Dj and Dj+1 defined as

Mj = wj,0Dj + wj,1Dj+1, (2)

with the weights

wj,0 =
hj+1 + 2hj+2

2(hj + hj+1 + hj+2)
,

wj,1 =
hj+1 + 2hj

2(hj + hj+1 + hj+2)
= 1− wj,0.

(3)

Given these ingredients in [22] we can find the following definitions, and results that
we will use later.

Lemma 1. Let us consider the set of ordinates { f j−1, f j, f j+1, f j+2} for some j ∈ Z at the abscissae
{xj−1, xj, xj+1, xj+2} of a nonuniform grid X = (xi)i ∈ Z. Then the values f j−1 and f j+2 at the
extremes can be expressed as

f j−1 =
−1

γj,−1
(γj,0 f j + γj,1 f j+1 + γj,2 f j+2) +

Mj

γj,−1
, (4a)

f j+2 =
−1
γj,2

(γj,−1 f j−1 + γj,0 f j + γj,1 f j+1) +
Mj

γj,2
, (4b)
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with the constants γj,i, i = −1, 0, 1, 2 given by

γj,−1 =
hj+1 + 2hj+2

2hj(hj+1 + hj)(hj + hj+1 + hj+2)
,

γj,0 =
1

2hj+1(hj + hj+1 + hj+2)

(
hj+1 + 2hj

hj+1 + hj+2
−

hj+1 + 2hj+2

hj

)
,

γj,1 =
1

2hj+1(hj + hj+1 + hj+2)

(
hj+1 + 2hj+2

hj+1 + hj
−

hj+1 + 2hj

hj+2

)
,

γj,2 =
hj+1 + 2hj

2hj+2(hj+1 + hj+2)(hj + hj+1 + hj+2)
.

(5)

Definition 1. Given x, y ∈ R, and wx, wy ∈ R such that wx > 0, wy > 0, and wx + wy = 1,
we denote as Ṽ the function

Ṽ(x, y) =


xy

wxy + wyx
if xy > 0,

0 otherwise.
(6)

Lemma 2. If x ≥ 0 and y ≥ 0, the harmonic mean is bounded as follows

Ṽ(x, y) < min
{

1
wx

x,
1

wy
y
}
≤ 1

wx
x. (7)

Next definition, which is commonly used in numerical analysis, is going to be essential
through the rest of the article.

Definition 2. An expression e(h) = O(hr), r ∈ Z means that there exist h0 > 0 and M > 0
such that ∀ 0 < h ≤ h0

|e(h)|
hr ≤ M.

Lemma 3. Let a > 0 a fixed positive real number, and let x ≥ a and y ≥ a. If |x− y| = O(h),
and xy > 0, then the weighted harmonic mean is also close to the weighted arithmetic mean
M(x, y) = wxx + wyy,

|M(x, y)− Ṽ(x, y)| =
wxwy

wxy + wyx
(x− y)2 = O(h2). (8)

Definition 3 (PPH reconstruction). Let X = (xi)i∈Z be a nonuniform mesh. Let f = ( fi)i∈Z a
sequence in l∞(Z). Let Dj and Dj+1 be the second order divided differences, and for each j ∈ Z let
us consider the modified values { f̃ j−1, f̃ j, f̃ j+1, f̃ j+2} built according to the following rule

• Case 1: If |Dj| ≤ |Dj+1| f̃i = fi, j− 1 ≤ i ≤ j + 1,

f̃ j+2 = −1
γj,2

(γj,−1 f j−1 + γj,0 f j + γj,1 f j+1) +
Ṽj

γj,2
,

(9)

• Case 2: If |Dj| > |Dj+1| f̃ j−1 = −1
γj,−1

(γj,0 f j + γj,1 f j+1 + γj,2 f j+2) +
Ṽj

γj,−1
,

f̃i = fi, j ≤ i ≤ j + 2,
(10)
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where γj,i, i = −1, 0, 1, 2 are given in (5) and Ṽj = Ṽ(Dj, Dj+1), with Ṽ the weighted har-
monic mean defined in (6) with the weights wj,0 and wj,1 in (3). We define the PPH nonlinear
reconstruction operator as

PPH(x) = PPHj(x), x ∈ [xj, xj+1], (11)

where PPHj(x) is the unique interpolation polynomial which satisfies

PPHj(xi) = f̃i, j− 1 ≤ i ≤ j + 2. (12)

According to Definition 3, it is possible to establish a parallelism with Lagrange
interpolation, in fact we can write the PPH reconstruction as

PPHj(x) = ãj,0 + ãj,1

(
x− xj+ 1

2

)
+ ãj,2

(
x− xj+ 1

2

)2
+ ãj,3

(
x− xj+ 1

2

)3
, (13)

where the the coefficients ãj,i, i = 0, 1, 2, 3 are calculated by imposing conditions (12). We
explain each one of the two possible local cases, Case 1 or Case 2. The coefficients will have
symmetrical expressions.
Case 1. |Dj| ≤ |Dj+1|, which means that a potential singularity may lay in [xj+1, xj+2].
It has been proposed to replace f j+2 with f̃ j+2 in Equation (9) by changing the weighted
arithmetic mean in Equation (4b) for its corresponding weighted harmonic mean. This
replacement has been performed to carry out a witty modification of the value f̃ j+2 in
such a way that its difference with respect to the original f j+2 is large in presence of a
discontinuity, but remains sufficiently small in smooth areas maintaining the approximation
order. Lemma 2 is crucial for the adaption in case of dealing with the presence of a jump
discontinuity, while Lemma 3 plays a fundamental part in proving fourth approximation
order for smooth areas of an underlying function.

In this case the coefficients ãj,i, i = 0, 1, 2, 3 of the PPH polynomial read

ãj,0 =
f j + f j+1

2
−

h2
j+1

4
Ṽj,

ãj,1 =
− f j + f j+1

hj+1
+

h2
j+1

4hj + 2hj+1
(Dj − Ṽj),

ãj,2 = Ṽj,

ãj,3 = − 2
2hj + hj+1

(Dj − Ṽj).

(14)

For our purposes, in the next sections we need to examine deeper the relation with
Lagrange interpolation. In particular we get that

| f̃ j+2 − f j+2| =
2hj+2(hj+1 + hj+2)(hj + hj+1 + hj+2)

2hj + hj+1
|Mj − Ṽj|, (15)

and considering the Lagrange interpolation polynomial written in the same form as in (13),
that is

pLj = aj,0 + aj,1

(
x− xj+ 1

2

)
+ aj,2

(
x− xj+ 1

2

)2
+ aj,3

(
x− xj+ 1

2

)3
, (16)
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we get that the difference of these coefficients with the ones of PPHj(x) is given by

ãj,0 − aj,0 =
h2

j+1

4

(
Mj − Ṽj

)
,

ãj,1 − aj,1 =
h2

j+1

4hj + 2hj+1
(Mj − Ṽj),

ãj,2 − aj,2 = −(Mj − Ṽj),

ãj,3 − aj,3 = − 2
2hj + hj+1

(Mj − Ṽj).

(17)

Case 2. |Dj| > |Dj+1|, which means that a possible singularity lies in [xj−1, xj]. In this
case, in Definition 3, the value f j−1 is replaced with f̃ j−1 by using expression (10). Similar
comments apply in this case due to symmetry considerations. The coefficients for the
polynomial (13) now read

ãj,0 =
f j + f j+1

2
−

h2
j+1

4
Ṽj,

ãj,1 =
− f j + f j+1

hj+1
+

h2
j+1

2hj+1 + 4hj+2
(−Dj+1 + Ṽj),

ãj,2 = Ṽj,

ãj,3 = − 2
hj+1 + 2hj+2

(−Dj+1 + Ṽj).

(18)

The expressions relating the coefficients of the PPH polynomial with the Lagrange
interpolation polynomial now write

| f̃ j−1 − f j−1| =
2hj(hj+1 + hj)(hj + hj+1 + hj+2)

2hj+2 + hj+1
|Mj − Ṽj|. (19)

ãj,0 − aj,0 =
h2

j+1

4

(
Mj − Ṽj

)
,

ãj,1 − aj,1 = −
h2

j+1

2hj+1 + 4hj+2
(Mj − Ṽj),

ãj,2 − aj,2 = −(Mj − Ṽj),

ãj,3 − aj,3 =
2

2hj+2 + hj+1
(Mj − Ṽj).

(20)

In next section, we will study the approximation order of the PPH reconstruction
operator in presence of isolated jump discontinuities.

3. Approximation Order around Jump Discontinuities

We are going to study the approximation order of the given reconstruction for func-
tions of class C4(R) with an isolated jump discontinuity at a given point µ. We consider only
the case of working with σ quasi-uniform grids, according with the following definition.

Definition 4. A nonuniform mesh X = (xi)i∈Z is said to be a σ quasi-uniform mesh if there exist
hmin = min

i∈Z
hi, hmax = max

i∈Z
hi, and a finite constant σ such that hmax

hmin
≤ σ.

In what follows we give a proposition proving full order accuracy for convex regions
of the function, that is fourth order accuracy, and observing that the approximation order
is reduced to second order close to the singularities and to third order close to inflection
points. We would like to focuss especial attention to the intervals around the discontinuity
where the order is reduced, but not completely lost.
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Theorem 1. Let f (x) be a function of class C4(R\{µ}), with a jump discontinuity at the point µ.
Let X = (xi)i∈Z be a σ quasi-uniform mesh in R, with hi = xi − xi−1, ∀i ∈ Z, and f = ( fi)i∈Z,
the sequence of point values of the function f (x), fi = f (xi). Let us consider j ∈ Z such that
µ ∈ [xj, xj+1], a > 0, a fixed positive real number, Ω the set of all inflexion points of f (x), and
d(x, Ω) the distance function defined by

d(x, Ω) :=
{

min{|x−ω| : ω ∈ Ω} Ω 6= ∅,
+∞ Ω = ∅.

Then, the reconstruction PPH(x) satisfies

1. In x ∈ [xi, xi+1], i 6= j− 1, j, j + 1, if DiDi+1 > 0, and d(xi−1, Ω) ≥ a, d(xi+2, Ω) ≥ a
then

max
x∈[xi ,xi+1]

| f (x)− PPH(x)| = O(h4),

2. In x ∈ [xi, xi+1], i 6= j− 1, j, j + 1, if DiDi+1 > 0, and d(xi−1, Ω) < a, or d(xi+2, Ω) < a
then

max
x∈[xi ,xi+1]

| f (x)− PPH(x)| = O(h4−p), with 0 ≤ p < 1.

3. In x ∈ [xi, xi+1], i 6= j− 1, j, j + 1, if DiDi+1 ≤ 0,

max
x∈[xi ,xi+1]

| f (x)− PPH(x)| = O(h3),

4. In x ∈ [xj−1, xj] ∪ [xj+1, xj+2],

max
x∈[xj−1,xj ]∪[xj+1,xj+2]

| f (x)− PPH(x)| = O(h2),

where h = max
i∈Z
{hi}.

Proof. We do the proof point by point.
1. Given x ∈ [xi, xi+1], the reconstruction operator is built as PPH(x) = PPHi(x).

From Equations (2) and (6) we can write

Mi − Ṽi =


wi,0wi,1(Di+1 − Di)

2

wi,0Di+1 + wi,1Di
if DiDi+1 > 0,

Mi otherwise.
(21)

From hypothesis we have that the initial data are strictly convex in the considered
area [xi−1, xi+2] (for a concave function the arguments remain the same) and therefore
they satisfy f ′′(x) ≥ b > 0, ∀x ∈ [xi−1, xi+2], for some b > 0. Since second order divided
differences amount to second derivatives at an intermediate point divided by two, i.e

Di =
f ′′(µ1)

2!
, Di+1 =

f ′′(µ2)

2!
,

with µ1 ∈ (xi−1, xi+1) and µ2 ∈ (xi, xi+2). Therefore, we have

Di = O(1), Di+1 = O(1) and Di+1 − Di = O(h),

and from (21) we get that

|Mi − Ṽi| = O(h2). (22)



Mathematics 2021, 9, 335 7 of 19

Plugging this information into (17) if |Di| ≤ |Di+1|, or into (20) if |Di| > |Di+1|, we
get that

|ãi,s − ai,s| = O(h4−s), s = 0, 1, 2, 3. (23)

Thus

|PPHi(x)− pLi (x)| ≤
3

∑
s=0
|ãi,s − ai,s|

∣∣∣(x− xi+ 1
2

)s∣∣∣ = O(h4),

where pLi (x) is the Lagrange interpolatory polynomial. Taking into account again the
triangular inequality

| f (x)− PPHi(x)| ≤ | f (x)− pLi (x)|+ |pLi (x)− PPHi(x)| = O(h4),

using that Lagrange interpolation also attains fourth order accuracy.
2. We now prove Point 2. Since d(xi−1, Ω) < a, or d(xi+2, Ω) < a, and depending on
the exact distance to the inflection point we encounter Di = O(hp), Di+1 = O(hp), with
0 ≤ p < 1. Then from Equation (21) we directly get |Mi − Ṽi| = O(h2−p), and the rest of
the proof follows exactly the same track as in Point 1, giving the enunciated result.
3. For proving Point 3, we observe that in this case |Mi − Ṽi| = |Mi| = O(h), and again
following the same track as in previous points we get

|ãi,s − ai,s| = O(h3−s), s = 0, 1, 2, 3,

|PPHi(x)− pLi (x)| ≤
3

∑
s=0
|ãi,s − ai,s|

∣∣∣(x− xi+ 1
2

)s∣∣∣ = O(h3),

| f (x)− PPHi(x)| ≤ | f (x)− pLi (x)|+ |pLi (x)− PPHi(x)| = O(h3),

and therefore in this case the accuracy is reduced to third order.
4. In order to prove Point 4, let us suppose without lost of generalization that x ∈ [xj−1, xj].
The other case it is proven analogously. Since by hypothesis the function f (x) is smooth
in [xj−2, xj] , and it presents a jump discontinuity at the interval [xj, xj+1] we have Dj−1 =

O(1) and Dj = O(1/h2). Therefore |Dj−1| ≤ |Dj| .
Let pL2j−1(x) be the second degree Lagrange interpolatory polynomial built using the three
pairs of values (xj−2, f j−2), (xj−1, f j−1), (xj, f j).

pL2j−1(x) = âj−1,0 + âj−1,1

(
x− xj− 1

2

)
+ âj−1,2

(
x− xj− 1

2

)2
,

where

âj−1,0 =
f j−1 + f j

2
−

h2
j

4
Dj−1,

âj−1,1 =
− f j−1 + f j

hj
,

âj−1,2 = Dj−1.

(24)

The difference between these coefficients and the ones of PPHj−1(x) shown in Equa-
tion (14) is given by

ãj−1,0 − âj−1,0 =
h2

j

4

(
Dj−1 − Ṽj−1

)
,

ãj−1,1 − âj−1,1 =
h2

j

4hj−1 + 2hj
(Dj−1 − Ṽj−1),

ãj−1,2 − âj−1,2 = −(Dj−1 − Ṽj−1),

ãj−1,3 = − 2
2hj−1 + hj

(Dj−1 − Ṽj−1).

(25)
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At this stage we distinguish two cases:

4.1. Dj−1Dj > 0.

Taking into account Equations (6), (7) and (25) and the triangular inequality we obtain

|Ṽ(Dj−1, Dj)| ≤
1

wj−1,0
|Dj−1|,

|Dj−1 − Ṽj−1| ≤ |Dj−1|+
1

wj−1,0
|Dj−1| =

1 + wj−1,0

wj−1,0
|Dj−1| = O(1),

|ãj−1,s − âj−1,s| = O(h2−s), s = 0, 1, 2, 3,

|PPHj−1(x)− pL2j−1(x)| ≤
3

∑
s=0
|ãj−1,s − âj−1,s|

∣∣∣(x− xj− 1
2

)s∣∣∣ = O(h2),

| f (x)− PPHj−1(x)| ≤ | f (x)− pL2j−1(x)|+ |pL2j−1(x)− PPHj−1(x)| = O(h2).

4.2. Dj−1Dj ≤ 0.

Equations (6) and (25) and the triangular inequality lead us to

Ṽj−1 = 0,

|Dj−1 − Ṽj−1| = O(1),

|ãj−1,s − âj−1,s| = O(h2−s), s = 0, 1, 2, 3,

|PPHj−1(x)− pL2j−1(x)| ≤
3

∑
s=0
|ãj−1,s − âj−1,s|

∣∣∣(x− xj− 1
2

)s∣∣∣ = O(h2),

| f (x)− PPHj−1(x)| ≤ | f (x)− pL2j−1(x)|+ |pL2j−1(x)− PPHj−1(x)| = O(h2).

And these last chains of equations finish the proof.

We observe that close to the jump discontinuity, that is, in the intervals [xj−1, xj] and
[xj+1, xj+2], we do not lose all accuracy, but we maintain at least second order accuracy.
Unfortunately, in the central interval [xj, xj+1] containing the singularity this approach
does not allow us to obtain any gain with respect to other reconstruction operators.

Remark 1. Notice that linear reconstruction operators based on an stencil of four points typically
lose the approximation order in three intervals around discontinuities, while the introduced nonlinear
reconstruction operator only loses completely the aproximation order in the interval containing the
jump discontinuity and maintains at least second order accuracy, that is, O(h2), in the adjacent
intervals. In the interval containing the jump discontinuity the approximation order is lost also
in the nonlinear reconstruction strategy, since with point values of the function it is impossible to
detect the exact position of the jump discontinuity.

Remark 2. The order reduction due to inflection points can be tackled using a translation strategy
in the definition of the Harmonic mean, to avoid arguments of different signs. This strategy
complicates the definition of the operator, but it has been satisfactorily introduced on various
occasions [12,23]. In practice the translation is needed not only at the interval containing the
inflection point, but also in adjacent intervals.
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4. Analysis of Gibbs Phenomena around Jump Discontinuities

In this section we are going to give a result analyzing the behavior of the proposed
nonlinear reconstruction with respect to the generation of possible Gibbs effects due to the
presence of jump discontinuities in the underlying function. In particular we prove the
following proposition.

Before enunciating the theorem we introduce some definitions.

Definition 5. Given X0 = {xi}i∈Z a σ quasi-uniform grid in R, we define, for k ∈ N (the larger
the k the larger the resolution), the set of nested grids given by Xk = {xk

i }i∈Z, where xk
2i = xk−1

i

and xk
2i+1 =

xk−1
i +xk−1

i+1
2 .

Let us also denote [ f ] the size of a jump discontinuity, rk
j (x) the straight line joining

the points (xk
j , f k

j ) and (xk
j+1, f k

j+1), dk
i (x), i = j − 1, j, j + 1 the vertical distance from

the reconstruction PPHk
j (x) to the horizontal line passing through the middle point of

(xk
j , f k

j ) and (xk
j+1, f k

j+1). The respective expressions come given by

[ f ] = f k
j+1 − f k

j ,

rk
j (x) =

f k
j + f k

j+1

2
+

f k
j+1 − f k

j

hk
j+1

(x− xk
j+ 1

2
),

dk
i (x) = PPHk

i (x)−
f k
i + f k

i+1
2

.

We will also use rk
max as the maximum distance between PPHk

j (x) and rk
j (x)

measured perpendicularly to rk
j (x).

Theorem 2. Let Xk = {xk
i }i∈Z, k ∈ N ∪ {0} be a set of nested σ quasi-uniform grids in R. Let

f ∈ C4(R) be a function with four continuous derivatives in all the real line with an isolated
jump discontinuity at the abscissa µ located at a certain [xk

j , xk
j+1] for each k, where j depends on k.

Then, ∃k0 : ∀k ≥ k0 the reconstruction PPHk(x) associated to the data f k := ( f (xk
i ))i∈Z does

not generate Gibbs phenomena. In particular, the following statements hold:

1. ||PPHk(x)− f (x)||L∞ = O((hk)4) in (−∞, xk
j−1] ∪ [xk

j+2, ∞),

2.
∣∣∣dk

j−1(x)
∣∣∣ = O(hk),

3.
∣∣∣dk

j+1(x)
∣∣∣ = O(hk),

4. PPHk
j (x) lies inside the rectangle [xk

j , xk
j+1]× [ f k

j , f k
j+1],

5. rk
max = O(hk),

where hk := max
i∈Z
{hk

i }.

Proof. Let us consider k large enough, k ≥ k0, such that∣∣∣∣∣ [ f ]
hk

j+1

∣∣∣∣∣ >
∣∣∣∣∣ f k

j − f k
j−1

hk
j

∣∣∣∣∣, (26)

∣∣∣∣∣ [ f ]
hk

j+1

∣∣∣∣∣ >
∣∣∣∣∣ f k

j+2 − f k
j+1

hk
j+2

∣∣∣∣∣. (27)



Mathematics 2021, 9, 335 10 of 19

Then

Dk
j−1 = O(1),

Dk
j =

f k
j+1 − f k

j

hk
j+1

−
f k
j − f k

j−1

hk
j

hk
j + hk

j+1
= O

(
[ f ]
(hk)2

)
, (28)

Dk
j+1 =

f k
j+2 − f k

j+1

hk
j+2

−
f k
j+1 − f k

j

hk
j+1

hk
j+1 + hk

j+2
= −O

(
[ f ]
(hk)2

)
, (29)

Dk
j+2 = O(1).

and from (28), (29) and (6) we get

sgn(Dk
j ) = sgn([ f ]) 6= sgn(Dk

j+1), (30)

Ṽk
j = 0.

We carry out the rest of the proof addressing point after point.
1. Since only three intervals are affected by the jump discontinuity for construction, then ∀k

||PPHk(x)− f (x)||L∞ = O((hk)4) in (−∞, xk
j−1] ∪ [xk

j+2, ∞).

2. We are going to show now that the oscillations due to the presence of the discontinuity
diminish at the interval [xk

j−1, xk
j ] with k increasing.

In [xk
j−1, xk

j ] the PPH reconstruction amounts to

PPHk
j−1(x) = ãk

j−1,0 + ãk
j−1,1

(
x− xk

j− 1
2

)
+ ãk

j−1,2

(
x− xk

j− 1
2

)2
+ ãk

j−1,3

(
x− xk

j− 1
2

)3
. (31)

As |Dk
j−1| ≤ |Dk

j |, the coefficients are given by (14) adapted to the interval j− 1

ãk
j−1,0 =

f k
j−1 + f k

j

2
−

(hk
j )

2

4
Ṽk

j−1

ãk
j−1,1 =

− f k
j−1 + f k

j

hk
j

+
(hk

j )
2

4hk
j−1 + 2hk

j
(Dk

j−1 − Ṽk
j−1)

ãk
j−1,2 = Ṽk

j−1

ãk
j−1,3 = − 2

2hk
j−1 + hk

j
(Dk

j−1 − Ṽk
j−1).

(32)

Taking into account property (7) of the harmonic mean, we can write

|Ṽk
j−1| = |Ṽk

j−1(Dk
j−1, Dk

j )| ≤ min

{
1

wk
j−1,0
|Dk

j−1|,
1

wk
j−1,1
|Dk

j |
}

≤ 1
wk

j−1,0
|Dk

j−1| ≤ 2σ|Dk
j−1|.

Considering (31), the distance dk
j−1(x) can be bounded by
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∣∣∣dk
j−1(x)

∣∣∣ = ∣∣∣∣∣PPHk
j−1(x)−

f k
j−1 + f k

j

2

∣∣∣∣∣ =
∣∣∣∣∣− (hk

j )
2

4
Ṽk

j−1 + ãk
j−1,1

(
x− xk

j− 1
2

)
+ ãk

j−1,2

(
x− xk

j− 1
2

)2
+ ãk

j−1,3

(
x− xk

j− 1
2

)3
∣∣∣∣ = O(hk),

where hk := max
i∈Z
{hk

i }.

3. In [xk
j+1, xk

j+2], applying arguments based on symmetry and taking into account that

|Dk
j+1| ≥ |Dk

j+2| we also get that
∣∣∣dk

j+1(x)
∣∣∣ = O(hk).

4. In [xk
j , xk

j+1], as Ṽk
j = 0 due to (30), the expression of PPHk

j (x) according to (13), (14),
(18) will be

PPHk
j (x) =

f k
j + f k

j+1

2
+ ãk

1,j

(
x− xk

j+ 1
2

)
+ ãk

3,j

(
x− xk

j+ 1
2

)3
. (33)

At this point we consider two subcases depending on |Dk
j | and |Dk

j+1|

4.1 |Dk
j | ≤ |Dk

j+1|
We can write

dk
j (x) = ãk

1,j

(
x− xk

j+ 1
2

)
+ ãk

3,j

(
x− xk

j+ 1
2

)3
=
(

x− xk
j+ 1

2

)
Ek

j (x), (34)

where

Ek
j (x) =

f k
j+1 − f k

j

hk
j+1

+
Dk

j

4hk
j + 2hk

j+1

(
(hk

j+1)
2 − 4(x− xk

j+ 1
2
)2
)

.

The maximum value of the function dk
j (x) in the interval [xk

j , xk
j+1] is either at the

extremes of the interval or among any possible critical point xc verifying (dk
j )
′(xc) =

0. At the extremes of the interval we have
∣∣∣dk

j (xk
j )
∣∣∣ = ∣∣∣dk

j (xk
j+1)

∣∣∣ = 1
2

∣∣∣ f k
j+1 − f k

j

∣∣∣,
and the condition is satisfied. We are going to prove that the local reconstruction
PPHk

j (x) lies inside the rectangle [xk
j , xk

j+1]× [ f k
j , f k

j+1] since any critical point xc

of the function dk
j (x) falls outside the interval [xk

j , xk
j+1]. For this purpose, we shall

prove that (PPHk
j )
′(x) 6= 0 ∀x ∈ [xk

j , xk
j+1]. We start computing (PPHk

j )
′(x) and

(PPHk
j )
′′(x),

(PPHk
j )
′(x) =

f k
j+1 − f k

j

hk
j+1

+
Dk

j

4hk
j + 2hk

j+1

(
(hk

j+1)
2 − 12(x− xk

j+ 1
2
)2
)

, (35)

(PPHk
j )
′′(x) = −24

Dk
j

4hk
j + 2hk

j+1
(x− xk

j+ 1
2
).

Last equations show that (PPHk
j )
′(x) is symmetric respect to the vertical axis passing

through x = xk
j+ 1

2
where it reaches a local maximum since (PPHk

j )
′′(xk

j+ 1
2
) = 0.
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Evaluating (35) at xk
j , xk

j+ 1
2

and xk
j+1 we obtain

(PPHk
j )
′(xj) = (PPHk

j )
′(xj+1) =

f k
j+1 − f k

j

hk
j+1

−
Dk

j (h
k
j+1)

2

4(2hk
j + hk

j+1)
, (36)

(PPHk
j )
′(xk

j+ 1
2
) =

f k
j+1 − f k

j

hk
j+1

+
Dk

j (h
k
j+1)

2

2(2hk
j + hk

j+1)
. (37)

From (37) and (30) we get

sgn
(
(PPHk

j )
′(xk

j+ 1
2
)
)
= sgn([ f ]). (38)

To analyze the sign of (PPHk
j )
′(xj) we replace in (36) Dk

j by its expression (28)

(PPHk
j )
′(xj) =

f k
j+1 − f k

j

hk
j+1

− 1
4

(hk
j+1)

2

(hk
j+1)

2 + 3hk
j hk

j+1 + 2(hk
j )

2

[
f k
j+1 − f k

j

hk
j+1

−
f k
j − f k

j−1

hk
j

]
,

and we consider two subcases depending on the sign of [ f ],

4.1.1 sgn[ f ] > 0. From (26),
[ f ]

hk
j+1

> −
f k
j − f k

j−1

hk
j

, and we get

(PPHk
j )
′(xj) >

f k
j+1 − f k

j

hk
j+1

− 1
4

(hk
j+1)

2

(hk
j+1)

2 + 3hk
j hk

j+1 + 2(hk
j )

2
2

f k
j+1 − f k

j

hk
j+1

=
f k
j+1 − f k

j

hk
j+1

[
1− 1

2

(hk
j+1)

2

(hk
j+1)

2 + 3hk
j hk

j+1 + 2(hk
j )

2

]
>

1
2

f k
j+1 − f k

j

hk
j+1

> 0.

4.1.2 sgn[ f ] < 0. Again from (26),
[ f ]

hk
j+1

< −
f k
j − f k

j−1

hk
j

, and we get

(PPHk
j )
′(xj) <

f k
j+1 − f k

j

hk
j+1

− 1
4

(hk
j+1)

2

(hk
j+1)

2 + 3hk
j hk

j+1 + 2(hk
j )

2
2

f k
j+1 − f k

j

hk
j+1

=
f k
j+1 − f k

j

hk
j+1

[
1− 1

2

(hk
j+1)

2

(hk
j+1)

2 + 3hk
j hk

j+1 + 2(hk
j )

2

]
<

1
2

f k
j+1 − f k

j

hk
j+1

< 0.

In both subcases sgn
(
(PPHk

j )
′(xk

j )
)
= sgn

(
(PPHk

j )
′(xk

j+1)
)
= sgn([ f ]), which to-

gether with expression (38) allow us to write sgn
(
(PPHk

j )
′(x)

)
= sgn([ f ]) ∀x ∈

[xk
j , xk

j+1], and therefore (PPHk
j )
′(x) 6= 0 ∀x ∈ [xk

j , xk
j+1], what amounts to say that

there is not local maximum value of PPHk
j (x) inside the interval.

4.2 |Dk
j | > |Dk

j+1|

In this case

Ek
j (x) =

f k
j+1 − f k

j

hk
j+1

−
Dk

j+1

4hk
j+2 + 2hk

j+1

(
(hk

j+1)
2 − 4(x− xk

j+ 1
2
)2
)

,
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(PPHk
j )
′(x) =

f k
j+1 − f k

j

hk
j+1

−
Dk

j+1

4hk
j+2 + 2hk

j+1

(
(hk

j+1)
2 − 12(x− xk

j+ 1
2
)2
)

,

(PPHk
j )
′′(x) = 24

Dk
j+1

4hk
j+2 + 2hk

j+1
(x− xk

j+ 1
2
).

Following a similar path to case 4.1 we arrive to

|dk
j (x)| =

∣∣∣∣∣PPHk
j (x)−

f k
j + f k

j+1

2

∣∣∣∣∣ ≤ 1
2

∣∣∣ f k
j+1 − f k

j

∣∣∣ ∀x ∈ [xk
j , xk

j+1],

(PPHk
j )
′(x) 6= 0 ∀x ∈ [xj, xj+1],

and therefore PPHk
j (x) remains inside the rectangle [xk

j , xk
j+1]× [ f k

j , f k
j+1].

5. We start computing the points where the slope of the tangent of PPHk
j (x) equals

to the slope of the straight line rk
j (x). We consider two subcases,

5.1 |Dk
j | ≤ |Dk

j+1|
In this case, the above mentioned points where the tangent of pk

j (x) is parallel

to rk
j (x) are given by:

P1 ≡
(

xk
j+ 1

2
+

√
3

3

hk
j+1

2
,

f k
j+1 + f k

j

2
+

√
3

3

f k
j+1 − f k

j

2
+

√
3

9

Dk
j (h

k
j+1)

3

2(2hk
j + hk

j+1)

)
,

P2 ≡
(

xk
j+ 1

2
−
√

3
3

hk
j+1

2
,

f k
j+1 + f k

j

2
−
√

3
3

f k
j+1 − f k

j

2
−
√

3
9

Dk
j (h

k
j+1)

3

2(2hk
j + hk

j+1)

)
.

The largest distance from these points to rk
j (x) is the maximum distance between

PPHk
j (x) and rk

j (x) measured perpendicularly to rk
j (x).

For both points this distance coincides with

rk
max =

√
3

9

|Dk
j |√

( f k
j+1 − f k

j )
2 + (hk

j+1)
2

(hk
j+1)

4

2(2hk
j + hk

j+1)
= O(hk).

5.2 |Dk
j | > |Dk

j+1|.

The required points P1 and P2 in this case take the form:

P1 ≡
(

xk
j+ 1

2
+

√
3

3

hk
j+1

2
,

f k
j+1 + f k

j

2
+

√
3

3

f k
j+1 − f k

j

2
−
√

3
9

Dk
j+1(h

k
j+1)

3

2(2hk
j+2 + hk

j+1)

)
,

P2 ≡
(

xk
j+ 1

2
−
√

3
3

hk
j+1

2
,

f k
j+1 + f k

j

2
−
√

3
3

f k
j+1 − f k

j

2
+

√
3

9

Dk
j+1(h

k
j+1)

3

2(2hk
j+2 + hk

j+1)

)

and rk
max is given by

rk
max =

√
3

9

|Dk
j+1|√

( f k
j+1 − f k

j )
2 + (hk

j+1)
2

(hk
j+1)

4

2(2hk
j+2 + hk

j+1)
= O(hk).
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Remark 3. The hypothesis in Theorem 2 concerning the use of a nested set of σ quasi-uniform
grids amounts in practice to build the reconstruction with a small enough maximum grid size.

In the next section we carry out some numerical experiments to check that the practical
observations coincide with the theoretical results.

5. Numerical Experiment

In this section we present a simple numerical test to validate the theoretical results. Our
experiment computes the approximation order of the considered reconstruction in several
areas corresponding with the different points in Theorem 1. In particular we measure the
approximation order in the following areas, identified with the given acronyms:

A0: In the subinterval containing the discontinuity.
A1: In a region where the function is smooth without inflexion points.
A2: In a region where the function is smooth but contains a inflexion point.
A3: In a region close to the inflexion point without containing it.
A4: In the subinterval just to the right of the one containing the singularity.

Let X0 = (0, 3, 8, 11, 17, 23, 25, 27, 31, 32, 36, 37.5, 38, 39.3, 40)
π

20
be a non uniform grid

in [0, 2π] and f (x) the following smooth function with a jump discontinuity at x = 1.2π,
and an inflexion point at x = 3π

2 ,

f (x) :=
{

sin x x < 1.2π,
cos x + 10 x ≥ 1.2π.

Given the initial abscissas xi, i ∈ I = {0, . . . , 14}, we consider the set of nested

grids Xk = {xk
i }i∈Ik , where xk

2i = xk−1
i , xk

2i+1 =
xk−1

i +xk−1
i+1

2 , and Ik = {xk
0, . . . , xk

nk
}, with

nk = 2nk−1 − 1, n0 = 14, k = 0, 1, . . . , 7. For each level of resolution k we build the PPH
reconstruction using the data (xk

i , f (xk
i )), i ∈ Ik computing the approximation errors in

infinity norm with respect to the original function using a denser set of abscissas, that
is, we compute a numerical approximation of

Ek := || f (x)− PPHk(x)||∞.

Then, we compute the numerical approximation order as

p = log2
Ek−1

Ek
, k = 0, 1, ..., 7.

Notice that due to Theorem 1 we can assume that for fine enough grids

Ek ≈ C
(

hk
)p

, with hk := max
i∈Ik\{0}

hk
i , hk

i := xk
i − xk

i−1, hk =
hk−1

2
.

In Tables 1 and 2 we present the errors committed by Lagrange and PPH reconstruc-
tions respectively when using as initial nodes the defined nested grids Xk. The errors
appear separately for each kind of region A0, A1, A2, A3 and A4. The largest error comes
near the jump discontinuity for Lagrange reconstruction, as it can be observed in the
column corresponding with A0.
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Table 1. Approximation errors obtained at iteration k, k = 1, ..., 7 for the considered cases A0, A1, A2, A3 and A4 using the
Lagrange reconstruction.

k
Lagrange

A0 A1 A2 A3 A4

k = 0 5.6495 3.7038 7.5463× 10−1 6.3455× 10−4 7.5463× 10−1

k = 1 9.4448 7.3685× 10−4 4.2214× 10−5 9.0640× 10−5 6.1204× 10−1

k = 2 9.3578 6.2735× 10−5 3.4996× 10−6 9.2479× 10−6 6.1887× 10−1

k = 3 9.3587 4.0575× 10−6 3.0851× 10−7 6.5454× 10−7 6.2234× 10−1

k = 4 9.3591 2.5733× 10−7 2.2334× 10−8 4.3080× 10−8 6.2409× 10−1

k = 5 9.3593 1.5978× 10−8 1.4894× 10−9 2.7567× 10−9 6.2496× 10−1

k = 6 9.3594 1.0021× 10−9 9.5977× 10−11 1.7424× 10−1 6.2540× 10−1

k = 7 9.3595 6.2737× 10−11 6.0880× 10−12 1.0951× 10−11 6.2562× 10−1

Table 2. Approximation errors obtained at iteration k, k = 1, ..., 7 for the considered cases A0, A1, A2, A3 and A4 using the
Piecewise Polynomial Harmonic (PPH) reconstruction.

k
PPH

A0 A1 A2 A3 A4

k = 0 5.0072 1.9182× 10−2 8.3447× 10−3 2.2239× 10−3 7.3017× 10−3

k = 1 9.3051 6.5968× 10−3 7.8190× 10−4 2.9306× 10−4 2.3996× 10−3

k = 2 9.3588 8.3401× 10−4 2.4763× 10−4 3.4429× 10−5 6.1993× 10−4

k = 3 9.3591 3.4729× 10−5 3.0993× 10−5 2.7653× 10−6 1.5738× 10−4

k = 4 9.3593 2.6086× 10−6 3.8754× 10−6 2.0098× 10−7 3.9636× 10−5

k = 5 9.3594 1.8126× 10−7 4.8446× 10−7 4.3976× 10−8 9.9451× 10−6

k = 6 9.3595 1.0730× 10−8 6.0559× 10−8 4.6559× 10−9 2.4908× 10−6

k = 7 9.3595 6.5331× 10−10 7.5699× 10−9 5.0457× 10−10 6.2325× 10−7

In Table 3 we present the obtained approximation orders for the studied PPH recon-
struction and just for the sake of comparison we also add the approximation orders for
the classical four points piecewise Lagrange polynomial interpolation. We have computed
the approximation order in the specified different regions A0, A1, A2, A3 and A4. More in
concrete, in the case of region A1 we use the interval [2, 3] for the x variable, in the case of
region A2 the interval [4, 5], and in the case of region A3 the intervals [xdk+k, 2π], where k
indicates the resolution level and the index dk is such that the inflexion point falls into the
interval [xdk−1, xdk

] for each k. We can observe that in the region A0 both reconstructions
are affected by the jump discontinuity and they lose the approximation order due mainly to
the subinterval containing the discontinuity. In the region of type A1 both reconstructions
attain fourth order accuracy as expected. In the case A2 the PPH reconstruction reduces
the approximation order to third order due to the presence of the inflexion point. Similarly
in the vicinity of the inflexion point, region A3, the PPH reconstruction stays between
p = 3 and p = 4. In the adjacent intervals to the singularity, case A4 we clearly observe
an improvement with respect to Lagrange interpolation, since we obtain order p = 2
while Lagrange completely loses the approximation order. Notice that the order reduction
produced in the regions A2 and A3 occurs in very limited areas and it can be corrected
using a translation strategy (see [12,23]) that we have not implemented in this experiment
with the aim of studying the original reconstruction operator.
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Table 3. Approximation orders obtained at iteration k, k = 1, .., 7 for the considered cases A0, A1, A2, A3 and A4 using the
PPH and Lagrange reconstructions.

k
Lagrange PPH

A0 A1 A2 A3 A4 A0 A1 A2 A3 A4

k = 1 −0.7414 12.2953 14.1257 2.8075 0.3021 −0.8940 1.5399 3.4158 2.9238 1.6054
k = 2 0.0133 3.5540 3.5925 3.2929 −0.0160 −0.0083 2.9836 1.6588 3.0895 1.9526
k = 3 −0.0001 3.9506 3.5038 3.8206 −0.0081 −5.4× 10−5 4.5859 2.9982 3.6381 1.9779
k = 4 6.5× 10−5 3.9789 3.7880 3.9254 −0.0040 −2.9× 10−5 3.7348 2.9995 3.7823 1.9893
k = 5 3.3× 10−5 4.0094 3.9064 3.9660 −0.0020 −1.5× 10−5 3.8472 2.9999 2.1923 1.9948
k = 6 1.6× 10−5 3.9950 3.9559 3.9838 −0.0010 −7.4× 10−6 4.0784 3.0000 3.2396 1.9974
k = 7 8.1× 10−6 3.9976 3.9787 3.9919 −0.0005 −3.7× 10−6 4.0377 3.0000 3.2059 1.9987

In Figure 1 we plot the function f (x) and the Lagrange and PPH reconstructions
obtained from the initial grids Xk, k = 0, 1, 2. We can see that around the singularity,
Lagrange reconstruction looses the approximation order and the Gibss phenomena appears.
In this zone, PPH reconstruction performs in a more proper way, avoiding any Gibbs effects.
We can see that no oscillations appear in the PPH reconstruction even for the coarsest grid.
These observations can be seen more clearly in Figure 2 where we have plotted a zoom
of this region for k = 3 for both reconstruction operators Lagrange and PPH. We also
point out that the oscillations due to the jump discontinuity in Lagrange reconstruction
do not diminish to zero with the subdivision level. In fact, from k = 2 we have check out
that the reconstruction values at the local maxima and minima of the oscillations remain
almost constant.

In the jump interval the distance rk
max decreases as k increases, since rk

max = O(hk).
In Table 4 the values for k = 0, 1, . . . , 7 are shown. We can see that at a certain subdivision
level the given values are approximately decreasing with the ratio 1

2 . Therefore, PPH
reconstruction approaches to the straight line rk

j (x) as k increases.
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Figure 1. In black solid line: function f (x), in green solid line the straight line joining the extreme points of the jump interval
[xk

j , xk
j+1], in blue dotted line: Lagrange reconstruction, in red dotted line: PPH reconstruction. Void circles stand for initial

nodes, filled circles for nodes at the k subdivision level and asterisks for points P1 and P2 . (a) Lagrange k = 0, (b) PPH
k = 0, (c) Lagrange k = 1, (d) PPH k = 1, (e) Lagrange k = 2, (f) PPH k = 2.
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Figure 2. Zoom of the region around the jump discontinuity for subdivision grid level k = 3. (a) Lagrange, (b) PPH.
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Table 4. Distances rk
max obtained at subdivision level k, k = 0, 1, 2, 3, 4, 5, 6, 7.

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

rk
max 1.1126× 10−3 5.4822× 10−4 1.2527× 10−3 6.2825× 10−4 3.1452× 10−4 1.5735× 10−4 7.8700× 10−5 3.9356× 10−5

6. Conclusions

We have studied the behavior of the PPH reconstruction operator in presence of jump
discontinuities for the case of working with σ quasi-uniform grids. For this purpose,
the arithmetic and harmonic means used in the uniform case are changed for weighted
means with concrete weights, so that the main properties that allow for maintaining order
of approximation in smooth areas and adaptation near singularities continue being true.

A explicit result concerning the approximation order, Theorem 1, has been proved,
showing at least second order of approximation for the adjacent intervals to the one
containing the jump discontinuity, and ensuring fourth order of approximation in convex
(concave) parts of the function far from inflexion points. At a interval containing a inflexion
point we get third order of approximation and in the vicinity the order grows progressively
till fourth order.

A main result of this article is Theorem 2 in Section 4 proving that the presented
reconstruction operator does not generate any Gibbs phenomena in the concrete sense
indicated in the enunciate for σ quasi-uniform grids where the maximum space between
nodes of the grid is small enough.

Finally we have carried out some numerical experiments to reinforce the theoretical
results proven as much in Proposition 1 as in Theorem 1.
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