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Abstract

Wearable technology is changing society by becoming an essential component of daily life.
Human activity recognition (HAR) is one of the most prominent research areas where
wearable devices play a key role. HAR can achieve its biggest impact in e-health when
it is combined with real-time tracking of physiological variables. The combination of
these information sources enables inference of parameters of interest with applications
in patient monitoring, remote therapy, occupational health, and similar fields that rely

on in-situ observation of trackable variables.

The first major contribution to the field in this dissertation is a smart physical work-
load tracking system that combines wearable-based HAR and heart rate tracking. The
proposed system employs a concept from ergonomics, the Frimat’s method, to compute
the physical workload from heart rate measurements within a specified time window. The
HAR subsystem recognizes activities in real-time, providing in-situ information relating
to the performed activity and its corresponding workload. The system is designed for
cloud-powered operation, facilitating remote monitoring of workers by an occupational
health expert. Tests with 20 subjects exhibit accuracies above 86% for the proposed
real-time HAR system. Moreover, this dissertation includes a case of study where tracking
of an individual over the course of 20 days corroborates the ability of the system to assess

adaptation to an exercise routine.

On the other hand, one of the new visions of the Internet of Things (IoT) is the
development of devices capable of harvesting energy from the environment. In the case of
wearables, kinetic energy harvesting (KEH) technologies employed to power devices from
human motion are gaining popularity. Nevertheless, there is uncertainty regarding the feasi-

bility of using some KEH methods to obtain self-powered wearables. However, applications
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utilizing KEH for both power and sensing purposes are growing, in particular for HAR. De-
spite the interest and usability, improvement in the classification accuracy of KEH-based
HAR systems is needed to be competitive with conventional accelerometer-based HAR.
Hence, the second and third contributions of this dissertation point to KEH in
wearable environments. The second contribution is an energy logger for wrist-worn
systems, with the purpose of tracking energy generation in KEH systems during daily
activities. Thus, it is possible to determine if the harvested energy is enough to power
a conventional wearable device. The proposed system computes the harvested energy
using the characteristics of the objective load, which in this case is a battery charger. I
carried out experiments with multiple subjects to examine the generation capabilities
of a commercial harvester under the conditions of human motion. This study provides
insights of the performance and limitations of kinetic harvesters as battery chargers.
The third contribution is a KEH-based HAR, system using deep learning, data augmen-
tation and transfer learning to outperform existing classification approaches in the KEH
domain. The proposed architecture comprises convolutional neural networks (CNN) and
long short-term memory networks (LSTM), which has been demonstrated to outperform
other architectures found in the literature. Since deep learning classifiers require large
amounts of data, and KEH datasets are limited in size, this thesis also includes the
proposal of three data augmentation methods to synthesize KEH signals simulating new
users. Finally, transfer learning is employed to build a system that maintains performance

independent of device location or the subject wearing the device.

X



Chapter 1

Introduction

Wearable technology has become a regular component of daily life through the popularity
increasing of smartwatches/fitness trackers, smart clothes, smart glasses, among others [1].
The gap between traditional practices in medicine and contemporary options for remote
patient monitoring is bridged by the adoption of wearable devices and the Internet of
Things (IoT) [2]. Moreover, lifestyle changes have arisen from the impact of these devices
in the technology market and in the behavior of modern society, due to the rapid decrease

in the prices and the wide range of competitors developing novel wearables [3].

One of the most popular areas of wearable technology is Human Activity Recognition
(HAR). A wearable-based HAR system comprises, at minimum, motion sensors and a
processing unit; both components must comply with requirements of small size and low
power consumption. With the first developments in the late 1990s [4], wearable-based
HAR has been utilized in several scenarios including ambulatory patient monitoring [5],
transportation mode detection [6], sports/fitness training [7], gaming [8], military training

9], among others.

In the area of e-health, HAR achieves high impact when it is combined with the
monitoring of other physiological variables, such as the heart rate (HR) [10]. Real-time
HAR and physiological tracking enable feedback and enhance the user experience in
various healthcare applications [11]. Nevertheless, this potential is yet to be fully exploited.
For example, studies like [12]-[14] exhibit systems that combine real-time HAR and HR

tracking using on-body sensors and an integration device (commonly, a mobile phone)
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to receive and display the sensors information; however, these studies stopped short of
processing this information in a specific e-health problem or application. Hence, Chapter
4 helps to bridge that gap with studies combining HR tracking and HAR to compute

the physical workload in real-time.

Physical workload is a key factor in ergonomics to determine the adequate length and
number of breaks for a given job, helping to reduce work-related stress [15]. Thus, Chapter
4 presents the development of an automatic workload computation system, combining real-
time HAR and HR tracking, and establishing a scalable framework for occupational health
and for fitness-related applications. The system employs machine learning based on the
motion sensor signals to determine the activity performed by a user; while simultaneously
employing a concept from ergonomics, the Frimat’s method, to compute the corresponding
physical workload from measured HR values. Tests with 20 subjects indicate the reliability
of the activity classifier, which maintains an accuracy up to 92% during real-time testing.
Additionally, a case study with a single subject followed over twenty days with physical
workload tracking, demonstrates the capability of the system to detect body adaptation to
a custom exercise routine. The proposed system enables remote and multi-user workload

monitoring, facilitating its use by experts in ergonomics and occupational health.

In addition to expanding applications for wearable-based HAR, there are challenges
regarding the energy supply of wearable devices. There is a growing tendency in IoT
to implement energy harvesting technologies to power small electronics systems with
the conversion of light, heat and/or motion into electricity [16]. Given the exposure of
wearables to human body movement, energy harvesting methods that leverage vibration
and motion to generate energy, i.e., kinetic energy harvesting (KEH) schemes, are an
attractive option to obtain power. KEH schemes comprise piezoelectric, electromagnetic,
electrostatic and triboelectric technologies [17]-[20]; among these, piezoelectric harvesting
(PEH) possesses potential for MEMS integration. This integration is suitable for small-size
systems and is one of the preferred options to power wearable devices [21]. Chapter 5

contains an introduction to KEH, emphasizing on PEH.

Existing works of PEH in wearable environments are mostly focused in shoe-mounted

systems, leveraging foot strikes to generate energy from the bending of piezoelectric
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Introduction

generators (PEG) located in the heel [22], [23]. There are other parts of the body
that have been exploited for PEH such as the head [24], hip [25], elbow [26], knee [27]
and wrist [28]. Nevertheless, PEH systems for these other body parts have stopped
short of answering the question ”Is the harvested energy enough to build a self-powered

wearable device?” This issue is addressed in Chapter 5, emphasizing the use of commercial

off-the-shelf (COTS) PEGs for experiment reproducibility.

Chapter 5 includes the assessment of a wrist-worn PEH system with a COTS PEG, to
determine if the harvested energy from daily activities is sufficient to recharge the battery
of a wearable HR tracker. Since PEGs are high impedance sources [29], they are expected
to produce high voltages and small currents. As the authors of [30] state, PEGs typically
display voltages in the order of tens of volts, while currents are in the order of microamperes.
In consequence, the work developed in Chapter 5 presents a research contribution with
the study of the input characteristics of the battery charger in a wearable device to
estimate the voltage and current from the PEG. Additionally, this system includes a
Bluetooth Low Energy (BLE) link to store data in a mobile device and release the limited
memory of the wearable device from storage responsibilities. This study provides insights
on the feasibility and limitations of using COTS PEGs to power wrist-worn wearables,

which are common in the field of commercially available wearable devices.

Besides functioning as supplementary or primary energy sources, PEGs in wearable
environments can also provide information about their context. In consequence, there is a
growing interest in the literature surrounding KEH-based sensing, where kinetic harvesters
are attached to different parts of the body to generate power for wearable devices and
serve as sensors through their energy generation patterns [31]. The goal behind this idea
is to reduce energy consumption of wearable systems by replacing sensors with energy
harvesters as information sources to develop energy-efficient systems [32]. This tendency
was initiated in [33] with the substitution of the accelerometer in a conventional HAR
system with a COTS PEG showing the potential of using PEH to recognize activities

and reduce the power requirements of the wearable device.

Nonetheless, the recognition accuracy gap between using accelerometry and KEH

signals for HAR goes up to 37%, leaving room for significant improvement in KEH-based
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HAR. This performance gap is due to the substantial differences between accelerometry
and KEH signals. Human activities are characterized by signals with very low frequency
components (> 10 Hz) [34]. Accelerometers exhibit a low-frequency sensitivity that KEH
signals do not have, due to the narrowband behavior in higher frequencies (> 1 kHz) of
PEGs [20], [29]. Therefore, KEH signals tend to be more noisy than the accelerometer

output, which makes KEH-based HAR more challenging than conventional HAR.

KEH-based HAR systems in the literature rely on traditional machine learning ap-
proaches, mapping signals into representations based on a set of handcrafted features.
This methodology limits the performance of classifiers, since the suitability of a feature
set may change with scenarios, devices or datasets. On the other hand, artificial neural
networks (ANN) offer automatic feature extraction with higher abstraction at the cost of
more computational requirements and larger datasets [35]. ANN-based and different deep
learning approaches have shown higher performance over traditional machine learning
algorithms in several disciplines [36]. Consequently, a deep learning-based approach for

KEH-based HAR is a promising alternative to enclose the gap with conventional HAR.

Thus, Chapter 6 shows the design and implementation of a deep learning architecture
for KEH-based HAR that improves classification accuracy of traditional approaches by at
least 17%. To supply the necessary amounts of data for the training of the ANN, three data
augmentation methods for KEH signals are proposed. These methods take a pre-existing
dataset and create synthetic data resembling new users performing the same activities from
the dataset. In this study, the impact of these augmentation methods is assessed to show
how they can create data that does not create additional confusion in the classification
algorithm. Moreover, since KEH signals may change depending on the on-body location of
the wearable device or on the subject that is wearing it, there are location-dependency and
subject-dependency in KEH-based HAR. Hence, in the study described in Chapter 6, the
employment of transfer learning to solve these issues is evaluated. In this case, the deep
learning classifier is pre-trained with data from a location or a set of subjects; and then, the
acquired knowledge is transferred to a new version of the architecture to classify data from
the new location or subject, respectively. The combination of these transfer learning ap-

proaches with the proposed data augmentation methods provides an improvement on clas-
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Introduction

sification accuracy of up to 44% when the system is adapting to new locations or subjects.

To summarize, this dissertation begins addressing conventional wearable-based human
activity recognition and presents a novel healthcare application, combining HAR and
HR tracking. The research then focuses on the potential of kinetic energy harvesting to
power wearable devices, by presenting a technical study using commercial harvesters as
supplemental energy source for a wrist-worn wearable. Finally, the last set of experiments
presented herein points to the challenges of using kinetic harvesters as sensors for HAR.
Additionally, it describes a solution based on deep learning to improve classification
performance compared to the existing approaches described in the literature.

The rest of this document is organized in the following manner. Chapter 2 contains
the literature reviews regarding each research contributions of this thesis. Chapter 3
introduces human activity recognition with wearable devices, briefly explaining the basic
components of a system in this area, and forming a preamble for Chapter 4. Chapter
4 exhibits the development of a solution for a specific healthcare application combining
human activity recognition and heart rate tracking. Chapter 5 presents the fundamentals
of kinetic energy harvesting and its role in wearable technology. Additionally, Chapter
5 shows the results of a study with a commercial harvester in a wearable environment,
providing insights on the feasibility of obtaining self-powered systems from the selected
harvester. Chapter 6 describes the design and development of a kinetic energy-based
human activity recognition system using deep learning, data augmentation and transfer

learning. Finally, Chapter 7 contains the conclusions and future work.
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Chapter 2

Related Work

This chapter presents the literature review for each of the research problems addressed in

this dissertation. Each section corresponds to the contributions mentioned in Chapter 1.

2.1 Physical Workload Computation

A common element among the physical effort assessment systems is HR tracking. HR
has a well-known relationship with mental stress, as evidenced in [37]-[40]. The methods
to obtain information about heart activity must be reliable and must allow their imple-
mentation using non-invasive devices to be relevant in practice. In [41], a comparison of
HR signals coming from an ECG and a photoplethysmography (PPG) sensor establishes
the reliability of PPG to obtain HR information. Additionally, the authors of [42]
validate the use of a commercial HR monitor which employs PPG to track HR waveforms
during rest. A similar conclusion is found in [43] with a smartwatch. This validation of
PPG-based HR tracking has led to developments that seek to strengthen HR monitoring
on environments where sensor signals can be corrupted by body movements [44]. Despite
possible corruption, other systems have been built with PPG sensors under movement
conditions and have not displayed performance issues [45]-[47]. Hence, the system in
Chapter 4 also employs PPG-based HR tracking.

Several methods for continuous tracking of the physical effort can be found in the
literature where qualitative data are not provided. For example, in [5], Jovanov et al. use a

Wireless Body Area Network (WBAN) to monitor motion from an on-body accelerometer
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Related Work

and electrocardiography (ECG) sensors. This system tracks physical activity and health
status with non-invasive technology. Other studies [48]-[51] propose manually-initiated
recording of activities with data from HR trackers to measure the physical workload of
a given population. Such methods are tested in [48]-[51] with salsa dancers, dockers,
nurses and porters, respectively. In related studies, Jovanov et al. introduce real-time

HR monitoring and step counting to track the work stress in nurses in [40].

The hybrid tracking of motion and physiological signals enhances the user experience
in healthcare applications [11]. An automatic recognition of activities can help to relate
HR levels to a particular task, allowing a deeper study of physical or mental performance
in sports and occupational health. Thus, some studies have shown efforts to achieve
this integration. For example, [12]-{14] present systems that combine HR tracking and
online HAR using on-body sensors and an integration device to receive and display the
sensors information. The integration device, typically a smartphone, can also take the
place of a movement sensor [52]. Accordingly, [53]-[55] describe smartphone-based HAR
systems along with corresponding challenges regarding feature extraction and selection.
However, these systems are highly dependent on the on-body location of the smartphone.
On the other hand, accelerometer-based HAR architectures present robust performance
regardless of the sensor location and enable the system to distinguish among a wider

range of activities compared to smartphone-based systems [12], [56]-[58].

The robustness and reliability of HAR with accelerometers are reflected in the variety
of the e-health applications where it is applied. For example, [59] employs accelerometer-
based HAR for posture recognition which helps to monitor falls in elderly people. Such
approach is also present in [60]-{62], which demonstrates the popularity of this application.
Moreover, some developments related to sports and fitness complemented with HAR. are

shown in [7], [10].

Thus, following the studies from [7], [10], [59]-[62], it can be concluded that accelerometer-
based HAR is suitable as a key component for workload tracking. However, development
of implementations that integrate HR and HAR tracking with qualitative workload
assessments remains an open problem from an ergonomics point-of-view. Hence, Chapter

4 bridges that gap by employing the Frimat criteria in a system with online HAR and
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2.2. Piezoelectric Energy Harvesting in Wearable Devices

HR tracking using wearable devices.

2.2 Piezoelectric Energy Harvesting in Wearable De-

vices

Several developments in literature show tests of PEGs in different body locations. Since
the harvesting technology that leverages footsteps is very mature (see Section 5.4), only
works for other parts of the body are considered. Moreover, the system presented in
Section 5.5 refers to a wrist-worn piezoelectric harvester with a cantilevered configuration,
whose harvesting mechanism differs from systems placed on shoes where energy is gen-
erated by pressure, not vibration. Hence, here I consider systems with vibration-induced
energy harvesting. Additionally, it is of special interest to examine works with COTS
generators because they keep focus on the system performance as well as I do in Chapter 5.
Authors of [63] introduce a novel curved piezoelectric structure and test it at a shoe and
a wristwatch. Tests presented in [63] include a battery management circuit, and its voltage
output shows the capabilities of the system to reach a charging voltage after 15 seconds
of tapping on the structure. However, the fact of using a custom-made generator implies
high costs and difficulties for reproducibility. A similar case is presented in [64] with a
piezoelectric shell structure to scavenge energy from arm bending and stretching motions.
Additionally, results in [64] are presented only in open circuit condition. Another structure
for finger-motion kinetic harvesting is reported in [65], but this structure is tested only with
resistive loads to characterize the voltage output. Same situation with harvesters for knees
and head but with limited testing can be found in [66], [67] and [24], respectively. Instead,
the work in Chapter 5 presents reproducible experiments due to the employment of COTS
devices and the results are not attached to only one kind of activities as in [63], [64].
Other works do not propose structures but instead they show applications or studies
using COTS PEGs. For example, [25] explores the average power generation using a
COTS PEG module with a fixed resistive load and placing it in different parts of the
body during walking, running and cycling. Authors also show the hypothetical additional

time that a battery would last with the average power of each activity, while the battery
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Related Work

powers an activity tracker. On the other hand, the systems presented in [28], [68] employ
commercially available PEGs to exploit the arm movements with wrist-worn harvesters
and show their results by using a fixed resistive load without going further on the
application of their devices. In the case of my study, the load is a battery charger to show
the performance on a more realistic scenario. Considering an application, the work in [69]
proposes a self-powered PEG-based activity tracker. Such system uses the charge in a
capacitor to power a BLE beacon sender and then leverages the power of the transmitted
signal to identify the activity being performed by the user. The harvester for this case is
a hand-held box with a COTS PEG which has a fixed resistive load for harvesting power
estimation; however, this hand-held device differs from the wearable set-up examined
in Chapter 5, which changes the nature of induced vibrations on the PEG.

While systems with custom-made PEGs show promising harvesting results, the repro-
ducibility of such systems is constrained by the technologies used in each case. In fact, the
harvesting capabilities of COTS PEGs in a wearable environment are presented only with
resistive loads, setting a challenge for other situations where the PEGs supply nonlinear
loads. Hence, as can be noticed in cited literature, the scenario proposed in Chapter 5
where a COTS PEG is employed as battery charger and its performance is assessed in
terms of transferred energy is still pending. Also, the details of the performance of the
PEG with a nonlinear load, which are used here to estimate transferred power to the

battery, constitute an approach that has not been presented in previous works.

2.3 KEH-based HAR

Chapter 6 is related to KEH-based context sensing and deep learning-based HAR. Litera-
ture of deep learning-based HAR. provides several approaches for system design including
handcrafted features and CNN, LSTM, and hybrids of CNN and LSTM. The combi-
nation of handcrafted statistical features and CNN is proposed by Ignatov in [70] to
achieve real-time classification, ultimately in mobile devices; this approach outperforms
traditional algorithms like Random Forest and k-Nearest Neighbors in the public UCI
and WISDM datasets. The authors of [71] propose a HAR system where the signals from

an accelerometer and a gyroscope are stacked to form activity images; then, the Discrete
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Fourier Transform of these images is used for classification with a 2D-CNN architecture.
Results with the UCI, USC and SHO datasets show superior performance compared to

Support Vector Machines.

The work in [72] compares the performance of three popular deep learning architectures
(Deep feed-forward networks, CNN and LSTM) with three public datasets (Opportunity,
PAMAP2 and Daphnet Gait) to study the effect of hyperparameter values for each archi-
tecture. Results in [72] show how bi-directional LSTM outperforms other architectures
in activities which exhibit short duration and sequences of ordered steps; while CNN are
more suitable for repetitive and prolonged activities such as walking and running. The ar-
chitecture introduced in [73] combines four convolutional layers with two recurrent LSTM
layers and a dense layer to leverage the feature extraction from the CNN and the sequence
interpretation from LSTM. Tests in [73] show how this architecture improves classification

performance over CNN-only architectures with the Opportunity and Skoda public datasets.

Peng et al. propose an architecture where activities labeled as simple are classified
with a CNN, and those labeled as complex are segmented into simpler activities and
then classified with a CNN followed by a LSTM. Such architecture is tested with the
Opportunity and the Ubicomp 08 datasets, showing higher classification accuracy than
using CNN and LSTM independently and similar results to the architecture presented
in [73]. In [74], Guan and Plotz propose an ensemble of LSTM to achieve a low bias
(error between prediction and ground truth) and low variance (variability of predictions)
classifier. Results on the Opportunity, Skoda and PAMAP2 datasets show how this

proposal achieves higher accuracy than the works in [73] and [72].

Nevertheless, deep learning-based architectures in the literature require large datasets
to avoid overfitting and have an effective learning process, and in some cases the dataset
size is limited and obtaining more data is not feasible. Thus, some data augmentation
methods have been proposed for accelerometer signals in [75] and for other types of
time series in [76]. The work in [75] proposes several data augmentation methods for
accelerometer signals in a dataset taken from users with Parkinson’s disease; this dataset
exhibits a limited amount of data. The results in [75] show how some of their methods

can help to improve the performance of a CNN-based classifier, by increasing the training
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dataset size. The authors of [76] propose a time warping method based on weighted
averaging to augment datasets of time series. However, further study of the effectiveness
of this method in [77] suggest that the improvements are significant in datasets with small

training size (e.g. 16 and 57 in [77]), and can cause overfitting in some datasets, too.

Chapter 6 proposes a deep learning architecture for KEH-based HAR, aided by data
augmentation methods designed for KEH signals, to increase the size of the training

dataset and, hence, improve the generalization capabilities of the classifier.

Finally, transfer learning has been employed in the context of HAR with traditional
machine learning algorithms [78], CNN [79] and CNN with LSTM [80], [81]. The work in
[78] presents a plug and learn framework for multi-sensor scenarios, where a new sensor
in a HAR system learns from the labels predicted by previously trained sensors. The
approach in [78] is based on handcrafted features for classification. On the other hand,
transfer learning with deep learning architectures is performed by training the ANN, and
then retraining only a portion of the network by maintaining the weights (or ”freezing”)

obtained in the first training process on the rest of the network.

The authors of [79] show results of this practice with a CNN, by maintaining the
weights on the convolutional layers and retraining a dense layer to transfer knowledge
across different users, sensors, and sensor placements. In [80], authors recall the archi-
tecture of four CNN, one LSTM and one fully connected (or dense) layer shown in [73]
and display the results of transfer learning between users and between datasets using the
Opportunity and Skoda datasets. The work in [80] presents two approaches for transfer
learning: one freezing the outer convolutional layers and retraining the inner layer along
with the LSTM and a dense layer, and other where only the LSTM and a dense are
retrained; the first scenario exhibits better results than the second one. The approach
presented in [81] includes an architecture with two CNN, one LSTM and two dense layers.
In this case, the knowledge is transferred only by retraining the last dense layer, which
is called an adaptation layer. The results in [81] comprise three public datasets where

the knowledge is transferred across different sensor locations.

Although some of the cited approaches seek to build subject-independent or location-

independent models, the application of transfer learning in Chapter 6 suits the context

Chapter 2 11



2.3. KEH-based HAR

of KEH-based sensing through feature learning transfer and data augmentation, which
differs from the approaches using accelerometer data where augmentation is not required

nor considered.
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Chapter 3

Principles of Wearable-based

Human Activity Recognition

HAR is the research area where the signals from sensors that track human body motion
are processed with inference algorithms to determine the action performed by a subject
[52]. This area has been gaining attention since the late 1990s in the field of computer
vision [82] and pervasive computing [83]. However, approaches from computer vision are
subject to privacy issues, due to the necessary video tracking in the application field,
and require increased computation resources versus inertial sensor-based approaches [9].
Moreover, inertial sensors and microcontroller units (MCU) have rapidly become smaller,
more powerful, and significantly more energy efficient, making them suitable for long-term
functioning in battery-powered wearable systems. Hence, wearable-based HAR is now
a strong pillar of Ubiquitous and Pervasive Computing, where the objective is to obtain

context awareness from subject-specific information.

Additionally, developments in wearable-based HAR enabled the remote monitoring
of patients in physical rehabilitation or the detection of abnormal activities in elder
or mentally ill patients [84], [85]. Other applications for HAR systems include fitness

tracking, entertainment, and military surveillance [10], [11], [86].

Following the models proposed by [9] and [57], let us consider the following com-
ponents in wearable-based HAR system: sensors, activity data, preprocessing methods,

feature extraction, and classification algorithm. The flow of these components to detect
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Figure 3.1: Basic components of a wearable-based human activity recognition system.

an activity is depicted in Figure 3.1.

Sensors for wearable-based HAR can measure motion (accelerometers and gyroscopes),
physiological variables (heart rate, breathing rate, oxygen saturation in blood, skin tem-
perature), and environment (location, light intensity, air pressure, sounds surrounding
the subject) [9]. Motion sensors are the most common type and are present on a vast
majority of HAR systems. Physiological sensors can be used to obtain complementary
information in contexts such as physical rehabilitation, sports and military training.
Finally, these systems can include environment descriptors through location tracking
from a GPS (Global Positioning System) in addition to other sensors to determine if the

activity is being performed outdoors or indoors.

The selected activities can be periodic, sporadic or static [57]. Periodic activities, as
the name states, exhibit periodicity such as walking, running, biking, etc; and data can
be divided using sliding windows for such activities. Sporadic are those activities that
occur interspersed with other tasks, and are usually specific to applications like gaming
or healthcare; in this case segmentation is crucial to isolate the data segments of interest.
Static activities imply the detection of postures of specific body parts like the back or

the arms; such detection requires careful segmentation to detect changes of posture.

Raw sensor data represented by time series are often noisy and can result in mistakes
in the classification algorithms. Noise sources vary from motion distortion to sensor
malfunction and electromagnetic interference [57]. Hence, the need for noise removal
methods, such as filtering, is almost mandatory in this context. Moreover, other pre-
processing schemes might include unit conversion, normalization, synchronization, and
resampling [87]. However, the main goal is to preserve relevant information embedded

in the signal characteristics [57].
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The preprocessed sensor data, separated by observation windows (periodic activities)
or by segments of interest (sporadic and static activities), must be encoded or transformed

into a representation that eases discrimination for classifiers [9], [57].

Feature extraction has been traditionally carried out in a handcrafted approach, using
feature engineering with three main categories: time domain, frequency domain, and
multilevel or advanced feature extraction methods. Time domain features are mainly
statistical signal-oriented parameters; these are the most popular in the literature due to
their low computation requirements and high performance in different scenarios [57], [88].
Frequency domain analysis for feature extraction can be found using Fourier Transform
[89] or Discrete Cosine Transform [90]; these methods are usually complemented with
time domain features as well. Multilevel extraction methods are those where the data
is first clustered, based on statistical characteristics, and then features are extracted per
cluster [57]. Other advanced feature extraction methods include Principal Components

Analysis, Linear Discriminant Analysis and Autoregressive Models [9].

These handcrafted feature extraction methods are necessary for traditional machine
learning algorithms such as Decision Trees, k-Nearest Neighbors, Support Vector Machines,
Naive Bayes, Markov Models, regression methods, ensemble methods (Random Forest,
etc.), among others [9], [57], [91]-[94]. However, the performance of this combination of
feature set and algorithms may depend highly on the subjects, dataset, device location
or the selected activities; whenever a system of this kind is exposed to new conditions
(e.g. subject, location, etc.), the classification accuracy may drop significantly due to the

overfitting of the feature set to the original training dataset.

On the other hand, recent advances in mobile computing to increase the computation
capacity of devices are encouraging the employment of artificial neural networks (ANN)
and deep learning algorithms in wearable-based HAR systems [95]. Deep learning is an
area of machine learning where the algorithms seek to discover representations of data,
often at multiple levels, describing higher-level features in terms of lower-level features
[96]. Hence, instead of obtaining handcrafted features as an input for the classifiers,
deep learning allows an automatic inference of the characteristics that differentiate each

class; this ability has helped deep learning classifiers to outperform traditional machine
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learning algorithms [35]. The common deep learning architectures found in the literature
for wearable-based HAR include, but are not limited to, Convolutional Neural Networks
(CNN) [72], Long Short-term Memory Networks (LSTM) [74], Deep Belief Networks [97],
Autoencoders [98], and hybrid architectures combining the aforementioned algorithms [99].

Despite the advantages of deep learning methods over traditional machine learning
algorithms in terms of classification performance and feature extraction, a disadvantage
is the execution time on mobile/wearable implementations [99]. This issue is an active
research topic with several studies presenting advances towards a total adoption of some
architectures in wearable-based HAR [70], [100]. Additionally, Chapter 6 revisits this
issue, exploiting the capabilities of deep learning classifier for KEH-based HAR.

Next chapter shows a healthcare application for wearable-based HAR, where the
concepts exposed in this chapter meet in a real-time HAR project. The system described
in Chapter 4 shows how the fusion of HAR and physiological tracking enhances user

experience in an e-health application.
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Chapter 4

A Human Activity Recognition

Application for e-Health

According to the World Health Organization (WHO), the amount of workload can be a
hazard at the workplace that leads to work-related stress [101]. Having too much or too
little to do at work is often an indication of poor time management resulting in increased
mental stress [101], [102]. Workload adjustment is a key consideration in ergonomics and
occupational health, helping to determine the adequate length and number of rest breaks
for a given job and reducing work-related mental stress [15], [103]. However, the amount
of workload is not necessarily determined by the length of a particular task, but by the

quantity of energy required to complete it, which can also be reflected in the HR [104].

In consequence, works like [104] describe the importance of HR tracking in physical
workload assessment. The authors of [104] perform a comparison between using Absolute
Cardiac Cost (ACC) and Relative Cardiac Cost (RCC) to evaluate physical workload
based on HR values during resting periods between activities. Similarly, Solé proposes
in [105] a standardization for workload values based on RCC using the Chamoux [106]
and Frimat [107] criteria, where the numeric workload scores are mapped into categories
going from extremely hard to very light. These criteria allow a qualitative assessment

of workload using only HR measurements.

My work in [47] improves the method proposed in [48], [105] by developing a mobile

application to compute the workload during each activity performed by janitorial staff
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using HR tracking and the Frimat criteria [107]. In the case of [47] the system is manually
initiated, as in [48]-[50], and allows only local monitoring, which requires the presence
of an expert next to the worker. In most real-life scenarios, having an ergonomics expert
continuously present in the workplace is unfeasible.

To improve the user experience with physical tracking systems, it is necessary to
address the problem of workload assessment from a real-time perspective as suggested by
[11], [40]. Therefore, HR tracking must be integrated with real-time HAR or online HAR
(according to [9]) to achieve workload assessment without requiring manual intervention
to indicate the start and end of an activity.

This chapter presents a solution which embraces wearable technology and machine
learning algorithms to compute physical workload in real-time. The solution here presented
combines HAR and HR tracking to achieve a workload assessment that is linked automat-
ically with the performed activity. This system eliminates the need of an expert next to

every single user that is being tracked, due to enabling of remote and multi-user monitoring.

4.1 System Components

4.1.1 Wearable Devices for Activity Recognition and Heart
Rate Tracking

The hardware for HAR comprises an Ultra-Low Power (ULP) MCU with Bluetooth
Low Energy (BLE) capability, an ULP MEMS-based accelerometer and a small Li-ion
battery. The HAR hardware is displayed in Figure 4.1. The selected ULP MCU is the
Lilypad Simblee; the advantages of this device include small footprint (50 mm diameter),
embedded BLE radio and a battery charge controller. A 100 mAh Li-ion battery powers
the Lilypad Simblee and can be recharged through a USB controller module [108]. This
MCU samples the signal from a tri-axial accelerometer at a 20 Hz rate, as the minimum
recommended in [9], [57]. The accelerometer selection also follows the hardware used in
[12], which is the ADXL335. This sensor allows to obtain information from movement

and inclination with a sampling frequency up to 50 Hz and an acceleration up to 2 g [10].
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Figure 4.1: Human activity recognition hardware. The case allows the system to be

worn on the hip

Figure 4.2: Microsoft Band used for heart rate tracking

For the HR tracking, a Microsoft Band (displayed in Figure 4.2) performs HR sam-
pling with a built-in PPG sensor [109]. This wearable enables the tracking of other
fitness-related variables such as sweating, arm movement, and step counting, among
others [109]. This device has been validated by different authors for HR monitoring [110],
[111]. For this project, only the HR sensor is required; and therefore, other sensors are
deactivated to save energy. A specialized Software Development Kit (SDK) for Android

devices permits the control of the Microsoft Band. This SDK can be found in [109].

4.1.2 Mobile Application

A mobile application is developed to connect automatically to both sensors and has two
operating modes: Training mode and Testing mode.

In Training mode, the user interface (UT) asks for the activity that the user is going to
perform from a list of predefined exercises (jogging, squatting, doing push-ups and doing

crunches) and the average HR at rest to use it as a reference parameter for workload esti-
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Figure 4.3: User interface of the mobile application for physical workload tracking.

mation. A l-minute timer is used to standardize the length of the training sessions for later
classification. The UI for this operation mode is displayed in Figure 4.3(a). The application
stores the incoming data from both sensors in a JSON (JavaScript Object Notation) array,
expecting to have 20 samples of each accelerometer axis, the average HR within one second
and a label representing the activity. Every second, the JSON array containing the sensor
samples is sent to a cloud server for storage in a database. After taking training samples
from nine subjects, a Python script retrieves the stored data along with its corresponding

activity labels and trains a classification model using the Scikit-learn library [112].

Once the classification model is validated (see Section 4.3.1), the mobile application
can function in Testing mode. In this mode, the sampling process from the sensors
remains the same as in Training mode; however, the Ul does not have any time restriction.
Therefore, a feature-computing function takes an array containing the samples from the
tri-axial accelerometer. Then, the classification model detects the activity that is being
performed. Finally, the detected activity and the average HR during the activity pass

through a workload estimator. Figure 4.3(b) shows the UI for the Testing mode.
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4.2 Physical Workload Computation

As [105] mentions, physical workload can be computed using metabolic consumption
tables, oxygen consumption tables and HR measurements. However, HR measurements
are the only non-invasive method which allows the integration of wearable technology. In
the literature, there are two criteria to evaluate HR-based workload: Frimat’s [107] and
Chamoux’s [106]. In one hand, the Frimat’s criterion estimates workload on short work
times or on specific activities; while, on the other hand, Chamoux criterion computes
the workload of a full workday (at least 8 hours) [47]. In this case, the Frimat’s criterion
is chosen since the target comprises fitness-related activities.

The selected method requires the computation of some cardiac indicators. The first

one is the Absolute Cardiac Cost (ACC') as defined by Equation 4.1:
ACC= HRactivity - HRresta (4 1)

where H Rty Tefers to the average heart rate during the activity and H R,y is the
statistical mode of the HR values measured during resting periods. ACC' allows the

estimation of intensity for a given task. Another indicator, the Relative Cardiac Cost

(RCC) is derived from the ACC' as shown in Equation 4.2:

ACC

RCC: HRmax _HRrest ’

(4.2)

RCC indicates the adaptation of the body to an activity.

In Equation 4.2, H R, stands for the maximum achievable HR by a subject. The
exact value of HRy,.x should be found in a stress test. However, [105] provides a the-
oretical definition which can have up to 5% of error compared to the actual value. Such

definition for H R,,.x depends on the subject age as stated in Equation 4.3:
HR,.x=220— Age. (4.3)

Frimat’s criterion also needs the calculation of the cardiac acceleration (AH R) defined

in Equation 4.4, and the mean heart rate (H R) within an arbitrary time window:

AHR=HRy.«—HR. (4.4)
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Table 4.1: Relation between Frimat’s Coefficients and cardiac indicators.

Frimat’s Variable Ranges

Coeffs. Value ACC [bpm] RCC HRp. [bpm] HR [bpm] AHR [bpm]

1 10-14 0.10 - 0.14 110 - 119 90 - 94 20 - 24
2 15-19 0.15-0.19 120 — 129 95 - 99 25-29
3 20 -24 0.20 - 0.24 130 — 139 100 — 104 30 - 34
4 25-29 0.25-0.29 140 — 149 105 - 109 35 -39

5 >30 >0.30 >150 >110 >40

Thus, once the five variables for Frimat’s criterion (ACC, ROC, H Ryax, HR and AHR)
are computed, each one of them is mapped into a corresponding Frimat’s Coefficient
which takes an integer value between 1 and 5. Table 4.1 details the relation between the
values of each indicator and their respective Frimat’s Coefficient.

Then, the method requires obtaining the Frimat’s Coefficient from each input variable
and adding them to obtain a Frimat’s Score which ranges between 5 and 25. This score
is the value that determines the level of physical workload of an activity. Following the
ranking presented in [105], an activity can be ranked as shown in Table 4.2. During
the implementation of the workload computation, the system takes previously measured
the resting HR and compares it with the average HR within one-second time windows
to compute the five cardiac indicators needed to obtain the Frimat’s Score. This score
is mapped to its corresponding category according to Table 4.2, accompanied with the

classification of the most recent activity.

4.3 System Evaluation

4.3.1 Training and Validation of the Activity Classifier

Implementation of the online HAR subsystem requires three critical steps: data collection,
training and validation. For the data collection, the activity set is a fitness routine which
includes jogging, doing abdominal crunches, push-ups and squatting. These activities are

among the most common exercises performed by the local population. As the workload
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Table 4.2: Ranking of an activity according to its Frimat’s score.

Frimat’s score values Ranking

25 Extremely hard
24 Very hard

22 - 23 Hard

20 - 21 Distressing

18 -19 Bearable

14 - 17 Light

12 - 13 Very light
<10 Minimum workload

assessment tracks resting periods, standing still is also an activity taken into consideration.
Additionally, to increase the system generalization capabilities, data collection must be
performed from heterogeneous sources, i.e. subjects with different anatomic characteristics
and different exercise styles.

Thus, nine volunteer subjects (6 men and 3 women) performed the aforementioned
exercises for the same amount of time. Volunteer ages range between 19-32 years old.
At least four hours before each exercise session, volunteers did not ingest substances that
alter HR, such as: caffeine, alcohol, nicotine, etc. Five subjects exercise four times a week,
while the other four subjects only exercise once per week. Data was collected from Monday
to Friday in the evening (6 p.m. — 8 p.m.). Since exercises like push-ups and abdominal
crunches are generally more physically demanding than jogging and squatting, the sessions
of the experiments consists of one-minute part of exercise and three-minute part of resting.
Hence, each volunteer performs at least four different sessions, one per exercise.

To avoid unexpected short pauses during the exercising part of each session, hydration
needs of the subjects are attended to as required. These unexpected pauses would
represent noise on the motion signals and can introduce undesired glitches in the training
and validation datasets. Such glitches are unavoidable in practice, but to guarantee
the correct labelling of data, subjects are asked to reduce the pauses during exercises.

Hence, to overcome this issue, subjects with enhanced physical conditioning are asked
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Table 4.3: Features considered for training the classifier.

Feature name Symbol per axis Meaning

Mean z, Y, Z Statistical tendency of a
group of samples from

the same axis

Standard deviation std(x), std(y), std(z) Measure of variability of
a group of samples from

the same axis

Variance var(x), var(y), var(z) Measure of variability of
the squares of a group
of samples from their

corresponding mean

Mean absolute deviation MAD(x), MAD(y), MAD(z) Measure of variability
of a group of samples
from their corresponding

mean

Difference of means Y-z, T-Y, T-Z Difference between
means of two different

axes

to participate in more than one experiment. By the end of collection, the dataset for
training and validation contained over 118,000 three-dimensional samples taken at 20Hz
from the hip-placed accelerometer.

Subsequently, the dataset is converted to a multidimensional space of features, which
are summarized in Table 4.3 along with their corresponding symbol and meaning.

Each one of the 15 mentioned features must be computed from an observation window,
forming a feature vector. The number of samples required to calculate a feature vector is
directly related to the amount of time that the system takes to gather the samples. From
the real-time implementation perspective, this time-window size is critical to determine

the system latency. Hence, the selected time-window size is one second, considering
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that the perception of activity changes for different users is not immediate. Thus, the
minimum delay for the classifier to detect a change of activities is one second. Each
feature vector is computed using 20 samples, due to the sensor 20 Hz sampling frequency,

which is enough to cover the human motion signals bound to 10 Hz [34].

After setting the time-window size, the dataset is reduced to 5,900 feature vectors
approximately, each one associated to their respective activity label. Next, classification al-
gorithms to train with this dataset are needed. According to [9], [57], Random Forest and
k-Nearest Neighbors (kNN) are the most common choices for online HAR applications, due
to their reliability under several scenarios like the fitness activities. In this chapter, both

algorithms are used to compare their performance and to select one for implementation.

Random Forest algorithm is an estimator that separates the training dataset into
subsets for a custom number of decision trees. These trees decide over their respective
samples; and then, the estimator averages their decisions. On the other hand, kNN
algorithm maps the feature vectors into a multidimensional space and separates them
according to their labels. Then, an incoming sample is compared to its closest training
samples (or neighbors), determined by an internal distance measure, and the incoming

sample is assigned to the class of most of its neighbors.

Collected data from the volunteers is separated by assigning 70% to a training subset
and 30% for a validation subset, following a proper data randomization to avoid overfitting.
Then, Random Forest estimators are trained varying the number of trees from 2 to 100,
and kNN with number of neighbors from 2 to 50. These values are chosen as there
is not significant improvement on overall accuracy by increasing the number of trees
[113], and considering more neighbors may cause underfitting [114]; the performance
stability on Random Forest is illustrated on Figure 4.6. The best results exhibit an
overall accuracy of 97.7% for Random Forest with 63 trees and 95.2% for kNN with
5 neighbors. The normalized confusion matrices for both algorithms are displayed in
Figure 4.4. These confusion matrices demonstrate the difference in overall accuracy by
exhibiting less confusion in abdominal crunches, push-ups and squatting for the Random
Forest algorithm compared to kNN. These results are obtained using the validation subset.

Thus, subsequent optimization efforts are conducted towards RF.
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Figure 4.4: Normalized confusion matrices from each classifier.

A classifier optimization process is required to reduce dimensionality and, in the
case of RF, reduce the number of decision trees. After such process, validation of the
optimized classifier should not show significant reduction in the performance metrics

(overall accuracy and confusion matrix).

For dimensionality reduction, the level of importance that each feature has during
training is analyzed. The importance levels considered here are equivalent to Gini impor-
tance, which is described in [115]. This importance is computed considering the decrease
in average accuracy for the trained trees when a feature value is varied randomly. Thus,
significant accuracy detriments point to the significant importance for a feature. In the
case of Scikit-learn library, the feature importance levels are normalized. Figure 4.5
displays a bar graph of the feature importance. As observed, it is clear that y, MAD(y),
MAD(z) and z—7 are the features with the lower significance; and therefore, they are
removed from the feature vectors. Even though further reduction in the number of
features reduces the code size that will be embedded in the mobile application, extra
reductions can also compromise the classifier performance. Thus, the new feature set

comprises 11 features, which necessitates retraining the model with this new set.

Figure 4.6 shows the variation of classifier accuracy with respect to the number of

trees, along with a dashed tendency line. According to the accuracy tendency line, after
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Figure 4.5: Bar graph of the importance of the features in Random Forest classifier.

20 trees, the classifier trends toward a stable behavior. Consequently, the number of trees
can be reduced to a value above 20 trees without sacrificing performance. The overall
accuracy with the validation subset changed from 97.7% with 63 trees to 97.5% with 24
trees, but results in a lower computational cost. Figure 4.7 shows the confusion matrix
of this new model, where it can be observed that there is no performance compromise.

Thus, this facilitates performing classification directly on the mobile application.

The resulting model is exported from Python to Java using the Porter tool described
in [116] given the requirements of the Android environment. Thus, the model converted
into a Java class contains the mathematical description of the 24 decision trees and
computes the average decision among them to estimate the corresponding activity. The
mobile application includes a testing mode where it reports the true label of the activity
performed during the experiment and the labels detected by the model, along with a
user identification number and the time stamps of the samples. Thus, this working mode

is used for the remaining tests described below.
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Figure 4.6: Variation of the overall accuracy with the number of trees in Random Forest

classifier.

4.3.2 Online Human Activity Recognition Performance

Once the classifier model is embedded in the mobile application, the model is tested
in a real-time environment. For the test, 20 people (different from the nine volunteers
who participated in the training data collection) are asked to participate in a new set of
experiments. This time, people register their age on the application along with the average
heart rate obtained from the Microsoft Band after a preliminary 30-second resting period.

Then, they wear the HAR device on the hip and perform the following exercise
routine: push-ups, resting, jogging, resting, squatting, resting, crunches, and resting.
Each of these activities had a fixed duration of 30 seconds, which is set to limit physical
demand and avoid unexpected resting moments. Planned, 30-second resting moments are
situated between exercises to help subjects to fulfill the routine without extreme fatigue.
Along with each routine, a researcher manipulates the application to set the activity
label manually as the subjects shift from one activity to another. Meanwhile, the system
reports to a cloud-stored database the labels obtained from the model, the labels entered

manually, a system-custom user identification number and the time stamp.
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Figure 4.7: Confusion matrix of the optimized Random Forest classifier.

Table 4.4: Representative statistics of the online human activity recognition testing.

Statistical Accuracy percentages per activity
parameter Resting Crunches Push-ups Squatting Jogging Overall
Average 92.26% 86.11% 87.01% 86.71% 87.82%  89.53%
Standard deviation  3.34% 7.89% 4.90% 7.53% 6.47% 3.19%
Maximum 96.92% 100.00% 96.81% 98.76% 100.00%  95.13%
Minimum 84.22% 65.95% 75.24% 70.73% 76.96%  82.69%

After this data collection stage, the detected labels are compared against the manual
labels to obtain the accuracy rate per activity and per user. Table 4.4 resumes the
statistics of the accuracies from the testing stage. Also, Figure 4.8 shows the confusion
matrix from online HAR testing. Although the validation accuracy is reported to be
97.5%, real-time tests have an average accuracy between 86% and 92% due to unexpected
movements that induce noise in the classifier. Further details regarding the results of

Table 4.4 and Figure 4.8 are given in the next section.
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Figure 4.8: Confusion matrix from testing data.

4.3.3 Case Study: Physical Workload Evolution on an Individ-

ual

This second case study focuses on demonstrating the reliability of the workload estimator.
A 27-year-old healthy male subject volunteers to participate in a twenty-day experiment.
The subject performs the same exercise routine every day while its physical workload
is tracked. The workload tracking is accompanied by activity recognition. Therefore, the
subject must wear both devices (HAR and HR trackers) during each session. Figure 4.9
shows how the subject wears the devices and evinces that they do not represent major
discomfort. Before the first session, a preliminary exercising round reveals that crunches
do not represent significant physical effort for the subject. Thus, the routine for each day is
defined as follows: 15 seconds of resting to find the reference HR for workload estimation,
followed by 60 seconds of push-ups, 60 seconds of jogging, 60 seconds of squatting, and

60 seconds of resting. Then, the one-minute rounds are repeated three times.

The subject does not exercise regularly, which leads to the expectation of high levels
of workload on the first session and a progressive decline on the physical exigency on suc-

cessive sessions, as the body adjusts to the exercise routine. Additionally, the performance
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Figure 4.9: Subject wearing the devices before exercising.

of the online HAR is expected to be steady along the sessions, since the system is used by
the same person. Due to the methodology of workload estimation, several Frimat’s scores
can be obtained during a one-minute exercise round given the HR variations. However,
the system maps each score to one of the eight categories, reducing information sensitivity.
After each session, a Python script retrieves the classified activities, the true label of
activities for HAR assessment and the workload categories for each activity. Subsequently,
this script finds the statistical mode of the workload categories for an activity and sets
it as the estimated physical workload.

Figure 4.10 displays the resulting mean HR for push-ups, squatting and jogging,
during each daily session. Also, Figure 4.11 shows the Frimat’s score values assessment
during the resting rounds at the end of each session. These workload values reflect the
overall perception of the body of the subject after each exercising round. Complementary,

Figure 4.12 displays the online HAR performance for each session.

4.4 Discussion

This chapter introduces a system that combines real-time activity monitoring and phys-

ical workload estimation. This system enables remote tracking of workers in physically
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Figure 4.11: Physical workload assessment after each session.

demanding jobs for occupational health, and athletes for fitness purposes. For a compre-
hensive assessment of system performance, two case studies are presented. The first one
embraces the training, validation and real-time testing with 20 subjects of the human
activity recognition component. The second case presents the evolution of physical
workload for an individual over twenty days.

The activity recognition validation accuracy stands above 95%, compared to previous
studies which also employ wearable devices as shown in Table 4.5. Critical parameters
regarding real-time implementation are considered for comparison such as number of
sensors, number of activities and accuracy.

The comparison in Table 4.5 allows to locate the present study with an overall
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Figure 4.12: Average accuracies of online HAR for the second case study.

Table 4.5: Online HAR comparison with previous studies.

Article No. Sensors No. Activities Test accuracy

12] 1 10 98.7%
13] 5 9 94.8%
[14] 1 5 95.7%
[53] Smartphone 3 98.6%
117 1 9 94.8%
[11§] 1 8 95%
This work 1 ) 97.5%

accuracy that is only surpassed by a system that only considers three activities and by
my work in [12]. However, the only work from Table 6 that displays results of real-time
tests is [53]. There, tests are 10 seconds long, compared to the 30 seconds tests of this
study. Also, [53] considers six test subjects, while this chapter considers twenty. Hence,
such length and subject quantity difference can lead to errors in movement data, which

makes the results shown in Figure 4.12 to stand more over related literature.

Additionally, Figures 4.12 and 4.8 evince the tendency of the system to keep a real-time
accuracy above 85%. However, tests on the first case study are carried by people who do
not know the system nor where intensively introduced to its use. Instead, the explanation

of the experiment is held short, and they are asked to perform the exercises naturally.
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Thus, there are some cases where the subjects take unexpected pauses or tremble during
the exercise, introducing noise to the one-second observation windows and affecting overall
accuracy. Nevertheless, by observing at the maximum values, there is also evidence of

cases where classification of the embedded model shows no incorrect estimations.

On the other hand, the second case study helps to validate the reliability of the
workload computation in real-time. This approach differs from other workload-related
works like [48]-[51] where there is no real-time feedback. Instead, authors from [48]-[51]
take activity and HR data manually and then compute the workload and categorize it.
The proposed system does all this process automatically, facilitating the relationship
between activity and physical effort which takes relevance at the application field. The
subject considered for the twenty-day experiment of the second case study performed
a physically demanding routine that is evaluated as extremely hard at the end of the
first ten days, according to Frimat’s criteria. However, a remarkable evolution in the

perception of each activity by the subject is shown in Figure 4.10.

In the first sessions, the system evaluates that each type of exercise is extremely
hard for the subject, obtaining an average HR of 150 bpm, then in the last session
these activities are classified as a light workload, obtaining an average HR of 95 bpm.
As expected, the first exercise of the routine (push-ups) displays the lowest workload
amounts, since the body starts to adapt to the routine. But as the exercising round

advances, the HR starts to increase which is reflected in higher workloads.

Another evidence of the assimilation of the exercising routine is the change from
Frimat’s scored values in the resting periods at the end of each session, as shown in
Figure 4.11. Considering that the subject always performed the same exercise routine
for twenty sessions (that is, there is no increase or variation in the load), a principle of
adaptation is presented in the physical state of the subject [119]-[121]. As can be seen
in Figures 4.10 and 4.11, at the beginning of the sessions, the physical capacity of the
subject is not enough for the established load, but as the exercise sessions increased, the

body managed to adapt to that load.

Furthermore, Figure 4.12 shows the performance stability of the online HAR com-

ponent during the second case study. The accuracies stand around 90% for the three
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activities, considering the fatigue effect on the subject movements. Also, it must be
noticed that these experiments are longer than in the first case study and exhibited
higher average accuracy; this is due to the lack of heterogeneity which leads the system
to be exposed to more similar movements each session. Thus, these results confirm the

reliability of the two system components for workload tracking purposes.

4.5 The Opportunity for Kinetic Harvesting in Wear-
able Technology

The wearables presented in this chapter rely on batteries as power supply. However,
a growing tendency in the revolution of IoT suggests the use of energy harvesting
technologies from human body to recharge or replace batteries.

The technologies with the greatest potential to harvest energy from human body
are thermal and kinetic harvesting. Nevertheless, when harvesters are attached to the
body, the kinetic generators have an advantage in terms of energy because thermal
generators reduce their efficiency while human skin tries to reach thermal equilibrium
with the environment [122]. Thus, kinetic harvesting technologies remain as an attractive
option to power wearable devices. Among the kinetic harvesters, the literature highlights
piezoelectric, electrostatic, electromagnetic and triboelectric technologies as the preferred
methods. Next chapter introduces kinetic harvesting technologies, compares them, and

shows a technical study of using piezoelectric harvesters to power a HR tracker.
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Chapter 5

Piezoelectric Kinetic Energy

Harvesting in Wearable Technology

5.1 Why Energy Harvesting for Wearables?

The growing demand for e-health and smart fashion has positioned wearable devices
as a promising market for the near future with an expectation of $24bn by 2024 [123],
[124]. However, wearable technologies face limited functionality due to battery lifetime
and the need of battery recharging or replacing [21]. In response to this issue, energy
harvesting schemes can be employed as alternative solutions by converting light, heat
and/or motion into electricity [125], [16]. Moreover, the field of kinetic harvesting has
shown relevant developments for the piezoelectric, electromagnetic, electrostatic and
triboelectric technologies [17]-20].

In this chapter, the principles of kinetic energy harvesting are briefly introduced. The
focus is set on piezoelectric materials and the different scenarios where they have been
used for kinetic energy harvesting. Finally, I introduce a technical study on the use of

COTS PEGs to power wearable devices.

5.2 Principles of Kinetic Energy Harvesting

Energy harvesting (EH) refers to the process of exploiting different energy sources to

obtain electricity, which is then stored and used as supply for electronic systems [29)].
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Figure 5.1: Classification of Energy Harvesting sources from [126].

The sources to exploit include solar or artificial light radiation, vibration/motion, heat,
changes of temperature, and radio-frequency waves. Figure 5.1 resumes a well-known
EH source classification from [126]. The four categories displayed in Figure 5.1 are light,
mechanical motion/vibration, thermoelectric effect and electromagnetic radiation. The
methods belonging to mechanical motion/vibration, with the exception of wind turbines,

comprise KEH technologies.

KEH has attracted several researchers over the last couple of decades due to its poten-
tial to solve energy issues in fields like wireless sensor networks and wearable technology
[127]. Thus, there have been successful implementations of KEH in commercial products
such as the Seiko Kinetic Watch [128], whose method was later tested as energy source

for pacemakers in [4] and [129], and for a wearable camera in [130].

In the field of wearable technology, piezoelectric generation and electromagnetic

induction are the two most studied methods to be used as complementary energy sources
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to batteries or even as battery replacement. The reason behind this interest is the compat-
ibility of piezoelectric generators and coils with micro-electromechanical systems (MEMS),
which means that these KEH technologies can be developed in a chip level, enabling
their use in a wide range of wearable and implantable devices [68], [127], [131]. Although
other methods such as electrostatic harvesting can be embedded into MEMS [17], they
require external batteries for polarization and operation purposes, while piezoelectric and
electromagnetic approaches can perform in a standalone fashion [29].

The power obtained from an electromagnetic induction harvester depends on the
variation rate of the magnetic field from a magnet moving inside a coil [29]. Therefore,
an electromagnetic kinetic harvester can be affected by the size of the magnet and by
the speed of induced vibrations. The size issue is augmented when this technology is
implemented in MEMS, since the magnet dimensions are highly restricted as well as
its mobility, decreasing the achievable energy scavenging [132]. Moreover, considering
the human body as vibration source, electromagnetic harvesting mechanisms may be
constantly exposed to excitation levels that fall short on making the magnet to move
fast enough across the coil, and hence, lead to poor harvesting performance [133].

On the other hand, PEGs do not suffer from performance detriments when imple-
mented in MEMS, since they can be implemented with very thin films and conserve the me-
chanical properties that allow energy scavenging [132]. Also, the harvesting energy depends
mostly on the mechanical characteristics of the materials, rather than vibration speed or
magnitude [20], [133]. The major disadvantage of PEGs is the high output impedance due
to the relatively high output voltage and low output current, which might represent an issue
in energy transference to a load [132]. However, several works in the literature have shown
significant advances to optimize the load coupling in PEG-based systems to mitigate this is-
sue [134]. Hence, in this thesis, piezoelectric energy harvesting (PEH) is chosen as the KEH

technology to study and implement in wearable devices for powering and sensing purposes.

5.3 Piezoelectric Energy Harvesting

The piezoelectric effect is a type mechanical-to-electrical energy conversion through the

bending or stress of certain materials such as the Polyvinylidene Difluoride (PVDF)
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Figure 5.2: Mechanical representation of a cantilevered PEG [29].

and the Lead Zirconate Titanate (PZT-5H) [135]. A PEG is formed by one or more
piezoceramic layers which are covered by plastic polymer and two electrodes.

Cantilevered structures are common for PEH in wearable set-ups, where the base
is rigidly attached to the vibration source (e.g. human body) and a tip mass on the
opposite end oscillates and bends the material to induce strain. Cantilevered PEGs can
be modeled with the lumped spring mass representation of vibrating beams found in [136],
which is later applied to PEGs in [29] as depicted in Figure 5.2. In this representation,
the mass of the tip M.nd and the PEG are added into an equivalent mass M, while the
subtraction of system displacement x from vibration y is the mass displacement at the
end of a spring with stiffness K and damping C'

After an extensive derivation from the model in Figure 5.2, which details can be

found in [29], Equation 5.1 links output voltage and applied on a strain as
V:gEgmabea (51)

where output voltage V' depends on the piezoelectric constant g of the PEG, the elasticity
modulus E of the cantilever material, the length L; of the cantilever beam, and the strain
¢ that can be maximized to €, if the tip mass M,.nd is located at the free end of the
cantilever beam.

Hence, when the PEG is exposed to dynamic strain, the piezoceramic layers generate
an AC voltage output on the electrodes, which is directly proportional to the applied
strain. For example, widely used materials such as the mentioned PVDF and PZT-5A
exhibit piezoelectric constants around 340 x 10~ Vm/N and 25 x 10~ Vm/N, respectively,
and can exhibit instantaneous voltage values up to 100V under strain levels which do not
break the beam [29]. However, The AC voltage must be converted to DC for powering

purposes, usually using a bridge rectifier and a capacitor followed by a parallel load; this
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Figure 5.3: Diagram of a PEH system.

structure is pictured on Figure 5.3.
The system depicted in Figure 5.3, and other PEH configurations different from the
cantilever, can be found in several works in literature into wearable set-ups, as it will

be shown in the following section.

5.4 Piezoelectric Energy Harvesting in Wearable De-
vices

KEH wearables which rely on PEGs have evolved through the last two decades. From the
early developments of an energy harvesting shoe in [22] to recent techniques to integrate
piezoelectric fibers into textiles in [137], PEH has been tested in several parts of the
body to assess the power generation capabilities of piezoelectric materials under vibration
induced by human motion. Nevertheless, since PEH is highly affected by load coupling,
due to the high output resistance of PEGs [20], [29], most of existing work exhibits tests
with resistive loads matching the PEG or in open-circuit conditions.

Shenck and Paradiso develop the first shoe-mounted PEH-powered system in [22],
which sends a RF beacon every time that the accumulated energy in the AC/DC con-
verter is enough for the RF transmitter to send. The system in [22] uses custom-made
PVDF and PZT transducer, while Meier et. al achieve similar harvesting results with
COTS PEGs in [138], expanding the reproducibility of these developments. Kalantarian
and Sarrafzadeh implement a COTS PEG in a shoe sole to power a Bluetooth beacon
transmitter and use the beacon frequency to estimate footsteps in [139]. Ma et. al follow

the shoe-mounted set-up and developed a system that harvests and extends the sensing
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function to gait recognition, using two PEGs for powering and sensing simultaneously
[140]. As it can be noticed, shoe-mounted PEH is a mature technology and has led to
the development of self-powered devices. Nevertheless, wearables to other body parts

are not as advanced in terms of energy harvesting assessment and powering sensors.

For example, De Pasquale et. al study how to exploit the motion of body joints like
elbows and knees using flexible piezoelectric patches in [141]. However, the system in
[141] is only tested with a 1 M2 resistive load, which is not representative of real-world
sensors or wearable loads. A similar idea with limitation of the resistive load is exhibited
in [66]. Mokhtari et. al developed an advanced method to integrate piezoelectric fibers
into textiles, being able to harvest energy from parts of the clothing that are exposed
to frequent bending as the knees [137]. The work of Jung et. al in [63] proposes a curved
PEG to be placed in shoes and wristwatches shows promising harvesting results, but their
custom-made proposal is yet to be followed. Also, the shell structured proposed by Yang
et. al in [64], which is made to be worn on the forearm, suffers from lack of potential for
reproducibility. In contrast to the works of shoe-mounted PEH, developments in [63], [64],
[66], [141] show promising results on specific situations or lab-controlled environments,

and they are bound to custom-made PEGs which are expensive to fabricate.

On the other hand, systems with COTS harvesters and placed on the hand /wrist
or the neck have shown further advances. For instance, Bai et. al investigate the impact
of random vibration induced by hand and head motion in a cantilevered COTS PEH
system in [142]. Nevertheless, they did not power any sensor or wearable device and
they only tested the system with a resistive load. Mendez-Lira et. al employ flexible
COTS piezoelectric patches to examine the energy generation from finger motion in [143],

although testing is limited to regular keyboard and mouse usage.

Kalantarian et. al take a step towards using PEGs as sensors in [144] and [145] with a
necklace to detect swallows to monitor eating habits. Similarly, Fang et. al employ flexible
piezoelectric patches to monitor physiological variables such as the heart rate in [146].
Nevertheless, Most advanced works of PEH-based sensing are found in [23], [147]-[150].
For example, Khalifa et. al use a COTS PEG as a sensor to replace the accelerometer in

a HAR system in [33], [147]. In [23], Lan et. al show a system for HAR but with a shoe-
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mounted PEH. A similar set-up to the one in [147] works for transportation mode detection
in [148]. Xu et. al also exhibit how gait recognition can be achieved with shoe-mounted
PEGs in [149]. Finally, the recent development in [150] by Lin et. al shows the potential

of using the generation patterns of a wearable PEH system for person authentication.

5.4.1 An Open Challenge

This section has revisited different PEH implementations in wearable environments, where
the shoe-mounted systems exhibit the greatest maturity. Nevertheless, existing works
on PEH for other body parts fall short on providing insights regarding the feasibility
of using COTS PEGs for self-powered devices or wearable battery chargers. As it can
be noticed, cited works provide tests with resistive loads, which do not represent the
nonlinear and variable behavior of PEH-powered devices, or only report the open-circuit
voltage. Thus, next section introduces a work which provides a significant insight on the
generation capabilities of a wrist-worn COTS PEH system under vibrations induced by

daily and fitness-related activities.

5.5 Monitoring Wearable Piezoelectric Harvesting

in a Mobile Platform

This section presents the results of logging the energy transference from a wrist-worn
piezoelectric harvester to a battery in a wearable device. Tests show that five minutes of
activities that involve arm motion can provide between 1.75 mJ and 2.98 mJ of energy;,
which can represent between 3.6 seconds and 6.2 seconds of additional battery duration.
Hence, these results provide an insight of the limitations and challenges remaining in the

piezoelectric-based kinetic harvesting field for wearable devices.
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Figure 5.4: Block diagram of the system.

5.5.1 System Components
Overview

The proposed design comprises two main features: kinetic harvesting from a piezoelectric
generator, and power transference tracking. For the harvesting task, the PEG shall be
followed by an AC/DC converter that permits the flow of the harvested current to a
battery through a controller.

For the tracking process, a device must measure the voltage and the current consider-
ing the very small currents and the low power available; and then, the information must
be constantly saved for the computation of the total transferred energy. Thus, Figure
5.4 displays the diagram for this study divided into four groups.

Group 1 comprises the PEG, which is the kinetic energy scavenger. Then, the
AC/DC conversion takes place within the components of Group 2. Group 3 contains
a reverse-protection diode, a current-measuring series resistor, and a charge controller
for a Li-ion battery. Group 4 is comprised by a series of diodes that creates a voltage
reference between the harvested voltage and an ADC input pin in a BLE-enabled ULP
MCU (Lilypad Simblee, as in Chapter 4).

The power monitoring system uses the MCU to read the rectified voltage from the
PEG alongside with the current, and reports them to a mobile application through BLE.

Following the reports, the mobile application computes the instantaneous power, and

Chapter 5 43



5.5. Monitoring Wearable Piezoelectric Harvesting in a Mobile Platform

Figure 5.5: Wrist-worn PEH-based kinetic harvester.

allows the estimation of the harvested energy specifying how much is transferred to the

MCU battery during any time interval selected by the user.

Piezoelectric generator

The PEG employed in this study is a COTS device, following the tendencies from [25],
(28], [147], [151]. In this case, I employ the PPA-1022 fabricated by Midé [152] for having
the smallest footprint; and hence, being most compatible to wearable technologies. Since
the frequency response of human activities take place below 10 Hz [34], the resonance
frequency of the PPA-1022 must be adjusted to maximize the harvesting process. Thus,
the resonance frequency of the PPA-1022 is trimmed to 10 Hz using a tip mass formed by
two neodymium magnets corresponding to a 20-gram moving mass. Due to the magnetic
force, the magnets stay attached to the PPA-1022 as shown in Figure 5.5. The device
configuration is designed to keep clamped 21 mm of the cantilever leaving 32 mm free for

deflections. All these conditions ensure a low resonance frequency, as explained in [152].

Energy Harvesting Circuit

As shown in Figure 5.4, following the PEG, the electronic circuitry allows processing
the AC output from the PEG to the DC input in a Li-ion battery through a charge

controller and the respective charge current monitoring. Thus, the first stage requires
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the electronics to perform the AC/DC conversion. A compact SMD DF02S diode bridge
with a 10 puF capacitor transforms the PEG output into DC voltage. The DF02S bridge
rectifier offers a 1.1 V voltage drop with a 5 A of maximum reverse current. Although
other works suggest the use of Schottky rectifiers, such diodes display higher reverse
currents compared to conventional rectifiers, which in a PEH-based system represents
poor rectification and high losses, since the PEG emulates a very-low current source [29].

The MCU used in this study is embedded in the RED77101 module, which is part
of the Lilypad Simblee board. The Lilypad board is specially designed for wearable
applications, and also contains a BLE radio and an ARM Cortex-MO0 processor [108].
The overall current consumption, considering internal components, is below 10 pA in
steady state. Also, this board incorporates a JST (Japan Solderless Terminal) connector
for the Li-ion battery and a MCP73831 charge controller to prevent overcharge and
overdischarge of the battery that supplies the board [153].

For this study, a 3.7V /110mAh single-cell Li-ion battery provides the energy for the
Lilypad Simblee. The MCP73831 permits a voltage supply range from 3.75 V to 6 V [153].
Therefore, any element that intends to transfer energy to the battery must have a supply
voltage of at least 3.75 V. When the charge controller is off, the internal connections of
the Lilypad board can lead the battery to supply elements connected in the voltage input
pin of the MCP73831 controller. In consequence, the reverse-protection diode is added to
prevent the battery to charge the capacitor in the harvesting circuit as shown in Group 3
of Figure 5.4. The resistor in series with this diode stands for current measure purposes.
By experimentation, I realize that the instantaneous current flowing from the AC/DC
converter reaches at most 15-20 pA. Consequently, a 10 k€2 resistor in series with the
charge controller helps to track the current through the voltage between its terminals,

and such voltage drop falls below a maximum of 0.2V.

Energy Harvesting Tracker

To perform a proper tracking of the current flowing to the charge controller, the MCU
needs measurements of the voltage in the capacitor, which is the diode-side terminal

of the resistor plus the diode voltage drop, and the controller-side of the resistor. The
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capacitor voltage rises to 4.3 V when the charging current is 20 uA. On the other hand,
the controller-side terminal of the resistor does not change from 3.75 V, which is the
minimum supply voltage for the controller. This phenomenon is due to the very-low
supply current. Hence, the system must interpret the 0.55 V difference to a 20 uA
charging current in this case. Since the voltage on the controller does not change under
the low-current conditions of this harvesting system, the tracking of the capacitor voltage
is enough to estimate the charging current. Also, the mentioned current conditions induce
a low voltage drop on the reverse-protection diode of 0.35 V. Then, the 0.55 V voltage

difference in this case corresponds to a 0.35V drop in the diode and 0.2 V in the resistor.

However, the MCU faces an issue in the voltage measuring process related to its
analog-to-digital converter (ADC). The Lilypad Simblee provides a 3.3 V regulation for
the MCU supply using a MIC5219 regulator [108]. In consequence, the ADC cannot
interpret voltages above that supply. As a solution, I propose the use of a series of
diodes that forces a voltage drop between the capacitor and the ADC to map the 4.3
V to 3.3 V. Thus, the capacitor must provide the energy for the battery and the voltage
input for the ADC. Nevertheless, this ADC has an input resistance of 19 M(2, which
represents a neglectable current loss compared to the controller. Since the current flowing
to the ADC stands below 1 A, the voltage drop on each diode is 0.25 V approximately.
Consequently, four series diodes accomplish the desired task of dropping 4.3 V to 3.3 V
with neglectable losses. The MCU samples the mapped capacitor voltage periodically,
every 100 ms. Then, it computes the real capacitor voltage assuming a total drop of 1 V
in the diodes. After this, assuming 0.35 V fall on the reverse-protection diode, the voltage
through the resistor is calculated and sent via BLE in a broadcasting event. Finally, the

MCU enters in a ULP sleep state during 99 ms to save energy.

Once the Lilypad Simblee sends the current data via BLE, a custom-made mobile
application for Android devices connects automatically to the Lilypad Simblee, receives
data, shows current as it comes and stores it for graphical analysis and energy estimation.

Figure 5.6 shows the two main views of this mobile application.

Figure 5.6(a) displays the Live tab. It contains an on/off switch that allows the

automatic reception from the wearable device. When the switch is activated, it requests
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Figure 5.6: Views of the mobile applications.

the user to enable the Bluetooth connections. Internally, the app tries to catch the broad-
casting signal of the pre-defined MAC address of the Lilypad Simblee. This configuration
permits automatic connection and reception. According to the BLE protocol, data must
be organized in different sets of features named services, which can contain different
features or characteristics [154]. Each characteristic is related to data within the service.
Every time the app detects a change on the value of a custom pre-defined characteristic
for the voltage value, it triggers a function which immediately gets the voltage on the 10
kS resistor and computes the charging current. After this, the current value is stored in a

local SQLite database and displayed in a label next to the switch, as seen in Figure 5.6(a).

The other main view is the Historical tab shown in Figure 5.6(b). This tab exhibits a
form which asks the user for a time window. After the selection of initial and final time
stamps, the user presses the Search button and the app queries the local database for the
data within the selected time window. Once the data are selected, the app plots a graph
of the current against time. Additionally, the current values are used to compute the
instantaneous power on the input of the charge controller, assuming a 3.75 V input voltage.

According to the measuring system, when the capacitor does not have enough voltage

to transfer energy, the voltage difference is negative from the system perspective. Although
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there is not current flowing from the battery to the capacitor, the app computes a negative
current. However, these negative values are internally related to non-charging states; and
therefore, ignored in the power computation. Thus, taking all the instantaneous power
values corresponding to positive current, the transferred energy from the kinetic harvester

to the controller is calculated with the help of a Riemann sum as presented in Equation 5.2:

E=) PAt, (5.2)
=2

where At is the length of the time window between the current sample and the previous
sample, P; is the instantaneous power of the ith-component in the resulting dataset, n
is the number of data found, and E is transferred energy to the controller during the
consulted time window. Nevertheless, the real amount of energy transferred to the battery

depends on the controller efficiency under these conditions.

5.5.2 System Evaluation

Once the harvesting tracker properly reports through the app, the system is tested to
validate its capabilities. Following the statements from [16], [25] about the location of
on-body kinetic harvesters, the system could be placed whether in the wrist or the hip.
For this study, the tests are performed with the system configured as a kinetic harvesting
bracelet. The device mounted in a wrist is depicted in Figure 5.5.

Ten subjects (six men and four women) are asked to perform four different activities
for 5 minutes each. All subjects carried out the activity set only one time to avoid
the influence of fatigue on the results. Since the goal is to characterize the battery
recharging from arm movements, the activities are selected considering the amount of
arm involvement in the selected movements.

The activity set comprises clapping, jogging, dribbling a basketball, and jumping jacks.
The jogging activity is performed around a college basketball court with speeds ranging
from 3 km/h to 6 km/h; clapping is maintained between 1 and 2 claps per second; for the
basketball dribbling, the subjects are asked to keep a pace of at least one dribble every
2 seconds, with the ball reaching the height of the hip of the subject in every bounce

and without body displacement; the jumping jacks are done at rates between 20 and
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Table 5.1: Energy transferred during each activity session.

Transferred energy after activitiesimJ]

Subject
Jogging  Clapping Dribbling — Jumping
1 2.80 2.98 2.18 2.18
2 2.36 2.75 1.94 1.88
3 1.75 2.24 1.92 1.80
4 2.16 2.29 2.07 1.97
5 1.95 2.82 1.86 1.89
6 2.07 2.59 1.94 1.77
7 1.96 2.67 1.95 1.93
8 2.25 2.46 1.79 2.21
9 2.14 2.00 1.76 1.75
10 1.83 2.63 2.00 1.84

40 jumps per minute. At the beginning of each session, authors corroborate with the
subjects that they do not feel any major discomfort that conditions their performance.
Then, the subjects execute each activity and they are asked to rest during at least 3
minutes. After every session, authors consult the corresponding time window in the
application and tabulate the estimation of transferred energy from the kinetic harvester
to the charge controller. Table 5.1 resumes the results obtained during experimentation.

Considering that the system battery charge capacity is 110 mAh, with a 3.7 V
nominal voltage, the total energy available in this fully charged element is 1465.2 J, using
the conversion factor of 3.6 from mWh to J. Since the results in Table 5.1 are in mJ,
calculating the percentage of battery saved does not show significant values. Instead, I
propose a different approach.

According to its datasheet, the RFD77101 consumes 600 nA in ULP sleep state and 8
mA while transmitting at 0dB [108]. Adding the quiescent currents of the MCP73831 and
the MIC5219 regulator, the Lilypad Simblee requires a total of 50 A during ULP sleep.
Therefore, for the configuration of the kinetic harvesting tracker, the board needs 18.3

wJ for the 99 ms of ULP sleep and 29.6 pJ for the transmission events, which includes
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Table 5.2: Additional working cycles obtained during activities.

Additional working cycles after activities

Subject
Jogging  Clapping  Dribbling Jumping
1 58.5 62.4 45.6 45.6
2 494 57.5 40.6 39.4
3 36.6 46.9 40.2 37.7
4 45.2 47.9 43.2 41.2
5 40.8 59.0 38.8 39.5
6 43.3 54.2 40.6 37.1
7 41.0 55.9 40.8 404
8 47.0 51.5 37.5 46.1
9 44.8 41.8 36.8 36.6
10 38.2 55.0 41.8 38.5
Minimum  36.6 41.8 36.8 36.6
Average 44.5 53.2 40.6 40.2
Maximum  58.5 62.4 45.6 46.1

waking up, ADC reading, and processing of the MCU. Hence, a working cycle is defined
as the process where the tracker sleeps, wakes up to measure and transmit, whose length
is 100 ms, it can be stated that each cycle requires 47.9 uJ of energy.

Consequently, the impact of the kinetic harvester on the battery can be quantified
in terms of additional working cycles. Thus, dividing the transferred energy by the cycle
energy can provide accurate information about the capabilities of the kinetic harvesting
process using PEGs. Table 5.2 shows the results in terms of additional working cycles.
Additionally, Table 5.2 contains three new rows for a better understanding of the results.
The average values evince the tendencies to obtain more harvested energy by jogging
and clapping than dribbling a basketball and jumping jacks. These results are due to
the consistent pace required by those activities. Nevertheless, clapping implies a faster
movement than jogging, which leads to a rapid charging of the capacitor and more power

transferred to the charge controller.
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Also, it must be noted that the difference between minimum and maximum values
in jogging and clapping are greater than the corresponding difference in dribbling and
jumping. Although the latter reports smaller tendencies compared to the other two
activities, they exhibit values that are very similar across subjects. This phenomenon
is caused by the nature of these movements. Dribbling a basketball, even for people who
are not experienced with such skill, forces similar deflections on the PEG among different
subjects. Jumping jacks provoke such effect, as well.

In contrast, some subjects clapped harder than others, inducing larger deflections
on the PEG. Also, the jogging style varied among subjects, and this determines the
involvement of arm movements and consequently the amount of vibration induced in
the kinetic generator. Finally, it must be noted that the harvested energy can supply
at least 36 additional working cycles, which can also be interpreted as 3.6 seconds of
additional battery operation. This approach for the measurement of the impact of the
energy harvesting system leads to a comprehensive view of the capabilities from actual
kinetic harvesters and the need to continue reducing the power requirements in wearable
devices. It can be stated that this PEG cannot provide enough energy to keep the
selected MCU working continuously. However, the growing tendencies of recent electronic
developments towards reduction of power consumption [155] could help to extend the

use of the harvested energy in a scenario similar to the presented here.

5.6 The Convergence Point of KEH and HAR

KEH has emerged as an energy-efficient technology for wearable devices, leveraging
human body motion to power devices or recharge batteries [9], [18], [32], [156]. The
insights on the performance of the wrist-worn piezoelectric kinetic harvester presented
here can be used to determine the suitability of using off-the-shelf devices to supply
self-powered systems in a wearable environment.

Furthermore, recent studies show the feasibility of using the voltage output of kinetic
harvesters as sensors for context sensing, instead of accelerometers and gyroscopes, where
the harvesters can work both as energy and information sources [23], [31]. In the case

of KEH-based HAR, the use of approaches based on handcrafted features causes a poor
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performance when it is compared to accelerometer-based HAR. Hence, next chapter
presents a solution for this issue based on concepts from deep learning such as CNNs,

LSTMs, data augmentation and transfer learning.
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Chapter 6

Enhancing
Kinetic Harvesting-based Activity

Recognition with Deep Learning

KEH-based sensing replaces conventional sensors with KEH devices. The main objectives
are to reduce the power consumption of the wearables due to sensors, and increase the
available power by using a KEH device to provide both energy and sensing information
through the generation patterns of the KEH device. The applications found in the litera-
ture for KEH-based sensing range from HAR [147] to user authentication [150]. Existing
KEH-based HAR systems rely on traditional machine learning approaches, mapping sig-
nals into representations based on a set of handcrafted features [23], [31], [33], [147], [151].
This methodology limits the performance of classifiers, since the suitability of a feature set
may change with scenarios, devices or datasets. On the other hand, ANN offer automatic
feature extraction with higher abstraction, at the cost of more computational requirements
and larger datasets [35]. ANN-based and different deep learning approaches have shown
higher performance over traditional machine learning algorithms in several disciplines [36].
For the case of conventional accelerometer-based HAR, the studies in [72], [95], [99], [100],
[157], [158] have shown how deep learning architectures outperform handcrafted feature-
based machine learning approaches. Consequently, a deep learning-based approach for

KEH-based HAR is a suitable alternative to improve existing classification performance.
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Nonetheless, deep learning algorithms require large amounts of data to acquire gen-
eralization capabilities and avoid overfitting. Human activity datasets are required to
have information from several subjects performing the same activities with different
styles, to maximize the generalization capability of the classifiers. However, obtaining
KEH data from numerous users to guarantee high motion variance might be impractical
and unfeasible. Therefore, to increase the KEH dataset size the system needs data
augmentation methods that generate synthetic data. This new data must resemble new
users performing the same activities from existing datasets, and introduce the necessary

variance to help the classifier to avoid overfitting.

Despite several efforts in the literature towards data augmentation in accelerometer-
based HAR [75], [76], there are substantial differences between accelerometry and KEH
signals that makes the latter a challenging object for data augmentation. These dif-
ferences have origin in the frequency behavior of the sensors. Accelerometers used in
wearable-based HAR have a low-frequency stable bandwidth up to at least 50 Hz [9], [57],
which makes them suitable to capture human motion that is typically bound to 10 Hz [34].
On the other hand, KEH devices exhibit a narrow relatively-high frequency bandwidth,
reducing their sensitivity in the band of human motion and introducing new challenges
on event recognition [33], [145]. Additionally, this difference in sensor nature leads to
different signal-to-noise ratios (SNR) between accelerometry and KEH signals. Voltage
output of KEH devices for HAR is prone to have lower SNR than accelerometer signals
due to the poor sensitivity in low frequencies and the several frequency harmonics induced
by the harvesting material [29]. Therefore, activity signals from kinetic harvesters might
exhibit higher interclass similarity than accelerometer signals, hardening the process of

distinguishing among classes in KEH-based HAR.

Another challenge for KEH-based sensing is the dependency on the on-body position
of the kinetic harvesting wearable and the dependency on the subjects who perform the
activities. Handcrafted feature-based approaches perform poorly when the device position
changes, or when the classifier is trained with information from few subjects and then is
exposed to an unknown subject [57], [99]. In the field of deep learning, transfer learning

is a well-known method to develop cross-domain algorithms where the knowledge from

54 Chapter 6



Enhancing Kinetic Harvesting-based Activity Recognition with Deep Learning

a source domain (e.g., known position or set of subjects) can be transferred to a target
domain [159]. However, there are no transfer learning-based works in the literature to

solve the issues of position and subject dependency in KEH-based HAR.

Hence, in this chapter, I present a solution to address the challenges of introducing a
deep learning architecture for KEH-based HAR, developing data augmentation for KEH

signals and applying transfer learning to solve subject and position dependency.

First, I propose a deep learning architecture composed by CNN and LSTM for
KEH-based HAR. This architecture is designed to be light-weight, which is critical
in wearable-oriented HAR applications [99]. It is demonstrated how this architecture
improves the classification accuracy compared to other approaches found in the literature
for KEH-based HAR, and how this superiority remains in different scenarios were the
input signals are affected by downsampling and length changes; both cases represent loss

of information, and the classifier still outperforms other algorithms in such scenarios.

Second, I present three data augmentation methods for KEH signals. The methods
described here are designed to augment KEH datasets by resembling new users performing
the same activities of the datasets, changing the motion intensity, pace and the event
location in the time series. These are the first augmentation methods proposed for KEH
signals. Existing methods, such as the weighted time warping from [76], are demonstrated
to be inefficient to improve the generalization capabilities of deep learning-based classifiers.
The methods proposed here are conceived to introduce intraclass variance but without
increasing interclass similarity. In contrast, other works found in the literature do not
show how their augmentation methods may affect the intraclass variance and interclass
similarity. Additionally, I study the limits of generalization improvement introduced
by the augmentation methods, with experiments to show how much can a dataset be

augmented before these methods induce overfitting.

Third, I apply transfer learning to solve the subject and position dependency issues in
the KEH domain. To address this, I take a public KEH dataset with signals from subjects
performing five activities in two different on-body positions: hand and waist. Then, I
apply transfer learning between position datasets and between users of the same position.

Moreover, I employ data augmentation in both source and target domains to display the
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positive impact that it has on transfer learning. The inclusion of data augmentation in
these approaches is what marks the difference with existing approaches in the literature,

where augmentation is not considered in any domain or case study [78], [80].

6.1 Limitations of KEH-based HAR

Recent studies [23], [33], [147], [148], [160] have shown the potential of leveraging energy
harvesting signals, i.e. the AC voltage output of a transducer, as an alternative to conven-
tional motion sensors for activity sensing. This KEH-based setup for HAR eliminates the
power consumption of the motion sensors and extends the battery lifetime of the wearable
system simultaneously. Thus, KEH-based HAR systems have the advantage of less overall
power consumption and more power available over conventional accelerometer-based
HAR systems.

However, there is a significant room for improvement of the classification perfor-
mance in KEH-based HAR systems. Most noticeably, owing to the low SNR of the
energy harvesting signal and the lack of a multi-channel sensing input [147], [160], ex-
isting KEH-based solutions fall short of recognition accuracy when comparing with their
accelerometer-based counterparts. As an example, Table 6.1 briefly summarizes the
representative works in KEH-based context sensing. As shown, given different contexts,
it can be noticed an accuracy gap from 5% to 37% between the KEH-based solutions
and the conventional accelerometer-based approaches.

The works cited in Table 6.1 employ traditional machine learning algorithms and hand-
crafted feature representations, which limits the performance that can be reached with
noisy signals as in the KEH domain. Handcrafted feature representation exhibits several
pitfalls such as task-dependency, and they can reduce classification accuracy in the pres-
ence of high intraclass variance (caused by several styles of performing the same activity) or
interclass similarity (due to activities that can exhibit similar sensor outputs) [57], [99]. In
contrast, automatic feature extraction with deep learning methods has arose as an alterna-
tive to overcome the mentioned pitfalls and reduce human effort in feature engineering [35].

Nevertheless, deep learning requires large datasets for a proper learning process. A

dataset for KEH-based HAR with deep learning requires hundreds of subjects to capture
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Table 6.1: Performance comparison of existing HAR systems using KEH or accelerometer

as the sensing modality.

Accuracy per sensor

Work Context
KEH Acc
(33] Human Activity Recognition 64% 96%
[147)  Human Activity Recognition 0% 95%
[151]  Human Activity Recognition 53% 90%

[148]  Transportation Mode Detection ~ 90%  ~ 95%

[149]  Gait-based User Authentication ~ 85%  ~ 95%

high variance of motions, providing the deep learning classifier with information to reduce
overfitting. Subsequently, it might be impractical and unfeasible to obtain a dataset with
numerous subjects. Therefore, augmenting datasets through the generation of new samples
that resemble new users can help to strengthen the generalization capability of the classifier.

Although some works have proposed data augmentation methods for accelerometer-
based HAR [75], there are no methods in the literature for KEH signals. Some of the
existing methods for accelerometer signals, such as the recreation of device rotations
through matrix transformations [75], are specific for multi-axis signals and not compatible
with KEH signals. Other methods, such as the time warping from [76] rely on weighted
averages of existing time series, which limits the intraclass variance to the variance provided
by the dataset and might induce classifiers to overfit, as shown in [77]. Hence, in this

chapter I propose to define data augmentation methods that are suitable for KEH signals.

6.2 System Overview

Figure 6.1 shows the pipeline of the proposed system for KEH-based activity recogni-
tion. This system has two main components: a data augmentation block, and a deep
learning-based classifier.

Given a dataset with activity signals from a KEH device, I split it into three subsets:

training, validation, and testing. The training subset is augmented using the methods
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Figure 6.1: Pipeline of the proposed system.

described later in Section 6.4, generating synthetic data that resembles new users; and
hence, increasing the variance of the training data. I propose three methods to augment
KEH signals: time warping, magnitude warping and permutation. These methods repro-
duce KEH signals under changes on motion pace and intensity, which are the scenarios

used to resemble new users.

The augmented training subset constitutes the input of the classifier in the training
process, while the validation subset is used to tune the weights of the neural network. The
proposed deep learning architecture leverages the feature extraction from one-dimensional
convolutional layers and the sequence building capability of recurrent neural networks.
The first layers of the architecture are CNNs, which can provide features with abstraction
levels directly proportional to the number of layers, capturing local dependencies and
scale variations. After the CNN, a LSTM layer learns from the time correlation of
features in a the KEH signal. Including time dependencies in the classifier, instead of
considering feature maps independent from each other, can help to classify signals under
high interclass similarity, like in the case of KEH signals due to their low SNR. At the
last part of the architecture, a fully-connected layer learns the interpret the sequence of

features given the LSTM and infer the class (activity) of the incoming samples.

Once the classifier is trained, the testing subset is used to assess the classification
accuracy of the system under unknown data with shared characteristics with the training
and validation subsets (e.g. device position or subjects). However, when the data
comes from a different device position or a new subject, classification accuracy can drop
significantly. Hence, to present a position-independent and subject-independent system, I
employ two transfer learning approaches for the adaptation of the deep learning classifier

to new device positions and new subjects. Moreover, to overcome the limitation imposed
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by restricted data availability in the new context (position or subject), I apply data
augmentation in several scenarios to show its impact in the transfer learning process; this

approach is explained later in Section 6.5.

6.3 Deep Learning Architecture

!

W\'lh w“ Wu“f»(/

Feature
maps

Input

1st 2nd LSTM layer Output
Convolutional Convolutional Convolutional layer
layer layer layer

Figure 6.2: Deep learning architecture for KEH-based HAR based on CNNs and LSTMs

to overcome the issues of traditional machine learning approaches.

Figure 6.2 presents the proposed deep learning architecture for KEH-based activity
recognition. This architecture consists of three convolutional layers, a max pooling layer,
a flatten layer, a LSTM layer and an output layer.

The first three layers are convolutional layers that provide advanced feature extraction.
Each one of these layers has ten units. The units in the first layer take a portion of the input
signal and compute features through convolution operations to form feature maps. The
set of features from all units in a layer is hereafter referred as feature map. The activation
function for the convolutional units is the ReLLU, which helps to reduce the possibility of
dealing with vanishing gradients during training. The following two convolutional layers
increase the level of abstraction by computing feature maps over the maps from the
previous layer. Hence, at the output of the third convolutional layer the system has ten
feature maps with a third level of abstraction. Then, the max-pooling layer downsamples
the feature maps by half, selecting the largest features and reducing dimension of the
maps, and followed by a flatten layer to transform data into a sequence for the next layer.

To build a sequence of feature maps, each sample signal is divided into smaller

windows which are analyzed by these first 5 layers. Subsequently, for each window a set
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of feature maps are passed to the LSTM layer. Thus, the LSTM layer takes the feature
maps of each window as input and discriminates among feature maps to select which
features are relevant. Then, by working with all the windows in a sample signal, this layer
builds a sequence of advanced features that represents the activity signal. Lastly, the
output layer uses the softmax function to provide a probability for each class, depending
on the sequence of features that comes from the LSTM layer. The class with the highest

probability is selected as the detected activity.

6.4 Data Augmentation for KEH

Despite the improvement that the proposed architecture can offer, this is only possible
if there is sufficient variance in the training data and the dataset is large enough to
avoid overfitting. Since increasing the dataset size is unfeasible in most scenarios, data
augmentation is employed to synthetically generate data and improve the generalization
capability of classifiers.

As shown in Chapter 5, the voltage output of a KEH device is directly proportional
to the applied strain, and such strain depends on human motion. In that system, the
differences in motion styles among users are assumed to be motion intensity, pace and the
order of events within an activity; in a KEH signal these differences are reflected in voltage
magnitude, spatial distribution of samples, and the location of even-related portions of
the signal, respectively. Hence, I propose three methods to augment KEH signal datasets,
which simulate new users performing the same activities with different styles. Magnitude
Warping resembles changes on the intensity of motions, affecting the magnitude of the
voltage output from the harvester [34]. Time Warping simulates changes of pace, which
is reflected on the time distribution of samples in the form of widening or tightening of
waveform portions. Permutation recreates subjects with similar motion intensity and
pace, but with a different observation window; this effect is similar to the window warping
exhibited in [161], but without changing the length of the inputs for the classifier.

Thus, let each time series f from a KEH signal dataset be considered as the input of
an operator H, i.e., augmentation method, which maps f into a new signal A belonging

to the same class (activity). Both f and h have the same length L, and the indexes of

60 Chapter 6



Enhancing Kinetic Harvesting-based Activity Recognition with Deep Learning

the samples of f are in 1={0,1,2,...,L—1}. Therefore, the augmentation methods are

defined as follows.

e Magnitude Warping: This method consists of a change on the signal shape with
a warping curve g. To achieve this, the operator randomly takes 10 points from a
normal distribution with unitary mean and standard deviation 0.5. Then, a cubic
interpolation function generates a warping curve g of the same length of the signal
using the points from the distribution. Through a point-wise product, the curve
and the original signal fuse to create a new signal, as depicted in Figure 6.3(a),
where the warping curve resembles an envelope around the warped signal. The

operator H for Magnitude Warping is defined in Equation 6.1.

H: frsh(i)=f(i)g(i) Vi l. (6.1)

e Time Warping: Similar to Magnitude Warping, a curve g is generated from a set
of points taken from the same distribution. Then, the operator calculates the cumu-
lative sum g of the curve points, which builds a Time Warping path. Consequently,
the indices in the original signal are replaced by the scaled indices in the cumulative
sum, changing the temporal distribution of the samples as shown in Equation 6.2.
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The scalar factor a keeps the values of § between 0 and L —1. Figure 6.3(b)
illustrates an example of this process, where a portion of the signal is temporally

stretched while another section is shrunk.

e Permutation: In this method, the original signal f is split into blocks as an
ordered tuple (fo,f1,.-.,fn), where the length of all blocks is set to 0.5 seconds so
each one can keep significant motion portions. Then, the blocks are shuffled by
assigning each block to a new position in the list (e.g. fi+> f;,), and a new signal

h; is obtained from the reordered blocks, as shown in Equation 6.3.

Hif: (fo,fl,...,fn)‘_)hj - (fj()7fj17""fjn)' (63)
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Figure 6.3: Examples of the three data augmentation methods to resemble new users

performing the same activities with the same device.

In this case, the 7 subscript indicates that these indices might change if the operator
H is applied again. An example of Permutation can be found on Figure 6.3(c),

where the re-positioning of two signals blocks is highlighted.

6.5 Transfer Learning for KEH-based HAR

The input waveforms of KEH-based HAR can be affected by changes on the harvester,

the subject, or the on-body position. A change of harvester implies different harvesting
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Figure 6.4: Transfer learning pipeline to adapt the proposed architecture to new sensing
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scenarios.

parameter values such as elasticity, dimensions, and piezoelectric constant. These changes
in KEH devices are studied and modeled in [34]. However, a change of subject or
device positions can produce waveforms that induce feature values which are outside the

expected ranges of the classifier.

Therefore, classifiers may easily overfit to specific scenarios and perform poorly when
the KEH device is placed in a different part of the body or is worn by new subjects.
This issue has not been previously studied in KEH-based HAR. Thus, I employ transfer

learning to help the classifier to adapt to new device positions and new subjects.

Figure 6.4 shows the pipeline of the transfer learning process. The source domain
refers to the KEH dataset which is used by the classifier to learn how to detect activities
from KEH signals. This domain can contain waveforms from a single device position or
a set of subjects whose data are going to be known by the classifier. Before the classifier
training, data augmentation is applied on the source domain to increase the variance on
the training data and the generalization capability of the classifier. After the training,
the convolutional layers of the proposed architectures are frozen by keeping the resulting
weights from the training. The other two layers are set to be re-trained with new data.
The purpose of freezing the convolutional layers is to maintain the advanced feature
extraction learned from the augmented source domain, but leaving the possibility open
for the classifier to learn new sequence of features in the LSTM layer.

Then, when the target domain (e.g. a KEH dataset taken from a new device position

or a new subject) is considered, the LSTM and the output layer are re-trained with the
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half of the data from this domain. This process ensures the use of the pre-trained CNNs
for feature extraction and a new sequence-of-features learning for the last two layers.
The employment of data augmentation for re-training is also considered in the System
Evaluation section. Finally, after the re-training, the architecture with the new weights is
assessed with the remaining half of the target domain. This assessment helps to measure

the effectiveness of the transfer learning process.

6.6 System Evaluation

This section shows the impact of data augmentation on the traditional algorithms and
the proposed architectures. Then, it discusses the effects of changing the default window
size and the sampling frequency in both position datasets. Finally, this section includes

the evaluation of the transfer learning in subject-wise and position-wise scenarios.

6.6.1 KEH Dataset

I use the public KEH dataset [147] for evaluation. It comprises five activities, which are
Running, Going Downstairs, Going Upstairs, Walking and Standing Still. The KEH
transducer is a PEH Volture V25W from Midé Technology. ! This PEH is sensitive to
vibrations between 40 Hz and 120 Hz; since human motion exhibits frequencies around
10 Hz and below [9], a tip mass of 7 g is attached to the PEH to increase the sensitivity
at lower frequencies. An Arduino Uno equipped with a 128 GB SD card records the AC
voltage output of the PEH at a 1 kHz sampling rate.

A total of ten subjects (four male and six female) participated in the experiments.
Their ages, weight and height range between 26 and 35, 58 and 91 kg, 154 and 185 cm,
respectively. Each subject performs the five activities at least once holding the device on
one hand and another time placing it in their waist. The data collected while the device
is on the hand constitutes the Hand dataset, and the data collected from the waist of
the subjects account for the Waist dataset.

The duration of each experiment varies per subject due to physical conditions and

Yhttps:/ /www.mide.com/
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Figure 6.5: Box and wishkers diagrams of instances per class among all subjects in the

datasets.

availability, and some subjects performed some experiments more than once, which can
introduce bias towards the classes (activities) with more instances. Figure 6.5 illustrates
this issue by showing a box and whiskers diagram of the number of instances per
class among all subjects. The Walking and Standing activities have a greater average of
instances per subject, while Going downstairs is the activity with less information available.

Thus, I take this distribution of instances per class into account to propose the

evaluation scenarios and the corresponding metrics in the following subsection.

6.6.2 Evaluation Setup

I propose two evaluation scenarios to assess the classification performance of the system.
The first scenario is hereafter referred as leave-one-position-out. In this scenario, the data
from the subjects in each device position is combined and the number of instances per class
is truncated to the size of the class with less instance, resulting in 50 and 52 instances per
class in the Hand and Waist datasets, respectively. The second scenario is called [eave-one-
subject-out. In that case, the number of instances per class is kept in the amounts that gen-
erate Figure 6.5, ranging from five to 16 instances per class per subject. Then, data is sepa-
rated by subjects and device positions, resulting in two position-related datasets (Hand and
Waist) containing data from ten subjects each one, and evaluating each dataset separately.

For the leave-one-position-out and leave-one-subject-out experiments I consider four
different classifiers. The first two are k-Nearest Neighbors (kNN) and Random Forest.
These are handcrafted features-based machine learning algorithms, which are used in

previous works on KEH-based HAR [69]. The other two classifiers are deep learning archi-
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tectures: the one presented in Figure 6.2, hereafter referred as CNN+LSTM architecture;
and a different version of it where the LSTM layer is replaced by a dense (fully-connected)
layer with the same amount of units, hereafter referred as CNN architecture. Hence,
the CNN architecture considers feature maps to be independent from each other, while
CNN+LSTM process the feature maps in correlated sequences. The comparison of these

two architectures allows to highlight the importance of combining feature extraction with

time dependencies in KEH-based HAR.

I employ cross-validation (five-fold for leave-one-position-out and ten-fold for leave-one-
subject-out) and compute the average testing accuracy for each algorithm. In each case
of cross-validation, there are training, validation and testing subsets. For the leave-one-
position-out experiments there are three folds for training, one for validation and one for
testing. This process is iterated until all five folds are used for testing. Similarly, the leave-
one-subject-out experiments include eight folds for training, one for validation and one for
testing; and the iteration process is also done until each of the ten folds is used for testing.

In the leave-one-subject-out experiments, each fold corresponds to the data from a subject.

For each experiment, I tune the number of neighbors for kNN and the number of trees
for Random Forest according to the validation accuracy induced by each parameter value;
the number of neighbors is varied between two a 50 and the number of trees between two
and 100. Hence, for each experiment there is a different parameter value for kNN and
Random Forest. According to Chapter 4, classification performance in these algorithms
does not change significantly when the number of neighbors and the number of trees

vary above the mentioned ranges.

In the case of the deep learning architectures, the validation accuracy is used in the
training process to determine when the neural network starts to overfit the training
subset, and then stop the training.If there is no early stoppage, the number of training
epochs is set to 200. The batch size is 32; the optimization algorithm for the learning

process is Adam [162] with a learning rate of 1x1073.

The performance of the algorithms is shown in both scenarios. In the leave-one-
position-out scenario the metric is the accuracy, since the number of instances per class

is the same for all activities; and hence, the results are not affected by any bias. On the
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other hand, in the case of leave-one-position-out the performance metric are the average
F1 score or F-score [163], to avoid bias towards classes with more instances, and the
accuracy to compare results with the leave-one-position-out experiments.

The deep learning architectures are deployed using Keras 2.3 on top of the Tensorflow
2.0 framework. The testing process is carried out in a desktop with an Intel i7-8700 CPU
and a Nvidia GTX 1080 GPU.

6.6.3 Validation of Data Augmentation Methods

This experiment demonstrates that the proposed methods can simulate new users and do
not introduce distortion that changes the class of the KEH signal, i.e., they do not increase
interclass similarity. For this purpose, I use the euclidean distance from Dynamic Time
Warping (DTW) to measure similarities between signals from different classes, subjects
and signals synthetically generated from data augmentation. I employ the API from
[164] to apply DTW in Python and obtain the euclidean distance between waveforms.
First, I compute the average euclidean distance between the signals of any two classes.
This measure helps to understand the level of similarity among classes. Then, I calculate
the average euclidean distance among the subjects of each class. Since the data augmen-
tation methods synthesize waveforms simulating new subjects and not new activities, I
corroborate this by measuring the distances between each signal and its corresponding
Magnitude Warping, Time Warping and Permutation output. The expectation for these
average distances is to be less or equal than the distance among intraclass subjects and
less than the distance to other classes. Figure 6.6 displays the results of this experiment.
Results for Running show the strong distinction between its waveforms and other
classes, while Going Downstairs exhibits very similar distances to Going Upstairs and
Walking. Regarding the augmentation methods, for each class, Time Warping and Magni-
tude Warping show average distances smaller than the average distance between intraclass
subjects, while Permutation exhibits distances close to the intraclass limit but does not
overpass it. For all classes, the distances from augmentation methods to the original
signal meet the expectations of being below the intraclass subjects distance. Hence, it

can be concluded that these methods can simulate new subjects without introducing
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Figure 6.6: Average euclidean distances between signals from different classes, subjects

of the same class, and respect to each augmentation method.

distortion that could change the class of the signal.

6.6.4 Impact of Data Augmentation Methods

Following the validation of the data augmentation methods, I investigate the impact that
each one and the combinations of them have in the classification performance. Thus, I
take the Hand dataset and run a five-fold cross-validation over it with the CNN+LSTM
architecture. For each testing fold, the four remaining folds are taken as the input of
the augmentation methods for training and validation, applying 20 times each method
separately and only for training. This process is iterated until each one of the five folds
has been used for testing.

As it can be seen in Figure 6.7, Time Warping (TW) increases the average accuracy of
the system up to 81%, while Magnitude Warping (MW) and Permutation (Perm) alone
cannot help to improve above 74%. Then, I combine the effects of Time Warping with
Permutation and later with Magnitude Warping to assess which combination provides
a positive effect in the accuracy.

Results in Figure 6.7 exhibit that combining the contributions of Time Warping,
Permutation and applying Permutation over Time Warping output in a composed set-up,
is a suitable augmentation option for this dataset, having reached the highest accuracy

compared to applying one method only or the combination of the three of them. Therefore,
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Figure 6.7: Comparison of augmentation methods in the improvement of classification
performance. Time Warping combined with Permutation induce the highest improvement.

Magnitude Warping has least positive impact on classification accuracy.

I study the limits of performance improvement with this augmentation methodology by
increasing the amounts of application to 30 and 50 times.

The application of Time Warping and Permutation by 30 times and 50 times induces
accuracy shifts to 86% and 83%, respectively. The detriment in the step from applying
augmentation 30 times to 50 times is due to the limited intraclass variance (evidenced
by the distances in Figure 6.6) that can be obtained from the original dataset. This
issue leads to overfitting as the new synthetic data start increasing in similarity to other
instances. This phenomena is also presented in [77], where Time Warping falls short to
improve datasets with large amounts of instances. Since Time Warping is among the
selected methods, this phenomena of limited intraclass variance is expected. However,
the combination of Time Warping, Permutation and their respective composition, applied

30 times, is the selected augmentation methodology for this dataset.

6.6.5 Leave-one-position-out Experiments

Now, for the leave-one-position-out scenario, I consider the Hand and Waist datasets
separately. In this case, the performance metric is the average testing accuracy from a

five-fold cross-validation. With a sampling frequency of 1 kHz and a window size of five
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seconds, the Hand dataset has 50 instances per class, while the Waist dataset has 52
instances per class; each instance is 5000 samples long. During the pre-processing, the
instances are taken with an overlap of 50% from the dataset time series.

To observe the effect of data augmentation in each classifier, the experiments consider
the classification performance with and without augmenting the training datasets on
each iteration of the cross-validation. Figure 6.8 shows the impact of implementing data
augmentation in both datasets to improve classification accuracy.

In the Hand dataset, kNN and Random Forest exhibit small accuracy variations
before and after augmentation; improvements achieve only 4% for kNN and 1% for
Random Forest with data augmentation. On the other hand, deep learning architectures
show a notable benefit from augmentation; CNN architecture accuracy comes from 47%
to 68%, and the proposed CNN-+LSTM improves from 57% to 86%, outperforming all
algorithms by at least 13%.

In the Waist dataset, kNN improves from 65% to 70% and Random Forest enhances
from 78% to 79%. In the proposed architectures, CNN blasts from 47% to 77%, and
CNN-+LSTM rises from 70% to 87%, keeping a difference of at least 8% with other
algorithms.

Therefore, the combination of the selected augmentation methods and the CNN+LSTM
architecture outperforms other classifiers in an scenario with equal number of instances per
classes, avoiding the bias towards activities with more instances. Now, next experiments
examine how the two parameters that characterize the time series in this dataset (the
window size and the sampling frequency) can affect the performance of the classifiers

in this experiment after augmenting the respective training sets.

Effect of Window Size

I take the position datasets from the leave-one-position-out experiments and change the size
of each observation window to obtain instances of four, three, two and one second; the over-
lap is maintained at 50% for all cases. Then, I run five-fold cross-validation experiments
similar to leave-one-position-out and plot the results for each algorithm in Figure 6.9.

In both cases of Figures 6.9(a) and 6.9(b) the average accuracy increases with the obser-
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Figure 6.8: Average accuracy before and after applying data augmentation on the
training set of each position dataset. The proposed CNN+LSTM architecture takes
the highest benefit of data augmentation and outperforms other algorithms when the

device is located on the hand and on the waist.

vation window size. The results exhibited in Figure 6.9(a) show how CNN+LSTM keeps
a difference of at least 10% with window sizes ranging from two seconds to five seconds,
for the Hand dataset. Even when the window size is one second, the CNN+LSTM out-
performs CNN, kNN and Random Forest, with a margin of at least 8%. Even with larger
window sizes, KNN and Random Forest maintain an accuracy below 70%. In the Waist
dataset, Figure 6.9(b) confirms that CNN+LSTM exhibits higher average accuracy than
the other algorithms by 2% with the smallest window size and by 8% with the largest one.

In all cases, the proposed architecture keeps a superior performance over other approaches.
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Figure 6.9: Averaged accuracy of the four classifiers given different window sizes.
Regardless of the classifier, the recognition accuracy increases with the window size. The

proposed CNN+LSTM model outperforms the other classifiers in each device position.

Effect of Sampling Frequency

Now, I downsample the signals from the leave-one-position-out experiments with new
sampling frequencies: 500 Hz, 100 Hz, 50 Hz, and 10 Hz. The respective results of a

five-fold cross-validation for all classifiers are plotted in Figures 6.10.

For the Hand dataset (Figure 6.10(a)), it can be observed a severe accuracy drop from
86% to 72% in CNN+LSTM; and even though, this architecture remains with the highest

average accuracy for all cases. For the Waist dataset (Figure 6.10(b)), the accuracy drop
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Figure 6.10: Average accuracies of the four classifiers with different sampling frequencies
on the signals of each position dataset. Regardless of the sampling frequency, the accuracy
increases with the sampling frequency and the proposed CNN+LSTM architecture

outperforms other classifiers in both device positions.

is only 6%, keeping the difference of at least 10% with the other algorithms in all sampling
frequencies. Performance of all algorithms decreases with sampling frequency; in particular,
the accuracy of kNN and Random Forest falls below 60% in both datasets. This detriment
is due to the loss of information for the calculation of handcrafted features. Nevertheless,
CNN and CNN+LSTM leverage the ability of automatic feature extraction to obtain

characteristics from the time series, even when the downsampling goes down to 10 Hz.
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6.6.6 Leave-one-subject-out Experiments

Now, I study the performance of the classifiers when they are tested with data from an
unknown subject. This scenario consists of a ten-fold cross-validation, where each fold cor-
responds to the data of a subject. In an iterative fashion, each subject is left out for testing,
while the remaining nine are used for training (eight subjects) and validation (one subject).

Also, these experiments differ from the leave-one-position-out in the number of in-
stances per class. In this case, the amount of instances per class is not truncated, but
instead, it is left as in the original KEH dataset. However, the data is separated by the
on-body device position, like in leave-one-position-out. Thus, the average F-score across
subjects for the Hand and Waist datasets (before and after augmenting the training
datasets) are reported in Figure 6.11. In this case, F-score takes into account the amount
of instances per class; hence, the reported result are weighted averages over all classes.

Figure 6.11 corroborates the superior performance of CNN+LSTM in this approach
without bias towards classes with more instances. In the Hand dataset, CNN+LSTM
outperforms the other algorithms by at least 5%, while in the Hand dataset the margin is
at minimum 4%. As in the leave-one-location-out experiments, kNN and Random Forest
exhibit modest improvements between 1% and 7% after data augmentation is applied on
the training datasets. However, CNN and CNN+LSTM leverage augmentation presenting
F-score improvements of 10% and 23% in Hand, and 32% and 24% in Waist, respectively.

Although the F-score seems to exhibit a pessimist picture of the systems, it helps to
assess the strength and pitfalls of the classifiers when there is no bias towards classes with
more instances. When the metric is change to accuracy, the superiority of the proposed
architecture is more evident, as shown in Figure 6.12.

The accuracies reported in Figures 6.12(a) and 6.12(b) are the average after taking
each one of the ten subjects as testing dataset, before and after augmenting the testing
dataset. The proposed CNN+LSTM architecture exhibits an average accuracy of 76% in
Figure 6.12(a), which 8% above CNN and 13% above kNN and Random Forest. Similarly,
Figure 6.12(b) evinces an accuracy margin of 8% between CNN+LSTM and CNN, and
18% between CNN+LSTM and conventional handcrafted feature-based algorithms. As in

the leave-one-position-out experiments, these results also show how the deep learning archi-
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Figure 6.11: Average F-score for the leave-one-subject-out scenario before and after
augmenting the training datasets. Without the bias towards classes with more instances,
CNN+LSTM still outperforms other algorithms and takes the most benefit of data

augmentation.

tectures leverage the increasing of the variance in the training datasets, while conventional

algorithms cannot improve their performance significantly with data augmentation.

6.6.7 Transfer Learning Experiments

Below, I examine the performance of the proposed CNN-+LSTM architecture when it
is exposed to new sensing scenarios. Specifically, I consider the cases when the system is

applied to a new subject and deployed at a new body position. Thus, the two scenarios

are explained as follows.
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Figure 6.12: Average accuracy for the leave-one-subject-out scenario before and after
augmenting the training datasets. These results highlight the higher performance of
CNN-+LSTM over the other algorithms when data augmentation is applied on the

training datasets.

e Subject-wise transfer learning: I take a dataset and split it according to the
contribution of each subject. In an iterative ten-fold cross-validation, each subject
is considered as the target domain, while the remaining are considered source
domain altogether. This approach reflects the capacity of the system to adapt the
knowledge from previous subjects to classify data from a new subject.

e Position-wise transfer learning: I consider a position dataset as source domain
and other as target domain. This situation provides an insight of how the system

can adapt to on-body position changes.
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Subject-wise Transfer Learning

Now, the following experiments discuss the ability of the CNN+LSTM architecture to
transfer knowledge from nine subjects (source domain) to a new subject (target domain),
in each position dataset. After a pre-training on the source domain, the weights of the
convolutional layers are maintained, and the LSTM and output layer are re-trained with
the half of the data from the target domain and tested with the other half. Finally, the

average accuracy on each subject as target domain is computed.

To study the effects of applying transfer learning and data augmentation, six cases
are considered in each dataset, contained in two sets of three cases depending whether
transfer learning is applied or not. For each set, the three cases are: no augmentation,
augmentation on source domain and augmentation on both source and target domain.
In the case of not applying transfer learning, the first two cases coincide with the leave-
one-subject-out experiments for CNN-+LSTM. Thus, the six considered cases are: no
transfer learning with no augmentation (No TL 4+ No DA), no transfer learning with
source domain augmentation (No TL 4+ DA on source domain), no transfer learning with
augmentation on both domains (No TL + DA on both domains), transfer learning without
data augmentation (TL + No DA), transfer learning with source domain augmentation
(TL 4 DA on source domain) and transfer learning with augmentation on both domains
(TL + DA on both domains). The baseline case is No TL + No DA. Figures 6.13(a) and

6.13(b) display the results for the Hand and Waist datasets, respectively.

In both datasets the baseline performance without transfer learning and data augmen-
tation is below 50%. Without data augmentation the system is clearly overfitted to the
source domain, since its ability to classify signals from the target domain is very poor and
the source domain does nit have the size and intraclass variance to effectively train a deep
learning classifier. Thus, transferring knowledge without data augmentation only improves
the accuracy in 12% for the Hand and 14% for the Waist dataset. Augmenting the
source domain improves the generalization capabilities of the CNN+LSTM architecture,
boosting the accuracy up to 77% and 73% for the Hand and Waist datasets, respectively.
Transfer learning in this scenario eases the work of the classifier, which reaches accuracies

of 86% in both datasets.
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Figure 6.13: Average accuracy of applying transfer learning in a subject-wise scenario
without data augmentation, applying it only on source domain, and applying it on both
domains. The proposed transfer learning approach along with the proposed augmentation

methods can boost the accuracy to classify data from unknown subjects up to 88%.

Finally, if augmentation is also applied in the target domain, increasing the intraclass
variance on the testing set, the classifier exhibits a 4% accuracy detriment in the Hand
dataset and 5% with the Waist dataset. However, the classifier reaches its maximum
performance when, besides augmenting the target domain, there is knowledge transferred
from source domain. Hence, CNN+LSTM obtains average accuracies of 88% and 87% for
Hand and Waist, respectively. These results demonstrate the benefits of transfer learning

and data augmentation in both domains, even with biased datasets.
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Figure 6.14: Average accuracy of applying transfer learning in a position-wise scenario
without data augmentation, applying it only on source domain, and applying it on both
domains. The proposed transfer learning approach along with the proposed augmentation

methods can boost the accuracy to classify data from unknown positions up to 80%.

Position-wise Transfer Learning

The last set of experiments examines the system capability to adapt to different on-body
positions of the device. Therefore, I consider each position dataset as source domain while
the other dataset acts as target domain. To observe the effects of transfer learning and
data augmentation, the same six cases of the subject-wise scenario are considered. Figure
6.14 resumes the test accuracies for each scenario before and after transfer learning.

Evaluating the classifier with data from another device position, without transfer
learning or data augmentation, exhibits a poor performance of 51% training with the
hand dataset and testing with waist (Hand to Waist), and 43% on the opposite case
(Waist to Hand). However, data augmentation on source domain improves significantly
the Waist to Hand case, by a 16%, while the Hand to Waistt does by only 2%. Without
transfer learning, augmenting the target domain seems to not benefit substantially the
classifier, since in Hand to Waist there is no change in accuracy and in Waist to Hand
it only changes from 59% to 61%.

Nevertheless, transfer learning plays a significantly beneficial role for Waist to Hand in
all augmentation cases: without augmentation, transfer learning induces an improvement

from 43% to 63%; augmenting the source domain, the knowledge transference helps to
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shift from 59% to 73%; and augmenting both domains the increasing is from 61% to 80%.
However, in the case of Hand to Waist, the accuracy increment from transfer learning
is present after introducing data augmentation: augmenting the source domain, transfer
learning increases the accuracy from 53% to 74%; and augmenting both domains, the
knowledge transference induces a shift from 53% to 78%. Thus, both final results show
how the combination of data augmentation and transfer learning can help to build robust

models with consistent performance when the on-body position is changed.
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Conclusion and Future Work

7.1 Research Contributions

e The development of a smart physical workload tracking system that allows health
and fitness professionals to monitor several people simultaneously and remotely with
a real-time activity recognition accuracy of at least 85%, which is critical in manufac-
turing and sport industries. To the best of my knowledge, this solution integrating

the physical workload concept has not been previously explored (Chapter 4).

e The inclusion of a well-known concept from ergonomics (Frimat’s criteria) into a real-
time e-health application. This is achieved by embedding the workload computation
and activity classification on a mobile application that integrates the signal from a
hip-placed accelerometer and a wrist-placed photoplethysmography sensor. To the

best of my knowledge, this approach has not been presented before (Chapter 4).

e A case study is presented regarding the physical progress of a volunteer by tracking
his physical workload for twenty days while he performs the same routine. This case
study evidences that Frimat’s score can provide enough information to determine
the level of fitness progress of a person that intends to train using physically

demanding exercises (Chapter 4).

e A novel approach to measure the harvested power from a piezoelectric generator

using the conditions of input voltage and current imposed by its load. The ab-
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sence of a fixed linear load motivates this method where currents on the order of
microamperes are measured by studying the behavior of the piezoelectric generator

with a nonlinear load (Chapter 5).

e A wrist-worn piezoelectric harvesting-based battery charger for wearable applica-
tions. This prototype is tested with daily activities to assess its harvesting capabili-
ties under human motion excitation. The results provide insights on the feasibility of

using commercial piezoelectric harvesters for self-powered wearables. (Chapter 5).

e A deep learning architecture to improve existing classification accuracy of KEH-
based activity recognition. This architecture outperforms existing approaches
presented in the literature by up to 17% when the KEH device is located in the
hand of the subjects, and by 10% when it is located in the waist. Moreover,
the proposed classifier outperforms other algorithms with margins up to 15% of
accuracy under changes of signal observation window size and sampling frequency

reductions (Chapter 6).

e Three data augmentation methods that allow the creatation of synthetic waveforms
simulating new users wearing the kinetic harvester. These methods enable the
superior performance of the deep learning architecture. Chapter 6 shows how these
methods do not change the signal classification but, instead, they help to increase

the generalization capability of the classifier (Chapter 6).

e Two transfer learning approaches to obtain subject-independent and location-
independent models. Additionally, the impact of combining transfer learning with
data augmentation to improve classification accuracy is studied. This combination
results in an improvement of 19% when the classifier is exposed to data from a

unknown location or subject (Chapter 6).

7.2 Future Directions

e Personalized inference of physical workload: The healthcare application pre-

sented in Chapter 3 regarding physical workload computation can be extended to
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the design of workstations. Recommendation systems are well-known in the field
of machine learning for using clustering algorithms to provide suggestions based
on subject preferences. Thus, the history of a subject’s activity and workload data
can be used to feed a predictor that models the physical exigency of certain job
or workstation for the subject. Additionally, this line of work can be applied in
sports to model the performance of an athlete and serve as an auxiliary mechanism
to find aspects of improvement, e.g. activities of their sport were the physical
demand perceived by the body has to decrease in order to be more effective. The
challenges of a development for this application would be related to the design of
the prediction system and the ability of the system to evolve its knowledge as the

physical performance of a subject evolves.

e Data augmentation of kinetic harvesting signals with generative adver-
sarial networks: In computer vision, generative adversarial networks (GANs) have
been progressively used to augment image datasets in several medical applications
where anomaly images are hard to obtain. Hence, GANs can be configured to
augment KEH datasets. In principle, GANs learn the characteristics of each class of
KEH signals and then acquire the ability to generate new waveforms that maintain
those characteristics. This solution may overcome the limited intraclass variance
that the proposed methods in Chapter 6 exhibit. Subsequently, GANs could be able
to augment datasets more than is shown in Chapter 6 and the classification per-
formance with deep learning architectures can be higher. Moreover, this approach
might be employed to improve transfer learning by obtaining synthetic data that sim-
ulates the new device location or a new subject. However, achieving this resemblance
of new conditions requires data to train the GAN, which can lead to use other data
augmentation methods to facilitate this training process. Possible challenges come

with network tuning and training to achieve the mentioned augmentation goals.

e MEMS integration of multi-axis piezoelectric harvesting for context
recognition: One of the main advantages of piezoelectric harvesting over other
kinetic technologies is the compatibility with MEMS. On the other hand, context

sensing with kinetic harvesting signals can be improved significantly improved with
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information from multi-axis sensing instead of the existing single-axis approaches.
Hence, replacing tri-axial accelerometers with multi-axis piezoelectric harvesters in
MEMS is a method to eliminate the power consumption by a motion sensor, have a
supplementary or primary energy source in the harvester and obtain better sensing
results than the existing developments in the literature. Challenges regarding the
harvester durability can appear, since thin piezoelectric material can deteriorate

rapidly when they are exposed to constant bending.

Kinetic harvesting-based motion recognition for gaming applications:
Modern virtual reality systems and gaming consoles rely on motion tracking to
provide an attractive user experience. Implementing kinetic energy harvesting to
enable self-powered devices, relying on KEH-based motion recognition, might be
a promising application for the developments shown in this thesis. Challenges
regarding the user-dependent motion intensity and device posture recognition could
arise, requiring multi-axis harvesting and advanced classification techniques to allow
a reliable performance. Moreover, gaming applications demand low-latency systems,

setting a non-negotiable characteristic for the developments towards this area.
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