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Abstract

In this thesis we introduce the notions of the stable Lévy process and the scaled

Wright function within the discrete setting. Using these notions, we prove a sub-

ordination principle which will be used to investigate different classes of discrete-

time fractional difference equations. In addition, we introduce the Banach space

of (N, λ)-periodic vector-valued sequences. Moreover, we show the existence and

uniqueness of (N, λ)-periodic solutions to a class of abstract Volterra difference

equations as well as of fractional difference equations.

Keywords. Difference equations; Fractional difference equations; Volterra dif-

ference equations; Subordination principle; Stable Lévy process; Scaled Wright

function; (N, λ)-periodic discrete function.
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Introduction

The theory of fractional difference equations has gained importance in recent

years as it has made possible better describe different phenomena that present a

discrete in time evolution. We refer to the references [50] for applications to a class

of specific systems, [8] for applications to chaotic systems with short memory and

image encryption, [49] for applications to fractional discrete-time neural networks,

[76] for applications to image enhancement and [77] for applications to Lyapunov

functions for fractional difference equations. See also the works [19, 30, 39, 48, 68,

75, 79], to mention only an excerpt from the long list of relevant publications.

Nowadays, the theory is being developed in two main areas of discussion: scalar-

valued and operator-valued setting. Whereas the scalar-valued setting is relatively

older, the vector-valued theory began to be discussed only recently in [56] and later

by other authors; see e.g. [3,5,6,45] where the authors studied aspects as maximal

regularity, stability and fractional discrete resolvent operators, among others.

In the vector-valued side, there are problems which have not been considered in

discrete time-fractional order yet. For instance, there is great interest in fractional

problems and its asymptotic behavior [4, 25, 51, 80]. Whereas in continuous time,

there is an amount of papers which deals with this issue, see for example [27,28,53]

and references therein, the problem of study the large-time behavior of solutions in

discrete time for a fractional version of the d-dimensional heat equation, remains

open.

Concerning methods, the concept of discrete α-resolvent sequence {Sα,α(n)}n∈N0

is an important tool to have an explicit representation of the solution for the

Cauchy problem in discrete-time

RL∆
αu(n) = Au(n+ 1), u(0) = u0, n ∈ N, (1)

12
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where A is a closed linear operator defined in a Banach space X , 0 < α ≤ 1 and

RL∆
α denotes the fractional forward difference operator in Riemann-Liouville like

sense (see [45, 55]). In [5], the authors proved that one of the main properties of

α-resolvent sequences associated to equations of type (1) is that their definition

implies that 1 ∈ ρ(A), the resolvent set of A, and that there exists a scalar

sequence {βα,n(j)}n,j∈N such that

Sα,α(n)x =

n∑

j=1

βα,n(j)(I − A)−(j+1)x, x ∈ X, n ∈ N. (2)

This result is very important for the theory because subordinates the solution of

the problem (1) in case 0 < α < 1 to the solution of the problem (1) in the simple

case α = 1, namely

T (n) := (I −A)−(n+1), n ∈ N0. (3)

Nonetheless, a closed and precise description of the scalar sequence {βα,n(j)}n,j∈N,
was not given in [5] and was left as an open problem.

In more general situations, it is well known that the Riemann-Liouville and Ca-

puto operators in continuous time are particular cases of the (continuous) Hilfer

operator [46]. The study of Cauchy problems which involves the Hilfer opera-

tor have as a main ingredient resolvent families [43, 62]. However, in the case of

the discrete Hilfer operator, not much seems to be known about discrete Cauchy

problems and discrete resolvent sequences of operators.

On the other hand, a fundamental aspect in the qualitative study of the solu-

tions of evolution equations in discrete time is their periodicity or anti-periodicity,

among other issues.

In the papers [11,35,52], the authors analyzed several scalar discrete-time periodic

systems and got periodic solutions of second kind. Periodic functions of second

kind were introduced and studied by G. Floquet in [38]. The Floquet theory
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is important to study different mathematical models, for example the predator-

prey model (see [22]). For additional related applications, see [26, 32] and the

references therein. Although several authors have worked with this type of real-

valued sequences (periodic of second kind), so far none has mentioned the vector-

valued case.

As a first model example, we note that in the last years Volterra difference equa-

tions have been considered in several applied fields and nowadays there is a wide

interest in developing the qualitative theory for such equations [10,12,13,24,31,73].

In particular, in the reference [12], the authors considered nonlinear Volterra dif-

ference equations of convolution type on a Banach space X , namely

u(n+ 1) = σ
n∑

j=−∞

a(n− j)u(j) + f(n, u(n)), n ∈ Z, σ ∈ C, (4)

where the kernel a and the nonlinear term f satisfy suitable conditions. It should

be noted that the study of vector-valued periodic solution of second kind for

Volterra difference equations (4) does not exist at this time and deserves to be

investigated.

As a second model example, we observe that the existence of solutions for the

abstract fractional difference equation

∆α
Wu(n) = Au(n+ 1) + f(n, u(n)), n ∈ Z, (5)

where 0 < α ≤ 1, ∆α
W denotes the fractional difference operator in the Weyl-

like sense, A is a closed linear operator defined on a Banach space X and f is

given, began to be studied in the articles [56] and [45] in its linearized form.

Subsequently, maximal regularity in Lebesgue spaces of sequences was studied

in [59]. In case A is bounded, weighted bounded solutions were studied in [60].

In [5], the existence of almost automorphic mild solutions was studied. However,

the existence and uniqueness of second kind periodic sequence solutions for (5) is

still an open problem.
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The overall purpose of this thesis is to study conditions to guarantee the existence,

uniqueness and qualitative properties of solutions for the above mentioned classes

of models in discrete time. Thus, motivated by what is described above, we will

consider the following four specific problems:

In the first problem, we investigate the large-time behavior of solutions for the

following discrete in time fractional diffusion equation

C∆
αu(n, x) = ∆xu(n, x), n ∈ N, x ∈ Rd,

u(0, x) = f(x),
(6)

where 0 < α ≤ 1, C∆
α denotes the Caputo fractional backward difference opera-

tor, ∆x denotes the Laplace operator acting in space, u is defined on N0×Rd and

f is a function defined on Rd.

We would like to address the following questions: Is there an explicit representa-

tion of the fundamental solution of the equation (6)? Are there conditions for the

asymptotic decay of solutions?

In our second task we would like to answer the following open problem: Is it

possible to give an accurate description of the scalar sequence {βα,n(j)}n,j∈N? In

particular, can we use families of operators to obtain a subordination principle in

the discrete case for the Cauchy problem involving the Hilfer difference operator?

The third problem, that we address in this thesis is the following: Can we find

conditions that guarantee the existence and uniqueness of (N, λ)-periodic solutions

for the class of Volterra difference equations (4)?

Finally, in the fourth problem, we ask: Can we find (N, λ)-periodic solutions for

the abstract fractional difference equation (5)?

In order to address the above-mentioned issues, we will proceed in the following

way.
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We introduce initially a new notion of Lévy α-stable distribution and scaled

Wright function on discrete time (see Chapter 2) as follows:

The Lévy α–stable distribution on discrete time is defined as

lα(n, j) =

j∑

i=0

(
j

i

)
(−1)ik−αi(n), 0 < α ≤ 1, n ∈ N0, j ∈ N0,

where kγ is a sequence initially defined as

kγ(n) :=





γ(γ + 1) · · · · · · (γ + n− 1)

n!
, n ∈ N,

1, n = 0.

We will prove that the discrete Lévy α–stable distribution satisfies two important

properties:

0 ≤ lα(n, j) ≤ 1 and
∞∑

i=0

lα(i, j) = 1.

See Section 2.1 below. With this notion of Lévy α–stable distribution on discrete

time, we finally find that

βα,n(j) = lα(n, j), n, j ∈ N.

This solves the first part of the second open problem proposed in this thesis.

Next, for 0 ≤ β and 0 < α ≤ 1, we introduce the discrete scaled Wright function

ϕh
α,β (see Section 2.1) given by

ϕh
α,β(n, j) :=

1

2πi

∫

Υ

1

zn+1

(
1− h(1−z

h
)α
)j

(1−z
h
)β

dz, j, n ∈ N0, h > 0,

with ϕ1
α,β(n, j) ≡ ϕα,β(n, j), and we show that ϕα,0(n, j) ≡ lα(n, j). Further, we

define the concept of (α, ν)-resolvent sequence (see Section 3.1) that includes the

notion of α-resolvent sequence when α = ν.
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The first problem will be then solved in the following way. Firstly, we use the

discrete scaled Wright function to write the solution of (6) as follows

u(n, x) =

∞∑

j=1

ϕα,1−α(n− 1, j − 1)(Gj ∗ f)(x), n ∈ N, (7)

where Gj is the discrete Gaussian kernel associated to the discrete in time heat

problem given in [1]. A relevant fact of (7) is that we get an equivalent represen-

tation using the Gaussian kernel or the Fox H-function as Proposition 2.2.4 and

Proposition 2.2.5 show. Moreover, we state basic properties of the fundamental

solution of (6). One of them is that the integral over Rd of the fundamental

solution is 1, which gives directly the mass conservation principle for solutions

(7).

Finally, the Lp(Rd)-decay for the fundamental solution and its gradient allow to

get the Lp(Rd)-decay for the solution (7) (see Theorem 2.3.3), and also the large

time behaviour. Here, the properties of the discrete scale Wright function (see

Section 2.1) will be very useful.

The second problem is solved as follows. Initially, we clarify the role of the se-

quence of operators {T (n)}n∈N0 that appears in (3). In fact, we will see (in

Chapter 3) that {T (n)}n∈N0 constitutes a discrete C-semigroup. This concept is

defined here by the first time, but it is the analogous to the notion of C-semigroup

introduced by R. deLaubenfels [33] in the 90s. The surprising fact that we find,

when we compare the solutions of the first order abstract Cauchy problem in dis-

crete time (i.e. (1) in case α = 1) with those of the first order abstract Cauchy

problem in continuous time, namely

u′(t) = Au(t), u(0) = u0, t ≥ 0,

is that whereas the last is well-posed if and only if A generates a strongly contin-

uous semigroup of operators, the former is well-posed if and only if A generates a

discrete C-semigroup, where C := (I − A)−1.



Introduction 18

After that, we establish a subordination principle (see Theorem 3.1.5), in which we

prove that (α, ν)-resolvent sequences and C-semigroups are related. We remember

that the notion of subordination, in continuous time, was introduced by Prüss [71]

for the theory of integral equations and then used by Bazhlekova [23] in the theory

of abstract fractional evolution equations.

This result extends and improves (2) and [6, Theorem 2.3]. Further, in order to

show how our results apply in other contexts, we introduce a Hilfer fractional

difference operator ∆α,β of order α > 0 and type 0 ≤ β ≤ 1. Then, we show the

connection between (α, ν)-resolvent sequence and the solutions of the abstract

Cauchy problem in discrete-time that involves the Hilfer fractional difference op-

erator precisely mentioned.

On the other hand, the third problem is solved in the following way. We define

and investigate a new class of vector-valued functions defined on Z called (N, λ)-

periodic discrete functions (see Chapter 4). This type of sequences is the discrete

version of the vector-valued (ω, c)-periodic functions introduced in [18]. Thus, we

say that a function f is (N, λ)-periodic discrete function if there exist N ∈ Z+ and

λ ∈ C\{0} such that f(n+N) = λf(n) for all n integer. This definition includes:

discrete periodic functions (λ = 1), discrete anti-periodic functions (λ = −1),

discrete Bloch-periodic functions (λ = eikN) and unbounded functions (|λ| 6= 1).

Finally, we consider the problem of the existence and uniqueness of (N, λ)-periodic

discrete solutions for (4). We have success into solve this problem by using fixed

point techniques. See Section 4.2 below.

Finally, regarding the fourth problem, our main result regarding the solution of

(5) says the following: Suppose that 1 ∈ ρ(A) and

rA := ‖(I − A)−1‖ < 1.

Assume that there exists (N, λ) ∈ N × (C \ D(0, 1)) and a constant L > 0 such
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that f(n+N, λx) = λf(n, x) for all (n, x) ∈ Z×X and

‖f(n, x)− f(n, y)‖X ≤ L‖x− y‖X,

for all x, y ∈ X and all n ∈ Z. If

L <

(
1− 1

|λ|1/N
)α

+

(
1

rA
− 1

)
,

then equation (5) has a unique (N, λ)-periodic solution in a mild sense.

As methods, we use the technique of resolvent sequences of operators, mentioned.

Thus, an explicit representation of the solutions of (5) can be obtained, which

allows the use of fixed point theorem.

The thesis is organized in five chapters. The first chapter is devoted to the pre-

liminaries, providing some basic definitions on continuous and discrete fractional

calculus, and notation. Furthermore, we show a discrete version of the Mittag-

Leffler sequences and demonstrate an interesting result that relates this definition

to its continuous counterpart. The second chapter presents and investigates the

properties of the discrete stable distribution α-Lévy and the discrete scaled Wright

function. In addition, we focus on answer to our first open problem. The third

chapter is dedicated to a new definition and main properties of the Hilfer operator,

and its relationship with the operator already defined in the literature. Finally,

Chapters 4 and 5 are dedicated to the detailed study of the third and fourth open

problems described above, respectively.



1. Preliminaries

In this chapter, we present a summary of definitions and main results of the

literature that will be used throughout this thesis.

1.1 Continuous fractional calculus

In this section, we recall some concepts and basic results about fractional calculus

in continuous time.

We denote by Γ the Gamma function

Γ(x) =

∫ ∞

0

e−ttx−1 dt, Re x > 0.

It is well-known that the Gamma function can be extended to C \ {0,−1,−2, ...}
by the following equality

Γ(x+ 1) = xΓ(x),

see [9]. Moreover, we recall the following asymptotic behavior of the Gamma

function. Let α, z ∈ C, then

Γ(z + α)

Γ(z)
= zα

(
1 +

α(α+ 1)

2z
+O(|z|−2)

)
, |z| → ∞, (1.1)

whenever z 6= 0,−1,−2, . . . , and z 6= −α,−α− 1, . . . , see [74]. As a consequence

of (1.1), observe that

lim
z→∞

Γ(z + α)

Γ(z)zα
= 1. (1.2)

Let α > 0 be given. We denote

gα(t) :=
tα−1

Γ(α)
, t > 0.

20
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Let 0 < α < 1 and f be a locally integrable function. The Riemann-Liouville

fractional derivative of f of order α is given by

RLD
α
t f(t) :=

d

dt

∫ t

0

g1−α(t− s)f(s) ds, t ≥ 0.

The Caputo fractional derivative of order α of a function f is defined by

CD
α
t f(t) :=

∫ t

0

g1−α(t− s)f ′(s) ds, t ≥ 0,

where f ′ is the first order distributional derivative of f(·), for example if we assume

that f(·) has locally integrable distributional derivative up to order one. Then,

when α = 1, we obtain CD
α
t :=

d

dt
. For more details, see for example [63, 66, 69].

R. Hilfer in [46] introduced the concept of generalized Riemann–Liouville frac-

tional derivative. This derivative of arbitrary order contains Riemann–Liouville

and Caputo fractional derivatives as particular cases.

More precisely, the Hilfer fractional derivative of order 0 < α < 1 and type

0 ≤ β ≤ 1 for an absolutely integrable function u is defined by

HD
α,β
t u(t) := I

β(1−α)
t RLD

ν
t u(t), (1.3)

where ν := α+ β(1− α) and Iγt u(t) :=
∫ t

0
gγ(t− s)u(s)ds.

Now, we recall the definitions and some properties of four special functions which

play a significant role in the study of continuous fractional calculus.

The Mittag-Leffler functions are defined by

Eα,β(s) :=

∞∑

n=0

sn

Γ(αn+ β)
, α, β > 0, s ∈ C. (1.4)

See [69]. We write Eα(s) := Eα,1(s). They are solutions of the fractional differen-

tial problems

CD
α
t Eα(ωt

α) = ωEα(ωt
α),



Preliminaries 22

and

RLD
α
t

(
tα−1Eα,α(ωt

α)

)
= ωtα−1Eα,α(ωt

α),

for 0 < α < 1, under certain initial conditions.

For ω > 0, the following property hold

∫ ∞

0

e−λttβ−1Eα,β(ωt
α) dt =

λα−β

λα − ω
, Re λ > ω

1
α . (1.5)

In the case that β = 1, (1.5) is the Laplace transform of Mittag-Leffler functions.

On the other hand, for 0 < α < 2, β ∈ R, µ such that πα/2 < µ < min{π, πα}
and C a real constant, the following estimate holds

|Eα,β(s)| ≤
C

1 + |s| , µ ≤ |arg(s)| ≤ π, |s| ≥ 0. (1.6)

See [69, Theorem 1.6]. F. Mainardi [64] conjectured, and then Simon [72] proved

that the following inequality holds:

1

1 + Γ(1− α)s
≤ Eα(−s) ≤

1

1 + Γ(1− α)−1s
, 0 < α < 1, s > 0.

For more details about the Mittag-Leffler function Eα,β, see [37, Chapter 18].

Another important function is the Lévy α-stable distribution (also called Lévy

probability density function or stable Lévy process) which is defined as follows

ft,α(λ) =
1

2πi

∫ σ+i∞

σ−i∞

ezλ−tzα dz, σ > 0, t > 0, λ ≥ 0, 0 < α < 1, (1.7)

where the branch of zα is taken such that Re zα > 0 for Re z > 0. This branch is

single-valued in the z-plane and cut along the negative real axis, see [78, p.260-

262].

Recall the definition of the Wright type function (see [63])

Wλ,µ(z) =
∞∑

n=0

zn

n!Γ(λn+ µ)
=

1

2πi

∫

Ha

σ−µeσ+zσ−λ

dσ, λ > −1, µ ≥ 0, z ∈ C,

where Ha denotes the Hankel path defined as a contour which starts and ends at

−∞ and encircles the origin once counterclockwise.
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For 0 < α < 1 and β ≥ 0, the scaled Wright function in two variables ψα,β

(introduced by Abadias and Miana in [7]) is given by

ψα,β(t, s) := tβ−1W−α,β(−st−α), t > 0, s ∈ C. (1.8)

An interesting fact is the connection between the Wright and the Mittag-Leffer

functions:

∫ ∞

0

eλsψα,β(t, s) ds = tα+β−1Eα,β(λt
α), t > 0, λ ∈ C. (1.9)

On the other hand, the following identity holds:

∫ ∞

0

gη(s)ψα,β(t, s) ds = gαη+β(t), t, η > 0. (1.10)

Many properties about such functions that we will use along the paper appear

in [7].

Finally, we recall the definition of Fox H-functions (see [54]). Let m,n, p, q ∈ N0

such that 0 ≤ m ≤ q, 0 ≤ n ≤ p. Let ai, bj ∈ C and αi, βj ∈ R+ := (0,∞). The

Fox H-function Hm,n
p,q is defined via a Mellin-Barnes type integral

Hm,n
p,q (z) := Hm,n

p,q


 z

∣∣∣∣∣∣
(ai, αi)1,p

(bj , βj)1,q


 =

1

2πi

∫

γ

Hm,n
p,q (s)z−s ds,

where

(ai, αi)1,p := (a1, α1), · · · , (ap, αp),

(bj , βj)1,q := (b1, β1), · · · , (bq, βq),

Hm,n
p,q (s) =

m∏

j=1

Γ(bj + βjs)

n∏

i=1

Γ(1− ai − αis)

p∏

i=n+1

Γ(ai + αis)

q∏

j=m+1

Γ(1− bj − βjs)
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and γ is the infinite contour in the complex plane which separates the poles

bjl =
−bj − l

βj
(j = 1, · · · , m; l ∈ N0)

of the Gamma function Γ(bj + βjs) to the left of γ and the poles

aik =
1− ai + k

αi
(i = 1, · · · , n; k ∈ N0)

to the right of γ. The following identities hold:

Hm,n
p,q


 z

∣∣∣∣∣∣
(ai, αi)1,p−1, (b1, β1)

(bj , βj)1,q


 = Hm−1,n

p−1,q−1


 z

∣∣∣∣∣∣
(ai, αi)1,p−1

(bj , βj)2,q


 (1.11)

and

Hm,n
p,q


 z−1

∣∣∣∣∣∣
(ai, αi)1,p

(bj , βj)1,q


 = Hn,m

q,p


 z

∣∣∣∣∣∣
(1− bj , βj)1,q

(1− ai, αi)1,p


 . (1.12)

See Proposition 2.2 and Proposition 2.3 of [54].

1.2 Discrete fractional calculus

In this section, we recall the definition of Cesàro numbers and some useful prop-

erties of them. Further, we establish the definitions of the difference fractional

operators which we will work.

Let X be a complex Banach space equipped with the norm ‖ · ‖X and B(X)

denotes the Banach space of all bounded operators defined on X . For a real

number a, we denote Na := {a, a + 1, a + 2, ...} and when a = 1, we write N

instead of N1. The vector space of all vector valued sequences f : D → X will be

denoted by s(D;X), where D can be N0 or Z. The Z-transform of a vector-valued

sequence f ∈ s(N0;X) is defined by

f̃(z) :=

∞∑

j=0

f(j)z−j ,



Preliminaries 25

where z is a complex number. Let γ be a circle centered at the origin of the z-

plane that encloses all poles of f̃(z)zn−1. We recall that the inverse Z-transform

of f̃(z) is defined by

f(n) =
1

2πi

∫

γ

f̃(z)zn−1 dz. (1.13)

For more details about Z-transforms and its inverse, see [35, Chapter 6]. For an

arbitrary α ∈ C, we denote by kα(n) the Cesàro numbers which are the Fourier

coefficients of the holomorphic function (1− w)−α on the unitary disc, that is,

1

(1− w)α
=

∞∑

n=0

kα(n)wn, |ω| < 1. (1.14)

It is known that an equivalent expression of the Cesàro numbers is given by

kα(n) :=





α(α + 1) · · · · · · (α+ n− 1)

n!
, n ∈ N,

1, n = 0.

(1.15)

See [56, 81]. Note that k0(n) := δ0(n) is the Kronecker delta.

Figure 1.1: The graph of α→ kα(n) for α ∈ R and n = 0, 1, 2, 3, 4.

Observe that, for α ∈ C \ {0,−1,−2, ...}, the sequence (1.15) is equivalent to

kα(n) =
Γ(n+ α)

Γ(α)Γ(n+ 1)
, (1.16)
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and replacing w = 1/z, with z ∈ C \ {0}, in (1.14), we find that the Z-transform

of kα is given by the formula

k̃α(z) =

(
z

z − 1

)α

. (1.17)

For α ∈ {0} ∪ Z−, the representation (1.17) is valid for all z ∈ C \ {0}, while for

all α ∈ C \ {0} ∪ Z− the expression is valid only for |z| > 1.

We recall the following properties of kα, which appear for example in [40, 56, 81].

Proposition 1.2.1. The following properties hold:

(i) For α > 0, kα(n) > 0, n ∈ N0.

(ii) For all α, β ∈ C and n ∈ N0, we have the semigroup property

n∑

j=0

kα(n− j)kβ(j) = kα+β(n). (1.18)

(iii) For α > 0,

kα(n) =
nα−1

Γ(α)

(
1 +O

(
1

n

))
, n ∈ N. (1.19)

(iv) For 0 < α < 1,

kα(n+ 1)− kα(n) = kα−1(n+ 1), n ∈ N0.

Now, we describe the discrete version of the Mittag-Leffler sequences and its prop-

erties.

Let α, β > 0 and τ ∈ C. The Mittag-Leffler sequences (see [56, 67]) are given by

Eα,β(τ, n) :=
1

(n− 1)!

∞∑

j=0

Γ(αj + β + n− 1)

Γ(αj + β)
τ j , n ∈ N, |τ | < 1. (1.20)

The convergence of previous series can be justified by (1.19). Using the Cesàro

numbers (1.16), one can rewrite (1.20) as

Eα,β(τ, n) =
∞∑

j=0

kαj+β(n− 1)τ j , n ∈ N, |τ | < 1.
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Particularly, note that

E1,1(τ, n) =
∞∑

j=0

τ jkj+1(n− 1) =
∞∑

j=0

τ jkn(j) = (1− τ)−n, |τ | < 1.

The Z-transform of the Mittag-Leffler sequence is given by

∞∑

n=0

z−nEα,β(τ, n+ 1) =

(
z

z − 1

)β (
1− τ

(
z

z − 1

)α)−1

, (1.21)

where |z| > 1. For more details, see e.g. [56, 67]. Now, we introduce the following

function:

Lα,β(τ, t) := tβ−1Eα,β(τt
α), t ≥ 0, τ ∈ C, α, β > 0,

and we show the following remarkable result that relates the discrete and contin-

uous Mittag-Leffler functions by means of the Poisson transform.

Initially, we remember the definition of the Poisson transform. For each n ∈ N0,

the Poisson distribution (with parameter t) is defined by

pn(t) := e−t t
n

n!
, t ≥ 0.

Given a continuous function u : [0,∞) → X the Poisson transform of u was

defined in [56] by

P(u)(n) :=

∫ ∞

0

pn(t)u(t)dt, n ∈ N0. (1.22)

Theorem 1.2.2. For all τ ∈ C we have

P(Lα,β(τ, ·))(n) = Eα,β(τ, n+ 1), n ∈ N0.

Proof. An easy calculation, using the definitions, shows the following identities

P(Lα,β(τ, ·))(n) =
∫ ∞

0

e−t t
n

n!

∞∑

j=0

τ jtαj+β−1

Γ(αj + β)
dt =

∞∑

j=0

[ ∫ ∞

0

e−t tn+αj+β−1

n!Γ(αj + β)

]
τ j .
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We assume that the exchanges between integrals and series are legitimate in view

of the analyticity properties of the involved functions. Using the identity

∫ ∞

0

e−wt t
γ−1

Γ(γ)
dt =

1

wγ−1
,

with w = 1 and γ = n+ αj + β, we obtain

∞∑

j=0

[ ∫ ∞

0

e−t tn+αj+β−1

n!Γ(αj + β)

]
τ j =

∞∑

j=0

Γ(αj + n+ β)

n!Γ(αj + β)
τ j =

∞∑

j=0

τ jkαj+β(n).

One of the key properties of the Poisson transform is the following relationship

between the kernel function gα and the kernel sequence kα :

P(gα)(n) = kα(n).

Additional properties of the Poisson transform are given in [6, Section 4].

In this work, we develop the discrete fractional calculus theory on specific discrete

time scales: Na and Z.

Let u be a sequence defined on N0 (or Z). The forward Euler operator ∆ is defined

by

(∆u)(n) := u(n+ 1)− u(n), n ∈ N0 (or Z),

and the backward Euler operator ∇ of sequence u is defined by

(∇u)(n) := u(n)− u(n− 1), n ∈ N (or Z).

Remark 1.2.3. For convention, we use ∆u(n) := (∆u)(n) and ∇u(n) :=

(∇u)(n).

Based on the works done by Atici and Eloe [20, 21], we consider the following

definition of fractional backward sum (or sum of arbitrary order) and fractional

backward difference operators (in the sense of Riemann-Liouville and Caputo).
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Definition 1.2.4. Let f ∈ s(N0, X). For α ≥ 0, the α-th fractional backward

sum of f is defined by means of the formula

∇−αf(n) :=

n∑

j=1

kα(n− j)f(j), n ∈ N.

Definition 1.2.5. Let 0 < α < 1 and f ∈ s(N0, X). The α-th Riemann-Liouville

fractional backward difference of f is defined by

RL∇αf(n) := ∇∇−(1−α)f(n), n ∈ N,

and the Caputo fractional backward difference of order α is defined by

C∇αf(n) := ∇−(1−α)∇f(n), n ∈ N.

Now, for the fractional forward sum and fractional forward difference operators,

we consider the definitions given by Lizama in [55, 56].

Definition 1.2.6. Let f ∈ s(N0, X). For α ≥ 0, the α-th fractional forward sum

of f is defined by means of the formula

∆−αf(n) :=

n∑

j=0

kα(n− j)f(j), n ∈ N0.

Definition 1.2.7. Let 0 < α < 1 and f ∈ s(N0, X). The α-th Riemann-Liouville

fractional forward difference of f is defined by

RL∆
αf(n) := ∆∆−(1−α)f(n), n ∈ N0,

and the Caputo fractional forward difference of order α is defined by

C∆
αf(n) := ∆−(1−α)∆f(n), n ∈ N0.

Finally, concerning the case of sequences defined on the set Z we recall fractional

sum operator and fractional difference in the Weyl-like sense which was introduced

by Abadias and Lizama [5], as follows.
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Definition 1.2.8. Let f ∈ s(Z, X). For α ≥ 0, the α-th fractional sum in the

Weyl-like sense of f is defined by means of the formula

∆−α
W f(n) :=

n∑

j=−∞

kα(n− j)f(j), n ∈ Z.

Definition 1.2.9. Let 0 < α < 1 and f ∈ s(Z, X). The α-th fractional difference

in the Weyl-like sense of f is defined by

∆α
W f(n) := ∆∆

−(1−α)
W f(n), n ∈ Z.



2. Fundamental solutions and large-

time behaviour for a discrete in

time fractional diffusion equation

This chapter discusses asymptotic behaviour for the solutions of the fractional

version of the discrete in time d-dimensional diffusion equation, which involves

the Caputo fractional backward difference. For this purpose we introduce and

investigate the properties the discrete Lévy α–stable distribution and the discrete

scaled Wright function. Moreover, we prove that a solution of the fractional

equation mentioned has an representation involving the discrete in time Gaussian

kernel and the discrete scaled Wright function.

2.1 Some special functions in the discrete set-

ting

In this section, we introduce a discrete version of the stable Lévy process and the

scaled Wright functions. Further, we present some interesting properties which

will be useful along the this work.

Definition 2.1.1. Let 0 < α ≤ 1 be given. For n ∈ N, the discrete Lévy α-stable

distribution is defined by

lα(n, j) :=





1

2πi

∫

Γ
zn−1

(
zα − (z − 1)α

zα

)j

dz, j ∈ N,

δ0(n), j = 0,

(2.1)

31
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where Γ is a path oriented counterclockwise that encloses all the singularities of the

complex variable function z → z−αj(zα − (z − 1)α)j and δ0(n) is the Kronecker delta.

Figure 2.1: The discrete Lévy α-stable distribution for α = 0.9 and 0 ≤ n ≤ 60

Denote by D(a, r) ⊂ C the open disk of center a ∈ C and radius r > 0. The

following lemma will be very useful in what follows.

Lemma 2.1.2. Let 0 < α ≤ 1 be given and z ∈ D(1, 1). Then zα ∈ D(1, 1).

Proof. Let z = reiθ. By hypothesis, |θ| < π/2. We first claim that (cos θ)α <

cos(αθ). In fact, it is enough to prove the claim for 0 < θ < π/2 (since cos x

is even). Since cosx is positive and decreasing on the interval [0, π/2] and 0 <

αθ < θ, we have cos(αθ) > cos θ > 0. Therefore ln(cos θ) < ln(cosαθ). Hence, the

condition 0 < α < 1 implies α ln(cos θ) < ln(cosαθ). This proves the claim. Now,

using the claim and the inequality 2α ≤ 2, we obtain 2α(cos θ)α ≤ 2 cos(αθ). It

shows that if r < 2 cos θ then rα < 2 cos(αθ), or, equivalently, that |1 − z| < 1

implies |1− zα| < 1, proving the lemma.

Remark 2.1.3. We observe that the integral on the right hand side of (2.1)

contains the analytic function z → zα − (z − 1)α

zα
= 1 −

(
1− 1

z

)α

. Suppose
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|z| > 1. Then 1− 1

z
∈ D(1, 1). By the above lemma, we obtain

(
1− 1

z

)α

∈ D(1, 1).

We conclude that
∣∣∣∣1−

(
1− 1

z

)α∣∣∣∣ < 1 for all |z| > 1. (2.2)

Next, we present some fundamental properties of the discrete Lévy α-stable dis-

tribution.

Proposition 2.1.4. Let 0 < α ≤ 1, j ∈ N and n ∈ N0 be given. The following

properties hold:

(i) l̃α(z, j) = (1− k̃−α(z))j , for all |z| > 1 .

(ii) lα(n, j) =

j∑

i=0

(
j

i

)
(−1)ik−αi(n).

(iii) 0 ≤ lα(n, j).

(iv)

∞∑

i=0

lα(i, j) = 1.

(v) lα(n, j + 2)− 2lα(n, j + 1) + lα(n, j) = (k−2α ∗ lα(·, j))(n).

(vi) Let ω > 1 be given. Then

∞∑

i=0

l̃α(z, i)ω
−i = ωL̂α,α(1− ω, ·)(1− 1/z), |z| > 1.

(vii) P(f̂·,α(ζ))(j − 1) = l̃α(z, j) where |z| > 1 and ζ :=

(
(z − 1)α

zα − (z − 1)α

)1/α

.

Proof.

(i) Note that, using (1.17) we obtain the identity

lα(n, j) =
1

2πi

∫

Γ

zn−1

(
zα − (z − 1)α

zα

)j

dz

=
1

2πi

∫

Γ

zn−1
(
1− k̃−α(z)

)j
dz.

Then, by the inverse Z-transform, we get the claimed property.
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(ii) Applying the general binomial theorem (see [42, Formula 1.111]) on (i), we

get

l̃α(z, j) =

j∑

i=0

(
j

i

)
(−1)ik̃−αi(z),

where we have used the group property (1.18) of the sequence kernel kβ to

deduce that k̃−αi(z) = [k̃−α(z)]i. Then the result follows by an application

of the inverse Z-transform.

(iii) By (ii), we have

lα(n, 1) = k0(n)− k−α(n) =
α(1− α)(2− α) . . . (n− 1− α)

n!
,

and, since 0 < α ≤ 1, we deduce lα(n, 1) ≥ 0 for all n ∈ N. Moreover,

lα(0, 1) = 0 by (1.15). On the other hand, observe that

1− 2α ≤ 1− α, 2− 2α ≤ 2− α, 3− 2α ≤ 3− α, . . . n− 1− 2α ≤ n− 1− α.

Since i− α > 0 for all i = 1, ..., n− 1, then

n−1∏

i=1

(i− 2α) ≤
n−1∏

i=1

(i− α). (2.3)

Multiplying by −2α/n! in (2.3), we get

−2α

n!

n−1∏

i=1

(i− 2α) ≥ −2α

n!

n−1∏

i=1

(i− α)

or

(−2α)(1− 2α) . . . (n− 1− 2α)

n!
≥ 2

(−α)(1− α) . . . (n− 1− α)

n!
.

Using this last inequality together with the definition of kα, we have

k−2α(n) ≥ 2k−α(n).

Now, note from (ii) that

lα(n, 2) = k0(n)− 2k−α(n) + k−2α(n).
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From which we deduce

lα(n, 2) = −2k−α(n) + k−2α(n) ≥ −2k−α(n) + 2k−α(n) = 0, n ∈ N,

and lα(0, 2) = 0 by (1.15). Now, observe that from the previous calculations

and (the proof of) (i), we obtain

lα(n, 3) =
1

2πi

∫

Γ

zn−1(1− k̃−α(z))3 dz

=
1

2πi

∫

Γ

zn−1(1− k̃−α(z))2(1− k̃−α(z)) dz

=
1

2πi

∫

Γ

zn−1 l̃α(n, 2)l̃α(n, 1) dz

=
n∑

p=0

lα(n− p, 2)lα(p, 1) ≥ 0, n ∈ N0.

Now, assume that for j = m ∈ N we have

lα(n,m) ≥ 0, n ∈ N0.

Then, for j = m+ 1 and proceeding as in the case j = 3, we obtain

lα(n,m+ 1) =

n∑

p=0

lα(n− p,m)lα(p, 1) ≥ 0,

for all n ∈ N. This proves the claim.

(iv) Let z ∈ R be given. Note that the claimed identity is a particular case of (i)

by letting z → 1+ and taking into account that k̃−α(1) = 0, again by (1.17).

(v) Note that,

lα(n, j + 2)− 2lα(n, j + 1) + lα(n, j)

=
1

2πi

∫

Γ

zn−1
[
(1− k̃−α(z))j+2 − 2(1− k̃−α(z))j+1 + (1− k̃−α(z))j

]
dz

=
1

2πi

∫

Γ

zn−1k̃−2α(z)l̃α(z, j) dz.

The property follows by applying the inverse Z-transform for the finite con-

volution.
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(vi) Using geometric series and Remark 2.1.3 we find, for all ω > 1, that

∞∑

i=0

l̃α(z, i)ω
−i =

∞∑

i=0

(
zα − (z − 1)α

zα

)i

ω−i =
ωzα

(z − 1)α + zα(ω − 1)
.

On the other hand, by the Laplace transform property (1.5), we have

ωL̂α,α(−(ω − 1), ·)(λ) = ω

λα + (ω − 1)
.

Evaluating at λ = 1− 1/z, we obtain

ωL̂α,α(−(ω − 1), ·)(1− 1/z) =
ω

(1− 1/z)α + (ω − 1)
=

ω(
z − 1

z

)α

+ (ω − 1)

=
ωzα

(z − 1)α + zα(ω − 1)
.

(vii) By (1.7), we have f̂s,α(ζ) = e−sζα for all Re ζ > 0. Then, using the Poisson

transform, we get

P(f̂·,α(ζ))(j − 1) =

∫ ∞

0

sj−1

(j − 1)!
e−(1+ζα)s ds =

1

(1 + ζα)j
.

Define ζ :=
z − 1

(zα − (z − 1)α)1/α
where |z| > 1. Hence

P(f̂·,α(ζ))(j − 1) =




1

1 +
(z − 1)α

zα − (z − 1)α




j

=

(
zα − (z − 1)α

zα

)j

= l̃α(z, j).

Next, let us define the discrete scaled Wright function.

Definition 2.1.5. Let 0 < α < 1 and 0 ≤ β be given. For n ∈ N0 and h > 0, the

discrete scaled Wright function ϕh
α,β is defined by

ϕh
α,β(n, j) :=

1

2πi

∫

Υ

1

zn+1

(
1− h(1−z

h
)α
)j

(1−z
h
)β

dz, j ∈ N0, (2.4)

where Υ is the path oriented counterclockwise given by the circle centered at the

origin and radius 0 < r < 1. When h = 1 we write ϕh
α,β(n, j) ≡ ϕα,β(n, j).
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Remark 2.1.6. Note that if |z| < 1, then 1−z
h

belongs to the disc centered at 1/h

and radius 1/h. So, for each j ∈ N0, the function z → (1−h( 1−z
h

)α)
j

( 1−z
h

)β
is holomorphic

on the unit disc. Therefore, by the Cauchy formula for the derivatives, we have

defined ϕh
α,β(n, j) as the n-coefficient of the power series centered at the origin of

such holomorphic function.

In the following proposition, we present some useful properties of the discrete

scaled Wright function ϕh
α,β. Many of them follow the spirit of the analogue ones

in the continuous case, see [7, Theorem 3].

Proposition 2.1.7. Let 0 < α < 1, 0 ≤ β, 0 < h and n, j ∈ N0. The following

properties hold:

(i) ϕh
α,β(n, j) = hβ

j∑

i=0

(
j

i

)
(−1)ihi−αikβ−αi(n).

(ii) ϕh
α,β+γ(n, j) = hβ

n∑

i=0

kβ(n− i)ϕh
α,γ(i, j), γ > 0.

(iii) For t > 0,

1

hnΓ(n)

∫ ∞

0

e−s/hsn−1ψα,β(s, t) ds = e−t/h
∞∑

j=1

ϕh
α,β(n− 1, j − 1)

tj−1

hj(j − 1)!
,

where ψα,β is given by (1.8).

(iv)
∞∑

j=1

ϕα,β(n− 1, j − 1) (1− τ)−j = Eα,α+β(τ, n),

n ∈ N, |τ | < 1.

(v) ϕh
α,β(n, j)− ϕh

α,β(n, j + 1) = hϕh
α,β−α(n, j).

(vi) ϕh
α,0(n, j + 1) =

n∑

p=0

ϕh
α,0(n− p, j)ϕh

α,0(p, 1).

(vii) ϕh
α,β(n, j) ≥ 0, 0 < h ≤ 1.

(viii)
∞∑

i=0

ϕh
α,0(i, j) = 1.
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(ix)
∞∑

j=0

ϕh
α,β(n, j)k

γ(j) = hβ+γ(α−1)kβ+γα(n).

Proof.

(i) Note that for |z| < 1, we can write

hβ
j∑

i=0

(
j

i

)
(−1)ihi−αi(1− z)αi−β =

1

(1−z
h
)β

j∑

i=0

(
j

i

)
(−1)ihi

(
1− z

h

)αi

=

(
1− h(1−z

h
)α
)j

(1−z
h
)β

.

By the uniqueness of the coefficients, we have the result.

(ii) The identity follows from the previous item (i) and (1.18). Indeed,

ϕh
α,β+γ(n, j) =h

β+γ

j∑

w=0

(
j

w

)
(−1)ihw−αwkβ+γ−αw(n)

=hβ+γ

j∑

w=0

(
j

w

)
(−1)ihw−αw

n∑

i=0

kβ(n− i)kγ−αw(i)

=hβ+γ

n∑

i=0

kβ(n− i)

j∑

w=0

(
j

w

)
(−1)whw−αwkγ−αw(i)

=hβ
n∑

i=0

kβ(n− i)ϕh
α,γ(i, j).

(iii) Note that, by (1.8)

1

hnΓ(n)

∫ ∞

0

e−s/hsn−1ψα,β(s, t) ds

=
1

hnΓ(n)

∫ ∞

0

e−s/hsn+β−2W−α,β(−ts−α) ds

=
1

hn

∞∑

i=0

(−t)i
Γ(n)Γ(−αi+ β)i!

∫ ∞

0

e−s/hsn+β−2−αi ds

= hβ−1
∞∑

i=0

h−αiΓ(n− 1 + β − αi)

Γ(n)Γ(−αi+ β)

(−t)i
i!

= hβ−1
∞∑

i=0

h−αikβ−αi(n− 1)
(−t)i
i!

.
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On the other hand, by (i) we obtain

∞∑

j=0

ϕh
α,β(n− 1, j)

tj

hj+1j!
= hβ−1

∞∑

j=0

j∑

i=0

(
j

i

)
(−1)ihi−αikβ−αi(n− 1)

(
t

h

)j
1

j!

= hβ−1
∞∑

i=0

∞∑

j=i

(
j

i

)
(−1)ihi−αikβ−αi(n− 1)

(
t

h

)j
1

j!

= hβ−1

∞∑

i=0

(−1)ihi−αikβ−αi(n− 1)

∞∑

j=i

(
j

i

)(
t

h

)j
1

j!

= hβ−1
∞∑

i=0

(−1)ihi−αikβ−αi(n− 1)
∞∑

j=i

1

i!(j − i)!

(
t

h

)j

= hβ−1

∞∑

i=0

(−1)ihi−αikβ−αi(n− 1)

∞∑

j=0

1

i!j!

(
t

h

)j+i

= hβ−1
∞∑

i=0

(−1)ih−αikβ−αi(n− 1)
ti

i!
et/h,

for all n ∈ N. Thus, the result is proved.

(iv) Let τ ∈ C such that |τ | < 1. Then,

∞∑

j=1

ϕα,β(n− 1, j − 1) (1− τ)−j

=

∞∑

j=1

ϕα,β(n− 1, j − 1)

∫ ∞

0

e−(1−τ)s sj−1

(j − 1)!
ds

=

∫ ∞

0

e−(1−τ)s
∞∑

j=1

ϕα,β(n− 1, j − 1)
sj−1

(j − 1)!
ds

=
1

Γ(n)

∫ ∞

0

eτs
∫ ∞

0

e−ttn−1ψα,β(t, s) dt ds

=
1

Γ(n)

∫ ∞

0

e−ttn−1tα+β−1Eα,α+β(τt
α) dt

= Eα,α+β(τ, n),

where we have used item (iii), (1.9) and Theorem 1.2.2.

(v) We recall that
(
n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
. (2.5)
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See [14, Section 1.4]. Then, the result is obtained as follows:

ϕh
α,β(n, j)−ϕh

α,β(n, j + 1)

= hβ
j∑

i=0

(
j

i

)
(−1)ihi−αikβ−αi(n)

− hβ
j+1∑

i=0

(
j + 1

i

)
(−1)ihi−αikβ−αi(n)

= −hβ
j+1∑

i=1

(
j

i− 1

)
(−1)ihi−αikβ−αi(n)

= hβ+1−α

j∑

i=0

(
j

i

)
(−1)ihi−αikβ−α(i+1)(n)

= hϕh
α,β−α(n, j).

(vi) By item (i), (2.5) and (1.18) it follows

ϕh
α,0(n,j + 1) =

j+1∑

i=0

(
j + 1

i

)
(−1)ihi−αik−αi(n)

=

j∑

i=0

(
j

i

)
(−1)ihi−αik−αi(n) +

j+1∑

i=1

(
j

i− 1

)
(−1)ihi−αik−αi(n)

=

j∑

i=0

(
j

i

)
(−1)ihi−αik−αi(n)−

j∑

i=0

(
j

i

)
(−1)ihi−αih1−αk−α(i+1)(n)

=
n∑

p=0

j∑

i=0

(
j

i

)
(−1)ihi−αik−αi(n− p)k0(p)

−
n∑

p=0

j∑

i=0

(
j

i

)
(−1)ihi−αih1−αk−αi(n− p)k−α(p)

=

n∑

p=0

j∑

i=0

(
j

i

)
(−1)ihi−αik−αi(n− p)

(
k0(p)− h1−αk−α(p)

)

=
n∑

p=0

j∑

i=0

(
j

i

)
(−1)ihi−αik−αi(n− p)

1∑

i=0

(
1

i

)
(−1)ihi−αik−αi(p)

=

n∑

p=0

ϕh
α,0(n− p, j)ϕh

α,0(p, 1).
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(vii) From Definition 2.1.5, we have that ϕh
α,0(n, 0) = δ0(n) for n ∈ N0. Further-

more,

ϕh
α,0(n, 1) = k0(n)− h1−αk−α(n).

Then,

ϕh
α,0(0, 1) = 1− h1−α ≥ 0

and

ϕh
α,0(n, 1) = h1−αα(1− α)(2− α) · · · (n− 1− α)

n!
≥ 0, n ∈ N.

By (i) of the Proposition 1.2.1 and items (vi) and (ii) the result follows.

(viii) The identity is a particular case of (2.4), by letting z → 1− with z ∈ R.

(ix) By (2.4) and (1.17), we have

∞∑

l=0

ϕh
α,β(n, l)k

γ(j) =
1

2πi

∫

Υ

1

zn+1

∞∑

l=0

(
1− h(1−z

h
)α
)j

(1−z
h
)β

kγ(j) dz

=
1

hγ
1

2πi

∫

Υ

1

zn+1

1

(1−z
h
)β+γα

dz

= hβ+γ(α−1)kβ+γα(n).

Remark 2.1.8.

(i) For β = 0 and h = 1, we have

ϕα,0(n, j) ≡ lα(n, j).

Note that the previous equivalence is analogous to the continuous case, see [7,

Identity 32].

(ii) Let 0 < α < 1. Taking λ = 0 in Proposition 2.1.7-(iv), we have

∞∑

j=0

ϕh
α,1−α(n− 1, j) = 1, n ∈ N. (2.6)
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2.2 Fundamental solution

Here we investigate the representation of the solution to the fractional diffusion

equation in discrete time and we prove several interesting properties related to it.

We will initially remember the heat kernel in discrete time and its properties.

In [1], the authors defined the heat kernel in discrete time as

Gn(x) :=
1

Γ(n)

∫ ∞

0

e−ttn−1Gt(x) dt, n ∈ N, x ∈ Rd \ {0}, (2.7)

where Gt(x) is the gaussian kernel defined by

Gt(x) =
1

(4πt)d/2
e−

|x|2

4t , t > 0, x ∈ Rd. (2.8)

Remark 2.2.1. Note that the authors in [1] considered the sequence (2.7) as the

Poisson transform of the Gaussian kernel

Gn(x) = P(G·(x))(n− 1).

Thus, they used some properties of the Gaussian kernel to generate new results

that fit perfectly in the discrete concepts. For example, Gn(x) satisfies the discrete

semigroup property with respect to the time variable (Gn ⊛ Gm)(x) = Gn+m(x),

where ⊛ denotes the classical convolution on Rd.

Let us recall that the Fourier transform of a function u : Rd → R is given by

û(ξ) = F(u)(ξ) = (2π)−d/2

∫

Rd

e−ix·ξu(x)dx

and

F−1(u)(ξ) := F(u)(−ξ)

denotes inverse Fourier transform of u.

The following properties of the heat kernel in discrete time (2.7) were proved in [1].



Special functions and large-time behaviour 43

Proposition 2.2.2. The heat kernel in discrete time Gn satisfies:

(i) Gn(x) > 0, n ∈ N, x ∈ Rd \ {0}.

(ii)

∫

Rd

Gn(x) dx = 1.

(iii) F(Gn)(ξ) =
1

(1 + |ξ|2)n , ξ ∈ Rd.

(iv) ∇Gn(x) = ∆xGn(x), n ≥ 2, x ∈ Rd \ {0}.

On the other hand, given a function f defined on Rd, it easy to show that the

function

w(n, x) := (1−∆x)
−nf(x), n ∈ N0, x ∈ Rd,

is a solution of the following problem (see [1, Section 2]),





∇w(n, x) = ∆xw(n, x), n ∈ N, x ∈ Rd \ {0},
w(0, x) = f(x).

(2.9)

From semigroup theory (see [36, Corollary 1.11]), the following identity holds

w(n, x) = (1−∆x)
−nf(x) =

∫

Rd

Gn(x− y)f(y)dy := (Gn ⊛ f)(x), n ∈ N, x ∈ Rd.

Observe that the total mass of w and the first moment are conservative in the

discrete time n, that is,

∫

Rd

w(n, x) dx =

∫

Rd

f(x) dx, (2.10)

and

∫

Rd

xw(n, x) dx =

∫

Rd

xf(x) dx, (2.11)

respectively. As in the continuous case, the second moment is non-conservative.

∫

Rd

|x|2w(n, x) dx =

∫

Rd

|x|2 f(x) dx+ 2dn.

For more details, see [1, Remark 2.6].
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Once we remember the heat kernel in discrete time and its relationship with the

homogeneous discrete in time heat initial value problem, we proceed to establish

that the heat kernel in discrete time together to the discrete scaled Wright function

induce a representation formula of solution for the following problem.

Let 0 < α < 1. Consider the fractional diffusion equation in discrete time, given

by 



C∇αu(n, x) = ∆xu(n, x), n ∈ N, x ∈ Rd,

u(0, x) = f(x),

(2.12)

where u and f are function defined on N0 × Rd and Rd respectively.

According to the authors of the article [53], the time fractional diffusion equations

are related to a class of Montroll–Weiss continuous time random walk (CTRW)

models. Further, have become one of the standard physics approaches to model

anomalous diffusion processes [29, 47, 65].

Let us define the fundamental solution

Gα
n (x) :=

∞∑

j=1

ϕα,1−α(n− 1, j − 1)Gj(x), n ∈ N, x ∈ Rd \ {0}, (2.13)

where the functions Gn(x) denote the heat kernel in discrete time defined by (2.7).

The next result shows that (Gα
n ⊛ f)(x) is the solution of (2.12). Notice that,

like the solution fundamental of continuous-time fractional equation (see [53]), Gα
n

is not defined in zero. Thus, given an initial condition we have the solution for

n ∈ N.

Theorem 2.2.3. Let f be a function on Lp(Rd). For 0 < α < 1, the function

u(n, x) := (Gα
n ⊛ f)(x), n ∈ N, x ∈ Rd, (2.14)

is the solution of the fractional diffusion equation in discrete time (2.12) on the

Lebesgue Lp(Rd) spaces.
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Proof. First of all, note that by Proposition 2.2.2-(ii) and (2.6), we can conclude

that ∫

Rd

Gα
n (x) dx = 1. (2.15)

Consequently, by Young’s inequality for convolutions we have

‖u(n, ·)‖p ≤ ‖f‖p.

Now we see that u satisfies (2.12). Equation (2.9) implies

∆xu(n, x) =

∞∑

j=1

ϕα,1−α(n− 1, j − 1)∇(Gj ⊛ f)(x)

=
∞∑

j=1

ϕα,1−α(n− 1, j − 1)(Gj ⊛ f)(x)−
∞∑

j=1

ϕα,1−α(n− 1, j − 1)(Gj−1 ⊛ f)(x)

=

∞∑

j=1

ϕα,1−α(n− 1, j − 1)(Gj ⊛ f)(x)−
∞∑

j=1

ϕα,1−α(n− 1, j)(Gj ⊛ f)(x)

− ϕα,1−α(n− 1, 0)f(x).

Now, by Proposition 2.1.7-(ii) and (1.15), we have

ϕα,1−α(n− 1, 0)f(x) =

n−1∑

i=0

k1−α(n− 1− i)ϕα,0(i, 0)f(x)

=

n−1∑

i=0

k1−α(n− 1− i)k0(i)f(x)

= k1−α(n− 1)f(x).

Then, by (v) of Proposition 2.1.7, we get

∆xu(n, x) =
∞∑

j=1

ϕα,1−α(n− 1, j − 1)(Gj ⊛ f)(x)−
∞∑

j=1

ϕα,1−α(n− 1, j)(Gj ⊛ f)(x)

− k1−α(n− 1)f(x)

=

∞∑

j=0

(ϕα,1−α(n− 1, j)− ϕα,1−α(n− 1, j + 1)) (Gj+1 ⊛ f)(x)

− k1−α(n− 1)f(x)

=

∞∑

j=0

ϕα,1−2α(n− 1, j)(Gj+1 ⊛ f)(x)− k1−α(n− 1)f(x).
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By the previous identity and (ii) of Proposition 2.1.7, we have that

∆x

n∑

w=1

kα(n− w)u(w, x) = ∆x

n−1∑

w=0

kα(n− 1− w)u(w + 1, x)

=
n−1∑

w=0

kα(n− 1− w)
∞∑

j=0

ϕα,1−2α(w, j)(Gj+1 ⊛ f)(x)

−
n−1∑

w=0

kα(n− 1− w)k1−α(w)f(x)

=

n−1∑

w=0

kα(n− 1− w)

∞∑

j=0

w∑

p=0

k1−2α(w − p)ϕα,0(p, j)(Gj+1 ⊛ f)(x)− f(x)

=
∞∑

j=0

n−1∑

w=0

kα(n− 1− w)
w∑

p=0

k1−2α(w − p)ϕα,0(p, j)(Gj+1 ⊛ f)(x)− f(x)

=
∞∑

j=0

n−1∑

p=0

k1−α(n− 1− p)ϕα,0(p, j)(Gj+1 ⊛ f)(x)− f(x)

=

∞∑

j=0

ϕα,1−α(n− 1, j)(Gj+1 ⊛ f)(x)− f(x)

= u(n, x)− f(x),

that is,

u(n, x) = ∆x

n∑

w=1

kα(n− w)u(w, x) + f(x).

Now, convolving the above identity by k1−α, we obtain

n∑

j=0

k1−α(n− j)u(j, x) = ∆x

n∑

j=0

u(j, x)−∆xu(0, x) + k2−α(n)f(x)

= ∆x

n∑

j=1

u(j, x) + k2−α(n)f(x).

By Proposition 1.2.1-(iv), we can conclude that

n∑

j=0

k1−α(n− j)u(j, x)−
n−1∑

j=0

k1−α(n− 1− j)u(j, x)

= ∆xu(n, x) + k1−α(n)f(x).
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Hence, the result follows from

n∑

j=0

k1−α(n− j)u(j, x)−
n−1∑

j=0

k1−α(n− 1− j)u(j, x)− k1−α(n)f(x) = C∇αu(n, x).

Finally, the uniqueness follows from we can construct the solution of (2.12) by

successive calculations. That is, it is defined by a law of recurrence. In fact,

given any value f(x), there exists a unique solution u, with values u(n, x) for all

n ∈ N, since if there is another solution that verifies the initial condition, then

they coincide in all points since the recurrence law itself determines the subsequent

values of the solution.

In the following results we show other representations for Gα
n . In the first result, we

represent Gα
n (x) using the Poisson transform of the Gaussian function, while in the

second one we use the Fox H-function. This fact in turn gives other representations

of the solution (2.14).

Proposition 2.2.4. Let 0 < α < 1. Then, (2.13) is equivalent to

Gα
n (x) =

∫ ∞

0

∫ ∞

0

e−s sn−1

(n− 1)!
ψα,1−α(s, t)Gt(x) ds dt, n ∈ N, x ∈ Rd \ {0},

(2.16)

where Gt is the Gaussian kernel defined by (2.8) and ψα,β is defined by (1.8).

Proof. From Proposition 2.1.7-(iii), we get

Gα
n (x) =

∞∑

j=1

ϕα,1−α(n− 1, j − 1)Gj(x)

=
∞∑

j=1

ϕα,1−α(n− 1, j − 1)

∫ ∞

0

e−t tj−1

(j − 1)!
Gt(x) dt

=

∫ ∞

0

e−t

∞∑

j=1

ϕα,1−α(n− 1, j − 1)
tj−1

(j − 1)!
Gt(x) dt

=

∫ ∞

0

∫ ∞

0

e−s sn−1

(n− 1)!
ψα,1−α(s, t)Gt(x) ds dt.

The result follows.
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Proposition 2.2.5. Let 0 < α < 1. Then

Gα
n (x) =

1

Γ(n)πd/2|x|dH
30
13


 |x|2

4

∣∣∣∣∣∣
(1, α)

(n, α), (d
2
, 1), (1, 1)


 ,

where H03
31 denotes the Fox H-function.

Proof. By [23, Theorem 3.1], [7, Theorem 15-(ii).] and [53, Theorem 2.12], we

have the following subordination formula

1

πd/2|x|dH
02
21


 4tα

|x|2

∣∣∣∣∣∣
(1− d

2
, 1), (0, 1)

(0, α)


 =

∫ ∞

0

ψα,1−α(t, s)Gs(x) ds.

Now,

Gα
n (x) =

1

Γ(n)πd/2|x|d
∫ ∞

0

e−ttn−1H12
32


 4tα

|x|2

∣∣∣∣∣∣
(1− d

2
, 1), (0, 1), (0, 1)

(0, 1), (0, α)


 dt

=
1

Γ(n)πd/2|x|dH
13
42


 4

|x|2

∣∣∣∣∣∣
(1− n, α), (1− d

2
, 1), (0, 1), (0, 1)

(0, 1), (0, α)




=
1

Γ(n)πd/2|x|dH
03
31


 4

|x|2

∣∣∣∣∣∣
(1− n, α), (1− d

2
, 1), (0, 1)

(0, α)




=
1

Γ(n)πd/2|x|dH
30
13


 |x|2

4

∣∣∣∣∣∣
(1, α)

(n, α), (d
2
, 1), (1, 1)


 ,

where we have used [54, Corollary 2.3.1], (1.11) and (1.12).

The following proposition states some basic properties of the fundamental solution.

Proposition 2.2.6. Let x ∈ Rd \ {0}. The function Gα
n satisfies:

(i) Gα
n (x) > 0, n ∈ N.

(ii)

∫

Rd

Gα
n (x) dx = 1.

(iii) F(Gα
n )(ξ) = Eα,1(−|ξ|2, n), ξ ∈ Rd.
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(iv)

∫

Rd

|x|2Gα
n (x) dx = 2kα+1(n− 1)d.

Proof. (i) follows from (vi) of Proposition 2.1.7 and (i) of the Proposition 2.2.2.

(ii) was showed in the proof of Theorem 2.2.3 (see (2.15)). Next, let us prove the

item (iii). Since F(Gt)(ξ) = e−t|ξ|2, for ξ ∈ Rd, it follows from (1.9) that

∫ ∞

0

ψα,1−α(s, t)e
−t|ξ|2 dt = Eα,1(−|ξ|2sα).

Theorem 1.2.2 implies that

F(Gα
n,h)(ξ) =

∫ ∞

0

e−s s
n−1

Γ(n)
Eα,1(−|ξ|2sα) ds = Eα,1(−|ξ|2, n).

Finally, it is known that

∫

Rd

|x|2Gt(x) dx = 2 d t.

Then, by Fubini’s Theorem and (1.10), we have that

∫

Rd

|x|2Gα
n (x) dx =2d

∫ ∞

0

∫ ∞

0

e−s sn−1

(n− 1)!
ψα,1−α(s, t)t dt ds

=2d

∫ ∞

0

e−s sn−1

(n− 1)!
gα+1(s) ds

=2dkα+1(n− 1).

Thus, we get item (iv).

Remark 2.2.7. We have that the total mass of solution of (2.12), given by

u(n, x) =

∞∑

j=1

ϕα,1−α(n− 1, j − 1)(Gj ⊛ f)(x)

is conservative. Indeed,

∫

Rd

u(n, x) dx =
∞∑

j=1

ϕα,1−α(n− 1, j − 1)

∫

Rd

(Gj ⊛ f)(x) dx

=

∫

Rd

f(x) dx,



Special functions and large-time behaviour 50

where in the last equality we have used (2.10) and (2.6). This fact leads us to

think that the total mass of solutions should have importance in the asymptotic

behavior of solutions. On the other hand, the first moment is also conservative:

∫

Rd

xu(n, x)dx =

∞∑

j=1

ϕα,1−α(n− 1, j − 1)

∫

Rd

x (Gj ∗ f)(x) dx

=

∫

Rd

xf(x) dx,

as long as (1 + |x|)f ∈ L1(Rd) (see (2.11)). However, in the same way that w,

the second moment of u is not conserved in time. In fact,

∫

Rd

|x|2 u(n, x)dx =

∫

Rd

|x|2 f(x)dx+ 2dh
∞∑

j=1

ϕh
α,1−α(n− 1, j − 1)j

=

∫

Rd

|x|2 f(x)dx+ 2Γ(2)dkα+1(n− 1),

where used (ix) of Proposition 2.1.7.

2.3 Asymptotic decay and asymptotic behavior

of solution

Now we will present the asymptotic decay of the solution of (2.12) (which is given

by (2.14)) in Lp(Rd) spaces and the corresponding large-time behaviour. Initially,

we show the following estimates of the fundamental solution Gα
n in Lp(Rd)-spaces

and we state Lp(Rd)-estimates for ∇xGα
n (x).

Lemma 2.3.1. Let 0 < α < 1. Then there exists Cp > 0 such that

‖Gα
n‖p ≤ Cp

1

n
αd
2
(1−1/p)

, n ∈ N,

for p ∈ [1,∞] if d = 1, for p ∈ [1,∞) if d = 2, and for p ∈ [1, d
d−2

) if d > 2.

Proof. It is well known (see [42, p.334 (3.326)]) that there exists Cp (independent

of t) such that ||Gt||p = Cp
1

t
d
2 (1− 1

p )
. Then for n large enough and the values of p
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given in the hypothesis, by (2.16) and (1.10) one gets

‖Gα
n‖p ≤

∫ ∞

0

∫ ∞

0

e−s sn−1

(n− 1)!
ψα,1−α(s, t)||Gt||p ds dt

≤ Cp

Γ(n)

∫ ∞

0

∫ ∞

0

e−ttn−1ψα,1−α(t, s)s
d
2
( 1
p
−1)+1−1 dt ds

≤ Cp

Γ(n)

∫ ∞

0

e−ttn−α d
2
(1− 1

p
)−1 dt

= Cp

Γ(n− α d
2
(1− 1

p
))

Γ(n)

≤ Cp

nα d
2
(1− 1

p
)
,

where we have applied the asymptotic behaviour of the Gamma function (1.1).

Since the function Gα
n belongs to Lp(Rd) for all n ∈ N, then the result is valid for

all n ∈ N.

We state Lp(Rd)-estimates for ∇xGα
n (x), which are useful for study the large-time

behaviour of the solution (2.14).

Lemma 2.3.2. Let 0 < α < 1. Then there exists Cp > 0 such that

‖∇xGα
n‖p ≤ Cp

1

n
αd
2
(1−1/p)+α

2

, n ∈ N,

for p ∈ [1,∞) if d = 1, and for p ∈ [1, d
d−1

) if d > 1.

Proof. The proof is similar to the proof of Lemma 2.3.1 by use of

‖∇xGt‖p = Cp
1

t
d
2
(1− 1

p
)+1/2

,

see [42, p.334 (3.326)].

Next, let us present a result about the Lp(Rd)− Lq(Rd) asymptotic decay for u.

Theorem 2.3.3. Let 1 ≤ q ≤ p ≤ ∞. If f ∈ Lq(Rd), then the solution u of (2.12)

satisfies
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(i) If q = ∞, then ‖u(n, ·)‖∞ ≤ ‖f‖∞.

(ii) If 1 ≤ q <∞ and d > 2q, then for each p ∈ [q, dq
d−2q

)

‖u(n, ·)‖p ≤ Cp
1

n
αd
2
(1/q−1/p)

‖f‖q. (2.17)

(iii) If 1 ≤ q <∞ and d = 2q, then for each p ∈ [q,∞) the estimate (2.17) holds.

(iv) If 1 ≤ q <∞ and d < 2q, then for each p ∈ [q,∞] the estimate (2.17) holds.

Here, Cp is a constant independent of n.

Proof. Take r ≥ 1 such that 1+1/p = 1/q+1/r, and applying Young’s inequality

we get

‖u(n, ·)‖p = ‖Gα
n ⊛ f‖p ≤ ‖Gα

n‖r‖f‖q.

Now, we apply Lemma 2.3.1 to estimate ‖Gα
n‖r. For the case (i), if q = ∞, then

p = ∞, r = 1, and therefore since ‖Gα
n‖1 = 1, the result follows. Note that in

the case (ii), if 1 ≤ q < ∞ and d > 2q, then the condition q ≤ p < dq
d−2q

implies

1 ≤ r < d
d−2

. So, by Lemma 2.3.1 we get the desired estimates. The cases (iii)

and (iv) follow in a similar way.

In this part we study the asymptotic behaviour of solution u of problem given by

(2.12). Suppose f ∈ L1(Rd), set

M :=

∫

Rd

f(x) dx.

Before to show the main result of this section, we need the following decomposition

lemma (see [34]).

Lemma 2.3.4. Suppose f ∈ L1(Rd) such that
∫
Rd |x||f(x)|dx < ∞. Then there

exists F ∈ L1(Rd;Rd) such that

f =

(∫

Rd

f(x)dx

)
δ0 + divF
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in the distributional sense and

‖F‖L1(Rd;Rd) ≤ Cd

∫

Rd

|x||f(x)|dx.

The following estimate shows that the difference on Lp(Rd) between the solution

u(n, x) and MGα
n (x) decays to zero like o

(
1/n

αd
2 (1−

1
p)
)

as n goes to infinity.

Moreover, if |x|f ∈ L1(Rd), we are able to improve the convergence.

Theorem 2.3.5. Let 1 ≤ p ≤ ∞ and u be the solution of (2.12).

(i) Then

n
αd
2 (1−

1
p)‖u(n, ·)−MGα

n‖p → 0, as n→ ∞,

for p ∈ [1,∞) if d = 1, and for p ∈ [1, d
d−1

) if d > 1,

(ii) Suppose in addition that |x|f ∈ L1(Rd), then

n
αd
2
(1− 1

p
)‖u(n, ·)−MGα

n‖p . n−α/2,

for p ∈ [1,∞) if d = 1, and for p ∈ [1, d
d−1

) if d > 1.

Proof. First, we prove assertion (ii). Since f, |x|f ∈ L1(Rd), by decomposition

Lemma 2.3.4 there exists ψ ∈ L1(Rd;Rd) such that

u(n, x) = (Gα
n ⊛ (Mδ0 + divψ(·)))(x)

=MGα
n (x) + (∇xGα

n ⊛ ψ)(x),

in the distributional sense, and

‖ψ‖1 ≤ Cd‖|x|f‖1 <∞.

Consequently,

‖u(n, ·)−MGα
n‖p ≤ Cd‖∇xGα

n‖p‖|x|f‖1 ≤ Cp,f
1

n
αd
2
(1−1/p)+α

2

, (2.18)
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Hence the assertion (ii) is proved.

To prove (i), we choose a sequence (ηj) ⊂ C∞
0 (Rd) such that

∫
Rd ηj(x) dx =M for

all j, and ηj → f in L1(Rd) . For each j, by Lemma 2.3.1 and (2.18), we get

‖u(n, ·)−MGα
n‖p ≤ ‖Gα

n ⊛ (f − ηj)‖p + ‖Gα
n ⊛ ηj −MGα

n‖p
≤ ‖Gα

n‖p‖f − ηj‖1 + ‖Gα
n ⊛ ηj −MGα

n‖p

≤ Cp
1

n
αd
2
(1−1/p)

‖f − ηj‖1 + Cp,ηj

1

n
αd
2
(1−1/p)+α

2

.

Then

lim sup
n→∞

n
αd
2
(1−1/p)‖u(n, ·)−MGα

n‖p ≤ Cp‖f − ηj‖1.

The assertion follows by letting j → ∞.



3. Subordination principle and the

discrete Hilfer fractional operator

In this chapter, using the discrete scaled Wright function, a subordination princi-

ple is proved. This principle relates a sequence of solution operators, given by a

discrete C-semigroup, for the abstract Cauchy problem of first order in discrete-

time, with a sequence of solution operators for the abstract Cauchy problem of

fractional order 0 < α < 1 in discrete-time. As an application, we establish the

explicit solution of the abstract Cauchy problem in discrete-time that involves the

Hilfer fractional difference operator and prove that, in some cases, such solution

converges to zero.

3.1 Subordination principle

Initially, we introduce the notion of discrete C-semigroup and present some inter-

esting properties. Moreover, we introduce the notion of (α, ν)-resolvent sequences.

Let C be a bounded and injective operator defined on X . Now, suppose that

a strongly continuous operator-valued sequence {T (n)}n∈N0 ⊂ B(X) satisfies the

following conditions:

(i) T (0) = C.

(ii) CT (n +m) = T (n)T (m) for n,m ∈ N.

In analogy with the continuous case [33], we say that the family {T (n)}n∈N0 is a

55
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discrete C-semigroup.

From the definition, it is clear that T (n) commutes with C. Moreover, by simple

iteration, we found that any discrete C-semigroup have the form

T (n) = [C−1T (1)]nC = C−(n−1)T (1)n, n ∈ N0. (3.1)

From now on, A will denote a closed linear operator with domain D(A) defined

on X and ρ(A) will denote its resolvent set.

Proposition 3.1.1. Let {T (n)}n∈N0 ⊂ B(X) be strongly continuous and satisfying

the following properties;

(i) T (n)x ∈ D(A) for all x ∈ X.

(ii) AT (n)x = T (n)Ax for each x ∈ D(A) and n ∈ N0.

(iii) T (n)x = x+ A

n∑

j=0

T (j)x, for all n ∈ N0 and x ∈ X.

Then, 1 ∈ ρ(A) and {T (n)}n∈N0 ⊂ B(X) is a discrete C-semigroup with C :=

(I − A)−1.

Proof. With n = 0 the property (iii) gives

T (0)x = x+ AT (0)x, x ∈ X,

which, together with (ii), implies that 1 ∈ ρ(A) and T (0) = (I −A)−1. Using the

identity

(I − A)−1 − I = A(I −A)−1,

we have that for all x ∈ X

T (1)x =x+ AT (0)x+ AT (1)x

=T (0)x+ AT (1)x,
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or

T (1)x = (I − A)−2x.

Iterating (iii) we find, that for all n ∈ N0,

T (n)x = (I − A)−(n+1)x = (I − A)−nCx = [C−1T (1)]nCx, (3.2)

which proves that {T (n)}n∈N0 ⊂ B(X) is a C-semigroup with C := (I−A)−1.

Definition 3.1.2. We say that the family {T (n)}n∈N0 ⊂ B(X) satisfying (i)−(iii)

in the above proposition is a discrete C-semigroup generated by A.

The following result shows an interesting new interpretation of one of the main

results in the reference [56]. The striking point that shows the next theorem is

that, in strong contrast with the continuous case, the natural family of operators

behind of the well posedness of the discrete abstract Cauchy problem of first

order is a discrete C-semigroup instead of a discrete semigroup, which was the

first attempt in [56].

Theorem 3.1.3. Let {T (n)}n∈N0 ⊂ B(X) be a discrete C-semigroup generated

by A. Then the discrete-time abstract Cauchy problem of first order

∆u(n) = Au(n+ 1), n ∈ N0,

with initial condition u(0) = u0 ∈ X admits the solution

u(n) = C−1T (n)u0.

Proof. Note that k1(n) = 1 and ∆k1(n) = 0 for all n ∈ N0. Then,

∆T (n)x = A∆

n∑

j=0

T (j)x

= A

(
n+1∑

j=0

T (j)x−
n∑

j=0

T (j)x

)

= AT (n+ 1)x.
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We define u(n) := C−1T (n)u0. Since T (n)x ∈ D(A) for all x ∈ X and n ∈ N0,

we obtain u(n) ∈ D(A) for all n ∈ N0. From the above identity, it is clear that

∆u(n) = Au(n+ 1). Finally, since T (0) = C, we obtain u(0) = u0.

Motivated by Proposition 3.1.1, we now introduce the following sequence of bounded

and linear operators that is the discrete counterpart of the concept of resolvent

families of operators for fractional evolution equations in continuous time. See [57]

for a recent review of this concept and its main properties, and [58] for their appli-

cation to nonlinear fractional evolution equations in the setting of Banach spaces.

In what follows, the symbol ∗ denotes the discrete convolution of two sequences

f, g ∈ s(N0, X) defined by

(f ∗ g)(n) :=
n∑

j=0

f(n− j)g(j).

Definition 3.1.4. Let α, ν > 0 be given. An operator-valued sequence

{Sα,ν(n)}n∈N0 ⊂ B(X)

is called a discrete (α, ν)-resolvent sequence generated by A if it satisfies the fol-

lowing conditions:

(i) Sα,ν(n)x ∈ D(A) for all x ∈ X and Sα,ν(n)Ax = ASα,ν(n)x for each n ∈ N0

and x ∈ D(A).

(ii) Sα,ν(n)x = kν(n)x+ A(kα ∗ Sα,ν)(n)x for all n ∈ N0 and each x ∈ X.

Note that S1,1(n) = T (n) is the C-semigroup generated by A. The case α = ν was

introduced in [5, Definition 3.1] and used, among others, in [6, Section 2] and [45]

in connection with linear and nonlinear fractional abstract difference equations.

In particular, in [6, Proposition 2.2] it was proved that if A is a bounded operator

with norm less than 1, then the following representation holds:

Sα,α(n) =

∞∑

j=0

kα(j+1)(n)Aj .
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The following is the main result of this chapter and shows a striking relation

between discrete (α, ν)-resolvent sequences and discrete C-semigroups. It allows

a representation of a discrete (α, ν)-resolvent sequence in terms of the discrete

C-semigroup generated by A. This result extends and improves [5, Theorem 3.2]

and [6, Thorem 2.3].

Theorem 3.1.5. Let 0 < α < 1, α ≤ ν be given. Let {T (n)}n∈N be a discrete

C-semigroup generated by A. Then the family

Sα,ν(n)x =
∞∑

j=0

ϕα,ν−α(n, j)T (j)x, n ∈ N0, (3.3)

is a discrete (α, ν)-resolvent sequence generated by A.

Proof. From definition of C-semigroup and the fact that A is closed, we have that

Sα,ν(n)x ∈ D(A) for all x ∈ X and Sα,ν(n)Ax = ASα,ν(n)x for each x ∈ D(A).

The group property of kα shows that

A(kα ∗ Sα,ν)(n)x =

∞∑

j=0

ϕα,ν(n, j)AT (j)x.

Note that (3.2) and the identity A(I − A)−1 = (I − A)−1 − I imply that ACx =

Cj+1x− Cjx for all x ∈ X. Therefore,

A(kα ∗ Sα,ν)(n)x =

∞∑

j=0

ϕα,ν(n, j)[C
j+1 − Cj]x

=
∞∑

j=0

ϕα,ν(n, j)C
j+1x−

∞∑

j=0

ϕα,ν(n, j)C
jx.

Hence

A(kα ∗ Sα,ν)(n)x =
∞∑

j=0

ϕα,ν(n, j)C
j+1x−

∞∑

j=1

ϕα,ν(n, j)C
jx− kν(n)x

=

∞∑

j=0

ϕα,ν(n, j)C
j+1x−

∞∑

j=0

ϕα,ν(n, j + 1)Cj+1x− kν(n)x

=
∞∑

j=0

(ϕα,ν(n, j)− ϕα,ν(n, j + 1))Cj+1x− kν(n)x,
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where in the first equality we have used (2.1.5) (for j = 0). Applying the Propo-

sition 2.1.7, item (v), we get

A(kα ∗ Sα,ν)(n)x =
∞∑

j=0

ϕα,ν−α(n, j + 1)Cj+1x− kν(n)x = Sα,ν(n)x− kν(n)x.

It proves that {Sα,ν(n)}n∈N0 is a discrete (α, ν)-resolvent sequence generated by

A.

Corollary 3.1.6. Let 0 < α ≤ ̺ ≤ 1 be given. Let A be a closed and linear

operator defined on a Banach space X such that 1 ∈ ρ(A). Then the family

Sα,̺(n)x =
∞∑

j=0

ϕα,̺−α(n, j)(I − A)−(j+1)x, n ∈ N0, x ∈ X, (3.4)

is a discrete (α, ̺)-resolvent sequence generated by A.

Proof. By hypothesis, C := (I − A)−1 exists and the operator {T (n)}n∈N0 given

by T (n) = (I − A)−(n+1) is bounded on X . On the other hand,

T (n) = (I − A)−(n+1) = C−(n−1)T (1)n.

Hence, the operator {T (n)}n∈N0 is a discrete C-semigroup. Thus, the result follows

from Theorem 3.1.5.

We recall that an operator-valued sequence {S(n)}n∈N0 ∈ B(X) is said to be

summable if

‖ S ‖ℓ1:=
∞∑

n=0

‖ S(n) ‖<∞.

Theorem 3.1.7. Let A be a closed linear operator defined on a Banach space X

such that 1 ∈ ρ(A) and

‖(I − A)−1‖ < 1. (3.5)

Then A generates a summable discrete (α, α)-resolvent sequence {Sα,α(n)}n∈N0.
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Proof. Since 1 ∈ ρ(A), then by Corollary 3.1.6 the family

Sα,α(n)x =

∞∑

j=0

ϕα,0(n, j)(I −A)−(j+1)x, n ∈ N0, x ∈ X,

is a discrete (α, α)-resolvent sequence generated by A. We will prove that it is

summable. Indeed, since 0 ≤ ϕα,0(n, j) ≤ 1 for j ∈ N0, then

∞∑

n=0

‖ Sα,α(n) ‖ ≤
∞∑

n=0

∞∑

j=0

ϕα,0(n, j) ‖ (I − A)−(j+1) ‖≤
∞∑

j=0

‖ (I − A)−(j+1) ‖

≤ ‖(I − A)−1‖
∞∑

j=0

‖ (I − A)−1 ‖j<∞.

The following example provides concrete conditions on A under which (3.5) holds.

Example 3.1.8. Let A be the generator of a C0-semigroup strictly contractive.

For instance, on X := L1(R) we define

(T (t)f)(s) =





βf(t+ s), if s ∈ [−t, 0],

f(t+ s), otherwise,

where 0 < β < 1 is arbitrary. Then T (t) is a C0-semigroup and ‖T (t)‖ = β < 1

(since ‖T (t)1[0,t]‖1 = β‖1[0,t]‖1 ).

We deduce that 1 ∈ ρ(A) and ‖(I − A)−1‖ < 1. Indeed,

‖(I −A)−1‖ = ‖
∫ ∞

0

e−tT (t) dt‖ ≤
∫ ∞

0

e−t‖T (t)‖dt < β < 1.

The last part of the earlier example shows the following result.

Corollary 3.1.9. Let A be the generator of a C0-semigroup strictly contractive,

then 1 ∈ ρ(A) and ‖(I − A)−1‖ < 1.
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The following consequence establishes an interesting link between the stability

property of the C-semigroup with those of the (α, ν)-resolvent sequence, both

generated by the same operator A.

Proposition 3.1.10. Let 0 < α < 1 and α ≤ ν. Assume that A is the generator

of a discrete C-semigroup {T (n)}n∈N0 and there exist constants M,ω > 0 such

that

‖ T (n) ‖≤M(1 + ω)−(n+1), for all n ∈ N0.

Then the discrete (α, ν)-resolvent sequence {Sα,ν(n)}n∈N0 generated by A satisfies

‖ Sα,ν(n) ‖≤MEα,ν(−ω, n).

In particular, if 0 < ν < 1, then ‖ Sα,ν(n) ‖→ 0 as n→ ∞.

Proof. Let ν ≥ α. The sequence (3.3) together with Proposition 2.1.7 (iv) and

(vii) can be used to obtain that

‖ Sα,ν(n) ‖ =

∥∥∥∥∥

∞∑

j=0

ϕα,ν−α(n, j)T (j)

∥∥∥∥∥

≤
∞∑

j=0

‖ ϕα,ν−α(n, j)T (j) ‖

=
∞∑

j=0

ϕα,ν−α(n, j) ‖ T (j) ‖

≤M

∞∑

j=0

ϕα,ν−α(n, j) (1 + ω)−(j+1)

=MEα,ν(−ω, n+ 1),

whence it follows that

‖ Sα,ν(n) ‖≤MEα,ν(−ω, n+ 1).

Hence, using (1.19), we can get the first desired conclusion. In order to prove the

asymptotic behavior for 0 < ν < 1, we notice that from Theorem 1.2.2, we have

Eα,ν(−ω, n+ 1) =

∫ ∞

0

pn(t)t
ν−1Eα,ν(−ωtα)dt. (3.6)
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Using the estimate (1.6) in (3.6), we obtain

|Eα,ν(−ω, n+ 1)| ≤
∫ ∞

0

e−t

n!
tn+ν−1Eα,ν(−ωtα)dt

≤
∫ ∞

0

e−t

n!
tn+ν−1 C

1 + ωtα
dt

≤ C

n!ω

∫ ∞

0

e−t

n!
tn+ν−α−1dt

=
C

ω

Γ(n+ ν − α)

n!
,

where in the last equality we used the property (1.2). Now, taking into account

that lim
n→∞

Γ(n + γ)

Γ(n)nγ
= 1 for all γ ∈ C (see (1.2)), and since 0 < ν < 1, we deduce

for γ := ν − α that

Γ(n+ ν − α)

n!
=

Γ(n+ ν − α)

Γ(n)nν−α

1

n1−(ν−α)
→ 0, (n→ ∞).

This proves the claim and the proof is finished.

3.2 The Hilfer fractional difference operator

In this section, we introduce our definition of the Hilfer fractional difference op-

erator ∆α,β of order 0 < α and type 0 ≤ β ≤ 1 as follows.

Definition 3.2.1. The Hilfer fractional difference ∆α,β of order α > 0 and type

0 ≤ β ≤ 1 of a sequence f ∈ s(N0;X) is defined by

∆α,βf(n) := ∆−β(m−α)
(
∆m

(
∆−(m−α)(1−β)f

))
(n), n ∈ N0,

where m− 1 < α ≤ m, m := ⌈α⌉.

Note that as expected

∆m,βf(n) = ∆mf(n),

∆α,0f(n) = RL∆
αf(n),

∆α,1f(n) = C∆
αf(n).
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Figure 3.1: ∆α,βf(n) where α = 1/4 and f(n) = n + 1

.

In other words, the two parameter family of operators ∆α,β of order α > 0 and

type 0 ≤ β ≤ 1 allow us to interpolate between the Riemann-Liouville and the

Caputo fractional difference operators.

We remark that Definition 3.2.1 can be compared with that recently introduced

in [44, Definition 3.1], but first we note that in the definition given by the authors

in [44] there is a minor imprecision that we want to clarify. It concerns with the

compatibility of the different operators used, because the meaning of the operator

∆ used in [44, Definition 3.1] is not precise at all. The definition must read as

follows (in case 0 < µ < 1, and in the general case is completely analogous),

∆µ,ν
a = ∆

−ν(1−µ)
a+(1−ν)(1−µ) ◦∆a+(1−ν)(1−µ) ◦∆−(1−ν)(1−µ)

a , 0 ≤ ν ≤ 1, (3.7)

where

∆−α
a f(t) =

1

Γ(α)

t−α∑

s=a

(t− s− 1)(α−1)f(s),

with t ∈ Na+α and t(α) := Γ(t+1)
Γ(t−α+1)

, α > 0. For the definition of the operator
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∆a+(1−ν)(1−µ) in (3.7) see

∆m
a f(a+ n) =

m∑

j=0

(
m

j

)
(−1)m−jf(a+ n+ j), n ∈ N0. (3.8)

In order to compare both definitions, we define the translation (by a ∈ R) operator

τa : s(Na;X) → s(Na;X) by

τag(n) := g(a+ n), n ∈ N0.

Further, we will need the following lemma.

Lemma 3.2.2. For all α > 0 and b ∈ R, we have τb+α ◦∆−α
b = ∆−α ◦ τb.

Proof. By definition, for any f ∈ s(Nb, X) and all n ∈ N0 we have

τb+α ◦∆−α
b f(n) = ∆−α

b f(n+ b+ α)

=
1

Γ(α)

n∑

j=0

(α + n− j − 1)(α−1)f(b+ j)

=
n∑

j=0

Γ(α+ n− j)

Γ(α)Γ(n− j + 1)
f(b+ j)

=

n∑

j=0

kα(n− j)f(b+ j) = ∆−α ◦ τbf(n).

Remark 3.2.3. Lemma 3.2.2 shows that the following diagram is commutative:

s(Nb;X)
∆−α

b
−−−→ s(Nb+α;X)

↓ τb ↓ τb+α (3.9)

s(N0;X) ∆−α
−−−→ s(N0;X).

With these preliminaries, we prove the following transference principle that gen-

eralizes Theorem 4.1 in [40].
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Theorem 3.2.4. For any 0 < µ < 1, 0 ≤ ν ≤ 1 and a ∈ R we have

∆µ,ν = τa+(1−µ)(1−ν) ◦∆µ,ν
a ◦ τ−a.

Proof. Using (3.8) with m = 1, we have

∆µ,ν
a = ∆

−ν(1−µ)
a+(1−ν)(1−µ) ◦ τ−(a+(1−ν)(1−µ)) ◦∆ ◦ τa+(1−ν)(1−µ) ◦∆−(1−ν)(1−µ)

a . (3.10)

We now employ (3.9) first with b = a + (1 − µ)(1 − ν), α = ν(1 − µ) and then

with b = a, α = (1− ν)(1− µ) to obtain

∆
−ν(1−µ)
a+(1−ν)(1−µ) = τ−a−(1−µ)(1−ν) ◦∆−ν(1−µ) ◦ τa+(1−µ)(1−ν) (3.11)

and

∆−(1−ν)(1−µ)
a = τ−a−(1−ν)(1−µ) ◦∆−(1−ν)(1−µ) ◦ τa. (3.12)

Replacing (3.11) and (3.12) in (3.10), we obtain

∆µ,ν
a = τ−a−(1−µ)(1−ν) ◦∆−ν(1−µ) ◦ τa+(1−µ)(1−ν) ◦ τ−(a+(1−ν)(1−µ)) ◦∆

◦ τa+(1−ν)(1−µ) ◦ τ−a−(1−ν)(1−µ) ◦∆−(1−ν)(1−µ) ◦ τa
= τ−a−(1−µ)(1−ν) ◦∆−ν(1−µ) ◦∆ ◦∆−(1−ν)(1−µ) ◦ τa = τ−a−(1−µ)(1−ν) ◦∆µ,ν ◦ τa,

proving the theorem.

We obtain the following relation between the Hilfer and Riemann-Liouville frac-

tional difference operators.

Theorem 3.2.5. Let n ∈ N0 and 0 ≤ β ≤ 1. For each α > 0 and f ∈ s(N0;X),

we have

∆α,βf(n) = RL∆
αf(n)

−
m−1∑

i=0

(−1)i
(
m

i

)m−1−i∑

j=0

kβ(m−α)(n +m− j − i)∆−(m−α)(1−β)f(j),

where m = ⌈α⌉.
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Proof. Define ω(n) := ∆−(1−α)(1−β)f(n). Then, using the definitions, we obtain

the following identities

∆α,βf(n) =

n∑

j=0

kβ(m−α)(n− j)∆mω(j)

=
n∑

j=0

kβ(m−α)(n− j)
m∑

i=0

(−1)i
(
m

i

)
ω(j +m− i)

=

m∑

i=0

(−1)i
(
m

i

) n∑

j=0

kβ(m−α)(n− j)ω(j +m− i)

=

m∑

i=0

(−1)i
(
m

i

) n+m−i∑

j=m−i

kβ(m−α)(n+m− j − i)ω(j)

=

m∑

i=0

(−1)i
(
m

i

) n+m−i∑

j=0

kβ(m−α)(n+m− i− j)ω(j)

−
m−1∑

i=0

(−1)i
(
m

i

)m−1−i∑

j=0

kβ(m−α)(n+m− j − i)ω(j)

= ∆m(∆−β(m−α)ω)(n)

−
m−1∑

i=0

(−1)i
(
m

i

)m−1−i∑

j=0

kβ(m−α)(n+m− j − i)ω(j).

Here, we have adopted the notation
∑−1

j=0 f(j) = 0. The conclusion follows from

the property

∆−α∆−β = ∆−(α+β), α, β > 0.

It is instructive to look at the cases 0 < α < 1 and 1 < α < 2 for further

developments.

Corollary 3.2.6. Let 0 ≤ β ≤ 1. For 0 < α < 1, we have

∆α,βf(n) = RL∆
αf(n)− kβ(1−α)(n+ 1)f(0), n ∈ N0, (3.13)
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and in case 1 < α < 2, we obtain

∆α,βf(n) = RL∆
αf(n)− kβ(2−α)(n + 1)

[
∆−(2−α)(1−β)f(1)− 2f(0)

]

+ kβ(2−α)(n + 2)f(0),

for all n ∈ N0.

Concerning to the Z-transform of the Hilfer fractional difference operator, we

prove the following property. For it, we recall that the Z-transforms of the Caputo

and Riemann-Liouville fraccional forward difference operators are given by:

∆̃−αf(z) =

(
z

z − 1

)α

f̃(z), |z| > 1, (3.14)

R̃L∆αf(z) = z

(
z

z − 1

)−α

f̃(z)− zf(0), |z| > 1, (3.15)

where α ∈ (0, 1], see [67, Propositions 4 and 24].

Proposition 3.2.7. For 0 < α < 1 and 0 ≤ β ≤ 1, let y(n) := ∆α,βf(n) where

f ∈ s(N0;X). Then

ỹ(z) = z1−α(z − 1)αf̃(z)− zβ(1−α)+1(z − 1)α−νf(0), |z| > 1,

where ν = α + β(1− α).

Proof. According to Definition 3.2.1, we have

y(n) = ∆−β(1−α)
RL∆

νf(n).

Let r(n) := RL∆
νf(n). From (3.14) we obtain

˜∆−β(1−α)r(z) = zβ(1−α)(z − 1)β(α−1)r̃(z), (3.16)

and, by (3.15),

r̃(z) = z1−ν(z − 1)ν f̃(z)− zf(0). (3.17)

Substituting (3.17) in (3.16), we get the conclusion.
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Remark 3.2.8. The above proposition coincides with [44, Theorem 3.5] (and also

rectifies the mentioned result in [44]), after using the transference principle given

by Theorem 3.2.4. We will also need the following lemma that connects the Delta

Laplace transform Lb [41, Definition 2.1] with the usual Z-transform.

Lemma 3.2.9. Assume f : Nb → X. Then

Lb{f}(z − 1) =
1

z
(̃τbf)(z),

for all z ∈ C \ {0} such that the series defined by the Z-transform converges.

Proof. Using [41, Theorem 2.2], we get

Lb{f}(z − 1) =
∞∑

k=0

f(b+ k)

zk+1
=

1

z

∞∑

k=0

τbf(k)

zk
=

1

z
(̃τbf)(z).

Remark 3.2.10. By Lemma 3.2.9, Theorem 3.2.4 and Proposition 3.2.7, we have

the following identities

La+(1−µ)(1−ν){∆µ,ν
a f}(z − 1) =

1

z
(τa+(1−µ)(1−ν) ◦∆µ,ν

a f )̃(z) =
1

z
(∆µ,ν ◦ τaf )̃(z)

= z1−µ(z − 1)µ
1

z
(̃τaf)(z)− zν(1−µ)(z − 1)−ν(1−µ)(τaf)(0)

= z1−µ(z − 1)µLa{f}(z − 1)− zν(1−µ)(z − 1)−ν(1−µ)f(a).

Replacing s = z − 1, we improve [44, Theorem 3.5] as follows:

La+(1−µ)(1−ν){∆µ,ν
a f}(s) = (s+ 1)1−µsµLa{f}(s)− (s+ 1)ν(1−µ)s−ν(1−µ)f(a).

Now, employing the Poisson transform, we can establish an important relation be-

tween the Hilfer fractional difference operator and the Hilfer fractional continuous

operator. This result extends [56, Theorem 3.5].
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Theorem 3.2.11. Let u : [0,∞) → X be an absolutely integrable and bounded

function. Then

P(HD
α,βu)(n+ 1) = ∆α,βP(u)(n), n ∈ N0, (3.18)

that is

∫ ∞

0

pn+1(t)HD
α,β
t u(t) dt = ∆α,βu(n), n ∈ N0,

where u(n) :=

∫ ∞

0

pn(t)u(t) dt.

Proof. Taking the definition of continuous Hilfer derivative (see (1.3)), multiplying

by pn(t) and then integrating over R+, we obtain

∫ ∞

0

pn+1(t)HD
α
t u(t) dt =

∫ ∞

0

pn+1(t)(gβ(1−α) ∗ RLD
ν
t u)(t) dt,

where ν = α+ β(1− α). On the other hand, by [56, Theorem 3.4], we have

∫ ∞

0

pn+1(t)(gβ(1−α) ∗ RLD
ν
t u)(t) dt =

n+1∑

j=0

a(n+ 1− j)S(j),

where

a(n) :=

∫ ∞

0

pn(t)gβ(1−α)(t)dt and S(n) :=

∫ ∞

0

pn(t)RLD
ν
t u(t) dt.

Now, by definition of kγ (see (1.16)), we get

a(n) =
1

n!Γ(β(1− α))

∫ ∞

0

e−ttn+β(1−α)−1 dt =
Γ(n + β(1− α))

Γ(β(1− α))n!
= kβ(1−α)(n).

Therefore, [56, Theorem 3.5] gives

∫ ∞

0

pn+1(t)HD
α
t u(t) dt =

n+1∑

j=0

kβ(1−α)(n + 1− j)S(j)

= ∆−β(1−α)S(n+ 1)

= ∆−β(1−α)
RL∆

νu(n).

Hence the conclusion follows.
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We finish this section with the following result that shows the connection between

resolvent sequences and solutions of the abstract Cauchy problem in discrete-time

that involves the Hilfer fractional difference operator previously.

Theorem 3.2.12. Let 0 < α < 1, 0 ≤ β ≤ 1 and ν = α+ β(1−α). Suppose that

A is the generator of an (α, ν)-resolvent sequence {Sα,ν(n)}n∈N0 and 1 ∈ ρ(A).

Then the fractional difference equation

∆α,βu(n) = A
[
u(n+ 1)− kβ(1−α)(n+ 1)u0

]
, n ∈ N0,

u(0) = u0 ∈ D(A),
(3.19)

admits the solution

u(n) = Sα,ν(n)C
−1u0, n ∈ N0,

where C = (I − A)−1.

Proof. Let u(n) := Sα,ν(n)C
−1u0 for all n ∈ N0. By Definition 3.1.4, we have

u(n) ∈ D(A) and

(k1−α ∗ Sα,ν)(n)x = k1+β(1−α)(n)x+ A(k1 ∗ Sα,ν)(n)x

= k1+β(1−α)(n)x+ A
n∑

j=0

Sα,ν(j)x, n ∈ N0,

holds. Applying the operator ∆ to both sides of the last identity and

RL∆
σkτ (n) = kτ (n+ 1), σ ∈ (0, 1), σ < τ,

we get

RL∆Sα,ν(n)x = kβ(1−α)(n+ 1)x+ ASα,ν(n+ 1)x, n ∈ N0.

Then, by Corollary 3.2.6 and the identity C − I = AC, we obtain

∆α,βSα,ν(n) = kβ(1−α)(n+ 1)x+ ASα,ν(n+ 1)x− kβ(1−α)(n + 1)Sα,ν(0)x

= ASα,ν(n + 1)x− kβ(1−α)(n + 1)(C − I)x

= A
[
Sα,ν(n + 1)x− kβ(1−α)(n + 1)Cx

]
, n ∈ N0.

Hence, u solves (3.19), which proves the Theorem.
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Remark 3.2.13. Under the same hypotheses of the previous theorem, note that

u(n) := Sα,α(n)C
−1u0 solves

RL∆
αu(n) = Au(n+ 1), n ∈ N0,

u(0) = u0 ∈ D(A),

and u(n) := Sα,1(n)C
−1u0 solves

C∆
αu(n) = A

[
u(n+ 1)− k1−α(n+ 1)u0

]
, n ∈ N0,

u(0) = u0 ∈ D(A).

The following corollary is an interesting but direct consequence of the theory

developed until now. It takes in consideration the subordination formula stated

previously.

Corollary 3.2.14. Let 0 < α < 1 and 0 < β < 1 be given. Assume that A

generates a discrete C-semigroup {T (n)}n∈N0 such that ‖T (n)‖ ≤M(1+ω)−n for

some M,ω > 0. Then the fractional difference equation

∆α,βu(n) = A
[
u(n+ 1)− kβ(1−α)(n+ 1)u0

]
, n ∈ N0,

u(0) = u0 ∈ D(A),
(3.20)

admits the solution

u(n) =
∞∑

j=0

ϕα,β(1−α)(n, j)T (j)C−1u0, n ∈ N0.

Moreover, u(n) → 0 as n→ ∞.

Proof. Since A generates a discrete C-semigroup we have 1 ∈ ρ(A). Let ν :=

α + β(1 − α). By Theorem 3.1.5 (subordination) we have that A generates a

discrete (α, ν)-resolvent family {Sα,ν(n)}n∈N0 given by

Sα,ν(n)x =

∞∑

j=0

ϕα,ν−α(n, j)T (j)x, n ∈ N0. (3.21)
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From Theorem 3.2.12 the unique solution is given by

u(n) = Sα,ν(n)C
−1u0, n ∈ N0,

where C = (I − A)−1. Since ν ≥ α, Proposition 3.1.10 implies that ‖Sα,ν(n)‖ ≤
MEα,ν(−ω, n). Note that for 0 < β < 1 we have α(1 − β) < 1 − β and hence

0 < ν < 1. It follows from Proposition 3.1.10 that u(n) → 0 as n → ∞, finishing

the proof.

Remark 3.2.15. Let us consider the discrete fractional diffusion problem

RL∆
αv(n, x) = ∆xv(n+ 1, x), n ∈ N0, x ∈ Rd, (3.22)

u(0, x) = f(x),

where 0 < α < 1. Then, by Theorem 3.1.5 we have that ∆x generates an (α, α)-

resolvent sequence {Sα,α(n)}n∈N0 with C−1 = I − ∆x and moreover, by Remark

3.2.13, the solution of (3.22) is given by

v(n, x) =

∞∑

j=0

ϕα,0(n, j)(Gj+1 ⊛ φ)(x),

where φ(x) := C−1f(x) and Gn is (2.7).



4. Existence and uniqueness of (N,λ)-

periodic solutions to a class of Volterra

difference equations

In this chapter, we introduce the class of (N, λ)-periodic vector-valued sequences

and show several notable properties of this new class. This class includes periodic,

anti-periodic, Bloch and unbounded sequences. Furthermore, we show the exis-

tence and uniqueness of (N, λ)-periodic solutions to the following class of Volterra

difference equations with infinite delay

u(n+ 1) = σ
n∑

j=−∞

a(n− j)u(j) + f(n, u(n)), n ∈ Z, σ ∈ C,

where the kernel a and the nonlinear term f satisfy suitable conditions.

4.1 (N, λ)-periodic discrete functions

In this section, we introduce the concept of (N, λ)-periodic discrete vector-valued

function and show some remarkable properties of this class of vector-valued se-

quences.

Definition 4.1.1. A vector-valued function f : Z → X is called (N, λ)-periodic

discrete function (or (N, λ)-periodic sequence) if there exist N ∈ Z+ and λ ∈
C \ {0} such that f(n + N) = λf(n) for all n ∈ Z. N is called the λ-period of

74



(N, λ)-periodic and Volterra difference equations 75

f . The collection of those sequences with the same λ-period N will be denoted by

PNλ(Z, X).

In case λ = 1 we denote simply by PN (Z, X) the set of all N -periodic sequences.

The following property gives a useful characterization of (N, λ)-periodic discrete

functions.

Proposition 4.1.2. A function f is (N, λ)-periodic discrete function, if and only

if there exists u ∈ PN(Z, X) such that

f(n) = λ∧(n)u(n), for all n ∈ Z, (4.1)

where λ∧(n) := λn/N .

Proof. First, we assume that f ∈ PNλ(Z, X) and define u(n) := λ∧(−n)f(n).
Then,

u(n+N) = λ∧(−(n +N))f(n+N) = λ∧(−n)f(n) = u(n).

Hence u ∈ PN(Z, X) and f(n) = λ∧(n)u(n). Conversely, we suppose f(n) =

λ∧(n)u(n). Then

f(n+N) = λ∧(n+N)u(n +N) = λ · λ∧(n)u(n) = λf(n).

Example 4.1.3. The function f(n) = cos(πn/6) is an (6,−1)-periodic discrete

function. It follows from Proposition 4.1.2 that f has decomposition f(n) =

λ∧(n)u(n) where

λ∧(n) = (−1)n/6 = cos(nπ/6) + i sin(nπ/6),

and

u(n) = (−1)−n/6f(n) = cos(nπ/6)[cos(nπ/6)− i sin(nπ/6)].
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Example 4.1.4. Let A be a k × k matrix. Assume that there exists N ∈ Z+

(sufficiently large) such that A(n+N) = A(n) for all n ∈ Z+. Let K be the k× k

matrix defined as follows:

K :=
N−1∏

i=0

A(i), n ∈ Z+,

where
∏N−1

i=0 A(i) := A(N − 1)A(N − 2) · · ·A(0). Furthermore, let λ0 ∈ C \ {0}
be any eigenvalue of K with corresponding eigenvector X0. It can be proved that

the solution of the system

U(n + 1) = A(n)U(n), for n ∈ Z+ (4.2)

U(0) = X0,

is given by

U(n) =

n−1∏

i=0

A(i)X0. (4.3)

Moreover,

U(n +N) =
n+N−1∏

i=0

A(i)X0 =
n+N−1∏

i=N

A(i)
N−1∏

i=0

A(i)X0

=
n+N−1∏

i=N

A(i)Kλ0 =
n−1∏

i=0

A(i)λ0X0

= λ0

n−1∏

i=0

A(i)X0 = λ0U(n).

Hence the system (4.2) has a (N, λ0)-periodic solution given by (4.3). Moreover,

U(n) = λ∧0 (n)P (n) where P (n) := λ∧0 (−n)
∏n−1

i=0 A(i)X0 is a periodic sequence of

period N . As a particular example, if

A(n) =


 0 3+(−1)n

2

3−(−1)n

2
0


 ,

we have that N = 2 and the eigenvalues of K := A(1)A(0) are λ1 = 1 and λ2 = 4

with the corresponding eigenvectors
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X1 =


 1

0


 X2 =


 0

1


 ,

respectively. If X(0) = X1, then the system (4.2) has a (2, 1)-periodic solution

and, if X(0) = X2, it has a (2, 4)-periodic solution.

Next, we present some algebraic properties of the (N, λ)-periodic discrete func-

tions.

Theorem 4.1.5. Let f and g be (N, λ)-periodic discrete functions, c ∈ C and

l ∈ Z. Then the following assertions are valid:

(i) w := f + g is a (N, λ)-periodic discrete function.

(ii) p := cf is a (N, λ)-periodic discrete function.

(iii) For each fixed l in Z the function fl : Z → X defined by fl(n) := f(n+ l) is

a (N, λ) periodic discrete function.

Proof. The proof is immediate. Indeed, for all n ∈ Z we have that

(i) w(n+N) = (f + g)(n+N) = λ w(n).

(ii) p(n+N) = (cf)(n+N) = λ p(n).

(iii) fl(n+N) = f(n+N + l) = f(n0 +N) = λ fl(n).

Theorem 4.1.6. Let f ∈ PNλ(Z, X), then ∆f ∈ PNλ(Z, X).

Proof. Since ∆f(n) = f(n+1)− f(n), then by (i) and (iii) of Theorem 4.1.5, we

have that ∆f is a (N, λ)-periodic discrete function.

In order to give a Banach structure to the vector space PNλ(Z, X), we need to

define a suitable norm. We recall that the space of N -periodic discrete functions
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equipped with the norm

‖u‖N := max
n∈[0,N ]∩Z

‖u(n)‖X (4.4)

is a Banach space.

Proposition 4.1.7. PNλ(Z, X) is a Banach space with the norm

‖ f ‖Nλ:= max
n∈[0,N ]∩Z

‖ λ∧(−n)f(n) ‖X . (4.5)

Proof. The proof follows from Proposition 4.1.2 and the fact that PN(Z, X) is a

Banach space with the norm (4.4).

Next, we present a convolution theorem. This result is a useful tool in order to

study the existence and uniqueness of (N, λ)-periodic discrete solutions of abstract

Volterra difference equations.

Theorem 4.1.8. Let f ∈ PNλ(Z, X) and assume that b : N0 → C is such that the

sequence b∽(n) := λ∧(−n)b(n) is summable. Then b ⋆ f defined by

(b ⋆ f)(n) =

n∑

j=−∞

b(n− j)f(j), n ∈ Z,

is well defined in the norm ‖ · ‖Nλ and belongs to PNλ(Z, X).

Proof. Let p(n) := (b ⋆ f)(n), n ∈ Z. First, note that p is well defined in the norm

‖ · ‖Nλ. Indeed,

‖ λ∧(−n)p(n) ‖X ≤
n∑

j=−∞

|λ∧(−(n− j))b(n− j)| ‖ λ∧(−j)f(j) ‖X

≤ ‖ f ‖Nλ

n∑

j=−∞

|λ∧(−(n− j))b(n− j)|

= ‖ f ‖Nλ

∞∑

j=0

|b∽(j)|.
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Therefore, ‖p‖Nλ ≤ ‖f‖Nλ‖b∽‖ℓ1. Next, we prove that p is (N, λ)-periodic discrete.
In fact,

p(n +N) =

n+N∑

j=−∞

b(n+N − j)f(j) =

n+N∑

j=−∞

b(n− (j −N))f(j)

=

n∑

r=−∞

b(n− r)f(r +N) = λ

n∑

r=−∞

b(n− r)f(r) = λ p(n).

Hence p ∈ PNλ(Z, X).

In order to prove the next composition result, we need the following useful lemma.

Lemma 4.1.9. For every (m, x) ∈ Z×X, there exists φ ∈ PNλ(Z, X) such that

φ(m) = x.

Proof. It is enough to consider φ(n) := λ∧(n−m)x.

Let g : Z ×X → X and φ ∈ PNλ(Z, X). We recall that the operator N (φ)(·) :=
g(·, φ(·)) is called the Nemytskii discrete composition operator. We study the

invariance of N on PNλ(Z, X).

Theorem 4.1.10. Let g : Z×X → X. Then the following assertions are equiv-

alent:

(i) for every φ ∈ PNλ(Z, X) we have that N (φ) is (N, λ)-periodic discrete.

(ii) g is N-periodic in the first variable and homogeneous in the second variable,

that is g(n+N, λx) = λg(n, x) for all (n, x) ∈ Z×X.

Proof. Assume (ii). Then for φ ∈ PNλ(Z, X) and all n ∈ Z, we have

N (φ)(n+N) = g(n+N, φ(n+N)) = g(n+N, λφ(n)) = λ N (φ)(n).

Thus, we conclude that N (φ) ∈ PNλ(Z, X). Suppose (i) and let (n, x) ∈ Z × X

be arbitrary. By Lemma 4.1.9, there exists φ ∈ PNλ(Z, X) such that φ(n) = x.
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Therefore, for such φ we have

λg(n, x) = λ g(n, φ(n)) = λ N (φ)(n)

= N (φ)(n+N) = g(n+N, φ(n+N))

= g(n+N, λφ(n)) = g(n+N, λx),

which gives the claim.

4.2 Abstract Volterra difference equations

In this section, we establish the existence of (N, λ)-periodic discrete solutions for

the following class of linear Volterra difference equations defined on a Banach

space X (see [31])

u(n+ 1) = σ
n∑

j=−∞

a(n− j)u(j) + f(n), n ∈ Z, (4.6)

where σ is a given complex number, a is summable and f ∈ PNλ(Z, X) for N, λ

fixed. Let S(σ, k) be the solution of the difference equation

S(σ, n + 1) = σ

n∑

j=0

a(n− j)S(σ, j), n ∈ N0, (4.7)

S(σ, 0) = 1,

and define the set

ΩN
λS :=

{
σ ∈ C :

∞∑

j=0

|S∽(σ, j)| <∞
}
,

where S∽(σ, j) = λ∧(−j)S(σ, j). Note that 0 ∈ ΩN
λS .

Theorem 4.2.1. Let a : N0 → C and f ∈ PNλ(Z, X) be given. Suppose that a is

summable and σ ∈ ΩN
λS . Then there is a (N, λ)-periodic discrete solution of (4.6)

given by

u(n+ 1) =

n∑

j=−∞

S(σ, n − j)f(j). (4.8)
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Proof. Since f ∈ PNλ(Z, X) and σ ∈ ΩN
λS , applying Theorem 4.1.8 we obtain

that (4.8) is a well defined (N, λ)-periodic discrete function. Moreover, since a

is summable, following the same lines that in [31, Theorem 3.1], we find that u

satisfies (4.6). Indeed,

σ

n∑

j=−∞

a(n− j)u(j) + f(n)

= σ
n∑

j=−∞

a(n− j)

(
j−1∑

i=−∞

S(σ, j − 1− i)f(i)

)
+ f(n)

= σ
n−1∑

j=−∞

j∑

i=−∞

a(n− 1− j)S(σ, j − i)f(i) + f(n)

= σ

n−1∑

i=−∞

n−1∑

j=i

a(n− 1− j)S(σ, j − i)f(i) + f(n)

= σ

n−1∑

i=−∞

(
n−1−i∑

j=0

a(n− 1− i− j)S(σ, j)
)
f(i) + f(n)

=
n−1∑

i=−∞

S(σ, n − i)f(i) + S(σ, 0)f(n)

=

n∑

i=−∞

S(σ, n − i)f(i) = u(n+ 1).

Remark 4.2.2. Uniqueness of solutions to the linear case follows directly from

[12, Remark 2.4].

Now, we consider the problem of existence and uniqueness of (N, λ)-periodic dis-

crete solutions for the class of semilinear Volterra difference equations on a Banach

space X given by

u(n+ 1) = σ
n∑

j=−∞

a(n− j)u(j) + f(n, u(n)), n ∈ Z, (4.9)

where σ ∈ C and f satisfies suitable conditions. Here, we assume that

a∽(k) := λ∧(−k)a(k), k ∈ N0
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is such that

‖a∽‖ℓ1 <∞.

For example, if a is summable and |λ| ≥ 1 then a∽ ∈ ℓ1(N0).

Theorem 4.2.3. Let f : Z×X → X be given. Assume the following conditions:

(i) There exists (N, λ) ∈ Z× (C \ {0}) such that

f(n+N, λx) = λf(n, x)

for all (n, x) ∈ Z×X.

(ii) There exists a constant L > 0 such that

‖ f(n, x)− f(n, y) ‖X ≤ L ‖ x− y ‖X

for all x, y ∈ X and n ∈ Z.

(iii) σ ∈ ΩN
λS .

(iv) L
∑∞

k=0 |S∽(σ, k)| < 1.

Then equation (4.9) has a unique solution in PNλ(Z, X) satisfying

u(n+ 1) =
n∑

j=−∞

S(σ, n − j)f(j, u(j)).

Proof. We define the operator G : PNλ(Z, X) → PNλ(Z, X) by

G(u)(n) :=

n∑

j=−∞

S(σ, n− j)f(j, u(j)).

By hypothesis (i), Theorem 4.1.10 and Theorem 4.1.8 we have that G(u) is a

(N, λ)-periodic discrete function and therefore G is well defined. Now, for u, v ∈
PNλ(Z, X) we get by hypothesis (ii)
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‖ λ∧(−n)
n∑

j=−∞

S(σ, n − j) [f(j, u(j)− f(j, v(j)] ‖X

≤
n∑

j=−∞

|λ∧(−(n− j))S(σ, n− j)| ‖ λ∧(−j) [f(j, u(j)− f(j, v(j)] ‖X

≤
n∑

j=−∞

|λ∧(−(n− j))S(σ, n− j)||λ|−j/N ‖ [f(j, u(j)− f(j, v(j)] ‖X

≤ L

n∑

j=−∞

|λ∧(−(n− j))S(σ, n− j)||λ|−j/N ‖ [u(j)− v(j)] ‖X

= L
n∑

j=−∞

|λ∧(−(n− j))S(σ, n− j)||λ|−j/N ‖ λ∧(j)λ∧(−j) [u(j)− v(j)] ‖X

= L

n∑

j=−∞

|λ∧(−(n− j))S(σ, n− j)| ‖ λ∧(−j) [u(j)− v(j)] ‖X

≤‖ u− v ‖Nλ L
∞∑

k=0

|S∽(σ, k)|.

By (iii) and (iv), we obtain

‖ G(u)−G(v) ‖Nλ = max
n∈[0,N ]∩Z

‖ λ∧(−n)
n∑

j=−∞

S(σ, n − j) [f(j, u(j)− f(j, v(j)] ‖X

≤‖ u− v ‖Nλ L

∞∑

k=0

|S∽(σ, k)|.

It follows that G is a contraction. Then there exists a unique function u ∈
PNλ(Z, X) such that Gu = u. Hence u is the unique solution of equation (4.9).

Example 4.2.4. We consider the following difference equation in the Banach

space X = R,

u(n+ 1) = σ

n∑

j=−∞

pn−ju(j) + νg(n) cos(h(n)u(n)), n ∈ Z, (4.10)

where g ∈ PNλ(Z,R), h ∈ PN 1
λ
(Z,R), p ∈ C is such that |p| < 1 and

σ ∈ M := {z ∈ C : |z + p| < |λ|1/N}.
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Let ϕ(n) := g(n)h(n). Note that ϕ is a periodic function with N period. Then,

there exists a constant τ such that τ := max
n∈[0,N ]∩Z

|ϕ(n)|. We claim that if

|ν| < |λ|1/N − |σ + p|
(|λ|1/N − |σ + p|+ |σ|) |τ | , (4.11)

then (4.10) has a unique (N, λ)-periodic discrete solution. In order to show this,

first, let us determine the solution S(σ, n) of the problem

S(σ, n + 1) = σ
n∑

j=0

pk−jS(σ, j), n ∈ N0,

S(σ, 0) = 1,

using the Z -transform. Indeed, we have zS̃(z)− zS(σ, 0) = σ p̃(z)S̃(z) or, equiv-
alently, zS̃(z)− z = σ

(
z

z−p

)
S̃(z). Then,

S̃(z) = z

z − σ
(

z
z−p

) =
z − p

z − p− σ
.

Hence,

S(σ, n) = (σ + p)n − p(p+ σ)n−1 = σ(σ + p)n−1, n ≥ 1. (4.12)

It follows that σ ∈ M ⊂ ΩN
λS , which proves condition (iii) of Theorem 5.2.2.

On the other hand, note that f(n, x) := νg(n) cos(h(n)x) satisfies the hypotheses

(i) and (ii) of Theorem 5.2.2:

(i)

f(n+N, λx) = νg(n+N) cos(h(n +N)λx) = νλg(n) cos

(
1

λ
h(n)λx

)

= λνg(n) cos(h(n)x) = λf(n, x).

(ii)

|f(n, x)− f(n, y)| ≤ |νg(n)h(n)||x− y| ≤ |ντ ||x− y| := L|x− y|.
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Next, we show part (iv) of Theorem 5.2.2. Indeed, using (4.11) and (4.12) we

have that

L

∞∑

j=0

|S∽(σ, j)| = |ντ |
(
1 +

∞∑

j=1

|λ∧(−j)σ(σ + p)n−1|
)

= |ντ |
(
1 +

|σ|
|λ|1/N

∞∑

j=1

( |σ + p|
|λ|1/N

)n−1
)

= |ντ |
(
1 +

|σ|
|λ|1/N − |σ + p|

)

= |ντ | |λ|
1/N − |σ + p|+ |σ|
|λ|1/N − |σ + p| < 1.

Thus, we have checked all the hypotheses of Theorem 5.2.2. Hence there exists a

unique (N, λ)-periodic discrete solution u of (4.10) satisfying

u(n+ 1) = ν
n∑

j=−∞

S(σ, n− j)g(j) cos(h(j)u(j)).

Remark 4.2.5. As a particular case of the previous example, we can consider the

functions h(n) := (1/2)n/8 sin(nπ/4) and g(n) := (2)n/8 cos(nπ/4).



5. Existence and uniqueness of (N,λ)-

periodic solutions for abstract frac-

tional difference equation

In this chapter, we establish sufficient conditions for the existence and uniqueness

of (N, λ)-periodic solutions for the nonlinear fractional equation

∆α
Wu(n) = Au(n+ 1) + f(n, u(n)), n ∈ Z,

where A is a closed linear operator with domain D(A) defined on a complex

Banach space X equipped with the norm ‖ · ‖X , 0 < α ≤ 1, ∆α
W denotes the

fractional difference operator in the sense of Weyl-like and f satisfies appropriate

conditions.

5.1 Linear fractional difference equations

Given α > 0, we define the vector subspace

Θ1
α(Z, X) :=

{
f ∈ s(Z, X) :

∞∑

n=−∞

‖nα−1f(n)‖X <∞
}
.

It is clear that Θ1
α(Z, X) is a Banach space under the norm ‖f‖Θ1

α
:=

∞∑

n=−∞

‖nα−1f(n)‖X .

If α = 1 then we simply write Θ1(Z, X). Now, suppose that 0 < α ≤ 1. Observe

86
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that if f ∈ Θ1(Z, X), then

‖f‖Θ1
α
:=

∞∑

n=−∞

‖nα−1f(n)‖X <
∞∑

n=−∞

‖f(n)‖X <∞.

Hence Θ1(Z, X) ⊂ Θ1
α(Z, X) for 0 < α ≤ 1.

Given f ∈ Θ1
α(Z, X), it was proved in [5] that

∆−α
W ∆f(n) = ∆∆−α

W f(n), n ∈ Z.

Therefore, when the fractional difference operators are defined on Z, there will be

no difference between Caputo, Riemann-Liouville and Hilfer. Thus, we will only

consider the operator ∆α
W .

Let 0 < α ≤ 1 and A be a closed linear operator with domain D(A) defined on a

Banach space X . Initially, we consider the linear fractional difference equation

∆α
Wu(n) = Au(n+ 1) + g(n), n ∈ Z. (5.1)

We recall from [5, Definition 4.1] that a sequence u ∈ Θ1(Z, X) is called a strong

solution for equation (5.1) if u(n) ∈ D(A) for all n ∈ Z and u satisfies (5.1).

Definition 5.1.1 ( [5]). Let A be the generator of a discrete (α, α)-resolvent family

{Sα,α(n)}n∈N0 and g : Z −→ X. The sequence

u(n) =

n−1∑

j=−∞

Sα,α(n− 1− j)g(j), n ∈ Z, (5.2)

is called a mild solution for equation (5.1) if m→ Sα,α(m)g(n−m) is summable

on N0 for each n ∈ Z.

Note that if g ∈ Θ1(Z, D(A)) then each mild solution is a strong one, see [5,

Theorem 4.2].

In the following theorem, we establish the existence of (N, λ)-periodic mild solu-

tions for equation (5.1).
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Theorem 5.1.2. Let 0 < α ≤ 1. Assume that A be a closed linear operator

defined on a Banach space X, 1 ∈ ρ(A) and

‖(I − A)−1‖ < 1.

If g ∈ PNλ(Z, X), then there is an (N, λ)-periodic mild solution of (5.1) given by

the sequence

u(n) :=
n−1∑

j=−∞

Sα,α(n− 1− j)g(j), n ∈ Z, (5.3)

where {Sα,α(n)}n∈N0 is discrete (α, α)-resolvent sequence defined in (3.3).

Proof. By Theorem 3.1.7, A generates a summable discrete (α, α)-resolvent se-

quence {Sα,α(n)}n∈N0 given by

Sα,α(n)x =

∞∑

j=0

ϕα,0(n, j)(I −A)−(j+1)x, n ∈ N0, x ∈ X.

Since g is bounded and {Sα,α(n)}n∈N0 is summable, it follows that the sequence u

is a mild solution of (5.1). It remains to prove that u ∈ PNλ(Z, X). Indeed,

u(n+N) =

n+N−1∑

j=−∞

Sα,α(n+N − 1− j)g(j) =

n−1∑

p=−∞

Sα,α(n− 1− p)g(p+N)

= λ

n−1∑

p=−∞

Sα,α(n− 1− p)g(p) = λu(n),

getting that u ∈ PNλ(Z, X).

5.2 Semilinear fractional difference equations

Now, we consider the following fractional difference equation

∆α
Wu(n) = Au(n+ 1) + f(n, u(n)), n ∈ Z, (5.4)

where 0 < α ≤ 1, A satisfies the hypotheses in Theorem 3.1.7 and f satisfies

suitable conditions.
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Inspired in the solution of the linear case, we give the following definition of mild

solution for the semilinear case.

Definition 5.2.1. Let A be the generator of a discrete (α, α)-resolvent family

{Sα,α(n)}n∈N0 and f : Z × X −→ X. We say that a sequence u : Z −→ X is a

(N, λ)-periodic mild solution of (5.4) if u ∈ PNλ(Z, X) and satisfies

u(n) =

n−1∑

j=−∞

Sα,α(n− 1− j)f(j, u(j)), n ∈ Z, (5.5)

where m→ Sα,α(m)f(n−m, x) is summable on N0 for each n ∈ Z.

Let D := D(0, 1) = {λ ∈ C : |λ| < 1}. The following is our main result.

Theorem 5.2.2. Let f : Z×X → X be given and let A be a closed linear operator

defined on a Banach space X such that 1 ∈ ρ(A) and

rA := ‖(I − A)−1‖ < 1. (5.6)

Assume the following conditions:

H1. There exists (N, λ) ∈ N× (C \D) such that f(n+N, λx) = λf(n, x) for all

(n, x) ∈ Z×X.

H2. There exists a constant L > 0 such that

‖ f(n, x)− f(n, y) ‖X ≤ L ‖ x− y ‖X ,

for all x, y ∈ X and all n ∈ Z.

H3. The constant L in H2 is such that

L <

(
1− 1

|λ|1/N
)α

+

(
1

rA
− 1

)
.

Then, equation (5.4) has a unique (N, λ)-periodic mild solution.
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Proof. First, let us define the operator G : PNλ(Z, X) → PNλ(Z, X) by

G(u)(n) :=

n−1∑

j=−∞

Sα,α(n− 1− j)f(j, u(j)).

Let u ∈ PNλ(Z, X) and g(n) := f(n, u(n)). By H1 and Theorem 4.1.10 we get

that g ∈ PN,λ(Z, X). As in the linear case, we can see that G(u) ∈ PNλ(Z, X). It

follows that G is well defined. Now, for u, v ∈ PNλ(Z, X),

‖ G(u)−G(v) ‖Nλ = max
n∈[0,N ]∩Z

‖ λ∧(−n)
n−1∑

j=−∞

Sα,α(n− 1− j) [f(j, u(j)− f(j, v(j)] ‖X ,

where we have by H2 that

‖ λ∧(−(n− 1))

n−1∑

j=−∞

Sα,α(n− 1− j) [f(j, u(j)− f(j, v(j)] ‖X

=‖
n−1∑

j=−∞

λ∧(−(n− 1− j))Sα,α(n− 1− j)λ∧(−j) [f(j, u(j)− f(j, v(j)] ‖X

<
n−1∑

j=−∞

|λ|∧(−(n− 1− j))|Sα,α(n− 1− j)||λ|∧(−j) ‖ [f(j, u(j)− f(j, v(j)] ‖X

< L

n−1∑

j=−∞

|λ|∧(−(n− 1− j))|Sα,α(n− 1− j)| ‖ λ∧(−j) [u(j)− v(j)] ‖X

<‖ u− v ‖Nλ L
∞∑

k=0

‖S∽
α,α(k)‖,

where S∼
α,α(n) := λ∧(−n)Sα,α(n). Then,

‖ G(u)−G(v) ‖Nλ = max
n∈[0,N ]∩Z

‖ λ∧(−n)
n−1∑

j=−∞

Sα,α(n− 1− j) [f(j, u(j)− f(j, v(j)] ‖X

≤ L ‖ u− v ‖Nλ

∞∑

k=0

‖S∽
α,α(k)‖ <‖ u− v ‖Nλ,

where by Theorem 3.1.5, Proposition 2.1.7-(iv) and (1.21) we have

∞∑

k=0

‖S∽
α,α(k)‖ ≤

∞∑

n=0

|λ|−n/N

∞∑

j=0

ϕα,0(n, j)r
j+1
A =

∞∑

n=0

|λ|−n/NEα,α
(
1− 1

rA
, n

)

=
|λ|α/N

(|λ|1/N − 1)α − (1− 1
rA
)|λ|α/N =

1(
1− 1

|λ|1/N

)α
+
(

1
rA

− 1
) .
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Therefore, the conclusion follows from H3. From the above, it follows by Banach

fixed point theorem that there exists a unique function u ∈ PNλ(Z, X) such that

Gu = u. Hence u is the unique (N, λ)-periodic mild solution of equation (5.4).

Remark 5.2.3. Regarding condition H3 we observe that is enough to have the

weaker condition L ‖ S∽
α,α ‖1< 1 where S∼

α,α(n) := λ∧(−n)Sα,α(n) and {Sα,α(n)}n∈N0

is the (α, α)-resolvent sequence generated by A.

Finally, we finish with an application of the main result presented in this section.

Example 5.2.4. Let 0 < α < 1 and |λ| ≥ 1. We consider the following fractional

difference-differential equation in X = L2(0, 1)





∆α
Wu(n, x) =

∂2

∂x2u(n+ 1, x) + g(n, x) cos(h(n, x)u(n, x)), n ∈ Z, x ∈ (0, 1),

u(n, 0) = u(n, 1) = 0,

(5.7)

where g ∈ PNλ(Z, L
2(0, 1)), h ∈ PN 1

λ
(Z, L2(0, 1)) and

max
n∈[0,N ]∩Z

‖g(n)h(n)‖L2 <
(
1− |λ|−1/N

)α
+



(

∞∑

m=1

1

(1 + (mπ)2)2

)−1/2

− 1


 .

(5.8)

We define

D(A) = {f ∈ L2(0, 1) : f ′′ ∈ L2(0, 1), f(0) = f(1) = 0},

Af = f ′′, ∀f ∈ D(A).

Then (5.7) can be written in the abstract setting (5.4). It is well known that A is

the generator of an analytic semigroup {T (t)}t≥0 on L2(0, 1) (see [61]) which is

given by

T (t)f =
∞∑

j=0

e−j2π2t〈f, ej〉ej .
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where {ej} is the standard basis in L2(0, 1). Moreover, we can represent the gen-

erator A as

Af = −
∞∑

m=1

(mπ)2〈f, em〉em, f ∈ D(A).

Then, for each f ∈ L2(0, 1) we have 1 ∈ ρ(A) and

‖(I − A)−1f‖2L2 =

∞∑

m=1

1

(1 + (mπ)2)2
|〈f, em〉|2.

Note that

rA : = sup
‖f‖=1

‖(I − A)−1f‖ =

(
∞∑

m=1

1

(1 + (mπ)2)2

)1/2

≤
(

1

π4

∞∑

m=1

1

m4

)1/2

=
1√
90

< 1,

where we have used the formula [70, Pag. 651] in the last equality. Then, the

condition (5.6) is satisfied. Now, we shall verify all the hypotheses in Theorem

5.2.2. Indeed, the sequence f(n, ξ) := g(n) cos(h(n)ξ), ξ ∈ L2(0, 1), satisfies:

f(n+N, λξ) = g(n+N) cos(h(n +N)λξ) = λg(n) cos

(
1

λ
h(n)λξ

)

= λg(n) cos(h(n)ξ) = λf(n, ξ),

and

‖f(n, ξ)− f(n, ψ)‖L2 ≤ ‖g(n)h(n)‖L2‖ξ − ψ‖2 ≤ L‖ξ − ψ‖L2 ,

where

L := max
n∈[0,N ]∩Z

‖g(n)h(n)‖L2.

From equation (5.8) and the fact that rA < 1, we obtain that

L <

(
1− 1

|λ|1/N
)α

+

(
1

rA
− 1

)
,

satisfying H3. Thus, we have checked all the hypotheses of Theorem 5.2.2. Hence

equation (5.7) has a unique (N, λ)-periodic mild solution.
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Finally, observe that in case |λ| = 1, we have that

L := max
n∈[0,N ]∩Z

‖g(n)h(n)‖L2 <
1

rA
− 1.

and therefore condition H3 independent of α. This happens precisely in the stan-

dard cases of discrete periodic, discrete anti-periodic and discrete Bloch periodic

functions.
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and the Lévy α-stable distribution on discrete time. Commun. Contemp.

Math., 2020.

[17] E. Alvarez, S. Dı́az, and C. Lizama. Existence of (N, λ)-periodic solutions for

abstract fractional difference equations. Mediterr. J. Math, Accepted, 2021.



Bibliography 97
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