Information
Management
School

Mestrado em Gestao de Informagao

Master Program in Information Ma sment

Supply Chain (micro)TMS development

Antonio Alberto Pessegueiro Gemelgo

Project presented as a partial requirement for the degree of
Master of Information Management

NOVA Information Management School
Instituto Superior de Estatistica e Gestao de Informacao

Universidade Nova de Lisboa

NOVA Information Management School
Instituto Superior de Estatistica e Gestao de Informagao

Universidade Nova de Lisboa

SUPPLY CHAIN (MICRO)TMS DEVELOPMENT

by

Antodnio Alberto Pessegueiro Gemelgo

Project presented as a partial requirement for the degree of Master of Information Management,
Specialization in Information Systems and Technologies Management

Supervisor: Vitor Santos

October 2021

ABSTRACT

The rise of technology across many verticals has necessitated the company’s move to digitalization.
Despite “XPTO” company a well know player on the retail and success on e-commerce internal market,
they aimed at the strategy of continuous innovation to drive business growth and strengthen their
position as a premium brand. They decided to move forward into digitalism inside cloud based
solutions to get all the advantages of microservices architecture: optimize logistics and supply chain
management, speed up the workflow and maximize service efficiency.

An agile organization is not achieved purely by shifting the focus from traditional functional/
technological oriented organizations. The new way to organize teams must reflect all the principles
and right segregations of roles, which will be the most immediate and visible disruption and cutover
from the traditional way of managing the IT.

In this project we aim to use agile framework with development based in house cloud microservice
solution for a (micro)TMS solution/system that address the immediate needs imposed by the market
in order to use it has competitive advantage.

KEYWORDS

AWS, Digitalism, Logistics, Microservices, Supply Chain Management, Transport Management System
(TMS)

INDEX

1. INErOAUCTION Leeiiiiiieee e s 9
1.1. Background and problem identificationccccceeeeiiiiiiiiiiiii e, 9
1.2. Study relevance and iMPOrtanCe........ceieiiieiiuiiieeeeieisisriireeee e e erirrre e e e e e e sneens 12
IO T 0] o [T o1 4 V=T PP PPPPPPPP 13

2. WOTK PIaN it e e 15
2.1. Project Definition ..., 15
2.2. RESOUICES & TOOIS . .eeeeiiiieiiie ettt 15

2. 2.1 UML e e 15
2.2.2.CIOUA RESOUICESeeeeirieiiiieeiee ettt s 16
2.3. Project SChEAUIING ..o e e e e s 19

3. Theorectical FrameWOrK........c.ueiiiiiiiiiiieeeee e 20
3.1. Digital Transformation.........ceeeeeeeeiiieiiici e, 20
3.2. Supply Chain ManagemeENnt..........cuiiiiiiiiiiiiieeeeeeeeee e e e e e e e e e e e e e e e e e 21
3.3, CloU™ COMPULING .cevveiiiiriiiiiiiiiieeieeeieeeeeeeeeeeeeeeeeeeeere e e e e e e e e e e e e e e e eeeeeeeeeeas 23

3.3.1.ClOUT VS ON-PIEIMISE ..vvvrrrerrrerreerreereeereerrerreeereereereereeereerreerrrrrrererreetreereeeeeees 23
3.3.2.CloUA-NATIVE .. 24
3.3.3.ClOUA ProvVidersooiieiiiiieeciie ettt 26
3.4. Transport Management SYyStem ..o e 26
3.5. SOftware DevelOPMENT.......cuiiii it e e e e e s e 28
R T8 I 0o] o [T o OO P TP PPPPPRPPPPPPIRt 28
3.5.2.Software Development Methodologycccevvveeiieeiiieiieeiiieeeeeeeeeeeeeeeeeeee, 29
S T8 T 11V © I o TR 35

oY =T 40
o I AN U T o o]] o 40
4.2. Development MethodOIOgYcocoeeeeiieei e arrreeees 40
4.3. Functional requirements ANAlYSiScooecuuiiiiieeiiiriiiiirieee e e 42

4.3.1.Functional REQUIrEMENTSuuviiiiieiiiiiiiiieeee et e e e eierre e e e e s e s 42
R DI -4 -] 0 LTSRN 46
4.4, Architecture and SOIUTION d@SIZN....ccieiiieeiiet b aerreeees 71
A4, 1. ArCRITECTUN. . eei et e e 71
B4, 2. INTEITACES. ..e ittt 74
4.4.3.Data MOGEL.....oiiiiiiieieee e 74

O o Yo | o~ PP PPPTRRP 79

T I =T 1 =R 87

SR |V o T a1 o]] o =P 87

5. CONCIUSIONS ..ttt e e enneesnneeeas 89
5.1, LIMITAEIONS cceiiiiiiiiiiiiiiiii s 90
5.2, FUTUIE WOTKS ...ttt ettt st e e 90
BibliOgrapNy oo 91

TABLE OF FIGURES

Figure 1 — CTT ProCess (SOUICE : OWN)..uuuuiiieeeeiiiiiieieeeeeeeesiiirreeeeeeesssnnrsseesesssssssssnsseeeeessannnns 14

Figure 2 — ALB implementation (Source: What is an Application Load Balancer? - Elastic Load

BalanCing. (N.d.)) e e e e e e e e e e e e e eannras 16
Figure 3 —Kong API key features (Source : KONG INC.) weeeiiveeiiiiiiiiiiiiiiiiieeee e eeiveeee e 17
Figure 4 — Project chart (SOUIMCE: OWN) ..uuiiiieeieiiiiieee ettt e s e e e e e e e eiraae e e e e e e e e eanns 19

Figure 5 — Basic principles of cloud-native development (Source: Basic principles of cloud-
native development. (N.d.)) ... e 25
Figure 6 — SCM main systems (SOUICE 1 OWN)....cuuuiiiieeeieiiciiiiieee e e e eerrre e e e e e e e eisneeeeeeeeeeennes 27

Figure 7 — Software Development Life Cycle phases (Source: Software Development Life Cycle

(o] g =T I (1 1« 19) O PP PPPPPPPPPPPIRt 29
Figure 8 — Waterfall model (Source: Waterfall model. (n.d.)) ccoeeeeiiiiiiiiieieeeeeeeeee, 31
Figure 9 — Steps in the Scrum Process (Source: What’s the Difference? Agile vs Scrum vs

Waterfall vs Kanban. (N.d.)) ..o 33
Figure 10 — Kanban board (Source: Mathenge, J. (n.d.).) ccccoumiiiieeiiiieeee e, 34
Figure 11 — CI/CD process (Source: ENEN, T.) coocuiiiiiiiieieceiiie e ettt eevvee e e eavaee e 37
Figure 12 — Sprint Calendar template (SoUrce: OWN)coooeviieeiiiiiiiiiieiieciccccccciaaes 40
Figure 13 — CTT manual steps (SOUIMCE: OWN)euuiiiieeeiieiieiiieeee e e et e e e e e eraae e e e e e e e e 47
Figure 14 — CTT shipping orders flow (AS-IS) (SOUrCe: OWN)ceveeeiiiiiiiiiiieeeeereiireeee e 48
Figure 15 — CTT shipping orders flow (SOUIrCe: OWN)ccooviiiiiiiiiiiiiiiiieiiecicccccecenenes 48
Figure 16 — CTT Trackingld & Label flow end-to-end (Source: own).......cccceeeveeivviveeeeeeeeccnnnns 49
Figure 17 — CTT shipconfirm flow end-to-end (Source: OWn)cccoevvviiiieeiieeiicciiieeeeee e 50
Figure 18 — Shipconfirm activity diagram (Source: OWn)ccceeeeeeeiieeiieeieeiciccccceaanns 51
Figure 19 — Shipconfirm sequence diagram (SOUrce: OWN)cccuveveeriiieeiriiieeeeiiieeeesieee e 52
Figure 20 — Shipconfirm state machine diagram (WhTF) (Source: own)cceeeeveeeereennn. 53
Figure 21 — Shipconfirm state machine diagram (microTMS) (Source: own)ceeeveeennnn. 54
Figure 22 — Tracking Id & Label activity diagram (SOUrce: own).......ccccceeeevcveeeesiiieeeesciveeeenns 55
Figure 23 — Tracking Id & Label sequence diagram (Source: own)cccceeeeeeeeeeeeeeiceeeeceennn, 55
Figure 24 — CTT Shipconfirm mandatory data (Source: OWN)cccoeecciiveeeeeeeeeccciieeeeee e 62
Figure 25 — CTT file Header (SOUIMCE: OWN) ..cccceeuiiiiieee ettt e e earaee e e e e e e e 63
Figure 26 — CTT file details (SOUICE: OWN) ..cccoeeeiiiiieeiieee e 64
Figure 27 — CTT 1abel (t0-D8) wuerieiiiiieeeee et e e e e e e e e e e e e aeen 69
Figure 28 — CTT Exception [abel printoutcccccuviiiiiiiiiiiiic e 70

Figure 29 — Architecture Design — Event Oriented Architecture based on Lambda Function

(o 10 of=H o 17 o) I 72

Figure 30 — WhTF MVP Solution Design (SOUICe: OWN)ccoevvieeiiieiieiiieiieeiieeeieeececcnnnaanns 72

Figure 31 — microTMS MVP Solution Design (SOUrce: OWN)ceeeeeeeiciiiiiireeeeeeeeiireeeeee e e 73
Figure 32 — DynamoDB tables (SOUrCe: OWN)uuviiiiieiiiiiiiieee e e e e 74
Figure 33 — WhTF FIow Id (SOUICE: OWN)...ocoiiiiiiiiiiiiiiiiii et 74
Figure 34 — WhTF FIOW Step (SOUICE: OWN) .cciiuiiieiiiiieeeeeciieeeeeittee e sitee e estre e e esaaee e s s sanneeeenes 74
Figure 35 — microTMS FIoW Id (SOUICE: OWN) ...cooeiiiiiiiiiiiee e 75
Figure 36 — microTMS FIoOW Step (SOUIMCE: OWN)....ccoiiiiiiiiiiiiiiiee e 76
Figure 37 — CTT tracking nUMDbErs (SOUMCE: OWN) ...cccuuiieiiiiiiieeeeiieee e eeiree e s e s saree e 77
Figure 38 — Table moore tms-configurations-dev definitions (Source: own)cc.......... 78
Figure 39— microTMS FIOW Step (SOUICE: OWN)....ccooiiiiiiiiiiieeiiee e 79
Figure 40 — Branching Strategy to use in code (Source: Introduction to GitLab Flow | GitLab.

[T 18) IO PP TPPR 83
Figure 41 — Deployment Process FIOW (SOUICE: OWN)cccuuiiiiiiieeeiiiiiiieeee e e eeeireee e e e 84
Figure 42 — Deployment Process Stages (SOUICEe: OWN).....c.uvveeecveeeeiiiieeeeriieeeeecieeeeesineee e 86
Figure 43 — Data Flow for monitoring (SOUrce: OWN)ccooeeeiieeiiiiieeiieecceececccc e 88
Figure 44 — CTT daily deliVery ..o 89

LIST OF TABLES
Table 1 — Functional Requirements (SOUICE: OWN)......ueiiriiiieeiniiiieeeiiiee e srireeeesireeesssveeee e 45
Table 2 — CTT Label request mappings (SOUICE: OWN) ...ccccvvereeicurieeeeiiieeeeeireeeesveeeeesvaeeeeans 67
Table 3 — CTT Label response (SOUICE: OWN) ...coeeeeeiieiieiiieeeieeiieeiieeieeeeeeeeeeee e aanaaasnaannaaens 67
Table 4 — CTT Label NOK @rror MESSagE....ccceeieeeieeececieeei e ee e ee e ee e e e e e e nanennnes 70
Table 5 — Branch Types (SOUMCE: OWN) c..uuiiieiiiiieeciiiee e et ee e esiree e e tee e eeiree e e sve e e e s snaaaeeens 81
LIST OF ANNEX

Annex 1 — WhTF Shipconfirm mMappings......cccuuvieieiiiiiciiiiiieee e esreee e e e e 98
ANNEX 2 — GItlaD-CY YaMl bbb 100
Annex 3 — docker-CompoSe Yaml raane 101
Annex 4 — CTT mapping matriX (SOUMCE: OWN) ...coiieuiececaaaeeanreanaaarereeeeeees 112

LIST OF ACRONYMS

Al - Artificial Inteligence

ALB - Application Load Balancer

AWS - Amazon Web Services

CD - Continuous Delivery

ClI - Continuous Improvement

CTO - Chief Technology Officer

CTT - Correios e Telecomunicagdes de Portugal
ERP - Enterprise Resource Planning

HTTP - HyperText Transfer Protocol

[aas - Infrastructure as a Service

laC - Infrastructure as Code

IT - Information Technology

MVP - Minimum Value Product

Paas - Platform as a Service

SC - Supply Chain

SCM - Supply Chain Management

TMS - Transportation Management System
UML - Unified Modelling Language

WhTF - Warehouse Transformation Framework
WMS - Warehouse Management System

XPTO - dummy company name

1. INTRODUCTION

Due of the 2020 pandemic context the online market gets a huge increase and importance on sales
for “XPTO” company. This high demand puts the logistics platform in high pressure in terms of capacity
in order to fulfil customer requests.

Some bottlenecks in terms of logistics operations were identified and in order to increase operational
efficiency and more daily delivery capacity a (micro) Transports Management System solution was
discussed and put in internal development to achieve customer satisfaction and therefore more
business value.

1.1. BACKGROUND AND PROBLEM IDENTIFICATION

Almost all companies need to adapt the way they have implemented their business model and the
companies on the retail area were not exception. In order to face the challenges of this too long
pandemic period some problems need to be addressed in a matter of survival face of the unknown.

“XPTO” CTO was concerned about what needs to be changed or done, on a system management
perspective, in order to the company be able to produce and deliver more goods to clients regarding
the “online” boom during this pandemic period.

In an operations heavy environment such as in the retail industry, where financial cost and time taken
are critical variables, such software development as microservices holds transformative potential. In
such an ecosystem, which is always preoccupied with executing the processes fast, there is a tendency
to take the path-of-least-resistance when managing information and keeping records. These shortcuts
ultimately end up increasing the cost and time involved. Additionally, this increases the probability of
loss of shipments — which causes loss of money, time to the customers and is thus a negative
influence on the organizations relationship with its customers.

“XPTO” company wants to move completely into digitalism and in order to achieve that goal an
internal evaluation was performed by external consulting entity and is ongoing with high focus on
supply chain.

In terms of digital perspective, “XPTO” is view as e-commerce company, processes are simple by
design, standardized and integrated for maximum efficiency, using real-time information for make
insightful decision. Silo thinking will not be allowed and “XPTO” business must be ready to scale both
in products, services provided and in volume. Must be agile on testing product and business models
with minimal costs, every cost should be accountable and tracked in real time to ensure maximum
value delivered to client and Information is at the core of decision making ensuring “XPTO” optimizes
its processes and consistently exceeds customer expectations.

Business principles are enabled by IT principles that steer IT architecture design and build. The
guidelines focus on sustainability through feasible projects, continuous development and operation,
adopt security by design by considering implications of design beyond an immediate project and use
of Design-Thinking to onboard user groups in planning, development, implementation and assessment
for inventive solutions.

IT principles focus on customer experience and build client relationships, focus on end-to-end
technical capabilities, leverage Al to make intelligent decisions, cloud-first and decomposable and
reusable services. A new architecture requires a new compromise between IT and Business in order
to leverage the architecture decoupling to achieve greater business speed where IT main rule is to
provide platform where independent teams can develop capabilities with minimum impact between
them.

New IT paradigm is driving fundamental change across the IT operating model & organization by
Moving to Digitalism with Agile methodology:

e Growth mindset;

e Focus on speed-to-value and innovation (fail fast);

e Integrated, cross-functional teams (no barriers);

e Smaller, agile teams;

e Depth and breadth of experience/skills (“T-shaped”).

Achieving a true agile and Business aligned technology function implies considering four key focus
areas.

e Faster, iterative processes (Agile);

e Lean product management and small batching (Minimum Value Product (MVP));
e Integration focus;

e Automated coding, testing, deployment;

e Modern engineering (microservices, cloud, big data, APls, containers, loosely coupled
architectures);

e Collaborative decision-making.

Achieving a true agile and Business aligned technology function implies considering four key focus
areas.

1) Agile/ Flexible Operating Model - From change-run-manage to delivering at right speed for the
business

e Leverage multiple delivery approaches and methods that seamlessly coexist;
e Focus on service design and assembly rather than code development;
e Dev Ops, automated tools, Al, and analytics embedded across delivery and operations.
2) Product / Services Based Organization - From functional alignment to service orientation and

innovation

10

e Organization structured around the services;

e Flatter organizations focused on dynamic business needs and skill alignment to enable
collaboration and agility;

e Empowered co-located teams with shared objectives tied to customer journey.
3) Tech + Business Governance - From IT cost focus to Business value and transformation
e Driven by enterprise value; mindful of technology transformation / green field filling;
e New empowered, distributed decision-makers;
e Shift to flexible, consumption-based cost structure (Capex to Opex);
e With IT and the Business converging, there’s a need for a new governance model.
49 Talent Ecosystem - From point-to-point provider management to ecosystem partnerships
e Tailored sourcing models; right sourcing mix for a liquid workforce;
e Forging of countless connections, IT as a talent orchestrator;
e Consolidated outsourcing shifts to ecosystem sourcing;

e Blurring lines between the organization and the ecosystem partners.

An agile organization is not achieved purely by shifting the focus from traditional functional /
technological oriented organizations. The new way to organize teams must reflect all the principles
and right segregations of roles, which will be the most immediate and visible disruption and cutover
from the traditional way of managing the IT.

Refocus on flexibility and agility is key to shift and operate at the pace of the business and market. The
organizational alignment and orientation will be key to internally organize all resources and
capabilities. Shifting the focus of the technological organization from functional-process-technology
to customer or service/product oriented is a decision that will profoundly impact the way IT delivers
services.

New business trends arrive with the 21 century and with the continuous grow of digitalism solutions
everything is at a “click”. The change of consumer’s behavior towards how they purchase goods
increase the pressure on the logistics supply chain in order to fulfil the demand.

In this pandemic phase, since the 2" trimester of 2020, the online segment gains new boost and the
companies need to be able to adapt rapidly in order to be on the front line for gaining new businesses
and competitive advantage in the market.

The traditional supply chain management approach is not able to address on a short time of period
the required changes needed in order to exploit these new market opportunities.

11

1.2.STUDY RELEVANCE AND IMPORTANCE

This project will show clearly how companies can adapt themselves in order to reach more clients and
faster. Changes on big companies tend to be slow because of the hierarchical structure implemented
but this pandemic phase give business, operations, IT and administration a real opportunity to face
the supply chain stresses due to the high demand and adapt new cloud based solutions in order to
gain more productivity and delivery capacity of the goods.

The time is now and microservices based software are ideally for industries such as retail and others.
It allows different entities to carry out their roles in the business processes with greater ease,
promotes efficient coordination among them, helps lay out a clearer matrix of responsibility and
reduces chances of conflict. It enables organizations to accomplish these ideals without requiring any
extravagant additional cost or expertise.

Regardless of the size of the companies, replacing existing legacy systems with a suite of lightweight
microservices or taking them up as an entirely new layer might turn some heads but might also be a
turning point.

“XPTO” technical architecture blueprint has digital decoupling as a core design principle. Since we’ve
modularized the application as Ul and backend microservices (based on either features or functions)
we’ve increased speed to market and improved developer productivity. We now have distinct, atomic
units of work that enable small incremental changes to be made and rapidly deployed.

Microservices will be wrapped around common services that will standardize the overall architecture
control, monitoring and security. The business layer of all microservices must be surrounded by an
architecture framework, which will have the responsibility to abstract the programmer from any
configuration and/or connection to the different tools that they are integrated, such as monitoring,
logging, caching, database, etc...

The PaaS where microservices reside provides additional services as a baseline namely:
* Scaling Management;
* Container Management and Hot Configuration;
* APl Gateway, Routing and Load Balancing (Lightweight);
* Service Discovery and Mashing;
* DevOps;
* Monitoring, Telemetry and Messaging.

Microservices will have independent development, deployment and maintenance. During the last
months "XPTO" E-commerce is growing up. In order to make sure that all orders are delivered quickly,
we need to find and integrate alternative carriers to do the home deliveries.

12

1.3. OBJECTIVES

Develop (micro)TMS and middleware solution with the focus on production efficiency and able to
respond to high demand volume eliminating some constrains identified on supply chain operations.

CTT will be the first new carrier that we will work fully integrated with this new solution in order to
address the below problem:

Right now the CTT carrier is already being used through a solution that is wasting very operational
time and on a daily basis is having several problems that put in risk goods delivery. The actual solution
implemented requires several manual steps in order to work properly.

CTT has one app which is used to generate a couple of documents/files when the user closes the
shipping (cut off). This info needs to be consumed by some "XPTO" internal systems and also needs to
be sent to CTT. In order to achieve that, below are all the manual steps required to do in order to
goods leave the warehouse for CTT delivery:

e Manual Export file with all treated CTT orders;

e Import previous file to CTT application installed on team leaders operations PC;
e Scan code(s) returned from imported file to print CTT label;

e Place label on the package/volume;

e Export file from CTT application with orders and Tracking Numbers;

e Import previous file into "XPTO" systems.

13

Admin
Online

Operador
Online

Waving Picking Packing CTT Labelling oLPN Shipping
Consolidation
Exparts file @ Prints CTT Ships Master
from CTT app + Shipping = Pallet on
Waves Imports oLP Wi OLPN > Info WM

Template “Fase |—»| & Order info in i Nbe
2 Online CTT* CiTapp Tracking N E

v

Exports AT
W)
h h 4
il sens 7 @
(eoy tocTT o
=T
Does Packing & OLPN on CTT Consolidates oLPN
Does Picking ® Prints oLPN on app # into Master Pallet | Loads Truck
W to print CTT (wna)

Figure 1 — CTT process (Source : own)

All the above orange steps will be replaced by the solution to be delivered in order to be fully
automated and ready to receive more carriers if needed.

In terms of logistics operations this will be a great achievement because they only need to take care

the logistic process of packing (label printing and tracking id generation) and expedition process
(shipping flow) on a standard way independent of the carrier.

14

2. WORK PLAN

2.1.PROJECT DEFINITION

As the topic of the article is regarding a real project, before starting the design phase of the project
some investigation was done in order to be able to do wise and aware decisions.

Some literature review aimed into identifying central aspects of supply chain management (SCM) into
the cloud in order to conceptualize SCM and Cloud and identify key terms, a preliminary literature
review was conducted by searching for the terms “Supply Chain Management”, “AWS”, “Digital
Transformation” and “Transport Management System” in Google and Google Scholar. A review of
journal articles, conference papers, books and edited volumes was also performed in order to search
the most updated information available.

This analytical study is based on relevant information already available on the subject and analysis of
relevant data. There are some limitations in such approach because this means that opinions or views
not available during the research period will not be taking into account and the actual organization
architecture was also taken in consideration regarding pros and cons during design phase. It was also
taken into account the actual architecture blue print from "XPTQ" and if it fit the requirements of the
project.

2.2.RESOURCES & TOOLS

2.2.1. UmML

According with UML. (n.d.)., Unified Modelling Language (UML) is a standardized modelling language
consisting of an integrated set of diagrams, developed to help system and software developers for
specifying, visualizing, constructing, and documenting the artefacts of software systems, as well as for
business modelling and other non-software systems.

UML notation will be used to create all UML diagrams through drawio and mermaid tool. There are
several important diagrams to represent the system:

e Use Case Diagram — Use cases enable the possibility to relate what we need from a system
and how the system delivers on those needs.

e Activity Diagram— They are graphical representations of workflows of stepwise activities and
actions with support for choice, iteration and concurrency.

e State Machine Diagram — They represent the permitted states, transitions and the events that
effect these transitions.

e Sequence Diagrams — It shows how the objects interact with others in a particular scenario
of a use case.

15

2.2.2. Cloud Resources

AWS cloud provides a broadest range of scalable, flexible infrastructure services that we can select to
match our workloads and tasks. This gives us the ability to choose the most appropriate mix of
resources for our specific applications.

2.2.2.1.AWS Application Load Balancer

A load balancer serves as the single point of contact for clients. The load balancer distributes incoming
application traffic across multiple targets in multiple Availability Zones. This increases the availability
of the application. In order to achieve that is required to add one or more listeners to our load
balancer.

e ———————

Figure 2 — ALB implementation (Source: What is an Application Load Balancer? - Elastic Load Balancing. (n.d.))

2.2.2.2.Kong APl Gateway

Kong is one open source APl gateway built on top of a lightweight proxy, the Kong Gateway delivers
unparalleled latency performance and scalability for all our microservices applications regardless of
where they run.

16

Authentication Traffic Control Analytics

Protect your services with an Manage, throttle, and restrict Visualize, inspect, and monitor APls
authentication layer inbound and outbound API traffic and microservices traffic
Transformations Logging Serverless
Transform requests and responses Stream request and response data Invoke serverless functions via APls
on the fly to logging solutions

Figure 3 — Kong API key features (Source : Kong Inc.)
2.2.2.3.AWS DynamoDB

According with What Is Amazon DynamoDB? - Amazon DynamoDB. (n.d.), Amazon DynamoDB is a
fully managed NoSQL database service that provides fast and predictable performance with seamless
scalability. DynamoDB lets us offload the administrative burdens of operating and scaling a distributed
database and also offers encryption at rest, which eliminates the operational burden and complexity
involved in protecting sensitive data.

NoSQL database systems use alternative models for data management, such as key-value pairs or
document storage. In a NoSQL database such as DynamoDB, data can be queried efficiently in a limited
number of ways, outside of which queries can be expensive and slow.

In DynamoDB, we design our schema specifically to make the most common and important queries as
fast and as inexpensive as possible. Our data structures are tailored to the specific requirements of
our business use cases.

2.2.2.4.Apache Kafka

According with What is Apache Kafka? | AWS. (n.d.), Apache Kafka is a distributed data store
optimised for ingesting and processing streaming data in real-time. Streaming data is data that is
continuously generated by thousands of data sources, which typically send the data records in
simultaneously. A streaming platform needs to handle this constant influx of data and process the
data sequentially and incrementally.

2.2.2.5.AWS Lambdas

According with What is AWS Lambda? - AWS Lambda. (n.d.), Lambda is a compute service that lets us
run code without provisioning or managing servers. With AWS Lambda, we can run code for virtually
any type of application or backend service - all with zero administration. We can use AWS Lambda to
run the code in response to events, such as changes to data in an Amazon S3 bucket or an Amazon
DynamoDB table; to run the code in response to HTTP requests using Kong API Gateway, ALB or invoke
our code using API calls made using AWS SDKs.

17

2.2.2.6.AWS State Machines and Step Functions

A state machine consists of a collection of states that can do work (Task states), determine to which
states to transition next (Choice states), stop an execution with an error (Fail states), and so on.

Step Functions is based on state machines and tasks. A state machine is a workflow and a task is a
state in a workflow that represents a single unit of work that another AWS service performs. Each step
in a workflow is a state.

2.2.2.7.AWS CloudWatch

CloudWatch collects monitoring and operational data in the form of logs, metrics and events,
providing a unified view of AWS resources, applications, and services that run on AWS.

2.2.2.8.Kibana

According with What is Kibana? — Amazon Web Services. (n.d.), Kibana is an open-source data
visualization and exploration tool used for log and time-series analytics, application monitoring, and
operational intelligence use cases. It offers powerful and easy-to-use features such as histograms, line
graphs, pie charts, heat maps, and built-in geospatial support. Also, it provides tight integration with
Elasticsearch, a popular analytics and search engine, which makes Kibana the default choice for
visualizing data stored in Elasticsearch.

2.2.2.9..NET Core

.NET Core is a Microsoft programming language where the developer writes, compiles and runs C#
code in any operating system decoupled from the Microsoft ecosystem, in an open-source and cross-
platform environment.

2.2.2.10.Grafana

Grafana is a multi-platform open source analytics and interactive visualization web application. It
provides charts, graphs and alerts for the web when connected to supported data sources.

2.2.2.11.Prometheus

Prometheus is an open-source systems monitoring and alerting toolkit. According with Overview
Prometheus. (n.d.) the main features are:

e amulti-dimensional data model with time series data identified by metric name and key/value
pairs;

e PromQl, a flexible query language to leverage this dimensionality;

e no reliance on distributed storage; single server nodes are autonomous;

e time series collection happens via a pull model over HTTP;

e pushing time series is supported via an intermediary gateway;

e targets are discovered via service discovery or static configuration;

e multiple modes of graphing and dashboarding support.

18

2.3. PROJECT SCHEDULING

Design EEE 1 -3

Development team onboarding

Development

Project Kickoff 20 Jul-20.Jul |
Beta Release (prd dry run)

Final Release (prd)

Stabilize

Project Close

[faagS] 27 Jui -7 Aug

Figure 4 — Project chart (Source: own)

| 28 0ct-26 0ct

|11 Nov- 11 Nov

B8R 11 Nov - 20 Nov

| 11 Dec- 11 Dec

19

3. THEORECTICAL FRAMEWORK

3.1. DIGITAL TRANSFORMATION

Digital transformation is defined by Stolterman & Fors (2004), as “the changes associated with the
application of digital technology in all aspects of human society”.

According with Gebayew et al (2018), Digital transformation is composed by “digital” and
“transformation” terms where the first one refers in today’s world to the emerging technologies while
latter one describes the new types of innovation and creativity enabled by the digital technologies.
Furthermore, according with Bharadwaj et al (2013) digital transformation is defined as “an
organizational strategy formulated and executed by leveraging digital resources to create differential

value.”

Digital transformation involves using digital technologies to remake a process to become more
efficient or effective. In order to achieve that many different technologies are used but the hottest
topics right now are cloud computing, the Internet of Things, big data, and artificial intelligence.

Changing business processes and corporate culture are just as vital to the success of these initiatives.
A genuine digital transformation project involves fundamentally rethinking business models and
processes and keep in mind that true transformation is a journey, not a destination. Digital
transformation remains a slippery concept that involves the delivery of value to the business and its
customers in new ways.

Digital transformation as stated in What is digital transformation? - Digital Transformation Definition -
Citrix. (n.d.) plays a key role in aspects such as:

Customer experience: Consumers today have more choices than ever, which means the stakes are high
for businesses to not only deliver innovative products or services but to deliver meaningful interactions
and experiences that delight customers and foster brand loyalty. In the digital marketplace, consumers
are using the emerging technologies to be more informed about the product and service offerings and
to decide whom to trust, what to buy and where to make the purchase (Berman, 2012).

Employee experience: Digital transformation can help organizations provide not only the tools that
people need but also instant access to everything they need from anywhere.

Process optimization: Streamlined workflows, digital processes, and automated tasks are where
organizations can always create efficiencies.

Product digitization: Digital transformation not only helps companies stay on the cutting edge of
technology, but also creates an agile infrastructure necessary to constantly innovate and adapt to rapid
change and consumer demands.

We can assume that the common challenges of digital transformation are:

Failure to lead with a strategy: Digital transformation should begin with a vision and it’s imperative to
keep in mind business goals and objectives and how a digital transformation strategy can support
them.

20

Lack of leadership buy-in: Any business transformation, digital or otherwise, is more likely to succeed
when leadership is engaged and leadership is more likely to be engaged in initiatives that are directly
aligned to the business strategy. When proposing any new project, it's important to demonstrate how
it supports the business and will impact the bottom line. With leadership buy-in secured, you can avoid
any budget challenges that will impact your project.

Planning in a silo: Leaders require insight into end-user experiences to ensure that the solution works
properly and does not introduce new challenges and meet the company's need.

3.2.SupPPLY CHAIN MANAGEMENT

Today, individual firms no longer compete as independent entities with unique brand names, but
rather as integral parts of a network. As such, the ultimate success of a firm will depend on its
managerial ability to integrate and coordinate the intricate network of business relationships
necessary to deliver products to customers (Lambert & Cooper, 2000).

In shorter words, Ballou (2004) states that the term supply chain refers to all those activities associated
with the transformation and flow of goods and services, including their attendant information flows,
from the sources of raw materials to end users.

According to Chopra & Meindl (2007), a supply chain consists of all parties involved, directly or
indirectly, in fulfilling a customer request, as well as all the functions necessary in this task. The supply
chain includes not only the manufacturer and suppliers, but also transporters, warehouses, retailers,
and even customers themselves. A supply chain is dynamic and involves the constant flow of
information, product, and funds between different stages.

Min (2015) refers to supply chain as an integrated system that synchronizes a series of interrelated
business processes in order to: create demand for products; acquire raw materials and parts;
transform these raw materials and parts into finished products; add value to these products; distribute
and promote these products to either retailers or customers; facilitate information exchange among
various business entities (e.g., suppliers, manufacturers, distributors, third-party logistics providers,
and retailers). Furthermore, a supply chain is traditionally characterized by a forward flow of products
and a backward flow of information.

While supply chains have existed for a long time, most organizations have only paid attention to what
was happening within their boundaries. Few businesses understood, much less managed, the entire
chain of activities that ultimately delivered products to the final customer. The result was disorganized
and often ineffective supply chains. To capture the synergy of cross-functional and cross-organizational
integration and coordination transversely to the supply chain and to subsequently make better
strategic decisions, it is extremely important to plan, control, and design a supply chain as a whole.

In this sense, Supply Chain Management (SCM) is the set of approaches utilized to efficiently integrate
suppliers, manufacturers, warehouses, and stores, so that goods are produced and distributed at the
right quantities, to the right locations, and at the right time, in order to minimize system wide costs
while satisfying service level requirements (Simchi-Levi et al 2008). SCM represents a conscious effort
by the supply chain firms to develop and run supply chains in the most effective and efficient ways

21

possible. The inherent activities cover everything from product development, sourcing, production,
and logistics, as well as the information systems needed to coordinate these activities.

All definitions have in common that SCM refers to integration of internal and external key processes
that goes from end-users through suppliers that provide the products, services and information in
order to add value to customers and stakeholders.

As explained above, a Supply Chain (SC) is a network of interrelated entities that collaborate in order
to provide products to customers. SCM is, then, the management of those entities in the best possible
way, with the goal of obtaining significant benefits. In this sense, a brief description of what are the
main goals of a SC and the potential of an efficient SCM is presented below.

The traditional objective of a Supply Chain, according to Shapiro (2006) is to minimize total supply
chain cost to meet fixed and given demand. Thus, increasing the difference between what the final
product is worth to the customer and the costs the supply chain incurs in filling the customer's request,
which ultimately leads to higher profitability (Chopra & Meindl, 2007).

According with Handfield, R. (2020), SCM is the active management of supply chain activities to
maximize customer value and achieve a sustainable competitive advantage. It represents a conscious
effort by the supply chain firms to develop and run supply chains in the most effective and efficient
ways possible. Supply chain activities cover everything from product development, sourcing,
production, and logistics, as well as the information systems needed to coordinate these activities.

The organizations that make up the supply chain are “linked” together through physical flows and
information flows. Physical flows involve the transformation, movement, and storage of goods and
materials. They are the most visible piece of the supply chain. Information flows allow the various
supply chain partners to coordinate their long-term plans, and to control the day-to-day flow of goods
and materials up and down the supply chain.

Benefits of supply chain management

Supply chain management produces benefits such as new efficiencies, higher profits, lower costs and
increased collaboration. SCM enables companies to better manage demand, carry the right amount of
inventory, deal with disruptions, keep costs to a minimum and meet customer demand in the most
effective way possible. These SCM benefits are achieved through choosing effective strategies and
appropriate software to manage the growing complexity of today's supply chains.

Supply chain management activities can improve customer service. Done effectively, they can ensure
customer satisfaction by making certain the necessary products are available at the correct location at
the right time. By increasing customer satisfaction levels, enterprises can build and improve customer
loyalty.

Two complex processes play important roles in most of the major steps of SCM: inventory
management and logistics. Inventory management consists of various techniques and formulas for
ensuring adequate supply for the least expenditure of time and resources. Manufacturers are faced

22

with a variety of inventory management issues, many of which involve coordinating demand planning
with inventory at both ends of the production process.

Logistics is everything having to do with transporting and storing goods from the start of the supply
chain, with delivery of parts and materials to manufacturers, to delivery of finished products to stores
or direct to consumers and even beyond for product servicing, return and recycling -- a process called
reverse logistics. Inventory management is threaded throughout the logistics process.

The most basic version of a supply chain includes a company, its suppliers and the customers of that
company. The chain could look like this: raw material producer, manufacturer, distributor, retailer and
retail customer.

Logistics vs. supply chain management

The terms supply chain management and logistics are often confused or used synonymously. However,
logistics is just one component of supply chain management. It focuses on moving a product or
material in the most efficient way, so it arrives at the right place at the right time. It manages activities
such as packaging, transportation, distribution, warehousing and delivery.

In contrast, SCM involves a more expansive range of activities, such as strategic sourcing of raw
materials, procuring the best prices on goods and materials and coordinating supply chain visibility
efforts across the supply chain network of partners, to name just a few.

Technology is critical in managing todays supply chains, and every major supply chain management
process has a software category dedicated to it. Commonly used SCM modules include a TMS for
managing the transport and storage of goods, a WMS for all of the activities inside warehouses and
distribution centers and an order management system, to handle processing of customer orders
through WMS, ERP and TMS systems, at all stages of the supply chain.

3.3.CLoub COMPUTING

3.3.1. Cloud vs on-premise

Small and medium-sized enterprises might want to keep their business small or to grow it. When they
start to grow it may get harder to manage IT infrastructure. With a bigger company, more on-premise
hardware is needed and it can grow gradually or exponentially and takes usually a long time to return
on investment (Watson, L. & Mishler, C., 2014).

With cloud computing there is no need to take care of our infrastructure, it is provided from a cloud
provider in a form of Infrastructure as a Service (laaS) or Platform as a Service (PaaS). Cloud often
offers to pay as you go, which means it does not involve large initial investment (Gannon, D. et al,
2017).

23

3.3.2. Cloud-native

There are many key ideas behind being Cloud-native, one of them is specific design patterns that
became very successful while creating cloud applications. Most frequent arguments of cloud-native
are:

e Cloud-native applications can operate on a global scale. The ordinary web application can be
accessed anywhere in the world through the internet. Cloud-native application has replicas of
servers and datacenters around the whole world so that accessing application results in
minimal latencies. This approach creates very robust applications.

e Cloud-native applications have to scale well with many concurrent users. Assumption here that
application can horizontally scale automatically. That approach requires careful observation of
synchronization and consistency in distributed systems.

e Applications are built on assumption that infrastructure is unstable. Even though one zone of
servers will crash down because of some natural disaster the application will still run in a
different place, so the user does not realize that there is trouble.

e Upgrading or testing Cloud-native applications do not affect end users.

e Security must not be forgotten, cloud-native applications are built of many small components
and these components cannot hold sensitive data. Access control needs to be managed at
multiple levels.

At first to become cloud-native, laa$S replaces on-premise infrastructure with virtual machines running
in the cloud. It was very difficult to engineer scalability and security at the same time with only on-
premise solutions.

The first major design pattern for cloud-native applications was microservice architecture. This
architecture relies on dividing application to small independent components and it easy to scale and
reliable. All microservices should be designed for constant failure and recovery and through
containerization it is possible to encapsulate each microservice instance so that it can be easily
manipulated.

With all this, it is possible to create a well-developed cloud-native application based on microservice
architecture (Gannon, D. et al, 2017).

24

Figure 5 — Basic principles of cloud-native development (Source: Basic principles of cloud-native development. (n.d.))

3.3.2.1.Full stack example of Cloud-Native application

Before creating a new cloud-native application, it is good practice to choose proper tooling, there are
a lot of tools for different parts of the application. Now the cloud market offers many solutions, most
popular are Amazon web services (AWS), Microsoft Azure, Google cloud platform, VMware etc.

After the selection of cloud provider, it is required a usage of provisioning Infrastructure as Code (laC)
tool to create resources for a project. After choosing the 1aC provisioning tool such as Terraform or
CloudFormation, it is required to decide what will be the infrastructure configuration tools to use like
Chef, Puppet or Ansible. After choosing the proper tools, infrastructure is prepared for serving a given
purpose.

To be able to deploy to the cloud, developers tend to use runtime environments in which application
runs. Those environments are usually created with Container Engines such as Docker, which allows to
enclose application with needed components.

Orchestration and Management is the next step of being cloud-native, tools like Kubernetes or Docker
Swarm are used to manage container clusters for easy orchestration across multiple hosts. They
provide load balancing, scheduling of containers etc.

Many languages support microservice architecture and the one to be used it will be chosen by the
development team. The code is being shipped to runtime services with Continuous
Improvement/Continuous Deploy (CI/CD) tools such as Jenkins, Git Lab and others.

Cloud-native application must have monitoring and all modern monitoring tools support monitoring
of containers and microservices (Jog, C.)

25

3.3.3. Cloud Providers

There are several cloud providers in the market like Amazon Web Services, Microsoft Azure and Google
Cloud Platform and all of them provide similar options and differ a bit from each other’s.

Amazon Web Services

Amazon Web Services (AWS) offer a vast number of services and tools to work regarding compute,
storage, database, analytics, networking, mobile, loT and more. AWS is the most mature provider focus
on a public cloud rather than a hybrid cloud or private cloud but is weakness is the cost of resources.
This implies that sometimes it is not the best choice for an enterprise customer (Carey, S.).

Microsoft Azure

Azure offers exceptional cloud infrastructure and believes that hybrid cloud is important, so it is
supportive of private datacenters (Carey, S.).

Google Cloud Platform

The main benefits compared to other are expertise and industry-leading tools in deep learning and
artificial intelligence, machine learning and data analytics. His potential lays in containers since Google
developed the Kubernetes which is becoming an industry standard (Carey, S.).

3.4. TRANSPORT MAANAGEMENT SYSTEM
Transportation in Supply Chain

Transportation means are fundamental in every society, transportation networks are essential for
every supply chain and constitute the basis of any economic structure, by allowing the efficient
distribution of goods.

One of logistics biggest points of focus is precisely the movement of physical material flows, whatever
they are, across the network. Thus, the selection of transportation modes, the contracting of
transportation services providers and the contractual management of those providers, whichever
materials they are supposed to transport, is critical in terms of Logistics activities. Furthermore, the
planning of transportation routes, the choice of vehicles and the slotting activities are also in the scope
of the transportation logistics and transportation management (Crespo de Carvalho, 2010).

The goal of making the SC more agile also transfers a big share of the costs to the transportation sector,
while trying to decrease costs in inventories and warehouses. With transportation being so essential
in a SC, it cannot be managed in an isolated manner, since options about the mode and the type of
transportation solutions have a significant impact in the cost structure and in the company’s ability to
react to demand, as well as noteworthy repercussions throughout the whole SC, which can improve
or compromise, at last, customer satisfaction. Only a good coordination between each component
would bring the benefits to a maximum (Tseng, 2005).

In sum, transportation is the glue that holds the supply chain together, and that allows the member
organizations to operate efficiently and effectively as a system (Coyle et al, 2011).

26

Transportation Management System (TMS)

A TMS is specialized software for planning, executing and optimizing the shipment of goods. Users
perform three main tasks on a TMS: Find and compare the rates (prices) and services of carriers
available to ship a customer's order, book the shipment, then track its movement to delivery. The
broader goals of using a TMS are to improve shipping efficiency, reduce costs, gain real-time supply
chain visibility and ensure customer satisfaction.

Usually, orders come in automatically from ERP or Order Management Systems (OMS) that are
integrated with the TMS. In addition, a TMS will sometimes be integrated with a warehouse
management system (WMS) to enable better coordination of the tasks that occur at the interface of
warehouses and freight shippers, such as palletization of goods, labor scheduling, yard management,
load building and cross-docking.

The three main SCM systems -- ERP, WMS and TMS -- each have important but mostly distinct roles to
play in processing orders.

E ERP 1
e ¥ Accounting < N
Invoicing
" Order management
kIm/'entc)ry management y,
Orders, Orders, item and
inventory sync reports customer information
Inventory updates, . ’ !
oder status Shipment information
A p A
(‘ WMS) = ™S w
Order picking and fulfillment — Freight management
] Inbound & outbound))
o —_—>
Inventory tracking < logistics Carrier rating
Receiving and shipping _— Routes
\.
Labor management

Figure 6 — SCM main systems (Source : own)

The ERP handles the accounting and most of the invoicing, order management and inventory
management. The WMS role is to help users manage the fulfillment, shipping and receiving tasks in
the warehouse or distribution center, such as "picking" goods from shelves for shipment or putting
received goods away. Its role in inventory is to track the inventory data that comes in from barcode
readers and RFID tags and update the inventory management module in the ERP system to ensure it
has the latest information. Synchronizing the inventory data in both places is another important use
of the integration link between the ERP and the WMS.

27

The ERP outputs the order information the TMS needs to prepare and execute shipments. Besides
basics like customer name and address, the data stream from ERP also includes detailed item
information to ensure the right products are shipped. The TMS returns the shipment details that the
ERP needs for its accounting and order management functions, such as the tracking number, carrier
name and costs.

Running in the cloud has obvious advantages in easing connectivity between TMS users, carriers,
customers and supply chain partners and potential savings in IT labor and infrastructure.

A TMS acquires, stores and updates the rates that carriers charge for shipping, often over the internet
in real time. The number of carriers in a TMS can reach the tens of thousands.

A TMS also enables users to execute the major actions of freight management, including booking of
shipments with carriers. Real-time visibility into the movement of freight throughout the
transportation network makes it possible to track the shipments and share that information with
customers and suppliers.

While most TMS features focus on execution, much of the power of the system comes from the tools
it provides for planning and optimizing the shipping process. It provides data and analytics on critical
factors, such as price, service level and transit time, to enable users to choose the carriers and routes
most likely to transport goods the fastest and cheapest.

Transportation and logistics management are inherently complex endeavors that require substantial
paperwork for business-to-business (B2B) transactions, regulatory compliance and auditing.
Accordingly, a TMS must have sufficient administrative features to support the documentation and
financial reporting requirements.

A TMS must also handle settlement, a more complex process that requires documenting certain freight
milestones and metrics before payment can be made, such as proof of delivery, pickup and time in
transit. Data collected during the settlement process is fodder for the TMS performance management
and optimization processes. TMS users can search settlement data for clues to customer demand and
capacity utilization and to negotiate special pricing for factors such as loading speed and time of day.

Transportation management software bring benefits such as reduced distribution and warehouse
costs through better fleet management, labor and space use, and coordination between the
transportation and fulfillment functions; higher customer satisfaction from a more responsive shipping
process; ability to track and monitor the lifecycle of orders and shipments in real time; reduced
administrative costs and invoicing errors from automating freight payment and auditing processes.

3.5. SOFTWARE DEVELOPMENT

3.5.1. Concept

Software development goal is the creation of a high-quality software. This process is a set of planned
tasks that will originate the final product, the denominated software (Pressman, 2010; Sommerville,
2011). On software development we have one important concept, that supports his development,
denominated framework.

28

e —
P N - / \

Brainstorming ideas | fl-& Vi

a MAINTENANCE

i L . \ Updating and supporting the
Iha:JIsoIV? a pdartlcular | 1 y ¥ suﬂwalﬂ software after it has been
problem face: g { delivered to the market
by target users. e ' | +Development)
-
Life Cycle

REQUIREMENTS

Interacting with stakeholders
and users to collect and
document project requirements.

Q; . Deployment
o Preparing the software to run

and operate in a specific
environment.

DESIGN

Creating the architecture
of a software system
and its elements.

TESTING

Evaluating the quality

of software with the aim

of finding and fixing defects.

DEVELOPMENT

Building the software using
a programming language
by the development team.

Figure 7 — Software Development Life Cycle phases (Source: Software Development Life Cycle phases. (n.d.))
According with Montoya, M. (2017), the SDLC phases can be described as:

e Requirements: Assessing scope of the system requirements and the overall project.

e Architecture and Design: Developing an understanding of the solution from a technical
perspective, creating a high-level design of modular components and their interactions, and
setting standards for how common technical issues should be resolved.

e Development: Producing code in an environment specific to the culture of the project. Tasks
are assigned according to individual skills, and development continues until goals or
milestones are reached.

e Testing, Delivery and Feedback: Testing of individual component should be ongoing, with
application-level testing towards the end of the project — ideally, involving customers to
confirm that requirements have been met, or to identify changes that must be made.

3.5.2. Software Development Methodology

3.5.2.1.Traditional Methodologies

Software development is a highly complex activity. It is characterized by variable requirements, the
need for specialized and diverse skills, changeable and sophisticated technology used to develop and
deploy software, and difficulty in management of the people who deal with such complexity every day.

Waterfall

Vijaya, D. (2013) identifies the essential nature of the traditional software development life cycle as
follows:

29

* The goals are to thoroughly understand user needs, craft a solid design, develop software flawlessly,
and implement a functional system that satisfies user needs.

* There is a heavy emphasis on thorough planning to deal with risks.

e |t is based on the principles of hard-systems thinking — identifying alternate ways of reaching the
desired state (S1) from the initial state (S0) and choosing the best way to achieve it (SO — S1).

e Such an approach assumes that problems are well defined and that an optimum solution can be
arrived at by extensive, up-front planning.

e It also assumes that the processes are predictable and can be optimized and made repeatable.

e |t is also based on the assumption that processes can be adequately measured and that sources of
variations can be identified and controlled during the development life cycle.

¢ In summary, the traditional software development life cycle is highly process-centric.

Based on the above understanding of systems development, organizations adopt a management style
that is:

e Command-and-control-based, with a set hierarchy. Therefore, these are predominantly mechanistic
organizations geared for high performance in a stable environment.

e Characterized by high formalization and standardization. People with different specializations are
assigned roles for producing defined outcomes. In addition to this, they also produce a significant
amount of documentation that explains the software and its technical and design specifications.

e Notable in that though customers play an important role, their participation is at maximum only
during the specification and implementation stages.

The waterfall approach emphasizes a structured progression between defined phases. Each phase
consists on a definite set of activities and deliverables that must be accomplished before the following
phase can begin. The phases are always named differently but the basic idea is that the first phase tries
to capture What the system will do, its system and software requirements, the second phase
determines How it will be designed. The third stage is where the developers start writing the code, the
fourth phase is the Testing of the system and the final phase is focused on Implementation tasks such
as training and heavy documentation.

However, in engineering practice, the term waterfall is used as a generic name to all sequential
software engineering methodology (Awad, 2005).

30

Requirement
Analysis

System
Design

Implementation

Testing

l

Deployment

Maintenance

Figure 8 — Waterfall model (Source: Waterfall model. (n.d.))

Incremental Process

First, a simple working system implementing only a few basic features is built and then that is delivered
to the customer. Then thereafter many successive versions are implemented and delivered to the
customer until the desired system is released.

Spiral

Combines elements of both design and prototyping-in-stages, in an effort to combine advantages of
top-down and bottom-up concepts. The spiral model was defined by Barry Boehm, based on
experience with various refinements of the waterfall model as applied to large software projects
(Awad, 2005).

Awad (2005) defines the below life cycles:
e Objective setting — Specific objectives for the project phase are identified.

e Risk assessment and reduction — Key risks are identified, analyzed and information is obtained to
reduce these risks.

e Development and Validation — An appropriate model is chosen for the next phase of development.

e Planning — The project is reviewed and plans are drawn up for the next round of spiral.

31

Relational Unified Process (RUP)

All efforts, including modelling, is organized into workflows in the Unified Process (UP) and is
performed in an iterative and incremental manner. Some of the key features of the UP are as follows
(Awad, 2005):

¢ |t uses a component based architecture which creates a system that is easily extensible, promotes
software reuse and intuitively understandable. The component commonly being used to coordinate
object oriented programming projects.

¢ Uses visually modelling software such as UML — which represent its code as a diagrammatic notation
to allow less technically competent individuals who may have a better understanding of the problem
to have a greater input.

¢ Manage requirements using use-cases and scenarios have been found to be very effective at both
capturing functional requirements and help in keeping sight of the anticipated behaviours of the
system.

¢ Design is iterative and incremental — this helps reduce project risk profile, allows greater customer
feedback and help developers stay focused.

e Verifying software quality is very important in a software project. UP assists in planning quality
control and assessment built into the entire process involving all member of the team.

3.5.2.2.Agile Methodology

Agile development is one of many development methodologies. Agile refers to any process that aligns
with the concepts of the Agile Manifesto (http://agilemanifesto.org/). This type of methodology is built

on principles like simple design, continuous delivery, self-organizing teams, face-to-face
communication and fast response. These principles are derived from four core agile values which are:

e Individuals and interactions over processes and tools;

e Working software over extensive documentation;

e Collaboration with customer over contract negotiation;
e Responding to change over following a plan.

According to the set of these values twelve agile principles were proposed. These principles enhance
the importance of agility in software development.

Some principles derived from these values are improved by using a cloud environment for
development, such as scalability, providing infrastructure (both hardware and software), fast delivery
mechanisms, lowering cost and increasing software quality. In the bigger picture cloud computing
affects agile software development with increasing prominence (Younas et al, 2018).

32

Agile software development has various methods and since general talk about it may not give a clear
idea of how agile development works, Scrum is stated as the most popular agile framework.

3.5.2.3.Scrum

Scrum is defined as a flexible, holistic product, a development strategy where developers work as a
unit to reach a common goal. One development cycle is called Sprint. Sprints are usually no long-term
plans that have an elected amount of features that are implemented in one development cycle. After
every sprint, Sprint Planning is arranged to prioritize the features. Sprints are created from Sprint
Backlogs which works as a to-do list. In Scrum daily meetings are held. Each team member should be
prepared and share answers to three basic questions.

e What did the member yesterday do that contributed to sprint goal?
e What does the member plans to do today?
e Are there any difficulties that can prevent the member from contributing?

After each iteration, team members are part of a Retrospective meeting where they share and identify
lessons and improvements for the next sprints (Younas et al, 2018). With this simple example of how
scrum works, it is safe to say that in the modern world agile development is a great way to work on
projects for customers that are driven by fast-changing demand on the market as agile offers solutions
for certain problems.

Shippable
Product
Piece

— GG
Ny o
[Y

Product Sprint Sprint
Backlog Planning Backlog

Figure 9 — Steps in the Scrum Process (Source: What's the Difference? Agile vs Scrum vs Waterfall vs Kanban. (n.d.))

3.5.2.4.Kanban

Kanban is a way to improve flow and provoke system improvement through visualization and
controlling work in progress. Kanban primarily aims to safeguard the team from the unending tasks
appropriated by management, with an attempt to realize ongoing development pace and adaption
similar to other Agile methods, where little to no resistance to change arises (Sjgberg, 2012; Bolaji,
2015).

The major principles of Kanban are workflow visualization through the Kanban board, limiting work in
progress by minimizing the number of features to be implemented, management and measurement
of flow, making clear policies, implementing feedback, looping and enhancing collaboration in a
continuous manner (Anderson, 2010).

33

Kanban practices definition are:

1) Visualize the Flow of Work. Use cards or software to visualize the process activities on swim

lanes.

2) Limit Work in Progress (WIP). Encourage your team to complete work at hand first before

taking up new work. The team pulls in new work only when they have capacity to handle it.

3) Manage Flow. Observe the work as it flows through the swim lanes. Address any bottlenecks.

4) Make Process Policies Explicit. Visually diagram the process rules and guidelines for managing

the flow of work.

5) Implement Feedback Loops. Throughout the work process, incorporate regular reviews with

the team and customers to gather and incorporate feedback.

6) Improve Collaboratively, Evolve Experimentally. As a team, look for and incorporate

improvement initiatives, including through safe-to-fail experiments.

The Kanban method makes use of visual Kanban board to improve software development through

the display of different phases of the process of development.

/ WIP limits
2 N

Ready Build (4) Test (3) Deploy
- _ i
$ = Ready | Done
- " ___.T-_l--_———
. - - --"’ = ‘
: =
i |
o |
|
|
|
|
3 Blocked

Figure 10 — Kanban board (Source: Mathenge, J. (n.d.).)

34

3.5.2.5.Adaptative Software Development (ASD)

It aims to enable teams to quickly and effectively adapt to changing requirements or market needs by
evolving their products with lightweight planning and continuous learning. The ASD approach
encourages teams to develop according to a three-phase process: speculate, collaborate, learn.

3.5.2.6.Lean Software Development

Lean Software Development (LSD) is an agile framework based on optimizing development time and
resources, eliminating waste, and ultimately delivering only what the product needs. The Lean
approach is also often referred to as the Minimum Viable Product (MVP) strategy, in which a team
releases a bare-minimum version of its product to the market, learns from users what they like, don’t
like and want to be added, and then iterates based on this feedback.

3.5.2.7.Dynamic Systems Development Method (DSDM)

The fundamental idea behind DSDM is to fix time and resources, and then adjust the amount of
functionality accordingly rather than fixing the amount of functionality in a product, and then adjusting
time and resources to reach that functionality.

3.5.3. DevOps

Why is DevOps important? Current IT market is dominated by the speed of releasing products. This
can be seen by the popularity of agile techniques to shorten development cycles. And when
development cycles are fast enough, there is a bigger need to correctly create space where that
product can be placed and regularly updated. With DevOps, it is safer to make changes more often
because of automated pipelines of the whole deployment (Artac et al, 2017).

DevOps work usually lays in increasing automation and faster deployment process. First DevOps task
is to create an automated deployment mechanism. Deployment strategy is mostly based on
deployment scripts or some continuous delivery system, which is triggered by the Continuous
Improvement (Cl) system. Strategies to deploy to different environments such as development or
production may differ. While the development environment is usually automated. Deployment to
production often needs manual triggering.

Infrastructure as code, provisioning and configuring environments repeatedly and reliably is part of
DevOps expertise and can be part of the CI/CD pipeline. Tools such as Terraform, Chef or Puppet are
used for this purpose.

Developers and operators actively monitor applications and services that were developed, both in
production or other environments. Monitoring is done for various purposes, such as providing visibility
over failures of deployment or quality of provided services. With proper monitoring faster response to
bugs and anomalies is achieved which leads to greater customer satisfaction (Lwakatare et al, 2019).

3.5.3.1.Continuous Integration and Delivery (CI/CD)

Continuous integration (Cl) and continuous delivery (CD) embody a culture, set of operating principles
and collection of practices that enable application development teams to deliver code changes more

35

frequently and reliably. The implementation is also known as the Cl/CD pipeline and is one of the best
practices for DevOps teams to implement (Sacolick, 2018).

Continuous integration

Continuous integration is a philosophy that supports rapid software development. Operating principles
are based on that philosophy and they help to achieve delivering of new code frequently and reliably.
Using this method, it is easier to detect bugs in code sooner than in large additions of code less often.

Teams that want to implement CI/CD to their business often start with version control systems. Code
checking can be done frequently for smaller features but also for longer time frames. Development
teams are using different strategies for different cases and define how code is merged into production
environments.

There are many techniques like version-control branching, which is based on creating a branch for each
environment where software is running. One branch is development, for the newest features. The
second branch is created for testing, where the testing is done and after all the needed steps are done,
code is merged to the production branch which represents the code used in the latest version of the
production system.

The second strategy could be feature flags. This mechanism is built around turning on or off features
at run time. A production system is using master branch code to run. Newest features are flagged and
until they are tested, they cannot be flagged as production-ready so neither be deployed.

Continuous delivery

Continuous delivery is part of CI/CD that delivers software to its desired environments. Usually, teams
have more environments such as development, testing and production. Each of those environments
should have same configurations but are for different purposes.

The objective of continuous integration is to gather code at one place to be handed to continuous
delivery. After everything is set up, a continuous delivery process could look like this:

First, the code is pulled from a version control system and starts a build of an application. Then the
infrastructure as code tool is executed to change required infrastructure in a given environment. This
step is more important for a cloud environment as they are more mutable. Next step is moving a built
application to the target environment and configuring environment variables dependent on the
environment that is being used. After everything is set up, the application is pushed to their
appropriate services, such as web servers, APl services. Then an application is deployed, the last thing
to do is execute any steps required to restart services that are needed for new code to take effect. At
the moment when is application successfully deployed, continuous tests are executed, if tests fail
rollback will be applied.

More and different steps could be part of continuous delivery. Those which are mentioned here should
give a good understanding of a given problematic (Sacolick, 2018).

36

Testing in Cl/CD

The vast part of CI/CD is testing. The optimal case is to deliver new versions of software as quickly as
possible. Also, quality assurance is very important. This means that the Cl/CD pipeline should have
included various types of tests to be executed in process of delivering new versions, and in case tests
will find an error in code or delivery process, a rescue plan should exist. That rescue plan might be a
rollback to the previous version.

However, the best practice in testing is before continuous delivery is executed. Before releasing a new
feature, developers should run unit tests, functional tests and regression tests on their local
environment. This leads to correct code in version control systems after committing a new portion of
code without breaking the working environment.

Testing code is the first part of the testing of the whole software. There are more like performance
testing, API testing, security testing, all these can be also automated. The key to automating these
tests is the ability to trigger them some easy way such as the command line.

When all testing is automated, it can be integrated into the CI/CD pipeline. Raw code testing can be
done in Cl while committing or merging with the master branch. Other tests like performance testing
could be done only after deploying the new version to the target environment and if those fails,
rollback can be executed (Sacolick, 2018).

7”7\ 7/ \

Plan Code Build Test Release Deploy Operate
Continuous Integration Continuous Delivery

Figure 11 — CI/CD process (Source: Eneh, T.)
3.5.3.2.Infrastructure as Code (laC)

Automation of infrastructure is a key DevOps practice. The philosophy behind this is that infrastructure
gets a new level of abstraction, infrastructure becomes part of code which describes the desired
infrastructure configuration in definition files. That means we can treat infrastructure as another part
of the software.

Why is infrastructure as code important? The answer is quite simple. It saves time. It reduces the time
spent on doing repetitive things such as patching infrastructure. laC allowed to create definition files
of configuration and so it reduces propensity on errors.

37

When infrastructure is automated, it is easier to test software in a sandbox environment. It is easy to
spin up a new environment, test the new version of the application and then tear down infrastructure
in minutes.

Inthe “cloud age” itis even easier to run these configurations because there is no need to buy physicals
servers. It is easier to set up infrastructure on cloud servers which are provided by many companies.
On the cloud, there is no need to be afraid of the local server having enough memory because it can
be easily added by requesting the provider for more (Johann, 2017).

However, once the infrastructure is managed by laC tool it might be troublesome to manually debug
problems. That is because the laC tool usually holds a current state which is the last snapshot of applied
infrastructure. When is that infrastructure manually changed it may corrupt given state and prevent
the tool from working correctly (HashiCorp).

3.5.3.3.Existing Infrastructure as Code Tools

Terraform

Terraform is a server provisioning tool. This means it is responsible for server creation in opposite to
laC tools that install and configure an existing server (Danek). It is a universal 1aC tool that is cloud-
agnostic and helps to manage large infrastructure for different kind of applications (Chan). Its
automation is often different. Some teams run Terraform locally but use the consistent working
directory for Terraform to run in. Another approach could use different orchestration tools such as
Jenkins to run Terraform (Nallamala).

Terraform uses its domain-specific language. Infrastructure is described using high-level configuration
syntax.

The core usage of Terraform is built on planning and applying configuration files. Before creating or
updating infrastructure Terraform informs the user about changes in a plan that contains exact
information about resource changes in existing infrastructure to increase safety and reduce human
error. After inspecting changes, the plan can be applied and infrastructure is updated in a moment
(HashiCorp).

Chef

Chef is a popular 1aC configuration management tool among CI/CD practitioners. Chef handles
installation and management of software on existing servers. Chef uses Ruby-based DSL to create its
recipes and cookbooks. It has versioning system that allows maintaining a consistent configuration.
Each cookbook should relate to a single task, but it can deliver different server configurations based
on resource definition. Chef uses a procedural approach to its configuration, as describing procedure
is necessary to get the desired state. Thanks to its support for cloud provisioning APIs, Chef works well
with other 1aC server provisioning tools. Chef is cloud-agnostic and works with many cloud service
providers (Danek; Nallamala).

38

Puppet

Similar to Chef, Puppet is a popular configuration management tool that helps with continuous delivery
of software. It has Ruby-based DSL. Puppet which uses a declarative approach to its configuration.
Defining the desired state of your infrastructure causes Puppet to automatically enforce the desired
state and fixes any incorrect changes. This approach is mainly directed toward system administrators.
It can be integrated with the leading cloud providers such as AWS, Azure, Google Cloud and VMware
(Chan; Nallamala; Danek).

Ansible

Ansible is an open-source infrastructure configuration tool. Ansible forms infrastructure by describing
relations between system components as opposed to others which manage systems independently. It
describes its configurations in YAML in form of Ansible Playbooks, because of that configurations are
easy to understand and deploy. Its functionality can be extended by writing new modules and plugins
(Chan).

Atlantis

Atlantis is an open-source tool that allows improved collaboration on projects where Terraform is
used. Its review and applying system is done in pull requests created in version control system. It allows
automation of infrastructure creation (Atlantis).

Atlantis is a good tool to add to the CI/CD pipeline while using Terraform. However, it does not support
control of concurrent access to infrastructure changes.

39

4. PROJECT

4.1. ASSUMPTIONS
The proposed architecture must meet the below business requirements:

e Software must handle 10.000 shipconfirms messages and perspective to scale to 30.000
messages/daily for Black Friday and Christmas (peak periods)

e Handle 5000 Tracking ID’s daily and should be able to scale to 30.000/day
e Multithread and ability to handle more than 100.000 messages/day

e 20.000 Shipconfirm/Tracking ID day for all carrier

e Integration with Apache Kafka, Metis backoffice, log patterns and CTT

e Autoscale based on demand

e Event-Driven

e Error recover capabilities

e Resilience to failures or infrastructure

e High availability

e Fastresponse

e Microservices design

4.2. DEVELOPMENT METHODOLOGY

The development methodology defined to be used was decided based on the traditional and agile
methodologies analysed. According to the project characteristics it was decided to use the Scrum
framework because we focus to adopt agile methodology aligned with "XPTO" view in order to add
value on the shortest time period possible.

According with Scrum we adopt the current Sprint Calendar template:

- -) | - 3 a 14 15 n 17 18

21

22
» B =

Figure 12 — Sprint Calendar template (Source: own)

40

1. The sprint starts on Wednesday as a duration of two weeks and ends on a Tuesday.

2. The last deployment to Dev environment should happen until 12am, on the last Monday of the
sprint (highlighted in red above). Issues reported during the QA phase might warrant
deployments after this deadline.

3. Local development is still available to developers.

4. Last Tuesday, all Tasks with a status of completed are presented in DEV environment during
the Sprint Review.

5. Three days after the end of the sprint the "XPTO" team can test in Dev and approve the
deployment to the Production environment in the example above 16-18th days.

The Scrum characteristics allows to:
- Measure progress through value added delivery
- Adaptive solutions to complex problems
- Continuous delivery of value in short periods

- Pillars: transparency, inspection and adaption

Team was composed by:
- Project Manager

- Product Owner — Authority to define final product, incrementally. Grants and maximizes value
added from development team deliveries

- Business Owner
- Solution Designer
- Scrum Master — handle blockers and facilitate iteration between team members

- 7 developers — able to build the software end-to-end and with quality

With this framework we are able to build a MVP and execute all tests required in order to grant the
quality and deliver new code releases at the end of each sprint.

41

4.3. FUNCTIONAL REQUIREMENTS ANALYSIS

Functional requirements analysis is fundamental for software development because they are
considered as the needs that we need to address and grant. Well defined requirements will allow a
good software development in order to achieve project deadline.

4.3.1. Functional Requirements

Functional requirements focus on existing problems and new operational needs according with
operational and business key users.

The functional requirements were classified with priority and all of them were taking into account for
the MVP delivery on Black Friday period.

42

FR1.0

FR2.0

FR3.0

FR4.0*

FR5.0*

FR6.0*

FR7.0

Title

Save counter(s) values for tracking number
generation

Tracking number logic

Generate WM shipping labels according to

carrier layout

Execute Packing to invoice and print/stick
WMS label

Sort the packages

Scan packages at PTL ONLINE

Print “aggregated box" label on PTL ONLINE

Description

Create, for each carrier, counters that will be used to generate the values of the tracking number, according to the shipping type (Home
Delivery or Pick Up In Store).

The tracking number generation logic, must be guaranteed in order to produce different values, regarding the pair “carrier”/"shipping type”
and in accordance to the carrier instructions.

For each pair “carrier”/"shipping type”, there must be printed a shipping label, according to the carrier shared layout and with all the relevant
information required by the carrier, to guarantee a correct delivery.

Pack the items and make:

. OMS call;
[AT call;
. print label (shipping or exception depending on the OMS feedback)

The layout of this label depends on the shipVia for the pack that has been assigned on the Waving. If the shipVia corresponds to the one
created to the alternative carrier, than the printed label should be according to the defined carrier layout (FR3.0).

At the end of the "packing convey belt” all the packages should be scanned and sorted to be directed to a specific zone (“sorter logic” to be
updated)

The PTL ONLINE system splits the packages to carton boxes, according to the store ID or group of stores. To achieve this PTL ONLINE has
configured the different store ID’s linked to the display addresses.

If the “delivery type” is PUIS, the PTL ONLINE system must be prepared to communicate with WM to print a “aggregation box” label that has
a tracking number according to the counter and logic previously referred on FR1.0 and FR2.0 respectively as well as the layout referred on
FR3.0.

43

Priority

HIGH

HIGH

HIGH

MEDIUM

HIGH

Low

HIGH

FR8.0

FR9.0*

FR10.0*

FR11.0*

FR12.0

Reprint Shipping Label

Reprint“aggregation box" label

Palletize or Anchor package

Load pallet

Send shipconfirm message to external
systems

Guarantee that FOR EACH ORDER LINE the
tracking number is on external systems (i.e
OMS and/or WeCare)

If there's the need to reprint a Shipping Label there are currently two options:
1. via RF Menu - option “Print OB Docs";
2. via Ul - on the "oLPN Detail Menu” — “More” — “Print Shipping Label".

For both of this options the tracking number logic is triggered and a new tracking number is generated for this new shipping label (works as
designed).

This logic must be maintained and the new tracking numbers must respect the the logic previously referred on FR1.0 and FR2.0, as well as
the layout referred on FR3.0 .

If there's the need to reprint a "aggregation box" label the current procedure is to (using the box ID):
. via Ul - on the "oLPN Detail Menu” - “More"” — “Print Shipping Label".

After the sorting there’s the need to group the packages on a pallet so that they can be easily loaded on the truck.

To fulfill this actions the oLPN of the package needs to be scanned.

Load the pallets with all the packages on the truck, by scanning the pallet ID.

A shipconfirm message is created to be sent to the external systems (RETEK, OMS, WeCare & “carrier”) in order to align stock, close related
documents, allow tracking and inform the carrier that a new package is to be delivered by them.

The “carrier” message component must be generated and sent to the correspondent carrier and not to any other carrier.

The current logic for dpd message component is triggered if the shipVia has the "CH##" mask.

Generate on WM and propagated trough the AS IS flow, to the external systems (OMS and WeCare), the corresponding order line tracking
number to allow track and trace of the packages and therefore provide to final costumer information on the the different package status.

44

HIGH

Low

Low

Low

HIGH

HIGH

FR14.0* @ Provide ALL RELEVANT and NECESSARY Using standard systems and procedures, allow access, by Bl Teams, to ALL RELEVANT and NECESSARY information, so that they can HIGH
information to Bl Teams accomplish their needs.

Table 1 — Functional Requirements (Source: own)

45

4.3.2. Diagrams

4.3.2.1.Use Case Diagram — CTT process AS-IS

The use case diagram as the function of describing the CTT shipping orders flow and allows to have
the general vision of the flow itself as it is implemented right now.

Currently, the Alternative Carrier for CTT has many additional manual steps (orange boxes on figure
14):

Export file after waving with a list of oLPNs;

e Import previous file to CTT local system;

e Scan oLPN after WM packing, to print CTT label;

e Place CTT label on the package;

e Export file from CTT App with oLPNs and Tracking Numbers;

e Import previous file into CTT Wrapper system.

The operation because of the above manual extra steps, in order to grant the sequence flow has to
perform 8 additional activities (see figure 13) that impact operational efficiency and can lead to human
error mistakes.

By the below diagram we can see that we have several manual activities that are required to be
performed in order to ship goods and all of them need to be achieved otherwise the agreed Lead Time
with the client will not be achieve.

46

Actor

Waving

Launches Wave

Expaort file after waving
with a list of oLPN s

Picking

Does Picking

Packing

Labelling

lrnport previous file
o CTT lacal system

Scan olPN,

for CTT label printaut

> Does Packing
Prints aLPM an
WS

oLPN
Consolidation

Consolidates
oLPN

Shipping

xport file frorn CTT Ap)
with oLPN s and

urnbers

Trackin:

Irnport previous file into
CTT YWrapper svsterm

Prints CTT Shipping Irfo

A

Load Truck

Ship Master
Pallets on WS

Export AT Code List

Sends AT Code list
to CTT

Figure 13 — CTT manual steps (Source: own)

47

Waving Picking Packing CTT Labelling olPN Shipping
Consolidation
Exports file @ Prints CTT Ships Master
from CTT app +| Shipping » Palleton
Waves Impgorts oLPNs y
Template "Fase |+ & Order info in wi info W
2 Online CTT™ CITapp
4
Admin Eﬂ‘_:.::
s Code List
h 4 h 4
Far sends AT
oo o CTT Code bt eo
(cony e
Does Packing & Consolidates olPN
Operador Does Picking *| Prints oLPN on into Master Pallet * Loads Truck

Figure 14 — CTT shipping orders flow (AS-IS) (Source: own)

4.3.2.2.Use Case Diagram — CTT process TO-BE

The below use case diagram describes the new CTT shipping orders flow according with the functional
requirements used for the software development.

The main objective of this initiative is to find solutions in order to minimize or even remove all the
manual processes that are currently being used on the ONLINE flow regarding the shipping trough the

Alternative Carrier CTT.

Waving Picking Packing oLPN Shipping
Consolidation
Ship Master
Pallets on WM
Waves Template
‘Bd'?i'] “Fase 2 Online
Online T
Print Shipping
Documentation
————y
Does Packing & Consolidates i |
Operador . prints CTT olPN into | !
Online Does Picking Shipping Label hrar o D} Load Truck |
on WM (WM) [|

CTT Packing process will be achieved through tracking id & label flow with message integration as

follows:

Figure 15 — CTT shipping orders flow (Source: own)

1. When "XPTO" operations pack the Order, that action triggers the Tracking ID & Label request
to WhTF API via HTTPS.

2. WhTF validates the message and routes it to microTMS.

3. MicroTMS will generate tracking number and label and sends Tracking ID & Label message to
WhTF.

4. WhTF will deliver Tracking ID & Label message to WMS API and store it into DynamoDB.

WHMS APl WhTF (Moore) MicroTMS
wif-
»./e_gentu:kldlab\w
HTTP FOST Remeives
Tracking & —» Tracking& —F———
Label Meszage Label Message
Validate Genarate

Tracking & » Tracking

L 7l Humber &
abel meszage Label Message

Recaives
Tracking &
Label Meszage

|

HTTF FOST
Tracking &
Label Message

l

Store Tracking & | »
Label Meszage

\, J DynamoDB

wif-message-box

Recejve
Tracking &
Label Meszage

Figure 16 — CTT Trackingld & Label flow end-to-end (Source: own)

CTT Shipping process (Load Truck) will be achieved through shipconfirm flow with message integration
is as follows:

1. WMS sends shipment confirmations through HTTP to WhTF API.

2. WhTF proceeds to save every ShipConfirm message into kafka private topic whtf-ship-
confirms.

49

3. Amazon MSK event source mapping reads from kafka private topic whtf-ship-confirms and

validate ShipConfirm message.

4. Transform ShipConfirm message into STDShipConfirm message.

5. Transform STDShipConfirm message according with WOSA envelope and publish it into topic

whtf-std-ship-confirms.

6. MicroTMS will consume topic whtf-std-ship-confirms and transform it according to CTT needs.

7. MicroTMS will sent CTT ShipConfirm message to CTT carrier through SFTP.

8. MicroTMS will sent CTT Shipconfirm message to WOSA topic tms-carrier-updates for Order

Management System (OMS).

WMS MIF

WhTF (Moore)

3 MicroTMS

CTT

Kon
Gateg

HTTF FOST Cl

ShipConfirm
Meszage EE

Api
way

&

Kafka Private

| witf-kafka-
| receive

53 Bucket

——

Receives
+®» ShipConfirm
Meszage

l

Store
— ShipConfirm
Meszage

wif-alb-

\ receive
P —

Validate
- ShipConfirm
message

wll

receive

STDShipCaonfirm
message

e
—

Transform
STDShipConfirm|__ |
inta Wosa
envelop format

ol osa

wif-wms;

E—
B

wef-message-

Sy

Fublizh to Wosa

hox

tms-carrier-updates .

g—Fublish

Transform
TDShipConfin

Consume

with tracking
number and
OMS line guid

Transform

Consume

h 4

topic

~—

{ wehtf-sta-ship-
confirms

ShipConfirm

CTT

messarge (5FTF)

Figure 17 — CTT shipconfirm flow end-to-end (Source: own)

50

4.3.2.3.Shipconfirm activity diagram

On the shipconfirm activity diagram it’s possible to visualize and understand CTT shipping orders flow
inside the new development and how all processes relate between them.

Shizcanfiem Pew

micraTeR

Figure 18 — Shipconfirm activity diagram (Source: own)

51

4.3.2.4.Shipconfirm sequence flow diagram
It shows how the objects interact with others in this particular scenario of a use case.
WMS MIF WHTF WOSA microTMS Carrier
close shipment event

Shipeonfirm message (new router shapconfirm whtf)

shapeonfirm message

shipconfirm message ACK

STDShipconfirm message

publish whtf-std-ship-confirms

consume whtf-std-ship-confirms

Create CTT ghupeonfirm message according with CTT interface mappings

CTT shipeconfirm message (SFTF)

publish tms-camer-updates (tracking number)

WMS MIF WHTF WOSA microTMS Carrier

Figure 19 — Shipconfirm sequence diagram (Source: own)

52

4.3.2.5.Warehouse Transformation Framework - Shipconfirm flow State Machine diagram

State diagrams depict the permitted states and transitions as well as the events that effect these
transitions. In case of fallbacks, retry mechanism is configured in order to help to overcome some
issues that may arise during the message flow.

Definition

"Ccomment”: "wtf state machine",
"startat": "Receive”,
"States”: {

"Receive": {

"Type": "Task",

"Resource”: "arn:aws:lambda:] Jfunction:moore-wtf-wms-receive-dey”,
"Next": "send",
"Retry": [|

"ErrorEquals”: ["RetriableException”],
"Intervalseconds”: 1,
"BackoffRate": 2.0,
"MaxAttempts": 5
Pl
"Catch": [{
"ErrorEquals”: ["ShipConfirmvalidationException"],
"Hext": "Fallback"

11
}s
"send": {
"Type": "Task",
"Resource”: "arn:aws:lambda:| J: function:moore-wtf-wosa-send-dev”,
"Retry": [{

"ErrorEquals”: ["RetriableException”],
"Intervalseconds”: 1,

"BackoffRate": 2.0,

"Maxattempts”: 5

1L

"End": true

b
"Fallback": {
"Type": "Pass”,

"End": true

Figure 20 — Shipconfirm state machine diagram (WhTF) (Source: own)

4.3.2.6.microTMS - Shipconfirm flow State Machine diagram

The same logic explained before is applied here.

53

L= R+ = Y I

L Y I -~ B o T I T i =]
LT 5 B = T = B - < = T Y P oo T = N« < = Y T)

Definition

- {
"Comment": "Tms State Machine”,
"startat”: "Receiwve”,
- "States": {
- "Receive": {
"Type": "Task",
"Resource”: "arn:aws:lambda] } function:moore-tms-wosa-receive-dev”,
"Mext": "Transform",
- "Retry": [{
- "ErrorEquals”: ["RetriableException"],
"Intervalseconds”: 1,
"BackoffRate": 2.8,
"MaxAttempts": 5
P
- "Catch": [{
- "ErrorEquals”: ["shiptonfirmvalidationException”],
"Hext": "rallback”
P
¥s
- "Transform": {
"Type": "Task",
"Resource": "arn:aws:lambda:[Efunction:moore-tms-wosa-transtorm-dev”,
- "Retry": [{
- "ErrorEquals”: ["RetriableException"],
"Intervalseconds”: 1,
"BackoffRate": 2.0,
"MaxAttempts”: 5
Pl
"End": true
¥s
- "Fallback": {
"Type": "Pass”,
"End": true
}
}
1

Figure 21 — Shipconfirm state machine diagram (microTMS) (Source: own)

54

4.3.2.7.Tracking Id & Label activity diagram

{

i Send Tracking 1D 6D
& Label request \

Receres
Tracking ID &
Label request

smesut
sach time
route . Update flow rotry e route
massage (backofice) Mo message
Ho
w
; Send Tracking 1D
each time & Label
message

Tracking ID & Label Row

Racaivs
Trackind 10 &
Update flow
(backofice) Label message

o i En-rlﬂﬂlmng[Sentd Mo
AP 1D & Label ! “;T’";z.m ey n

micraTHS

[0

Mtis 4

—{~——®

Figure 22 — Tracking Id & Label activity diagram (Source: own)

4.3.2.8.Tracking Id & Label sequence flow diagram

Expedition Team Operation Team Warehouses Hubs WhTF TMS AT WOSA

gen TracklD & Label

l gen TracklD & Label

print Label

PSSP, sty e

get received AT cn_qler of his oLPNs

collect AT codes by oLPNs

create Expedition Manifest

print Expedition Mamifest |

Expedition Team Operation Team Warehouses Hubs WhTF T™S AT WOSA

Figure 23 —Tracking Id & Label sequence diagram (Source: own)

4.3.2.9.Shipconfirm

WMS sends shipconfirm messages after the preparation of all orders assigned to a shipment. Those messages will be received in xml format and converted

into shipconfirm standard message (json format) for microTMS consume.

WhTF transforms every carrier shipconfirm message on the standard format, according with the mappings on Annex 1, but microTMS will only consume CTT

messages.

The message wil be published on the kafka topic whtf-std-ship-confirms with the following envelope structure:

Message

Kafka Header

id

Stream

Kafka Header

sn

sk

Si

Attribute

id

Attribute

name

key

intent

Type

"XPTO
||ID

Type

String

String

String

Mandatory

YES

Mandatory

YES

YES

YES

Unique

YES

Unique

YES

YES

NO

Description

A unique ID for this message, to act as an idempotence identifier. a Base64-encoded string of
an array of 16 bytes.

Description
Stream the message is related to.

Unique identifier of the entity inside the Stream.
This usually maps to the primary key of the entity in the source database system.

The intent of this message. This can describe an action or an event that occurred.

56

SV

Tracing

Kafka Header

tg

offset

Attribute

request_id

String YES

Type Mandatory

"XPTO | YES
IllD

NO

Unique

NO

Offset of this message inside the scope of the <Name,Key> tuple. Example: "4th message for
the Order with OrderID X".

You should consider this field as the "version" of the entity value. When you create an entity,
the version would be 1. When you update it afterwards, the version would be 2.

The ideal representation is an integer that starts at 1 and is incremented for each update you
make. This allows consumers to quickly discard old messages (just track the version of the
entity and discard messages with versions below the last you recorded), but also to detect if
you lost ant messages (if you recorded version 5 and you get a message for version 7, you can
determine that you lost 1 message - if that is important or not, it depends on the use case).

The fallback representation (because it is easier and usually available) is to use the millisecond
precision last-updated-at timestamp for the entity. Please note that if you use this
representation, you will lose the ability to detect missing messages. Again, the ideal
representation of the previous paragraph is strongly recommended.

Description

Context/Span/Trace ID of the global event or command that triggered this message. Establishes
a "parenting" relationship with the event or command with that "XPTO"ID.

57

tc

Payload
Kafka Header

ps

pa.<key>

None. This is
the message
content jtself

tracing_id

Attribute

schema

annotations

raw

"XPTO
IllD

Type

String

Set of
pairs
Key.

Array
of
bytes

YES

Mandatory

YES

NO

YES

NO

Unique

NO

NO

NO

Context/Span/Trace ID of the caller event or command that triggered the chain of events that
lead to this message.

Whenever the event or command that caused this message to be sent has a
Context/Span/Trace ID, that Context/Span/Trace ID should be copied into this field.

This allows for the correlation of all the activity related to a single "root cause" event or
command.

This field is mandatory.

Description

The schema of the Raw message field, defining the serialization method and the version.
Examples: "json#1", "json#1.1".

A set of pairs Key, Value that annotates the message, allowing for possible filtering of messages.
The Key may repeat itself allowing for annotating the message with multiple values for the same
key (e.g. the several SKUs present in an order).

The serialized data of the actual message.

58

Backwards Compability

Kafka Header

ev

Attribute

envelope_version

Type

Mandatory | Unique

String | NO NO

Description

"0" for the inline envelope (deprecated version)
"1" for the current version of the Kafka Headers envelope

If ev doesn't exist it's assumed the envelope is inline (old deprecated version)

59

Shipconfirm kafka envelope message example

KAFKA Headers

"id" = "AXERr2d/mMIKatwA+ELS1Q=="
"sn" = "whtf-std-ship-confirm"

"sk" = "000085389"

"si" = "ShipConfirm"

"sv" ="1595611980"

"tg" = "AXERr2d/vqwSQJtIOYFniA=="
"tc" = "AXERr2d/vqwSQJtIOYFniA=="
"ps" = "json#1"

"pa.shipvia" = "CTHD"
"pa.shippeddttm" = "7/24/20 17:33"
"ey" ="1"

KAFKA Message

complete payload message

{
"Header": {
"Source": "MANH_wms",
"Message_Type": "ShipConfirm"
b

"Message": {
"ShipConfirm": {
"ShipConfirmSummary": {
"ShipConfirmHeaderInfo": {
"ShippedDttm": "7/24/20 17:33",
"CreatedDate": "7/24/20 17:33",
"ProNbr": "01989898"
1
b
"ShipConfirmDetails": {
"Orders": {
"BillAcctNbr": "GAPR 2020.70819/303092",
"BillFacilityAliasid": "1460",
"DoType": "Customer Order",
"MajorOrderGrpAttr": "1100500865",
"OrderType": "ONL",
"DoStatus": "Shipped",
"StoreNbr": "9610004275",
"DistroNumber": "80f3588c-3057-4529-856e-c36c7eef4d39",
"OrderBillTolnfo": {
"BillToEmail": "nd",
"BillToPhoneNumber": "915322079"
b
"OrderDestInfo": {
"DestAddress1": "R Particular de Sto. Antonio",
"DestAddress2": "AJUDA",
"DestCity": "LISBOA",
"DestCountryCode": "PT",
"DestFacilityAliasld": "513",
"DestName": "ANTONIO GEMELGO",
"DestPostalCode": "1300000"
b
"OrderLineltem": {
"ltemName": "7054195",
"OrderQty": "1",
"ShippedQty": "1"

b

"Lpn": {
"ShipVia": "CTHD",
"TcLpnld": "256019880033984442",
"TcOrderld": "99733906",
"TcShipmentld": "000085389",
"TrackingNbr": "1100500865_001",
"ReturnTrackingNbr": [],

"Weight": "0.2",
"TaxID": "9612270797",
"LpnDetail": {

"ltemName": "7054195",
"TcOrderLineld": "1",
"LpnltemAttributes": {
"ProductStatus": "02"
h
"LpnSerialNumber": {
"Quantity": "1",
"SeqNbr": "1",
"SrINbr": "uyhchchchgccgh"
h
"OrderQty": "1",
"ShippedQty": "1"

61

In case the message is for CTT carrier then data validation is done on lambda wtf-wms-receive for

mandatory fields, namely:

DataType Values

DataType g

Header.Source Source system “MANH_wms" - (default value) Y String
Header.Message_Type Message Type “ShipConfirm” - (default value) Y String
Message.ShipConfirm.ShipConfirmSummary.ShipCor derinfo.ShippedDttm Shipped Date Time example: 7/24/2017:33 Y String
Message.ShipConfirm.ShipConfirmSummary.ShipConfirmHeaderinfo.DateCreated example: 7/24/2017:33 Y String
Message.ShipConfirm.ShipConfirmSummary.ShipCor derinfo.ProNbr Y String
Message.ShipConfirm.ShipConfirmDetails.Orders.Bill AcctNbr Bill account number Y String
Message.ShipConfirm.ShipConfirmDetails.Orders.BillFacilityAliasid Bill Facility Alias Y String
Message.ShipConfirm.ShipConfirmDetails.Orders. DoType Distribution Order Type “Customer Order” - default value Y String
Message.ShipConfirm.ShipConfirmDetails.Orders.MajorOrderGrpAttr Major Order grouping Attribute Y String
Message.ShipConfirm.ShipConfirmDetails.Orders.OrderType Order Types “ONL"- {default value) Y String
Message.ShipConfirm.ShipConfirmDetails.Orders.DoStatus Distribution Order Status “Shipped” - {default value) Y String
Message.ShipConfirm.ShipConfirmDetails.Orders.StoreNbr AT Code for ONL Orders Y String
Message.ShipConfirm.ShipConfirmDetails.Orders. DistroNumber OMS Channel Order Guide Y String
Message.ShipConfirm.ShipConfirmDetails.Orders.OrderDestinfo.DestAddress1 Destination Address Information Y String
Message.ShipConfirm.ShipConfirmDetails.Orders.OrderDestinfo.DestCity Destination Address Information Y String
Message.ShipConfirm.ShipConfirmDetails.Orders.OrderDestinfo.DestCountryCode Destination Address Information PT - (default value) Y String
Message.ShipConfirm.ShipConfirmDetails.Orders.OrderDestinfo.DestFacilityAliasld Destination Address Information Y String
Message.ShipConfirm.ShipConfirmDetails.Orders.OrderDestinfo.DestName Destination Address Information Y String
|Mssssgs.shipCunflrm.ShlpCunfirmDstails.Ordsrs.OrdsrDsslInfu.DsleuslalCuds Destination Address Information Y String
Message.ShipConfirm.ShipConfirmDetails.Orders.OrderLineltem.ltemName SKU ID/ Item Name Y String
Message.ShipConfirm.ShipConfirmDetails.Orders.OrderLineltem.OrderQty Order Quantity Y Decimal
Message.ShipConfirm. ShipConfirmDetails.Orders.OrderLineltem.ShippedQty Shipped Quantity Y Decimal
Message.ShipConfirm.ShipConfirmDetails.Orders.Lpn.ShipVia Carrier |dentification for goods transportation Y String
Message.ShipConfirm.ShipConfirmDetails.Orders.Lpn.TeLpnld Tclpnld Y String
Message.ShipConfirm.ShipConfirmDetails.Orders.Lpn.TcOrderld Order ID Y String
Message.ShipConfirm.ShipConfirmDetails.Orders.Lpn. TcShipmentld Shipoment Number Y String
Message.ShipConfirm.ShipConfirmDetails.Orders.Lpn. TrackingNbr Carrier Tracking Number Y String
Message.ShipConfirm.ShipConfirmDetails.Orders.Lpn. Weight Total Package Weight (kg) Y Decimal
Message.ShipConfirm.ShipConfirmDetails.Orders.Lpn.LpnDetail SKUID/ Item name Y String
Message.ShipConfirm.ShipConfirmDetails.Orders.Lpn.LpnDetail. TcOrderLineld Y String
Message.ShipConfirm.ShipConfirmDetails.Orders.Lpn.LpnDetail. LpnltemAttributes.ProductStatus ~ Warehouse ID Y String]

Figure 24 — CTT Shipconfirm mandatory data (Source: own)

4.3.2.10.CTT Shipconfirm file

For every "XPTQ" CTT shipment it is required to generate a shipconfirm file and deliver it by SFTP to

CTT for integration (seemappings on Annex 4).

The name of the file should be something like “x0l085389.exp”.
e “xol” = Thisis an ID defined by CTT to us.

e “085389” - This value comes from the
Message.ShipConfirm.ShipConfirmDetails.Orders.Lpn.TcShipmentld on the WOSA Topic
(whtf-std-ship-confirms). The same one used on the XML Tags “INTREF” & “MESREF” &

MN RGII

e .exp —> This is the extension used by CTT. EXP stands for Symbols Export File.

Below are the details how to pass from Standard Shipconfirm message to CTT specific one for

integration.

62

€3aml versicn®"1.0" enc

“ding=-isc-BBS9-1-7%
Fri 3 f2001

i 3. oxg/2001/ R

A0

mmlne s

<t
<SNDID-160132</ aNDIDe
<ROVID>POSTLOGS /RCVIDS
“DTH>20200430125837 < /DTH>
CINTREFS1</INTREFS

<fuwms

<umm
TMESREF>1< /MESREF>
<RSI VRE>
<RLE>0</RLE>

<

<GLA TIFES"1%>
<10C TYPE=-4=>75211</10C>
<LOC TYPER-B-ITS211</L0CH
<No1>

“CLNT>200040094 </ CLNT>
<OONT>I00301729</CONT>

“NIF>803630330</NTF>
“PGIPC/PGI>
THRGFLCNRGY

<DTH>20Z00430125837< /LT

<EMa>
<eNTrT< IR

<fara>

<cwTs1<iowT>

Figure 25 — CTT file Header (Source: own)

63

-] Sess

- o /EMS>

GIN>FA272500602PT</GIN:
<PIA>ENCFD05.01</FIA>
<PIADESC>19</PIADESCS
<QTY>1</QTY>

E MER>
<WTR UNIT="GRM">300</WIR:
= < JMEA>
<ZTX>0D01</ZTX>
=] <PNA TYFE="1
EF <HAD>
IM::E@JI‘P‘M FARA O LAR SA «/NME>
<ADR>EN 7 KM 3 ARNEIRD </ADR>
(=] <CPL>

"

e </ PTCS
<CTY -mua.a:< JeTY>
c/CPL:

CTR>PT</CIR>

TEL /:

<t ——JEQUIPAMENTO PARA O LAR SA </CTA>

<TIM [>

A

B ——

<AOR>Ezterada da |..'|.'I.II & fBRDR>
CPL>

S e N
</CPL>
<CTR>PT</CTR>
cTEL /:
R i
‘REF>256019880032182733</RFE:
T f— 120>
<ADRIL />
<CTT>Lisboa</CTY>

JHAD>

</ PHA>

= <II0=
<O0ID>FA2T72500602PT</0ID>
<NUM ORDEM />

/110
<3EPID-ERCED30.01_05</3EPID>
<PAI TYFE="99":

<CUX>EUR<fCUX>
<MOA 0« /MOA>

<CPO />
<fPAT>
= ./ 8EF:
<CDAT />
'CBEEC>T7dB8d20ac-afab-1laa-Bd436=-5000709b11a3</OB3C:
4 : ﬁ"f‘r l|'
< INREM>N</ ITHRM>
DCTP />
<LANG J
TIFPRD />

<IFEXP />

Figure 26 — CTT file details (Source: own)

64

4.3.2.11.CTT Labels

CTT labels requests by "XPTO" operations will originate 2 types of labels: one good and one bad also
known as “Exception” label which indicates to the operation that additional actions are required
because something is not accurate.

This example shows a regular request (for a Tracking Id & Label) from WMS. The request will always
be on JSON format.

"labelRequest": {
"distributionOrderld": "7445324",
"tcLpnld": "256019880034758868",
"shipmentNumberOMS": "33283676_001",
"shipVia": "CTHD",
"orderType": "ONL",
"containerType": "CTO",
"containerSize": "E02",
"invoiceNumber": "FR 19L1460/349386",
"originFacilityld": "01",
"originFacilityName": "XPTO",
"destinationName": "Antonio Gemelgo",
"destinationAddress1": "Rua Tomas Pilar 1",
"destinationAddress2": null,
"destinationAddress3": null,
"destinationCity": "Lisboa",
"destinationPostalCode": "1300258",
"destinationCountry": "PT",
"billAddress1": "Rua Tomas Pilar 1",
"billAddress2": null,
"billAddress3": null,
"billCity": "Lisboa",
"billPostalCode": "1300258",
"billCountry": "PT",
"billToName": "Antonio Gemelgo",
"billPhoneNumber": "911234567",
"billEmail": "dummy@live.com.pt",
"destinationFacilityld": "1460",
"destinationFacilityName": "XPTO ONLINE PT",
"packedDateTime": "2020-10-02 22:31:44:000000",
"trackingNumber": null,
"EAN128": "242506509698811921237856620",
"weight": "4,1200",
"serviceText1": "D",
"serviceText2": "AXXX",
"routingText": "0959-LX1",
"customOrderPrty": "1",
"refNum4": "5,00000",

"items": [
{
"distributionOrderLine": "52434737",
"sku": "7194624",
"ean": "5601988457319",
"quantity": 1,
"oms_guid": "066e5c56-dcla-11ea-bafd-42f3dbb8130e"
b
{

"distributionOrderLine": "52437440",
"sku": "7220905",
"ean": "4020628715717",

65

"quantity": 1,
"oms_guid": "1fb9b4f2-e08a-11ea-9clc-57ab20de6f81"

distributionCrderld labelRequest String
tolpnld labelRequest Yes String
shipmentMumberCObS labelReguest Wes String
shiptia labelRequest Yes String
orderType labelRequest Yes String
containerType labelRequest Mo String
containerSize labelRequest Mo String
invoiceNumber labelRequest Mo String
originFacilityld labelRequest Yes String
originFacilityMarme labelRequest Mo String
destinationklame labelRequest Mo String
destination&ddress1 labelRequest Yes String
destination&ddress2 labelRequest Mo String
destination&ddress3 labelRequest Mo String
destinationCity labelRequest Yes String
destinationPostalCode labelReqguest Yes String
destinationCountry labelRequest Yes String
bill&ddress1 labelRequest Yes String
billAddress2 labelRequest Mo String
bill&ddress3 labelRequest Mo String
bill City labelRequest Yes String
billPostalCode labelRequest Yes String
bill Country labelRequest Yes String
billTaMame labelRequest Yes String
billPhoneMumber labelRequest Yes String
billErnail labelRequest Mo String
destinationFacilityld labelRequest Yes String
destinationFacilityMame labelReguest No String
packedDateTime labelRequest Yes Date
trackinghumber labelRequest Mo String
EAMN1ZE labelRequest Mo String
weight labelRequest Yes MUmeric
serviceTextl labelRequest Mo String

serviceText2 labelRequest Mo String

routingTes:xt labelRequest Mo String

custom OrderPriy labelRequest Mo String

refMurm 4 labelRequest Yes MUmeric

items labelRequest Yes Array
distributionrderLine items Yes String

sku items Yes String

ean iterms Mo string

guantity iterms e Mumber
orms_guid item [[a] String .,

Table 2 — CTT Label request mappings (Source: own)

This example shows a regular OK response (return code = HTTP 200 OK) with a generated Tracking Id
& Label from microTMS. The response will always be a message on JSON format.

tran:kmgh]br lahel Yes Strmg
returnTrackingbr lakbel Yes String
fileContents lahel Yes String

Table 3 — CTT Label response (Source: own)
CTT Label response output example:

{ "label": {

"trackingNbr": "FA272000371PT",

"returnTrackingNbr": "FA272000371PT",

"fileContents":
"AXA\NASZ2AMCY~TAO~ISNALTOAMFN,NAJZYAPW806”PR6,6,6"\PMNAJMAALHO,0ALRNAXZ\nAXAMDFR:SSF0.ZPL\n"CI28,36,21\n"LH0,0\n"J
MA\nAPW816\n LL\n\n*FO705,170~GFA,2296,2296,14,,:::::00JF8,NOLFC, MONFC,LO30F,KO3PFE,KO7QF,KORFC,JO3RFE,JO7SF,JOTFC,I01TFE,|
03UF,I07UF8,I0VF8,001VFC,003VFE,:003WF,007WF,00XF8,:00XFC,01MF8I107LFC,01LF8KOLFE,01KFELO3KFE,03KF8MO7JFE,03JFENO3KF,03JF
COOKF,07JF8007JF,07JFP03JF,07IFEPO3JF,07IFEPO1JF8,07IFCPO1JF8,07IFCQOJF8,07IF8QO7IF8,:::0JFRO7IF8,::07IFRO3IF8,:07IFRO7IF8,::::07IF
8Q07IF,:::03IF8Q07IF,031F8QO0JF,03IFCQOJF,03IFCQOIFE,01IFCPO1IFE,:01IFEPO3IFC,00IF8QOIFC,00FETO3FC,008,,::::::::::::LOWFC,I01YFE,I07YF
E,001gGF,007gGF8,00gHF8,00gHFC,01gHFC,01gHFE,03gHFE,03gIF,07gIF,07gIF8,:07gIFC,:07gIFE,:07gJF,0gKF,0gKF8,07JFQOJF,07IFCQOJF,07I
F8QOJF,:07IFROJF,::07FFEROIF,::07IFROJF, :::, :::0:::::::JO3XFE, I07YFE,001gGF,003gGF,007g GF8,00gHF8,00gHF C,01gHFC,03gHFE, :03gIF,07gIF,0
7glIF8,:07gIFC,:07gIFE,:0gKF,0gKF8,07gJF8,07JFQOJF,07IFCQOJF,07IF8QOJF,:07IFROJF,::07FFEROJF,::07IFROJF,:::AFS\n\n FX
3k 3k ok 3k 3k ok 3k 3k ok ok 3k ok ok 3k ok ok sk k ok ko ok k sk ok ok Shlpment Zone **************************\n"FOlS,ZS"AON,ZS,lS"FDCTT Expresso | AV. D 1050 “, 13
1999-001 LISBOA | Alvara: 654940 | NIPC:
503630330~FS\n*F00,0~GB816,15,15*FS\n*F00,300~GB510,0,3"FS\n*FO0,480"GB816,0,3"FS\n*"FO300,560"GB516,0,3*FS\n"FO0,600"
GB816,0,3*FS\n*FO0,736"GB816,0,3*FS\n\n*FO0,50~GB816,0,3*FS\n*FO300,300~GB0,300,3*FS\n*FO510,50~GB0,430,3*FS\n*FO700,50

AGB0,430,3AFS\n\n\n\n*FX ok kR ok ok ok ok ok ok ok ok ok ok ok ok Delivery information
FRAEA A AKX KA xR XXX F\nAFO30,707A0N, 25,25 FDDestinatério:AFS\n*FO30,100*A0N, 35,35 FDAntonio
Gemelgo*FS\n*FO30,140~A0N,35,35*FDRua Tomas Pilar 1
AFS\nAFO30,1807A0N,35,35FDAFS\n*F030,220"A0N,35,35FD1300258"FS\n*FO30,260*A0N,35,35"FDLisboa”FS\n\n"FX

3k 3k 3k 3k 3k 3k 3k 3k 3k 5k >k >k 3k 3k >k 3k >k 5k 3k %k 5k %k %k *k k k Customer |nf0rmat|0n

HEEHREARRLL LR LA LKA L X424 \NFO20,3207A0N, 25,25 FDContacto: FS\n*FO20,350*A0N, 25,25 FDAntonio
Gemelgo”FS\n"FO20,4207A0N,25,25*FDTelf:AFS\n"F020,450"A0N, 25,25 FD965453980 N FS\N\NAFX ******¥kxxaaapasxxxxxxxxx pUIS
or HD HHEHHHHHRA R A ALK L XA L2114 \N\nFO20,5007A0N, 25,25~ FD"XPTO" ONLINE PTAFS\nAFO20,540~A0N,70,70°FD1460

Fokk ok kR ok kokk xok ko ok ¥ %\nAF0320,3307A0N, 25,25 FDVolumes: FS\n*F0320,365"A0N, 25,25 FD2*FS\n*FO320,400*A0N,25,25"FD
Peso:AFS\n*F0320,435"A0N,25,25FD4.1200 KgAFS\n\n*FX F ok ok kR ok ok ok ok Sender information

FREERRAR AR KRR AL LA %25 \N\NFO670,80"A0R, 25,25 FDRemetente:AFS\n\n*FO515,60"A0R, 25,25*FDContrato:AFS\n*F0515,155*A
OR,25,25"FD300301729~FS\n\n*F0O515,285*A0R,25,25*FDCliente:AFS\n*FO515,365*A0R, 25,25*FD200040094"FS\n\n*FO640,80*A0R, 25,
25°FD"XPTO"AFS\n"FO610,80"A0R,25,254FD2050-999 OTA AFS\n~FO580,80"A0R, 25,25 FDTelf:AFS\n*FO580,140*A0R,25,25*FD808 100

007~FS\n\n"FO550,80"A0R,25,25 FDAFS\n\n"FX ko ok ok bk ok ok ok ok ok ok ok ok Content description
**************************\n\n\nAFX 3k 3k 3k 3k 3k ok 3k 3k ok ok 3k ok ok %k ok ok skok ok sk sk ok sk sk k ok WMOS License Plate
**************************\nl\Foso,elol\BYZI\BC,100,Y,N,NI\FD256019880034758868AFs\n\n\nl\FX 3k 3k 3k 3k 3k 5k 3k 3k 3k %k >k sk sk ok 3k sk ok sk ok ok sk sk k sk k ok
Shipment numbre OMS

67

FREER R AR AR R LR L X% %% \nFO320,500"BCN,50,N,N,N*FD33283676_001*FS\n*FO320,570"A0N,25,254FD33283676_001~FS\n\n"F
\n AFO600,795"A0N,45,45°FD 02/10/207FS\n\n\t\t*FO70,755"A0N,30,30°FDOBJ ID:
FA272000371PTAFS\n\t\t"FO110,795*A0N,30,30~FDCP7: 1300258 ~FS\n AFO150,9207BY3"BCN,200,N,N,NAFDFA272000371PTAFS\n
AFO370,1130"A0N,15,15AFDFA272000371PTAFS\n\n \nAXZ\n*XAAXFR:SSFO0.ZPLAPQ1,0,1,YAXZ\nAXANDR:SSF0.ZPLAXZ\n"

}

The CTT label has the below requirements in order to be accepted by CTT platform for delivery:
1) CTT Label Specific Properties

White paper, size 10x15cm

Font type — Courrier

CTT Expresso logo

Bar Code: CODE39

2) CTT Label Required Elements

Carrier Identification (Logo)

3) CTT Label Fields

1. Header — Mandatory
a. Logo
b. CTT Product Type (a)
i Fixed value: 19
¢. Number of volumes shipped
i Fixed value: 1
d. Shipped date
2. Sender - name, address, phone number — Mandatory (a)

a. XPTO

b. EN1

c. OTA

d. 2050-999 OTA
e. Portugal

3. Recipient - name, address, phone number — Mandatory
a. Client name
b. Client phone number
c. Client address
d. Client city
e. Client postal code - city
f. Client country
4. Observations —"XPTO" internal code of order status

68

Contact

Client N2 — Mandatory (a)
Contract N2 — Mandatory (a)

© 0 N o v

10. Fixed Sentence — Mandatory (a)

a. “CTT Expresso | Av. D. Jodo I,

504520296”

(a) All these values need to be saved on a parametrization table on moore-tms-configurations-

Tracking Number & Bar Code — Mandatory

Shipped volumes — weight -30Kg — Mandatory

approach will be used to keep this fields more flexible in case of future changes.

10 | o emmo | Ar 0 dodo k. 131558~ L5804 | i 50680 | WP 5063008

K Destinatario:
Rua Tomas Pilar

1300258
Lishoa

~—

Contacto:
Antonio Gemelgo

S

Teli:
911234567

Antonio Gemelgo 3

1

8B L

VG00%0002 -21us|l] 62/ 10E0DE -ojRijuD]
200 001 808 -jieL

& YZ¥d YrNBWYZY 90€ - 0502

0 YHvd OLN3WY4INDI — N3LWOm

o ¢

Feso:
41200 Kg 9

WORTEN ONLINE PT

1460 CTT

AN T

33283676 001

[N

25601988080834758868
0BJ ID: FA272000371PT roduto
CP7: 1300258 1 02/10/20

R

FAZT? DT T

Figure 27 — CTT label (to-be)

13 1999-001 LISBOA | Alvard: 654940 | NIPC:

*. This

69

This example shows a regular NOK response (HTTP 500 Bad Request) with an Error Code and related
Description from microTMS. The response will always be a message on JSON format.

{
"Status": {
"errorCode": "500",
"errorDescription": "InternalServerError",

}
}

errarCode status Strmg
errorDescription status es string

Table 4 — CTT Label NOK error message

The CTT exception label will be generated with the errorCode and errorDescription, see figure 39, sent
within the Bad Request response in order to facility operations troubleshooting or corrective actions.

ONLINE Exception

-~
-~

256019880025423072

microTMS
InternalServerError
Unauthorized

|INTNARHATIRAUNRN cno: 1s000s6s16 oot
WV~ oo: ass7s1e7

Printed Date Time
06/11/20 15:34

Figure 28 — CTT Exception label printout

4.3.2.12.CTT Tracking Numbers

In order to keep track of the deliveries it is required to use valid CTT Tracking numbers ranges

explained below.

70

Example: FA8302500616PT
FA - Type of CTT product used (Fixed Value (a)).
__ 830 -> ID specifically assigned by CTT to "XPTO" (Fixed Value (a)).

50061___ - Sequence for "XPTO" deliveries. Range of 99999 possible values, from 00001 to
99999. (b)

6__ - Check Digit. Documentation about this on the next topic (How to calculate CTT
Check Digit from a Tracking Number).

PT - Fixed value for CTT Deliveries (national and international) (Fixed Value (a)).

(a) All these values need to be saved on a parametrization table on microTMS DB. This approach will
be used to keep this fields more flexible in case of future changes.

(b) 830 until 839 represents an ID specifically assigned by CTT to "XPTO" on microTMS only.

How to calculate CTT Check Digit from a Tracking Number

Example: FA83050061_PT > FA830500616PT

19: (8*8)+(3*6)+(0*4)+(5*%2)+(0*3)+(0*5)+(6*9)+(1*7) = 64+18+0+10+0+0+54+7 = 143
29: MOD(143/11)=12,45 > ~=5

32 Checkdigit=11-5=6

4.4. ARCHITECTURE AND SOLUTION DESIGN

4.4.1. Architecture

The Architecture design was aligned according with AWS services available and which best suited an
Event Oriented Architecture based on Lambda Functions.

Communication between WMS and WhTF endpoints will be done via HTTPS with SSL certificate
through API Gateway, called Kong, which is responsible to route all the requests to the internal services
responsible for handling those requests which in turn triggers a Lambda function that validates the
request.

71

JR_39.

i

WMS

Save Message Polls using Message S3 URL

: 53 Bucket :
‘ : [State Machine '\ :
H S3FileLink o H
!] TN E
Kong API : wif-alb-receive Amazon wif-kafka-receive H
1 Managed '
H Streaming for
E Kafka

Receive

rEE ®

Kibana CloudWatch DynamoDB Transform H

Logging Events

\ Send /
“_'— B - < A <
m dou D == |
0 o 0 !
CIoudWat:h microTMS Amazon
Event Time WManaged
H Based Streaming for
Kafka

Figure 29 — Architecture Design — Event Oriented Architecture based on Lambda Function (Source: own)

Because of time constraints and based on Scrum methodology a MVP version was established for
delivery in order to grant value added to business.

WhTF MVP focus on handling Shipconfirm and Trackind Id & Label messages from WMS <-> microTMS.

Kong AP

Gatawa
L shipcontinm—1— T a i 1 | i
& | e
e TracKing 1D & Lab e .' |
‘Warehouse Management System ¥ | “Wansportation Managament Systm
! Step Funetions Lambda | - o i o
whtisidshipd
l » pmme —-——Pubhsnehl-b o
V—,@ Cnnsumelﬂ «—Cansume———| opic |
| : N
| WhTF
!Ilwvl Dynama DB Bucket 53 | e

Figure 30 — WhTF MVP Solution Design (source: own)

72

T nsseus burenen g 0

Producers [{}

ol

Figure 31 — microTMS MVP Solution Design (Source: own)

73

4.4.2. Interfaces

4.4.3. Data Model

The DynamoDB data model in Amazon DynamoDB table is a collection of items and each item is a
collection of attributes. Each attribute is a name value pair and can contain a single value but Json
document or a set of values.

When we create a table in addition to the table name we must specify a primary key to use on the
table as another database's a primary key in DynamoDB uniquely identifies each item in the table.

[Gimoore x| S reT—

Name = Swtus Partition key Bart key Indewos - Total read capacity Total writs capacity Auto Scaling Encryption

Figure 32 — DynamoDB tables (Source: own)

The type of primary key is a composite key using both a partition key and a sort key. The first attribute
is the partition key and the second attribute is a sort key again DynamoDB uses the partition key value
as input to an internal hash function.

The output from the hash function determines the partition where the item is stored. All items with
the same partition key are stored together in a sorted order by the sort key value.

The moore-wtf-message-box-* table will have all WhTF messages handled and the output for each
column is:

Guid: S3 ID from original message received
ReceivedAt: timestamp of message received

Flowld: message flow Id

Flowid

Figure 33 — WhTF Flow Id (Source: own)

FlowStep: message Flow Step

FlowStep Meaning Flow Obs

Figure 34 — WhTF Flow Step (Source: own)

Messageln: Standard message conversion

74

MessageOut: Standard message published into kafka
SentAt: timestamp of kafka publishing

ReceiveBy: Lambda name handling

SentBy: Lambda name handling

DequeuedAt: timestamp of kafka private handling
DeQueuedBy: Lambda name handling
QueueDeliveryResult: kafka private output
StepFunctionARN: state machine handling information
ValidateBy: Lambda name handling

ValidateAt: timestamp of lambda message validation
OriginalMessageS3Name:

Error: Error description

ErrorAt: timestamp of error occurrence

When we create or update a table we specify how much provision throughput capacity we need for
reads and writes and Amazon DynamoDB will automatically allocate the necessary machine resources
to meet our throughput needs while also ensuring consistent low latency performance throughput is
measured in capacity units a unit of read capacity represents one strongly consistent read per second
or eventually consistent reads per second for any item as large as 4 kilobytes. A unit of write capacity
represents one right per second for items as large as one kilobyte DynamoDB supports two operations.

The moore-tms-message-box-* table will have all microTMS messages handled and the columns

explanation is as follows:
Guid:
ReceivedAt: timestamp of message received

Flowld: message flow Id

Flowld Meaning Obs

Figure 35 — microTMS Flow Id (Source: own)

FlowStep: message Flow Step

75

Figure 36 — microTMS Flow Step (Source: own)

DequeuedAt: timestamp of kafka handling

DeQueuedBy: Lambda name handling

StepFunctionARN: state machine handling information
Carrierld:

MessageReceivelnJson: Kafka message received

ReceivedBy: Lambda name handling

SentAt: timestamp of kafka publishing for OMS

MessageOut: response message of trackingld

FileStored: CTT file name generated

SentBy: Lambda name handling

SingleMessageConverted: CTT messages conversion
SingleMessageSentToWosa: CTT tracking numbers message sent to OMS
TcShipmentld: WMS shipment

TransformedAt: timestamp of lambda message transformation

TransformedBy: Lambda name handling

Because of Tracking Number generation, table moore-tms-gentrackid-ranges-* was created where all
the attributes required are maintained and accessed through software coding namely:

- Valid range numbers;
- Active ranges;
- Date of start and finish of range;

- Sequence in use.

76

The below columns have the valid ranges for tracking numbers attribution regarding CTT carrier.

Guid § = CreatedAt CarrierCode CountryCode FlagActive = LastValue + ProductTypeCo: Shipperid StartDate

Figure 37 — CTT tracking numbers (Source: own)

Since microTMS will handle several carriers and everyone will for sure have distinct requirements and
configurations regarding labels printout it was decided that those definitions will be keep not
hardcoded but instead they will be stored on a DynamoDB table, moore-tms-configurations-*, that will
be invoked to pass the required fixed values to populate the label template.

77

Edit item

Tree ~

COO0O0Q0QO0O0OO00O0O00CO0O0000CO00CO0O00Q0O00O0O000CO0C0000CO0C0CO000C0OO

= K3
s +
v TItem {6}
carriercCode string : CTT
CoinCode string : EUR
CountryCode string : PT
v Recipient Map {5}
PartnerType Humber : 2
PaymentType Humber : 99
ShippingCosts string : @
ShippingId string : N
SpecialserviceCode sString : ENCE@39.01.85
v shipment Map {23}
AcceptanceGuideId string : 1
Address string : Av. D. Jodo II, 13
Ccity string : LISBOA
ClientId string : 200042186
cnt string @ 1
ContractId string : 389381729
Counter MNumber : 17
IssuerId string : 1€J241
LocationId string : 72181
LocationType string : 4
Messageversion string : 3
Hame String : CTT Expresso, Seryv. Postails e Logistica SA
HIF string : 503630338
oObjectQuantity string : 1
PaymentType Humber : 1
Permit String : 654940
ProductTypeId string : 99
ReceiverId string : POSTLOG
ReleaseId string : @
SubProductbDescId string : 19
SubProductId string : ENCFO05.01
TaxZoneId string : @91
ZipCode String : 1999-001
v Shippers List [1]
v @ Map {7}
Address string : EN 7 KM 3 ARMEIRO
City string : AZAMBUJA PLAZA 2
Mame String : WORTEN - EQUIPAMENTO PARA O LAR SA
PartnerType Humber : 1
Phone String : 218 155 222
shipperCode string : MANH_wms

ZipCode string : 2850-306

Figure 38 — Table moore tms-configurations-dev definitions (Source: own)

78

The moore-tms-carrier-order-* table has the “metadata” for ctt file generation and information to be
sent to internal systems.

FileStored: File sent to CTT SFTP

SentAt: timestamp of CTT SFTP publishing
Carrierld:

CountEMS: total of messages treated
FlowStep: message Flow Step

Flowstep Meaning Flow obs

Figure 39— microTMS Flow Step (Source: own)

MessageSent: S3 Id

SentBy: Lambda name handling

WosaConfirmationMessage: kafka confirmation message of all messages integration
Error: Error description

ErrorAt: timestamp of error occurrence

DynamoDB is a fast, highly scalable NoSQL database which best fits our needs namely:
- Large number of small writes and reads
- Simple data models, transactions, simple updates
- Performance — automatically optimized by the system
- Reliability and availability
- Durability
- Low cost
4.4.4. Coding

As we all know, all projects start out with just a handful of files. After working for some time on the
project, the codebase increases. In the end, the project becomes huge. Maintenance is hard. And we
haven’t even talked about adding new features — which is painful, at best. Even making small changes
takes hours. Bug fixing seems to be a never-ending story. Fixing one bug always introduces at least one
new bug.

79

To prevent the situation described above from happening, it’s important that no more code than is
intended gets written. Don’t create extra abstractions to support some feature that might get
implemented someday. You should value simplicity over feature-richness. Only implement things
when you actually need them, not when you just foresee you may need them. This is called the “You
aren’t gonna need it” (YAGNI) principle.

Writing in 2 lines of code what is written in 10 lines it’s easier to read and understand. Remember that
good code can be read “by a 3 years old baby”! Keep it simple!

4.4.4.1.Branching Strategy to use in code
The branching strategy is GitFlow.
We follow the basic Gitflow model but with a couple of changes:
e our "develop" branch is an actual developers-only integration branch;

e we have a "next" branch that contains the feature branches that the developer is ready to

move to testing and acceptance;
e master is merged into release branches before each build of the release branch.
Branches
A brief explanation on the columns:

e Branch type, the type of branch. Branches of the same type share semantic significance in the

process,;

e Availability: indicates if the branch type is always present or if it is an optional branch. It also
indicates if there is one or more than one branch of this type;

e Branch name: full name or name template for the branch;

e Description: high level description of the objective of this branch.

Branch Availability Branch name Description

type

Production single, always master The master branch contains the deployed code,
present builds that were approved by business and passed

regression testing

80

Release multiple, but release-<fix- The release-* branches represent a specific JIRA
only one active. version> fixVersion. This is branched from master, and we
Usually present merge "next" and feature branches into it. No
development allowed on release branches, we
can merge more feature or bug fixing branches,
but we don't actively develop on release branches.
Focus of a release branch is to make sure that
testing and acceptance phase pass

Hot fix multiple, hotfix-<ticket- Branch of master, to fix a regression or blocker bug
hopefully never number> in production. Mostly behaves like a feature
present branch, but has an abbreviated test/approval

cycle. Do not use for regular bugs, see feature.

Next single, always next A staging area for tickets (stories, bug fixes) that

Release present are considered "Ready to Deploy" by developers.
It is assumed that branches only merge into "next"
after reasonably tested on integration branches
and TST environment by the developer

Feature multiple, <ticket- Each story or normal bug fix is developed in a
hopefully number>- separate branch. Branch is started from "next".
always present <optional

description>

Table 5 — Branch Types (Source: own)

The "master" branch holds all the code that was approved by QA and Business and passed regression
testing. You can have multiple builds in master, but not deploy them. The current deployed build has
a git tag named "live" pointing to it. All the code in master is ready to deploy at any moment, but
business considerations can (and often will) postpone a release. This is due mostly to risk control,
based on the current level of stability and coverage of our automated and manual test suites.

Most of the fun happens in "next". This is branch where all the feature branches that are ready to be
tested, accepted and pushed into the next release will be merged by developers. This is also the branch
that is used by developers as the root of their feature branches. "master" might be several commits
behind "next". Please note that "next" is a long lived branch, never reset, never recreated. You should
see "next" as an holding area for branches that are ready to be tested, but not in the currently active
“release" branch, only on the next one.

The "feature-*" branches is where the work is done by developers. They branch of the latest "next",
and will remain here until code review is approved. Developers are free and encouraged to merge
often with "develop" branch, for integration testing. The feature branch should be merged to "next"
when and only when:

e asuccessful merge with "develop" was done;
e this successful merge was successful deployed to TST environment;

e Dbasic tests by the developer for the feature were performed in the TST environment with this
successful deployment of the successful merge.

81

If these conditions hold, the developer is free to merge to "next". If a release is already being tested,
the release manager can also ask a developer to merge the "feature" branch directly to the "release"
branch. This is used when a bug fixes on feature branches: deploy directly to the active "release"
branch and "next".

Usually at the start of a sprint, a new "release" branch is created. It is created from master and
immediately receives a merge from "next" with all the pending branches ready to test. From this
branch, builds for testing and acceptance are created.

Stories that should still make the open release branch and were not in the next branch are free to
merge

82

feature fn
branches hotfixes master

branches develop

i — 34

—

]
S
fuml'n
ture for
ﬁ:‘;:: mext redease ¢
telease
Tt
0.2
Stat of
S) Rt
y branch fior
e | 1.0
Only
bugfines!
e -
may e : 1.0
& i
merged back
v to develop

Figure 40 — Branching Strategy to use in code (Source: Introduction to GitLab Flow | GitLab. (n.d.))

4.4.4.2.Deployment Process

User Story/Task, Bug Workflow and Lifecycle in Jira

Test Local DEVNOK
INPROGRESS: IN|CODE REVIEW. READY /70 DEPLOY

. DEV)
Startcodingina - Request
GitBranchfrom —p Eevello;:uniunu _ il vt =% DEVOps
Jiraticket e bug Test Codemeny: Review

Local

i DEVOK
¢git ¢Jin Review NOK
vy Y L% y & Atlantis

SLOCED)T DEY

and.s[jtadx %_Vis xUnitnet

Contraints of
tasks

Figure 41 — Deployment Process Flow (Source: own)

T0 VERIFY

Feature
readyfor QA
team

SEOCED LI

Contraintsof
tasks

VERIFYING

Processof
validationtess
with evidences

Test DEVNOK

Test DEV OK

COMPLETED

Processof tests
completed

READY TO DEPLOY
(PROD)

Request DEVOps
Review

Test DEVNOK

Accepted

84

The process is divided in 3 major development stages, with several statuses characterizing each,
broadly speaking:

1.

2.

a task as been analyzed and included in a sprint, in the case of features (User Story or Task),

it's been groomed

the developer as started working on the User Story/Task/Bug
a.In Progress: the developer creates an appropriately named branch and starts development of
the feature/analyses the issue, and creates any unit tests necessary
b.In Code Review: when a Pull request is created and the rest of the development team is asked
to review the code
c. Ready to Deploy (DEV): a request to the DevOps Team is made using the Team Channel, to review
any terraform/infrastructure changes
d.To Verify: the code is ready for QA (Quality Assurance) team
e.Verifying: a member of the QA team as started the QA process

3.Development completed:

a.Completed: QA team tests successful (with evidences) the feature/bug is ready to deploy to
production

b.Ready to deploy: a request to the DevOps Team is made using the Team Channel, to review any
terraform/infrastructure changes, a precautionary step since the code should not have changed
from step “2. c)” above

c. Accepted: the internal "XPTO" team validates the feature/bug fix the days following the sprint
review process

The blocked statuses (in Dev and QA) should be used sparingly, if a new dependency was identified
only during the development stage for example, or some part of the infrastructure/development
environment is made unavailable for an extended period, these should be exceedingly rare.

The following table summarizes what should happen in each step before progressing to the next:

85

ENVIRONMENT TRANSITION RESPONSIBLE DESCRIPTION JIRA COMMENT EXAMPLE ON JIRA
COMMENT

Implementation started. Not required | feature/ASC-XX-name-of-task

m_. pr— The issue must be assigned to the developer in Jira.
PROGHES:
In this phase is defined a new branch in GitLab

according with the number of the task.

The ticket was implemented and tested SUCCESSFUL Not required | Hi @###,

by the developer locally. Tested successfully in DEV
INPROGRESS . =S I CODEREVIEW) DEV In this transition the code is merged into DEV environment.
Thanks,
XXXX
Request DevOps Review to deploy for DEV. Mandatory | The MR to Dev is waiting DevOps
LOCAL/DEV Use the following Team Channel to ask the DevOps team review.
PLERILY. g RIS IR team for aproval of the Terraform elements in the
Merge Request.

In this phase the feature/bug is ready to be tested by | Mandatory Hi @QA Team,
the QA team. Can you please test this

READYTODEPIOY S 0 VERIFY | QA feature/bug

The ticket is blocked by a dependency in DEV. Hi @###,

- The ticket is assigned to the responsible for the This task is being blocked due to:
INPROGRESS | o BRI DEV
dependency. (e
| The tests are assigned toa member of QA. Mandatory
I — R A
[If tested SUCCESSFULLY by the QA team in DEV Mandatory | If FAILS:
environment and is ready to be the next phase Hi @###,
“Completed”. There was an error in this feature
The test FAILS in DEV environment by the QA team. ()
The tester must assign the ticket again to the developer Following this steps: ...)
and update the ticket status to DEV in progress. 1al)
2: ()
The QA Team should add evidences of the working The following occurred: add
feature/fixed bug in the comment evidences of the issue
DevOps/QA Requesta review to DevOps to deploy for PROD. The expected result:
DEV/ PROD IF SUCCESSFULLY:
Hi,

QA completed with the following
evidence: (images).

The MR to Prod is waiting DevOps
team review.

Solution The client should validate the acceptance criteria in the Not

m Designer/Project days following the Sprint Review and after testingthe | mandatory

Manager/ |status should be changed to “Accepted”, but advisable
Product Owner

.The ticket is blocked by a dependency. | 7Hi @444,
TR QA Team The ticket is assigned to the responsible for the This task is being blocked due to:
dependency. ()

Figure 42 — Deployment Process Stages (Source: own)

4.4.4.3.Project structure

Application using AWS Stack and .Net Core 3.1 with CI/CD in GitLab and laC in Terraform and
Automated Regression Tests included in the CI/CD Pipeline.

86

Gitlab-ci.yml

This file, see annex 2, configures the pipeline of the project. It defines what to execute and what to do
when a condition is met, i.e. when to succeed or fail. The project is multi-staged, each stage contains
scripts and is defined globally for the pipeline. Jobs of a stage are run in parallel and each stage is run
only after the previous stage's jobs are successfully completed.

The “Run Integration Tests” stage uses a dockerfile to define the application's image and a docker-
compose to define the full service environment required to tests it. These file types and their use in
this project are covered in the next section, for now it's important to notice only the "docker-compose
up" and "docker-compose down" lines, these will deploy all images defined in docker-compose and
then removes the containers that were created for the services defined in the same file.

Docker-compose

Docker-compose was used to define a multi-container Docker application environment to run
integration testing before deployment.

The docker-compose.yml, annex 3, file configures the application's services, then creates all the
defined images in the same host. Moore depends on Localstack, Kafka, Zookeeper, and the DynamoDB
at this point in development, and the docker-compose.yml file reflects this need.

Adding services to docker-compose is a matter of either creating a custom dockerfile or finding a public
image of the service and either following the example for localstack above of the "web" app example,
and simply placing the new dockerfile in either a new directory or using a different name, since there
should never be more than one dockerfile in the root directory of the application.

4.4.5. Testing

Regression Testing

We need to define a methodology so that we can reduce to a minimum the probability of new features
or bug fixes breaking existing working features.

This is achieved with regression testing that is run at the end of each sprint. Since this is a backend
project, all the regression tests can be automated, saving us the cost of paying to a QA team, and
allowing the regression tests to be executed in a few minutes.

In a large system, achieving 100% code coverage is generally not cost effective. For example, some test
cases are expensive to reproduce but are highly improbable. The cost to benefit ratio does not justify
repeating these tests simply to record the code coverage.

4.4.6. Monitoring

The software is monitored through the collection of AWS and application metrics. These metrics will
be handled by Grafana and represent the data through dashboards.

It is assumed that the Elasticsearch will be used as storage and full text search engine as is suits the
use case.

For ease of use and familiarity, the Kibana application and related tools and plugins will be used as log
exploring and visualization interface.

87

Log aggregation will be done at Node/Instance level via logstash.

Elasticsearch indices will be used to separate log messages by systems and/or components.

Hoore ‘ _diverawsog___y CloudVate T Hinesis ‘ it igsis___, ~ Logstah ‘ Ot et

Elsicearch

fibana ~

Figure 43 — Data Flow for monitoring (Source: own)

Follows a non-exhaustive list of the current architecture properties:

e Some degree of latency introduced by the Moore->Cloudwatch->Kinesis flow This isn't
controlled by us.

e Current messaging format and routing requires a complex (and possibly evergrowing) list of
logstash filters.

e Configurable retention on Cloudwatch.

e awslog driver simply forwards stdout to Cloudwatch but appends three bits of information:
timestamp, timestamp of ingestion and logstream prefix which contains almost all the
needed metadata.

88

5. CONCLUSIONS

The creation of this project team from the scratch raises some difficulties regarding the scrum
implementation and development in AWS services because not all members were familiarized with it
and this compromises on the first sprints team performance because a lot of discovery was necessary
regarding AWS topics and the development of implementation tasks. Team start to gain speed with
the pass of the weeks and the project went live on the 13" of November 2020 and was celebrated by
"XPTO" as a huge success on the period of most demanding for operations regarding Black Friday
month and Christmas period.

The adoption of microservices allow to address the need of standardize operational processes
independent of the carrier for Online flow and with this we were able to mitigate risks regarding
operational errors and increase the delivery performance being able to deliver more goods than
before.

This project in terms of operations benefits allows to reduce 2 FTE/month and increases goods delivery
by day in 1000% to CTT carrier which allows to reduce costs and deliver goods on a more expedite
manner.

CTT Ship Via

gl?f' T ET—F-F’_ [Tir=TT WFF_’;I__ T JWK

B4 0900 (308 06 0% WO WM W06 WA wO MO me MA@ 0 e w6 WA o 0e o oM o0 Q0 0N

Figure 44 — CTT daily delivery

The implementation as a microservice allows to speed up developments since it is decoupled from
other internal systems and gain deployment flexibility.

89

5.1.LIMITATIONS

This project MVP due to time constrains is focused on the CTT carrier although the middleware (WhTF)
already processes all messages for all other carriers that are working with "XPTQO", the microTMS
development only focus on CTT for Home Delivery.

This delivery doesn’t contempt a backoffice frontend for support team for incident resolution or
microTMS configuration management interface for development teams but during the project some
tools were developed in order to help the support team to overcome some potential incidents that
may arise namely:

Ctt file(s) not generated;

Ctt information not sent to "XPTO" internal systems;

Dynamodb tables maintenance (whtf and microtms);

- Reprocess error messages (whtf and microtms);

5.2. FUTURE WORKS

Develop microTMS in order to be able to process data for all current carriers and new ones including
delivery modes namely:

- CTT pick up in store by the client;

- DPD home delivery and pickup in store;
- Luis Simdes;

- Total Media.

For CTT and DPD labeling process must be also taken care and integrations with Tax authority should
be the nexts milestones for Iberian B2C market.

In order to integrate all this carriers the dynamodb approach used must be revised because a relational
model is more suitable for all this relations and dependencies and will be also extremely useful for the
backoffice interface with the management interface which will allow to configure new carriers, carriers
attributes, label templates, working days and others.

Dynamodb fetch of data approach must be revised to replace SCAN by QUERY in order to gain
performance. Time To Live (TTL) must also be implemented in order to grant automatic maintenance
on the tables for performance and save money.

90

BIBLIOGRAPHY

Anderson, D.J. (2010). Kanban: Successful Evolutionary Change for Your Technology Business. Blue
Hole Press (2010)

Artac, M., Borovssak, T., Di Nitto, E., Guerriero, M. and Tamburri, D. A. DevOps: Introducing
Infrastructure-as-Code. IEEE. 2017, p. 497—-498.

Atlantis. What Is Atlantis? TEXu [online]. [cit. 2020-21-07]. Available at:
https://www.runatlantis.io/guide/#getting-started.

Awad, M. A. (2005). A Comparison between Agile and Traditional Software Development
Methodologies, School of Computer Science and software Engineering, The University of Western
Australia.

Ballou, R. H. (2004). Business logistics — supply chain management planning, organizing and controlling
the supply chain. 5th ed: - New Jersey : Pearson / Prentice-Hall

Basic principles of cloud-native development. (n.d.). [Image]. https://medium.com/velotio-
perspectives/cloud-native-applications-the-why-the-what-the-how-9b2d31897496

Berman, S. J. (2012). Digital transformation: opportunities to create new business models. Strategy &
Leadership, 40(2), 16-24.

Bharadwaj, A., Omar, A. E. S., Pavlou, P. A. & Venkatraman, N. (2013). Digital Business Strategy: Toward
a Next Generation of Insights. MIS Quarterly, 37(2), 471-482.

Bolaji, A. (2015). A cross-disciplinary systematic literature review on Kanban, Master’s Thesis.
University of Oulu. 62 p. Available at: http://jultika.oulu.fi/files/nbnfioulu-201502111073.pdf.

Carey, S. AWS vs Azure vs Google Cloud: What's the best cloud platform for enterprise? TEXu [online].
[cit. 2020-15-07]. Available at: https://www.computerworld.com/article/3429365/aws-vs-azure-vs-
google-whatsthe-best-cloud-platform-for-enterprise.html.

Chan, M. 15 Infrastructure as Code tools you can use to automate your deployments TEXu [online].
[cit. 2020-15-01]. Available at: https://www.thorntech.com/2018/04/15-infrastructure-as-code-
tools/.

Chopra, S., & Meindl, P. (2007). Supply Chain Management: Strategy, planning and operations. 6 th
Global Edition. Pearson Education Limited.

Crespo de Carvalho, J. (Coordinator) (2010). Logistica e Gestdo na Cadeia de Abastecimento. Portugal:
Edi¢oes Silabo.

Coyle, J., Novack, R., Gibson, B. & Bardi, E. (2011). Transportation: A supply chain perspective. 7th
edition. South-Western College Pub.

Danek, B. Why Choose Terraform Over Chef, Puppet, Ansible, SaltStack And CloudFormation? TEXu
[online]. [cit. 2020-14-07]. Available at: https://selleo.com/blog/why-choose-terraform-over-chef-

puppet-ansiblesaltstack-and-cloudformation.

91

Eneh, T. Most popular CI/CD pipelines and tools TEXu [online]. [cit. 2020-10-07]. Available at:
https://medium.com/faun/most-popular-ci-cd-pipelines-and-tools-ccfdce42986.

Fitzgerald, M., Kruschwitz, N., Bonnet, D. & Welch, M. (2014). Embracing Digital Technology: A New
Strategic Imperative. MIT Sloan Management Review, 55(2), 1.

Gannon, D., Barga, R. and Sundaresan, N. Cloud-Native Applications. IEEE Cloud Computing. IEEE. 2017,
vol. 4, no. 5, p. 16-21. ISSN 2325-6095.

Handfield, R. (2020). What is Supply Chain Management (SCM)? Supply Chain Resource Cooperative.
https://scm.ncsu.edu/scm-articles/article/what-is-supply-chain-management-scm

HashiCorp. Introduction to Terraform TEXu [online]. [cit. 2020-15-01]. Available at:
https://www.terraform.io/intro/index.html.

Gebayew, C., Hardini, I. R., Panjaitan, G. H. A., Kurniawan, N. B. & Suhardi. (2018, 22-26 Oct. 2018). A
Systematic Literature Review on Digital Transformation. Bandung - Padang, Indonesia: 2018
International Conference on Information Technology Systems and Innovation (ICITSI).

Introduction to Gittab Flow | Gitlab. (n.d.). Introduction to Gitlab Flow.
https://docs.gitlab.com/ee/topics/gitlab_flow.html

Jog, C. Cloud Native Applications — The Why, The What The How. TEXu [online]. [cit. 2020-16-07].
Available at: https://medium.com/velotio-perspectives/cloudnative-applications-the-why-the-what-
the-how-9b2d31897496.

Johann, S. Kief Morris on Infrastructure as Code. IEEE Software. IEEE. 2017, vol. 34, no. 1, p. 117-120.
ISSN 0740-7459.

Kong Inc. (2020, September 9). Open Source APl Gateway | Kong Microservices APl Gateway. KongHQ.
https://konghg.com/kong/

Lambert, D. M., & Cooper, M. C. (2000). Issues in Supply Chain Management, 83, 65-83

Lwakatare, L. E., Kilamo, T., Karvonen, T., Sauvola, T., Heikkild, V. et al. DevOps in practice: A multiple
case study of five companies. Elsevier B.V. 2019, vol. 114, p. 217-230. ISSN 0950-5849

Mathenge, J. (n.d.). Scrum vs Kanban: A Comparison of Agile Methodologies. BMC Blogs. Retrieved
January 30, 2021, from https://www.bmc.com/blogs/scrum-vs-kanban/

Min, H. (2015). The Essentials of Supply Chain Management (53). Pearson Education.

Montoya, M. (2017). Project Management & Agile Methodologies. Cprime.
https://www.cprime.com/resources/blog/project-management-agile-methodologies/

Nallamala, N. The Top 7 Infrastructure As Code Tools For Automation TEXu [online]. [cit. 2020-14-07].
Available at: https://www.ibexlabs.com/top-7-infrastructure-as-code-tools/.

92

Overview | Prometheus. (n.d.). Prometheus. Retrieved January 24, 2021, from
https://prometheus.io/docs/introduction/overview/

Pressman, R. (2010). Software engineering: a practitioner’s approach. New York: McGraw-Hill
companies.

Sacolick, I. (2018). What is CI/CD? Continuous integration and continuous delivery explained.
InfoWorld.com. San Mateo: Infoworld Media Group.

Shapiro, J. F. (2006). Modeling the supply chain. Pacific Grove, CA: Brooks/Cole-Thomson Learning.

Simchi-levi, D., Kaminsky, P., & Simchi-Levi, E. (2008). Designing and Managing the Supply Chain. USA:
McGraw-Hill.

Sjgberg, D. | & Solberg, J. (2012). Quantifying the effect of using kanban versus SCRUM: A case study,
IEEE software, vol. 29, pp. 47-53.

Software Development Life Cycle phases. (n.d.). [Image]. https://ncube.com/blog/software-
development-life-cycle-guide

Sommerville, I. (2011). Software Engineering, 9th Edition. Pearson Addison Wesiley.

Stolterman, E. & Fors, A. (2004). Information Technology and the Good Life IFIP International
Federation for Information Processing (143). Boston, Massachusetts: Springer.

Tseng, Y. (2005). The role of transportation in logistics chain. Eastern Asia Society for Transportation
Studies, 5, 1657-1672.

UML. (n.d.). What Is Unified Modeling Language (UML). Retrieved January 24, 2021, from
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-uml/

Vijaya, D., Traditional and Agile Methods: An Interpretation, 23 January 2013,
http://www.scrumalliance.org/community/articles/2013/january/traditional-and-agile-methodsan-
interpretation.

Watson, L. & Mishler, C. (2014). From On-Premise Applications to the Cloud. Strategic Finance.
Montvale: Institute of Management Accountants, vol. 96, no. 2, p. 80-81. Available at:
http://search.proquest.com/docview/1552717174/. ISSN 1524833X.

Waterfall model. (n.d.). [Image]. https://www.researchgate.net/figure/Stages-of-waterfall-model-
Source-tutorials-point-2017_figl 331736364

What Is Amazon DynamoDB? - Amazon DynamoDB. (n.d.). AWS DynamoDB. Retrieved January 24,
2021, from
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Introduction.html

What is Apache Kafka? | AWS. (n.d.). Amazon Web Services, Inc. Retrieved January 24, 2021, from
https://aws.amazon.com/msk/what-is-kafka/

What is AWS Lambda? - AWS Lambda. (n.d.). AWS. Retrieved January 24, 2021, from
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html

93

What is digital transformation? - Digital Transformation Definition - Citrix. (n.d.). Citrix.Com.
https://www.citrix.com/glossary/what-is-digital-transformation.html

What is Kibana? — Amazon Web Services. (n.d.). Amazon Web Services, Inc. Retrieved January 24, 2021,
from https://aws.amazon.com/pt/elasticsearch-service/the-elk-stack/kibana/

What's the Difference? Agile vs Scrum vs Waterfall vs Kanban. (n.d.). Smartsheet. Retrieved January
30, 2021, from https://pt.smartsheet.com/agile-vs-scrum-vs-waterfall-vs-kanban

Yoo, Y., Henfridsson, O., Lyytinen, K. & Viktoria. (2010). The New Organizing Logic of Digital Innovation:
An Agenda for Information Systems Research. Information Systems Research, 21(4), 724.

Younas, M., Jawawi, D. N., Ghani, I., Fries, T. & Kazmi, R. (2018). Agile development in the cloud
computing environment: A systematic review. Information and Software Technology. Elsevier B.V., vol.
103, p. 142-158. ISSN 1214-0716.

94

ANNEX

WMS Shipconfirm Message Description DataType Values Mandatory DataType
Header.Source Source system “MANH_wms” - (default value) Y String
Header.Message_Type Message Type “ShipConfirm” - (default value) Y String
Message.ShipConfirm.ShipConfirmSummary.ShipConfirmHeaderlInfo.ShippedDttm Shipped Date Time example: 7/24/20 17:33 Y String
Message.ShipConfirm.ShipConfirmSummary.ShipConfirmHeaderInfo.DateCreated example: 7/24/20 17:33 Y String
Message.ShipConfirm.ShipConfirmSummary.ShipConfirmHeaderlnfo.ProNbr Y String
Message.ShipConfirm.ShipConfirmDetails.Orders.BillAcctNbr Bill account number Y String
Message.ShipConfirm.ShipConfirmDetails.Orders.BillFacilityAliasld Bill Facility Alias Y String
Message.ShipConfirm.ShipConfirmDetails.Orders.DoType Distribution Order Type “Customer Order” - default value Y String
Message.ShipConfirm.ShipConfirmDetails.Orders.MajorOrderGrpAttr Major Order grouping Attribute Y String
Message.ShipConfirm.ShipConfirmDetails.Orders.OrderType Order Types “ONL” - (default value) Y String
Message.ShipConfirm.ShipConfirmDetails.Orders.DoStatus Distribution Order Status “Shipped” - (default value) Y String
Message.ShipConfirm.ShipConfirmDetails.Orders.StoreNbr AT Code for ONL Orders Y String
Message.ShipConfirm.ShipConfirmDetails.Orders.DistroNumber OMS Channel Order Guide Y String

95

Message.ShipConfirm.ShipConfirmDetails.Orders.OrderLineltem.ExtPurchaseOrder OMS Channel Order Guide String
Message.ShipConfirm.ShipConfirmDetails.Orders.OrderBillTolnfo.BillToEmail Bill to Address Information String
Message.ShipConfirm.ShipConfirmDetails.Orders.OrderBillTolnfo.BillToPhoneNumber Bill To Phone Number String
Message.ShipConfirm.ShipConfirmDetails.Orders.OrderDestInfo.DestAddress1 Destination Address Information String
Message.ShipConfirm.ShipConfirmDetails.Orders.OrderDestInfo.DestAddress2 Destination Address Information String
Message.ShipConfirm.ShipConfirmDetails.Orders.OrderDestInfo.DestCity Destination Address Information String
Message.ShipConfirm.ShipConfirmDetails.Orders.OrderDestInfo.DestCountryCode Destination Address Information PT - (default value) String
Message.ShipConfirm.ShipConfirmDetails.Orders.OrderDestInfo.DestFacilityAliasld Destination Address Information String
Message.ShipConfirm.ShipConfirmDetails.Orders.OrderDestIinfo.DestName Destination Address Information String
Message.ShipConfirm.ShipConfirmDetails.Orders.OrderDestInfo.DestPostalCode Destination Address Information String
Message.ShipConfirm.ShipConfirmDetails.Orders.OrderLineltem.ltemName SKU ID / Item Name String
Message.ShipConfirm.ShipConfirmDetails.Orders.OrderLineltem.OrderQty Order Quantity Decimal
Message.ShipConfirm.ShipConfirmDetails.Orders.OrderLineltem.ShippedQty Shipped Quantity Decimal

96

Carrier Identification for goods

Message.ShipConfirm.ShipConfirmDetails.Orders.Lpn.ShipVia TR String
Message.ShipConfirm.ShipConfirmDetails.Orders.Lpn.TcLpnld Tclpnid String
Message.ShipConfirm.ShipConfirmDetails.Orders.Lpn.TcOrderld Order ID String
Message.ShipConfirm.ShipConfirmDetails.Orders.Lpn.TcShipmentid Shipoment Number String
Message.ShipConfirm.ShipConfirmDetails.Orders.Lpn.TrackingNbr Carrier Tracking Number String
Message.ShipConfirm.ShipConfirmDetails.Orders.Lpn.ReturnTrackingNbr Tracking Number String
Message.ShipConfirm.ShipConfirmDetails.Orders.Lpn.Weight Total Package Weight (kg) Decimal
Message.ShipConfirm.ShipConfirmDetails.Orders.Lpn.TaxID ?J/&/OJSJO;ATE;I Orders String
Message.ShipConfirm.ShipConfirmDetails.Orders.Lpn.LpnDetail.ltemName SKU ID / Item name String
Message.ShipConfirm.ShipConfirmDetails.Orders.Lpn.LpnDetail. TcOrderLineld String
Message.ShipConfirm.ShipConfirmDetails.Orders.Lpn.LpnDetail.LpnitemAttributes.ProductStatus | Warehouse ID String
Message.ShipConfirm.ShipConfirmDetails.Orders.Lpn.LpnDetail.LpnSerialNumber.Quantity Quantity Integer

97

Message.ShipConfirm.ShipConfirmDetails.Orders.Lpn.LpnDetail.LpnSerialNumber.SeqNbr

Sequence Number

Integer

Message.ShipConfirm.ShipConfirmDetails.Orders.Lpn.LpnDetail.LpnSerialNumber.SrINbr

Serial Number

String

Annex 1 — WhTF Shipconfirm mappings

98

[# .gitlab-ci.yml 47942 [} Replace Delete G B &

99

unset AWS_SECURITY_TOK

export AWS_DEFAULT_REGION=${AWS_CLI_DEFAULT_REGION}
export A | =${KST[8]}

export KEY=${KST[1]}

export

export A

dotnet test Tms/Configurations/Tms.Configs -¢ Release${ReleaseE

dotnet-lambda package Wtf.Alb.Proxy.zip -pl Wtf/LambdaFunctions/Wtf.Alb.Proxy -c Releasef{ReleaseEmv}
dotnet-lambda package b Kafka.Proxy.zip -pl Wtf/LambdaFunctions/Wtf.Kafka.Proxy -c Release${ReleaseEnv}
dotnet-lambda package b ims . Receive.zip -pl Wtf/ daFunctions/Wtf.kms.Receive -c Release${ReleaseEnv}
dotnet-lambda [iosa.Send.zip -pl Wtf/LambdaFunctions/Wtf.Wosa.Send -c Release${ReleaseEnv}
dotnet-lambda GenTrackId.Label.zip -pl Wtf/LambdaFunctions/Wtf.GenTrackIdlLabel -c Releasef{ReleaseE
dotnet-lambda cka .Kafka.Proxy.zip -pl Tms/L daFunctions/Tms.Kafka.Proxy -c ReleaseS{ReleaseEnv}
dotnet-lambda - .Wosa.Receive.zip -pl fLambdaFunctions/Tms.Wosa.Receive -c Release${ReleazeEnv}
dotnet-lambda Tms.Wesa.Transform.zip -pl Tms/LambdaFunctions/Tms.Wosa.Transform -c Release${ReleaseEnv
dotnet-lambda ge Tms.Ctt.Send.zip -pl Tms/LambdaFunctions/Tms.Ctt.Send -c Release${ReleaseEnv}

dotnet-lambda package Tms.Wosa.Send.zip -pl Tms/LambdaFunctions/Tms.wWosa.Send -c Releaszef{ReleaseEmnv}
dotnet-lambda package Tms.GenTrackId.label.zip -pl LambdaFunctions/Tms.GenTrackIdlabel -c Released{ReleaseEnv}

lambda update-function-code --function-name moore-wtf-alb-receive-${ENVIRONMENT} --zip-file fileb:
lambda update-function-code --function-name moore-wtf-kafka-receive-${ENVIRONMENT} --zip-file fileb
lambda update-function-code --function-name moore-wtf-wms-receive-${ENVIRONMENT} --zip-file filel
code --function-name moore-wtf-wosa-send-${ENVI NT} --zip-file fileb
code --function-name moore-
update-function-code --function-name moore-tms-kafka-receive-${ENVIRO! ; Kafka.Proxy
update-function-code --function-name moore-tms-wosa-receive-${ENVIRONMENT} --zip-file fileb://Tms.Wosa.Receive.
update-function-code --function-name moore-tms-wosa-transform-${ENVIROMMENT} --zip-file fileb://Tms.Wosa.Transform.zip
update-function-code --function-name moore-tms-ctt-send-${ENVIROMMENT} --zip-file fileb://Tms.Ctt.Send.
lambda update-function-code --function-name moore-tms-wosa-send-${EMVIRONMENT} --zip-file fileb://Tms.
lambda update-function-code --function-name moore-tms-gentrackidlabel-${ENVIRONMENT} --zip-file fileb:
anual

clean:
st : "Cleanup
ipt:
- dotnet clean --configuration Debug
- lean --configuration Release

dotnet clean --configuration ReleazeProd

Annex 2 — gitlab-cy yaml

F‘] docker-com pose.yml © 5 &

Annex 3 — docker-compose yaml

101

Shipconfirm Standard Structure (JSON)

Header
TMS Parameter table -> Carrier.Ctt.ShipmentParameters

N/A

Issuerld

Receiverld

N/A

Message.ShipConfirm.ShipConfirmDetails.Orders.Lpn.TcShipmentid

N/A

N/A

Message.ShipConfirm.ShipConfirmDetails.Orders.Lpn.TcShipmentid

MessageVersion

CTT Structure (XML)

<l-- header (Start) -->
<IELEMENT UNB (SNDID, RCVID, DTM, INTREF)>
<UNB>

<IELEMENT SNDID (#PCDATA)>

<SNDID>1CJ241</SNDID>
Note: This Issuer Id will be kept in table moore-tmt-configurations-*

<IELEMENT RCVID (#PCDATA)>

<RCVID>POSTLOG</RCVID>
Note: This Receiver Id will be kept in table moore-tms-configurations-*

<IELEMENT DTM (#PCDATA)>

<DTM>20200430125837</DTM>
Nota: It is a SYSDATE.

<IELEMENT INTREF (#PCDATA)>
This Tag has the Shipment Id from WMS truncated to 6 digits:<INTREF>085389</INTREF>

<l-- header (End) -->
<!ELEMENT UNB (SNDID, RCVID, DTM, INTREF)>
</UNB>

<l-- message (Start) -->

<IELEMENT UNH (MESREF, VRS, RLS)>

<UNH>

<IELEMENT MESREF (#PCDATA)>

This Tag has the Shipment Id from WMS truncated to 6 digits:<MESREF>085389</MESREF>

<IELEMENT VRS (#PCDATA)>

<VRS>3</VRS>
Note: This Id will be kept in moore-tms-configurations-*

102

Releaseld

N/A

AcceptanceGuideld

Locationld

N/A

Clientld

<IELEMENT RLS (#PCDATA)>

<RLS>0</RLS>
Note: This Id will be kept in moore-tms-configurations-*

<l—message (End) -->
<IELEMENT UNH (MESREF, VRS, RLS)>
</UNH>

<l-- Acceptance Guide (Start) -->

<l-- 1: Contratual -->

<l--2: Local -->

<l-- 3: Ocasional -->

<IELEMENT GIA (LOC+, NGI, PNA, PAI, EMS+, CNT)>
<IATTLIST GIA TYPE (1]2|3) #REQUIRED>

<l--Local / N6 -->

<l-- 1: Estagdo de Correios -->

<!l-- 2: Centro de Distribuigdo Postal -->

<l-- 3: Centro Operacional -->

<l-- 4: Cliente -->

<l--5: N6 Origem -->

<l-- 6: N6 Destino -->

<l--7: N6 Tratamento -->

<l-- 8: N6 Encaminhamento -->

<!-- 9: NG Sistema Externo -->

<GIA TYPE="1">

Note: This Id will be kept in moore-tms-configurations-*

<IELEMENT LOC (DESC, IDLOC, Value)>
<IATTLIST LOC TYPE (1]2]3]4|5|6|7|8|9) #REQUIRED>

<LOC TYPE="4">72101</LOC>
Note: This Id will be kept in moore-tms-configurations-*

<l—Acceptance Guide number (Start) -->

<IELEMENT NGI (CLNT, CONT, NIF, PGI, NRG, DTM, TPADQ,

REGIVA)>
<NGI>

<IELEMENT CLNT (#PCDATA)>
<CLNT>200040186</CLNT>

Note: This Client Id will be kept in moore-tms-configurations-*

103

Contractld <!ELEMENT CONT (#PCDATA)>
<CONT>300301729</CONT>
Note: This Contract Id will be kept in moore-tms-configurations-*

NIF <IELEMENT NIF (#PCDATA)>
<NIF>503630330</NIF>
Note: This Id will be kept in moore-tms-configurations-*

ProductTypeld <!ELEMENT PGI (#PCDATA)>
<PGI>99</PGI>
Note: This Id will be kept in moore-tms-configurations-*

Message.ShipConfirm.ShipConfirmDetails.Orders.Lpn.TcShipmentid <IELEMENT NRG (#PCDATA)>
This Tag has the Shipment Id from WMS truncated to 6 digits: <NRG>085389</NRG>

N/A <!ELEMENT DTM (#PCDATA)>
<DTM>20200430125837</DTM>
Note: This Id will be kept in moore-tms-configurations-*

N/A <l-- Acceptance Guide (End) -->
<IELEMENT NGI (CLNT, CONT, NIF, PGI, NRG, DTM, TPADQ,
REGIVA)>
</NGI>

PaymentTypeld <l-- Payment Type (Start) -->

<l-- 1: Crédito -->

<l-- 2: Pronto Pagamento -->

<!--99: Ndo se aplica -->

<IELEMENT PAI (CUX, MOA?, CPO?)>

<IATTLIST PAI TYPE (1|2]99) #REQUIRED>

<PAI TYPE="1">

Note: This Id will be kept in moore-tms-configurations-*

CoinCode <IELEMENT CUX (#PCDATA)>
<CUX>EUR</CUX>
Note: This Id will be kept in moore-tms-configurations-*

N/A <l—Payment Type (End) -->
<l-- 1: Crédito -->
<l-- 2: Pronto Pagamento -->
<!--99: Ndo se aplica -->
<!ELEMENT PAI (CUX, MOA?, CPO?)>
<IATTLIST PAI TYPE (1]2]99) #REQUIRED>
</PAI>

104

Detail(s) = Shipment Manifest

N/A

Message.ShipConfirm.ShipConfirmDetails.Orders.Lpn.TrackingNbr

SubProductld

SubProductDescld

N/A

N/A

Message.ShipConfirm.ShipConfirmDetails.Orders.Lpn. Weight

N/A

<l--Shipment Manifest(Start) -->

<l-- 1: Internacional -->

<l-- 2: Nacional -->

<IELEMENT EMS (GIN, PIA, PIADESC, PIAASSOC, ITL, QTY, MEA,
ZTX, CND?, DPC?, TIN?, PNA*, NAD, TRL?, DHL?, 110+, SEP*,
AGN?, PIN?, REC?, NBACKS?, QTDDA?, INSDDA?, CDAT?, OBSC?,
LOCAV?, INRM, LOCAVTP?, DCTP?, REF?, LANG?, HOUSEID?,
DTVAL?, CBE?, TPPRD?, TPPRDDESC?, TPEXP?, TPEXPDESC?,
OBJBACK?, DTDISTR?, JANDISTR?, INRECEQUIP?, DTPREVENTR?,
DESCDETCONT?, EWT?, LOC*, CUSTOMS?, RGJU?, EQUIP*,
INDMORDEV, GINEXT?, ENTCJ?, AGRUPCODCLI?, NUMTENT?)>
<EMS>

<!ELEMENT GIN (#PCDATA)>
Tracking Number: <GIN>FA830500015PT</GIN>
Note: Tracking Number generated by the flow Tracking Id & Label

<IELEMENT PIA (#PCDATA)>
<PIA>ENCF005.01</PIA>
Note: This Id will be kept in moore-tms-configurations-*

<!ELEMENT PIADESC (#PCDATA)>
<PIADESC>19</PIADESC>
Note: This Id will be kept in moore-tms-configurations-*

<IELEMENT QTY (#PCDATA)>
<QTY>1</QTY>
Note: This Id will be kept in moore-tms-configurations-*

<l-- Weight (Start) -->
<IELEMENT MEA (WTR?, WTD?, VOL?, WTV?)>
<MEA>

<IELEMENT WTR (#PCDATA)>
<IATTLIST WTR UNIT (GRM) #REQUIRED>
<WTR UNIT="GRM">12000</WTR>

<l-- Weight (End) -->
<IELEMENT MEA (WTR?, WTD?, VOL?, WTV?)>
</MEA>

105

TaxZoneld

Remetente ("XPTO")

PartnerType

N/A

Name

Address

N/A

ZipCode

City

N/A

<!ELEMENT ZTX (#PCDATA)>
<ZTX>0001</ZTX>
Note: This Id will be kept in moore-tms-configurations-*.

<l--Partner Type (Start) -->

<l-- 1: Remetente -->

<!-- 2: Destinatario -->

<l-- 3: Devolugdo -->

<IELEMENT PNA (NAD)>

<IATTLIST PNA TYPE (1|2]3) #REQUIRED>

<PNA TYPE="1">

Note: This Id will be kept in moore-tms-configurations-*

<!—Name & Address (Start) -->

<IELEMENT NAD (NME, ADR, CPL, CTR, TEL?, CTA?,
RFF?, TLM?, EMAIL?, ADR2L?, CODDIV?, CTRDESC?,
LOCCARGA?)>

<NAD>

<!ELEMENT NME (#PCDATA)>
<NME>"XPTO" </NME>
Note: This Id will be kept in moore-tms-configurations-*

<IELEMENT ADR (#PCDATA)>
<ADR>EN 1 </ADR>

Note: This Id will be keept in moore-tms-configurations-*

<l-- Postal Code (Start) -->
<IELEMENT CPL (PTC, CTY)>
<CPL>

<IELEMENT PTC (#PCDATA)>
<PTC>2050-999</PTC>
Note: This Id will be kept in moore-tms-configurations-*.

<!ELEMENT CTY (#PCDATA)>
<CTY>OTA </CTY>
Note: This Id will be kept in moore-tms-configurations-*

<l-- Postal Code (End) -->
<IELEMENT CPL (PTC, CTY)>
</CPL>

106

CountryCode

Telefone

Name

N/A

N/A

City

N/A

N/A

Client

PartnerType

<!ELEMENT CTR (#PCDATA)>
<CTR>PT</CTR>
Note: This Id will be kept in moore-tms-configurations-*

<IELEMENT TEL (#PCDATA)>
<TEL>939457144</TEL>
Note: This Id will be keept in moore-tms-configurations-*

<IELEMENT CTA (#PCDATA)>
<CTA>"XPTO" </CTA>
Note: This Id will be keept in moore-tms-configurations-*

<IELEMENT TLM (#PCDATA)>
<TLM />

<IELEMENT EMAIL (#PCDATA)>
<EMAIL />

<IELEMENT CTY (#PCDATA)>
<CTY>OTA </CTY>
Note: This Id will be keept in moore-tms-configurations-*

<!-- Name & Address (End) -->

<IELEMENT NAD (NME, ADR, CPL, CTR, TEL?, CTA?,
RFF?, TLM?, EMAIL?, ADR2L?, CODDIV?, CTRDESC?,
LOCCARGA?)>

</NAD>

<l-- Partner Type (End) -->

<!l-- 1: Remetente -->

<l-- 2: Destinatario -->

<!-- 3: Devolugdo -->

<IELEMENT PNA (NAD)>

<IATTLIST PNA TYPE (1]2]3) #REQUIRED>
</PNA>

<l-- Partner Type (Start) -->

<!l-- 1: Remetente -->

<l-- 2: Destinatario -->

<!-- 3: Devolugdo -->

<IELEMENT PNA (NAD)>

<IATTLIST PNA TYPE (1]2]3) #REQUIRED>

<PNA TYPE="2">

Note: This Id will be keept in moore-tms-configurations-*

107

N/A

Message.ShipConfirm.ShipConfirmDetails.Orders.OrderDestInfo.DestName

Message.ShipConfirm.ShipConfirmDetails.Orders.OrderDestinfo.DestAddress1

N/A

Message.ShipConfirm.ShipConfirmDetails.Orders.OrderDestinfo.DestPostalCode

Message.ShipConfirm.ShipConfirmDetails.Orders.OrderDestInfo.DestCity

N/A

Message.ShipConfirm.ShipConfirmDetails.Orders.OrderDestinfo.DestCountryCode

N/A

Message.ShipConfirm.ShipConfirmDetails.Orders.OrderDestInfo.DestName

Message.ShipConfirm.ShipConfirmDetails.Orders.Lpn.TcLpnld

Message.ShipConfirm.ShipConfirmDetails.Orders.OrderBillTolnfo.BillToPhoneNumber

Message.ShipConfirm.ShipConfirmDetails.Orders.OrderBillTolnfo.BillToEmail

Message.ShipConfirm.ShipConfirmDetails.Orders.OrderDestinfo.DestAddress2

<!—Name & Address (Start) -->

<IELEMENT NAD (NME, ADR, CPL, CTR, TEL?, CTA?,
RFF?, TLM?, EMAIL?, ADR2L?, CODDIV?, CTRDESC?,
LOCCARGA?)>

<NAD>

<IELEMENT NME (#PCDATA)>
<NME>Carla Junqueira</NME>

<IELEMENT ADR (#PCDATA)>
<ADR>Rua Quinta da cortegaca n?7 3E</ADR>

<l-- Postal Code / City (Start) -->
<!ELEMENT CPL (PTC, CTY)>
<CPL>

<IELEMENT PTC (#PCDATA)>
<PTC>2840-046</PTC>

<IELEMENT CTY (#PCDATA)>
<CTY>ALDEIA DE PAIO PIRES</CTY>

<l-- Postal Code / City (End) -->
<!ELEMENT CPL (PTC, CTY)>
</CPL>

<IELEMENT CTR (#PCDATA)>
<CTR>PT</CTR>

<IELEMENT TEL (#PCDATA)>
<TEL />

<IELEMENT CTA (#PCDATA)>
<CTA>Carla Junqueira</CTA>

<IELEMENT RFF (#PCDATA)>
<RFF>256019880028783692</RFF>

<IELEMENT TLM (#PCDATA)>
<TLM>+351969814111</TLM>

<IELEMENT EMAIL (#PCDATA)>

Esta Tag é o Email do cliente: <EMAIL>bbbbbbb@hotmail.com</EMAIL>

<!ELEMENT ADR2L (#PCDATA)>
<ADR2L />

108

Message.ShipConfirm.ShipConfirmDetails.Orders.OrderDestInfo.DestCity <IELEMENT CTY (#PCDATA)>
<CTY>Paio Rios</CTY>

N/A <l-- Name & Address (End) -->
<!IELEMENT NAD (NME, ADR, CPL, CTR, TEL?, CTA?,
RFF?, TLM?, EMAIL?, ADR2L?, CODDIV?, CTRDESC?,
LOCCARGA?)>
</NAD>

N/A <l-- Partner Type (End) -->
<l-- 1: Remetente -->
<l-- 2: Destinatario -->
<!-- 3: Devolugdo -->
<IELEMENT PNA (NAD)>
<IATTLIST PNA TYPE (1]2]3) #REQUIRED>
</PNA>

N/A <l-- Package (Start) -->
<IELEMENT 110 (OID, OIDEXT?, MEA?, INIMP?, BOB?,
BOBD?, BOBR?, REFERENCES?)>

<lio>
Message.ShipConfirm.ShipConfirmDetails.Orders.Lpn.TrackingNbr <IELEMENT OID (#PCDATA)>
<OID>FA272500015PT</0ID>
N/A <NUM_ORDEM />
N/A <l-- Package (End) -->

<IELEMENT 11O (OID, OIDEXT?, MEA?, INIMP?, BOB?,
BOBD?, BOBR?, REFERENCES?)>

</ll0>

N/A <l-- Special Services (Start) -->
<IELEMENT SEP (SEPID, PAI?, SEPDESC)>
<SEP>

SpecialServiceCode <IELEMENT SEPID (#PCDATA)>

<SEPID>ENCE030.01.05</SEPID>
Note: This Id will be keept in moore-tms-configurations-*

109

PaymentType <l—Payment Type (Start) -->
<l-- 1: Crédito -->
<l-- 2: Pronto Pagamento -->
<!--99: Ndo se aplica -->
<!ELEMENT PAI (CUX, MOA?, CPO?)>
<PAI TYPE="99">
Note: This Id will be keept in moore-tms-configurations-*

CoinCode <!ELEMENT CUX (#PCDATA)>
<CUX>EUR</CUX>
Note: This Id will be keept in moore-tms-configurations-*

ShippingCosts <IELEMENT MOA (#PCDATA)>
<MOA>0</MOA>
Note: This Id will be keept in moore-tms-configurations-*

N/A <!ELEMENT CPO (#PCDATA)>
<CPO />
N/A <l—Payment Type (Start) -->

<l-- 1: Crédito -->

<l-- 2: Pronto Pagamento -->

<!--99: Ndo se aplica -->

<IELEMENT PAI (CUX, MOA?, CPO?)>
</PAI>

N/A <l-- Special Services (End) -->
<!ELEMENT SEP (SEPID, PAI?, SEPDESC)>
</SEP>

Message.ShipConfirm.ShipConfirmDetails.Orders.StoreNbr <IELEMENT CDAT (#PCDATA)>
<CDAT />
Note: Tax Authority Code.

Message.ShipConfirm.ShipConfirmDetails.Orders.DistroNumber <!ELEMENT OBSC (#PCDATA)>
<OBSC>5a0f7544-dade-11ea-982c-b10e0d24e537</0BSC>

N/A <IELEMENT LOCAV (#PCDATA)>
<LOCAV />

Shippingld <IELEMENT INRM (#PCDATA)>
<INRM>N</INRM>

Note: This Id will be keept in moore-tms-configurations-*

N/A <IELEMENT DCTP (#PCDATA)>
<DCTP />

110

N/A

N/A

N/A

N/A

N/A

N/A

<IELEMENT LANG (#PCDATA)>
<LANG />

<!ELEMENT TPPRD (#PCDATA)>
<TPPRD />

<IELEMENT TPEXP (#PCDATA)>
<TPEXP />

<l-- Shipment Manifest (End) -->

<l-- 1: Internacional -->

<l-- 2: Nacional -->

<IELEMENT EMS (GIN, PIA, PIADESC, PIAASSOC, ITL, QTY, MEA,
ZTX, CND?, DPC?, TIN?, PNA*, NAD, TRL?, DHL?, 110+, SEP*,
AGN?, PIN?, REC?, NBACKS?, QTDDA?, INSDDA?, CDAT?, OBSC?,
LOCAV?, INRM, LOCAVTP?, DCTP?, REF?, LANG?, HOUSEID?,
DTVAL?, CBE?, TPPRD?, TPPRDDESC?, TPEXP?, TPEXPDESC?,
OBJBACK?, DTDISTR?, JANDISTR?, INRECEQUIP?, DTPREVENTR?,
DESCDETCONT?, EWT?, LOC*, CUSTOMS?, RGJU?, EQUIP*,
INDMORDEV, GINEXT?, ENTCJ?, AGRUPCODCLI?, NUMTENT?)>
</EMS>

<!ELEMENT CNT (#PCDATA)>
<CNT>7</CNT>
Nota: Este Numero de Elementos, é um contador de elementos (Tags EMS) presentes no Shipconfirm.

<l-- Acceptance Guide (End) -->

<l-- 1: Contratual -->

<l--2: Local -->

<l-- 3: Ocasional -->

<IELEMENT GIA (LOC+, NGI, PNA, PAI, EMS+, CNT)>
<IATTLIST GIA TYPE (1]2|3) #REQUIRED>
<l--Local / N6 -->

<l-- 1: Estagdo de Correios -->

<!l-- 2: Centro de Distribuigdo Postal -->
<l-- 3: Centro Operacional -->

<l-- 4: Cliente -->

<l--5: N6 Origem -->

<l-- 6: N6 Destino -->

<l--7: N6 Tratamento -->

<l-- 8: N6 Encaminhamento -->

<l-- 9: N6 Sistema Externo -->

</GIA>

111

N/A <!ELEMENT CNT (#PCDATA)>
<CNT>1</CNT>
Note: fixed value

Annex 4 — CTT mapping matrix (Source: own)

112

