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ABSTRACT 

The number of second-hand cars is growing year by year. More and more people prefer to buy a 

second-hand car rather than a new one due to the increasing cost of new cars and their fast 

devaluation in price. Consequently, there has also been an increase in online marketplaces for peer-

to-peer (P2P) second-hand cars trades. A robust price estimation is needed for both dealers, to have a 

good idea on how to price their cars, and buyers, to understand whether a listing is overpriced or not. 

Price estimation for second-hand cars has been, to my knowledge, so far only explored with numerical 

and categorical features such as mileage driven, brand or production year. An approach that also uses 

image data has yet to be developed.  

This work aims to investigate the use of a multi-input price estimation model for second-hand cars 

taking advantage of a convolutional neural network (CNN), to extract features from car images, 

combined with an artificial neural network (ANN), dealing with the categorical-numerical features, and 

assess whether this method improves accuracy in price estimation over more traditional single-input 

methods. 

To train and evaluate the model, a dataset of second-hand car images and textual features is scraped 

from a marketplace and curated such that more than 700 images can be used for the training. 
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1. INTRODUCTION 

1.1. OBJECTIVES 

This work aims to develop a model for estimating second-hand cars prices, and more precisely, 

investigate whether the addition of image input data alongside numerical and categorical data yields 

a better accuracy in this domain compared to more traditional approaches where image data is 

neglected.  Firstly, traditional machine learning (ML) methods are applied to numerical and categorical 

features to establish a baseline. Secondly, Deep learning (DL) methods are developed to address 

separately numeric and image data.  For numerical and categorical features an ANN is developed, 

whereas to address the image data, a CNN is developed and the results analyzed. Finally, a mixed-input 

model is developed and the results compared to single-input models. 

1.2. CONSTRAINTS AND LIMITATIONS 

Machine learning and Deep Learning (DL) methods require a large amount of data. In particular, CNN’s 

need a large number of pictures to make the model able to extract important features from the training 

images and therefore being able to generalize and perform well on unseen pictures. The dataset used 

in this work was created by scraping a P2P trading platform of second-hand cars. The amount of time 

required to build such a large dataset manually is not trivial. As explored in the next chapter, it is 

possible to automate the scraping and processing completely when it comes to textual data but not 

entirely for the image data. To be useful, the images automatically scraped have to be one by one 

carefully processed through different steps, from labeling to cropping. In other words, scraping a large 

number of images can be done automatically once the scraping program is developed, but these 

images can not be directly used for training as they come and require manual human supervision to 

process them. Due to the limited time available to develop this thesis, a total amount of 3000  images 

belonging to 750 cars is processed and used to train CNN’s. 
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2. LITERATURE REVIEW 

Price estimation models for second-hand cars have been extensively explored in multiple studies. In 

the first papers, researchers explored the application of traditional machine learning algorithms. In 

2009, Listiani applied a Support Vector Regressor (SVR) on leased cars to estimate their price and 

compared the results with a Linear Regression (LR) method. The dataset was high-dimensional and 

comprised of around 124386 samples and 180 columns. The error metric chosen was Root Mean 

Squared Error (RMSE). Different experiments were run, and the results showed how both with, and 

without features selection, SVR outperformed LR. The best results yielded an RMSE of 5938.  (Listiani, 

2009).  Subsequently, the first papers appeared where deep learning was also applied (Peerun et 

al,2015). In this study, the authors collected a dataset of 200 second-hand cars in Mauritius, where in 

the previous years the second-hand car sales surpassed new car sales. The objective of this work was 

to apply a Neural Network to predict car prices and comparing the results with traditional machine 

learning methods. More specifically Linear Regression (LR), K-nearest regressor (KNN), and Support 

Vector Regressor. The authors found that, overall, the results were similar between ML and DL 

approaches, but that SVR performed slightly better than a simple Neural Network with 1 hidden layer 

and 2 nodes and that a simple Linear Regression was only slightly worse than the Neural Network 

approach. The error metric used for this study was the mean absolute error (MAE). It is important to 

point out that the dataset collected was relatively small for ML approaches. It is reasonable therefore 

that a simple Linear Regression would almost outperform a Neural Network.  Finally, studies explored 

the use of ensemble machine learning models to improve the performance of singular models (Gegic 

et al, 2019). In this work, the author collected information of more than 1000 cars by web scraping an 

online second-hand car trading platform in Bosnia and Herzegovina. After data processing, the final 

dataset comprised 739 cars. The objective of this work was to apply ensemble learning to second-hand 

car price prediction by combining the predictive power of different estimators to improve prediction 

accuracy. The authors transformed the problem from a regression to an ordinal classification problem 

by binning the price into 3 different categories based on price range. Cheap cars with a price range 

from 0 to 6000 euros, moderate from 6000 to 12000 and expensive when the price exceeded 12000 

euros.  The models used for the ensemble classification model were an Artificial Neural Network (ANN), 

a Random Forest classifier (RF), and a Support Vector Classifier (SVC). The application of singular 

approaches only yielded accuracies up to 50% whereas the ensembles approach improved the 

accuracy to a remarkable 90%. These results confirmed how combining different machine learning 

algorithms can improve accuracy for second-hand car price prediction. 
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Some of these works achieved good values in prediction accuracy but they all fail to include image 

data, excluding many important features that could improve model performance.  A hybrid machine 

learning model to second-hand car price estimation has, therefore, up to the time of this writing and 

to my knowledge, not yet been explored. Hybrid models have nevertheless been applied to other 

domains. For instance, in house price estimation (Eman Ahmed et al, 2016)  where pictures of houses 

are combined to their listing data in real estate web pages. In this paper, the authors were able to 

develop a mixed input price estimation model with an MLP and CNN combined that outperformed a 

baseline model only based on textual features. Pictures of different parts of the houses coming from 

online listings were imputed together into the CNN branch of the mixed-data model. The number of 

sample houses used for this study was 535, 4 pictures per house were prepared and fed to CNN, 

totaling 2140 pictures.   The metric of choice to evaluate the performance of the model was the root 

mean square error (RMSE).  Also, other studies have been conducted in Geoscience, especially in the 

realm of commodities such as oil production, where the features that make a Hybrid neural network 

perform better than a singular MLP and CNN have been analyzed  (Zhenyu Yuan et al,  2020). In this 

study the author explains how geological data can be very diverse, including images, sequences, 

numerical and categorical data, and mixed input models are praised for how they can improve 

generalization and prediction accuracy. Also, it is indicated that their flexibility is very important in the 

world of big data where machine learning practitioners have to work with datasets that are always 

increasing. The importance of data preparation and preprocessing is also highlighted as mixed data 

comes in different shapes. The proposed architecture uses techniques like batch normalization and 

drop out to enhance the model’s training time and performance. Rectified linear unit (ReLU) is used as 

an activation function to include nonlinearity in the model. More recently, in the biomedical field, 

mixed-input models were applied to predict whether a patient was affected by covid-19 in the early 

stages to prevent the virus from spreading. In this study, numerical and categorical features about the 

patient's health history were combined with chest X-ray images. Furthermore, the authors 

experimented with multiple optimizations algorithms including adaptive learning rate optimization 

algorithm, stochastic gradient descent, and root mean square propagation. The experiments 

suggested how a model trained with adaptive learning rate (Adam) yielded better prediction accuracy 

than the rest.  Hybrid machine learning models have been applied successfully to both classification 

and regression tasks.  
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3. THEORETICAL FRAMEWORK 

3.1. WEB SCRAPING 

The data analyzed in this work was collected and scraped from an online marketplace for P2P second-

hand cars trades. Scraping is the process of automating data download, processing, and organization 

from an online source. (S. vanden Broucke et al,2018, p. 3) 

It therefore replaces the laborious process of a human navigating a website and clicking around to 

download and collect data by, for instance, copy and pasting manually into a spreadsheet  (S. Vanden 

Broucke et al, p 3) 

This process would be too cumbersome and time-consuming when collecting a dataset for machine 

learning purposes that, by nature, can include hundreds, if not thousands, of samples. 

Many websites do offer an application programming interface (API) to scrape their content, but it is 

usually only the most frequented websites with more resources such as Facebook or Twitter that can 

develop such products. Also, many APIs only let the user scrape certain kinds of data. This means that 

if a website offers an API, the developer/data scientist might still need to use other scraping methods 

to collect the data of interest. Also, some APIs are not free to use, whereas automated scraping is. (S. 

vanden Broucke et al, 2018, p 5).  

To understand how scraping works, a basic understanding of how the world wide web (WWW) works 

is necessary. In this chapter,  some basic concepts such as HTTP, HTML, CSS, Javascript are explored.  

3.1.1. HyperText Transfer Protocol 

One of the main building blocks of the internet is the Hypertext Transfer Protocol (HTTP). It is a fairly 

simple client-server protocol as it is text-based and allows good interpretability by the user  (S. Vanden 

Broucke et al, 2018, p29). In simple words, HTTP is a protocol that allows and facilitates the exchange 

of information online. An HTTP client, for example, a browser, or in the case of this work, a python 

web scraping program, sends a request to a web server and waits for an HTTP response. The web 

server replies with a response, for example, an HTML page, and stops the connection.  

For this thesis, the python library requests is be used to take care of HTTP. An example of its 

functionality can be seen in the picture below. 
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Figure 3.3.1 - Example of request library  

 

After importing the library a variable URL containing the web server Domain Name System (DNS) is 

stored and in line 4 a request is fired and the response stored in the variable request.  In line 6 the 

response is printed after calling the method .text which returns the text content of the response. A 

connection between the client and the server is now correctly established.  

3.1.2. HyperText Markup Language 

Hypertext Markup Language (HTML) is the standard markup language for creating web pages by 

specifying their structure and format  (S. Vanden Broucke et al, p 50). HTML achieves this with the use 

of tags. As can be seen in the picture below, tags come in pairs with a start tag and a closing tag 

containing a specific element.  

 
Figure  3.3.2 - Example of HTML document 

It would be possible to simply create a request by knowing the website’s name and obtain the HTML 

back in response to start investigating the page structure and building a web scraper. While possible, 

this would be a very cumbersome process and require a lot of trial and error to know exactly which 

HTML element corresponds to which part of the webpage. To make this process more flexible, many 

web browsers provide tools to inspect and view the source code behind a webpage in a dynamic 

manner. This means that by simply hovering on the element of interest in the rendered page, the 

corresponding part of the underlying code will be highlighted.   
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Figure 3.3.3 - Browser inspector in Google Chrome 

 

3.1.3. Cascading style sheet  

Cascading style sheet (CSS)  is a style sheet language and it works together with HTML to stylize a 

website. (S. vanden Broucke et al,2018, p. 50). The main HTML attributes that play along with CSS are 

Id and Class. An id identifies a unique HTML element, whereas a class identifies a collection of elements 

that belong to the same family. CSS is then written to stylize these parts of the HTML page. This is 

important to understand because HTML and CSS force a webpage and its rendered elements to be 

more or less well structured for the web page to look pleasant, and this will make the process of 

recognizing and scraping the right elements in the webpage easier. (S. vanden Broucke et al, 2018, p 

50). 

 
Figure 3.3.4 - Example of CSS 

In figure 2.4 a typical structure of a CSS document is shown. Usually, CSS is stored in a different file 

than HTML, and the style that needs to be attributed to a particular tag is stored between curly 

brackets. 



7 
 

 
 

Figure 3.3.5 - Example of HTML class method 

In figure 2.5 the highlighted class is containing the price for a car listing on a trading platform. As the 

style applied to text is the same throughout the page, the tag can be used to automatically identify 

and download the price of the listed cars. 

3.1.4. Beautiful Soup 

Beautiful Soup is one of the main libraries for retrieving data from markup languages such as HTML. It 

includes different types of parsers, allowing the user to scrape from pages that have poorly written 

HTML. (Jay M. Patel,2020,p.37). Beautiful soup works well along with the request library, which is 

introduced in 2.2.1. After requesting the webpage source code, Beautiful Soup is then used to retrieve 

the sought information. There are many different methods to extract information, but the most used 

ones are find() and find_all(). The method find_all() allows the user to pass as argument an HTML tag 

to fetch all the content in the page wrapped by that tag. On the other hand, find() only retrieves the 

first matching tag. (Jay M. Patel,2020,p.37) 

 
 

Figure 3.3.6 - Example of Beautiful Soup methods 

In figure 2.6 a chunk of the function download data developed to scrape the numerical and categorical 

feature can be observed. In this case, the function argument car is the link to a car listing, whereas 
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carid is the id of the car.  In line 3 the HTML of the car listing page is requested and in line 4 the code 

is stored in a variable called soup. Now the Beautiful Soup method find() is used to find the right tag 

for the price of the car, in this case, a <span>.  While price has its own class, other car features all share 

the same one. This means that the rest of the features need to be accessed with the method find_all() 

and stored in a variable for further processing. 
 

3.1.5. Scraping with JavaScript 

Issues can occur in scraping when a web page is using scripts to enhance the website functionality. An 

example of language used for this purpose is Javascript (JS). JS is one of the main technologies used on 

the web and most websites currently use it extensively. (Jay M. Patel,2020, p.68). Scripts used to be 

placed on top of a webpage, in the head part of the HTML, and all the content was loaded right away 

when opening a website. This means that even content that a user was not interested in, would load 

and increase computation time. The advantage of this procedure was that while inspecting a website, 

the HTML displayed was exactly what a user would expect it to be, making scraping content easier.  In 

practice, the developer would need to wait a few seconds before sending a request to the website, so 

that the browsers had enough time to execute the javascript present on the webpage. The more the 

content became sophisticated and the user attention span lower, web pages had to become more 

dynamic and fast. Nowadays, scripts are placed everywhere on the web page and the content of 

interest for scraping might not appear right away and not even after letting the website execute the 

scripts present at the top of the page. ( Jay M. Patel,2020, p.68).  

 
Figure 3.3.7 - Example of JavaScript in HTML page 

Javascript works on the concept of Document Object manipulation (DOM), which means it can 

dynamically change the structure of the website while interacting with it. For instance,  a piece of 

information might be “hidden” and only available when the user clicks a button. Such data cannot be 

retrieved only with traditional scraping techniques, for example with the use of BeautifulSoup. It will 

be necessary to use more advanced techniques that recreate the behavior of a user and implement it 

into code. In practice, a python program that is automatically looking for a button or another element 

by class or id name and clicks it to trigger the script and load the information needed. At this point, the 
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content will be displayed and can be retrieved as expected. An important library for such a task is 

Selenium. 

3.1.6. Selenium 

Selenium is a library to automate web browsing. It was originally intended for web testing but it has 

developed into a fundamental tool in scraping. (Jay M. Patel,2020, p.76). As mentioned above, 

Selenium lets the user uncover information that is concealed by JavaScript but it also comes with a 

cost, mainly time and memory consumption. ( Chapagain, 2019,p.393). If the objective is to scrape a 

lot of data, automating the way a user interacts with increases exponentially scraping time because 

every single step to reach the wanted information has to be repeated n times, where n is the total 

number of instances we want to scrape.  The main Selenium component that is interesting for scraping 

is the selenium Webdriver. Webdriver is an object-oriented API and can be implemented with any 

browser and allows to automate user behavior on a site and also locate elements of interest ( 

Chapagain, 2019,p.396). Selenium comes with many locators, similar to find and find_all in Beautiful 

Soup. Some important locators are: find_element_by_id(), find_element_by_name(), 

find_element_by_tag_name(), find_element_by_class_name() and  find_element_by_xpath(). 
 

 
 

Figure 3.3.8 - Example of Selenium and Beautiful Soup in use to scrape car listing images 
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In figure 2.8  we can see a function that is developed to scrape the car listings images. Every single 

image is stored in a slideshow of images and to access them the next button needs to be clicked for 

the javascript to load and the image link to appear in the HTML. In line 3 a webdriver object is created 

and in line 4 the method get is called with the argument car. When the method is called Webdriver 

automatically opens a new Chrome window with the passed URL. In line 5 the python method sleep is 

called that does nothing but wait 5 seconds until executing the next lines of code. This time is necessary 

for the entire page to load and for the following commands to work. In line 6 the locator 

find_element_by_xpath() is called to find the button next in the webpage. Once the button is found 

the next button is clicked n times thanks to a for loop. Every time the next button is clicked the scripts 

are triggered and the link to the images reveal. Now that all the needed HTML is loaded and the source 

code is stored in an object (line 15), the WebDriver window is firstly closed with the close()  method 

(line 17), and then the session is suppressed with the quit() (line 18) method to save memory. Now 

Beautiful soup can be used to find the link to the images (lines 20-21) and store them automatically in 

a folder (lines 23 to 31). 
 

3.2. MACHINE LEARNING  

Machine learning is a branch of computer science whose main focus is to build algorithms that demand 

the collection of data on a specific topic. This data can be collected from nature, curated by humans, 

or gathered from the output of another algorithm (Burkov, 2019, p.  3). Machine learning algorithms 

can be supervised and unsupervised. 

3.2.1. Supervised Learning 

Supervised learning implies that the data collected for training is labeled. In other terms, every element 

of the dataset belongs to one class. The algorithm takes as input feature data belonging to a target 

variable. (Burkov, 2019, p. 3). The target feature is what the model will try to predict whereas the 

feature data is what the model will base its decision on. The goal is to then predict unseen feature data 

for which a target variable is not available or not being labeled yet by a human.  

Supervised learning can be further divided into regression and classification. Whenever a model is 

trying to predict a numerical value then we talk about a regression machine learning model. An 

example of this would be predicting the price of a house or car. On the other hand, when a model is 

trying to predict a categorical value then we talk about a classification machine learning model. An 

example of classification would be trying to predict whether the input data fed into the model belongs 

to a cat or a dog. 
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3.2.2. Unsupervised Learning 

Unsupervised learning implies that the data collected for training is not labeled. That means that there 

is no target feature corresponding to a feature vector. (Burkov, 2019, p.4). The goal of unsupervised 

learning is to understand the relationship between the feature data and divide it into groups with 

similar characteristics. An example of unsupervised learning would be customer segmentation, namely 

clustering customers into different groups and building marketing and business strategies around 

them. Another example is anomaly detection. 
 

3.2.3. Linear Regression 

Linear regression, also known as ordinary least squares (OLS), is the simplest and best-known method 

for regression. Linear regression allows to model mathematically the relationship between one or 

more variables and an output. Linear Regression, and linear models in general, are easy to apply, to 

interpret, are computationally inexpensive, and can even outperform nonlinear models when the 

training data is small. (T. Hastie et al, 2009, p.43). The goal of linear regression is to minimize the sum 

of squared errors (SSE), namely the squared difference between the estimated and the actual values. 

Linear regression is a parametric algorithm, as it assumes that the relationship between the inputs and 

outputs is linear. Hence, it does not do well with non-linear data (Harrington, 2012, p. 154). 

3.2.4. K-Nearest Neighbors     

Another easily interpretable algorithm is K-nearest Neighbors (KNN). It is a non-parametric algorithm, 

as it does not make heavy assumptions about the data and it is slower to train. It can be used for both 

classification and regression problems. 

A k number of data points is selected in the training data based on how similar they are to the input 

value, namely, the value to predict. These selected points are also called the neighborhood.   

To find the most similar data point in the training data, a distance metric is needed. There are many 

distance metrics such as Manhattan distance and Minkowski distance, but most commonly Euclidean 

distance is used. As the results will depend on this distance, it is fundamental to scale the data prior to 

the training phase, to avoid the larger values to skew the prediction. (Kuhn,2018, p. 159). 

In a regression problem, the prediction for the test case is simply the average of all the k values in the 

neighborhood. (Kuhn, 2018, p. 160). It is important to point out that k is a tuning parameter and as 

such it has to be chosen cautiously. With a k number that is too big, the model risks underfitting the 

data. Whereas with a small number of k the model will overfit the data.  



12 
 

The KNN algorithm can be easily applied using the sci-kit learn library. 

 

3.2.5. Classification and Regression Trees (CART)     

Classification and Regression Trees (CART) are a type of machine learning algorithm that can be used 

for both regression and classification. What differentiates classification from regression trees is that 

the former have either boolean values or categorical values in their leaves, whereas in regression trees 

each tree represents a numeric value. Decision trees are based on binary if-then decisions that are 

used to split the data in a divide and conquer manner (Kuhn, 2018, p 173). The top of a decision tree 

is called root, going down three internal nodes can be found, whereas at the bottom we have the 

leaves. In a Regression tree the first split, namely the root node, is found by taking the linear division 

of all the features in the training data for which the sum of square residuals (SSR) is smaller. The feature 

with the smallest SSR becomes the root node. The same process is done recursively for the whole 

dataset. The prediction is then the average number in any cluster of observations. Decision trees 

handle missing values and outliers very well and because of the way they are built they don’t need any 

kind of preprocessing.  (Kuhn, 2018, p 174).  On the other hand, there is a risk of overfitting if the tree 

goes too deep and splits the data too perfectly. To avoid overfitting, a parameter such as minimum 

number of observations n is applied so that if in a node, after a split, there are less than n observations, 

that node becomes a leaf and the splitting stops. If the data cannot be homogeneously split into square 

regions, then the prediction error can be bigger than in other models. (Kuhn, 2018, p 174). To 

overcome this weakness, other important machine learning algorithms such as random forest and 

boosted decision trees have been developed on top of decision trees. 

3.2.6. Random Forest  

Random forest is an ensemble machine learning algorithm based on decision trees. The random forest 

algorithm works by first bootstrapping the training set, namely by selecting random training samples 

and allowing duplicate entries. After that, a tree is built only on a subset of features. This process is 

done multiple times and an n number of trees is created. Each tree is then used to predict a new sample 

and the predictions are then averaged to yield the random forest’s prediction. This process of 

bootstrapping and aggregating different predictions is called bagging. This variety of trees is what 

makes random forests have great predicting power and reduced variance. Moreover, because of trees 

being independent from one another, random forest is robust to noisy data ( Kuhn,2018, p 205). 
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3.3. DEEP LEARNING 

Deep learning is a type of machine learning that takes inspiration from the structure of the human 

brain (Goodfellow et al., 2016, p.169). In the artificial intelligence (AI) world, this structure is called an 

artificial neural network.  Neural networks take in the input data and learn the relationship between 

them and the outputs, the target features  (Goodfellow et al., 2016,p.167). The way that neural 

networks learn is not directly interpretable, for this reason, they are also seen as a “black box”. Artificial 

neural networks have been used successfully for a variety of tasks from classification to regression and 

have proven to be very successful for speech recognition and image recognition.  (Manning,2018, p.11) 
 

3.3.1. Artificial Neural Networks 

The simplest form of an ANN is a single-layer network, also called perceptron. (Aggarwal,2018,p.5). A 

perceptron is made of a single input layer and output layer. A Multilayer perceptron (MLP) is a network 

composed of multiple layers of perceptrons.  An MLP adds computational layers between the input 

and output, these are also called hidden layers (Aggarwal,2018, p.17). 

 A neural network can be relatively shallow, when there is only one hidden layer, or can go very deep, 

with multiple hidden layers, when the problem to solve is more complex (Manning,2018, p.8). Each 

hidden layer contains a certain number of nodes, also called neurons.  

When information goes through the network, weights and biases are applied to the inputs, these are 

called learnable parameters. During the learning phase, the network gets the input values, multiplies 

them by the weight, and then adds a bias. At this point, an activation function comes in and computes 

the final value for that layer (Goodfellow et al., 2016, p.171).  The activation is an important step 

because it introduces non-linearity allowing the network to learn far more complex problems. The 

choice of activation function is based on the nature of the data. (Christopher M. Bishop, p. 245).  

The definition of a loss function is necessary for the network to calculate the error between the output 

target value and the predicted value. The goal could either be to maximize or minimize the function 

based on the problem at hand. Now the error from the loss function is backpropagated so that the 

network can adjust the weights accordingly. This process is called backpropagation. The stochastic 

gradient descent (SGD) algorithm is used to adjust the weights and biases. How fast these weights and 

biases are updated is based on the learning rate. Smaller learning rates require the network to train 

for a longer time but provide better accuracy. On the other hand, bigger learning rates make the 
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network converge fast to a solution. The learning rate is the most important hyperparameter in a 

neural network (Goodfellow et al., 2016, p.429). 

 
Figure 3.3.9 - Example of simple Neural Network with one hidden layer 

 

3.3.2. Convolutional Neural Networks 

Convolutional neural networks are a type of neural network used to process data with a grid-like 

topology (Goodfellow et al., 2016, p.330). The most blatant example of this type of data are images, 

as an image can be represented as a matrix of pixel values, but CNN’s have been used successfully in 

different kinds of applications (Goodfellow et al., 2016, p.330).  A CNN has hidden layers called 

convolutional layers that differentiates them from deep artificial neural networks. The main reason for 

using CNN’s over ANN for images is to reduce computational time as ANN’s are not spatially aware and 

treat pixels that are far away from each other the same way. Hence, ANN’s are very sensitive to the 

location of an object in an image.  CNN's reduce this complexity with an operation called convolution. 

 
 

Figure 3.3.10 - Example of CNN architecture for regression 
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3.3.2.1. Convolution  

A convolution is a mathematical function that allows two sets of information to merge together 

(Patterson et al., 2017, p.131). The main parts of the convolution layer are the input data, the kernel, 

and the feature map, which is nothing but the output layer (Goodfellow et al., 2016, p.332). The 

convolution layer takes as an input the raw data, and to understand and extract information from it, 

slides a filter (or kernel) on it to produce an output. At every step a dot product of a portion of the 

input image and the kernel is computed resulting in the output layer.  These filters can understand 

patterns such as a line, a circle, or an edge. The main goal of the convolution layer is to extract features 

such as lines or edges from the input image.  

 
Figure 3.3.11 - Example of convolution  

 

3.3.2.2. Pooling 

Polling layers are usually found between convolutional layers and they are used to further downsample 

the spatial size of the input map and reduce the computational power to process it by making the 

model less sensitive to small changes in the input  (Patterson et al., 2017, p.140). There are two 

different types of pooling operations: max pooling and average pooling. The max pooling operation 

takes the maximum value from the portion of the image at every step while the average pooling 

outputs the average of all the values within the sliding window.  
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Figure 3.3.12 - Pooling operations 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



17 
 

4. DATA 

At the beginning of chapter 3, a thorough explanation of the main concepts for web scraping was done, 

and the main functions to extrapolate the data of interest from the online marketplace were described. 

To finally retrieve the data and call the functions download_data and download_images, a list of URLs 

to every single car listing had to be generated. In figure 4.1 the Python code to fetch all the URLs can 

be observed. In line 5, a for loop is initiated to go through a determined number of pages of the online 

marketplace. The URL of every single page containing a list of car listings can easily be generated by 

concatenating the root of the URL and the number returned by the range function (line 8). In line 9, a 

request is sent, and in line 10, Beautiful soup is again exploited to collect the page content. In line 13, 

a new for loop is initiated and every single div containing the car information is looked for.  The 

attribute data-link containing the link of the car listing can now be stored in a variable (line 15). Finally, 

in line 16, the full URL is manually generated and finally appended to the list created in line 3. 

 

Figure 4.1 - Function to get all car URLs  

 

Now that every single listing is directly accessible scraping can start. In figure 4.2, the function scrape 

can be observed. In line 3, a for loop iterating over the list of URLs is initiated. In line 5, every URL is 

split to store the car-id number in a variable and from line 6 to 8 a new folder destined to contain the 

download images is created in a predefined path per carid. In lines 10 and 12, the main functions are 

finally called and the scraping can start.  
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Figure 4.2 – Function to run the scraper 

 

The program was run overnight and took about 11 hours to collect all textual data and the images. 

After the scraping procedure, our dataset contains 750 cars and 13 features. The features selected and 

scraped for this work are the following:     

§ Car id - entry id assigned to the car on the trading platform 

§ Car link - URL to the car’s listing 

§ Brand - brand of the car  

§ Model - model of the car  

§ Version - version of the car 

§ Year - year of production  

§ Mileage - mileage driven at the time of listing  

§ Seats - number of seats  

§ Gear -  type of gear, whether automatic or manual 

§ Type -  type of fuel  

§ Power - power of the car in horsepower  

§ Displacement - amount of air that goes through pistons in the engine  

§ Price - price of the car 

Also, for every car, all the pictures available in the gallery for every single listing were downloaded. For 

some cars, only a few pictures were available, and for others, more than 10 per listing were available. 

Price is the target variable.  
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4.1.  DATA CLEANING 

Most machine learning algorithms do not accept missing data as input. The dataset contains many 

duplicates due to the scraper writing occasionally the same entry twice. These were simply dropped. 

After this procedure, the number of unique cars is 730.  The only feature that contained missing data 

is the car version. As the missing rows equal 323, which is ~45 % of the dataset. This column was simply 

dropped. In this case, imputing the missing entries is not an appealing option as it would introduce 

bias as the number of fabricated values is too high. The current dataset consists of  730 rows and 12 

columns. 
  

4.2. DATA VISUALIZATION  

Data visualization allows us to better understand the data by representing it graphically. In the boxplot 

below, it can be seen that most car prices fall under the range 5000 to 25000 €. This is the interquartile 

range (IQR), and it is where 50 % of the cars reside. There is the presence of two obvious outliers. These 

2 cars are luxurious vehicles that even though are second-hand can retain a high resale value.  These 

2 rows were also dropped to avoid issues while evaluating the model. The dataset now contains 728 

rows.  

 
Figure 4.3 - Boxplot representing the distribution of car prices 
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4.3. CATEGORICAL VARIABLES 

 

Machine learning algorithms can only be fed numerical data as input. Any categorical feature has to 

be encoded into numbers before training the phase. In our dataset, several features need encoding, 

such as brand and car model. There are different ways to encode these features, for instance, One-

Hot-Encoding and Label Encoding. Label encoding means that every unique value of the categorical 

feature is assigned to a number whereas in One-hot encoding every unique value is transformed into 

a feature vector of n binary values where n is the number of unique values.  (Burkov., 2019, p.4).  

 

 

Figure 4.4 - Example of One-hot encoding (left) and label encoder (right) 

For this work, a one-hot encoder is preferred as label encoding entails risks such as increasing 

dimensionality of the feature space by implying an order for the encoded feature.  (Burkov., 2019, 

p.4).  If that order does exist then label encoding is indeed the best option, but if it does not exist then 

the model would try to understand the relationship between the car and the ascending order possibly 

leading to overfitting (Burkov., 2019, p.4). In simpler words, it does not matter whether Volvo is 

assigned to 1, ford to 3, or vice versa, the machine learning model will try to figure out why the value 

of ford is higher than the value of Volvo.  For this work, OneHotEncoder from the scikit learn library 

was used.  

 

4.4. IMAGE PROCESSING 

After collecting all the images, the first step was to look into every folder, filter out bad quality pictures 

and most importantly label the images. As can be seen in the picture below, the car images do not 

have a label. This means that we will have to manually rename and select every single picture. For this 

work, it was decided to label the front, left-side, right-side, and back of the vehicle. 
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Figure 4.5 - Raw scraped pictures 

 
 

Figure 4.6 - Manually labelled pictures 
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Figure 4.7 - Example of selected pictures per used car 

In order to use all scraped images per car, a function was developed to build a collage of 4 pictures and 

organize the pictures for training.  First of all, the labelled pictures are moved into a new folder, with 

all the other training pictures. 

 

 
 

Figure 4.8 - Structure of training folder  
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To further clean the images, some of the present information that would confuse or make it harder for 

the model to learn is cropped out. Many second-hand car trading websites for example include 

watermarks with their logo, phone numbers, or other irrelevant information on the pictures they list 

on the website. Also, some pictures happen to have other cars present in the background or 

foreground. This noise is simply removed from the picture when possible. 

In a loop, every car id in the folder is iterated, sorted and the pictures for the corresponding id resized 

into 128 * 128 pixels and organized in a 256*256 numpy array. The back side of the car goes on the 

top-left side, the front side on the top-right side, the left side on the bottom-left side, and the right 

side on the bottom-right side. Every collage is then appended in an empty list and the list is returned 

as a numpy array.  

As already mentioned above, images have to be the same size to be fed into a CNN. It is not usually 

the case that pictures come with same width and height. Resizing the images to fit a specific format, 

in our case, 128*128 pixels, will inevitably stretch and deform them.  Some researchers argue that if 

the input images are not too stretched or squeezed the CNN should still be able to predict accurately. 

However, recent studies explored how zero padding does not compromise prediction accuracy and 

actually reduces training time (Heshami, 2019, page 1).  In convolutional neural networks, zero padding 

is a technique that is used to surround a matrix with pixels of value zero.   In simple words, zero-

padding allows to control the resizing of an image to make it fit into the desired size without losing any 

information by keeping its aspect ratio and adding black borders to fill up the empty space outside the 

image.  The CNN will learn that this information is not important and the input units of these zero 

values are therefore not be activated. (Heshami, 2019, page 1) 

 
 

Figure 4.9 - Mathematical representation of zero padding 
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Figure 4.10 - Function to load and process the car images 

 

 
 

Figure 4.11 - Example of input for the CNN 
 

Finally, all pictures are normalized by simply dividing them by 255 and bringing them into a range 

between 0 and 1.   
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4.5. FEATURE SELECTION  

4.5.1. Boruta Algorithm  

Boruta is a feature selection algorithm that performs a top-down search and compares the features 

with a permuted copy of themselves, also called “shadow features”. Features that are less statistically 

relevant than the random features are deemed to be not important and therefore rejected. Boruta is 

a wrapper feature selection method built around the Random Forest classification algorithm (Kursa 

M., 2010). 
Boruta maps the features to three different areas: 

§ Green Area: the features are confirmed to be important and must be kept 

§ Red Area: the features than land here are statistically not significant and shall be 

dropped 

§ Blue Area: These features are in a limbo, they might help the model improve accuracy 

and are to be manually tested.  

 

 
 

Figure 4.12 – Boruta in Python  

 
features in the green area:  [ 'brand','year', 'mileage', 'power', 'displacement','gear','type'] 
features in the blue area:  ['seats' ] 
features in the red area = [ 'model'] 
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Boruta rejected the car model from the valuable features. This makes sense as almost every car in the 

dataset has inherently a different model and the descriptions in the listings are sometimes ambiguous. 

It would be complicated for a model to find a pattern with a limited dataset. For the time being, this 

feature is dropped, but it could become useful if the dataset were to grow.  
Interestingly, the number of seats is in the blue area. This means it could or could not help improve 

the model. The number of seats is nonetheless an important feature that is usually very much 

correlated with car prices. Fewer seats means less space and by looking at the second-hand car market 

it is obvious that a car with 4 seats is in most cases less expensive than a car with 5 seats. This feature 

is therefore kept.  

 
The final dataset consists of 728 rows and 12 columns. 
 

4.6. DATA NORMALIZATION 

Data is usually in different scales or measured in different units. It has been proved in the literature 

that this can lead machine learning algorithms to not perform well and training time to increase. 

Feature values that reside at higher levels of magnitude, lead to extremely high values when calculating 

network outputs in comparison to smaller feature values.  (Sola et al, 2017) 

For this work, we have for example mileage,  from 1900  (km) to 360000 (km) and year, from 1999 to 

2020. This process is typically called feature scaling. (Aurelien Geron, 2019, p.106). There are two main 

methods to bring data at the same scale: Standardisation and Normalisation. 
 

4.6.1. Normalization Min-Max 

Normalization or Min-max scaling is the most straightforward way to approach this issue. It works by 

subtracting the min value to our input and dividing it by the max observed value minus the minimum 

observed value, resulting in output ranging between 0 and 1. (Aurelien Geron,2019, p. 107) 
 

 

Where X is the input value, Xmin is the minimum value of the feature and Xmax is the maximum value 

of the feature. 
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Images also need to be normalized before training. As mentioned above, neural networks do not 

perform well when the input data is not in the range [0,1]. An Image is a matrix of pixels with value 

intensity ranging from 0 to 255.   Normalization can be achieved by simply diving by 255. 

 

4.6.1.1. Standardization   

Standardization is a scaling technique that works by subtracting the mean value of an input feature 

and then dividing it by the standard deviation. 

  

Where u  is the mean and delta is the standard deviation. 
Standardization is much less affected by outliers than normalization because it does not bound values 

to a specific range. Some algorithms, for instance, neural networks, do not behave well with this kind 

of range as they are expecting input values in the range from -1 to 1 or 0 to 1. (Aurelien Geron,2019, 

p.107) 
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5. METHODOLOGY  

5.1. MODEL EVALUATION 

When developing a model, it is not wise to use the same data it is built on to assess its accuracy. A 

model that is evaluated on training data would very likely be biased and not able to generalize well on 

unseen data. For this work, Hold-out validation is used. Hold-out validation or train-test split validation 

is the easiest and most straightforward method for model evaluation. It’s very easy to implement as 

there are already many libraries such as scikit-learn that implement it in a single line of code. Hold-out 

validation simply means splitting the dataset into a training set and a test set. The general sizes are 

80% for training and 20% for testing. Nonetheless, these are just rules of thumb as a very large dataset 

could also have a much smaller percentage of data set aside for testing and still contain a very large 

amount of samples. (Geron, 2019, p.58)  If the dataset is very large then usually this technique is 

enough to enclose a good enough representation of data regardless of the test size. For this work, the 

main split is 75% for training and 25% for testing. The test set is furtherly split into 2. The first 12,5% is 

used for validation whereas the other 12,5% for the actual final testing. The test data is not used at all 

while developing the model, the validation set can be considered part of the training data as it is a 

dataset upon which the models are compared and the best model selected.  

 

Dataset  Size 

Train 546 (75%) 

Validation 91 (12,5%) 

Test 91 (12,5%) 

 
Table 5.1 - Shape of the dataset 

5.2. EVALUATION METRICS 

Machine learning tasks require performance metrics to evaluate how well a  model is performing on a 

dataset (Alice Zheng, p 4). For, example when trying to predict a numeric target, an appropriate metric 

for the task would be the root-mean-square error (RMSE),  whereas when classifying a binary outcome 

such as if a patient is at risk of cancer or not, a classification performance metric like accuracy, 

precision, recall or F1-score would be more appropriate.  (Alice Zheng, p 4). As this work is trying to 

predict the price of second-hand cars, the focus will be on evaluation metrics for regression tasks. 
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5.2.1. Mean Squared Error  

Mean squared error (MSE) is a metric for regression tasks. It is not very used in practice in its pure form 

as the output is not directly interpretable.   The calculation is the average of the squared difference 

between the actual value and the predicted value. 

 

Where yi denotes the real price of a second-hand car whereas ŷi denotes the predicted car price. n is 

the number of cars used for training. 
 

5.2.2. Mean Absolute Error 

Mean absolute error (MAE) is the sum of all absolute errors yielding the total error, the sum is then 

divided by the number of data points. (Willmott et al, 2005). Or in other words, the average of the 

absolute difference between the real prices and the predicted prices of the cars of the test set.  MAE 

is arguably the easiest metric for a regressions task.  It can be read as how far on average a prediction 

is from its actual value.  

 

Where yi denotes the real price of a second-hand car whereas ŷi denotes the predicted car price. n is 

the number of cars used for training 
 

5.2.3. Root Mean Square Error 

Root mean Square Error (RMSE) is probably the most frequently used metric for regression tasks and 

it is defined as the square root of the average squared distance between the real value and the 

predicted value. (Alice Zheng, p 15). RMSE is based on MSE, the only difference is that it also takes the 

root of the MSE, to make it more interpretable and bring the result back on the same scale as the 

target feature in the dataset. 

RMSE is always a positive number and a lower value yields a much better model and fit to the data. 

The closest to zero the better with zero meaning a perfect fit. RMSE can be misleading, a large 

prediction error will have a big effect on the error value. This makes RMSE very sensitive to outliers 

and therefore can lead to mistakes in its interpretation when the data has not been through a thorough 
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cleaning process.  (Alice Zheng, p 15). This sensitivity to outliers can also be beneficial as it allows 

debugging the model by detecting their presence. 

 

 

Where yi denotes the real price of a second-hand car whereas ŷi denotes the predicted car price. n is 

the number of cars used for training 
 

5.2.4. Mean Absolute Percentage Error 

Mean absolute percentage error (MAPE) is very similar to MAE and a much more robust estimator 

compared to RMSE   (Alice Zheng, p 15). MAPE is the average of the absolute percentage error of the 

actual values and the predicted values. This metric is very easy to interpret as it yields an error in 

percentage. It can be read as how far in percentage a prediction is from its actual value.  

 

Where yi denotes the real price of a second-hand car whereas ŷi denotes the predicted car price. n is 

the number of cars used for training 
 

5.3. MACHINE LEARNING METHODS 

In this section, several machine learning models will be applied to the dataset to compare which one 

performs better and to establish a baseline for later comparison with deep learning models and 

mixed-input models. 
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Figure 5.1 - Function to apply different machine learning algorithms and evaluate them  

 

As can be seen in figure 5.1 the ML models are applied with their default parameters. Once the 

baseline function is called for every model the validation set will be predicted and metrics evaluated.  

 

 
Figure 5.2 -  Results of Machine learning models 
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As can be observed in fig 5.2  Random Forest provides the best baseline with an RMSE of 5671 and a 

MAPE of  ~25% and is now selected as the best machine learning model. To find the best parameter 

for this model, the Grid-Search module from Scikit-learn was utilized. A manual dictionary of 

parameters is passed to the grid search that builds a different model with every single combination of 

them and compares the scores on the validation data. The model that performs best will then be used 

as the final model for prediction on the test set.  This operation is computationally intensive. In the 

picture below the chosen parameters, the most important of them being the number of estimators, 

namely the number of trees.  

 

Figure 5.3 - Hyperparameters tuning with Grid search 

 

Figure 5.4 - Best estimator for RF Regressor 

 
The Random Forest regressor with the best parameters is now trained on all data and used to predict 

the test set.  

 
 

Figure 5.5 - Results on the test set for RF regressor   
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With hyperparameter tuning it was possible to improve to model results, improving the MAPE from 

~25% to ~24%.  These results will now be compared with deep learning models in the next chapter.   

5.4. DEEP LEARNING METHODS 

5.4.1. Training on numerical features 

In this section, the application of a feedforward neural network with TensorFlow Keras is explored. A 

simple architecture with one layer is implemented and adapted to the Keras tuner library for 

parameter optimization. As a first step, we will define parameters such as the number of units the first 

hidden layer should have, the optimizer type, and the learning rate. 

An Early stop callback parameter is also defined. This allows the training to stop automatically when 

the monitored metric is not improving anymore after a certain amount of epochs, avoiding overfitting 

the data.  

 

Figure 5.6 - ANN architecture with Keras tuner  

There are different tuning algorithms available for Keras tuner. For this work, Random Search is used. 

Random Search is one of the most straightforward tuning algorithms as it simply tries out different 

parameters randomly within the options given and selects the ones that provide the best results. In 

Figure 5.7 it can be seen how a Random Search instance is created and the parameter optimization 

started.  A n number of trials can be selected which means that n  different combinations of 

parameters are performed.  
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Figure 5.7 - Random Search in Keras tuner 

 
Once the process is over, the  get_best_hyperparameters method can be called to retrieve the best 

parameters. 

 

 
Figure 5.8 - Best ANN Parameters 

Now the model is retrained with the best parameters selected and with more epochs on all data. 
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Figure 5.9 - ANN train and validation loss 

As the graph shows, the callback function stopped the training around epoch 300 out of 500, avoiding 

the risk of overfitting the data. 

With the best configuration of the neural network selected, the model is now used to perform the 

prediction on the test data. This process is the same done earlier with the machine learning methods. 
The RMSE and MAPE  for the whole test data are: 

 

 
Figure 5.10 - ANN results 

 

5.4.2. Training on image data 

In this section, a convolutional neural network based solely on image data is developed and tested to 

assess the capability of a CNN to predict car prices without numerical and categorical features. In order 

to utilize a CNN for regression in Keras, a few adjustments need to be made compared to the many 

architectures that are available for classifications tasks. Simply speaking, a convolutional neural is a 

series of Convolution and Pooling layers stacked on top of each other.  The output of these operations 

is a 3D tensor that is fed into fully connected layers, or dense layers,  in order to make prediction by 

the network possible. (Francois Colleit,2018,p.120). For image classification tasks, this generally means 

adding an activation function such as softmax, that calculates the probability of each input to belong 
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to one of the input classes. The highest probability in the probability distribution is considered as the 

actual output, namely the class to which that input belongs. In a regression task, such as price 

estimation, there are no classes, but the output will be a continuous value. Since there is no need to 

infer a class and therefore transform the actual values into a probability, a linear activation function 

with one node is used as the last layer of the CNN.  Also, the loss function has to be changed accordingly 

to fit a regression task. As already mentioned in the chapter about evaluation metrics, common choices 

for regressions are either MAPE or RMSE. 
Rather than trying different types of parameters empirically, Keras tuner library is used here also for 

hyperparameter optimization.  A simple architecture with 2 Convolution layers, 2 Pooling layers, a fully 

connected layer, and an output layer is created and adapted to run with Keras tuner for parameter 

tuning.  The CNN model adapted for Keras tuner can be observed in figure 5.11 

 

 
 

Figure 5.11 -  CNN with Keras tuner 

For this CNN model, random search is also used and the different 10 number of trials performed.  
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Figure 5.12 - CNN best parameters 

As it can be observed in figure 5.12, for the first convolutional layer the number of optimal units is 48, 

whereas for the second is 128. This makes sense, as the network goes deeper, the patterns to learn 

become more complex. The optimal number of units for the dense layers is 80  and the best learning 

rate is 0.0057. 

 
Figure 5.13 - CNN train and validation loss 

 
The model is now trained on all data and the model is ready to predict the test set. The MAPE for the 

whole test data is: 

 
 

Figure 5.14 - CNN results 
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The final result yields an RMSE of 15070 and a MAPE of ~61%.  By looking at the model loss in figure 

5.13 it is clear that the CNN is underfitting. Both training loss and validation loss are high and the model 

performs poorly on the validation data and test data. As expected, the use of only image features to 

predict car prices does not behave as well as its counterpart based on numerical and categorical 

features. The features to be learned from images for the problem at hand are too complicated and the 

network is struggling. More training images and a deeper architecture might be able to improve the 

results but there are many features such as mileage driven or type of gear that are intrinsically 

complicated to infer from image data. Nonetheless, many features can be learned from images that 

are not available as features in the original dataset. An example of this can be features regarding the 

vehicle frame that can easily be learned with enough training images. 
 

5.4.3. Grad-CAM 

Class activation Map (Grad-CAM) is a technique to make CNN more transparent and explainable 

(Selvaraju et al., 2019, p.1). It is based on its predecessor CAM, and improves upon it by being more 

adaptable to different kinds of state-of-the-art CNN’s without modifying their architecture, and, more 

importantly, it doesn’t require training the model again (Selvaraju et al., 2019, p.2). It uses the gradient 

information in the last convolution layer of the CNN, to visually explain where the model is looking to 

predict a class. The convolution layer is the last layer that retains spatial information and semantics of 

the input images (Selvaraju et al., 2019, p.4).  
In simple words, Grad-Cam is used to debug and to better understand what the CNN is looking at when 

predicting a class, or for this work, a price. In the case of suspicious prediction, it is therefore easy to 

interpret what makes the model fail. For instance, if in our case the model is more active looking at an 

object in the background rather than at the cars it is clear that the model is not learning properly. 

Originally Grad-Cam was developed for image classification problems, but the same architecture can 

also be used for regression tasks as shown in other studies (Wang et al, 2019). The equivalent to GRAD-

Cam for Regression tasks is Regression Activation Maps (RAM). Grad-cam outputs a class-activation 

heatmap that can be overlaid to the original input image for CNN explainability.  
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Figure 5.15 - GRAD-Cam output:  heatmap (left) and original test image with overlaid heatmap (right) 

Based on figure 5.16, looking at the first example, it seems that CNN is learning the right features when 

the images are high quality and noise-free. Looking at the second example it can be noticed how the 

network is not only picking up car features but also activating in the background part of the image.  This 

indicates that the network is struggling with noisy images. A solution to this could be to either exclude 

all low-quality images from training or increase the total number of training samples to help the 

network learn only the right features.  It can also be observed how zero-padding is working and the 

network is understanding that it should not give importance to that part of the image. Also, it appears 

that the CNN is looking at the car plates. This could be an issue as usually car plates in second-hand car 

images on online marketplaces do not carry any important information regarding the price of the car. 

In fact, car plates are usually replaced with the logo of the dealer. A solution to this problem would be 

blurring out all car plates from the images.  
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5.5. MIXED–INPUT MODEL  

Hybrid Deep Neural Networks (Hybrid-DNNs)  are a type of neural network architecture that can 

support multiple data types as input. The ability to accept different inputs makes such models more 

flexible and adaptable to different scenarios and allows more sophisticated feature extraction 

capabilities from the data ( Zhenyu Yuan et al., 2019, p.1).  Every data type is handled by a different 

network, the outputs of these networks are then concatenated and fed into another fully connected 

layer or the final prediction. Different machine learning methods can be applied to such architectures. 

In the case of images, CNNs will be the method to process the inputs, but the numerical data can be 

dealt with by a big variety of machine learning and deep learning algorithms such as KNN, Random 

Forest, or MLP. ( Zhenyu Yuan et al., 2019, p.4). In this work, the TensorFlow Keras is used to develop 

all the deep learning models. Specifically, the functional API is used to develop the mixed-input model. 

The functional API is a way to build models that are much more flexible than the standard sequential 

API and have non-linear architectures, multiple input, or outputs.[14] 

 

Figure 5.16 - Mixed-input model architecture 
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Figure 5.17 - Mixed-input model with Keras functional API 

In figure 5.18 the Mixed-input model is developed with Keras functional API. In the first lines, the  MLP 

and the CNN branches are built separately. Is it important to point out that in both branches the last 

layers are composed of a Dense layer of 4 units with no regression, that is, prediction is not yet done 

at this stage, but the outputs of both branches are concatenated into a single vector. The regression 

layer for prediction is then added later after the concatenation.   
The model is then fit to the training data and learning can start. Early stopping is set to a value of 100 

to avoid overfitting. For parameters, different learning rates have been tested. Namely 0.1 

0.001,0.001. As smaller batch sizes tend to lead to better results, different parameters were tested. 

The final batch size was then set to 8, as it provided the best trade-off between accuracy and training 

speed. 
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Figure 5.18 - Mixed-input model training and validation losses 

In figure 5.19 the training and validation losses for the different learning rates can be observed. In the 

top-left figure, the learning rate is set to  0.001. It can be observed how the validation loss is initially 

very bumpy and becomes more stable around epoch 400. Succeedingly, validation and training loss go 

down steadily. At epoch 1200 early stopping is triggered.   In the top-right figure, the learning rate is 

set to 0.0001. Validation loss and training loss are slowly decreasing but around 200 epochs the losses 

seem to diverge and the model starts to overfit. After 800 the early stopping is triggered and training 

stops. It can be concluded that the learning rate is too small and the network struggles to converge to 

an optimal solution. The bottom figure shows training and validation loss for learning rate of 0.01. The 

model converges quickly and both losses keep decreasing uniformly. After epoch 350 early stopping is 

triggered. The losses deem this to be the best learning rate as the validation loss is only slightly above 

the training loss compared to learning of 0.001. The model is then retrained on all training data with 

selected learning rate and ready to predict the test set.  The MAPE for the whole test data is. 

 
 

Figure 5.19 - Mixed-input model results 
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6. RESULTS 

model  description  RMSE    MAPE 

Linear Regression  Standard parameter  9693 0.587 

Decision Tree  Standard parameter  8382 0.285 

KNN Standard parameter  8141 
 

0.263 

Random Forest Max depth 110 – max features 5 – n estimators 100  5043 0.241 

MLP learning rate 0.001 - optimizer ADAM  3994 0.212 

CNN learning rate 0.057  - optimizer ADAM  15070 0.614 

MLP + CNN  learning rate 0.01 - optimizer ADAM 7503 0.259 

 
Table 6.1 - Summary of results 
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7. CONCLUSIONS 

Different machine learning and deep learning algorithms were applied and their performance 

compared on textual features of the scraped second-hand car dataset to achieve a baseline. Firstly, 

different ML algorithms were explored and Random Forest regressor yielded the best results with an 

RMSE of 5043 and MAPE of ~24%.  Secondly, an MLP was developed and yielded better results than 

ML algorithms. The RMSE was reduced to 3994 and the MAPE to ~21%. Thirdly, a CNN  was trained on 

the car images and results were compared to the former models based solely on textual features. The 

CNN performance was poorer based on the selected metrics, achieving an RMSE of 15070  and MAPE 

~61%, indicating that training a price estimation model only based on the pictures is not the optimal 

solution when the same amount of textual features and images are available. The activation layers of 

the CNN were visualized and it could be noticed how the model was able to learn the right features in 

high quality - low noise images but was struggling much more on low quality - high noise images 

indicating that high-quality pictures are fundamental for computer vision tasks. Finally, the main 

research question of this thesis was answered and a mixed-input model was developed combining the 

inputs of an ANN for the textual features and CNN for the image data.  The mixed-input model did not 

outperform machine learning models based only on textual and numerical features but yielded better 

results than a standalone CNN model with an RMSE of 7503 and MAPE = ~25%. The best performing 

model is therefore an MLP predicting on average 21% away from the real price value. By only looking 

at MAPE and RMSE the prediction error can still seem a bit high. Also, these evaluation metrics can be 

misleading as they are averages. While looking at single predictions in figure 5.21, it can be observed 

that in many cases the predicted prices are very close to the actual prices and that the error for the 

test cars for which the price is wrongly predicted is very high, skewing the results and the interpretation 

of the evaluation metrics. These predictions indicate that the model is in many cases doing a good job 

but is not able to generalize enough. The main reason for this is likely the lack of enough training data. 



45 
 

 
 

Figure 7.1 - Predictions for the test set (only a subsample is showed)   
 

The main objective of this work was achieved. A mixed-input model for second-hand car price 

estimation was developed and its results compared to more traditional approaches. The findings 

indicate that mixed-input models are not as effective in price estimation for second-hand cars as 

standard approaches with a limited amount of training data. 
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8. FUTURE WORK 

Recommendations for future improvement would mainly address the limitations of this work. The 

focus should be put into collecting more and better quality pictures from P2P trading platforms and 

explore the impact that a higher number and better quality data may have on model performance.  To 

make image labeling a less cumbersome process, a car pose detection could be developed to enable 

automatic labeling while scraping. Furthermore, a model for car plate detection could also be 

developed and applied to detect and automatically blur all car plates and have a more uniform 

representation of images and facilitate the learning phase for the CNN model. Also,  a higher number 

of textual car features could be scraped and some feature engineering could be implemented.  Further 

parameter optimization for the deep learning models could also lead to better results, different tuning 

algorithms such as Bayesian optimization and also the implementation of genetic algorithms could be 

explored.  Finally, it would be interesting to explore and apply mixed-input models to other domains. 
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