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Abstract: Biofouling is the undesirable growth of micro- and macro-organisms on artificial water-
immersed surfaces, which results in high costs for the prevention and maintenance of this process
(billion €/year) for aquaculture, shipping and other industries that rely on coastal and off-shore
infrastructure. To date, there are still no sustainable, economical and environmentally safe solutions
to overcome this challenging phenomenon. A computer-aided drug design (CADD) approach
comprising ligand- and structure-based methods was explored for predicting the antifouling activities
of marine natural products (MNPs). In the CADD ligand-based method, 141 organic molecules
extracted from the ChEMBL database and literature with antifouling screening data were used
to build the quantitative structure–activity relationship (QSAR) classification model. An overall
predictive accuracy score of up to 71% was achieved with the best QSAR model for external and
internal validation using test and training sets. A virtual screening campaign of 14,492 MNPs
from Encinar’s website and 14 MNPs that are currently in the clinical pipeline was also carried
out using the best QSAR model developed. In the CADD structure-based approach, the 125 MNPs
that were selected by the QSAR approach were used in molecular docking experiments against
the acetylcholinesterase enzyme. Overall, 16 MNPs were proposed as the most promising marine
drug-like leads as antifouling agents, e.g., macrocyclic lactam, macrocyclic alkaloids, indole and
pyridine derivatives.

Keywords: marine natural products (MNPs); blue biotechnology; quantitative structure–activity
relationship (QSAR); machine learning (ML) techniques; computer-aided drug design (CADD);
molecular docking; virtual screening; antifouling activity; acetylcholinesterase enzyme (AChE)

1. Introduction

Marine biofouling is the undesired accumulation of micro-organisms, e.g., bacteria,
cyanobacteria, unicellular algae and protozoa, and macro-organisms, e.g., seaweeds, barna-
cles, mussels and shells, on artificial water-immersed surfaces in a dynamic process that
starts immediately after water submersion and can be a fast or slow process taking only
hours or months to develop, respectively [1]. Marine biofouling creates risks to various in-
dustries, such as aquaculture and shipping, as well as for non-marine industries, e.g., paper
manufacturing, food processing, underwater construction, power plants and others [2,3].
Settlement on the vessel’s hull results in damage to the rudder and propulsion systems [2,4],
leads to an increasing drag of up to 60%, as well as a fuel consumption increase by 40%, in-
creasing carbon dioxide and sulfur dioxide emissions [5] and the spread of nonindigenous
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marine species into ecosystems worldwide, leading to environmental imbalances [6–10].
The most effective antifouling (AF) coatings contained biocides, such as tributyltin (TBT)
and tributyltin oxide (TBTO), which were found to be harmful to non-target organisms and
the environment [11] and thus were prohibited by the International Maritime Organization
from Ship Surfaces in 2008, generating the demand for new generations of non-toxic or
environment-friendly AF solutions [12–14].

Natural alternatives including primary or secondary metabolites isolated from marine
organisms have been reported in several reviews to inhibit the settlement of different
biofouling species [15–24]. The search for AF agents from marine sources began with
bromo-derived metabolites, among the 2-furanone bromine derivatives extracted from red
algae, which have been reported to prevent fouling [25], as well as bromopyrrole alkaloid
derivatives with AF activity isolated from sponges (oroidin), inspiring the design of more
than 50 synthetic analogues [26,27], and, more recently, antifouling bromotyrosine deriva-
tives of the synoxazolidinone and the pulmonarin families [28]. Several studies reported
MNPs with antifouling activity comprising the 2,5-diketopiperazine scaffold isolated from
the marine sponge Geodia barretti [29], 6-benzyl and 6-isobutyl 2,5-diketopiperazine deriva-
tives from marine-derived actinomycete Streptomyces praecox [30] and five diketopiper-
azines, cyclo-(L-Leu-L-Pro), cyclo-(L-Phe-L-Pro), cyclo-(L-Val-L-Pro), cyclo-(L-Trp-L-Pro)
and cyclo-(L-Leu-L-Val), from deep-sea Streptomyces fungicidicus [31]. Comprising a meroter-
penoid scaffold, napyradiomycin derivatives, isolated from marine-derived actinomycetes
Streptomyces aculeolatus, were investigated by our group as antifouling inhibitors, having
the advantage of inhibiting both micro- (antibiofilm activity) and macrofouling [32–34].

Computer-aided drug design (CADD) approaches have been used to guide decisions
concerning the in vivo and in vitro testing of isolated NPs and extracts [35–39], to assist in
the design of bioactive NP derivatives [40,41] and to virtually screen databases of known
or proposed NPs [40,42–44]. To the best of our knowledge, the antifouling activity was
quantitative structure–activity relationship (QSAR) modeled in only two previous works
for the settlement of Mytilus galloprovincialis larvae [45,46]. Almeida et al. built two QSAR
models using multilinear regression methods with, respectively, 19 and 16 nature-inspired
(thio)xanthone [46] and chalcone [45] derivatives, including in vitro antifouling activity
screening assays for the settlement of Mytilus galloprovincialis larvae.

Acetylcholinesterase (AChE) inhibitors are a class of drugs used for the treatment of
Alzheimer’s disease, glaucoma and autoimmune disorders [47–49]. The enzymes AChE [28]
and tyrosinase (Tyr) were associated with the adhesive processes in the settlement of
different biofouling species [28,46,50]. Almeida et al. reported a molecular docking study
conducted by modulation of Electrophorus electric (fish) AChE of the two most promising
(thio)xanthone antifouling agents [46]. Recently, Arabshahi et al. [50] reported an extensive
virtual Tetronarce californica (fish) AChE homology screening campaign for 10,000 small
organic molecules from the Chembridge library. The authors also reported the experimental
screening of the most promising AChE inhibitors proposed by the in silico model, against
five microfouling marine bacteria and marine microalgae macrofouling tunicate Ciona
savignyi, discovering a potent novel inhibitor of tunicate settlement [50].

Herein, we report comprehensive computational modeling for the prediction of an-
tifouling activities from two MNP libraries, by employing structure- and ligand-based
CADD methodologies. The two libraries comprised 14,492 MNP from Prof. Encinar
(http://docking.umh.es/downloaddb, accessed on 25 October 2021) and 14 MNPs from
the clinical pipeline of MNPs (eight drugs approved and six MNPs in Phase II and III clini-
cal trials). All the MNPs from the virtual screening libraries that were predicted to belong
to the active class, i.e., 125 MNPs, were selected to proceed to the CADD structure-based
method, where 125 MNPs selected by QSAR approach were screened by molecular docking
against the AChE enzyme. In this CADD approach, a virtual screening hit list comprising
19 MNPs was assented based on some established thresholds, such as the probability of
being active in the best antifouling model and the prediction of affinity between the AChE
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of selected MNPs by molecular docking. A total of 16 MNPs have been proposed as the
most promising marine drug-like leads as antifouling agents.

2. Results and Discussion
2.1. Chemical Space of the Antifouling Model

The whole data set (i.e., 141 small organic molecules) was randomly divided into
a training set of 127 molecules (comprising 57 active and 70 inactive molecules) and a
test set of 14 molecules (comprising six active and eight inactive molecules), which were
used for the development and external validation of the QSAR classification models,
respectively. The whole data set comprised seven structural classes or scaffold types,
which are represented in Table 1 along with their antifouling activity classes and scaffold
representative.

Table 1. Structural clusters and antifouling activity class counts within the seven structural clusters.

Clusters 1 # 2 (Active Class) Average MW (Da) 3 Average ALogP 4

Tr Te Tr Te Tr Te

I—acyclic derivative
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Table 1. Cont.

Clusters 1 # 2 (Active Class) Average MW (Da) 3 Average ALogP 4

Tr Te Tr Te Tr Te

VI—chalcone derivative
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All seven structural clusters (I, acyclic derivative, II, O-heterocyclic derivative, III,
N-heterocyclic derivative, IV, terpenoid derivative, V, diketopiperazine derivative, VI,
chalcone derivative, and VII, miscellaneous) were well represented in the training set, each
comprising more than 10 molecules per class. The active class was more represented in
three structural clusters with a percentage higher than 50%, namely I—acyclic derivative
(100%), III—N-heterocyclic derivative (74%) and V—diketopiperazine derivative (67%).
In the test set, only five structural clusters were represented, II-V and VII. In Table 1,
the most representative scaffolds of the structural cluster are highlighted—for instance,
for cluster I, a polyacetylene derivative; II, a chromone and a xanthone derivative; III, a
pyrrole and a piperidine derivative; IV, a sesquiterpene derivative; V, a diketopiperazine,
VI, a chalcone derivative; and VII, various scaffolds such as peptides and nature-inspired
sulfated compounds. All clusters for the training and test sets, except for cluster VII, had
an average MW value of less than 500 Da.

2.2. Establishment of QSAR Classification Model

Random Forests (RF) [51] were used to build models for antifouling prediction, ex-
ploring well-established PaDEL fingerprints (FPP and descriptors, e.g., five different types
of FPs with different sizes (166 MACCS, MACCS keys; 307 Substructure; 881 PubChem
fingerprints; 1024 CDK, circular fingerprints; 1024 CDK Ext, extended circular fingerprints
with additional bits describing ring features) and 1376 1D&2D molecular descriptors (in-
cluding electronic, topological and constitutional descriptors)) [52]. The performance of the
models was successfully evaluated by internal validation (out-of-bag, OOB, estimation on
the training set); see Table 2.

Table 2. Evaluation of the predictive performance of FPs and 1D&2D molecular descriptors for
modeling the antifouling activity using the RF algorithm for the training set with an OOB estimation.
The best models are highlighted in bold.

Descriptors (#) TP 1 TN 2 FN 3 FP 4 SE 5 SP 6 Q 7 MCC 8

MACCS (166) 9 41 51 16 19 0.719 0.729 0.724 0.446
Sub (307) 9 41 53 16 17 0.719 0.757 0.740 0.476
PubChem (881) 9 43 48 14 22 0.754 0.686 0.717 0.438
CDK (1024) 9 42 47 15 23 0.737 0.671 0.701 0.406
ExtCDK (1024) 9 41 49 16 21 0.719 0.700 0.709 0.417
1D&2D (1376) 40 53 17 17 0.702 0.757 0.732 0.459

1 True positive. 2 True negative. 3 False negative. 4 False positive. 5 Sensitivity, the ratio of true positive to the sum
of true positive and false positive. 6 Specificity, the ratio of true negative to the sum of true negative and false
negative. 7 Overall predictive accuracy, the ratio of the sum of true positive and true negative to the sum of true
positive, true negative, false positive and false negative. 8 Matthews correlation coefficient. 9 Fingerprints, FPs.

From the seven sets of FPs and descriptors used to build the QSAR classification
model, the best set for each type, fragment FPs (Sub), circular FPs (ExtCDK) and molec-
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ular descriptors (1D&2D), were selected for further investigations; see Table 2. The 3D
descriptors had a well-established relationship with biological activity and were expected
to increase both the accuracy and robustness of the predictive models. After the exploration
of models derived with molecular descriptors and FPs, we investigated the inclusion of 3D
descriptors such as radial distribution function (RDF) descriptors (using a range of 128 and
partial atomic charge as an atomic property) and the selection of descriptors using the RF
descriptor importance parameter for the best three sets (Sub FPs, ExtCDK FPs and 1D&2D
descriptors). Three sets of descriptors (Sub + RDF, ExtCDK + RDF and 1D&2D + RDF) as
well as their selection were explored for modeling the antifouling activity using the RF
algorithm in Table 3, where the results for the training set in OOB estimation are presented.

Table 3. Evaluation of the predictive performance of RDF descriptors and descriptor selection for
modeling the antifouling activity using the RF algorithm for the training set with an OOB estimation.
The best models are highlighted in bold.

Model # SE 1 SP 2 Q 3 MCC 4

Sub + RDF 691 0.667 0.714 0.693 0.380

Selection 5 50 0.667 0.714 0.693 0.380
Selection 5 100 0.684 0.757 0.724 0.442
Selection 5 150 0.702 0.786 0.748 0.489
Selection 5 200 0.684 0.757 0.724 0.442

ExtCDK + RDF 1408 0.667 0.743 0.709 0.410

Selection 5 12 0.754 0.729 0.740 0.481
Selection 5 25 0.737 0.786 0.764 0.523
Selection 5 50 0.702 0.771 0.740 0.474
Selection 5 100 0.684 0.771 0.732 0.457

1D&2D + RDF 1760 0.719 0.714 0.717 0.432

Selection 5 50 0.807 0.800 0.803 0.605
Selection 5 100 0.825 0.786 0.803 0.607
Selection 5 150 0.807 0.800 0.803 0.605
Selection 5 200 0.842 0.786 0.811 0.625
Selection 5 250 0.772 0.800 0.787 0.571

1 Sensitivity, the ratio of true positive to the sum of true positive and false positive. 2 Specificity, the ratio of true
negative to the sum of true negative and false negative. 3 Overall predictive accuracy, the ratio of the sum of true
positive and true negative to the sum of true positive, true negative, false positive and false negative. 4 Matthews
correlation coefficient. 5 The descriptor selection was evaluated based on the importance assigned by the RF
model with the R program.

The 200 most important descriptors selected by the MeanDecreaseAccuracy parameter
of the 1D&2D + RDF model were identified by the RF algorithm and enabled the training
of a new RF model with better prediction accuracy in accordance with the Q and MCC
values than the model trained with the whole set of descriptors (Table 3). A comparison of
three machine learning (ML) techniques using the Weka software (support vector machines,
SVM), R software (RF) and Keras software (deep learning multilayer perceptron networks,
dMLP) for building the antifouling models with the 200 descriptors that were selected by
the RF is shown in Table 4 for the test set.

Table 4. Exploration of different ML algorithms using the 200 selected descriptors.

Model SE 1 SP 2 Q 3 MCC 4

RF 0.667 0.750 0.714 0.417
SVM 0.830 0.500 0.643 0.344

dMLP 0.670 0.750 0.714 0.417
1 Sensitivity, the ratio of true positive to the sum of true positive and false positive. 2 Specificity, the ratio of true
negative to the sum of true negative and false negative. 3 Overall predictive accuracy, the ratio of the sum of true
positive and true negative to the sum of true positive, true negative, false positive and false negative. 4 Matthews
correlation coefficient.



Mar. Drugs 2022, 20, 129 6 of 20

The best models were accomplished with the RF and dMLP algorithms using the
200 1D&2D + RDF selected descriptors, which achieved, for both models, a Q and MCC
of 0.714 and 0.417 for the external test set. Majority voting predictions (consensus) were
obtained by the RF, SVM and dMLP models (the consensus model, CM), and did not
improve the results, with a Q and MCC of 0.571 and 0.167 for the test set; thus, in the next
step of the virtual screening, we used the best model obtained, RF, with the 200 selected
descriptors; see Tables 3 and 4).

The results obtained by the RF for the training and test sets that were in accordance
with the seven structural clusters (I–VII), reported in Table 1, are shown in Table 5.

Table 5. The predictions of the best RF model by the seven structural clusters for the training and test
sets. The best models are highlighted in bold.

Cluster # SE 1 SP 2 Q 3 MCC 4

Training set
I 11 1.000 - 1.000 1.000
II 28 0.889 0.789 0.821 0.640
III 19 1.000 0.400 0.842 0.574
IV 22 0.800 0.941 0.909 0.741
V 15 0.900 0.000 0.600 -
VI 16 0.000 1.000 0.813 -
VII 16 0.400 0.812 0.688 0.234

All 0.842 0.786 0.811 0.625
Test set

II 3 1.000 1.000 1.000 1.000
III 1 - 1.000 1.000 1.000
IV 6 0.333 1.000 0.667 0.447
V 3 1.000 0.000 0.667 -

VII 1 - 0.000 0.000 -
All 0.667 0.750 0.713 0.417

1 Sensitivity, the ratio of true positive to the sum of true positive and false positive. 2 Specificity, the ratio of true
negative to the sum of true negative and false negative. 3 Overall predictive accuracy, the ratio of the sum of true
positive and true negative to the sum of true positive, true negative, false positive and false negative. 4 Matthews
correlation coefficient.

There were three structural clusters (I, II and IV, bold highlighted in Table 5) in
which the predictions obtained were better than those obtained for the overall training set
simultaneously considering the Q and MCC values. An improvement in the RF model
prediction accuracies (Q = 0.821–1 and MCC = 0.64–1) was achieved for these three clusters
of the training set, when compared with the prediction accuracy obtained for all the
molecules of the training set (Q = 0.811 and MCC = 0.625). For the clusters II and V-
VII, lower prediction accuracies were obtained, Q = 0.6–0.842 and MCC = 0.234–0.574.
Interestingly, the best achieved predictions for structural clusters I and II were related to
the best performance obtained for the active class prediction, with SE values of 1 and 0.889,
respectively, compared to the SE value of 0.842 for all training sets. For example, for the
test set, the average of the Prob_active (a_Prob_active) obtained by the active molecules
predicted by the model as active, i.e., true positive (TP), was 0.59, which compares with
the value of a_Prob_active of 0.54 obtained by the predicted molecules by the model as
false positives (FP). The same relationship was obtained for molecules predicted as true
negatives (FN) and false negatives (FN), with an a_Pro_active of 0.44 and 0.48, respectively.
Additionally, it appears that, with a Prob_active higher than 0.59, there was no error in the
prediction and all molecules predicted as active were active.

2.3. Analysis of Fingerprints and Descriptors Identified as Relevant for Modeling the Antifouling Activity

The selected 200 descriptors included 164 1D&2D (115 topological descriptors, 48 count
type descriptors and one constitutional descriptor (Mannhold LogP, logarithm of the
octanol–water partition coefficient)) and 36 RDF 3D descriptors (12 of type a (a positive
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and a negative charge), 12 of type b (two positive charges) and 12 of type c (two negative
charges)). The 1D&2D descriptors comprised 72 autocorrelation topological descriptors,
which were 50 Broto–Moreau, 12 Moran and 10 Geary autocorrelation descriptors, weighted
by mass, charges, van der Waals volumes, Sanderson electronegativities, polarizabilities,
first ionization potential or I-state. Other topological descriptors, such as 6 Barysz matrices,
24 Burden-modified eigenvalues, 1 Detour matrix, 2 MDEs, 2 path counts, 3 topological
charges, 3 distance matrices, 1 walk count descriptor and 1 weighted path descriptor, were
also presented. The count type descriptors included 28 electrotopological state atom types,
10 extended topochemical atoms and 10 information content descriptors. A comparison of
the best twenty 1D&2D + RDF molecular descriptors selected by descriptor importance of
RF was used to build the QSAR classification models, which are presented in Tables 3 and 4,
and these were analyzed and are presented in Figure 1.
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Figure 1. The twenty most important 1D&2D +RDF descriptors selected in RF classification models,
where the first three descriptors in terms of importance are three Burden-modified eigenvalue
descriptors weighted by relative I-state, mass and Sanderson electronegativities, respectively; there
are several Broto–Moreau autocorrelations 4th–5th, 7th–8th, 14th, 16th–18th, 20th weighted by I-state,
mass, mass, first ionization potential, mass, polarizabilities, charge, Sanderson electronegativities
and I-state; two Moran autocorrelation descriptors, 6th and 15th weighted by charge and mass,
respectively; four electrotopological state atom type descriptors, 9th (>C<), 11th (weak hydrogen
bond acceptors), 13th (-CH2-), 19th (H bonded to B, Si, P, Ge, As, Se, Sn or P); one PaDEL weighted
path descriptor, 10th (sum of path lengths starting from nitrogens); and one topological charge
descriptor, 12th (mean topological charge index of order 1).

Interestingly, no 3D RDF descriptor appeared in the list of the twenty most important
descriptors and the first RDF descriptor appeared only in the 30th position (two positive
charges). Moreover, there were only seven out the twenty most important descriptors that
were more relevant in discriminating the active class, namely AATSC5m (5th), ATSC5m
(7th), AATS8i (8th), maxssssC (9th), ATSC8p (16th), AATSC5c (17th) and minHCsats (19th).
Of the nine Broto–Moreau autocorrelation descriptors existing in the list of the top 20, five
of them were more relevant to discriminate the active class and, on the other hand, they also
presented a lag higher than or equal to 5, which was related to a greater distance between
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the structural features of interest. In contrast, the four Broto–Moreau autocorrelation
descriptors that were more relevant for the inactive class presented a lag lower than or
equal to 5. The three most important descriptors in the top 20 list were three Burden-
modified eigenvalue descriptors and all of them were most relevant in the inactive class
discrimination. This eigenvalue was suggested as an index of molecular branching, the
smallest values corresponding to chain graphs (SpMin3_Bhe) and the highest to the most
branched graphs (SpMin5_Bhs and SpMin5_Bhm) [53]. A very interesting behavior was
observed with the two electrotopological state atom types, maxssssC (maximum atom-
type E-state: >C<) and SssCH2 (sum of atom-type E-state: -CH2-), which were more
relevant for the active and inactive classes, respectively. The maxssssC descriptor encodes
the maximum number of quaternary or asymmetric carbon atoms and could be seen as
encoding structural complexity. On the other hand, the SssCH2 descriptor encoded the
saturation of the molecule. Another very important descriptor to discriminate mainly the
inactive class is the PaDEL weighted path descriptor, WTPT-5, which is the sum of all path
weights starting from nitrogen atoms, revealing nitrogen-specific branching information.
In agreement with the present work, the two QSAR studies reported by Almeida et al.
highlighted the descriptors related to the branching, complexity and the influence of the
molecule’s interatomic distance for the modeling of the antifouling activity [45,46].

2.4. Application of the In Silico Antifouling QSAR Model in Virtual Screening

A virtual screening campaign was carried out to search for new lead-like antifouling
inhibitors. The best QSAR model, the RF model, was selected for the virtual screening
procedure using 14,492 MNPs from Prof. Encinar’s website and 14 MNPs in the pharmaceu-
tical pipeline (eight approved drugs and six MNPs in Phase II and III of clinical trials). The
antifouling virtual screening of the MNP library in the pharmaceutical pipeline allowed
us to assess the possibility of repurposing drugs of marine origin. Of these 14 MNPs
from the pharmaceutical pipeline, only one MNP in Phase II of clinical trials presented
activity against AChE, GTS-21 (DMXBA), a derivative of the NP, 2,4-dimethoxybenzylidene
anabaseine dihydrochloride. There were 13,902 MNPs that were predicted to be active by
the best QSAR model, of which 8349 MNPs were predicted to be active with a Prob_active
greater than 0.59 (limit defined for the test set for which there are no prediction errors).
From these MNPs, 5 (one approved drug and four MNPs in Phase II and III of clinical
trials) and 8344 MNPs were from the pharmaceutical pipeline and from Encinar’s database,
respectively. Interestingly, of the five MNPs from the MNP pharmaceutical pipeline pre-
dicted to be active with the highest Prob_active was DMXBA with a value of 0.658. A
more demanding limit has been defined for the CADD structure-based approach: all the
MNPs from the virtual screening libraries that were predicted as belonging to the active
class with a Prob_active greater than or equal to 0.68 were selected for molecular docking
experiments. In the CADD structure-based method, the 125 MNPs selected by the QSAR
classification approach were screened by molecular docking against acetylcholinesterase
enzyme (AChE).

The list of eleven lead-like AChE inhibitors against antifouling activity generated from
the AChE homology virtual screening, which were experimentally screened in in vitro
and micro- and macrofouling assays reported by Arabshahi et al. [50], was used in this
study as a second virtual screening library (Supplementary Data, Table S5). Only one
out of the eleven lead-like AChE inhibitors was predicted to have antifouling activity
with a Prob_active higher than 0.59 (Table S5), the morpholine derivative (Figure 2), in
which experimental antifouling activity IC50 = 16 µg/mL was reported (51.7 µM) [50].
However, none of the eleven compounds passed the established threshold, which was more
demanding (Prob_active ≥ 0.68), to be selected for the molecular docking experiments.
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2.5. Molecular Docking against AChE Enzyme

The 125 MNPs from Encinar’s database selected by the QSAR classification approach
were screened by molecular docking against AChE enzyme (PDB ID: 6TT0) [54]. The
antifouling agents, synoxazolidinone A, synoxazolidinone C and donepezil, known as
AChE inhibitors [28], were used as positive controls and the phenolic derivative that
was predicted to not have antifouling activity in virtual screening was used as a nega-
tive control in the molecular docking experiments. A list of virtual screening hits com-
prising 19 MNPs was approved based on molecular docking experiments, in which a
threshold of ∆GB ≤ −7 kcal/mol was established for predicting the affinity between
AChE and selected MNPs. To prioritize the best marine drug-like leads as antifoul-
ing AChE inhibitors from the list of 19 selected MNPs by the antifouling QSAR model
and molecular docking of AChE enzyme, the absorption, distribution, metabolism, ex-
cretion and toxicity (ADMET) properties were predicted via in silico methods using
the pKCSM software (http://biosig.unimelb.edu.au/pkcsm/, accessed on 25 October
2021) [55]. Sixteen MNPs, a macrocyclic lactam (CAS 156310-18-8), seven macrocyclic alka-
loids (CAS 126622-63-7, 126622-64-8, 156310-18-8, 155944-26-6, 157536-35-1, 105305-54-2 and
105418-77-7), seven indole derivatives (CAS 142677-10-9, 134029-43-9, 134029-44-0, 134029-
45-1, 142677-09-6, 223596-72-3, 134779-34-3) and a pyridine derivative (CAS 59697-14-2)
were proposed as marine drug-like leads as antifouling AChE inhibitors. Three MNPs were
excluded due to their predicted toxicity to fish, namely against flathead minnows. The
Autodock Vina software (http://vina.scripps.edu/, accessed on 25 October 2021) [56] was
used to perform the flexible virtual screening of the 125 MNPs to find the most favorable
binding interactions, and the calculated free binding energies by the set of search space
coordinates are reported in Table 6 for the 16 MNPs selected, and the positive (synoxazo-
lidinone A and C; donepezil, an AChE inhibitor used for Alzheimer disease therapy) and
the negative (phenolic derivative derivative) controls.

Table 6. Structures and calculated free binding energies (∆GB, in kcal/mol) of the sixteen
selected MNPs, the positive (synoxazolidinone A and C; donepezil) and negative (phenolic
derivative) controls.

CAS Chemical Structure Name/Structural
Category Natural Source Prob_A ∆GB (kcal/mol) 1

147362-39-8
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Table 6. Cont.

CAS Chemical Structure Name/Structural
Category Natural Source Prob_A ∆GB (kcal/mol) 1
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Table 6. Cont.

CAS Chemical Structure Name/Structural
Category Natural Source Prob_A ∆GB (kcal/mol) 1
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The prediction of the ADMET properties of the sixteen selected MNPs by the antifoul-
ing QSAR model and molecular docking of AChE enzyme is presented in Table S1, in
the Supplementary Materials. In Figure 3, the interaction profile of the best-docked pose
for the two most probable lead-like antifouling AChE inhibitors, a lactam derivative—
cylindramide—and a macrocyclic alkaloid—haliclamine B—is represented.
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New scoring functions based on more precise physics-based descriptors to better repre-
sent the protein–ligand recognition process have been developed. DockThor, a web service
for molecular docking simulation (https://dockthor.lncc.br/v2/, accessed on 6 January 2022),
was used to perform molecular docking of the two best macrocycle hits (cylindramine and
haliclamine B), the best non-macrocycle hit (indole derivative, CAS 142677-10-9) and the
positive and negative controls against the AChE enzyme (PDB ID: 6TT0). In DockThor, a set
of new empirical scoring functions to estimate protein–ligand binding affinity were devel-
oped by explicitly accounting for physics-based interaction terms based on the MMFF94S
force field combined with ML [57]. The DockThor scores obtained for the two best macro-
cycle hits (cylindramine and haliclamine B), the best non-macrocycle hit (indole derivative,
CAS 142677-10-9) and the positive (synoxazolidinone A and C; donepezil) and negative (phe-
nolic derivative) controls were −8.508 kcal/mol (−11.3 kcal/mol using Autodock Vina),
−7.008 kcal/mol (−8.2 kcal/mol using Autodock Vina), −8.634 kcal/mol (−7.5 kcal/mol us-
ing Autodock Vina), −7.749 kcal/mol (−6.5 kcal/mol using Autodock Vina), −7.56 kcal/mol
(−6.7 kcal/mol using Autodock Vina) and −6.416 kcal/mol (−5.1 kcal/mol using Autodock
Vina), respectively. The interaction profiles of the best-docked poses predicted by DockThor
for the two best macrocycle hits, the best non-macrocycle hit and the positive and negative
controls are presented in Figure 4.

https://dockthor.lncc.br/v2/
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The peripheral anionic site (PAS) of AChE is composed of five residues (TYR-70, ASP-72,
TYR-121, TRP-279 and TYR-334) and is involved in the allosteric modulation of catalysis at
the active center [46]. This site is the target of various anti-cholinesterase inhibitors. In this
work, other residues (e.g., ARG-88, ASN-65, PRO-64, GLY-32, THR-62, TRP-58 and ASN-59)
forming the hydrophobic interactions in the PAS pocket are highlighted in Figures 3 and 4.
The binding of donepezil to the PAS of AChE is in accordance with its proposed peculiar
inhibitory mechanism, which involves a reversible double-binding site interaction with the
catalytic anionic site and PAS of the enzyme [54]. Unlike our approach and in other reported
studies [46,54], Arabshahi et al. [50] performed a virtual screening by molecular docking
of AChE at the catalytic anionic site and not at the PAS. Although none of the 11 reported
compounds [50] passed the QSAR model threshold to be subjected to molecular docking,
we still performed the molecular docking and the docking scores are presented in Table S5
(Supplementary Data). It was verified that none of these compounds exceeded the established
threshold in the molecular docking experiments, ∆GB ≤ −7 kcal/mol.

3. Materials and Methods
3.1. Data Sets/Selection of Training and Test Sets

The antifouling data set comprising 142 molecules, 63 and 79 organic molecules, was
extracted from the ChEMBL (https://www.ebi.ac.uk/chembl/, accessed on 21 July 2021) [58]
and by searching in the literature indexed in the Web of Science Core Collection until June
2021, respectively. The ChEMBL data set was obtained by searching for marine organisms
with antifouling activity, such as barnacles (e.g., Balanus amphitrite), mussels (e.g., Mytilus gallo-
provincialis), bushy bryozoan (e.g., Bugula neritina) and marine algae (e.g., Ulva conglobata). The

https://www.ebi.ac.uk/chembl/
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antifouling activity was classified using two activity classes: (A, active)—inhibition % > 52%
and EC50, IC50 ≤ 25 µg/mL; (B, inactive)—inhibition % ≤ 52% and EC50, IC50 > 25 µg/mL.
After collecting these data sets, the duplicates were removed based on the IUPAC interna-
tional chemical identifier (InChI) codes; however, the chirality was considered, and racemic
compounds (or cases where no stereochemistry was indicated) were considered as one of
the possible stereoisomers. Thereafter, the final data set comprised 141 organic molecules
and was divided into a training set comprising 127 molecules (class A, 57 molecules and
class B, 70 molecules) and a test set comprising 14 molecules (class A, 6 molecules and class
B, 8 molecules). The partitioning of the data set into training and testing sets was performed
randomly according to the composition of the antifouling classes (active and inactive). The
composition of the 10 structural categories shown in Table 1 was not considered. The
built QSAR models were developed and externally validated using the training and test
sets, respectively.

The virtual data set comprised 14,492 MNPs from Prof. Encinar’s website (http://
docking.umh.es/downloaddb, accessed on 25 October 2021) saved in the MDL SDF data
format and 14 MNPs from the pharmaceutical pipeline set (eight approved drugs and six
MNPs in Phase II and III of clinical trials). Three duplicates with the training and test sets
were removed and the final virtual data set comprised 14,503 molecules.

A second virtual library comprising eleven lead-like AChE inhibitors against antifoul-
ing activity reported by Arabshahi et al. [50] was also used.

SMILES strings of the data sets, and the corresponding experimental and predicted
activities, are available as Supplementary Data, Tables S2, S3 and S5.

3.2. Calculation of Descriptors

The molecular structures of molecules in all data sets were standardized by nor-
malizing tautomeric and mesomeric groups and by removing small disconnected frag-
ments using the JChem Standardizer tool, version 5.7.13.0 (ChemAxon Ltd., Budapest,
Hungary). The optimization of the three-dimensional molecular structures was car-
ried out with CORINA version 2.4 (Molecular Networks GmbH, Erlangen, Germany).
PaDEL-Descriptor (Pharmaceutical Data Exploration Laboratory, Singapore) version 2.21
(http://www.yapcwsoft.com/dd/padeldescriptor/, accessed on 21 July 2021) [52] was
used to calculate empirical molecular fingerprints (FPs) and 1D&2D molecular descriptors.
FPs of various types were calculated and exploited to build QSAR models, namely 166
MACCS (MACCS keys), 307 Substructure (presence and count of SMARTS patterns for
Laggner functional group classification—Sub), 881 PubChem fingerprints (ftp://ftp.ncbi.
nlm.nih.gov/pubchem/specifications/pubchem_fingerprints.txt, accessed on 21 July 2021),
1024 CDK (circular fingerprints) and 1024 CDK extended (Ext circular fingerprints with
additional bits describing ring features). The 1D&2D molecular descriptors comprised
descriptors of various types, including electronic, topological and constitutional descriptors,
in a total of 1376 descriptors. Radial distribution function (RDF) pair descriptors [59] and
3D RDF descriptors were calculated by sampling the function of Equation (1) at 128 equally
distributed values of r between 0 and 12.8 Å:

RDF(r) =
N−1

∑
i=1

N

∑
j=1+1

pi pje
−B (r−rij)

2
(1)

where N is the number of atoms in the molecule, pi is the charge of atom i, B is a fuzziness
parameter (it was 100 in this study), and rij is the 3D distance between atoms i and j. The RDF
descriptors were separated into three sets of 128 descriptors per pair of atoms with (a) one
positive and one negative charge, (b) two positive charges and (c) two negative charges. The
partial atomic charges—natural bond orbital (NBO) partial atomic charges—were estimated
using an ML tool developed by Aires-de-Sousa and co-workers (http://joao.airesdesousa.
com/charges, accessed on 21 July 2021) [60].

http://docking.umh.es/downloaddb
http://docking.umh.es/downloaddb
http://www.yapcwsoft.com/dd/padeldescriptor/
ftp://ftp.ncbi.nlm.nih.gov/pubchem/specifications/pubchem_fingerprints.txt
ftp://ftp.ncbi.nlm.nih.gov/pubchem/specifications/pubchem_fingerprints.txt
http://joao.airesdesousa.com/charges
http://joao.airesdesousa.com/charges
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3.3. Selection of Descriptors and Optimization of QSAR Models

In the quest for QSAR models with the minimum possible number of descriptors,
descriptor selection was performed based on the importance of descriptors assessed by
the RF (computeAttributeImportance) algorithm [51] implemented in the R program [61].
Selection of descriptors was accomplished using this procedure, with the importance of
descriptors assessed by RF within an OOB methodology using the 12, 25, 50, 100, 150, 200
and 250 most important descriptors and RF algorithm as an ML technique employing the
following statistical metrics: true positives (TP), true negatives (TN), false positives (FP),
false negatives (FN), sensitivity (SE, prediction accuracy for active antifouling molecules),
specificity (SP, prediction accuracy for inactive antifouling molecules), overall predictive
accuracy (Q) and Matthews correlation coefficient (MCC).

3.4. Class Balancer

In general, class imbalance is more demanding for ML algorithms and this imbalance
introduces a bias due to their preference for the majority class [62]. Our antifouling activity
training set was unbalanced, and the imbalance ratio was 1:1.22 for the A: active and B:
inactive classes, respectively. To solve this problem, the classes were balanced using the RF
sampsize parameter with R version 3.6.1. [61]. This parameter was set to be of the same size
as the minority class (active class). With this parameter, some molecules belonging to the
minority class were used more than once.

3.5. Machine Learning (ML) Methods
3.5.1. Random Forest (RF)

The RF model [51,63] was built from a set of unpruned classification trees, which were
created using bootstrap samples from the training set. For each individual tree, the best
split at each node was defined using a randomly selected subset of descriptors. Each of the
individual classification trees was created using different training and validation sets. The
final prediction of the model resulted from the majority vote of classification trees in the
forest. Model performance was evaluated internally with the prediction error for molecules
left out in the bootstrap procedure (OOB estimation). The method quantifies the importance
of a descriptor by the increase in misclassification that occurs when descriptor values are
randomly permuted, correlated with the mean decrease in the precision parameter. RFs
also assigned a probability to every prediction based on the number of votes obtained
by the predicted class. RFs were grown with the R program [61], version 3.6.1, using the
random forest library [64]. As a result of the nature of the two-class imbalance, this problem
was alleviated by defining the class weight ranges of 1–57 and 1–57 for classes A and B,
respectively, using the sampsize parameter.

3.5.2. Support Vector Machines (SVMs)

SVMs [65] map the training data into a hyperspace through a nonlinear mapping
(a boundary or hyperplane) and then separate the classes of objects in this space. The
examples of the training set—the support vectors—allowed us to position the boundary.
To transform data into a hyperspace where classes become linearly separable, kernel
functions were used. In this study, SVMs were implemented with Scikit-learn [66] using the
LIBSVM package [67]. The type of SVM was set to C-SVM-classification and the radial basis
function was used for the kernel function. Hyperparameter tuning was performed using
ten-fold cross-validation with the GridSearchCV tool. C and γ values varied in the range
of 1 × 10−2 to 1 × 1013 and 1 × 10−9 to 1 × 1013, respectively. In total, 10,000 experiments
were performed. The C and γ values were finally set to 1 × 107 and 1 × 10−8, respectively,
and the other parameters were used with default values. To alleviate the imbalanced
two-class problem, the class_weight parameter was set to be “balanced”, in which the
smaller class was replicated until it had as many molecules as in the larger one class.
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3.5.3. Deep Learning Multilayer Perceptron Networks (dMLP)

The feed-forward neural networks were implement using the open-source software
library Keras [68] version 2.2.5 based on the Tensorflow numerical backend engine [69].
These popular software tools, written in Python, make it easy to develop and apply deep
neural networks; however, the main challenge in applying dMLP is the design of an
adequate network architecture. After several experiments, the final optimal hyperparameter
settings were selected for our study based on 10-fold cross-validation experiments with the
training set and are listed in Table 7.

Table 7. Hyperparameter settings of the best dMLP model.

Hyperparameter Setting

Initializer Glorot uniform
Number of hidden layers 2
Number of neurons in the 1st and 2nd layers 200
Number of neurons in the 3rd 2
Activation 1st–2nd layers Relu
Activation 3rd layer Sigmoid
Batch size 36
Optimizer Adadelta
Loss Binary crossentropy
Epochs 100

3.6. Molecular Docking

The virtual screening using the best QSAR model, the RF classification model using
the 200 most important 1D&2D + RDF molecular descriptors, allowed the prioritization
of a list of the 125 MNP virtual screening hits. OpenBabel software (version 2.3.1, freely
available under an open-source license from http://openbabel.org, accessed on 21 July
2021) [70] was used to convert mol2 files into PDBQT files. PDBQT files were used for
coupling to the AChE enzyme with Autodock Vina (version 1.1, Center for Computational
Structural Biology, Scripps Research Institute, CA, USA) [56]. The macromolecule cou-
pling target was the AChE enzyme from Tetronarce californica (PDB ID: 6TT0) [54]. Water
molecules, carbohydrate molecules and ligands (1R, 3S-cis- and 1S, 3R-cis-donepezil de-
rived enantiomers) were removed from 6TT0 [54] prior to docking using AutoDockTools
(http://mgltools.scripps.edu/, accessed on 21 July 2021). During enzyme preparation,
GTT0, explicit hydrogen atoms and Gasteiger charges for each atom were added. Autodock
Vina performed a flexible molecular docking in which the target’s conformation was con-
sidered a rigid unit while the ligands were flexible and adaptable to the target. Autodock
Vina looked for the lowest binding affinity conformations and returned ten different con-
formations for each ligand. The search space coordinates of the AChE enzyme were
maximized to allow the entire macromolecule to be considered for docking. The search
space coordinates were center X: 25.179 Y: 72.212 Z: 281.175; dimensions X: 20,000 Y: 20,000
Z: 20,000. AchE enzyme ligand tethering was performed by regulating the parameters of
the genetic algorithm (GA), using 10 runs of the GA criteria. DockThor, a web service for
molecular docking simulation (https://dockthor.lncc.br/v2/, accessed on 6 January 2022),
was used to perform molecular docking of the two best macrocycle hits (cylindramine
and haliclamine B), the best non-macrocycle hit (indole derivative, CAS 142677-10-9) and
the positive and negative controls against AChE enzyme (PDB ID: 6TT0) [57]. The search
space coordinates were center X: 25.179 Y: 72.212 Z: 281.175; dimensions X: 20,000 Y: 20,000
Z: 20,000. AChE enzyme ligand tethering was performed by regulating the parameters of
the GA, using 12,750 and 500,000 runs, population size and number of evaluations of the
GA criteria, respectively.

The docking binding poses were visualized with PyMOL Molecular Graphics System,
Version 2.0 (Schrödinger, LLC). Docking scores of 125 virtual hits against the AChE enzyme
are shown in Table S4, Supplementary Data.

http://openbabel.org
http://mgltools.scripps.edu/
https://dockthor.lncc.br/v2/
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4. Conclusions

A CADD approach relying on ligand- and structure-based methodologies was suc-
cessfully used to predict new inhibitory MNPs against antifouling AChE. Two MNPs,
cylindramide (CAS 147362-39-8) and haliclamine B (CAS 126622-63-7), were proposed as
the most promising marine drug-like leads as antifouling AChE inhibitors. To the best of
our knowledge, the CADD ligand-based study using a QSAR classification model, devel-
oped here in this study, is the largest study ever performed with regard both to the number
of molecules involved and to the number of structural families involved in the modeling
of the antifouling activity, and the best model achieved an overall predictive accuracy
score of up to 71% for both test and training sets. In future works, the proposed sixteen
marine drug-like leads against antifouling AChE enzyme may be validated experimentally.
These results enabled us to build virtual libraries of marine-derived drug-like leads, which
may be virtually screened using the best antifouling QSAR model and molecular docking
against the AChE enzyme. In addition, for MNPs that are experimentally confirmed to
have antifouling activity, the AChE inhibitory mechanism will be studied to determine the
type of action, e.g., reversible interaction with both the catalytic anionic site and the PAS,
sterically blocking ligands from entering and leaving the active site gorge and allosteric
alteration of the catalytic triad conformation.

Supplementary Materials: The following data are available online at https://www.mdpi.com/
article/10.3390/md20020129/s1, Tables S1–S5 (XLSX). The following files are available free of charge.
SMILES strings of the data set (training and test sets), the corresponding experimental and predicted
activities are available as Supplementary Materials, Tables S2 and S3, respectively. Moreover, SMILES
strings of the 14,492 MNPs from Encinar’s website and MNPs clinical pipeline sets, for the virtual
screening data set, the corresponding predicted activities are available as Supplementary Materials,
Table S4. Predictions of ADMET properties with in silico methods, using the pKCSM software for
a list of 16 selected MNPs by QSAR antifouling model and molecular docking of AChE enzyme
are available as Supplementary Materials, Table S1. The list of eleven lead-like AChE inhibitors by
Arabshahi et al. [50], the corresponding experimental, predicted activities and docking scores against
the AChE enzyme are available as Supplementary Materials, Table S5.
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