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Abstract: Globally mangrove forests are substantially declining and a globally synthesized database 
of the drivers of deforestation and drivers’ interaction is scarce. Here we synthesized the key social-
ecological drivers of global mangrove deforestation by reviewing about two hundred published 
scientific studies over the last four decades (from 1980 to 2021). Our focus was on both natural and 
anthropogenic drivers with gradual and abrupt impacts and their geographic ranges of effects and 
how these drivers interact. We also summarized the patterns of global mangrove coverage decline 
between 1990 and 2020 and identified the threatened mangrove species and their geographic ranges. 
Our consolidated studies reported a 8,600 km2 decline in the global mangrove coverage between 
1990 and 2020 with the highest decline occurring in South and Southeast Asia (3870 km2). We could 
identify 11 threatened mangrove species, two of which are critically endangered (Sonneratia griffithii 
and Bruguiera hainseii). Our reviewed studies pointed to aquaculture and agriculture as the predom-
inant driver of global mangrove deforestation though the spatial distribution of their impacts var-
ied. Gradual climate variations, i.e. seal-level rise, long-term precipitation and temperature changes 
and driven coastline erosion, constitute the second major group of drivers. Our findings underline 
a strong interaction across natural and anthropogenic drivers with the strongest interaction between 
the driver groups aquaculture and agriculture and industrialization and pollution. Our results sug-
gest prioritizing globally coordinated empirical studies linking drivers and mangrove changes and 
a global development of policies for mangrove conservation. 

Keywords: Mangroves; Driver;, Anthropogenic activities; Climate change; Extreme events; Wet-
lands; Interaction 
 

1. Introduction 
The tropical, subtropical and warm temperate climate regions of the world comprise 

intertidal mangrove forests forming an unique interface between terrestrial and marine 
ecosystems with enriched biodiversity composed of different species of flora and fauna, 
upon which millions of people depend on [1–3]. Mangroves provide unique and valuable 
ecosystem services, i.e. provisioning (e.g. aquaculture, fisheries, fuel, medicine, textiles), 
regulating (e.g. shoreline protection, erosion control, climate regulation), intermediate 
(nutrient cycling, nursery habitat), and cultural (recreation and tourism) [4–7]. Moreover, 
about 10-15% of coastal sediment retention and carbon storage are globally driven by the 
mangrove forests [8]. These values are five times greater per hectare (0.01 km2) than those 
driven by tropical forests and other coastal wetlands together [9]. Mangrove forests also 
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act as an important environmental barrier between shores and lands, protecting the in-
habiting communities from the adverse impacts of extreme events, such as hurricanes and 
storms worldwide [5,10]. 

In spite of their critical contribution to human and ecosystem welfare, mangrove for-
ests have been declining globally at an alarming rate during the past 40 years [11–13]. The 
severity of the mangrove deforestation has also been manifested in the substantial man-
grove habitats, species and ecosystem services losses [14]. For example, during the last 75 
years, Philippines has lost more than 75% of its mangrove forests, with more than 66% 
lost only since 1990 [15]. In Africa, which accounts for about 20% of global mangrove for-
ests, 63 km2 have been lost during 2005, dominantly in West Africa, e.g. in Gabon, Sierra 
Leone, Guinea-Bissau and Senegal [16]. Approximately 70 plant species that comprise 
global mangrove forests and are frequently used as indicators for coastal changes due to 
their specialized adaptation and minor variation across hydrological and tidal regimes, 
are on a noticeable decay [17]. Several mangrove species in Southeast Asia, e.g. Aegiceras 
floridum (with a native range from Malesia to New Guinea) [18], Camptostemon philippinen-
sis (native range in Philippines) [19], Heritiera globose (native to Borneo) [20], and Kandelia 
candel (native to Asia-Tropical) [21] are now endemic. 

The mangrove deforestation is subject to a multitude of social-ecological drivers, 
ranging from climate change and natural perturbations to pollution and anthropogenic 
exploitation of mangrove resources [22–24]. Two main groups of drivers emerged in re-
cent studies:  
• Environmental drivers such as climatic and associated geological changes [10], e.g. 

increased salinity driven by increasing temperatures [25], and natural disasters, e.g. 
tropical cyclones [26] and tsunamis [27]; and  

• Anthropogenic activities, e.g. aquaculture and agriculture, in situ encroachment [28], 
exploitation of forest resources [29], water withdrawal [30], urbanization [31] and pol-
lution in upstream [32]. 
Among these, tropical cyclones entailed disruptive temporary damages from which 

mangrove forests may or may not recover, whereas climatic changes and anthropogenic 
activities cause gradual and largely irreversible loss of mangrove forests [33]. Climate and 
related changes, e.g. changes in thermal regimes and sea-level rise, emerged as a dominant 
environmental driver of mangrove deforestation [34]. Sea-level has been indicated as the 
most important factor influencing the future distribution of mangroves while the man-
grove ranges may shift further Northward and Southward as an effect of global warming 
and shift in thermal regimes [34]. As the frequency of the occurrences of tropical cyclones 
increased with the global warming and resulting climate change, mangrove responses to 
tropical cyclones and their regeneration patterns also altered [35–37]. Availability of sed-
iments was identified as a crucial supporting factor for the regeneration of minerogenic 
mangroves from the cyclone aftermaths [6]. Among the anthropogenic drivers, land 
changes and encroachment were augmented in the Southeast Asia as a result of aquacul-
ture and agriculture expansions, e.g. shrimp aquacultures and palm plantations [38,39]. 
Coastal development and urbanizations also drove a major decline in mangrove coverage, 
particularly in the Asian, Caribbean and Sub-Saharan regions [39–41]. 

The environmental and anthropogenic drivers may interact in a complex web and 
may exacerbate the rate of mangrove deforestation [42,43]. For example, salinity intrusion, 
which is an environmental driver of deforestation of the coastal mangrove belts in several 
regions, may be mediated and amplified by complex interaction among geographical lo-
cation, flow modifications in upstream, costal embankments, sea level rise, cyclone and 
storm surge, brackish water effect, precipitation and shrimp aquaculture [17,44–47]. 
Global conservation and management efforts like “Global Mangrove Alliance” [11] re-
quire a global level synthesis and consolidation of these drivers of mangrove deforestation 
as well as an understanding of their complex interactions. 
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Recently published articles studying global mangrove deforestation and drivers ei-

ther focused on a subset of global mangrove areas [48] or a subset of drivers [1,31] and 
did not study the interaction among drivers [13,49]. In this review, we draw on scientific 
literature and synthesize the social-ecological drivers of mangrove deforestation at a 
global level. The deforestation of mangrove forests covers both total and permanent de-
forestation such as loss in mangrove coverage as well as partial and temporary deforesta-
tion such as defoliation and damages caused by cyclones. We start by analyzing the 
changes in the geographic distribution of mangrove forest coverage and subsequently as-
sess the current status of the mangrove species. The drivers of mangrove forests defor-
estation are then identified along with their geographic ranges of effects. Our review ends 
with an analysis of the interactions among the drivers and a discussion on the challenges 
involved in mangrove forest conservation. 

2. Methods 
Two electronic scientific literature sources, i.e. Web of Science 

(webofknowledge.com) and Scopus (www.scopus.com), were accessed between 2017 and 
2021 to search for original articles, commentaries, books, letters and reports related to 
mangrove deforestation. We searched across all literature that were published between 1st 
January 1980 and 28th February 2021 using the initial keywords: “mangrove distribution”, 
“mangrove biomass”, “mangrove species” and “mangrove ecosystems” to identify litera-
ture that studied mangrove forests in general (Table 1). We then excluded literature that 
either did not study changes and deforestation of mangroves or did not address the driv-
ers of changes. A total of 250 scientific literature sources were found, which were further 
filtered using three sets of keywords based on a priori knowledge of drivers of global man-
grove deforestation (Table 1). The first keyword set “Climate” included drivers related to 
the long-term gradual changes in temperature, precipitation and sea level rise. The key-
word set “Extreme events” involved extreme events like cyclones and Tsunamis. “Land 
changes” indicated a set of anthropogenic drivers and included search terms related to 
agriculture and aquaculture expansion and urbanizations, while pollution aspects such as 
heavy metal contamination were included in the “Pollution” set. Finally, the “Flow mod-
ification” set included drivers related to the diversion of surface water flow and their im-
pacts on the mangrove forests. The returned search records included at least one entry 
from each of the four keyword sets. We obtained further inputs from subject experts to 
revise the search strategy and also to locate additional literature. Thus, we arrived at a 
final set of 201 scientific literature for the analyses and synthesis of this review. 

Table 1. List of the combination of keywords and keyword sets, and the number of literature ob-
tained. 

Initial keywords Driver related key-
word sets 

Number of literature 
WOS Scopus Total 

{mangrove distribu-
tion, mangrove bio-

mass, mangrove spe-
cies, mangrove eco-

systems} 

Climate  15 14 29 
Extreme events    20 25 45 
Land changes 29  25  54  

Pollution  12 15 27 
Flow modification 16 30 46 

Total  92 109 201 
 
To assess the change in mangrove forest coverage and the current status of the man-

grove species, we linked the consolidated literature with four online databases on man-
grove forests distribution and species: a) Global Mangrove Watch (GMA: 
https://www.globalmangrovewatch.org/), b) the mangrove species occurrence dataset of 
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Global Biodiversity Information Facility (GBIF: https://www.gbif.org), c) the native distri-
bution dataset of Plants of the World Online (POWO: www.plantsoftheworldonline.org), 
and d) International Union for Conservation of Nature (IUCN) Red List of Threatened 
Species (www.iucnredlist.org). 

We first examined the change in the global mangrove forests coverage during the 
period represented by the consolidated literature. We found 36 studies that consistently 
reported mangrove forests coverage across five global mangrove regions and three dec-
ades between 1990 and 2020 (see Table 2 for details). The reported area coverage values 
for mangrove forests were checked against the GMA datasets and compared to calculate 
the change in the coverage of global mangrove forests. Subsequently, we identified the 
vulnerable and endangered mangrove species from the IUCN database and their occur-
rence and native distribution from the GBIF and POWO databases. This information was 
cross-checked using the consolidated literature. We mapped the status of the mangrove 
species across the United Nations Food and Agriculture Organization (FAO) delineated 
marine fishing areas [50] using QGIS v.3.4.4 (see Figure 1), as these provide the most de-
tailed account of the coastal wetland and mangrove species. In the third step, we identi-
fied and grouped the drivers of mangrove forest deforestation and identified their impacts 
on mangrove habitats, species, ecosystems and societies in general, and also examined 
their geographic ranges of effects (Figure 2, Table 3). For each driver and driver group, 
interacting drivers and driver groups were also identified when reported by the consoli-
dated literature. Finally, the interactions among the drivers were mapped using a Chord-
Dependency Diagram (Figure 3). 

Table 2. Mangrove coverage in global regions and the decline in coverage between 1990 and 2020. 

Global regions Mangrove coverage 
km2 

Rate of decline 
%/year 

 1990 2000 2010 2020 1990-
2000 

2000-
2010 

2010-
2020 

Western & Central Africa 24,360 24,200 23,890 23,840 0.07 0.13 0.02 

Eastern & Southern Africa 9,290 9,050 9,020 8,830 0.26 0.03 0.21 

Total Africa 33,650 33,250 32,910 32,670 0.12 0.10 0.07 
East Asia 320 250 240 220 2.19 0.40 0.83 

South & Southeast Asia 57,170 57,080 55,130 53,300 0.02 0.34 0.33 
Western & Central Asia 1,900 1,900 1,900 1,840 0.00 0.00 0.32 

Total Asia 59,390 59,230 57,270 55,360 0.03 0.33 0.33 
Caribbean 7,910 7,890 7,870 7,740 0.03 0.03 0.17 

Central America 4,920 4,830 4,820 4,660 0.18 0.02 0.33 
North America 11,950 11,900 11,670 11,520 0.04 0.19 0.13 

Total Caribbean, Central and North America 24,780 24,620 24,360 23,920 0.06 0.11 0.18 
Total Oceania 12,470 12,140 11,550 11,500 0.26 0.49 0.04 

Total South America 21,520 21,240 20,500 19,760 0.13 0.35 0.36 
World 151,810 150,480 146,590 143,210 0.09 0.26 0.23 

 

3. Changes in mangrove forests coverage 
Our consolidated literature (36) that reported changes in the mangrove forests cov-

erage covered three decades, i.e. between 1990 and 2020 and about all of the global man-
grove forests [49,51] (see Table 2 for details). The mangrove belts are largely found in the 
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equatorial coastal regions with the tropical, sub-tropical and warm temperate climate be-
tween 30° N and 30° S [11,52]. Mangroves typically grow in harsh environment with mod-
erate to high temperatures, tidal fluctuations and high salinity in groundwater [53,54]. 
These conditions nourish canopies of mangrove growth up to 30-40m in height [55]. The 
majority of mangrove forests (about 40%) covers only 4 countries, i.e. Indonesia, Australia, 
Brazil and Mexico with the Asian region holding the largest (around 42%) and most di-
verse mangrove areas [12,39]. About 15% of the mangrove forests is situated in Africa, 
while Oceania and South America cover 12% and 11% of the global mangrove forests, 
respectively [56,57]. Ramsar wetlands (the Sundarbans in Bangladesh and India, Garig 
Gunak Barlu in Australia, Cayapas-Mataje in Ecuador, Everglades in the United States 
and Douala Edea in Cameroon) had a mangrove coverage of about 378,960 km2  in 2020 
[11,58,59]. 

The studied mangrove forests by our consolidated literature exhibited an overall de-
cline of more than 5% in global coverage between 1990 and 2020 [11,39,49,60] (Table 2). 
Globally, the mangrove cover declined by 8600 km2 between 1900 and 2020 (Table 2) at a 
rate of 287 km2 per year ( Mangrove Alliance 2020). 60% of the literature that reported 
changes in the mangrove forests distribution studied countries in the South and Southeast 
Asian region, which experienced the highest mangrove loss (3870 km2 and more than 6% 
decline in the coverage) between 1990 and 2020 [11,59,62,63]. The mangrove habitat loss 
in South and Southeast Asia was recorded at an average rate of 0.34% and 0.33% per year 
between 2000 and 2010 and between 2010 and 2020, respectively, which are also the high-
est among the mangrove regions globally [12,31,64]. The mangrove habitat loss in South 
America followed a similar average rate of 0.30% and 0.31% per year between 2000 and 
2010 and between 2010 and 2020, respectively [11,12,65]. The total areal loss of mangrove 
forests in South America is 1360 km2 between 1990 and 2020 while 3937 km2 was lost in 
Asia (Table 2). Among the Asian countries, Indonesia encountered the highest areal loss 
(more than 700 km2) [38], while Malaysia experienced highest loss in percentage (more 
than 3%) [66] between 2000 and 2010. Mangrove forests in Ramsar sites also encountered 
substantial losses (5% of the global coverage) between 2000 and 2010 [58]. 

 
Figure 1. Geographic ranges of the threatened mangrove species (LC: Least Concern; VU: Vulnera-
ble; CR: Critically Endangered; NT: Not Threatened; EN: Endangered; DD: Data Deficient). 

4. Status of the mangrove species 
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Our consolidated literature reported the status of 69 mangrove plant species [67,68], 

35 of which have their native ranges in the Philippines [69,70]. Among the reported man-
grove plant species, 11 are listed as threatened (2 as Critically Endangered “CR”, 3 as En-
dangered “EN” and 6 as Vulnerable “VU”) (Figure 1). The geographic ranges of the 5 CR 
and EN mangrove species are dominantly Southeast Asia (Figure 1). Among the CR spe-
cies, Sonneratia griffithii (Lythraceae) has a restricted distribution in South Asia, and is con-
sidered very rare or is locally extinct in many parts of its range [71]. Bruguiera hainesii 
(Rhizophoraceae), the other CR species, is very rare and has a limited and patchy distri-
bution in Singapore, Malaysia and Papua New Guinea [71]. The three EN species (i.e. 
Camptostemon philippinense, Heritiera fomes and Heritiera globose, all from Malvaceae family) 
are very rare showing a patchy distribution in South Asia, particularly in areas impacted 
by ongoing coastal developments [70–72]. 

The VU mangrove plant group includes genera Avicennia and Rhizophora, which pro-
tect coastal areas from erosion, salt water intrusion, storms, high tides and floods 
[53,73,74]. The three VU Avicennia species (i.e. Avicennia bicolor; Avicennia rumphiana and 
Avicennia integra) have experienced severe decline during 1980 - 2005 in central America 
[68]. Avicennia bicolor, and three other VU mangrove species, i.e. Mora oleifera, Tabebuia 
palustris and Pelliciera rhizophorae, have their native distribution is in the Eastern Tropical 
Pacific ranging from Mexico to Colombia [68,71,75] (Figure 1). 

The threatened mangroves species use to provide last refuge for several terrestrial 
animal species, like the yellow-shouldered blackbird (Agelaius xanthomus) and the Phil-
ippine cockatoo (Cacatua haematuropygia), which have now gone extinct [62,76,77]. 

5. Environmental drivers of mangrove deforestation 
Figure 2 provides a representation of the drivers of mangrove forest deforestation 

and its consequences which are explained in the following subsections. In Table 3, the 
environmental and anthropogenic drivers of mangrove deforestation and their geo-
graphic ranges of effects are presented. 

5.1. Climate change 
79 (39%) of our consolidated literature indicated climate change driven coastline ero-

sion as a dominant environmental driver of mangrove deforestation (Table 3). Climate 
changes and impacts studied included alternations and variations in sea-levels, tempera-
ture regimes and precipitation patterns. These alternations were shown to impact the 
growth, recovery and spatial distribution patterns of the mangrove forests as well as to 
alter the composition of mangrove species [78]. The geographic ranges of climate change 
impacts covered almost all mangrove containing countries (Table 3). This section of the 
review provides a synthesis of the impacts of climate change on mangrove species and 
the past and future distribution of mangrove forests globally. 
5.1.1. Sea-level rise 

Sea-level rise was identified as an important driver of global mangrove deforestation 
by the literature studying the impacts of climate change [44,79,80]. Global warming driven 
melting of polar ice caps are projected to increase global sea level by 0.18–0.59 m between 
2090-2099 [81]. This may lead to a retreat of the mangrove forest belts in low-lying coastal 
regions and small islands, e.g. Palembang (Indonesia), Sagar Island (India), Sundarbans 
(Bangladesh), Shenzhen (China) and Small Island States such as Solomon and Nuatambu 
[82–86]. For example, sea-level is rising at a rate of  3.14 mm per year (which may increase 
up to 3.5 mm per year) at the coast of Sagar Island, India, which has led to an approximate 
0.4 km2 areal loss of mangrove forests between 2000 and 2015 [87]. 
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(a) 

 

(b) 

Figure 2. (a) Current global mangrove distribution (green stripe) and associated consolidated stud-
ies at the country level and (b) identified drivers and driver groups of mangrove deforestation. 
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The effects of rising sea-level is mediated by the availability of the coastal wetland 

sediment surfaces for the minerogenic mangroves [88,89]. The availability of sediments 
often depend on the local tectonic progressions, erosion and other geological processes 
[90]. When the coastal sediment level and the rate of accretion are exceeded by the mean 
tide level as a result of sea-level rise, the minerogenic mangrove forest may encounter 
areal loss or even collapse [91]. 

The increase in sea-level can be coupled with extreme high water occurrences as a 
consequence of fluctuations in oceanic circulations, such as El Nino Southern Oscillation 
(ENSO)’[92] and ‘Northern Atlantic Oscillation (NAO)’[93] and temperature regimes [94]. 
Such increase in the high water occurrences may further increase the mean tide level and 
impose coastal sediments to sulfide toxicity [5,35]. 
5.1.2. Changes in temperature regimes 

There has been an increase in global temperature by 0.74 °C between 1906 and 2005 
with a doubled warming rate (0.13 °C per decade) during the past five decades compared 
to the last 100 years average [95]. The warming could further accelerate ranging from 
about 0.2°C per decade to 0.4°C – 0.8°C per decade if emissions reduction strategies fail 
and aerosols were to be rapidly removed [96]. 

Increased temperature affects mangroves by changing the ecosystems configuration 
and the species distribution as well as by reducing mangrove productivity rate and chang-
ing their phenological patterns [52]. For example, the mangrove canopy heights and bio-
masses depend on the regional temperature regime. An exceedance of this regional tem-
perature regime threshold may decrease canopy growth by 1-2 m [97]. Summer heat 
waves, which are results of the global warming, drive habitat losses in the mangroves 
through defoliation and intense herbivory. For example, Hong Kong lost 22% of the man-
grove coverage during due to summer heat wave driven defoliation in the flowering sea-
sons leading to low reproductivity and fewer seedlings [98]. Exceedance of the tempera-
ture tolerance regime may also drive extinction of mangrove species, as dominantly for 
the cases of Sonneratia griffithii  and Bruguiera hainesii in the Southeast Asia [71]. 

“Hard freeze” (temperature region below -3°C) is a natural phenomenon in winter in 
the Southwest Florida, which managed the growth and expansion of the coastal mangrove 
forest [65]. With the decreasing hard freezes due to global warming, invasive plant species 
are advantaged and replacing mangrove species in this region [99].  Moreover, the sud-
den high temperature variations before and after the hard freezes slowed down the man-
grove recovery process after the hard freezes [100]. However, the decreasing hard freezes 
and global warming, coupled with the sea-level rise, may also expand the mangrove belts 
towards the higher altitudes and thus entail a northward shift in the global mangrove belt 
[101]. 
5.1.3. Changes in precipitation patterns 

Global warming will cause an increase of about 25% in average global precipitation 
by 2050 [102], although the regional patterns will vary, i.e. precipitation will increase in 
high latitudes whereas decrease in most subtropical countries that contains mangrove for-
ests [103,104]. The decreased precipitation with amplified evaporation can lead to high 
salinity in the coastal wetland zones, which in turn may adversely affect mangrove 
productivity, development, sapling and seedling and thus shrink the coverage of man-
grove forests, particularly where mangroves are already at their precipitation limits, e.g. 
arid zones of Africa and Central and South America [53,104,105]. The decreased precipi-
tation may also drive a decline in groundwater table and reduce freshwater supply to 
mangroves, which exacerbate salinity intrusion in coastal wetlands and mangrove forests 
[104,106,107]. 
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Table 2. Environmental and anthropogenic drivers of mangrove deforestation and their geographic 
ranges of effects. N/A – Not available. 

Countries 

Environmental drivers Anthropogenic drivers 
Climate changes 
(Sea-level rise, 

temperature and 
precipitation 

changes) 

Extreme 
events 

Aquaculture 
and agricul-

ture 

Settlements 
and Urbani-

zation 

Industrializa-
tion and Pol-

lution 

Flow modi-
fication 

Mexico 5 N/A 3 5 1 N/A 

Cuba N/A N/A 1 2 1 N/A 
Brazil 3 N/A 3 6 3 3 

Guinea Bissau 1 1 N/A 2 N/A N/A 
Guyana N/A N/A 2 2 1 N/A 

Saudi Arabia 1 1 1 4 N/A N/A 
Ethiopia 2 1 4 3 N/A N/A 

Mozambique  1 N/A 2 2 1 N/A 
Madagascar  4 2 N/A 2 N/A N/A 

India  9 4 6 11 7 4 
Bangladesh  6 4 6 8 2 3 
Myanmar 1 2 N/A N/A N/A N/A 
Malaysia 3 N/A 3 2 N/A N/A 

Philippines 6 2 6 1 1 1 
Indonesia 7 2 8 2 1 1 
Australia 3 4 1 6 2 N/A 

Papua New Guinea 1 1 1 1 N/A N/A 
New Zealand  2 2 1 1 N/A N/A 

Thailand 4 2 6 N/A 1 N/A 

Colombia 3 2 1 1 N/A N/A 

Nigeria 2 2 1 2 N/A 1 

Vietnam 1 2 3  1 N/A N/A 

China 2 N/A 1 9 2 1 

South Africa 1 N/A N/A 4 2 1 

Ecuador  N/A N/A 2 N/A 1 N/A 

Pakistan 1 2 2 4 1 3 

Venezuela 2 N/A N/A 1 1 1 

United States  2 4 N/A 3 N/A N/A 

Mauritius  1 1 N/A 1 2 1 

Sri Lanka 2 2 1 6 N/A N/A 

Kenya 1 1 N/A 2 1 N/A 

Japan 2 3 N/A 4 N/A N/A 

Total 79 47 65 98 31 20 
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The increased precipitation in high latitudes coupled with the increasing sea-level 

may increase productivity and expand mangrove coverage towards the landward fringe 
of the tidal wetland zones [52]. The diversity of mangrove species may also increase as a 
result of an increased fluvial sand deposits and nutrients as well as abridged sulfate level 
and decreased salinity in the high latitudinal regions, e.g. South Florida [33]. However, 
heavy and flash precipitation can cause overflow of coastal waterbodies and introduce 
freshwater channels through the coastal uplands, which can transport sediments accumu-
lated in downstream back upstream coastal areas. Such sediments overflow occurred in 
the Choluteca River of the Pacific coast of Honduras during Hurricane Mitch in 1998 [108] 
and in the Tijuana River in Southern California during the El Niño storm of 1993 [91], 
causing severe damage to the mangrove forests in these area [91]. 

5.2. Extreme events 
The geographic location of the mangrove forests makes them particularly vulnerable 

to two groups of extreme events: (i) cyclones and hurricanes and (ii) Tsunamis [37]. Ac-
cording to the Intergovernmental Panel on Climate Change (IPCC), global warming re-
sulted in the intensification of peak wind strength, tidal surge and precipitation resulted 
by the tropical cyclones and hurricanes along with an increase in their frequency of occur-
rences [109]. These impact mangrove forests temporarily through three primary means: 
sediment deposition, wind damage and submersion [35]. The intense winds lead to sud-
den and topple stems, defoliation of the canopies and damage of the mangrove tree 
branches [110]. Cyclones and hurricanes may also uproot mangrove trees through strong 
wind flow [111]. This may also affect soil stability and lead to soil erosion [91]. The long 
term impacts of cyclones on the mangroves are the decreased fertility rate, delayed seed-
ling seasons and changes in coastal hydrology causing permanent ecosystem conversion 
[112]. Moreover, with the increased cyclone and hurricane frequencies, mangroves may 
lack the time required for recovery from the temporary damages and hence, may encoun-
ter permanent loss [63]. 

Damages of several mangrove regions by extreme events were noted by 47 (23%) of 
our consolidated literature (Table 3). For example, Caribbean hurricane ‘Joan’ in 1988 
caused 11% areal damage to the mangrove forests in Caribbean and Central America with 
reduced soil stability, permanent loss of several mangrove species and loss of forest den-
sity [113]. Sundarbans in Bangladesh and India – the world’s largest mangrove forest re-
gion – has encountered a high frequency of tropical cyclones and tidal surge since the 
1960s [114]. The Sundarbans encountered an areal damage of 2500 km2 by the tropical 
cyclone Sidr in 2007 [26]. Mangrove regions in Orissa and Tamilnadu in India experienced 
severe damages by several cyclones, e.g. the Super cyclone in 1999 [115], Vardah cyclone 
in 2016 [116], Ockhi cyclone in 2017 [117], and Gaja cyclone in 2018 [118]. 

Tsunamis have emerged as an environmental driver of mangrove deforestation leav-
ing permanent damages to coastal mangrove ecosystems [119]. Particularly, the Great 
Tsunami of 2004, which originated in the Indian Ocean by an earthquake with the epicen-
ter in Sumatra, Indonesia, on the Richter magnitude scale of 9.1 – 9.3, led to a major 300 
km2 areal loss of mangrove forests in 14 countries [120,121]. Indonesia encountered the 
largest loss (35%) followed by India, Sri Lanka and Thailand. Andaman Island, India, 
Aceh Province, Sumatra and Andaman coast, Thailand lost approximately 38 km2, 7.5 km2 
and 3 km2 of mangrove forest coverage as a result of this Tsunami, respectively [122–124]. 
Tsunami driven mangrove cover and habitat losses were also observed later in Japan in 
2011 and Papua New Guinea in 1999 [119,125,126]. 
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6. Anthropogenic drivers of mangrove deforestation 

6.1. Aquaculture and agriculture 
Aquaculture and agriculture were identified as the most dominant driver of global 

mangrove deforestation in our consolidated literature accounting for approximately 47% 
of the global mangrove coverage loss [3,31,66]. Besides conversion of mangrove forests 
for fisheries, aquaculture and agriculture was related to reduced ground water levels, and 
soil and water pollution from the effluents, which further intensified mangrove deforesta-
tion [127]. For example, the mangrove habitat losses in Kenya during 2000-2010 are asso-
ciated with soil and water pollution [128], caused by the potential agricultural and aqua-
cultural intensification [66,129]. Aquaculture and agriculture were also shown to be the 
main driver of losses for the CR and EN mangrove species [71,72]. 

Globally, shrimp and other forms of aquaculture drove conversion of 38% and 14% 
of the mangrove forest areas, respectively, between 1990 and 2020 [42]. Several Southeast 
Asian countries (Myanmar, Borneo, Malaysia, and Sumatra Island) have undergone a to-
tal 10% areal loss of mangroves between 2000 and 2012 due to aquaculture [64]. Thailand 
and Vietnam are the hotspots of mangrove deforestation by aquaculture that encountered 
mangrove forests loss at an average rate of 0.09 km2 per year between 1990 and 2020 [39]. 
In Thailand, 694 km2 of mangrove areas was converted into aquaculture between 1990 and 
2019, followed by 1020 km2 in Vietnam and 65 km2 in Bangladesh. In India about 40% of 
mangrove habitats on the western coastline has been transformed for aquaculture [130]. 
About 2055 km2 and 2110 km2 of mangrove marshlands have been transformed into 
shrimp and other fish farms in the Philippines and Indonesia, respectively [131]. The ma-
jor decline of mangrove forest in Latin America is also associated with large scale shrimp 
farms and agricultural development [132], such as mangrove losses of 216 km2 in Ecuador, 
and 115 km2 in Honduras [112]. 

Intensification of agriculture is another dominant driver of defoestation in all man-
grove forests containing countries, particularly in South Asia and Latin America. For ex-
ample, the Philippines and Indonesia lost major mangrove areas to agriculture [127]. The 
recent growth of oil palm plantations in Thailand, Malaysia, Sumatra, Colombia and In-
donesia is the main driver of mangrove forests loss [38,133]. The increasing demand for 
palm oil Indonesia drove an areal expansion of palm plantation by 30% in 2019 compared 
to the coverage in 2012 by replacing mangrove forests [134]. Mangroves in Central Amer-
ica have been mostly cleared for cattle grazing and industrial farming [135]. 

6.2. Settlements and Urbanization 
The majority of our consolidated literature (98 studies) suggests human settlements 

and urbanization as an important anthropogenic driver of global mangrove deforestation 
[31,39] (see Table 3). Urbanization related activities such as clearing for urban infrastruc-
tures and timber production have led to the destruction of significant mangrove areas in 
Asia and Africa during the past 20 years [38,136]. Human settlements occupy 150 km 
along the global coastal belt land that previously contained mangroves among other 
coastal wetland elements [32,137]. The human population density in coastal regions is 
around 80 person per sq km [138] and the urbanization in coastal areas is expanding, par-
ticularly in low-lying developing countries [139]. For example, nearly 50% of the popula-
tion in African countries and Bangladesh lives at the coastline, which affect the adjacent 
mangrove ecosystems [140]. 

The geographic ranges of effect for settlements and urbanization is predominantly 
Asia and Africa [141]. Particularly, the Indian Ocean coastline, which contains the man-
grove with rich biodiversity and expands over several countries such as Sri Lanka, Myan-
mar, Bangladesh, Singapore, Indonesia and Australia, has been losing mangrove coverage 
during the last three decades due to urban encroachment [142]. Sub-Saharan countries 
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such as Mauritania, Comoros, Djibouti and Somalia encountered rapid urban develop-
ment and associated mangrove loss [143]. In Indonesia, Guinea, and Guinea-Bissau, man-
grove forests are exploited for wood harvesting and timber extraction [63] [144]. The VU 
species Avicennia rumphiana that dominantly occurs in Southeast Asia is threatened by the 
expansion of human settlements [19]. 

6.3. Industrialization and Pollution 
Industrialization and pollution represent an emerging group of driver for mangrove 

deforestation as reported by 15% of our consolidated literature (Table 3) [145]. The Carib-
bean mangrove zone, which encountered the second highest areal loss after Asia over the 
past three decades, was impacted by sewage, oil pollution, solid waste and conversion to 
landfills, mainly driven by rapid industrialization [7,146,147]. In India, a considerable 
amount of stress on mangroves is caused by domestic and industrial waste, heavy metals 
and other toxic discharge from thermal power stations in Ennore and Tuticorin [148], Ve-
danta Sterlite Copper industry in Tuticorin, nuclear power plants (Kudankulam and  
Kalpakkam) [149] and dye factories. Recent proposal by the Indian Government for drill-
ing in the Cauvery delta region for hydrocarbon and methane exploration threatened 
Pichavaram mangrove forest, Tamilnadu,  which is only 490 meters away from the ex-
ploration zone sheltering the stretch of the Tamilnadu coast from natural calamities such 
as the 2004 tsunami [150]. 

Petroleum explorations, such as in the Persian Gulf zone and resulted oil wells, oil 
refiners and oil transport led to pollutions from oil spills driving substantial mangrove 
habitat losses [151]. They can also lead to accidents, for example, the Gulf of Mexico oil 
spill in 2010 affected 10% areas of mangrove forests in  with a residue impact lasting for 
10 years [152]. On January 2017, the toxic bunker oil spill along the coast of Chennai, India 
spread 34 km across the Ennore coast and reached Pichavaram and Pulicat mangrove for-
ests affecting several native mangrove species [153]. 

Immobilization of heavy metals, such as Copper, Iron, Magnesium, Manganese, Zinc, 
Mercury, Lead and Tin, has emerged as a driver of mangrove deforestation globally 
[154,155]. At a low level of heavy metal contamination, mangrove forests may act as bio-
logical pollution sinks [156]. Depending on the nutrients cycles and sediment characteris-
tics, mangroves can dissolve metals in the deposits by exuding oxygen into the anoxic soil 
sediment through aerial roots [32,145,157,158]. However, the increasing contamination 
and discharge of heavy metals are exceeding the mangrove sink capacity and causing di-
rect damages by pollution [155]. 

6.4. Flow modification 
Flow modification by diverting upland water flows from mangroves diminishes 

mangrove productivity, as identified by 20 (8%) of our consolidated literature [136]. In 
Asia, the construction of upstream reservoirs and dams reduced the supply of sediments 
to several deltaic mangrove regions, including Ganges and Cauvery in India, the 
Sundarbans deltas of India and Bangladesh and Indus river delta of Pakistan, leading to 
an increase in wetland erosions in these regions [159]. Likewise, the annual sediment flow 
to the deltaic regions of China has reduced to 0.4 billion metric tons in 1994 to 1.1 billion 
metric tons in 2009 [87,143]. 

Coastal erosion prevention structures and seawalls lead to the modification of sur-
face run-off by increasing downwards currents and inundation in the mangrove forests 
during flash flood events [63,153,160]. In the Mississippi Delta, construction of flood con-
trol walls led to hydrological disturbances in the deltaic plain and an isolation of the river 
from the Delta affecting the mangrove zone [161,162]. Conversion of mangrove areas into 
salt pans and construction of river dams are the major causes of mangrove deforestation 
in Brazil [163]. 
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7. Interactions among drivers 

Mangrove deforestation is the outcome of the complex interactions among the inter-
connected environmental and anthropogenic drivers [164]. Our consolidated literature 
suggest that the drivers may interact within and across their groups and may thus amplify 
their impacts on mangroves [120,143,165] (Figure 3). For example, climate change induced 
decreased precipitation and drought events lead to an increase in the groundwater extrac-
tion [30]. The increase in the upstream groundwater extraction in turn leads to an in-
creased level of salinity intrusion in the downstream coastal mangrove zones [166]. More-
over, expansion of aquaculture also leads to an increase in groundwater extraction in the 
coastal zones, which also in turn leads to an increased salinity intrusion [40]. 

 
Figure 3. Interactions among the identified drivers and drivers groups of mangrove deforestation. 
The scale indicates the number of consolidated studies indicating such interactions. 

Settlements and urbanization in the costal wetland zones directly lead to interrup-
tions and alternations in the hydrological and sedimentation processes [167]. Settlements 
and urbanization are also major sources of pollution and nutrients overload [12]. The ur-
banization processes also lead to an expansion of aquaculture and agriculture in the vi-
cinity, which may also be sources for pollution in the mangroves [168]. In fact, the driver 
groups aquaculture and agriculture and industrialization and pollution exhibited the 
strongest interaction in our consolidated literature (Figure 3). 
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A considerable dieback of mangrove forests occurred between 2015 and 2016 in the 

Northwest Australian coastline is a strong manifestation of the interaction of drivers 
[169,170]. Mangrove forests on the coastline bounding low-lying plains of Australia's Gulf 
of Carpentaria progressively extended inland and to a lesser extent in a seaward direction 
between 1987 and 2015. However, between 2015 and 2016, a significant dieback occurred 
in several mangrove regions of the North and Northwest Australia [169,170]. The dieback 
is driven by a complex interaction among long term temperature and precipitation anom-
alies, El Niño Southern Oscillation (ENSO) related variation in sea level, particularly a 20–
30 cm decline in sea level during the immediate pre-dieback period and a 20–30% increase 
in soil salinization above the pre-dieback level [170]. The interaction among these drivers 
led to mangrove canopy loss, reduced Normalized Difference Vegetation Index (NDVI) 
and reduced recruitment, which in combination led to an irreversible dieback event. 

Global warming can amplify and widen the ranges of plant diseases and insect pests, 
such as fungal fruit and leaf diseases and wood-boring and leaf-feeding beetles, by 
spreading their habitats and creating favorable condition for reproduction [18,171]. These 
diseases and pests can lead to mangrove deforestation through branch and stem cankers, 
die-back and leaf galls [18]. Several mangrove species were shown to be vulnerable to 
these global warming led diseases and pests, such as Barringtonia racemosa is vulnerable 
to fruit and leaf diseases and Hibiscus tiliaceus is vulnerable to herbivory beetles [171]. The 
die-back and canker levels observed in A. marina are also associated with these diseases 
and pests. 

The impacts of sea-level rise have been exacerbated by coastal subsidence in several 
regions [172]. Coastal subsidence results from excessive extraction of subsurface ground 
water and variations in the thermal expansion across geographies, which lead to the ver-
tical motion of the landform during the tectonic movement [173]. Coastal erosion and sed-
iment deposition from the banks of large rivers have further increased subsidence levels 
through silt depositions [107]. The subsidence is particularly evident along the shorelines 
where mangrove forests area are located [10,173]. Several deltaic regions, including 
Changjiang river delta (China), Chao phraya delta (Thailand) and Mississippi river delta 
(Gulf of Mexico), were identified as extremely sensitive to sea-level fluctuations due to 
subsidence [162,174,175]. Most of the mangrove forests in Ganges–Brahmaputra–Meghna 
delta in India and Bangladesh are affected simultaneously by subsidence due to ground 
water extraction and erosion from the monsoons rains, and accelerated sea-level-rise, 
which has led to substantial habitat loss of the Sundarbans mangroves [176]. 

The aftermaths of extreme events may create opportunities for several anthropogenic 
drivers,  such as aquaculture and agriculture [79,177,178]. For example, the South and 
North provinces in Thailand have  converted the tsunami damaged mangrove areas into 
aquaculture and agricultural lands [79]. Around 1000 km2 of the degraded mangrove for-
ests in Asia were converted to other land forms (e.g. for agriculture and aquaculture) be-
tween 1990 and 2020, largely triggered by the development policies for hurricane dam-
aged lands [29,35,178,179]. 

The drivers and their interactions may go beyond the specific drivers of mangrove 
deforestation. Several coastal ecosystems, such as ocean algae, coral reefs and seagrasses, 
are closely associated with adjacent mangrove forests [53,180]. For example, coral reefs 
supply nutrition to the downstream mangrove forests shaping overall mangrove health 
and seedling rates [181]. Drivers affecting these adjacent coastal ecosystems also passively 
affect mangrove forests, e.g. bleaching of coral reefs will decrease nutrition flows and in 
turn lower productivity of mangrove forests [53,182]. 

8. Conclusions and outlook 
This review contributes with a global synthesis of the mangrove deforestation sce-

nario over three decades, i.e. between 1990 and 2020. Our global level synthesis indicates 
the Southeast Asian region as particularly vulnerable to mangrove deforestation with the 
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highest loss of mangrove coverage between 1990 and 2020 (Table 2). Consequently, we 
urge for strong mangrove monitoring and conservation measures in the Asian region, 
particularly in countries like Indonesia, Malaysia and Bangladesh. 

Several technical difficulties have been reported by our consolidated studies regard-
ing monitoring of mangrove regions. For example, most of the deforested mangrove areas 
replaced with agriculture or other plantations has been misclassified as mangrove forests, 
particularly in Indonesia [64]. This is due to oil palm plantations and palm orchards that 
replace mangrove forests may reflect the same color bands in satellite images [134]. Also, 
even though the mangrove forests in Brazil have been substantially affected by human 
settlements, aquaculture and water pollution, little mangrove area loss has been docu-
mented since 1980 [68]. 

Technical difficulties also remain in quantifying anthropogenic drivers’ impacts, for 
example, quantification of the impacts of population increase and urbanization on 
mangrove forests coverage in Asia (Gandhi and Jones 2019a, Giri et al 2015, Latiff and 
Faridah-Hanum 2014). The advent of satellite imageries and sophisticated image classifi-
cation and detection techniques have advanced quantification and trend analyses for an-
thropogenic activities [31]. Future research should focus on advancing the quantification 
of the association between anthropogenic drivers and mangrove coverage changes in un-
der studied regions.  

We also drew on 11 threatened mangrove species and their native geographic ranges. 
Many of these species may soon be locally extinct, e.g. Sonneratia griffithii and Bruguiera 
hainseii [71] in Asia. Local extinction of these species may infer global loss. According to 
IUCN, there are no conservation measures specific to most of these threatened species. 
We therefore recommend a continued monitoring and research on these species, as well 
as the inclusion of these species in the marine and coastal areas protection programs [68]. 
Although mangroves are protected and marginally restored during the last decades in 
several regions (for example, Avicennia integra [73] has been conserved in a remote area of 
northern Australia [184,185]), little is known about the achievements of these local conser-
vation efforts while mangrove areas globally continued to decline. Hence, a global coor-
dination of these in-situ conservation actions is required with a correct management of 
Protected Areas Network, to fully protect species and the entire mangrove ecosystems 
[186,187]. 

We identified two major groups of environmental drivers: climate changes and ex-
treme events, and four groups of anthropogenic drivers: aquaculture and agriculture, set-
tlements and urbanization, industrialization and pollution and flow modification, which 
led to the mangrove deforestation globally observed in our consolidated literature. Our 
reviewed studies pointed to aquaculture and agriculture and related anthropogenic activ-
ities as the predominant driver of global mangrove deforestation although the geographic 
ranges of their effects varied (Table 3). Gradual climate variations, i.e. seal-level rise, pre-
cipitation and temperature changes, constitute the second major group of drivers of de-
forestation of the global mangrove forest with visible direct impacts on the equatorial re-
gions, e.g. Central America and Asia. Settlements and urbanization constitute the third 
major group of drivers and were indicated as the main drivers of mangrove deforestation 
in Asia and Africa including India, Bangladesh, Thailand, Vietnam, Mauritania, Comoros, 
Djibouti and Somalia by the majority of our consolidated literature (Table 3). However, 
the data for drivers available from certain areas needed to be consolidated to arrive at our 
global drivers database and therefore, a robust global drivers database for mangrove de-
forestation requires a precise global assessment, e.g. regular updates of Global Mangrove 
Watch [11]. Our review results can contribute to update the datasets for assisting the de-
velopment of policies for mangrove conservation. Such global level assessments will also 
be helpful for disentangling and quantifying the associations of climatic changes and an-
thropogenic activities with mangrove cover changes globally and also for predicting fu-
ture mangrove patterns and provision of ecosystem services.  
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The complex interactions among the drivers identified in this review indicates that 

mitigating drivers of mangrove deforestation may have co-benefits for other ecosystems. 
For example, bad shrimp farming practices and produced pollution degrade mangroves 
but also adjacent freshwater and coastal ecosystems [188]. Investments in proper shrimp 
farming infrastructure and development of sewage treatment plants will thus benefit both 
mangrove forests and those adjacent ecosystems [42]. The consequent increase in the 
availability of usable freshwater may in turn decrease the pressure on groundwater ex-
traction and thus reduce salinity intrusion to mangroves. 

Overall, mangrove conservation should be prioritized over restoration. Measures 
have been taken to restore the wetlands by diverting the river water into the wetlands and 
by creating marshes by pumping the dredged sediments [32]. However, these measures 
are expensive and unaffordable in many places and may have adverse consequences for 
other ecosystems [32]. 
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