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Abstract—This work presents an effective tool to predict the
future trajectories of vehicles when its current and previous
locations are known. We propose a Long Short-Term Memory
(LSTM) Recurrent Neural Network (RNN) prediction scheme
due to its adequacy to learn from sequential data. To fully learn
the vehicles’ mobility patterns, during the training process we use
a dataset that contains real traces of 442 taxis running in the city
of Porto, Portugal, during a full year. From experimental results,
we observe that the prediction process is improved when more
information about prior vehicle mobility is available. Moreover,
the computation time is evaluated for a distinct number of
prior locations considered in the prediction process. The results
exhibit a prediction performance higher than 89%, showing the
effectiveness of the proposed LSTM network.
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I. INTRODUCTION

Vehicle trajectory prediction has been a topic of high interest
due to the vast domain of applications, including but not
limited to mobility management, data traffic optimization, data
placement, to the optimization of the quality of service (QoS)
of vehicular and wireless networks. A useful application of tra-
jectory prediction is the estimation of the next location where a
mobile user will require a network service. Thus, the network
operators on reserve resources in advance and react efficiently
to the network changes. Moreover, the fifth-generation (5G)
systems adopt a technology called Mobile Edge Computing
(MEC) to provide computing services for vehicles, which
requires accurate and efficient trajectory prediction models,
to reduce the transmitting and computing latency. In this way,
vehicle trajectory prediction plays a critical role in designing
future mobile communication systems.

Trajectory prediction relies on estimating the next location
or consecutive locations where a vehicle will move to, using
prior data describing the different vehicles’ mobility statistics.
The prediction models available in the literature are divided
into two main categories: short-term and long-term trajectory
prediction models. The short-term trajectory prediction models
[1] rely on one or two previous locations and on the current
location to predict the next location. In contrast, the long-
term trajectory prediction models [2] predict the location of the
vehicles at a more distant future time. Most of the works in the
literature only consider short-term models to predict vehicular

trajectories in urban areas, since long-term prediction models
achieve poor prediction performance due to the randomness of
the vehicles’ position over time [3]. The works available in the
literature addressing the trajectory prediction problem usually
assume regular human trajectories or patterns [4], usually
limited to residential areas, making the prediction challenge
more straightforward. In contrast, the regular movements of a
taxi’s trajectory are less deterministic due the wide diversity
of taxis’ journeys. In the literature the trajectory prediction
models consider that each inference unit is composed of a
sequence of trajectory locations to fully learn the vehicles’
mobility patterns. However, most of the existing works only
studied the prediction performance for a fixed length of the
trajectory segments.

Motivated by the difficulty of predicting taxi’s trajectories
in urban areas, and the curiosity about the impact of different
amounts of prior data, we propose a LSTM based neural
network to estimate taxis’ mobility. Firstly, we preprocess
the vehicles’ trajectory raw data of the real traces performed
by 442 taxis running in an urban area. Then, we train the
LSTM neural network with the dataset of sequences that
results from the preprocessing method, adopting five different
lengths of prior information. Lastly, we perform an evaluation
of the proposed prediction process based on the LSTM neural
network’s output.

The rest of the article is organized as follows. Section II
reviews the related works. Section III presents some basic
terms and definitions and analyzes the dataset used in the
training process. In Section IV, we describe the LSTM neural
network to predict the vehicle trajectory. Section V performs
an evaluation of the proposed prediction model and Section
VI concludes the paper.

II. LITERATURE REVIEW AND CONTRIBUTIONS

According to [5], several studies have been proposed to
address the problem of trajectory prediction. For example,
Dash et al. [6] proposed a dynamic Bayesian network, which
models a sequence of variables (location, day of the week,
time of the day) to predict the user’s next place. However,
the sparsity problem of trajectories makes it challenging to
conduct inference from the historical data in a Bayesian
network, resulting in a computationally intensive method.
More recently, the authors of [7] addressed sparse historical



trajectory data by proposing a prediction model that employs
the pattern of group travelers to improve personal location
prediction precision. However, a prediction model based on
group trajectory can be extremely vulnerable to external crowd
behavior. Under the scope of LSTM neural networks, [8]
proposed an LSTM to predict vehicles’ trajectory. However,
this approach is mainly designed for a highway scenario and
uses high diversity of features, such as location, velocity,
and vehicle’s type, limiting its practicability. The work in [9]
extended the work [8] by employing a probabilistic vehicle
trajectory prediction method based on LSTM RNNs, which
estimates the future position of the surrounding vehicle at a
predetermined time. However, this approach is limited because
it cannot determine the continuous trajectory. Aiming to im-
prove the prediction accuracy, Chandra et al. [10] modeled
the interactions between the road agents through an LSTM
for predicting their trajectories in real-time. However, the
model is designed for dense heterogeneous traffic, having
some limitations on homogeneous or sparse traffic. Similarly,
but designed for a dynamic traffic environment, [11] proposed
an LSTM based model, which runs on the MEC to predict the
vehicles’ trajectories.

Concerning to the existing literature, this paper presents the
following contributions:
• The design of a LSTM neural network that predicts

the vehicles’ trajectory by using the prior sequence of
trajectory locations;

• The pre-processing of the vehicles’ trajectory raw data
to train the LSTM neural network with the sequences of
trajectory locations;

• The impact of different amounts of prior data considered
in the LSTM neural network input is evaluated for two
distinct evaluation metrics: prediction performance and
computation time;

• The presentation of experimental results showing the high
prediction performance of the proposed LSTM RNN and
the low computation time of the prediction process.

III. PRELIMINARIES

A. Basic Terms and Definitions

In this work, we consider multiple vehicles traveling in a
specific region, represented by a grid map. The grid map is
two-dimensional, and each logical geographical sub-region of
the map is denoted as a cell (cη). An example of a grid map
representation can be seen in Fig. 1. The position of each
vehicle is sampled periodically and associated to a cell of the
grid map.

Next, we introduce several terms and definitions adopted in
the rest of the paper.

Definition 1. A cell cη with η ∈ {1, ..., N} represents each
two-dimensional division of the grid map where the vehicles
are moving, where N represents the maximum number of cells.

Definition 2. A trajectory Tκ = {c1, c2, ..., cΞ} denotes a list
of Ξ cells sequentially visited by a vehicle. Each trajectory
has a variable number of Ξ visited cells.

Fig. 1. Grid map representation with N = 16 cells.

Spatio-temporal trajectories are generated when the vehicles
move from the starting point to the endpoint of a journey.
Considering that each journey has a variable duration, the
trajectories are divided into multiple sequences, to guarantee
a coherent granular temporal basis.

Definition 3. A sequence Sκ = {c1, c2, ..., cΛ} is formed by
a finite set of Λ consecutive visited cells. The number of cells
(Λ) that compose the sequence κ ∈ {1, ...,Ω} is the same for
all Ω sequences. In the network training phase, a sequence is
considered as a unit of inference.

Definition 4. The set of sequences Φ = {S1, S2, ..., SΩ} is
formed by all Ω sequences that result from the preprocess
of vehicles’ trajectories. The set Φ will have a significant
number of identical sequences. Thus, Ψ represents the number
of unique sequences found in Φ.

The definitions of the symbols are listed in Table I.

TABLE I
LIST OF SYMBOLS.

Symbol Description
N Number of cells of the grid map
cη Cell η, η ∈ {1, ...,N}
Ξ Number of cells in a trajectory
Sκ Sequence κ, κ ∈ {1, ...,Ω}
Ω Total number of sequences
Λ Sequence length
Φ Set of sequences
Ψ Number of unique sequences in set Φ

B. Data Analysis
The dataset used in this work contains the real traces of

trajectories performed by 442 taxis running in the city of



Porto, Portugal, during a complete year (from 01/07/2013
to 30/06/2014). Each taxi operates through a central taxi
dispatch system, using GPS data acquisition devices installed
in the vehicles. The dataset is provided by the UCI Machine
Learning Repository, and is described in [12]. Each data entry
corresponds to a completed trip of a taxi, containing a total
of 9 features. Still, the ones relevant for this work are the
identifier of each trip (TRIP ID), the timestamp of the trip’s
start (TIMESTAMP), and the polyline containing the GPS
coordinates regarding the trajectory of the trip (POLYLINE).
Each polyline has a list of GPS coordinates mapped as a string
in the format [longitude, latitude], acquired once every 15
seconds. The first pair represents the trip’s start and the last
the trip’s end. Table II represents the relevant features for this
work.

TABLE II
FORMAT OF EACH ENTRY DATASET.

TRIP ID TIMESTAMP POLYLINE
0589 1372636858 [[−8.618, 41.141], ..., [−8.630, 41.154]]

We preprocess the vehicles’ trajectory raw data, which
includes converting each pair of GPS coordinates to a cell of
the grid map and partitioning each trajectory into sequences.
To simplify the process of describing trajectories, we consider
that a trajectory is no longer represented by a list of GPS
coordinates but as a list of cells. Thus, each pair of coordinates
of a trajectory is converted into a cell of the grid map
represented in Fig. 1. Having characterized each trajectory
as a list of cells, we collect Λ consecutive cells to form a
sequence, Sκ. The next sequence Sκ+1 starts with a shift of 1
cell from the beginning of Sκ. The entire process is repeated
for all sequences of a trajectory and all trajectories.

In Table III, we analyze the total number of sequences (Ω)
and the number of distinct sequences (Ψ), for five different Λ
values (Λ = {4, 8, 12, 16, 20}). The total number of sequences
increases as Λ decreases, meaning that more sequences are
needed to characterize all trajectories when we consider fewer
cells per sequence. Besides that, the number of unique se-
quences (Ψ) increases with Λ.

TABLE III
TOTAL NUMBER OF SEQUENCES (Ω) AND NUMBER OF DISTINCT

SEQUENCES (Ψ).

Λ Ω Ψ
4 2752580 1349
8 2354791 10473
12 1967109 36403
16 1598190 82082
20 1263477 136450

IV. LSTM FOR TRAJECTORY PREDICTION

We address the problem of trajectory prediction of vehicles,
using the Λ−1 prior observed cells to predict the next one, cΛ.

The prediction is based on an LSTM recurrent neural network
due to its reputation for dealing with sequential data.

This section describes the structure of the LSTM neural net-
work and specifies the enhancements involved in the training
phase to obtain accurate vehicle trajectory predictions.

A. Design of LSTM structure

We use an LSTM recurrent neural network to solve the
vanishing gradient problem that can have a significant impact
on dealing with long-term sequential data [13]. The LSTM
is well-known for sharing the cell states across each forward
step, making the architecture ideal to deal with trajectories,
where it is possible to reinforce important patterns or discard
the redundant instead.

In Fig. 2, we show the structure of the adopted LSTM
neural network. As can be seen, the LSTM layer is composed
by Λ − 1 discrete time steps and admit an input vector Xi
(i ∈ {1, ...,Λ − 1}) for each step, containing the information
of the visited cell. We use one-hot encoding to generate the Xi.
Thus, Xi is a 1×N one-hot vector with the value 1 assigned to
the index η, used to identify the cell of the grid map and zeros
in the remaining vector. Given an input sequence represented
as {X1, ...,XΛ−1}, the proposed LSTM network computes the
output YΛ. According to the input, the output is also an one-
hot encoding vector (1 × N vector) where the index η that
contains the single 1 will correspond to the predicted cell
cΛ, or the labeled output during the learning stage. In the
LSTM layer, we adopt 16 LSTM units for each step. Since
the structure of the LSTM unit may adopt different models
we follow the one proposed by Hochreiter & Schmidhuber
[13]. The structure of the unit is composed of the operations
involving the input, output, and forget gates.

To finalize the structure, we adopt a Sigmoid function in
the Dense Layer. The Sigmoid activation function is a logistic
function that is useful in the prediction of one-hot vectors [13],
as is the case of the desired output YΛ.

Dense

LSTM LSTM LSTM

1 000 ... 1 000 ... 0 000 ...{ { {
Layer

1 000 ...

{

{16 units

Fig. 2. LSTM structure.



B. Network Training

To learn the vehicles’ mobility patterns, during the training
process we use the dataset Φ containing the sequences de-
scribed in the Section III-B. We selected 70% of the dataset
for the training phase, and 20% for the validation. In order
to optimize the training phase, we adopt the Adam optimizer
and the categorical cross entropy as the loss function. We
start the training phase with a learning rate of 0.00001, and a
fixed number of 150 epochs. Furthermore, we added an early
stoppage algorithm where we selected 2 levels of patience, i.e.,
the training phase stops when two negative oscillations in the
loss function occur. We decided to add the stoppage algorithm
in order to avoid over-fitting in the model.

In Table IV we present the LSTM structure and model
configurations.

TABLE IV
LSTM MODEL CONFIGURATION.

LSMT Layer Units = 16
Dense Layer Sigmoid with 16 outputs

Loss Function Categorical cross entropy
Optimizer Adam (learning rate = 0.00001)

V. EXPERIMENT RESULTS

We performed an evaluation of the proposed LSTM network
with the taxis’ sequence dataset. We used the Tensorflow [14]
platform with the Keras [15] library to implement the model.
The LSTM network and data access procedures were built
using the Python programming language. The LSTM network
was trained with a NVIDIA GeForce RTX-2080 GPU, and we
conducted the experiments on a Intel Core i7-8750H 2.2 GHz
processor.

The validation method used to assess the prediction process
is based on the output of the LSTM neural network. We eval-
uate the prediction performance by comparing the predicted
cell cΛp , with the cell cΛt of the trajectory sequence in test,
Stest = {c1t , c2t , ..., cΛt }.

The prediction performance (PP) is the ratio of correctly
predicted cells over the total number of sequences in the test
set, T test, and is defined as

PP =
1

|T test|

|T test|∑
z(cΛp , c

Λ
t ), (1)

where z(cΛp , c
Λ
t ) is 1 if the predicted cell cΛp is equal the true

cell cΛt , and 0 otherwise.
We evaluate the prediction performance for T test, which

is composed by 105 sequences found in Φ, and considering
5 values of Λ, thus assessing different amounts of prior data
in the prediction process. From the results reported in Fig.
3, we observe that the prediction process is improved with
the increase of Λ. The results show that the LSTM prediction
model achieves better results as more prior observations are
considered in the prediction process, i.e., by considering a

LSTM RNN with more input vectors Xi, according to the Λ
value.

Fig. 3. Prediction performance for tested sequences.

Besides analyzing the prediction performance, we explore
the confusion matrices [16] generated for Λ = 4 (Fig. 4(a))
and Λ = 20 (Fig. 4(b)). Each row represents the true (actual)
cells in both confusion matrices, while each column denotes
the predicted cells. The diagonal shows the cells that are
correctly predicted. From Fig. 4, we observe yellow diagonals
representing the high predicted performance ratios. In both
confusion matrices the prediction performance of a given cell
is over 82%, and the prediction method with Λ = 20 achieves
a higher performance for almost all cells.

To analyze the computational efficiency of the different
LSTM prediction methods, with different Λ, we evaluate the
computation time for a T test containing 1000 sequences. The
computation time refers to the cumulative time to predict the
next location of a number of sequences indicated on the x-
axis. From Fig. 5 we conclude that the computation time
increases with the parameter Λ, explained by the increasing
of sequences in Φ and the number of cells per sequence.
Moreover, the computation time increases linearly with the
number of sequences for all LSTM prediction methods.

VI. CONCLUSION

We have proposed an accurate and efficient tool to predict
the next cell where a vehicle moves to. To achieve this goal, we
have adopted a LSTM RNN that is adequate to deal with se-
quential data. Then, we have designed an evaluation method to
assess the prediction process, based on the output of the LSTM
network. Experimental results demonstrate effectiveness of the
proposed solution, exhibiting a prediction performance higher
than 89%, and showing that the prediction process is improved
when more observations are considered before performing the
prediction of the next cell.



(a)

(b)

Fig. 4. Confusion matrices for two different prediction methods. (a) Confusion
matrix for Λ = 4. (b) Confusion matrix for Λ = 20
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