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Abstract

Being the youngest in a cohort entails many penalties. Using administrative

data of every public-school student in Portugal, we show that although performance

gains from being 1-year older fade quickly from primary education to high school,

age-related penalties persist through a combination of grade retention, educational

tracking and testing policies. Those that start school younger are more likely to

repeat grades and ultimately drop out from school. Older entrants are more likely

to enroll in scientific curricula in high school, are more successful at accessing public

higher education and enroll in more selective undergraduate courses.
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I. Introduction

Every year millions of children around the world enter school for the first time. However,

school age regulations make them initiate formal schooling at very different stages of their

social, emotional and cognitive development. That these differences play a significant role

in explaining individual outcomes, and academic success in particular, is a well-established

empirical fact1. Children starting school older typically reveal higher cognitive capacity,

as measured by standardized achievement tests (e.g. Bedard and Dhuey, 2006; Puhani

and Weber, 2007; McEwan and Shapiro, 2008; Elder and Lubotsky, 2009; Cascio and

Schanzenbach, 2016; Attar and Cohen-Zada, 2018).

Less clear is how given institutional features change the extent of these effects through-

out a child’s schooling career and onto adulthood. Measured cognitive differences tend

to fade as children age, but effects may persist through other mechanisms. In countries

where grade retention is a typical strategy, younger entrants are likelier to repeat grades

(e.g. McEwan and Shapiro, 2008). In systems that track students into different curricular

offers, older students are likelier to choose or be tracked into an academically-oriented of-

fer (Puhani and Weber, 2007; Schneeweis and Zweimüller, 2014; Attar and Cohen-Zada,

2018).

Recent literature shows that age differences impact on individual and social well-being

through mechanisms other than academic success. Younger students are more likely to

be classified as having learning disabilities and attention deficit disorders (Dhuey and

Lipscomb, 2010; Elder and Lubotsky, 2009; Evans et al., 2010; Mühlenweg et al., 2012),

are less persistent and more irritable (Mühlenweg et al., 2012), are significantly more likely

to suffer from bullying or victimization (Mühlenweg and Puhani, 2010a) and less likely to

hold leadership positions in high-school (Dhuey and Lipscomb, 2008). Younger entrants

are also shown to have a higher propensity to commit crimes as teenagers (Landersø et al.,

2017), as well as a higher likelihood of juvenile delinquency (Cook and Kang, 2016) or

of being incarcerated for juvenile crime (Dhuey et al., 2017). The impact on long-term

outcomes is somewhat more ambiguous. While some find a causal link between starting

school later and higher wages (Fredriksson and Öckert, 2014; Kawaguchi, 2011) or the

likelihood of becoming a corporate CEO (Du et al., 2012), others do not find long-term

effects on prime-age earnings (Black et al., 2011; Dobkin and Ferreira, 2010)2.

We contribute to the literature by empirically estimating the impact of school starting
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age on a wide range of individual outcomes, from early childhood until the end of upper

secondary education. For that purpose, we use de-identified longitudinal administrative

records of every student enrolled in public schools in Portugal. To the best of our knowl-

edge, we provide the first plausibly causal evidence about the impact of school starting

age on student outcomes in Portugal3, a school system with idiosyncratic characteristics:

contrary to most countries, beyond a binding enrollment cutoff at 1 January, parents

whose children are born as early as 16 September have leeway to legally postpone their

child’s entrance in school. Our identification strategy exploits variation in school starting

age around cutoff discontinuities using exact birth dates (such as in McEwan and Shapiro,

2008; Evans et al., 2010; Dobkin and Ferreira, 2010; Peña, 2017; Attar and Cohen-Zada,

2018). The use of exact birth dates enable us to avoid biases induced by seasonal patterns

present in coarser measures, such as quarter or month of birth (as noted in Buckles and

Hungerman, 2013). Resting on a well-identified set of falsifiable assumptions, our design

is analogous to a local randomized experiment (Lee and Lemieux, 2010). Our estimates

rely on local polynomial methods in accordance with the growing methodological con-

sensus for their adequacy in regression discontinuity designs (Gelman and Imbens, 2017;

Imbens and Lemieux, 2008)4. Given the longitudinal nature of our samples, and in order

to allay concerns with non-compliance, we estimate local average treatment effects within

the context of a fuzzy regression discontinuity design, going beyond intent-to-treat effects

where possible.

We find that being 1-year older when entering school leads to significant gains in

perceived cognitive capacity at grades 4, 6 and 9. In grade 4, Math and Language exam

scores are, on average, higher by 0.27 and 0.36 standard deviations (σ), respectively.

However, the gains on test scores from starting school later fade quickly. By the end

of grade 9 we estimate the impact to be of about 0.20 of a standard deviation (σ) in

Language and 0.16σ in Math. The rate at which local average treatment effects fall

suggests that the findings are consistent with the hypothesis that differences in cognitive

maturity when taking the test—rather than school entry postponement—are driving the

results. As we only have metrics of individual outcomes measured at the same time—not

at the exact same age—the estimates combine the effects of starting school age with those

of age-at-test.

Despite the decline in the achievement premium, we also find that school starting age
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differences persist well beyond elementary education. In a country where grade retention

remains ubiquitous as a remedial strategy, older entrants have a 5 percentage points (pp)

lower probability of repeating at least one grade in primary education, and 4pp by the

end of grade 9. Younger students are doubly penalized, as even conditional on exam

performance, younger students continue to be significantly more likely to be retained in

the same grade. Furthermore, older students have a lower probability (-2pp) of dropping

out from school by the end of grade 9. Significantly, intent-to-treat effects show that

those eligible to start school one year later are more likely to enroll in the academic track

(2pp) in high school, and conditional on being enrolled in the academic track, opt more

often for scientific curricula (3pp), have higher application scores to access public higher

education (0.10σ) and enroll in more selective undergraduate courses (0.13σ). On the

other hand, we find no evidence of differences on demand for college seats, enrollment in

STEM courses, or first-choice application success.

Section II further describes the empirical context of our findings. Section III describes

the empirical strategy, Section IV details the data used in the analysis and Section V

shows the empirical validity of our strategy. Finally, Sections VI, VII and VIII describe

all findings in greater detail. Section IX concludes.

II. Institutional Setting

Portugal’s compulsory education laws dictate enrollment in first grade to be mandatory

for every child who is at least 6-years old by 15 September. Yet considerable leeway is

given to parents wanting to enroll their children after this date. Students born between

16 September and 31 December of a given calendar year are deemed conditional and

can still enroll if parents so require and there are available places in already created

classes in school5. The existing rules implicitly generate a second—more binding—cutoff

at 1 January, as children born in the beginning of the next calendar year enroll in the

following school year. Children must thus be at least 5.7 years-old by 15 September, when

starting school. Since most conditional students (86%) in Portugal are not deferred to

enroll the following year, a child born in the beginning of January typically enrolls in first

grade 1-year later than their peers born in the end of December.

The Portuguese school system is organized in three sequential levels: early childhood

education and care, basic education and upper secondary education. Basic education

covers the initial nine grades of schooling and is divided in three studying cycles, of
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various lengths. First cycle comprises the four initial grades of primary education and

teaching of most subjects is under the purview of a single teacher. Second cycle has a

length of two academic years. The third cycle of basic education—comprising grades 7

through 9—corresponds to lower secondary education. At completion of basic education,

typically at age 15, students transition to upper secondary education (high school). Upper

secondary education offer is divided in a general academic and vocational pathways. In

the general academic track, students can select on of four concentrations: science and

technology, social and economic sciences, languages and humanities, or visual arts. On

the other hand, the vocational track offers a plethora of denominations, with curricula

geared toward earlier integration in the labor market. Compulsory schooling laws in the

country determine that students should be enrolled in school until finishing the academic

year when they turn 18 or until high school graduation if before the age of 18.

Students in the Portuguese school system are evaluated through teacher testing and

national exams or assessments. Barring accommodations to specific student needs, na-

tional exams in Portuguese Language and Math are performed by every student in the

system, by the end of fourth grade (until 2015) and ninth grade. Children sit through

the exam at exactly the same date and time, answering the same questions. Exams are

then anonymously evaluated by randomly allocated evaluator teachers, from schools other

than the school in which the student is enrolled. By the end of grade 6, national assess-

ment tests follow a similar procedure. In order to graduate from high school’s general

academic track, students must also sit through national exams – typically completing two

course-specific exams in grade 11 and another two in grade 12, in most cases Portuguese

Language and Math. Students can only gain admission to college if they have a passing

grade in both grade 12 exams.

Admission to public higher education in Portugal is centrally governed. Candidates are

publicly listed by the government according to candidate’s ranked preferences, application

scores and available capacity. Application scores combine high school GPA and exam

scores. The application score depends on the college and department to which the student

applies. In final application scores, high school GPA must weigh a minimum of 50 percent

in the admission decision. However, each tertiary education institution can set the weight

of exam scores within a band of 35 to 50 percent of the total application score.
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III. Empirical Strategy

We start with the basic relationship of interest captured by the following linear model:

Yig = β0 + βAi +Xiδ + φc + ϵi (1)

Where Yig is the outcome of interest of student i measured by the end of school year g,

Ai is the age of student i measured in decimal years as of 15 September in the year she first

enrolled in first grade, Xi is a vector of individual and family background characteristics

measured during the year student i first enrolled in first grade, φc are cohort fixed effects

and ϵi is an idiosyncratic error term. In this setting, β represents the marginal effect

of delaying enrollment by 1-year. Nonetheless, Equation 1 does not account for school

starting age being likely correlated with characteristics of students and their families that

are not typically observed in the data, such as learning maturity.

To overcome endogeneity concerns, we exploit exogenous variation induced by the

school starting age regulations. In Section V we present evidence that exists a sharp

discontinuity at 1 January, and a kink at the 16 September cutoff. Therefore, our main

identification strategy relies on comparing outcomes of students that are born before the

cutoff of 1 January and those that are born on or after that same date and are induced

to enroll in the following school year.

We interpret our regression discontinuity results in light of a potential outcomes frame-

work (Hahn et al., 2001). Provided that other characteristics associated with the outcomes

of interest are continuous at the cutoff and birth dates around the cutoff are as good as

randomly assigned, the outcomes of those born before the cutoff provide a convincing

counterfactual for those that are born after the cutoff had they enrolled one year earlier.

In order to estimate our coefficients we first construct a variable Bi with 366 unique

integer values (allowing for leap years) that identify the birthday of student i in the

calendar year, as in McEwan and Shapiro (2008). We standardize Bi as a distance (in

days) to the cutoff of 1 January (Bi = 0) and make it run from 1 July (Bi = −184) to

30 June (Bi = 181), so that we have the discontinuity at about mid-range of the running

variable. Based on it we define an indicator variable, τi = 1(Bi ≥ 0), which identifies the

values of Bi that are equal to or exceed the enrollment cutoff of 1 January.

We estimate the discontinuity using both local-linear and local-quadratic regression

methods, through the following reduced form weighted least squares estimator6:
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min

N(h)∑
i=1

(Yig − α0 − ατi − f(Bi))
2Kh(τi, Bi) (2)

Where f(Bi) is, depending on the specification, a piecewise linear (ϕ1Bi + ϕ2τiBi) or a

piecewise quadratic
(∑2

p=1 ϕpB
p
i +

∑2
p=1 ϕppτiB

p
i

)
function of the running variable inter-

acted with the cutoff. Kh(τi, Bi) is a triangular weighting kernel function with bandwidth

h, given by:

Kh(τi, Bi) = max

(
0, 1−

∣∣∣∣Bi

h

∣∣∣∣) (3)

The bandwidth h here denotes the window of birth dates (Bi) to the left and to the

right of the cutoff, used to estimate the coefficient of interest α, andN(h) : 1 {−h ≤ Bi ≤ h}.

The triangular kernel assigns zero weight to all observations outside the interval defined

by the bandwidth [−h, h] and positive weights to all observations within, with weights

declining symmetrically and linearly as the value of the running variable gets farther away

from the cutoff. In order to avoid imposing an ad hoc bandwidth length, we use data-

driven methods to select optimal bandwidth for each regression. In particular, we use an

upgraded version of the mean square error (MSE) optimal bandwidth selectors discussed

in Imbens and Kalyanaraman (2012) (for the linear case) and Calonico et al. (2014b) (for

the quadratic case) and derived in Calonico et al. (2018)7.

Since existing rules in Portugal provide leeway for parents to delay children’s enroll-

ment between the 16 September and 31 December (covering our control group), and since

some parents may not comply with the more binding cutoff of 1 January, α captures at

an intent-to-treat effect. Therefore, we estimate local average treatment effects (LATE)

through a fuzzy regression discontinuity design, using the indicator of being born after

the cutoff (τi) as an instrument for school starting age (Ai):

min

N(h)∑
i=1

(Ai − θ0 − θτi − f(Bi)−Xiδ − φc)
2Kh(τi, Bi) (4)

min

N(h)∑
i=1

(
Yig − β0 − βÂi − f(Bi)−Xiψ − φc

)2

Kh(τi, Bi) (5)

Estimates of parameter θ in first stage Equation 4 identify the estimated proportion

of the complier population with the delayed school entrance close to the cutoff. Estimates
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of β, in Equation 5, identify the local average treatment effects for those complying with

the cutoff (Imbens and Angrist, 1994), as further discussed in Section V. For precision,

we also control for a vector of individual and family background characteristics (Xi) and

cohort fixed effects (φc).

Importantly, the plausibly causal interpretation of the effects rests on the assump-

tion that parents do not systematically time births relative to the cutoff. In the next

Section we provide evidence that there does not seem to be systematic manipulation

of the running variable close to the cutoff. Additionally, we run balancing analysis of

observable socioeconomic characteristics of the students around the cutoff. Finally, our

working assumption is that precise birth timing around the cutoffs does not introduce

sharp differences in unobserved characteristics that affect our outcomes of interest.

IV. Data

A. Data Description

We use a de-identified administrative dataset (MISI)8 containing detailed information on

every student enrolled in Portugal from 2006 to 2017. A unique student identifier tracks

students throughout grades, even as they change schools, allowing us to have a panel

dataset of every student since they are first observed in the education system until the

most recent observation9 We focus on non-adult students enrolled in the regular public

system of education10.

We merge MISI data with a two other administrative datasets (ENEB and ENES)

containing comprehensive information on student achievement school and national exams.

Sitting standardized achievement tests in Portugal is not a stable policy, so we can only

recover a few years of outcome data. During the period for which there is available data

we can gather grade 4 national exam scores sat between 2013 and 2015, as well as grade

6 scores for the period 2012-2015 and grade 9, 11 and 12 information for the entire period

of the dataset (2007-2017). Our first analytical dataset contains student-level information

at grade 1 as well as student outcomes for those that sat at least one Math or Language

grade 4, grade 6 or grade 9 national exam, a total of 660 573 children. For reduced form

estimates of upper secondary and post-secondary outcomes, we use a second anaytical

dataset where over 630 thousand students are followed from grade 9 until the end of

grade 1211.
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B. Main Variables

Outcomes (Yig). The main outcome variables include scores at Language and Math na-

tional exams by the end of grades 4, 6 and 9, as well as other course-specific and track-

specific national exams by the end of grades 11 and 12. We also consider grade retention,

dropout and graudation indicators. In the transtion to high school we also construct dum-

mies for if the student, conditional on having completed grade 9, decided to enroll in the

general academic track and if, conditional on having opted for the general academic track,

decided to pursue a science-oriented curricula in high school. Post-secondary outcomes

include indicators for if the student applied to college, what was her application score,

if she was rejected from going to college, enrolled in an academic degree, enrolled in a

STEM course as well as the course selectivity of the college degree in which she enrolled.

Age variables. We define school starting age (Ai)—our main regressor of interest—as

the exact student age as of 15 September of each school year. It measures the age at which

the student is first observed in first grade. By the way it is constructed, unit variations in

this variable represent a 1-year variation in the age at which the student is first enrolled

in grade 1. On the other hand, the exact date of birth (Bi) is measured as a continuous

variable (measured in days) representing all possible 366 days of the calendar year (see

Section III). It is the running variable in our regression discontinuity strategy, from which

we also extract the relevant post-cutoff indicator for the analysis (τi).

Student characteristics (Xi): We construct a vector of variables for several observable

characteristics of students such as indicators for gender, first generation immigrant, access

to a personal computer at home, recipiency of school social support as a proxy variable for

household financial constraints, unemployment status of the child’s father, and a proxy

for the level of education in the household.

C. Descriptive Statistics

Table 1 documents summary statistics of student characteristics and outcomes for each

full grade sample, and separately for students born 60-days before and after the 1 January

cutoff12. The groups born before and after the cutoff seem to be relatively homogeneous

with respect to their observable individual characteristics, at least for a significance level

of 1 percent. Prevalence of female students, students with access to computer at home,

first generation immigrants, recipients of school social support or those whose father were

in an unemployment situation when entering school is similar across samples, as expected
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were the students randomly allocated around the cutoff. For higher levels of confidence,

however, statistical differences may be found in some of the covariates. However, in

Appendix Table 5 and Appendix Figure 12 we provide estimates that provide suggestive

evidence of the continuity of each of these covariates at the cutoff, as is further discussed

in the following section.

The Portuguese education system is characterized by having few immigrant students

(2%) and relatively few households in which at least one of the parents has some sort of

higher education (18-22%). A relatively high proportion of students received school social

support13 when in grade 1 (16-39%). Differences across grade samples are explained by

a steady increase in the rate of identification of students in need of social support in the

most recent years of the data.

On the other hand, for all outcome variables and the main regressor, differences in

means between the 60-days before and 60-days after cutoff samples are always statistically

significant at a 1 percent confidence level. The size of these differences already help

anticipate the size of some of our estimates. Students born 60-days after the cutoff have,

on average about more 0.7 years of age when starting school, relative to those born 60-days

before the cutoff. Likewise, children born after the cutoff have a 0.23 standard deviation

point (σ) advantage in Math and 0.26σ in Language by the end of grade 4. Even if these

differences tend to quickly dissipate from grade to grade, we still reject a null difference

in unconditional achievement in both subjects by the end of grade 9. Likewise, children

born just after the cutoff are less likely to repeat in all of the observed grades.

V. Empirical Validity

A. Do Parents Plan Birth Dates Strategically?

We begin by presenting evidence in support of our identification strategy. It could be the

case that assignment to our virtual control and treatment groups is not as good as random

if strategic parents—aware of their benefits—plan births to occur before or after the cutoff.

Figure 1 presents in the top panel an histogram of the distribution of birth dates 30-days

before and after the 1 January cutoff. Despite the downward trend in births around 7 to

10 days before the end of the year (Christmas period) the density of the running variable

seems relatively continuous at the cutoff of 1 January, with no strong suspicion of parents

timing births because of the cutoff. Due to the their timing, downward and upward trends

seem to be driven by Chirstmas holidays, possibly given expected reduction in medical
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delivery and scheduled births for the period. The bottom panel of Figure 1 confirms this

through a local cubic density manipulation test (Cattaneo et al., 2018; McCrary, 2008),

where we can observe the shaded confidence intervals intersecting at the cutoff (p-value

= 0.191, for a null hypothesis of dissimilar density 4-days before and after the cutoff)14.

Given this evidence, our virtual assignment mechanism seems to hold its’ validity.

B. Compliance

What is the age at which students start school in Portugal? Figure 2 depicts the average

school starting age (SSA) of students within each birth date bin, measured as the distance

in days relative to the 1 January cutoff (Bi = 0). The solid lines are fitted values from a

piecewise quadratic spline. In the figure, it can be observed a small discrete jump in school

starting age at the 16 September (Bi = −107). As discussed in Section II, there is leeway

for parents to delay their child’s SSA from this date onwards. SSA jumps slightly and,

throughout the end of the calendar year, decreases at a relatively slower rate than before

16 September. A sharp discontinuity follows at the 1 January cutoff. Therefore, students

born on or just after the latter cutoff average about 0.7 more years when starting school,

relative to those born just before the cutoff. The fact that the difference in school starting

age at the cutoff is less than 1-year between the two groups confirms imperfect compliance

with the quasi-experimental design and motivates regression discontinuity estimates that

take into account left-side non-compliance. About 14% of the students born on or after

the 16 September defer entrance to the following school year. Appendix Figure 11 reveals

the declining rates of compliance for our different samples. Compliant students are those

that start school on the year they turn 6-years old and do not defer entrance before

reaching the 1 January cutoff. On the other hand, our strategy does not hold on the 16

September cutoff as compliance with such a quasi-experiment would be extremely low to

render powered estimates (i.e., the vast majority of parents does not delay their child’s

entrance at school).

Table 2 presents point estimates of the school starting age discontinuity at the cutoff

for 30- and 60-days fixed bandwidths, as well as for a changing MSE-optimal bandwidth,

for each of the grade samples (per row). The results are analogous to the first stage of our

two-stage fuzzy discontinuity design (Equation 4). The first column reports estimates for

a local baseline specification, where school starting age is regressed on a quadratic function

of the running variable and a triangular kernel, for a bandwidth of 30-days before and
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after the cutoff, separately for each grade sample. In accordance with Figure 2, we find a

sharp and precisely estimated discontinuity at the cutoff. Column 2 reports results from

a regression controlling for all student covariates presented in Table 1 and cohort fixed

effects. Consistent with the evidence that student characteristics are continuous at the

cutoff, there is no sizable change in the coefficient. For a longer 60-days bandwidth, results

are more precise but tell a similar story, with no significant changes to the point estimates

(Columns 3-5, Table 2). Columns 5 and 6 display results for bandwidths selected through

data-driven methods. Results are the most precise, with coefficients varying between 0.69

and 0.74 across specifications and samples. Local polynomial estimates thus corroborate

the raw differences in means on Table 1: Students born just after the cutoff are, on

average, about 8 months older when starting school. However, among the compliant

subpopulation this difference will evidently be 12 months, which allows us to identify the

impact of starting school 1-year later.

C. Continuity

Is our virtual control group a reasonable counterfactual to older entrants? In Table 1

above, we present suggestive evidence that student characteristics of those born before and

after 1 January are relatively identical close to the cutoff. The fact that point estimates

in Table 2 do not change considerably after controlling for covariates further suggests that

the groups are balanced in terms of observable characteristics.

Despite suggestive, these are yet not sufficient to convincingly show that covariates

are continuous at the cutoff. As discussed in Section II, compulsory schooling rules in

Portugal provide considerable leeway for parents to delay children’s entrance for students

born between 16 September and 31 December. If parents that delay students at 16

September significantly differ in their characteristics from those that opt to not defer,

then if not our intent-to-treat, our local average treatment effect (LATE) estimates could

be biased by compositional effects.

We test if our identification strategy survives continuity concerns along predetermined

characteristics of treated children by running regressions analogous to those in Equations

4 and 5. Alternatively, though, we regress each observable covariate on school starting

age, having the cutoff as the excluded instrument. In Appendix Table 5, we summarize

per-sample two-stage least square estimates for local-quadratic specifications, with and

without student controls, and a 60-days fixed bandwidth. We find precisely estimated
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null differences between complier groups, except for grade 4 sample students that receive

school social support (for p-value < .01). However, the qualitative interpretation of these

results is unequivocal: Since grade 4 students born on or after the 1 January cutoff

are likelier to be recipients of school social support—a characteristic predictive of lower

achievement—our estimated LATE, if positive, will be at most underestimated relative

to the true average treatment effect at the cutoff.

VI. Impacts Throughout Basic Education

A. Student Achievement

ITT. Figure 3 depicts sharp discontinuities in student achievement in Math and Language

within each birth date cell, as well as each grade sample. Fourth graders born right after

the cutoff are expected to score substantially higher in each of the exams. These differences

tend to vanish as students become older. Columns 1 and 2 of Table 3 present reduced

form estimates, based on local-quadratic regressions using an MSE-optimal bandwidth

specification, controlling for student characteristics and cohort fixed effects. On average,

students assigned to treatment have consistently better performance. Subject-specific

differences seem to be important. By the end of grade 9, while being assigned to treatment

confers an estimated 0.09σ premium in Math relative to being born just before the cutoff,

in Language the difference is 0.14σ. Nonetheless, left-side non-compliance is thus likely

downward-biasing the causal impact estimated through our reduced form model.

LATE. Table 3 also summarizes the local average treatment effects (LATE) from re-

gressions of SSA on Math and Language student achievement. School starting age is

instrumented by the cutoff and includes a piecewise quadratic function of birth dates, our

running variable. In accordance with the literature, we adjust standard errors for cluster-

ing within birth date cells. Column 3 presents per-grade estimates without any covariates.

According to this baseline specification, entering school 1-year older entails an average

benefit of about 28 percent of a standard deviation in grade 4 Math performance. When

including student covariates and cohort fixed effects the effect size is slightly reduced to

0.27σ, as precision is improved through smaller standard errors (Column 4). Comparison

between these two columns suggests that our identification strategy could allow us to

forgo the inclusion of covariates without substantial changes in the estimated coefficients.

Columns 5 and 6 present the effects for Language achievement. The local-quadratic spec-

ifications reveal a larger effect of about 0.36σ at grade 4, with clustered standard errors
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at the birthday-level of 0.04σ. The estimated LATE decline at a relatively fast rate, espe-

cially between the end of grades 6 and 9. Whereas the estimated coefficient in Columns

4 and 6 drops to 0.26σ in Math and 0.29σ in Language by grade 6, respectively, by the

end of grade 9 the local-quadratic estimate is as small as 0.16σ for Math and 0.20σ for

Language.

Heterogeneity. We apply the same strategy to subsamples of our data in order to

investigate suggestive evidence of heterogeneous effects. Figure 4 summarizes LATE es-

timates for different subsamples of a local-quadratic specification with student controls

and cohort fixed effects. Top panel and bottom panel show the effect and 95% confidence

intervals on grade 4, 6 and 9 Math and Language exam scores, respectively.

Gains in grade 4 Math are larger for girls by about 0.11σ relative to boys. As com-

parison, the gap between boys and girls in the Math exam in our grade 4 sample is of

0.13σ in favor of the former. However, for Math achievement, we fail to find statistically

significant differences in the effect sizes across subgroups. Regarding Language perfor-

mance, statistically significant benefits by grade 9 seem to be driven by students that are

male, by those that do not benefit from social support and live in households where at

least one of the parents or legal guardians as an higher education degree, suggesting that

relatively well-off male students tend to benefit slightly more in Language, for entering

school 1-year later. However, the precision of each of these estimates do not allow us to

uncover statistically significant differences in effects across subgroups.

B. Grade Retention

ITT and LATE. Table 4 presents ITT and LATE of starting school 1-year older on the

probability of repeating a grade, using local-quadratic specifications and controlling for

cohort fixed effects. As with achievement, older entrants benefit substantially with respect

to grade retention. Column 1 shows that students born after the cutoff have a significantly

lower probability of repeating a grade at least once, in all grades. Restricting our attention

to compliers (Column 4), the benefit becomes even larger. Compliant students born just

after the cutoff are 5.3 percentage points (pp) less likely to have repeated at least once

until grade 4, for an average of 13.7 percent among those born within 2 months before

the cutoff (Table 1). ITT and LATE on grade retention display a different persistence

pattern throughout time than impacts on student achievement do: Instead of continually

decreasing, effects become slightly larger in magnitude by grade 6 (−7.9pp), quickly fading
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by grade 9 (−4.4pp).

Given the estimated effects on student achievement, results in Columns 1 and 4 are

not surprising. Indeed, decisions to retain students strongly rely on the achievement of

cognitive capacity of students. As older students perform better, they are also less likely

to be penalized by retention.

However, are younger children more likely to repeat in spite of lower achievement,

or mostly because of it? Table 4 shows that, even controlling for Math or Language

achievement (Columns 2-3, 5-6), older entrants are still significantly less likely to repeat

a grade, even if the effect quickly approaches zero as students age. The results suggest

that the impact of SSA on grade retention operate through other mechanisms. Younger

students are thus doubly penalized, through lower achievement in Math and Language as

well as a higher likelihood of retention.

Heterogeneity. Figure 5 depicts point estimates and 95% confidence intervals of the im-

pact of SSA on the probability of grade retention in samples parsed by student observable

characteristics. Reductions in repetition rates are larger for children from less educated

parents (−11pp) and receivers of school social support (−8pp), whereas we cannot reject a

null effect of SSA on the likelihood of repetition for children from highly educated parents

in any of the grades. On the other hand, students from more disadvantaged backgrounds

seem to benefit slightly more from delayed school entrance at the cutoff of 1 January

in terms of their progression throughout basic education. These results are particularly

relevant for the context of a country with high levels of repetition and large asymmetries

in retention patterns across socioeconomic groups15.

C. Student Attainment

Differences in school starting age also have an impact on basic education attainment

outcomes. Figure 6 depicts reduced form estimates and 95% confidence intervals for the

estimated impact of SSA on a series of attainment outcomes, across different specifications.

Because our data does not allow to observe whether high school students complied with the

virtual assignment mechanism, we can only restrict our interpretation to ITT. Children

eligible to enter school 1-year later are less likely (−2pp) to dropout, which compares to

an overall average of 12% of students that dropout from school until grade 9.

SSA significantly impacts enrollment patterns in high school too. Older entrants are

likelier to select a general academic track in high school (2pp)—a pathway selected by
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72% of the students in our data. Figure 6 also shows that—conditional on having selected

a general academic track in high school—students induced by the cutoff to start school

1-year later are also likelier (3.5pp) to enroll in the science and technology stream, a

pathway that enables one to follow to STEM higher education courses, and selected by

59% of our sample.

VII. Impacts Throughout High School

A. Student Achievement and Retention

The patterns in student achievement observed throughout basic education persist until

high school. Because we do not observe sufficient school years in our data, we can only

estimate ITT for students that can be followed from grade 9 at most until grade 12. Al-

though in most subjects we do not have enough statistical power to estimate precise nulls,

for most subjects achievement gains tend to be statistically insignificant (see Appendix

Figure 13). Nonetheless, we can safely affirm that older entrants have higher achievement

in Physics and Biology by the end of grade 11, and Language and Biology of the order

of between 5 to 10 percent of a standard deviation. Importantly, these results, albeit

deriving from reduced forms, are lower bounds on the true LATE, as by high school the

proportion of compliers in the control group that was not lost to grade retention, dropped

out or moved to the vocational track is smaller than the same proportion in the treatment

group.

Analogous to the impact on basic education outcomes, for students that have followed

to upper secondary education, older entrants are less likely to be retained in grade. In

Appendix Figure 14 we also show reduced form estimates of the impact of SSA on grade

retention throughout upper secondary education. Students induced to start school 1-year

later due to the 1 January cutoff will be less likely to be retained in grade.

B. College Applications

Do the effects of SSA persist along other margins even after high school graduation? We

look into multiple outcomes on the applications of high school graduates to public colleges

in Portugal. The left panel of Figure 7 depicts reduced form estimates and their respective

95% confidence intervals for a series of binary type of outcomes. SSA does not seem to

impact on college seat demand. Students born just after the 1 January cutoff are not more

or less likely to apply to higher education. Although with slightly less precision, we also fail
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to find significant effects in rejection rates, as well as success rates in the first of the three

application phases to public higher education in Portugal. Although, by the end of basic

education differences in SSA seem to play a role in preferences for scientific subjects, we fail

to find such differences by the end of high school. Our ITT suggest that older entrants are

not more likely than their younger peers to be accepted into academic universities vis-à-vis

polytechnic institutions. Likewise, no significant differences are uncovered for enrollment

patterns in Science, Technology, Engineering and Mathematics (STEM) majors, between

groups.

But in which other ways may older and younger college applicants be different? The

right panel of Figure 7 depicts other margins through which SSA effects may persist after

high school graduation. Significantly, we find that higher education candidates born just

after the 1 January cutoff have higher application scores (0.1σ). Higher application scores

enlarge the option set of candidates, as well as the chances of being admitted. Evidence

of this same phenomenon is the fact that, because SSA effects on the high school GPA

and some national exam scores in upper secondary education are still prevalent, older

entrants also enroll in more selective courses. In our most conservative point estimates,

students born just after the cutoff enroll in courses 0.11σ more selective than others.16.

VIII. Robustness and Placebos

An important concern about our estimated LATE in Table 3 is that – despite control-

ling for cohort fixed effects – results may be driven by students that are retained in

grade, clustered just before the cutoff. As shown before repeaters are disproportionately

concentrated before the enrollment cutoff, which can bias estimates by introducing com-

positional effects. In order to overcome such concern, our first set of robustness checks

is to restrict the main regressions to students that never repeated a grade. Appendix

Table 6 presents results analogous to those in Table 3, only considering students that

never repeated a grade. There are no statistically significant quantitative changes in the

size of the effects, and certainly no changes in the qualitative interpretations of the re-

stricted model. For each grade sample, even for the subset of relatively higher achieving

never-repeaters, LATE estimates are identical, allowing to allay concerns with significant

sample and attrition biases introduced by grade retention patterns.

A second concern is with patterns in birth dates reflecting parental characteristics

that are not perceivable solely by inspecting the distribution of births across the calendar
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year. As in other countries, scheduled birth-giving and hospital service adjustments cause

the frequency of births to decrease during weekends in Portugal. If the enrollment cutoff

coincidentally falls close to weekends then differences at the cutoff may introduce some

correlation with the characteristics of parents. However, controlling for weekday indicators

produces no changes in the point estimates, suggesting this is not a problem in our analysis

(see Appendix Table 7).

A third source of concern relates to the method itself. Since local regression estimates

are sensitive to the choice of bandwidth, the optimal data-driven bandwidth could be sys-

tematically biasing our results. The choice of bandwidth typically entails contemplating

a trade-off: Opting for a larger bandwidth includes more valid observations and increases

precision, however if it is too wide our local specification may not be adequate. Appendix

Table 8 presents a sensitivity analysis, replicating results for our preferred specification

with alternative bandwidths. We run the same analysis for 30-day bandwidth on both

sides of the cutoff, larger 60-day bandwidths, as well as employing an alternative optimal

bandwidth selector, allowing bandwidths to the left and right of the cutoff differ from each

other (Calonico et al., 2018)17. Reassuringly, both point estimates and standard errors

are stable across alternative bandwidths and identical to the ones presented in Tables 3

and 4. We can thus be confident that our estimated LATE are thus relatively robust to

different bandwidth selection methods.

Finally, we examine if our reduced form results are not an artifact of our polynomial

specifications. Calonico et al. (2014b) show that in the presence of misspecification, com-

puted standard errors can uncover actually spurious effects. In order to test alternative

p-values we run permutation tests in the spirit of Fisher (1935) and according to recently

developed methods (Ganong and Jäger, 2018). In particular, we assume that the cutoff is

drawn from a random distribution of 200 potential cutoffs. For each of the placebo cutoffs

and the true cutoff we estimate ITT effects, as LATE would give us a non-negligible por-

tion of meaningless under-powered estimates for most placebo cutoffs. We then compute

a randomization-based p-value based on the distribution of these estimates. The strategy

allows us to assess what is the likelihood of the true ITT effect being due to chance.

Appendix Figures 15, 16 and 17 show that—through randomization inference—our

estimates are unlikely due to chance. All our estimates are at the end of the right-tail

of the placebo distributions and are in line with the asymptotic p-values. We can also
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perceive that the coefficients at the true cutoff (represented by the gray dash line in Figure

15), except at grade 9 Math, are a clear outlier among the placebos (spread out along

each of the x -axis).

IX. Conclusion

An exogenous one-year variation in school starting age has significant effects on primary

level student outcomes. Students that are induced to delay enrollment in first grade for

one-year improve student performance in 4th grade national exams by about 0.3 standard

deviations (σ) in Math and almost 0.38σ in Language in Portugal18. Heterogeneity across

groups is also limited. Students from more disadvantaged backgrounds—i.e. that receive

school social support and have less educated parents—seem to benefit slightly more in

terms of achievement in Math. Older girls also benefit slightly more than older boys.

In any case, delayed entrance is homogeneously beneficial to students across identified

socioeconomic groups, with overlapping confidence intervals precluding us from taking

further conclusions about these patterns. Importantly, we find that the cognitive premium

by the end of elementary education persists across all groups, but quickly fades throughout

lower and upper secondary education.

But through which causal mechanism do our local average treatment effects fade as

students age? Since we do not have a second source of exogenous variation, we cannot

separate the ‘age-at-test’ effects, reflecting cognitive maturity differences, from differential

‘exposure to schooling’ effects. Our results are thus best interpreted as absolute age effects.

If underlying causal mechanisms in Portugal are no different than in other contexts (e.g.

Crawford et al., 2007; Black and Devereux, 2011; Fredriksson and Öckert, 2014; Peña,

2017; Cornelissen and Dustmann, 2019), ‘age-at-test’ effects may tend to dominate and

lead to null or even negative impacts of delayed school entrance in the long-run.

However, certain institutional mechanisms make school starting age matter to the

individual through other margins besides measurable achievement differences. Students

that enter school one-year later are less likely to repeat a grade, a pattern that persists

well into high school. Conditional on achievement—arguably the most determinant factor

in retention decisions—older entrants still are less likely to repeat. Likewise, we find that

older entrants are less likely to dropout from basic education. SSA is important in yet

other ways. Students predicted to be older entrants into school–even if being exposed to

schooling later—are more likely to enroll in a general academic track in high school and,
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conditional on it, to opt for high school concentrations dominated by scientific courses.

Our intent-to-treat effects also show that older students have higher application scores to

access public higher education (0.1σ) and enroll in more selective undergraduate courses

(0.11σ). However, we find no evidence of differences on the demand for college seats,

enrollment in STEM courses, or first-choice application success.

How relevant are these findings for policy and individual decision-making? Our em-

pirical strategy—besides evidence that birth dates are not manipulated around the cutoff

and that covariates are balanced independently of treatment assignment—gives us con-

fidence that our LATE and ITT are at least internally valid. However, it is well known

that RD estimates are local to the cutoff and that direct extrapolation requires relatively

strong assumptions about the homogeneity of treatment (Imbens and Lemieux, 2008). We

can affirm that, due to their reliability, our estimates fall with a high degree of confidence

within a short interval of true estimates of the causal effects of delayed school entrance in

regions of the running variable (in this case, birth dates) where parents can more easily

choose to delay children. In this sense, parents can be relatively safeguarded that delaying

school entrance of their children within reasonably close distance of the cutoff – even if

not exactly at it – will, on average, yield the described benefits. Nevertheless, choice

prescription needs be nuanced. Even if restricting our attention to short-run benefits, the

policy response—if intended at improving social well-being – may be at odds with the

optimal choice by parents. Strategic parents will tend to respond to evidence of benefits

of being relatively older through delaying enrollment of their children. For the individual

child this can signify an advantage in her school success that may (or may not) spillover

into adult outcomes. However, variance-increasing effects of delaying entrance on social

welfare may lead to relatively more unequal outcomes across children from different back-

grounds. In the case of Portugal, if strategic parents become more responsive to evidence

of relative gains to older children, this may lead to an advantage that can be perceived as

unfair to those constrained in their choice. As the legal option to defer entrance is mostly

granted to those whose children are born between the 16 September and 31 December,

this leads to an unequal distribution of choice. Moreover, if even for parents of conditional

children access to information and good professional judgment is unequally distributed,

early enrollees—i.e. those that do not delay school entrance—may be disproportionately

penalized. Taking our evidence at face-value, early enrollees will have lower achievement
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and will also be more likely to repeat at least once during primary education, offsetting

the potential future gain of entering one-year earlier into the labor market.

On the other hand, if school capacity constraints force parents to delay children en-

trance into formal schooling – another mechanism through which students may be delayed

in the Portuguese education system – this too may have unintended consequences for en-

suring equal opportunities. Children who start school a year later will typically remain in

pre-school environments whose quality for learning will be more strongly correlated with

family background. Many have been arguing that, insofar pre-schooling conditions are

unequal, delaying public schooling may well reproduce and amplify such initial conditions

(Deming and Dynarski, 2008). Both parents and policymakers should thus appropriately

weigh costs associated with an additional year of childcare outside formal schooling en-

vironments and shorter work careers. Alternatively to changing policy in school entry

laws, policymakers can also consider other ex ante measures, namely early childhood

interventions aimed at addressing school readiness gaps across children from different

socioeconomic groups.
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Table 1. Descriptive Statistics - Longitudinal Datasets

Sample: Full sample 60-days before cutoff 60-days after cutoff Difference

Obs. % SD Obs. % SD Obs. % SD Diff (p.p) p-value

Student characteristics

Grade 4 sample
female 229,713 48.61 49.98 36,226 48.55 49.98 37,153 48.41 49.98 -0.15 0.69
First generation immigrant 229,713 2.31 15.03 36,226 2.27 14.90 37,153 2.27 14.89 -0.00 0.98
Access to computer at home 229,713 55.39 49.71 36,226 55.09 49.74 37,153 55.15 49.73 0.06 0.87
School social support (ASE) 229,713 38.76 48.72 36,226 39.19 48.82 37,153 39.71 48.93 0.51 0.15
Dad unemployed 186,954 6.93 25.40 29,393 7.15 25.77 30,076 7.05 25.59 -0.11 0.60
Household with higher education 197,286 21.67 41.20 30,934 21.09 40.79 32,048 21.57 41.13 0.48 0.14

Grade 6 sample
Female 300,231 49.38 50.00 46,206 49.96 50.00 49,068 49.18 49.99 -0.78 0.02
First generation immigrant 300,231 2.49 15.58 46,206 2.34 15.11 49,068 2.57 15.84 0.24 0.02
Access to computer at home 300,231 46.09 49.85 46,206 45.64 49.81 49,068 46.40 49.87 0.76 0.02
School social support (ASE) 300,231 23.77 42.57 46,206 23.74 42.55 49,068 24.11 42.77 0.36 0.19
Dad unemployed 245,363 4.66 21.08 37,745 4.86 21.51 39,849 4.64 21.03 -0.23 0.14
Household with higher education 248,837 17.84 38.29 38,326 17.67 38.14 40,586 17.85 38.29 0.18 0.52

Grade 9 sample
Female 189,057 51.51 49.98 28,760 52.21 49.95 31,189 51.37 49.98 -0.84 0.04
First generation immigrant 189,057 2.27 14.90 28,760 2.08 14.28 31,189 2.52 15.67 0.44 0.00
Access to computer at home 189,057 47.93 49.96 28,760 47.43 49.93 31,189 48.34 49.97 0.91 0.03
School social support (ASE) 189,057 16.23 36.87 28,760 16.26 36.90 31,189 16.32 36.96 0.06 0.84
Dad unemployed 157,119 3.67 18.81 23,886 3.64 18.72 25,749 3.73 18.95 0.09 0.59
Household with higher education 157,561 20.06 40.04 23,964 20.09 40.07 25,883 19.77 39.83 -0.32 0.37

Obs. Mean SD Obs. Mean SD Obs. Mean SD Diff. p-value

Main variables

School starting age (A)
Grade 4 sample 229,713 6.25 0.31 36,226 5.97 0.39 37,153 6.62 0.14 0.65 0.00
Grade 6 sample 300,231 6.24 0.31 46,206 5.95 0.37 49,068 6.61 0.15 0.67 0.00
Grade 9 sample 189,057 6.24 0.31 28,760 5.93 0.36 31,189 6.61 0.15 0.68 0.00

Grade retention (%)
Grade 4 sample 229,713 10.74 30.96 36,226 13.72 34.40 37,153 8.016 27.15 -5.70 0.00
Grade 6 sample 300,231 14.10 34.80 46,206 16.75 37.34 49,068 11.71 32.15 -5.04 0.00
Grade 9 sample 189,057 13.87 34.56 28,760 15.66 36.35 31,189 12.34 32.89 -3.33 0.00

Math performance (s.d.)
Grade 4 sample 229,195 -0.05 0.99 35,906 -0.16 0.98 36,698 0.07 0.99 0.23 0.00
Grade 6 sample 299,206 0.04 0.96 46,067 -0.04 0.94 48,882 0.12 0.97 0.15 0.00
Grade 9 sample 187,990 0.05 0.96 28,616 0.02 0.96 30,980 0.07 0.98 0.06 0.00

Language performance (s.d.)
Grade 4 sample 229,400 -0.04 0.99 36,179 -0.16 0.97 37,086 0.09 0.98 0.26 0.00
Grade 6 sample 299,712 0.04 0.96 46,119 -0.05 0.95 48,974 0.13 0.97 0.19 0.00
Grade 9 sample 188,929 0.04 0.98 28,737 -0.02 0.96 31,157 0.09 0.99 0.12 0.00

Notes: Full sample includes cohorts of students that entered regular education on a public school in continental Portugal between 2006 and 2013.
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Table 2. Effect of Delayed School Entry Eligibility at 1 January on
School Starting Age

Outcome: school starting age 30-days bandwidth 60-days bandwidth MSE-optimal bandwidth

(1) (2) (3) (4) (5) (6)

Grade 4
τ4 0.674 0.670 0.709 0.706 0.687 0.685

(0.038) (0.038) (0.026) (0.026) (0.013) (0.014)
Observations 36131 36131 72821 72821 116362 109973
Bandwidth (in days) 30 30 60 60 94 89

Grade 6 0.730 0.730 0.741 0.739 0.733 0.732
τ6 (0.013) (0.014) (0.010) (0.010) (0.008) (0.008)

Observations 47128 47128 94583 94583 105828 104147
Bandwidth (in days) 30 30 60 60 66 66

Grade 9 0.736 0.735 0.747 0.746 0.741 0.740
τ9 (0.023) (0.023) (0.015) (0.016) (0.010) (0.010)

Observations 29504 29504 59492 59492 84979 81942
Bandwidth (in days) 30 30 60 60 84 82

Student controls No Yes No Yes No Yes
Cohort FEs No Yes No Yes No Yes

Notes: All coefficients are first stage estimates of per-grade local-quadratic regressions which include a post-cutoff indicator
(τ) and a piecewise quadratic function of birth dates (B) interacted with τ . Where indicated, a triangular kernel with a
30-day, 60-day or MSE-optimal bandwidths is used. Regressions on Columns 2, 4 and 6 also control for cohort fixed effects as
well as individual covariates in the form of indicator variables for gender (1 if female), immigrant status (1 if first generation
immigrant), recipiency of school social support (1 if receiver), dad’s unemployment status (1 if unemployed), access to
computer at home (1 if Yes), and fine-grained descriptions of the maximum level of education taken by the guardians of
the child (e.g. primary education, lower secondary, bachelor degree, etc). Robust standard errors clustered at the birthday
level are presented in parentheses.
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Table 3. Impact of SSA on Student Achivement - ITT and LATE

ITT LATE

Outcome: student performance at Math Language Math Language

(1) (2) (3) (4) (5) (6)

Grade 4
School starting age 0.191 0.261 0.278 0.272 0.367 0.359

(0.017) (0.017) (0.030) (0.024) (0.046) (0.040)
Observations 44660 100140 50849 49568 69393 64479
Bandwidth (in days) 37 82 42 40 57 52

Grade 6
School starting age 0.187 0.210 0.243 0.255 0.285 0.290

(0.020) (0.016) (0.032) (0.027) (0.027) (0.023)
Observations 90276 133323 83743 93364 93503 128476
Bandwidth (in days) 57 84 53 58 58 80

Grade 9
School starting age 0.089 0.137 0.152 0.155 0.180 0.197

(0.021) (0.022) (0.042) (0.037) (0.032) (0.028)
Observations 75451 65406 38384 43337 58843 83924
Bandwidth (in days) 76 66 39 43 58 84

Student Controls Yes Yes No Yes No Yes
Cohort Fes Yes Yes No Yes No Yes

Notes: All coefficients are estimates of local-quadratic regressions. Columns 1-3 present reduced form estimates. For these
regressions the variable of interest is the post-cutoff indicator (τ), indicating treatment assignment. In Columns 4-6 the
excluded instrument is τ . All regressions include a piecewise quadratic function of birth dates (B). A triangular kernel
with an indicated data-driven MSE-optimal bandwidth is used. Where indicated, regressions also control for cohort fixed
effects as well as individual covariates in the form of indicator variables for gender (1 if female), immigrant status (1 if first
generation immigrant), recipiency of school social support (1 if receiver), dad’s unemployment status (1 if unemployed),
access to computer at home (1 if yes), and fine-grained descriptions of the maximum level of education taken by the
guardians of the child (e.g. primary education, lower secondary, bachelor degree, etc). Robust standard errors clustered at
the birthday level are presented in parentheses.
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Table 4. Impact of School Starting Age on Grade Retention - ITT and
LATE

Outcome: grade retention ITT LATE

(1) (2) (3) (4) (5) (6)

Until grade 4
School starting age -3.793 -2.415 -1.788 -5.275 -2.926 -2.398

(0.751) (0.649) (0.780) (1.119) (1.094) (1.162)
Observations 76506 103663 78923 69498 70603 72707
Bandwidth (in days) 63 85 64 57 58 59

Until grade 6
School starting age -5.895 -2.932 -2.720 -7.997 -4.058 -3.695

(0.804) (0.705) (0.720) (1.112) (1.003) (0.973)
Observations 90586 90276 85370 92210 80580 86997
Bandwidth (in days) 57 56 53 58 51 55

Until grade 9
School starting age -2.864 -1.209 -1.276 -4.397 -1.671 -2.660

(0.778) (0.750) (0.702) (0.997) (0.985) (0.891)
Observations 48730 41376 49731 62472 46411 71649
Bandwidth (in days) 48 42 49 63 47 72

Math achievement control No Yes No No Yes No
Language achievement control No No Yes No No Yes
Other student controls Yes No No Yes No No

Notes: All coefficients are estimates of local-quadratic regressions. For these regressions the variable of interest is the post-
cutoff indicator (τ), indicating treatment assignment. All regressions include a piecewise quadratic function of birth dates
(B) interacted with τ , depending on the specification indicated. A triangular kernel with a a data-driven MSE-optimal
bandwidth is used. The excluded instrument is the post-cutoff indicator (τ). Both first and second stage regressions include
a piecewise linear or quadratic function of birth dates (B) interacted with τ , depending on the specification indicated. A
triangular kernel with an indicated data-driven MSE-optimal bandwidth is used. Where indicated, regressions also control
for cohort fixed effects as well as individual covariates in the form of indicator variables for gender (1 if female), immigrant
status (1 if first generation immigrant), recipiency of school social support (1 if receiver), dad’s unemployment status (1
if unemployed), access to computer at home (1 if yes), and fine-grained descriptions of the maximum level of education
taken by the guardians of the child (e.g. primary education, lower secondary, bachelor degree, etc). Robust standard errors
clustered at the birthday level are presented in parentheses.
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XII. Figures

Figure 1. Density of Birth Dates Close to 1 January

Notes: Top panel: Histogram of birth dates 30 days before and after the cutoff of 1 January. Bottom panel: Local polynomial
density estimation at the cutoff, within a window of 30 days before and after 1 January. Density estimation performed
through rddensity software package, described in Cattaneo et al. (2018). Figure is based on cohorts of students that entered
a public school in continental Portugal between 2006 and 2013, and were at least 5 years-old and at most 8 years-old when
first enrolled in 1st grade.
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Figure 2. Discontinuities on SSA at 16 September and 1 January

Notes: Figure is based on cohorts of students that entered a public school in continental Portugal between 2006 and 2013,
and were at least 5 years-old and at most 8 years-old when first enrolled in 1st grade. Horizontal axis represents the birth
date relative to the cutoff date of 1 January. Each hollow circle represents within birth day cell averages of school starting
age. Solid lines represent fitted values from a piecewise quadratic spline. Vertical dashed lines identify 16 September
(Bi = −107) and 1 January (Bi = 0).
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Figure 3. Discontinuities on Math and Language Student Achievement at
1 Januay, per grade

Notes: Figure is based on cohorts of students that entered a public school in continental Portugal between 2006 and 2013,
and were at least 5 years-old and at most 8 years-old when first enrolled in grade 1. Horizontal axis represents the birth
date relative to the cutoff of 1 January. Each hollow circle represents within birth day cell averages of Math performance
(left panels) and Language performance (right panels) in grade 4 (top panels), grade 6 (middle panels) and grade 9 (bottom
panels). Solid lines represent fitted values from a piecewise quadratic spline. Vertical dashed lines identify 1 January
(Bi = 0).
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Figure 4. Heterogeneous Impacts of SSA on Student Achievement

Notes: Figure is based on cohorts of students that entered a regular curriculum program in a public school in continental
Portugal between 2006 and 2013, and were at least 5 years-old and at most 8 years-old when first enrolled in grade 1.
Each marker represents a point estimate of the impact of school starting age on student performance in grades 4, 6 and 9
Math exams (top panel) and grades 4, 6 and 9 Language exams (bottom panel) for each indicated subsample of students.
Point estimates are coefficients of local regressions. The excluded instrument is the post-cutoff indicator (τ). Both first
and second stage regressions include a piecewise quadratic function of birth dates (B) interacted with τ , depending on
the specification indicated. A triangular kernel with data-driven optimal bandwidths is used. Regressions also control for
cohort fixed effects as well as all other individual covariates. Vertical bars represent 95% confidence intervals for clustered
standard errors at the birthday-level.
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Figure 5. Heterogeneous Impacts of SSA on the Likelihood of grade Re-
tention

Notes: Figure is based on cohorts of students that entered a regular curriculum program in a public school in continental
Portugal between 2006 and 2013, and were at least 5 years-old and at most 8 years-old when first enrolled in grade 1.
Each marker represents a point estimate of the impact of school starting age on grade retention until grades 4, 6 and 9.
Point estimates are coefficients of local regressions. The excluded instrument is the post-cutoff indicator (τ). Both first
and second stage regressions include a piecewise quadratic function of birth dates (B) interacted with τ , depending on
the specification indicated. A triangular kernel with data-driven optimal bandwidths is used. Regressions also control for
cohort fixed effects as well as all other individual covariates reported in Table 1. Vertical bars represent 95% confidence
intervals for clustered standard errors at the birthday-level.
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Figure 6. Impact of SSA on Student Attainment

Notes: Figure is based on cohorts of students that entered a regular curriculum program in a public school in continental
Portugal and were at least 5 years-old and at most 8 years-old when first enrolled in grade 1. Each marker represents a
point estimate of the impact of school starting age on the probabilities of dropping out from school, opting for an academic
track in high school and, conditional on having opted for an academic track in high school, having selected the science and
technology stream. Point estimates are coefficients of local regressions, where the post-cutoff indicator (τ) is the regressor
of interest. Regressions include a piecewise linear or a piecewise quadratic function of birth dates (B) interacted with τ ,
depending on the specification indicated. A triangular kernel with data-driven optimal bandwidths is used. Regressions
also control for cohort fixed effects as well as all other individual covariates reported in Table 1. Horizontal bars represent
95% confidence intervals for clustered standard errors at the birthday-level.
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Figure 7. Impact of SSA on College Application Outcomes

Notes: Figure is based on cohorts of students that entered a regular curriculum program in a public school in continental
Portugal and were at least 5 years-old and at most 8 years-old when first enrolled in grade 1. Point estimates are coefficients
of local polynomial regressions. The regressor of interest is the post-cutoff indicator (τ). In the left panel the dependent
variables, where indicated, are dummies switched on for if the students applied to a public college, enrolled in the academic
track in college, enrolled in a STEM course, failed to enroll in any course due to rejection and was enrolled in application
phase 1. In the right panel the dependent variables, where indicated, are standardized variables for college application scores
and an index of course selectivity. Course selectivity is measured as an index of i) percentile rank of the pair college-course
in terms of the application scores of accepted candidates, ii) percentile rank of the standard deviation of application scores
of accepted candidates, and iii) acceptance rate of applications of each course in each higher education institution. The
values of the latent variable are predicted through principal factor analysis, with results being later standardized to have
mean zero and standard deviation of one. All regressions include a piecewise quadratic function of birth dates (B) interacted
with τ . A triangular kernel with data-driven optimal bandwidths is used. Regressions also control for cohort fixed effects
as well as all other individual covariates in Table 1. The horizontal bars represent 95% confidence intervals for clustered
standard errors at the birthday-level.
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Notes

1The literature on the effects of school starting age emerges from such diverse contexts as the United

States (e.g. Dhuey and Lipscomb, 2010; Elder and Lubotsky, 2009; Evans et al., 2010; Dobkin and

Ferreira, 2010; Cascio and Schanzenbach, 2016; Cook and Kang, 2018), Sweden (Fredriksson and Öckert,

2014; Carlsson et al., 2015), Norway (Black et al., 2011), Denmark (Landersø et al., 2017), Germany

(Fertig and Kluve, 2005; Puhani and Weber, 2007; Mühlenweg and Puhani, 2010a,b; Mühlenweg et al.,

2012), Austria (Schneeweis and Zweimüller, 2014), the UK (Crawford et al., 2007), Poland (Herbst and

Strawiński, 2016), Hungary (Altwicker-Hámori and Köllo, 2012), Chile (McEwan and Shapiro, 2008),

Canada (Smith, 2009), China (Zhang et al., 2017), Japan (Kawaguchi, 2011), Australia (Suziedelyte and

Zhu, 2015), Israel (Attar and Cohen-Zada, 2018), Italy (Ponzo and Scoppa, 2014) or Mexico (Peña, 2017).

Bedard and Dhuey (2006) present cross-country evidence.

2For Norway, Black et al. (2011) find that the effect of school starting age becomes insignificant from

30-years of age onwards, culminating in a negative discount present value of lifelong earnings gain from

starting school 1-year later. In Sweden, Fredriksson and Öckert (2014) find that being 1-year older

increases educational attainment and changes labor supply over the life-cycle, with initial losses due to

later entry into the labor market being offset by increased earnings after the age of 55. However, contrary

to the average, individuals with low-educated parents and women tend to have higher prime-age earnings

in response to school starting age. All-in-all, discounted life-time earnings are shown to fall by almost 1

percent in response to being 1-year older when enrolling in first grade.

3The exception being the estimates in Bedard and Dhuey (2006), in a cross-country context.

4Most recently, for instance, Cook and Kang (2016) use a local-linear estimator to uncover the causal

effect of school starting age on crime outcomes. However, most studies on the impact of school starting

age on academic outcomes have not relied on these type of methods. Most have focused on exploring

global – rather than local – polynomial specifications (e.g. McEwan and Shapiro, 2008; Black et al., 2011).

5Enrollment for conditionals is not the default option; an enrollment requirement by parents is a

necessary condition to starting the school year before turning 6-years old. However, it is not a sufficient

one, as it also depends on school capacity constraints.

6Gelman and Imbens (2017) show why regression discontinuity estimation through local low-order

polynomial approximations should be preferred to global polynomial regressions.

7Estimation, including optimal bandwidth selection, is implemented through the software package

rdrobust developed in Calonico et al. (2014a) and Calonico et al. (2017).

8MISI data is collected and maintained by the Directorate General of Education and Science Statistics

(Direcção-Geral de Estat́ısticas da Educação e Ciência - DGEEC), a department under the indirect

administration of the Ministry of Education in Portugal.

9A student’s track is lost when she moves abroad, drops from the education system altogether, or dies.

We may also lose track of students if these move to a different pubic or private school and the matching

algorithm is unable to correctly assign the unique identifier to new instances of the same student in the

system.

10We exclude from the analysis all students enrolled in second-chance programmes, adult, vocational
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education and training or artistic courses outside the scope of the regular curriculum between grades 1

and 12.

11Appendix A documents in more detail all data treatment, including attrition rates for each of the

cohorts.

12The choice of a 60-days window to each side of the cutoff is justified by full coverage of the optimal

bandwidths used for estimation later on.

13School social support (ASE) in Portugal is tied to household financial constraints. Students identified

as ASE have half- to fully-reduced price meals at school, textbooks and school material.

14The relatively sharp decline in density before the cutoff occurs during the Christmas period, with

parents appearing to opt-out from having children during the period. Despite making a full analysis of

the parental preferences for birth dates being out of our scope, an analysis of the histogram of births

across the whole year reveals clear seasonality in the data. In particular, we find that parents prefer to

have children during September, 20 September being the most common birthday in our data.

15For instance, in our analytical grade 4 sample about 13% of the children born to parents without

higher education are retained in grade at least once until grade 4, while only about 1% of the children of

highly educated households ever repeat a grade.

16Our index of course selectiveness takes into account courses in each higher education institution. It

is constructed from the percentile rank of the mean of the application scores of accepted applicants, the

percentile rank of the standard deviation of application scores of accepted candidates and acceptance rate

of applications of each course in each higher education institution. The Appendix details the computation

of this index.

17Optimal bandwidth selectors are deployed through the rdrobust software package, developed in

Calonico et al. (2014a) and Calonico et al. (2017).

18The local average treatment effect of school starting age on test scores here presented are consistent

with comparable evidence from other countries. Cross-country evidence from Bedard and Dhuey (2006)

find effect sizes raging from 0.2σ to 0.5σ. McEwan and Shapiro (2008)—with an identical empirical

strategy, but different estimation procedure—find increases of 4th grade test scores of 0.3-0.4σ, in Chile.

For fifth grade students in Israel, Attar and Cohen-Zada (2018) estimate somewhat smaller 0.29σ gains

for Language, and 0.16σ for Math. For fourth graders in Germany, Puhani and Weber (2007) find an

increase of 0.4σ.
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A. Appendix

A. The data

For our analytical datasets, all information in period 2013-2015 for both Grades 4 and

Grade 6 students is kept, whereas achievement information for Grade 9 comes from exams

sat during 2016 and 2017. For Grade 4 students sitting exams in 2013-2015 we manage

to follow seven different cohorts, starting school between 2006 and 2012. For each of

these cohorts we can follow over 95 percent of the children between Grade 1 and Grade

4. We follow five cohorts of Grade 6 sample students entering school in the period 2006-

2010, with attrition rates lower than 10 percent. Finally, given our lower bound on the

data, we can follow more than 90 percent of two cohorts students until they sit Grade 9

exams in either 2016 or 2017. As we track students from their first school year to later

periods in our dataset we lose more students either to private schools, a foreign country,

registration failures, other non-regular education programs, or due to idiosyncratic errors

in the matching algorithm.

The first analytical dataset has a total of 660 494 individual students, born between

1998 and 2008, having started school between calendar years 2006 and 2013. The distri-

bution of information on their outcomes is as follows. Grade 4 sample: 229 661 (35%).

Grade 6 sample: 300 182 (45%). Grade 9 sample: 188 648 (29%). 10% of the students

have scores for both Grades 4 and 6. 28% have scores for both Grades 6 and 9. None has

observed scores for all grades.

A second analytical dataset is constructed for reduced form estimates of upper sec-

ondary outcomes and out-of-sample estimation of basic education outcomes. Since, in this

case, we do not require to observe each student at Grade 1, we estimate intent-to-treat

effects from a total of 2 227 679 individuals born between 1983 and 2010. For an analysis

of upper secondary and post-secondary outcomes, we further restrict this dataset to one

where each student is followed from Grade 9 until the end of Grade 12. The restricted

sample follows a total of 634 827 individuals born between 1988 and 2000, from which

171 319 (27%) applied to public higher education after graduating from high school. In

the case of college application outcomes, we benefited from an hand-collected dataset,

that was available on-line for a given period of time and allowed to link the data with the

existing administrative datasets. We also trim the dataset for students with outlier ages

by only keeping children that are at least 5-years old and had at most 8-years old when
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first enrolled in Grade 1.

Course selectivity is measured as an index of i) percentile rank of the pair higher

education institution course in terms of the application scores of accepted candidates, ii)

percentile rank of the standard deviation of application scores of accepted candidates,

and iii) acceptance rate of applications. The values of the latent variable are predicted

through principal factor analysis, with results being later standardized to have mean zero

and standard deviation of one.

To construct the proxy variable for the household level of education we minimize

problems with missing values by including the maximum level of education (in terms of

years of study required) in the household (from either the father, the mother, or the legal

guardian of the child, in case information for any of the parents is not available). All these

characteristics are measured as of the school year in which the student is first enrolled in

Grade 1.

In the Figures 8, 9 and 10, below, we document the rates of attrition in our analysis

datasets, for each of the three samples and years at which the students started school.

For longer panels (such as in Grades 6 and 9 samples) we tend to follow less students. In

the administrative data, the track of a student is lost when she moves abroad, drops from

the education system altogether, or dies. We may also lose track of students if these move

to a different pubic or private school and the matching algorithm is unable to correctly

assign the unique identifier to new instances of the same student in the system.

The main outcome variables in our regressions is constructed from the score points of

students in Grades 4, 6 and 9 Math and Language national exams, as a proxy for student

cognitive ability. Students sit – or sat – national exams or standardized achievement tests

at the end of each of these grades. To the best of our knowledge, this is the only reliable

assessment of cognitive ability that was systematically performed to a large cohort of

children in Portugal. Exams are anonymized and scored by randomly selected evaluating

teachers, which are not teachers of the students whose achievement is being scored.

The major advantage is that these tests were sat by the universe of eligible children

by Grades 4, 6 and 9. Due to policy changes, Grade 4 exams were discontinued from

the beginning of the 2015/16 school year onwards. Additionally, the score scale at which

ability was measured has changed from school year 2012/2013 onwards, with the previous

discrete scale (0-5) being insufficient to retain relevant variation across students. Given
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Figure 8. Panel attrition rates and number of tracked students by entry
cohort (Grade 4 Sample, LATE Dataset)

Notes: Figure is based on the count of students in each cohort-grade cell for the sample of grade 4 students (i.e., for the
sample in which students are followed from grade 1 to grade 4). The horizontal axis displays the year at which students
are first observed in grade 1. The left-hand axis (associated with the lines in the graph) displays the number of students
in thousands in a given cohort-grade cell. The right-hand side axis (associated with the bars in the graph) provides the
attrition rate, i.e., the proportion of the number of students observed in grade 1 that are observed in grade 4, by cohort.

the constraints, we retain three years of observations of student outcomes (2013-2015) for

Grade 4, as measured by exam scores (0-100 scale) by the end of the school year.

A simple analysis of the discrete distribution of exam scores shows significant manip-

ulation of exam scores. The kinks in the distribution (at 20, 50, 75, and 90) coincide with

threshold grade levels. The internal grades of primary education students are measured

on a scale from 0-5 (from now on described as levels). These correspond to the threshold

grade levels where kinks can be observed. Level 2, whose threshold is surpassed at 50 in

the score scale is the most relevant here and the one where the kinks are most prominent.

Exam scores below 50 are considered a fail, and students get a level 2 – a “negative”

level, as it can lead to retention in the same grade. The raw distribution of exam scores

strongly suggests that graders tend to upgrade scores that fall within a region of 5 points
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Figure 9. Panel attrition rates and number of tracked students by entry
cohort (Grade 6 Sample, LATE Dataset)

Notes: Figure is based on the count of students in each cohort-grade cell for the sample of grade 6 students (i.e., for the
sample in which students are followed from grade 1 to grade 6). The horizontal axis displays the year at which students
are first observed in grade 1. The left-hand axis (associated with the lines in the graph) displays the number of students
in thousands in a given cohort-grade cell. The right-hand side axis (associated with the bars in the graph) provides the
attrition rate, i.e., the proportion of the number of students observed in grade 1 that are observed in grade 6, by cohort.

below the relevant level threshold. For instance, most students that would have 49 points

as score are upgraded to 50. Such evidence of manipulation is visible in intervals of 5

points.

While this sort of manipulation may be beneficial to students at the margin of thresh-

old levels, it can significantly bias the analysis if one is to take unit changes in the exam

score as informative of cognitive differences between individuals. In order to circumvent

this concern, we collapse the 0-100 scale into a 0-20 scale. Such a scale has a couple of

advantages. First, it still retains informative variation across students. Second, it almost

entirely eliminates score manipulation bias and reduces noise. In the new scale, 5 – in-

stead of 1 – underlying exam points are now considered informative of student abilities

differences. In other words, students that have 47, 48, 49, or 50 are considered within the
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Figure 10. Panel attrition rates and number of tracked students by
entry cohort (Grade 9 Sample, LATE Dataset)

Notes: Figure is based on the count of students in each cohort-grade cell for the sample of grade 9 students (i.e., for the
sample in which students are followed from grade 1 to grade 9). The horizontal axis displays the year at which students
are first observed in grade 1. The left-hand axis (associated with the lines in the graph) displays the number of students
in thousands in a given cohort-grade cell. The right-hand side axis (associated with the bars in the graph) provides the
attrition rate, i.e., the proportion of the number of students observed in grade 1 that are observed in grade 9, by cohort.

same range of cognitive ability. The distribution of scores is thus smoother by being less

prone to bias introduced by score manipulation in the original scale.

National exams in Portugal are not standardized across years, making inter-temporal

comparisons biased. In order to control for the difficulty of the exam in each year, we

standardize the scores in the new scale (0-20) by subtracting the mean and dividing by

the standard deviation of subject scores in each exam year and by grade. The outcome

variable is thus interpretable in standard deviation units of the exam scores in a 0-20

scale.

Course- and track-specific exams include the Grade 11 subject exams of Physics, Biol-

ogy, Geometry, Economics, Philosophy and Geography, as well as Grade 12 subject exams

of Language, Math A, Physics, Biology, History, Geometry, Drawing and Economics.
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Table 5. Impact of School Starting Age on Student Characteristics - Compliers

Outcome: Female Immigrant School social support Unemployed dad Computer at home Higer education in HH

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Grade 4
School starting age -0.016 -0.016 0.015 0.015 0.059 0.057 -0.008 -0.012 -0.014 -0.006 -0.007 0.007

(0.022) (0.022) (0.008) (0.008) (0.020) (0.018) (0.013) (0.013) (0.016) (0.015) (0.018) (0.017)
Observations 72807 72807 72807 72807 72807 72807 72807 72807 72807 72807 72807 72807

Grade 6
School starting age 0.004 0.005 0.007 0.007 -0.012 -0.014 0.002 0.003 0.004 0.005 -0.008 -0.010

(0.017) (0.017) (0.006) (0.006) (0.011) (0.011) (0.005) (0.005) (0.021) (0.020) (0.014) (0.013)
Observations 94573 94573 94573 94573 94573 94573 94573 94573 94573 94573 94573 94573

Grade 9
School starting age 0.019 0.020 0.008 0.008 -0.024 -0.027 0.009 0.010 0.018 0.019 -0.009 -0.015

(0.022) (0.022) (0.008) (0.008) (0.012) (0.011) (0.010) (0.010) (0.019) (0.019) (0.012) (0.011)
Observations 59345 59345 59345 59345 59345 59345 59345 59345 59345 59345 59345 59345

Student controls No Yes No Yes No Yes No Yes No Yes No Yes
Cohort Fes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Notes: All coefficients are estimates of local-quadratic regressions. The excluded instrument is the post-cutoff indicator (τ). Both first and second stage regressions include a piecewise linear
or quadratic function of birth dates (B) interacted with τ , depending on the specification indicated. A triangular kernel with a fixed 60-days bandwidth is used. Where indicated, regressions
also control for cohort fixed effects as well as other individual covariates in the form of indicator variables for gender (1 if female), immigrant status (1 if first generation immigrant), recipiency
of school social support (1 if receiver), dad’s unemployment status (1 if unemployed), access to computer at home (1 if yes) or if there is at least one child guardian with higher education (1
if yes). Robust standard errors clustered at the birthday level are presented in parentheses.
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Table 6. Impact of School Starting Age on Student Performance for
Non-Repeaters

Outcome: student performance at Math Language

(1) (2) (3) (4) (5) (6) (7) (8)

Grade 4
School starting age 0.251 0.280 0.245 0.275 0.342 0.370 0.325 0.356

(0.029) (0.025) (0.034) (0.029) (0.029) (0.022) (0.051) (0.045)
Observations 31138 30064 45349 44192 63021 78135 57492 60766
Bandwidth (in days) 29 28 41 41 57 72 53 56

Grade 6
School starting age 0.195 0.218 0.179 0.206 0.235 0.255 0.242 0.261

(0.031) (0.024) (0.035) (0.026) (0.029) (0.025) (0.031) (0.027)
Observations 58094 56681 67816 73176 59572 60964 86475 86475
Bandwidth (in days) 43 42 49 54 43 45 64 64

Grade 9
School starting age 0.073 0.105 0.150 0.152 0.170 0.182 0.180 0.187

(0.035) (0.032) (0.045) (0.039) (0.032) (0.030) (0.034) (0.031)
Observations 38128 32081 32991 36401 34910 40944 51910 71246
Bandwidth (in days) 44 38 38 43 41 47 61 83

Polynomial order Linear Linear Quadratic Quadratic Linear Linear Quadratic Quadratic
Student controls NO YES NO YES NO YES NO YES
Cohort Fes NO YES YES YES NO YES YES YES

Notes: All coefficients are estimates of local regressions. The excluded instrument is the post-cutoff indicator (τ). Both
first and second stage regressions include a piecewise linear or quadratic function of birth dates (B) interacted with τ ,
depending on the specification indicated. A triangular kernel with a data-driven MSE-optimal bandwidth is used. Where
indicated, regressions also control for cohort fixed effects as well as individual covariates in the form of indicator variables
for gender (1 if female), immigrant status (1 if first generation immigrant), recipiency of school social support (1 if receiver),
dad’s unemployment status (1 if unemployed), access to computer at home (1 if yes), and fine-grained descriptions of the
maximum level of education taken by the guardians of the child (e.g. primary education, lower secondary, bachelor degree,
etc). Robust standard errors clustered at the birthday level are presented in parentheses.
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Table 7. Impact of school starting age on student outcomes including
controls for day of the week - LATE

Outcome: Math performance Language performance Grade retention

(1) (2) (3) (4) (5) (6) (7) (8) (9)

(Until) Grade 4
School starting age 0.288 0.272 0.274 0.393 0.356 0.373 -0.041 -0.052 -0.053

(0.028) (0.024) (0.024) (0.075) (0.048) (0.035) (0.017) (0.013) (0.011)
Observations 35742 72001 61461 35767 72040 71283 35826 72155 68302
Left bandwidth (in days) 30 60 53 30 60 66 30 60 54
Right bandwidth (in days) 30 60 47 30 60 50 30 60 64

(Until) Grade 6
School starting age 0.194 0.239 0.247 0.326 0.302 0.291 -0.071 -0.079 -0.078

(0.042) (0.030) (0.028) (0.031) (0.031) (0.024) (0.014) (0.013) (0.011)
Observations 46958 94251 87299 47043 94393 123601 47125 94573 101436
Left bandwidth (in days) 30 60 63 30 60 73 30 60 57
Right bandwidth (in days) 30 60 48 30 60 82 30 60 69

(Until) Grade 9
School starting age 0.168 0.155 0.153 0.152 0.184 0.175 -0.032 -0.036 -0.039

(0.060) (0.038) (0.037) (0.049) (0.036) (0.031) (0.013) (0.011) (0.010)
Observations 29245 58995 49042 29407 59290 65373 29428 59345 54603
Left bandwidth (in days) 30 60 42 30 60 70 30 60 49
Right bandwidth (in days) 30 60 56 30 60 61 30 60 61

Notes: ll coefficients are estimates of local regressions. The excluded instrument is the post-cutoff indicator (τ). Both first
and second stage regressions include a piecewise linear or quadratic function of birth dates (B) interacted with τ depending
on the specification indicated. A triangular kernel with an data-driven MSE-optimal bandwidth is used. All regressions
also control for cohort fixed effects, day of the week in which the student is born, as well as individual covariates in the
form of indicator variables for gender (1 if female), immigrant status (1 if first generation immigrant), recipiency of school
social support (1 if receiver), dad’s unemployment status (1 if unemployed), access to computer at home (1 if yes), and
fine-grained descriptions of the maximum level of education taken by the guardians of the child (e.g. primary education,
lower secondary, bachelor degree, etc). Robust standard errors clustered at the birthday level are presented in parentheses.
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Table 8. Sensitivity Analysis: Impact of School Starting Age on Student Outcomes for Alternative Bandwidths

Outcome: Math performance Language performance Grade retention

(1) (2) (3) (4) (5) (6)

(Until) Grade 4
School starting age 0.289 0.274 0.364 0.360 -0.060 -0.054

(0.022) (0.024) (0.034) (0.040) (0.009) (0.011)
Observations 34866 53287 41015 65624 57032 66960
Bandwidth (in days) 29 44 34 53 47 54

(Until) Grade 6
School starting age 0.262 0.255 0.294 0.291 -0.081 -0.079

(0.025) (0.028) (0.023) (0.024) (0.010) (0.011)
Observations 64417 100530 61354 115385 61467 93673
Bandwidth (in days) 41 64 38 72 39 58

(Until) Grade 9
School starting age 0.095 0.150 0.192 0.179 -0.047 -0.048

(0.024) (0.038) (0.024) (0.032) (0.009) (0.010)
Observations 56529 39324 66312 69474 43488 76707
Bandwidth (in days) 57 39 66 70 43 76

Polynomial order Linear Quadratic Linear Quadratic Linear Quadratic

Notes: All coefficients are estimates of local-quadratic regressions. The excluded instrument is the post-cutoff indicator (τ). Both first and second stage regressions include a piecewise
quadratic function of birth dates (B) interacted with τ , depending on the specification indicated. As indicated, a triangular kernel with a 30-days, 60-days and a data-driven MSE-optimal
choice of bandwidth, allowing bandwidths before and after the cutoff to differ, are used. All regressions also control for cohort fixed effects as well as individual covariates in the form of
indicator variables for gender (1 if female), immigrant status (1 if first generation immigrant), recipiency of school social support (1 if receiver), dad’s unemployment status (1 if unemployed),
access to computer at home (1 if yes), and fine-grained descriptions of the maximum level of education taken by the guardians of the child (e.g. primary education, lower secondary, bachelor
degree, etc). Robust standard errors clustered at the birthday level are presented in parentheses.
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C. Supplemental Figures

Figure 11. Compliance rates with the 1 January cutoff by grade sample

Notes: Figure is based on cohorts of students that entered a regular curriculum program in a public school in continental
Portugal between 2007 and 2013, and were at least 5 years-old and at most 8 years-old when first enrolled in Grade 1. Lines
represent the trend (by day of birth) in compliance rates, i.e., the ratio of students that did not differ school entrance to
the next school year given the modal school starting age for students born in a given day and the number of students born
in each birth date bins, by grade sample. The first dashed line represents the 16 September cutoff, while the second dashed
line represents the 1 January cutoff.
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Figure 12. Student characteristics by birthdate close to the cutoff

Notes: Figure is based on cohorts of students that entered a public school in continental Portugal between 2007 and 2013,
and were at least 5 years-old and at most 8 years-old when first enrolled in Grade 1. Horizontal axis represents the birth
date relative to the cutoff date of 1 January. Each hollow circle represents within birth day cell averages of immigrant status
(top left panel), students with highly educated parents (top right panel), school support recipients (bottom left panel) and
students with access to a computer at home (bottom right panel). Solid lines represent fitted values from a piecewise
quadratic spline. Vertical dashed lines identify 1 January (= 0).
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Figure 13. Impact of delayed entrance eligibility on student achievement
in Grades 11 and 12 national exams by subject - ITT

Notes: The left-hand panel refers to exams in grade 11. The right-hand side refers to exams in grade 12. Point estimates are
coefficients of local regressions. The regressor of interest is the post-cutoff indicator (τ). All regressions include a piecewise
quadratic function of birth dates (B) interacted with τ . A triangular kernel with data-driven optimal bandwidths is used.
Regressions also control for cohort fixed effects as well as all other individual covariates. The bars 95% confidence intervals
for clustered standard errors at the birthday-level.
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Figure 14. Impact of school starting age on grade retention throughout
high school - ITT

Notes: Point estimates are coefficients of local regressions. The regressor of interest is the post-cutoff indicator (τ). All
regressions include a piecewise quadratic function of birth dates (B) interacted with τ . A triangular kernel with data-driven
optimal bandwidths is used. Regressions also control for cohort fixed effects as well as all other individual covariates. The
shaded area represents 95% confidence intervals for clustered standard errors at the birthday-level.
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Figure 15. Distributions of placebo and true intent-to-treat effects on
achievement by subject and grade

Notes: Figure is based on cohorts of students that entered a regular curriculum program in a public school in continental
Portugal between 2007 and 2013, and were at least 5 years-old and at most 8 years-old when first enrolled in Grade 1. Each
panel is an histogram of estimated intent-to-treat effects for a total of 200 potential cutoffs (including the true one). Cutoffs
considered are all where Bi = {100, 99}. For each placebo cutoff the specification estimated is the one in Column 1 (for
Math) and Column 2 (for Language) in Table 3, with varying MSE-optimal bandwidths. The vertical red line represents the
position of the coefficient of the true cutoff at the distribution of placebo cutoffs. Randomization-based p-values, computed
through the software package rdpermute and according to (Ganong and Jäger, 2018), are presented under the asymptotic
p-values for the preferred specification at the true cutoff.
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Figure 16. Distributions of placebo and true intent-to-treat effects on
grade retention

Notes: Figure is based on cohorts of students that entered a regular curriculum program in a public school in continental
Portugal between 2007 and 2013, and were at least 5 years-old and at most 8 years-old when first enrolled in Grade 1. Each
panel is an histogram of estimated intent-to-treat effects for a total of 200 potential cutoffs (including the true one). Cutoffs
considered are all where Bi = {100, 99}. For each placebo cutoff the specification estimated is the one in Column 1 in Table
4, with varying MSE-optimal bandwidths. The vertical red line represents the position of the coefficient of the true cutoff
at the distribution of placebo cutoffs. Randomization-based p-values, computed through the software package rdpermute

and according to (Ganong and Jäger, 2018), are presented under the asymptotic p-values for the preferred specification at
the true cutoff.
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Figure 17. Intent-to-treat effects by potential cutoff, subject and
grade

Notes: Figure is based on cohorts of students that entered a regular curriculum program in a public school in continental
Portugal between 2007 and 2013, and were at least 5 years-old and at most 8 years-old when first enrolled in Grade 1. Each
panel shows estimated intent-to-treat effects for a total of 200 potential cutoffs (including the true one) along the y-axis.
Cutoffs considered are all where Bi = {100, 99}spread along the x-axis. For each placebo cutoff the specification estimated
is the one in Column 1 (for Math) and Column 2 (for Language) in Table 3, with varying MSE-optimal bandwidths. The
vertical dashed line represents the position of the coefficient of the true cutoff at the distribution of placebo cutoffs.
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