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Abstract 

Financial market states of high volatility in bear markets are often characterized by an increase 

in correlation, decreasing the diversification benefits as markets behave more homogeneously. 

This research focuses on the expectations of correlation and volatility across different asset 

classes on a risk-parity portfolio by using different measurements of risk to analyze how 

differently they perform, especially in times of higher volatility and correlation. This work 

project objective is to measure the impact of dynamically adjusting the variance-covariance 

matrix when such risk measures alter significantly. Moreover, a clustered risk parity portfolio 

will be computed with the optimal returns from the asset classes, further improving performance.  
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1. Introduction 

Times of crisis in the financial markets are characterized by a general decreased in prices, 

higher volatility of returns, and the more intense co-movements between securities increases 

the overall correlation levels. This work project wants to test when it is most worth to change 

your variance and correlation modelling by comparing the performance of four types of risk 

parity portfolios, each using different measurements of the same risk. 

The more dynamic models to compute the variance covariance matrix often lead to more 

efficient portfolios, however, they also are characterized by higher turnover rates and 

transaction costs thus significantly reducing its benefits. With this paper the objective is to 

define when it is most worth to change the modelling of the variance covariance matrix and 

incur the transaction costs and significantly increase the returns. This comparison will be 

computed in three different asset classes, namely, equity, bonds, and credit. 

The volatility and correlations will be used as inputs in the portfolio composition by using a 

risk-budgeting approach since it better diversifies risk by attributing the same percentage of 

the overall risk to each security versus the more traditional equal weighting method which 

attributes de same percentage of capital, regardless of the overall risk contribution. 

The risk inputs necessary to compose a risk-parity portfolio are the standard deviation and 

correlation, both present in the variance covariance matrix. In this research, two types of risk-

parity portfolios will be computed. Firstly, a naïve model of which only takes into 

consideration the volatilities, implicitly assuming a correlation of zero between the assets on 

the portfolio, and secondly, a “true model” which includes correlation expectations and that 

ensures all assets have the same contribution to the overall risk of the portfolio. 

The variance covariance matrix will be computed from a backward-looking approach and a 

forward-looking approach. The backward-looking approach computes the standard deviation 
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and correlation on a rolling basis giving the same weight to all observations thus making this 

approach less reactive to new developments, since it considers the most recent data as relevant 

as the oldest. The forward-looking method uses the Exponential Weighted Moving Average 

(EWMA) model to determine the expected volatility and correlation due to its strong 

performance on real data (Ding and Meade 2010). Since the EWMA is a recursive function, it 

better reflects the clustering in volatility and reacts more dynamically to new data. 

By comparing the performance of the different portfolios by asset class, especially in times of 

crisis, we want to test which type of risk measurement better fits the market condition and 

why one should be willing to change the allocation problem of a portfolio. Furthermore, a 

clustered portfolio will be computed from the optimal portfolios to test the efficiency of these 

methodologies in a global complete diversified portfolio. 

Section two is the literature review on the importance of volatility and correlation in a 

portfolio allocation problem and how it is not constant, as well as how dynamically 

approaching these metrics one can increase the performance of a portfolio. Section three and 

four is the data and methodology used to compute the aforementioned portfolios. Section five 

presents the results, and section six concludes.  

2. Literate Review 

    Correlation between financial assets is an important factor when considering the optimally 

diversified portfolio. It is used across capital allocation methods and risk management as an 

input for the VaR computation, for example.  

    In standard portfolio models, correlation and volatility is assumed constant (Ang and 

Bekaert 2002) as in the mean-variance optimization model by (Markowitz 1952). In contrast, 

(Pafka and Kondor 2003) say that covariances matrixes present a high amount of noise, and 

the noise intensity is a function of the size of the portfolio and the length of available data and 
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concludes that the historical correlations are not appropriate for the Markowitz optimization 

problem (Bhansali 2008). 

Correlation is not observable and has to be estimated through observable data (Ball and 

Torous 2000). Moreover, there is a consensus that correlation is time-varying and tends to 

increase with volatility in bear markets, but not in bull markets (Longin and Solnik 2001). 

Additionally, the variance of returns is time-varying and can present itself in sudden spikes, 

thus using an unconditional variance is not the appropriate measure of risk for asset allocation 

optimizers (Solnik, Boucrelle, and Le Fur 1996) and some form of variance modelling should 

be considered.  

This positive relationship between correlation and volatility in bear markets can be 

presented as financial contagion or transmission of volatility. A study on the US sub-prime 

crisis effects on the correlation between the American index S&P500 versus worldwide equity 

returns (Naoui, Liouane, and Brahim 2010) and a study of the same period focused on the 

cross-correlation between FTSE issues (Maskawa and Souma 2010) presented three types of 

financial contagion: a common shock, a spillover effect, and the pure contagion factor 

reflecting a behavioral component for the unexplainable market developments. Thus, 

correlation coefficients can be used as an indicator of the stock price sensitivity to exogenous 

market forces. 

Using the Random Matrix Theory, a complex statistical approach to test the randomness of 

correlation developments (Sandoval and Franca 2012) concluded that high volatility is 

directly linked with strong correlations between index returns and that the distribution of 

correlations are not normal and present a low kurtosis in times of crisis. At the portfolio level, 

the tail risk is considered systematic risk according to (Bhansali 2008) and when crises 

happen, correlations rise in absolute value. 
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To solve the problem of time-varying correlation, the multivariate GARCH model 

Dynamic Conditional Correlation (DCC) model was created (Engle 2002) and a paper 

applying this approach in sector allocation (Kalotychou, Staikouras, and Zhao 2014) proved a 

better performance than a static model from unconditional covariance matrix although the 

gains from the dynamic models are significantly reduced by the higher transaction costs. 

Adapting portfolios to more dynamic approaches to correlations has proven to have economic 

value and adapting additionally for skewness and kurtosis improved performance. In order to 

reduce unnecessary costs, this research will analyze when is most worth to incur in these costs 

or continue with less costly strategies.  

   In times of crises and increased correlation, the diversification benefits are lowest when are 

needed the most, so gold will be included in order to maximize the diversity factor due to its 

countercyclical characteristics (Sumner, Johnson, and Soenen 2010). 

3. Data 

The data considered for this research is composed by securities of Equity, Bonds, Credit and 

Commodities asset classes and additionally Gold, between 6th of September 2007 and 11th 

May 2021, in order to get securities with different risk profiles. 

To represent the equity asset class, the securities considered are six market-capitalization 

weighted ETFs of the main indexes of the US (SPY), Europe (IEV), Japan (EWJ), UK 

(UKX), Canada (EWC) and Australia (EWA). This assures that we are representing each 

region by the same weighting method, their market value, and we will compute the optimal 

allocation later.  

For the Bond market the Futures of 10Y are considered for the same regions with TY1 for 

US, RX1 for Germany, JB1 for Japan, G 1 for UK, CN1 for Canada and XM1 for Australia. 

Regarding XM1, additional steps are needed to have a comparable set of returns by 
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computing a synthetic price of the Future with the provided yield and adjusting for the carry 

and funding costs with the six months interbank overnight swap rate (AUD SWAP IOS 6M).  

Regarding Credit Securities, they are separated by Investment Grade in the US (LQD US) and 

Europe (SPEZICET index) and High Yield Securities, HYG US and LP02TREU Index, for 

US and Europe, respectively. Regarding the Europe data, there are no ETFs we could work 

on, however the index chosen corresponds to the benchmark we wanted to include and 

following the transformation of adding the expense ratio we were able to obtain a synthetic 

ETF data series.  

The data above will be used to compute the optimal returns by asset class, and then we will 

compute a clustered portfolio having included the commodities, for which we choose the 

Goldman Sachs Commodities Index (GSG) as a portfolio of different commodities, and Gold 

ETF is the GLD. 

4. Methodology 

Firstly, optimal portfolios will be computed from four different ways for three asset classes: 

Equity, Bonds and Credit. Secondly, using the returns from these portfolios, compose a 

Clustered Portfolio including Commodities and Gold. 

4.1 Optimization within asset class 

For the computations, all returns will be computed with equation (1), except for the XM1 

where the daily carry and funding cost was included to replicate the other bond returns. 

 
𝑟𝑡 = ln (

𝑃𝑡

𝑃𝑡−1
) 

(1) 

 

For each asset class, the portfolios computed will be an equal weight portfolio, a capital-

budgeting approach, and four risk parity portfolios.  
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A risk parity portfolio has the objective of equalizing the risk contribution from each asset, by 

equalizing the marginal contribution to the volatility of the portfolio. The marginal 

contribution to risk is how much the volatility of the portfolio will increase by a small change 

in the weight of one component. This risk-based strategy tends to limit losses from any given 

security, and most importantly, levels the risk between securities. Different assets have 

different risk profiles, and more volatile assets will be given less weight.  

When building a risk parity portfolio, we need to decide if we want to always have 100% 

invested in the markets or if we want our portfolio to have a risk target. The risk targeting 

method has the advantage of when risk levels are low, the strategy dictates us to leverage and 

when the volatilities are increasing, we see a deleverage of the portfolio, thus better 

controlling risk in a time-varying volatilities scenarios. In this paper we are using a risk target 

of 20% for the equity portfolio, 5% for bonds and 10% for credit as they are the average 

volatility of the EW portfolio from each asset class. To protect from overleveraging, we added 

a maximum leverage of 200% to the portfolios to maintain control of transaction costs and 

limit risk. 

The inputs required for the marginal contribution to risk are volatilities and correlations, and 

what distinguishes the four portfolios are the methods used to measure risk. Two portfolios 

will be computed with a Naïve approach to risk parity, which only considers the volatility of 

the assets and implicitly assumes all correlations are zero, and other two portfolios with a 

“true model” approach, which includes correlation expectations between the assets, besides 

their individual risk (a comprehensive variance covariance analysis).  

For each of these portfolios the variance covariance matrix (Ω) will be computed in two 

different ways: A backward-looking approach, estimating volatilities and correlation from a 

rolling approach assuming that the recent values of these metrics are good proxies for the 
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volatilities and correlation for the next period, and a forward-looking approach with the 

Exponential Weighted Moving Average (EWMA) method giving more weight to the most 

recent data and adapting more rapidly to times of higher volatility and correlation. 

For the rolling method approach, the number of days to be considered for the computation of 

standard deviation and correlation will be 120 days. This value comes from the reviewed 

literature (Pafka and Kondor 2003) where the noise ratio of the Variance Covariance Matrix 

(VCV) is r=n/T, where n is the number of assets in the portfolio and T the length of data 

considered. Considering that the maximum number of assets in our portfolios is 6, using 120 

days the noise ratio is 5%.  

This value of 120 days was verified to present a lower noise by creating a series of correlated 

data using the Cholesky Factorization and confirming that the observed VCV was a reliable 

representation of the real VCV, thus making it valid to use for the rolling method 

computations. 

Regarding the estimates of the variance and covariance in the EWMA method, the values 

were computed according to the formulas (2) & (3) for variance and covariance, respectively. 

The value of the decay factor (λ) for this research will be 0.94 as defined in RiskMetrics1 for 

daily values. A small decay factor would give higher relevance to newer values, at the cost of 

a less persistent variance estimation. By including a decay factor on the variance modelling 

and covariance modelling we are creating a nonuniform weighting scheme, giving 

increasingly more importance to more recent data. The one exception is the first observation 

which was use the values of the rolling approach to start this model with an acceptable 

estimation of the VCV.  

 
1 The RiskMetrics variance model is a risk management tool launched in 1994 by J.P. Morgan  

 𝜎𝑖,𝑡+1 | 𝑡
2 = 𝜎𝑖,𝑡

2 𝜆 + (1 − 𝜆)𝑟𝑖,𝑡
2  (2) 

 𝜎𝑖𝑗,𝑡+1 | 𝑡 = 𝜎𝑖𝑗,𝑡 𝜆 + (1 − 𝜆)𝑟𝑖,𝑡𝑟𝑗,𝑡 (3) 
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Having now established how the different metrics of risk will be computed, the next step is to 

compute the weights for the portfolio to be in risk parity. For the Naïve method, the 

correlations between assets are ignored, and the optimal weights are calculated as the formula 

below, through a risk target: 

 

For the “True Model”, the objective is to set the marginal contribution to risk from each asset 

equal through the equation (6) derived from equation (5).  

 𝜎𝑝 = √𝑊′Ω 𝑊 

 

(5) 

 𝜕𝜎𝑝

𝜕𝑤𝑖
=

∑ 𝑤𝑖𝜎𝑖,𝑗
𝑁
𝑗=1

𝜎𝑝
=

𝜎𝑖,𝑝

𝜎𝑝
 

(6) 

 
𝑀𝐶𝑅𝑖 = 𝑤𝑖

𝜕𝜎𝑝

𝜕𝑤𝑖
= 𝑤𝑖

∑ 𝑤𝑖𝜎𝑖,𝑗
𝑁
𝑗=1

𝜎𝑝
 

(7) 

For the rolling method portfolios, the simplified term in equation (6) can be used since we are 

using the historical covariance of the asset with the portfolio as the measure of risk for the 

next day. For the EWMA method, the expected volatility and correlation is different from the 

historical metrics and so, its computation is based on the longer term of the equation (6). The 

optimal EWMA weights are to be defined by an optimization problem computed through the 

Excel Solver, as presented in the equation below, where the marginal contribution to risk is a 

function of the weights, and the target marginal contribution to risk set to “1/n” of the target 

risk. 

 

 

 𝑤𝑖 = 
𝜎𝑖

∑ 𝜎𝑗
𝑁
𝑗=1

 (4) 

 Woptimal =  min ∑(𝑀𝐶𝑅𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑀𝐶𝑅𝑖)
2
 (8) 
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To sum up, the way the risk-parity portfolios will be computed can be summarized in the 

table below. Moving from a naïve portfolio to a rolling portfolio always increases the 

computations, as we include correlation expectations, and the same applies when moving 

from a rolling approach to a forward-looking approach since we need now to include a 

recursive function to determine the current forecast for risk metrics. 

 

4.2 Clustering 

Having as a starting point the returns for each methodology employed to each asset class, four 

new portfolios are computed with the three asset classes plus commodities and gold, to create 

a globally optimally diversified portfolio. By including gold separately from the other 

commodities, we can model its correlation with other asset classes and take better advantage 

of its countercyclical properties discussed in the literature review.  

In each portfolio the objective is to get the same level of risk for each of the five asset classes, 

and this can be achieved by setting the marginal contributions to risk equal, by the same 

process discussed previously. However, for the clustered portfolio the risk target is 10% 

which is the average standard deviation of the clustered equally weighted (EW) portfolio, a 

portfolio attributing the same weight to the four asset classes and gold. With a risk target of 

10% and five securities in the portfolio, each should have a risk contribution of 2%. To 

maintain the same approach to leverage, it will be limited to a maximum of 200%.  

 Rolling Method 

Backward-Looking 

EWMA 

Forward-Looking 

Naïve 𝑤𝑖 = 
𝜎𝑖

∑ 𝜎𝑗
𝑁
𝑗=1

 𝑤𝑖 = 
𝜎𝑖

𝐸𝑊𝑀𝐴

∑ 𝜎𝑗
𝐸𝑊𝑀𝐴𝑁

𝑗=1

 

True Model 
𝑀𝐶𝑅𝑖 = 𝑤𝑖

∑ 𝑤𝑖𝜎𝑖,𝑗
𝑁
𝑗=1

𝜎𝑝
 

Woptimal =  min ∑(𝑀𝐶𝑅𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑀𝐶𝑅𝑖)
2
 

Table 1 - The weighting process of the four risk parity methodologies 
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A clustered portfolio is a portfolio composed of already optimized portfolios, in this case, a 

global portfolio composed of the optimal asset classes’ returns. A clustered equal weight, a 

clustered rolling naïve portfolio, a clustered rolling “True model” and a clustered “True 

model” EWMA are computed using the same weighting process used to derive the 

corresponding asset class returns.  

5. Results  

The results from this research will first be analyzed on the asset class level, as the behavior of 

the parameters of the variance covariance matrix (VCV) is not equal between asset classes 

and so, the four risk parity portfolios will be analyzed on how differently they perform 

depending on their assumptions of the VCV. The backward-looking methods use historical 

values and attribute the same weight to each observation, thus making it a sensible strategy if 

the VCV is more static. However, variances and correlations are time-varying and if the 

market changes to a state of higher volatility and correlations suddenly, inaccurately 

determining the VCV can lead to lower returns compared to more reactive and dynamic 

modelling of the VCV as the forward-looking portfolios do. 

From literature (Longin and Solnik 2001) we learned that states of high volatility tend to be 

followed by a high correlation only in bear markets, while in bull markets the increase in 

correlations is not significant. So, to compare the performance of the portfolios in the 

moments when losses are larger, a post-hoc analysis will determine when the highest 

volatilities and highest correlations happened simultaneously, and these periods we will call 

times of crisis. 

For this we first need to decide how to measure the immediate general levels of volatility and 

correlations to then determine when they are high. For this purpose, the daily average of the 

inputs of standard deviation and correlation from the EWMA were used, due to its quicker 
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reaction to new data, creating a better indicator of sudden moves in the VCV. The thresholds 

to be considered in high levels for the volatility or correlation differ between asset classes as it 

depended on the distribution of these metrics, but times of crisis should reflect less than 10% 

of all the trading days. 

Since the objective of this research is to determine when it is best to switch the risk modelling 

approach to compose a portfolio, we are comparing the returns across all data, and focusing 

then on times of crisis by comparing conditional returns, meaning, comparing the returns of 

the risk parity portfolios only if they were in times of high volatility and high correlation. The 

reason not to employ the more dynamic model constantly is due to the much high turnover of 

the portfolio, translating to higher transaction costs. Risk parity portfolios that take correlation 

into consideration also present a higher turnover than Naïve models due to more changing 

inputs.  

Lastly, the performance of the clustered portfolios will be analyzed to see how the 

expectations of the correlations between asset classes and gold affect performance of a 

globally diversified portfolio. 

 

5.1 Asset Classes 

The Equity portfolios are very similar in terms of cumulative returns (Graph 1), although we 

can see a slight overperformance of the EWMA approach and the “True Model”(TM) – which 

includes correlation expectations. This is also shown in Table 2, as the Info Sharpe (IS) from 

the EWMA portfolios were higher than the rolling portfolios, and the IS from the “True 

Models” were higher than the Naïve models, although having a higher volatility.  In Table 3, 

we are computing the difference in returns from different portfolios. Firstly, we can see that 

the excess return from the Rolling “True Model” compared to the Rolling Naïve that the cost  
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Graph 1 - Risk parity portfolios cumulative returns by asset class 
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Table 2- Portfolio Performance by Asset Class 

Equity EW Naive True Model Naïve True Model

Av Return 4.87% 3.82% 4.70% 4.90% 5.46%

Standard Deviation 20.51% 18.52% 20.99% 17.59% 19.89%

Info Sharpe 0.237   0.206     0.224         0.278        0.274         

Maximum Drawdown -79.73% -52.75% -56.96% -49.48% -58.52%

Annual Turnover 221% 323% 993% 1272%

Bonds EW Naive True Model Naïve True Model

Av Return 2.87% 3.06% 4.27% 3.16% 4.16%

Standard Deviation 3.96% 3.63% 4.76% 3.69% 4.78%

Info Sharpe 0.726   0.843     0.898         0.857        0.872         

Maximum Drawdown -6.52% -8.06% -9.07% -8.00% -9.00%

Annual Turnover 213% 625% 1018% 1448%

Credit EW Naive True Model Naïve True Model

Av Return 5.26% 7.35% 7.16% 8.90% 9.10%

Standard Deviation 5.25% 5.44% 5.20% 4.73% 5.21%

Info Sharpe 1.001   1.350     1.378         1.881        1.746         

Maximum Drawdown -24.68% -28.16% -27.13% -21.89% -27.41%

Annual Turnover 314% 834% 1149% 1398%

Rolling

Rolling EWMA

Rolling EWMA

EWMA

of not including correlations amounted to an average of 0.88% annually in lost returns. 

However, if we were already using the Rolling “True Model”, we could get an additional 

0.75% annual return by changing our weighting method to a more dynamic one (EWMA-

TM). This value proves that there is economic value in adding correlations expectations in the 

equity asset class, as well as that the VCV can be more dynamic than assumed in the 

backward-looking approach.  

Considering only the days when the average daily volatility was above the 85th percentile, the 

high volatility states, the returns for the EW was -6.87%, while the rolling portfolios had these 

conditional returns lower than -20% (Table 4). On the other hand, the EWMA portfolios had 

about half the losses from the EW. When the volatility increased, the rolling methodology 

was too slow to adapt to a different market state, because it still considers a large amount of 

data with an outdated volatility expectation. When correlation levels were at the highest 

levels, we can see the better performance from the EWMA-TM versus EWMA-N, because it 

takes the correlation expectation into consideration.  
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Equity Rolling EWMA TM

Excess Returns (TM - N) (TM-N) (EWMA-Rolling)

Av Excess Return 0.881% 0.562% 0.755%

Total Excess Return 12.050% 7.687% 10.333%

Maximum 1.38% 0.80% 6.44%

Minimum -1.37% -0.91% -4.22%

Bonds Rolling EWMA TM

Excess Returns (TM - N) (TM-N) (EWMA-Rolling)

Av Excess Return 1.212% 1.000% -0.107%

Total Excess Return 16.587% 13.688% -1.469%

Maximum 0.63% 0.52% 0.71%

Minimum -0.65% -0.79% -1.32%

Credit Rolling EWMA TM

Excess Returns (TM - N) (TM-N) (EWMA-Rolling)

Av Excess Return -0.181% 0.097% 1.835%

Total Excess Return -2.483% 1.334% 25.109%

Maximum 1.16% 0.94% 3.12%

Minimum -1.10% -1.31% -1.54%

Table 3 - Comparing Portfolio returns 

The days when these two restrictions occurred simultaneously, defined previously as times of 

crisis, the EW portfolio had a loss of 13% while the EWMA portfolios had half of the losses, 

showing it is a good methodology to reduce drawdowns. In the Bonds portfolios, the biggest 

difference in cumulative returns came from the “True Models” adding to the benefits of 

increasing correlation metrics in portfolio allocation problems. From Table 3, the additional 

return for including the correlation expectation in the weighting process was 1.2% for the 

Rolling method, and 1.0% for the EWMA. The drawdowns are very similar within the “True 

Models”, of around 9%, and the Naïve portfolios, of around 8% (Table 2). In this asset class 

there is no clear overperformance in times of crisis of any methodology in particular, and 

since there is no clear advantage from moving from the Rolling approach to the EWMA, the 

volatility and correlation metrics in this asset class appear to be stable, at least for our 

timeframe, and making the rolling approach more attractive as it has less transaction costs due 

to turnover. 
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Table 4 – Returns in times of crisis 

Equity Conditional Returns EW Rolling-N Rolling-TM EWMA-N EWMA-TM

Volatility, Top 15% -6.87% -21.02% -23.17% -3.61% -3.39%

Correlation, Top 15% 4.56% -17.14% -20.43% 9.93% 10.83%

Both -13.14% -28.56% -31.89% -7.05% -7.50%

Bonds Conditional Returns EW Rolling-N Rolling-TM EWMA-N EWMA-TM

Volatility, Top 20% 14.17% 9.70% 14.65% 8.85% 12.97%

Correlation, Top 30% 9.27% 12.05% 13.31% 13.12% 16.14%

Both -0.68% -0.96% -1.45% -0.68% -0.70%

Credit Conditional Returns EW Rolling-N Rolling-TM EWMA-N EWMA-TM

Volatility, Top 25% 24.23% 15.75% 20.53% 35.39% 41.06%

Correlation, Top 40% 22.74% 30.85% 36.20% 44.25% 44.66%

Both 3.55% -2.86% 2.50% 9.20% 9.97%

Regarding the Credit portfolios, we can see that the cumulative returns are in groups, the EW 

portfolio with the lowest cumulative return and the EWMA portfolios are the highest. In these 

portfolios, the biggest gain can be attaining from moving from a Rolling approach to the 

EWMA in the “True Model”, adding on average 1.84% annually (Table 3). This leads us to 

believe that this is the most dynamic VCV so far as the rolling approach, by looking at 

historical values, has much lower predictive power in this asset class. The biggest gains in the 

EWMA come from the reduced drawdowns in times of crisis, where the return from the EW 

is 3.55% while the EWMA-TM is 9.97%. 

 

 

 

 

 

 

 

In all asset classes volatility or correlation expectations impact results from different ways, 

due to different variance covariance matrix behaviors and our assumptions. If the variance 

covariance matrix is more static as in the bond market the biggest gain for a risk parity 

portfolio is to include the correlation expectations. On the other hand, if the variance 

covariance changes are more dynamic, like in the credit portfolios, a constant adjustment to 

the VCV is desirable. 
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Clustered Portfolios EW Rolling-N Rolling-TM EWMA-TM

Av Return 2.34% 6.99% 11.80% 11.78%

Standard Deviation 9.47% 6.03% 7.84% 8.35%

Info Sharpe 0.248        1.161        1.505        1.411        

Maximum Drawdown -27.80% -17.86% -24.47% -22.90%
Table 5 - Clustered portfolios performance 

5.2 Clustered Portfolio 

The clustered portfolios used the optimal returns computed from each asset class and 

constructs a global risk parity portfolio, diversified within asset classes through different 

regions and on the global level by using different asset classes in its composition. To achieve 

this we use the same methodology used to compute the respective optimal asset returns. In 

doing so, we expect to create an increasingly efficient diversified portfolio by including 

correlations on the risk parity portfolio construction and measure how differently the results 

are if we only consider the EWMA returns, computed for each asset classes, instead of the 

rolling portfolios. 

The cumulative returns from the clustered portfolios are presented in Graph 2, where the 

Rolling-N is superior to the EW.  

Additionally, the True models overperform the naïve portfolio, and have a much higher IS, as 

the Rolling-N has an IS of 1.16 versus an IS of 1.51 of the Rolling-TM and 1.41 of the 

EWMA-TM (Table 5). 

 

 

 

 

This IS values are much higher than the portfolio computed for the asset classes, except for 

Credit portfolios. The origin of this increase in IS can be because we are already using the 

portfolios with higher returns as inputs in this new portfolio as well as benefiting now from 

the correlation between asset classes, instead of only within asset classes. Although these 
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Graph 2 - Cluestered portfolios cumulative returns 

returns seem close, the superior cumulative turnover costs of the EWMA portfolios could 

significantly reduce any overperformance. 

 

 

 

 

 

 

 

 

6.Conclusions 

In this research the initial objective was to analyze when it was more worth to change the 

variance covariance modelling in a risk parity portfolio, to adapt for any changes in the 

general levels of risk present in the variance covariance matrix and create a more efficient 

portfolio.  

More dynamic approaches to the variance covariance modelling were expected to 

overperform less dynamic ones, like the rolling method. This was the case for the credit asset 

class, as the VCV is more volatile. However, this was not the case for the bonds, where the 

variance covariance appears to be much more static, thus, only including correlation 

significantly improved results as they are more suitable to be used as a proxy for the 

unobservable correlations. Here we can conclude that the performance of the models depends 

on the real VCV time-varying component, and that they vary by asset class. 
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When considering times of crisis, the more reactive models were always better, or equal, but 

never worst, thus proving that volatilities and correlations could be used to define a regime 

switching strategy to change between risk parity weighting methods. This was to be expected, 

as we are already restricting our analysis period to times of crisis which is already a diversion 

from the mean.  

From the clustered portfolios, we get a much higher Info Sharpe from any individual asset 

class, proving that this method is very efficient to approach a complete global risk parity 

portfolio, and quickly adapts to times of crisis.   

The conclusion of this work project is that volatility and correlation can be used as an 

indicator of times of crisis, and to determine which is the better risk modelling approach 

depends on the variance covariance profile of each asset class and the current market state.  

Further research could be done on the distribution of correlation through time, to model the 

variance covariance in a more definitive way. Furthermore, this type of correlation analysis 

could be extended to different types of assets as they could provided new sources of diversity. 
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