
DEPARTMENT OF
COMPUTER SCIENCE

EDUARDO BEZERRA SUBTIL

Bachelor of Science

LAZY STATE DETERMINATION
FOR SQL DATABASES

MASTER IN COMPUTER SCIENCE AND ENGINEERING

NOVA University Lisbon
September, 2021

DEPARTMENT OF
COMPUTER SCIENCE

LAZY STATE DETERMINATION
FOR SQL DATABASES

EDUARDO BEZERRA SUBTIL

Bachelor of Science

Adviser: João Manuel dos Santos Lourenço
Associate Professor, NOVA University Lisbon

Examination Committee:

Chair: João Moure Pires
Associate Professor, NOVA University Lisbon

Rapporteur: Nuno Antunes
Assistant Professor, University of Coimbra

Member: João Manuel dos Santos Lourenço
Associate Professor, NOVA University Lisbon

MASTER IN COMPUTER SCIENCE AND ENGINEERING

NOVA University Lisbon
September, 2021

Lazy State Determination for SQL databases

Copyright © Eduardo Bezerra Subtil, NOVA School of Science and Technology, NOVA

University Lisbon.

The NOVA School of Science and Technology and the NOVA University Lisbon have the

right, perpetual and without geographical boundaries, to file and publish this dissertation

through printed copies reproduced on paper or on digital form, or by any other means

known or that may be invented, and to disseminate through scientific repositories and

admit its copying and distribution for non-commercial, educational or research purposes,

as long as credit is given to the author and editor.

Gaudeamus igitur iuvenes dum sumus.
Alea iacta est.

Acknowledgements

The end of a very arduous and important step of my life ends, and a new chapter will

soon begin. During the course of this academic endeavour, specially this last year, many

obstacles presented themselves, many of them impossible to overcome were it not for the

support of various people and entities. To each one of them, thank you:

To Professor João Lourenço, thank you for being a very demanding and critical advisor,

always there when I needed support. Your door was always open, no matter the time or

the problem we had to face. You never hesitated in giving me direction when I felt lost,

whether in writing or in researching.

To our beautiful institution, the NOVA School of Science and Technology, thank you

for all the knowledge, education and opportunities that were given to me these last years.

To my colleagues of the HiPSTr project David Carpinteiro, Tiago Vale and Ricardo

Dias, thank you for all the moments you have taken from your busy schedules to help me.

Whenever we met, I had new ideas that lead me to new progresses.

To my colleagues from MIEI, thank you for helping me during the transition from

High School to this new environment. I could not have asked for a wholesome welcome.

To my host of bumbling pub companions from Space Poker Imaginário, from which

I highlight the members André “Mármore” Augusto, Beatriz Rebelo, Bernardo “Boris”

Baldaia, Gonçalo Fazenda, Henrique “do Mal” Silva, Joana “Ju” Martins, João “Dini”

Sampaio, Marta Carlos, Nuno Morais, Ricardo Leitão, Tiago Gonçalves e Tomás Alagoa,

thank you for all the pseudo-intellectual stupid arguments we have from time to time.

This stage of my life would not be the same without you.

To Sara Simões, than you from your constant presence, for your unconditional support

and for being my inspiration. I could not have had anyone better beside me.

Last, but not least, to my parents, thank you for everything you have done and still do

for me, now and ever.

This work was partially supported by the Foundation for Science and Technology

and European Regional Development Fund, under the Research Project HiPSTr: High-
Performance Software Transactions (LISBOA-01-0145-FEDER-032456 / PTDC/CCI-COM/-

32456/2017).

v

“Audaces Fortuna Adiuvat” (Virgilius)

Abstract

Transactional systems have seen various efforts to increase their throughput, mainly

by making use of parallelism and efficient Concurrency Control techniques. Most ap-

proaches optimize the systems’ behaviour when under high contention.

In this work, we strive towards reducing the system’s overall contention through Lazy

State Determination (LSD). LSD is a new transactional API that leverages on futures

to delay the accesses to the Database as much as possible, reducing the amount of time

that transactions require to operate under isolation and, thus, reducing the contention

window.

LSD was shown to be a promising solution for Key-Value Stores. Now, our focus turns

to Relational Database Management Systems, as we attempt to implement and evaluate

LSD in this new setting. This implementation was done through a custom JDBC driver

to minimize required modifications to any external platform.

Results show that the reduction of the contention window effectively improves the

success rate of transactional applications. However, our current implementation exhibits

some performance issues that must be further investigated and addressed.

Keywords: Concurrency Control, On-Line Transaction Processing, Relational Systems,

Lazy State Determination, High Contention Environments, Java Database Connectivity

vii

Resumo

Os sistemas transacionais têm sido alvo de esforços variados para aumentar a sua veloci-

dade de processamento, principalmente através de paralelismo e de técnicas de controlo

de concorrência mais eficazes. A maior parte das soluções propostas visam a otimização

do comportamento destes sistemas em ambientes de elevada contenção.

Neste trabalho, nós iremos reduzir a contenção no sistema recorrendo ao Lazy State

Determination (LSD). O LSD é uma nova API transacional que promove a utilização

de futuros para adiar o máximo os acessos à Base de Dados, reduzindo assim o tempo

que cada transação requer para executar em isolamento e, por consequência, reduzindo

também a janela de contenção.

O LSD tem-se mostrado uma solução promissora para bases de dados Chave-Valor.

O nosso foco foi agora redirecionado para Sistemas de Gestão de Bases de Dados Rela-

cionais, com uma tentativa de implementação e avaliação do LSD neste novo contexto.

Este objetivo foi concretizado através da implementação de um controlador JDBC para

minimizar quaisquer alterações a plataformas externas.

Os resultados mostram que a redução da janela de contenção efetivamente melhora

a taxa de sucesso de aplicações transacionais. No entanto, a nossa implementação atual

tem alguns problemas de desempenho que necessitam de ser investigados e endereçados.

Palavras-chave: Controlo de Concorrência, Processamento de Transações Em-Linha, Sis-

temas Relacionais, LSD, Ambientes de Alta Contenção, JDBC

viii

Contents

List of Figures xi

List of Tables xii

Glossary xiv

Acronyms xix

1 Introduction 1

1.1 Context and Motivation . 1

1.2 Problem and Goals . 2

1.3 Approach and Contributions . 2

1.4 Document Layout . 3

2 Concepts and Related Work 4

2.1 Basic Concepts of Asynchronous Programming 4

2.1.1 Concurrency and Parallelism . 4

2.1.2 Asynchronous Programming . 4

2.2 Transactional Systems . 6

2.2.1 Introduction . 6

2.2.2 Isolation Levels . 7

2.2.3 Concurrency Control Techniques 8

2.3 Interacting with the Database . 12

2.3.1 Structured Query Language . 12

2.3.2 Java Database Connectivity . 12

2.3.3 Benchmarking . 14

2.4 Related Work in High Performance OLTP Databases 16

2.4.1 Using Optimistic Concurrency Control Variants 16

2.4.2 Using Hybrid Protocols . 18

2.4.3 Using New Hardware and/or Software Capabilities 20

ix

CONTENTS

2.4.4 Using Futures . 21

2.4.5 Discussion . 24

3 A JDBC Driver for LSD 25

3.1 How to implement a JDBC driver? . 25

3.1.1 JDBC Interfaces and their Roles 26

3.2 The JDBC Driver for LSD . 31

3.2.1 Extending SQL with LSD operations 31

3.2.2 Driver Architecture . 33

3.2.3 Implementation Details . 36

4 Validation 43

4.1 Testing Environments . 43

4.2 Tests . 43

4.2.1 Implementation Correctness . 43

4.2.2 Performance . 45

4.3 Discussion . 52

5 Conclusions 54

5.1 Final Considerations . 54

5.2 Future Work . 54

Bibliography 56

Appendices

A Detailed Class Diagram for the LSD JDBC Driver 61

x

List of Figures

2.1 Simple SQL Syntax Example . 12

2.2 Diagram of Java Database Connectivity (JDBC) Interfaces 13

2.3 TPC-C Business Structure . 15

2.4 TPC-C Tables . 16

2.5 Traditional API vs. LSD API example . 24

3.1 The “META-INF” directory and its contents 25

3.2 Lazy State Determination (LSD)-Structured Query Language (SQL) JDBC Driver

network architecture . 34

3.3 How a connection with the database is established. 36

3.4 How a “Statement” interacts with the “Parser” 37

3.5 Normal SQL Statement behaviour . 38

3.6 LSD Statement behaviour . 38

3.7 LSD-JDBC Driver Simple Class Diagram . 42

4.1 LSD: TPC-C Benchmark Results . 46

4.2 PostgreSQL Profiler Results . 48

4.3 LSD Profiler Results . 48

4.4 Executing up to the ’Tax’ step (including) 51

4.5 Executing up to the ’Warehouse’ step (including) 51

4.6 Executing up to the ’Update New Order ID’ step (including) 51

4.7 Executing up to the ’Insert Order’ step (including) 51

4.8 Executing up to the ’Insert New Order’ step (including) 51

4.9 Normal and complete benchmark execution 51

4.10 Executing benchmark, but only queries . 52

4.11 Executing up to the ’Insert New Order Line’ step (excluding) 52

A.1 LSD-JDBC Driver Detailed Class Diagram 62

xi

List of Tables

2.1 Anomalies per Isolation Levels . 7

2.2 Traditional API vs. LSD API . 22

3.1 Pure LSD syntax vs. LSD-SQL syntax . 32

3.2 SQL instructions and LSD-SQL’s counterparts 32

4.1 Time elapsed for each run, in seconds . 49

4.2 LSD Parser and Preparation Overheads . 49

4.3 Read Phase Analysis . 50

4.4 Write Phase Analysis . 50

xii

List of Listings

3.1 The MANIFEST.MF file contents . 26

3.2 The java.sql.Driver service file contents 26

3.3 A simple Statement example . 27

3.4 A simple Prepared Statement example . 28

3.5 A simple Callable Statement example . 28

3.6 A simple Result Set example . 29

3.7 A Simple JDBC transaction in Kotlin . 30

3.8 A Simple JDBC transaction in Kotlin (cont.) 31

3.9 A Simple Properties file . 31

3.10 IS-TRUE instruction . 33

3.11 IF_LSD instruction . 33

3.12 The Commit protocol . 40

3.13 The Commit protocol (cont.) . 41

4.1 The ‘NEW-ORDER’ transaction . 46

4.2 The ‘NEW-ORDER’ transaction (cont.) 47

xiii

Glossary

algorithm A finite sequence of well-defined, computer-implementable in-

structions.

application A software program designed to carry out a specific task other than

one relating to the operation of the computer itself.

Assembly [47] Any low-level programming language in which there is a very

strong correspondence between the instructions in the language

and the architecture’s machine code instructions.

benchmark [19] The act of running a computer program in order to assess the

relative performance of an object, normally by running a number of

standard tests and trials against it. The term is also commonly used

for the purposes of elaborately designed “benchmarking” programs

themselves.

boolean A form of data with only two possible values,usually “TRUE” and

“FALSE”. Named after George Boole, who first defined an algebraic

system of logic.

bottleneck Bottleneck literally refers to the narrowed portion (neck) of a bottle

near its opening, which limits the rate of outflow, and may describe

any object of a similar shape. The term is used as an analogy for

implications of rate limitation or function restriction.

bottlenecking The effect of a bottleneck.

bytecode A form of instruction set designed for efficient execution by a soft-

ware interpreter.

C A general-purpose, procedural computer programming language

supporting structured programming, lexical variable scope, and

recursion, with a static type system.

xiv

GLOSSARY

C++ A general-purpose programming language created by Bjarne

Stroustrup as an extension of the C programming language, or

"C with Classes".

class [23] An extensible program-code-template for creating objects, pro-

viding initial values for state and implementations of behavior.

classpath A parameter in the JVM that specifies the location of user-defined

classs and packages.

cluster A set of loosely or tightly connected entities, normally computers,

but can differ depending on context.

compiler A computer program that translates computer code written in one

programming language into another language.

computer An electronic device which is capable of receiving information

(data) in a particular form and of performing a sequence of op-

erations in accordance with a predetermined but variable set of

procedural instructions (program) to produce a result in the form

of information or signals.

concurrency The ability of different parts or units of a program, algorithm, or

problem to be executed out-of-order without affecting the final out-

come.

database [56] an organized collection of data, generally stored and accessed

electronically from a computer system.

directory A file system cataloging structure which contains references to

other computer files, and possibly other directories.

driver [9] A computer program that operates or controls a particular type

of device that is attached to a computer or automaton.

epoch A reference point from which time is measured.

exception An anomalous or exceptional condition requiring special process-

ing. If said processing isn’t given, it creates an error.

Front Accountant [21] An open-sourced, Web-Based Accounting system for small

companies.

Fusion Ticket [22] An open-sourced, web-based box office and ticket sales system.

hardware The physical parts of a computer.

hash map A data structure that implements a structure that can map keys to

values.

xv

GLOSSARY

heuristic Is any approach to problem solving or self-discovery that employs

a practical method that is not guaranteed to be optimal, perfect, or

rational, but is nevertheless sufficient for reaching an immediate,

short-term goal or approximation.

instance Another term for object in the object-oriented context.

IntelliJ IDEA [26] An IDE written in Java for developing computer software.

interface A shared boundary across which two or more separate components

of a computer system exchange information. Within the context

of object-oriented languages, it is an abstract type that is used to

specify a behavior that classes must implement.

iterator An object that enables a programmer to traverse a container or a

different data structure with a similar function.

Java [27] A class-based, cross-platform, object-oriented programming

language that is designed to have as few implementation depen-

dencies as possible.

Kotlin [33] A cross-platform, statically typed, general-purpose program-

ming language with type inference, designed to fully interoperate

with Java.

latency A measure of the time delay experienced by a system.

linked list A data structure consisting of a collection of nodes which together

represent a sequence.

metadata Data that provides information about other data.

method A pre-defined behaviour of an object. It may receive parameters

and may return another object. Also used when referring to other

techniques employed in general.

middleware A computer software that provides services to software applica-

tions beyond those available from the operating system.

MySQL An open-source RDBMS.

node A computer, redistribution point or a communication endpoint in

a network.

object [23] A particular representation of a class that can be manipulated.

This term is also used when referring to “something” in general.

operating system A system software that manages computer hardware, software re-

sources, and provides common services for computer programs.

xvi

GLOSSARY

overhead Any combination of excess or indirect computation time, memory,

bandwidth, or other resources that are required to perform a spe-

cific task.

package A distribution of software and/or data in archive files.

parallelism The ability of running many processes or calculations at the same

time.

parse The function of a parser.

parser A software component that takes input data and builds a data struc-

ture.

performance The amount of useful work accomplished by a computer system

PostgreSQL Also known as Postgres, is a free and open-source RDBMS.

primitive type A data type for which the programming language provides built-in

support.

program A collection of instructions that can be executed by a computer to

perform a specific task.

proxy A server application or appliance that acts as an intermediary for

requests from clients seeking resources from servers that provide

those resources.

scalability [4] The property of a system to handle a growing amount of work

by adding resources to the system.

serializability The property of serialization.

serializable Something that has the serializability property.

serialization Process of a transaction schedule whose outcome (e.g., the resulting

database state) is equal to the outcome of its transactions executed

serially (i.e. without overlapping in time).

server A piece of computer hardware or software that provides function-

ality for other programs or devices, called “clients”.

Snapshot Isolation A widely used mechanism that runs transactions on a snapshot of

the database, which is generated prior to a transaction’s execution.

socket A software structure within a network node of a computer network

that serves as an endpoint for sending and receiving data across

the network.

software A collection of instructions and data that tell the computer how to

work.

string A sequence of characters, either as a literal constant or as a variable.

thread The smallest sequence of programmed instructions that can be

managed independently by a scheduler, which is typically a part

of the operating system.

xvii

GLOSSARY

throughput The rate of production or the processing rate.

token A word or other atomic parse element.

transaction An indivisible and irreducible series of operations such that either

all execute or none execute.

tree map A data type that simulates a hierarchical tree structure, with a root

value and subtrees of children with a parent node, represented as

a set of linked nodes

tuple A row (or record) from a database.

wrapper A class that encapsulates types, so that those types can be used to

create objects and methods in another class that need those types.

xviii

Acronyms

2PL Two-Phase Locking

ACID Atomicity, Consistency, Isolation, Durability

ANSI American National Standards Institute

API Application Programming Interface

AST Abstract Syntax Tree

BASE Basically Available, Soft state, Eventual consistency

CC Concurrency Control

COOP Cooperative Cleaning

CPU Central Processing Unit

DBMS Database Management System

DRAM Dynamic Random-Access Memory

FaRM Fast Remote Memory

FOSS Free and Open-Source Software

GC Garbage Collection

GUI Graphical User Interface

HTM Hardware Transactional Memory

ID Identification

IDE Integrated Development Environment

ISO International Organization for Standardization

JAR Java Archive

xix

ACRONYMS

JDBC Java Database Connectivity

JVM Java Virtual Machine

LSD Lazy State Determination

MCC Modular Concurrency Control

MV2PL Multi-Version Two-Phase Locking

MVCC Multi-Version Concurrency Control

MVOCC Multi-Version Optimistic Concurrency Control

N2O Newest to Oldest

O2N Oldest to Newest

OCC Optimistic Concurrency Control

ODBC Open Database Connectivity

OLTP Online Transaction Processing

RAM Random Access Memory

RDBMS Relational Database Management System

RDMA Remote Direct Memory Access

RDSMS Relational Data Stream Management System

SGBDR Sistemas de Gestão de Bases de Dados Relacionais

SI-HTM Snapshot Isolation Hardware Transactional Memory

SQL Structured Query Language

STM Software Transactional Memory

TCP/IP Transmission Control Protocol / Internet Protocol

TID Transaction ID

TLE Transactional Lock Elision

TLS Thread-Level Speculation

TPC Transaction Processing Performance Council

TPC-A TPC Benchmark A

TPC-C TPC Benchmark C

TPC-E TPC Benchmark E

TPM Transactions per Minute

tpmC Orders per Minute

TTL Time-To-Live

UML Unified Modeling Language

xx

ACRONYMS

URL Uniform Resource Locator

VAC Background Vacuuming

YCSB Yahoo! Cloud Serving Benchmark

xxi

1

Introduction

In this chapter we will present our motivations and the approaches that need to be under-

taken to address the problems we are trying to solve, as well as further insight upon the

content that will be addressed later in this report.

1.1 Context and Motivation

The evolution of Computing, as we see it today, is moving towards Hardware Resource
Pooling [58], as we have witnessed with the growth of Distributed Systems, Cloud Comput-
ing [2], and the Internet of Things [5], due to the performance of individual components

becoming harder and harder to improve. Ever since, we have seen the rise of multicore
and multiprocessor systems and, with it, the growing importance of concurrency and

parallelism to exploit efficient use of these systems.

In Database Management Systems (DBMSs), if every operation requested were to be

run serially, users would quickly find themselves waiting for a long time before receiving

any response from the system, many of those times waiting for too long, due to some

operations being time-sensitive.

To improve their performance, these databases employ parallelism, allowing the

database to run as many transactions as possible at the same time. However, uncontrolled

concurrency can quickly destroy data consistency, rendering these systems useless. Thus,

Concurrency Control (CC) techniques were developed, providing different degrees of

data consistency and allowing these systems to better serve their users.

With the growing number of users and the increasing ubiquity of services that require

data storage, databases have suffered scaling problems due to the increase of data con-
tentions, as solutions currently in use for CC suffer performance drops when having to

deal with these data conflicts:

• Pessimistic solutions, which are based on locks, impede the progress of transactions

that are unable to acquire proper access to the items they wish to view if the items

in question are currently being accessed by another transaction. Such behaviour

1

CHAPTER 1. INTRODUCTION

may lead to deadlock situations that must then be resolved, normally by aborting

one of the culprit transactions.

• Optimistic solutions, on the other hand, always allow uncontrolled access to their

data items, but then lose valuable processing time later when validating all the

operations executed and rolling back transactions with conflicting operations.

1.2 Problem and Goals

In Transactional Systems, concurrency and parallelism aim to increase the throughput of

the system by decreasing the amount of time required for each transaction to be com-

mitted. This is not possible without strict control over the order of execution, as data

consistency must be maintained at any cost. The techniques that attempt to maintain said

consistency in parallel environments may be classified under the CC umbrella.

There have been many propositions and solutions to improve the scalability of these

systems over the years, but the core of our work will be with the Lazy State Determi-

nation (LSD) [55] technique, which proposes the lazy evaluation and computing of these

transactions to reduce the chance of data conflicts between them.

So far, LSD, when used in Key-Value Stores, shows better performance, with higher

throughput, lower average response time of the system and lower conflict rates, than the

related solutions when operating in high contention environments. Now, our focus of

research will be the implementation of LSD in RDBMS environments.

1.3 Approach and Contributions

Most of the work proposed so far has been to reduce the impact of data contention,

through optimization of existing CC protocols or the implementation of new ones.

LSD, instead, proposes the reduction of the data contentions by reducing the amount

of time transactions execute in isolation. In this way, the system can further increase the

concurrent execution of transactions, as these performance roadblocks now happen less

frequently.

In order to enable LSD for RDBMSs, we must address any compatibility issues that

may appear between LSD and SQL.

Once these problems have been resolved, a new prototype driver must be developed,

followed by testing and evaluation under different workloads. For these tests we will

make use of the TPC Benchmark C (TPC-C) [50] standard benchmark.

More succinctly, our contributions will be:

• An in-depth evaluation of the State of the Art.

• A LSD Application Programming Interface (API) for RDBMS environments.

2

1.4. DOCUMENT LAYOUT

• An implementation of a driver which enables interaction with RDBMSs through

LSD.

• A correctness and performance analysis comparing our newly-implemented solu-

tion against regular ODBC drivers.

1.4 Document Layout

Following is a brief presentation for the following chapters in this report:

• In Chapter 2, we will explore basic concepts and general ideas that have been pre-

viously worked on in this field of research and offer insights as to what advantages

our different perspective might bring.

• In Chapter 3, we will discuss how we have implemented our prototype driver and

discuss the challenges that have arisen.

• In Chapter 4, we offer our analysis and discuss the results we have obtained with

our new LSD-based ODBC driver.

• Finally, in Chapter 5, we review the work that we have done and how we can

improve in the future.

3

2

Concepts and Related Work

In this chapter, we will explore the basic concepts of Asynchronous Programming (Sec. 2.1)

and Transactional Systems (Sec. 2.2), followed by a brief study of how interaction with a

DBMS is made possible (Sec. 2.3) and, finally, a study of the State-of-the-Art and Related

Work (Sec. 2.4).

2.1 Basic Concepts of Asynchronous Programming

2.1.1 Concurrency and Parallelism

Concurrency [14, 35] can be defined as the ability to execute (some or all) steps of an

algorithm out of order and achieve the same output as if they were executed sequentially.

More formally, it is a property that refers to the decomposability of an algorithm into

units that are order-independent or partially-ordered.

Parallelism is the simultaneous execution of processes or computations. It is a property

of multi-processor or multi-core systems that drive higher performance and throughput.

Both parallelism and concurrency are concepts that are usually mentioned together

due to their definitions being intertwined, but they are distinct concepts. It is possible

to have concurrency without parallelism but there can be no parallelism without concur-

rency.

In the context of this essay, we will be more interested in discussing concurrency

and its many nuances and obstacles, with the ultimate goal of being able to process

transactions in parallel reliably and consistently.

2.1.2 Asynchronous Programming

Asynchronous Programming is a programming paradigm that focuses in maximizing appli-

cation performance through the use of multiprocessors by splitting the work into different

parts that can be run concurrently and independently of each other[37].

Many techniques for Asynchronous Programming have been developed and explored.

Following is an outline of some of these techniques.

4

2.1. BASIC CONCEPTS OF ASYNCHRONOUS PROGRAMMING

2.1.2.1 Coroutines

Coroutines [32] are computer program components that allow for non-preemptive con-

current execution of other components, such as subroutines. According to Knuth, the

“coroutine” term was coined by Melvin Conway when he first implemented them in an

Assembly program.

When compared to threads, coroutines are simpler to implement since they don’t

need synchronization primitive types such as semaphores, for example, to guard against

critical sections. However, coroutines do not provide parallelism due to their cooperative

multitasking nature.

2.1.2.2 Event-Driven Programming

Event-driven programming [8] is a paradigm that bases the flow of the program’s execution

upon events (user actions, sensors’ outputs, received network messages, etc). It is widely

used in Graphical User Interface (GUI) development, distributed systems and anywhere

that is centred on performing certain actions in response to inputs, such as device drivers.

In Event-Driven applications, there is a main loop listening for events, which triggers

callback functions when one of these events is detected. For concurrency, this main loop

can be a dispatcher, passing the callback function to some thread that can execute it in

parallel.

2.1.2.3 Actor Models

Highly used in Event-driven applications and Distributed Systems, Actors [25] are objects

that are capable of receiving, processing and creating messages. Actors listen for “events”,

specific messages, and then trigger an appropriate response based on the messages they

have received. Each actor keeps its own internal state, can spawn and communicate with

other actors and can execute their functions anywhere, as long as all the system’s elements

are found in the same network.

Their main advantages for a system are the ease of scalability, heterogeneity and

simplification of communications and executions.

2.1.2.4 Futures

Futures [20], also known as Promises, is a technique that provides lazy or delayed evalua-

tion of expressions by deferring or executing in parallel the requested computation until

absolutely necessary, instead creating an object that represents the future computation’s

output. More simply, they provide the program with an “empty box” whose contents

will eventually arrive. As such, the program can then continue execution up until the

point where it requires the box’s contents. When it does, if the box’s contents already

arrived, execution can proceed, or if they did not arrive, the program can either wait for

5

CHAPTER 2. CONCEPTS AND RELATED WORK

them (by blocking execution) or continue some other task until notified of their arrival

(non-blocking execution).

Several advantages can be found when building applications with futures. It enables

high degrees of parallelism, as the main process can defer the computation of an expres-

sion to a thread and only checking and possibly waiting for its conclusion when desired.

Additionally, computations that end up not being used by the main process can be dis-

carded, reducing wasted Central Processing Unit (CPU) cycles, which may also have a

positive impact in the system.

2.2 Transactional Systems

Transactional Systems are database systems that rely on transactions as units of work. In

this section, some concepts about transactional systems are given, increasing our focus

of discussion on DBMSs, particularly RDBMSs, and on Online Transaction Processing

(OLTP).

2.2.1 Introduction

Transactional systems gain their name thanks to their reliance on transactions, which

are units of work composed by one or more instructions. These units are then treated

independently of one another by the system. They also represent a state change.

Transactions have four important properties, known as Atomicity, Consistency, Isola-

tion, Durability (ACID) [24]:

• Atomicity, either a transaction is fully executed or not at all.

• Consistency, if a transaction finds the database in a consistent state (which can

be guaranteed by the system through a set of invariants), then it must leave the

database in a consistent state after its execution.

• Isolation, concurrent transactions must execute independently of each other. This

means that concurrent transactions must behave as if they were being executed

serially. This is the property we are most concerned about in this study.

• Durability, after a successful transaction execution, its changes must be permanent

in the database.

Database systems using the “Relational Data” model are defined as RDBMSs. Many

of these systems can be interacted with through the use of SQL [38] (more about it on

Sec. 2.3), a query language made to exploit the “Relational Data” model. These systems

are the focus of our investigation.

6

2.2. TRANSACTIONAL SYSTEMS

2.2.2 Isolation Levels

As mentioned previously, maintaining isolation while maximizing concurrency is the

main focus of our work. SQL (and Berenson et al. [3]) currently defines four isolation

levels (each stronger than the previous):

• Read Uncommitted, where changes made by other running transactions are visible.

Virtually, there isn’t any isolation here.

• Read Committed, where transactions can only see data that has been confirmed as

committed.

• Repeatable Read, where transactions are guaranteed to see the same result if the

same read operation is performed repeatedly within the same transaction.

• Serializable, where the output of a set of concurrent transactions’ is guaranteed to be

the same as a serial execution of the same set of transactions. This is the strongest

and most complex isolation level.

Each isolation level has its strength measured by the number of anomalies by which

they are vulnerable. “Repeatable Read” is weaker than “Serializable” because it is vulner-

able to Phantom Reads, which occurs when, in the same transaction, two identical queries

return two sets of rows where one of them is a subset of the other.

“Read Committed” is weaker than “Repeatable Read” because, in addition to Phantom
Reads, it is vulnerable to both Lost Updates, where two transactions attempt to update the

same row and column, both being unable to see the other’s changes, and Non-repeatable
reads, which happens when, in a transaction, two identical queries receive different sets

of rows whose values have changed. “Read Uncommitted” is vulnerable to all the above

and Dirty Reads, where a transaction can read data that won’t be committed.

Table 2.1 depicts the relation between each isolation level and its anomalies, with (3)

representing the possibility of the anomaly happening and (7) representing the contrary.

Table 2.1: Anomalies per Isolation Levels, as per Berenson et al. [3]

Dirty Reads Lost Updates Non-repeatable reads Phantom Reads

RU 3 3 3 3

RC 7 3 3 3

RR 7 7 7 3

SR 7 7 7 7

RU: Read Uncommitted, RC: Read Committed, RR: Repeatable Read, SR: Serializable

7

CHAPTER 2. CONCEPTS AND RELATED WORK

2.2.3 Concurrency Control Techniques

Many techniques have been developed over the years of research on concurrency control,

each having their advantages and disadvantages. In this section, we will go over some of

the most relevant methods employed today.

2.2.3.1 Two-Phase Locking

Locks are an object which are associated with a shared resource (in our case, data items).

Transactions wishing to perform certain operations upon any data item must gain access

to the item’s respective lock before doing so.

There are two types of locks:

• Read-lock (or shared lock), which must be acquired before reading the associated data

item. It is “shared” because, for each row, many transactions can hold one of these

locks for the same row.

• Write-lock (or exclusive lock), which must be acquired before writing changes to the

data item, such as inserting, modifying or deleting it. It’s “exclusive” in the sense

that, for each row, only one transaction at a time can hold this type of lock. This

lock blocks all other operations by other transactions and can only be acquired after

all read-locks for the row have been relinquished.

One of the techniques developed that makes use of locks is Two-Phase Locking (2PL).

As described by Eswaran et al. [17], it is a mechanism for concurrency control based

on locks that ensures serializability. Each transaction, during its execution, acquires an

increasing number of locks (Growing Phase) until it first releases a lock, upon which time

it can only relinquish its held locks and cannot acquire new ones (Shrinking Phase). When

transactions acquire locks in this fashion, changes made to the database are considered

serializable because only a single transaction can make changes per row at any given

moment of time. In other words, all changes can be seen as a single timeline of events.

Methods relying on locks are vulnerable to Deadlocks, which occur when two concur-

rent transactions are waiting to acquire locks the other is holding. There are two ways

to deal with deadlocks: either through detection or prevention. To prevent deadlocks,

the system tests both involved transactions. This test consists in checking if the system

will block if the incoming transaction is allowed to wait. If the test is passed, then the

transaction may wait, otherwise one of them is aborted. The system can be characterized

as preemptive if an incoming transaction immediately requests access to the CPU, making

older transactions block and non-preemptive if an incoming transaction is forced to wait

for older transactions [49].

Another technique for prevention is predeclaration, where transactions must obtain

the set of locks that they require before executing. This completely prevents deadlocks,

but leads to the starvation of transactions that have a relatively broad lock set, as the

chance that they may be blocked increases.

8

2.2. TRANSACTIONAL SYSTEMS

With deadlock detection, transactions are allowed to block in an uncontrolled manner.

The system only intervenes when a deadlock is detected, with it being possible thanks to

a Waits-for graph, where nodes represent transactions and edges represent the “Waiting”

relation. When the graph develops a cycle it means a deadlock has been found, and

the system will choose to abort one of them, with this decision taking into account the

progress made and the amount of used resources. Predeclaration can also be used here,

with all of its already stated downsides.

Another alternative is using timeouts: a transaction has a maximum Time-To-Live

(TTL). If this TTL is exceeded, the transaction is considered in a deadlock and is aborted.

2.2.3.2 Optimistic Concurrency Control

Another method for concurrency control is to allow for uncontrolled access, only checking

if any incoming changes have conflicts. This is the Optimistic Concurrency Control (OCC)

approach, which is further elaborated on by Kung et al. [34].

The process can be structured down into three phases:

• Read phase, where transactions copy values from the required data items into their

private workspaces.

• Write phase, optional, where transactions update the values in their private

workspace as per their instructions.

• Validation phase, where the system checks if the incoming changes have conflicts

with other transactions’ updates. Normally, this verification is done resorting to

timestamps which are attributed to transactions upon entering the system. If a

transaction fails the validation test, then it is aborted and restarted.

2.2.3.3 Multi-Version Concurrency Control

A different angle on this study of concurrency control methods is the Multi-Version Con-

currency Control (MVCC), which can be found more in depth in Wu et al. [59]. This

method works by keeping track of multiple versions of each tuple. How a transaction in-

terfaces with these multiple versions depends on the flavour of MVCC that is implemented

on the system, two of which are the most interesting here: Multi-Version Two-Phase Lock-

ing (MV2PL) and Multi-Version Optimistic Concurrency Control (MVOCC).

MV2PL is a MVCC variant which makes use of locks (see Section 2.2.3.1) for con-

trolling accesses to different versions. Every transaction must acquire the appropriate

lock before being able to access any version of a tuple. To perform a read, the DBMS

searches for a visible version of a tuple. A version is considered visible if it has been

successfully committed to the database. If a visible version is found, then its read lock

is incremented and access is given to the transaction. The process for update operations

is similar, the only difference being that instead of incrementing the read lock counter,

9

CHAPTER 2. CONCEPTS AND RELATED WORK

the transaction must wait until the read-lock counter turns to zero before being able to

acquire the exclusive lock to the row.

MVOCC implements MVCC with a slightly different Optimistic protocol. Transac-

tions, upon entering the system, are given a unique timestamp and must then go through

three execution phases:

• Read phase, where transactions invoke read and update operations. Before exe-

cuting a read, the transaction must fetch the most up-to-date visible version of

the chain. Updates are permitted as long as they are not write-locked by another

transaction and that the tuple it is trying to update is the most recent version.

• Validation phase, which occurs when the transaction wishes to commit. A new times-

tamp is issued for the serialization of operations between transactions, followed by

a verification by the system that no conflicts were present during the transaction’s

execution, aborting the transaction if any conflict occurs.

• Write phase, which happens if the validation phase is successful, where the transac-

tions updates are made visible to other transactions.

Independently of the protocol running, MVCC DBMSs have other important character-

istics. Maintaining multiple versions of each tuple has an obvious storage and processing

overhead, so every MVCC implementation must also have features that mitigate these

problems.

One of these features is the Version Storage Scheme, which dictates how the version

chain is organized. There are three possible schemes in use today:

• Append-only, where tuple updates happen by first acquiring an empty slot in storage

for the new tuple, then copying the content of the current version to the new version

and applying the modifications to the tuple in the newly allocated version slot. Since

latch-free doubly-linked lists aren’t possible to maintain, the main design choice

for an append-only version chain is the direction from which the version chain is

traversed:

– Oldest to Newest (O2N), where new versions are added to the tail of the ver-

sion chain. This scheme has the advantage of removing the necessity to have

frequent index updates, since indices point to the HEAD of the chain. However,

traversing the version chain becomes a very costly task. Normally, databases

that use O2N have mechanisms in place to keep these version chains as small

as possible, thus reducing the travel overhead.

– Newest to Oldest (N2O), where new versions are added at the head of the

version chain. Its advantages and disadvantages are the opposite of O2N, it

has more index updates but doesn’t have the travel overhead.

10

2.2. TRANSACTIONAL SYSTEMS

• Time-Travel, similar to append-only except the master version is kept in the table

while other versions are kept in a “time-travel” table. This circumvents the index

update and the traversal overhead problems, but incurs extra maintenance when

pruning versions.

• Delta, where the master version is always in the table with “delta” version kept in

a separate “delta table”. Older versions simply keep the modifications done to the

master version to enable in-place updates. It is great for write-intensive workloads

thanks to less memory allocations, but suffers in read-intensive workloads due

to increased overhead because, to read a specific version, all the transformations

between the master and the selected version have to be applied.

Another important feature MVCC DBMSs implement is Garbage Collection (GC),

essential for efficient version pruning. Two archetypes of GC exist today:

• Tuple-level, which attempts to prune individual tuple versions based on their visi-

bility (or lack thereof) to transactions. Two techniques in this archetype exist:

– Background Vacuuming (VAC), where background threads are used to period-

ically scan the database. This is the most common technique, as it is easy to

implement. However, this mechanism doesn’t scale well with big databases.

Thus, a variant exists where transactions themselves register expired tuples in

a latch-free data structure, which can then be claimed by the GC threads.

– Cooperative Cleaning (COOP), only usable in append-only databases, where

the DBMS, while traversing the version chain, marks the irrelevant information

which can be claimed in the future. This scales well, since GC threads are no

longer required, but has a flaw: it doesn’t prune tuples that are rarely accessed

by a transaction. This ’dusty corners’ problem is dealt with by using a GC

thread periodically, similar to VAC.

• Transaction-level, where GC is done at the granularity of transactions. A transac-

tion is considered expired by the DBMS when none of its generated versions are

visible to other transactions. These versions are then erased at the end of an epoch,

which is when their removal can be considered safe. It is simple and works well

with transaction-local storage, but has the downside of having to keep track of the

read/write sets of transactions in an epoch.

2.2.3.4 Discussion

Wu et al. [59] have shown that the most important factor in a DBMS’ performance (aside

from having in-memory capabilities) is the combination of MVCC configurations, with

MV2PL/Delta Storage/Transaction-level GC being the most performant, with Delta Storage

being an enabler of high concurrency in multiprocessor environments, although it has

11

CHAPTER 2. CONCEPTS AND RELATED WORK

the slowest response times, and systems using Append-Only O2N being the slowest, due

to being harder to scale, thanks to longer version chain traversals.

2.3 Interacting with the Database

2.3.1 Structured Query Language

SQL[39] is a language used in RDBMS and Relational Data Stream Management System

(RDSMS) to perform queries and operations. It was the first commercial language to

utilize the “Relational Model” proposed by Codd et al. [7].

SQL syntax can be subdivided into different categories:

• Clauses, the main components of Queries and Statements, normally designate opera-

tions.

• Expressions, a string which produces a scalar or table value, with tables being com-

posed of rows and columns of data.

• Predicates, a string that represents a condition that evaluates to a boolean value.

Used to limit the effects of statements and queries or to change program flow.

• Queries, a combination of the previous elements that results in data being returned.

• Statements, a combination of the previous elements that may result in data or

schemata alterations.

A small example of a SQL statement is provided in Fig. 2.1.

Figure 2.1: Simple SQL Syntax Example [40]

Even though SQL has been declared a standard by both the International Organization

for Standardization (ISO) and the American National Standards Institute (ANSI), different

RDBMSs have different dialects of SQL, thus sometimes some SQL code must be changed

between these systems.

2.3.2 Java Database Connectivity

Java Database Connectivity (JDBC)[28] is an API, provided to Java applications, which

specifies how a connection to a RDBMS can be made to access its data. This is done by

12

2.3. INTERACTING WITH THE DATABASE

providing methods to applications that enable queries and updates to be executed upon

the database. These methods are divided into different interfaces (which can be seen in

Fig. 2.2), with the main ones being the following:

• Driver, the base interface, is used by JDBC’s Driver Manager to create connections

to any given database.

• Connection, the interface that represents a connection to a RDBMS, with its methods

specifying the different interactions an application can have with the database.

• Statement, the interface representing a SQL statement. Statements can be executed

within the database with the methods specified therein. A Statement object can be

used to execute different instructions many times.

• Prepared Statement, similar to the “Statement” interface, whose only difference is

that an object implementing this interface can only be used for executing the same
instruction many times with greater performance.

• Callable Statement, similar to previous “Statement” interfaces, but only executes

stored procedures.

• Result Set, the interface which specifies how to interact with the produced results

of an executed statement (if they exist).

Class.forName("Driver")

DriverManager

connect()

Driver

createStatement()

prepareStatement()

prepareCall()

ConnectionStatement

PreparedStatement

execute()

CallableStatement
get()

ResultSet

DataTypes
(Numeric, Date...)

Figure 2.2: Diagram of JDBC Interfaces

13

CHAPTER 2. CONCEPTS AND RELATED WORK

2.3.2.1 JDBC Driver

To be able to access a database through JDBC, an application must use a JDBC driver.

There are four main types of these drivers:

1. Type 1: JDBC-ODBC Bridge is a database-agnostic driver that makes connections

through Open Database Connectivity (ODBC) [57]. Very useful when it was first

released, but not recommended any more today due to poor performance.

2. Type 2: Native-API, partly written in Java, is a platform-specific driver that translates

the client’s requests into C/C++ native to the database. This driver type has better

performance than type 1.

3. Type 3: Network-protocol, fully written in Java, is a driver that makes use of a mid-

dleware proxy that executes requests to the database on behalf of the client. The

middleware itself can communicate with the database using type 1, 2 and 4 JDBC

drivers.

4. Type 4: Native-protocol, fully written in Java, is a driver that establishes communi-

cation with the database purely through sockets. It is the most performant of all

driver types, and is usually provided by the platform’s vendor.

2.3.3 Benchmarking

In this study, we are more concerned with the performance of OLTP RDBMSs, and the

industry leading organization in these matters is the Transaction Processing Performance

Council (TPC)[51, 31].

According to the TPC, TPC Benchmark C (TPC-C) is an appropriate tool1 to measure

the performance of OLTP databases. TPC-C is a benchmark more complex than its

predecessor TPC Benchmark A (TPC-A) due to multiple transaction types and a more

complex database schema.

2.3.3.1 TPC-C Specifications

TPC-C simulates a wholesale supplier company with geographically distributed sales

districts and associated warehouses. Each regional warehouse is responsible for supplying

10 districts, with each district serving 3000 customers. Each warehouse maintains the

100,000 items the company sells. Fig. 2.3 depicts the business’s structure.

As such, the database (see Fig. 2.4) is separated into 9 different tables:

1. Item, which holds all the information about the 100,000 products the company sells.

2. Warehouse, contains the information about all warehouses the company holds. The

number of warehouses is configurable (normally 10) and is represented by W .
1Although TPC Benchmark E (TPC-E) is a more recent addition to this family of transaction processing

benchmarks.

14

2.3. INTERACTING WITH THE DATABASE

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 10 of 130

Clause 1: LOGICAL DATABASE DESIGN

1.1 Business and Application Environment

TPC Benchmark™ C is comprised of a set of basic operations designed to exercise system functionalities in a manner
representative of complex OLTP application environments. These basic operations have been given a life-like
context, portraying the activity of a wholesale supplier, to help users relate intuitively to the components of the
benchmark. The workload is centered on the activity of processing orders and provides a logical database design,
which can be d istributed without structural changes to transactions.

TPC-C does not represent the activity of any particular business segment, but rather any industry which must
manage, sell, or d istribu te a product or service (e.g., car rental, food d istribu tion, parts supplie r, etc.). TPC-C does
not attempt to be a model of how to build an actual application .

The purpose of a benchmark is to reduce the d iversity of operations found in a production application , while
retaining the application's essential performance characteristics, namely: the level of system utilization and the
complexity of operations. A large number of functions have to be performed to manage a production order entry
system. Many of these functions are not of primary interest for performance analysis, since they are proportionally
small in terms of system resource utilization or in terms of frequency of execution. Although these functions are vital
for a production system, they merely create excessive d iversity in the context of a standard benchmark and have
been omitted in TPC-C.

The Company portrayed by the benchmark is a wholesale supplier w ith a number of geographically d istributed
sales d istricts and associated warehouses. As the Company's business expands, new warehouses and associated
sales d istricts are created . Each regional warehouse covers 10 d istricts. Each d istrict serves 3,000 customers. All
warehouses maintain stocks for the 100,000 items sold by the Company. The following d iagram illustrat es the
warehouse, d istrict, and customer hierarchy of TPC-C's business environment.

Customers

Company

Warehouse-1

Dis trict-10

Warehouse-W

Dis trict-1 Dis trict-2

3k1 2 30k

Figure 2.3: TPC-C Business Structure, from TPC-C specifications [52]

3. Stock, holding information about the available stock of all products in each ware-

house. It contains W ∗ 100,000 records.

4. District, maintains records about the different districts each warehouse supplies. It

holds W ∗ 10 tuples.

5. Customer, contains information about all of the company’s W ∗ 30,000 customers.

6. History, maintains the purchase history of each customer. Contains W ∗ 30,000

records (small variations in the initial database population according to certain

parameters).

7. Order, which holds the orders that have been received by the company. Contains

W ∗ 30,000 tuples, subject to small variations, as previously mentioned.

8. New-Order, maintains the information about new orders that have been placed by

customers. Starts with W ∗ 9000 records, subject to the same small variations as

before.

9. Order-Line, which contains each line from each order that has been made. Contains

W ∗ 300,000 records, subject to small variations.

According to the TPC-C specifications [52], there are five types of transactions:

1. New-Order, the backbone of the benchmark, inserts an entire new order into the

database. It is a mid-weight, read-write transaction and has the most stringent

response time requirements.

2. Payment, represents an update to a customer’s balance. It is a light-weight, read-

write transaction and is tied with the New-Order transaction for the most stringent

response time requirements.

15

CHAPTER 2. CONCEPTS AND RELATED WORK

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 11 of 130

Customers call the Company to place a new order or request the status of an existing order. Orders are composed of
an average of 10 order lines (i.e., line items). One p ercent of all order lines are for items not in -stock at the regional
warehouse and must be supplied by another warehouse.

The Company's system is also used to enter payments from customers, process orders for delivery, and examine
stock levels to identify potential supply shortages.

1.2 Database Entities, Relationships, and Characteristics

1.2.1 The components of the TPC-C database are defined to consist of nine separate and ind ividua l tables.
The relationships among these tables are defined in the entity -relationship d iagram shown below and are subject to
the rules specified in Clause 1.4.

Warehouse Dis trict

His tory

Customer
New-Order

OrderOrder-L ineItem

Stock

W W*10

3k

1+

W*30k

W*30k+5-15

0-1

1+
W*30k+

W*9k+

W*300k+

3+

100k

W

W*100k

100k

10

Legend:

• All numbers shown illustrate the database population requirements (see Clause 4.3) .

• The numbers in the entity blocks represent the card inality of the tables (number of rows). These numbers are
factored by W, the number of Warehouses, to illustrate the database scaling. (see Clause 4).

• The numbers next to the relationship arrows represent the card inality of the relationships (average number of
child ren per parent).

• The plus (+) symbol is used after the card inality of a relationship or table to illustrate that this number is
subject to small variations in the initial database population over the measurement interval (see Clause 5.5) as
rows are added or deleted .

1.3 Table Layouts

1.3.1 The following list defines the minimal structure (list of attributes) of each table where:

• N unique IDs means that the attribute must be able to hold any one ID within a minimum set of N unique
IDs, regard less of the physical representation (e.g., binary, packed decimal, alphabetic, etc.) of the attribute.

• variable text, size N means that the attribute must be able to hold any string of characters of a variable length
with a maximum length of N. If the attribute is stored as a fixed length string and the string it h olds is shorter
than N characters, it must be padded with spaces.

Figure 2.4: TPC-C Tables, from TPC-C specifications [52]

3. Order-Status, a mid-weight read-only transaction that queries the status of a cus-

tomer’s last order. Has low response time requirements.

4. Delivery, a transaction type that is intended to be executed in a deferred mode,

processes a batch of 10 yet-to-be-delivered orders, with each order being delivered

within the scope of this read-write transaction.

5. Stock-Level, calculates the number of recently sold items that have a stock level

below a specified threshold. It is a heavy read-only transaction and with relaxed

response time and consistency requirements.

The benchmark measures the performance of the database in Transactions per Minute

(TPM). Since, by design2, most transactions will be New-Orders, Orders per Minute

(tpmC) can be used instead.

2.4 Related Work in High Performance OLTP Databases

In this section, we will explore other approaches that attempt to solve the same problem

we have described in High Performance OLTP Databases environments.

2.4.1 Using Optimistic Concurrency Control Variants

Silo [53] is an in-memory database, developed by Tu et al., designed with efficient

memory and cache usage to allow for high performance and scalability in multicore

nodes.

Its high performance is assured through the usage of an OCC commit protocol that

provides serializability while being able to bypass shared-memory writes for records that

didn’t suffer any updates. Serializability is guaranteed by linking epochs with the commit

protocol.

2Although it can be configured otherwise by altering the probability that each transaction type can occur.

16

2.4. RELATED WORK IN HIGH PERFORMANCE OLTP DATABASES

This new OCC protocol uses Transaction IDs (TIDs), which are basically timestamps

but, unlike other OCC implementations, these are generated in a distributed manner and
only after verification can that transaction be committed. This TID must be the smallest

number that obeys the following conditions:

• Larger than the TID of any record read or written by the transaction.

• Larger than the worker’s most recently chosen TID.

• In the current global epoch.

The protocol is serializable because:

• All written records are locked before validating TIDs.

• It treats locked records as dirty, aborting the transaction upon encountering such

tuples.

• The system guarantees that, for each requested data item at any time, the most

up-to-date version is received by the transaction.

This new protocol provides Silo with scalability and better performance, since it re-

duces the bottlenecking of timestamp management and minimizes the latency in re-

sponses. The tests, performed by Tu et al. by making use of the Yahoo! Cloud Serv-

ing Benchmark (YCSB) and TPC-C benchmarks, show that Silo is capable of achieving

700,000 transactions per second with linear scalability according to the number of cores.

However, these results have been obtained in a “no contention” setting through a single-

threaded client and, as such, do not correspond to the real values had Silo been in a

high-contention environment, as was shown by Yu et al. [62].

TicToc [62] is a new OCC protocol that aims to avoid the scalability and bottlenecking

problems of prior timestamp algorithms through a new timestamp management protocol

that assigns these to operations instead of transactions, using said timestamps to lazily

compute a valid commit timestamp in a distributed manner.

Since timestamps are attributed to operations which, in a horizontally scaled database,

are executed in different nodes, this reduces the bottlenecking of centralized timestamp

management of previous OCC implementations. This allows the protocol to scale re-

ally well and, additionally, the laziness component allows the DBMS to further exploit

parallelism, which greatly improves its performance.

To better understand TicToc, a short analysis of the following example is required.

Two transactions (A and B) have the following interweaving of instructions:

A:read(x)→ B:write(x)→ B:commit→ A:write(y)

17

CHAPTER 2. CONCEPTS AND RELATED WORK

Although this line of execution is serializable, as A can be ordered before B, ordinary

OCC protocols would abort this execution because A’s read value for x had been updated

by B. TicToc is able to allow this interweaving due to being aware of when A read x, which

then allows for the aforementioned serialization.

Yu et al. report, according to their benchmarks obtained via TPC-C, almost twice

the performance with a third of the abort rate in low-contention when compared to

previous OCC implementations, with behaviour in high-contention reducing the gap,

but still showing an improvement. When compared with Silo, TicToc has achieved better

throughput of operations with similar abort rates.

ROCOCO [41] is a distributed concurrency control protocol that executes transactions

as a collection of atomic pieces, with each piece being executed by a different server for

execution, with reordering of operations if conflicts are found.

This division of transactions into different pieces requires a priori knowledge of how

the system is partitioned (to correctly send the piece to the responsible partition) and

which transactions the system will execute (since static analysis needs to be performed to

be able to divide it correctly).

Mu et al. report that ROCOCO, when compared to both OCC and 2PL, has a higher

throughput and a lower response time across all contention levels when executing the

TPC-C benchmarks.

2.4.2 Using Hybrid Protocols

The following protocols are considered “hybrid” because they can use different CC strate-

gies during runtime.

Strife [43] is a new CC protocol that exploits data contention to improve performance

in multicore systems in high contention environments. It achieves its high performance by

batching incoming transactions into clusters that can then be executed with uncontrolled

parallelism without any data conflicts. Transactions that can’t be put into clusters will be

run concurrently with traditional CC protocols.

The protocol has three phases:

• Analysis phase, where the protocol takes the incoming transactions and batches

them into clusters that are data-conflict free.This is done by using a data access
graph, a bipartite graph where one side is the set of transactions and the other is

the set of accessed data items, with edges representing the relation “Transaction
X accessed Data Item Y”. Transactions that were not clustered are then marked as

residual for later processing.

• Conflict-free phase, where the protocol distributes the clusters of transactions by

the CPU cores to be run in parallel in an uncontrolled fashion, with transactions

18

2.4. RELATED WORK IN HIGH PERFORMANCE OLTP DATABASES

of the same cluster being executed serially by the same core. Strife can guarantee

the correctness of these executions because it makes sure every cluster doesn’t share

any data dependencies with the other clusters. This phase ends when all cores have

finished processing their cluster of transactions. Cores that have finished earlier

must wait for stragglers, otherwise correctness cannot be guaranteed.

• Residuals phase, where the transactions that could not be clustered are processed.

The protocol ensures that these are run in parallel with CC. Any CC protocol can

be used for this phase, but Prasaad et al. implemented 2PL with a No Wait policy,

meaning that any transaction that fails to acquire a lock is aborted and must be

restarted.

Results show that Strife achieves twice better throughput both on YCSB and TPC-C

benchmarks when compared to other CC protocols under normal circumstances, and

up to four times better when under high-contention environments, with the ability of

improving its performance if the number of “hot items” (records that are heavily requested

by different transactions) that are independently accessed increases. However, Strife
underperforms in low-contention environments when compared to those same protocols,

due to having an “Analysis” phase that takes longer than the time it would take had the

system simply executed the transactions when received.

Salt [61] is a distributed database that offers transactions the possibility of using either

the ACID API or the Basically Available, Soft state, Eventual consistency (BASE) [44]. The

BASE API weakens the consistency and isolation constraints that ACID requires to be

able to exploit greater performance.

It does so by allowing programmers to create a subtransaction from a normal ACID

transaction that runs at a BASE level. Correctness during the interaction between BASE

and ACID transactions is maintained by the Salt Isolation property, which permits BASE

transactions to only see other BASE transactions’ internal states, and even still, only at

well-defined spots. ACID transactions retain their full isolation to themselves.

Presented results show, when compared to a MySQL distributed cluster (from which

Salt was derived from), a performance improvement of over six times on the TPC-C

benchmark and of six and half times higher when on Fusion Ticket.

Callas [60] sharing some ancestry with Salt, is a distributed ACID database which em-

ploys a new kind of concurrency control protocol, Modular Concurrency Control (MCC).

MCC works by “decoupling the ACID abstraction from its implementation”, meaning it

partitions the transactions into groups (similarly to Strife) and each group has its own op-

timized concurrency control mechanisms. The groupings are made by a chopping tool that

uses heuristics to statically analyse the transactions’ workload and identify the groupings

that increase concurrency.

19

CHAPTER 2. CONCEPTS AND RELATED WORK

MCC guarantees isolation intra-groupings and uses nexus locks, a new lock type made

specifically for Callas, that guarantees isolation for transactions that belong to different

groups.

Xie et al. report, when compared to a MySQL distributed cluster (from which both

Salt and Callas were derived from), a performance improvement of over eight times when

running the TPC-C benchmark, nearly six times better performance on Fusion Ticket and

over six times better performance on Front Accountant, achieving very similar results to

those of Salt.

2.4.3 Using New Hardware and/or Software Capabilities

Star™ [12, 11, 13] is a tool for Software Transactional Memory (STM) Java applications

that statically detects if any pair of transactions may cause a write skew anomaly, which

leads to unpredictable behaviours.

A write skew is a serializability anomaly that occurs in Snapshot Isolation. An example

of this anomaly is when two transactions X and Y try to execute the following statements:

X := x+ y (2.1)

Y := y + x (2.2)

For this example, it is possible to find a trace of execution that is not serializable and

yields unexpected results. These anomalies occur when two transactions are writing on

different memory addresses (in the previous example, x and y) but are also reading data

that is being modified by the other.

Star™prevents these anomalies from happening by making use of Separation Logic[45]

to perform shape analysis[15], producing memory locations for a transaction’s Read and

Write sets, enabling the execution of said transaction in Snapshot Isolation or, when

Snapshot Isolation is not possible, the enforcement of full serializability semantics.

Fast Remote Memory (FaRM) [16, 46] is a distributed transactional system that ex-

ploits Remote Direct Memory Access (RDMA) and non-volatile Dynamic Random-Access

Memory (DRAM) to reduce the network bottlenecks, when compared to main memory

systems built on top of the Transmission Control Protocol / Internet Protocol (TCP/IP),

and storage bottlenecks by keeping information in-memory. Its main advantages are the

performance gains from the exploited hardware features and a new OCC protocol based

on timestamps.

Thanks to these improvements, advantages that other systems may be able to exploit

as well due to their physical nature, Shamis et al. have been able to report 5.4 million

New-Order operations per second with the TPC-C benchmark.

20

2.4. RELATED WORK IN HIGH PERFORMANCE OLTP DATABASES

Hardware Transactional Memory (HTM) [36, 42] is a commercial solution used in

multi-core processors such as the IBM POWER8*. It consists of a set of Power ISA in-

structions to implement a best-effort and isolated transactional memory system, with

hardware-based mechanisms for checkpointing and rollbacks provided for efficient cre-

ation, restoration and committal of transactions.

This enables the usage of two features: Transactional Lock Elision (TLE) and Thread-

Level Speculation (TLS).

TLE allows for the execution of critical sections to be concurrent across many threads

without needing a lock. In other words, it converts these critical sections into transactions

that can be dynamically analysed for conflicts.

TLS enables concurrent execution of serial operations in a program (such as loop

iterations) even if compilers cannot detect the existence of data inter-dependencies by

enclosing these operations in a transaction where, in a similar fashion to TLE, the system

can dynamically analyse them for conflicts, rolling back and re-executing the operation

as necessary. A shared control variable is used to guarantee the serial semantics of the

original operations, but this can create conflicts which increase the abort rate of transac-

tions. To combat this, suspend regions are used to be able to read this variable without

said read becoming part of the transaction’s footprint, thus eliminating these kinds of

conflicts.

When testing the benefits of TLE, results have shown that, with a modified Pthreads
library, the speedup experienced by the system in “high lock contention, no conflict” en-

vironments is significant, being directly proportional to the number of active threads.

This is, however, a favoured case, as the results from other conditions show increased

performance to a much lesser degree, with the “high lock contention, no conflicts, and a data
set that overflows the transactional memory footprint capacity” yielding virtually no benefits.

For TLS, results show that making use of suspend regions increase the system’s

speedup significantly in single-threaded executions with transaction failures eliminated.

Snapshot Isolation Hardware Transactional Memory (SI-HTM) [18] is an improve-

ment for HTM proposed by Felipe et al. that implements Snapshot Isolation through a

software layer. SI-HTM exhibits improved scalability, achieving speedups of up to 300%

relatively to HTM on in-memory database benchmarks.

2.4.4 Using Futures

LSD [55] is an API that implements the notion of futures for clients requesting opera-

tions to databases, thus bringing all the previously mentioned benefits of lazy computing
without radical changes in how programmers deal with transactions.

21

CHAPTER 2. CONCEPTS AND RELATED WORK

2.4.4.1 Brief Introduction

LSD aims to reduce transaction conflicts by reducing the amount of time that a transaction

requires isolation. Isolation is only required during the Commit phase, when the database

will resolve the futures developed during the transaction’s execution. This approach

means that, while executing, transactions don’t (normally) observe specific database states

but rather abstract states, relying only on the futures given by LSD to execute their

operations.

The way LSD achieves such goals is by modifying the traditional Transactional API,
through the modification of the WRITE and READ operations, enabling them to return

and use futures, and by implementing a new operation IS-TRUE, whose function is to

return whether a conditional expression (which can include futures) is true or false.

Table 2.2: Traditional API vs LSD API

Operation Traditional API LSD

BEGIN Starts a new transaction Same as before

READ(key) Returns value X held at key Returns future � that represents the
value held in the future-key key

READ(4) Does not exist Returns future � that represents the
value held at 4

IS − TRUE(�) Does not exist Returns the boolean value of the
condition � in the database

WRIT E(key,X) Writes the value X into key Does not exist

WRIT E(key,�) Does not exist Writes the future value � into key

WRIT E(4,�) Does not exist Writes the future value � into the
future-key 4

COMMIT Attempts to commit the trans-
action

Same as before

ABORT Aborts the transaction Same as before

The main benefits of using LSD are increased throughput and reduced latency, which

are achievable thanks to the reduced contention window. This reduction is possible

because isolation is required for smaller lengths of time and through a relaxation of the

set of transactions that must be forced to abort to maintain said level of isolation. It is

important to note, however, that transactions that require a specific database state must

fallback to the traditional READ instructions, not benefiting from these improvements,

but these transactions are expected to be a minority.

LSD can work with both OCC and 2PL techniques.

22

2.4. RELATED WORK IN HIGH PERFORMANCE OLTP DATABASES

2.4.4.2 Model and Design

LSD follows the classic Client-Server architecture, with the Client being responsible for

running the application code and the Server, which can be partitioned or replicated, being

responsible for managing the DBMS. Both of these components can be run in the same

machine or in different locations and communication between them is done through the

LSD API.

Operations exposed by the LSD API (briefly described in Table 2.2) are the following:

• BEGIN , which begins the transaction.

• READ(key) or READ(4), returns a future, which is an abstract representation of the

requested object. The transaction will continue its execution, applying transforma-

tions to this future instead of the real value, which only later will be resolved by the

database.

• IS−TRUE(�), for conditional branching inside the transaction. This new operation

is necessary to be able to evaluate expressions with future values, as their real values

are unknown to the transaction. It returns whether the passed condition P is true,

but does it over an abstract state, meaning the futures aren’t resolved and, as it

does, maintains the isolation between transactions. This operation has different

behaviours depending on the CC protocol used: either the condition is validated

during commit, if using OCC, or locks are put in place to ensure the output of the

condition doesn’t change until the commit phase, in case of 2PL.

• WRIT E(key,�) or WRIT E(4,�), instructs the database to write into a future tuple

4 or to a specific tuple key the future value �. The future(s) 4 and � are only

evaluated by the database during the commit phase.

• COMMIT , instructs the database that the transaction wishes to commit. All the

futures generated during its execution must be resolved at the beginning of the

commit process.

• ABORT , which simply aborts the transaction.

To better understand the differences between both APIs, consider the example found

in Fig. 2.5, where it can be seen that the general structure of the transaction remains the

same, which shows the user-friendliness of LSD, with the only major change being the

introduction of the futures.

Of course, this begs the question of how does LSD deal with concurrency and correct-

ness since futures aren’t immediately computed. It depends on which protocol is being

used, but there is some common ground. In addition to the previously required read and

write sets already maintained by the DBMS, LSD requires the maintenance of three new

sets: a future_reads, to maintain the unresolved read sets, future_writes, analogous to fu-
ture_reads set but for writes, and future_conditions, where the conditions used in IS-TRUE

23

CHAPTER 2. CONCEPTS AND RELATED WORK

Algorithm 1 Traditional API
begin
v← read(stock)
if v ≥ qty then

v← v − qty
write(stock,v)
commit

else
abort

end if

Algorithm 2 LSD API
begin
�← read(stock)
if is-true({� ≥ qty}) then
4← {�− qty}
write(stock,4)
commit

else
abort

end if

Figure 2.5: Traditional API vs. LSD API example, from Vale et al. [55]

operations are kept to be computed later. From this point onwards, LSD’s behaviour

changes depending on the protocol being used.

For OCC, each data item has an associated version. When the database receives read or

write operations, they are registered into their respective future sets. When a transaction

wishes to commit, the DBMS resolves and locks the tuples found in future_reads, followed

by locking of future_writes and of writes. It then validates the reads, future_reads and

future_conditions sets. If validation is passed, it resolves the future_writes and updates the

database state with the values from the resolved future_writes and writes set, releasing all

the locks in the end.

For 2PL, all objects that transactions wish to access must be locked. In addition to

previously established locks, a new lock was implemented specifically for the IS-TRUE
operation: a conditional lock, which supports the traditional read-write modes plus two

more:

• Read condition, which associates an item with a condition �.

• Write value, which is acquired by a transaction that wishes to update the locked

item with a new value that respects all the read condition locks imposed on it.

2.4.5 Discussion

LSD’s improvements, which aim to reduce the possible contention window of transac-

tions, make it an interesting solution in the sense that it is compatible with the previously

mentioned solutions. In other words, LSD, by acting as an extra layer between the client

and the DBMS, can be used in conjunction with other solutions that optimize the func-

tioning of the database, which can vary from protocols such as Silo, TicToc and Strife, to

hardware improvements such as FaRM and HTM. This compatibility stems from attempt-

ing to improve the client-server communication instead of simply improving the server’s

performance. In other words, it attempts to solve the problem from another angle, thus

it doesn’t interfere with how other propositions deal with the difficulties.

24

3

A JDBC Driver for LSD

In this chapter, we will learn how to implement a JDBC driver (Sec. 3.1) and how a LSD-

JDBC driver was created, as well as what challenges presented themselves during its

development and how they were addressed (Sec. 3.2).

3.1 How to implement a JDBC driver?

In order to implement a JDBC driver, two things are necessary: registering a driver

implementation with the “Driver Manager” and implement the JDBC interfaces.

To register the driver with the “Driver Manager”, the driver must be configured prop-

erly as to be discoverable by the JVM. To do this, a Java Archive (JAR) containing the

driver must have a manifest file and a “services/” directory explicitly declaring what func-

tionalities are being exposed to the JVM (see Fig. 3.1).

META-INF/

MANIFEST.MF services/

java.sql.Driver

Figure 3.1: The “META-INF” directory and its contents

The manifest file is named “MANIFEST.MF” and is located under the “META-INF”
directory in the JAR, containing a list of key/value pairs grouped into sections. These

pairs supply metadata that help us describe aspects of our JAR such as the versions of

packages, what application class to execute, the classpath, among others (see Listing 3.1).

A service provider is identified by placing a provider-configuration file in the “services/”
directory (see Listing 3.2). In our case, since we are writing a new driver, we must

reference what Java interface we are implementing. In this case, we’re implementing

the “java.sql.Driver” API and so, we have our service name (and, by consequence, the file

25

CHAPTER 3. A JDBC DRIVER FOR LSD

1 Manifest−Version : 1 .0
2 Main−Class : l sd . u t i l . LSDJDBCMain
3 Automatic−Module−Name: l sd . dr iver . jdbc
4 Implementation−Vendor−Id : l sd
5 Implementation−Version : 1 .0
6 Implementation−T i t l e : LSD JDBC Driver
7 Implementation−Vendor : LSD Development Group
8 S p e c i f i c a t i o n −Vendor : Oracle Corporation
9 S p e c i f i c a t i o n −T i t l e : JDBC

10 S p e c i f i c a t i o n −Version : 4 .2

Listing 3.1: The MANIFEST.MF file contents

1 lsd . Driver

Listing 3.2: The java.sql.Driver service file contents

name). The contents of the file must point to the class that implements the API we’re

using. In our case, “lsd.Driver” is that class.

3.1.1 JDBC Interfaces and their Roles

The second thing needed to implement a JDBC driver is, as previously stated, the imple-

mentation the JDBC interfaces to create our own Java classes.

Let’s start by exploring more in-depth the primary interfaces of the JDBC API (see

Sec. 2.3.2.1) [48].

3.1.1.1 Driver

The “java.sql.Driver” is the simplest of the interfaces to implement, since it has the least

number of methods that need implementation, since it mainly acts as the “Main” for the

driver, with its most important method being “connect”, as it returns a Connection object

that establishes the communication between the client and the database.

3.1.1.2 Connection

The “java.sql.Connection” interface manages the connection between the client and the

database through the creation of “Statement” objects that execute operations upon the

database.

Important methods include:

• “setAutoCommit”, a method that sets the behaviour of the JDBC connection to either

commit after every single Statement execution if set to TRUE, or only commit when

instructed by the application if set to FALSE.

26

3.1. HOW TO IMPLEMENT A JDBC DRIVER?

1 val sql1 = ‘ ‘SELECT d_next_o_id ’ ’ +
2 ‘ ‘FROM b m s q l _ d i s t r i c t ’ ’
3
4 val sql2 = ‘ ‘SELECT d_next_o_id ’ ’ +
5 ‘ ‘FROM b m s q l _ d i s t r i c t ’ ’ +
6 ‘ ‘WHERE d_w_id = 7 ’ ’ +
7 ‘ ‘AND d_id = 1 ’ ’ +
8 ‘ ‘FOR UPDATE’ ’
9

10 val stmt = conn . prepareStatement ()
11
12 stmt . execute (sql1) // Execute sql1
13 stmt . execute (sql2) // Execute sql2

Listing 3.3: A simple Statement example

• “createStatement” (and its variants1), which returns a “Statement” object to be ma-

nipulated by the application.

• “commit”, which executes the database’s commit protocol for the current transaction.

Cannot be executed if the “Connection” is configured to automatically commit after

each “Statement” execution.

• “rollback”, which undoes the active transaction’s modifications (either all of them

or up until a savepoint that can be supplied as an argument). As with the “commit”
method, “rollback” can only be executed if “autoCommit” parameter is set to FALSE.

3.1.1.3 Statements

The “java.sql.Statement” is an interface that allows for the parametrization and execution

of SQL statements.

There are three types of statements:

Statement is the standard go-to class for executing SQL instructions. A single Statement
object can be used for many different instructions, since its execute method receives as

a parameter the SQL instruction. Listing 3.3 depicts a simple Kotlin example where a

Statement is created and executed.

Prepared Statement is an interface that offers similar functionalities as the Statement
interface, but is designed to instead run the same SQL instruction (with possibly different

parameters) many times, with higher performance than a normal Statement. As such,

the instruction is passed as a parameter when invoking the prepareStatement function.

Listing 3.4 depicts a simple Kotlin example where a Prepared Statement is created and

executed.
1“prepareStatement” for Prepared Statements and “prepareCall” for Callable Statements.

27

CHAPTER 3. A JDBC DRIVER FOR LSD

1 val sq l = ‘ ‘SELECT d_next_o_id ’ ’ +
2 ‘ ‘FROM b m s q l _ d i s t r i c t ’ ’ +
3 ‘ ‘WHERE d_w_id = ? ’ ’ +
4 ‘ ‘AND d_id = ? ’ ’ +
5 ‘ ‘FOR UPDATE’ ’
6
7 val stmt = conn . prepareStatement (sq l)
8 var wID = 7
9 var dID = 1

10 stmt . s e t I n t (1 , wID) // This would s e t d_w_id as 7
11 stmt . s e t I n t (2 , dID) // This would s e t d_id as 1
12 stmt . execute () // Execute sq l with f i r s t s e t of parameters
13
14 wID = 3
15 dID = 6
16
17 stmt . s e t I n t (1 , wID) // This would s e t d_w_id as 3
18 stmt . s e t I n t (2 , wID) // This would s e t d_id as 6
19 stmt . execute () // Execute sq l with second s e t of parameters

Listing 3.4: A simple Prepared Statement example

1 val sq l = ‘ ‘ { c a l l getWID (?) } ’ ’
2 val stmt = conn . prepareCall (sq l)
3 val wID = 5
4 stmt . s e t I n t (1 , wID) // This would s e t ID as 102
5 stmt . execute ()

Listing 3.5: A simple Callable Statement example

Callable Statement like the Prepared Statement interface, is designed to execute a single

SQL instruction many times, with possibly different parameters. However, instructions

passed onto a Callable Statement object must be a call to a stored procedure of the database.

Listing 3.5 depicts a simple Kotlin example where a Callable Statement is created and

executes the stored procedure getWID.

3.1.1.4 Result Set

The “java.sql.ResultSet” interface represents an object that is returned by all Statement
classes. This object’s methods expose the results of an executed SQL instruction, serving

as a wrapper to be able to parse the database’s response.

The object itself acts as an iterator, exposing a single row at a time. To advance to

the next row, a “next” method invocation is required. If there aren’t any more rows when

“next” is executed, an exception is thrown, but this can be avoided by using the “isLast”
method, which returns a boolean value that determines if the current row is indeed the

last one returned.

28

3.1. HOW TO IMPLEMENT A JDBC DRIVER?

1 val sq l = ‘ ‘SELECT d_next_o_id ’ ’ +
2 ‘ ‘FROM b m s q l _ d i s t r i c t ’ ’
3
4 var prepStmt = conn . prepareStatement (sq l)
5 val r s = prepStmt . executeQuery () // execute and get Resul tSe t
6
7 val oIDs = mutableListOf <Integer >()
8 while (! r s . i s L a s t ()) {
9 r s . next () // move to the next row of r e s u l t s

10
11 // get current d_next_o_id
12 oIDs . add (r s . getColumn (" d_next_o_id "))
13 }

Listing 3.6: A simple Result Set example

Each row is divided into columns that can be accessed by using the “getColumn”
method. Its value is then returned as the Java primitive type that correctly represents its

type in the database table (i.e. a “numeric” is converted to “Integer”, etc.).

A simple example of a Result Set and how it is used can be seen in Listing 3.6.

3.1.1.5 JDBC in action

After having a basic understanding of how JDBC works, a simple example showing how

an application would interact with the driver is in order. This is what we will explore

with the help of Listings 3.7 and 3.8.

These listings show us a simple Kotlin2 application that reads from a database a

value (Next Order ID, analogous to “d_next_o_id”) and increments it by one in a single

transaction.

First, the application must fetch the properties file (see Listing 3.9) that holds the

necessary information to establish a connection to the database (lines 2-3). Then, it

registers the JDBC driver with the “Driver Manager” (line 6) and establishes a connection

configured for manual commits (lines 9-10).

Afterwards, it generates two parameters, “dWID” and “dID”, analogous to “d_w_id”
(district warehouse ID) and “d_id” (district ID) respectively (lines 14-15) and creates the

first Statement for the transaction, where the “d_next_o_id” field referring to both previous

parameters is read (lines 17-30). Upon completion of this first statement, both itself and

its “ResultSet” are closed, to be later cleaned by Java’s GC (lines 33-34).

Finally, for the last part of the transaction, the update is created and executed in

a similar fashion to the previous statement (lines 36-47), the transaction is committed

(line 50) and the connection is closed (line 51), signalling the end of the application’s

execution.

2Note that Kotlin can be compiled to Java bytecode, hence it can be run in a JVM and can make use of
Java libraries, thus JDBC can be used to its full effect in Kotlin applications.

29

CHAPTER 3. A JDBC DRIVER FOR LSD

1 // Get connection p r o p e r t i e s
2 val props = P r o p e r t i e s ()
3 props . load (
4 t h i s . j avaClass . getResourceAsStream (" conn . p r o p e r t i e s ")
5)
6
7 // R e g i s t e r dr iver with the DriverManager
8 DriverManager . r e g i s t e r D r i v e r (Driver ())
9

10 // Create connection and s e t i t s behaviour to
11 // ’ autoCommit = off ’
12 val conn = DriverManager . getConnection (
13 props . getProperty (" connect ionStr ing ")
14)
15 conn . autoCommit = f a l s e
16
17 val dWID = 2
18 val dID = 1
19
20 // Read ’ d_next_o_id ’
21 val readNOID = ‘ ‘SELECT d_next_o_id ’ ’ +
22 ‘ ‘FROM b m s q l _ d i s t r i c t ’ ’ +
23 ‘ ‘WHERE d_w_id = ? ’ ’ +
24 ‘ ‘AND d_id = ? ’ ’ +
25 ‘ ‘FOR UPDATE’ ’
26
27 var prepStmt = conn . prepareStatement (readNOID)
28 prepStmt . s e t I n t (1 , dWID) // s e t f i r s t parameter
29 prepStmt . s e t I n t (2 , dID) // s e t second parameter
30 val r s = prepStmt . executeQuery () // execute and get Resul tSe t
31
32 rs . next () // move to the f i r s t row of r e s u l t s
33 val oID = rs . getColumn (" d_next_o_id ") // get d_next_o_id

Listing 3.7: A Simple JDBC transaction in Kotlin

30

3.2. THE JDBC DRIVER FOR LSD

36 rs . c l o s e ()
37 prepStmt . c l o s e ()
38
39 // Update ’ d_next_o_id ’
40 val updateNOID = ‘ ‘UPDATE b m s q l _ d i s t r i c t ’ ’ +
41 ‘ ‘ SET d_next_o_id = ? + 1 ’ ’ +
42 ‘ ‘WHERE d_w_id = ? ’ ’ +
43 ‘ ‘AND d_id = ? ’ ’
44
45 prepStmt = conn . prepareStatement (updateNOID)
46 prepStmt . s e t I n t (1 , oID)
47 prepStmt . s e t I n t (2 , dWID)
48 prepStmt . s e t I n t (3 , dID)
49 prepStmt . executeUpdate ()
50 prepStmt . c l o s e ()
51
52 // commit t ransac t ion , composed from both previous statements
53 conn . commit ()
54 conn . c l o s e () // c l o s e connection

Listing 3.8: A Simple JDBC transaction in Kotlin (cont.)

1 db=postgres
2 dr iver=lsd . Driver
3 conn=jdbc : l sd : database : / / 0 . 0 . 0 . 0 / example_bd
4 user=user
5 password=b e r iÇkureP4ss

Listing 3.9: A Simple Properties file

3.2 The JDBC Driver for LSD

Now that we have a basic understanding of how a JDBC driver works, we are ready to

implement a JDBC driver that can use both the traditional API and the LSD API (recall

Sec. 2.4.4) for communication with the database.

3.2.1 Extending SQL with LSD operations

The first step to create a LSD-JDBC driver is to consider how an LSD instruction should

be written. In other words, how would LSD influence SQL’s syntax.

Since we wish to maintain both the traditional SQL and LSD APIs exposed to the

application so that it could use them both how it sees fit, we chose to implement new

instructions that closely follow SQL’s already existing syntax instead of overriding our

counterparts.

Recalling Table 2.2, where the possible LSD instructions were listed, Table 3.1 shows

how each LSD instruction correlates to our LSD-SQL API (omitting the already extensive,

31

CHAPTER 3. A JDBC DRIVER FOR LSD

but still available, SQL instructions).

Table 3.1: Pure LSD syntax vs LSD-SQL syntax

Pure LSD LSD-SQL

BEGIN BEGIN

READ(key) SELECT _LSD

READ(4) SELECT _LSD

IS − TRUE(�) IF_LSD

WRIT E(key,�) INSERT _LSD if value does not exist yet in the database,
UPDATE_LSD otherwise.

WRIT E(4,�) INSERT _LSD if value does not exist yet in the database,
UPDATE_LSD otherwise.

COMMIT COMMIT

ABORT ROLLBACK

Table 3.2 shows a few examples of how a normal SQL statement would be translated

to LSD-SQL3.

Table 3.2: SQL instructions and LSD-SQL’s counterparts

SQL LSD-SQL4

SELECT d_city FROM bmsql_district SELECT_LSD d_city FROM
bmsql_district

SELECT COUNT (d_city) FROM
bmsql_district

SELECT_LSD COUNT (d_city) FROM
bmsql_district

UPDATE bmsql_district SET d_next_o_id
= d_next_o_id + 1 WHERE d_w_id = ?
AND d_id = ?

UPDATE_LSD bmsql_district SET
d_next_o_id = �WHERE d_w_id = ?
AND d_id = ?

INSERT INTO bmsql_item (i_name,
i_price, i_data, i_im_id) VALUES (?, ?, ?,
?)

INSERT_LSD INTO bmsql_item (i_name,
i_price, i_data, i_im_id) VALUES (?, ?, ?,
?)

Listing 3.10 and show an example of an IS-TRUE statement. An IS-TRUE statement is

comprised of a Boolean expression which is divided into three parts:

1. Expression 1, which can be a simple parameter like an integer or a future.

2. Logical Operator

3Although normal SQL instructions can still be used if futures are not needed.

32

3.2. THE JDBC DRIVER FOR LSD

Listing 3.10: IS-TRUE instruction

1 // IS−TRUE Template
2 IS−TRUE express ion1 l o g i c a l _ o p e r a t o r express ion2
3
4 // IS−TRUE Example
5 IS−TRUE ? > 10;

Listing 3.11: IF_LSD instruction

1 // IF_LSD Template
2 IF_LSD ’ condit ion ’ ; ; thenBranch ; ; elseBranch ;
3
4 // IF_LSD Example
5 IF_LSD IS−TRUE ? > 10 ; ;
6
7 UPDATE_LSD bmsql_stock
8 SET s_quant i ty = ? − ? , s_ytd = ? + ? ,
9 s_order_cnt = ? + 1 ,

10 s_remote_cnt = ? + ?
11 WHERE s_w_id = ? AND s _ i _ i d = ? ; ;
12
13 UPDATE_LSD bmsql_stock
14 SET s_quant i ty = ? + 91 , s_ytd = ? + ? ,
15 s_order_cnt = ? + 1 ,
16 s_remote_cnt = ? + ?
17 WHERE s_w_id = ? AND s _ i _ i d = ? " ;
18 ;

3. Expression 2, analogous to Expression 1.

Listing 3.11 shows an example of an IF_LSD instruction. An IF_LSD statement is

comprised of three parts:

1. Condition, which must be an instruction that returns a Boolean value.

2. Then Instruction, which contains the instruction to be executed if the Condition is

resolved to ‘true’.

3. Else Instruction, same as Then Instruction, but executed when the Condition is re-

solved to ‘false’.

3.2.2 Driver Architecture

Now we will explore the architecture of the driver we have developed, as well as the

reasons for some of the choices we have taken along our path.

33

CHAPTER 3. A JDBC DRIVER FOR LSD

First and foremost, we have identified two main components we need to create: a

parser and the JDBC interfaces. However, there is a first step we must consider: how will

the communication with a database be established?

3.2.2.1 Communicating with the database

To maximize compatibility with different databases, we have opted to create a Type 3
JDBC driver (recall Sec. 2.3.2.1), acting as a middleware between the application and an

underlying Type 4 JDBC driver. The underlying driver to use is chosen automatically

by the “DriverManager” when our middleware requests a connection between it and the

database the application requested.

connec(jdbc://database)

Application

connect(jdbc://database)

LSD-SQL
JDBC Driver

Native Protocol

Type 4
JDBC Driver

Database

Figure 3.2: LSD-SQL JDBC Driver network architecture

This enables our driver to execute Statements on behalf of the application or delay

certain executions, returning instead a future that the application can use until it becomes

absolutely necessary to know the exact value, i.e. when the application attempts to

commit a transaction.

3.2.2.2 Parser

The parser’s function is to take the application’s SQL input, evaluate it, convert it (if

necessary) and transform it into an “Operation” class to be easily altered for the driver’s

needs. This subsystem can be subdivided into two categories:

• The Parser itself, responsible for reading the input and creating the appropriate

“Operation” object.

• The “Operation” class and its derivatives. Each different class represents a different

kind of LSD-SQL operation supported by the driver, similar to how an Abstract

Syntax Tree (AST) [29] works. The available operations are:

– StandardSQL, an operation whose instruction has been shown to be just normal

SQL. The Parser also defaults to this operation when it cannot recognize if the

instruction belongs to the LSD-SQL API.

34

3.2. THE JDBC DRIVER FOR LSD

– LSDOperation, an abstract class representing an operation that belongs in the

LSD API. Operations that implement this class are:

* SelectLSD, used for SQL queries that return a future.

* InsertLSD, used for SQL insertions that are only executed when commit-

ting the transaction.

* UpdateLSD, used for SQL updates that are only executed when committing

the transaction.

* IsTrue, used for conditional execution of an instruction depending on the

state of the database during the commit phase.

* IFLSD, used for branching execution of conditions depending on the state

of the database during the commit phase. This is a “new” LSD operation

but, in actuality, it executes one of two different instructions depending

on the result of an IsTrue.

These operations are then used by the rest of the driver to execute the Statements in

different ways, which will be explored in the following section.

3.2.2.3 JDBC

From the JDBC API, our driver only implements the following interfaces:

• Driver, which we are required to do so that the driver is discoverable by the “Driver
Manager”.

• LSDConnection, which implements a fairly standard Connection object, mostly in-

voking the counterpart methods of the underlying driver, with the only exceptions

being the commit protocol and its supporting data structures (these will be further

discussed in Sec. 3.2.3).

• LSDStatement, which implements a Statement object. The only noteworthy differ-

ences from a standard Statement implementation are the “execute” methods, since

they request the Parser for the Operation they are about to execute and, depending

on the type of operation, the Statement executes in different ways.

• LSDPreparedStatement, which implements a PreparedStatement object, has similar

behaviour to the LSDStatement, but the Parser is invoked during the initialization

of the object instead of when the execute method is called.

• LSDResultSet, which serves only as a wrapper for a LSDFuture object that contains

the future that the application must use for its execution and will contain the actual

value produced by the database during the commit phase.

Other instructions that our driver cannot serve or understand are sent to and executed

by the underlying driver.

35

CHAPTER 3. A JDBC DRIVER FOR LSD

3.2.3 Implementation Details

This section mirrors the structure of the previous section (Sec. 3.2.2), as we will elaborate

about the implementation details of each of the main components of our driver.

3.2.3.1 Communicating with the database

The two main classes mostly responsible for establishing the communication with the

database are the “Driver” and the “LSDConnection”.

The Driver, before creating a new “LSDConnection” object, first checks if it can accept

the Uniform Resource Locator (URL) passed by the application. As of the time of writing,

the driver can only accept JDBC URLs that start with “jdbc : lsd : {database}”. This

differentiates from the established URL “jdbc : {database}” format because regular drivers

would be chosen by the “Driver Manager” instead of our own.

Figure 3.3 shows how a connection is made. The application requests a connection

to “jdbc : lsd : {database}//0.0.0.0/example_bd”. Our driver thus requests a connection to

“jdbc : {database}//0.0.0.0/example_bd”5, to which the underlying driver acknowledges

and proceeds to establish a raw connection to the database, wrapping it into a JDBC

“Connection” object and returning it to our driver. Finally, a “LSDConnection” is returned

by our driver to the application.

connect(jdbc:lsd:'database'://0.0.0.0/example_bd)

Application

LSD-SQL
JDBC Driver

Type 4
JDBC Driver

Database

Raw Connection

JDBCConnection

LSDConnection

connect(jdbc:'database'://0.0.0.0/example_bd)

Figure 3.3: How a connection with the database is established.

The “LSDConnection”, upon initializing, creates a “Parser”, which will be used for all

incoming instructions, and also creates two data structures:

5Note the URL conversion.

36

3.2. THE JDBC DRIVER FOR LSD

• operations, a linked list of “LSDOperations”, representing the sequence of LSD in-

structions present in the current transaction.

• readMap, an hash map of “String→ LSDFuture”, which contains all futures gener-

ated by the driver that will be resolved during the commit phase.

Other important features of the “LSDConnection” will be further elaborated in Sec. 3.2.3.4.

3.2.3.2 Parser

The Parser subsystem, as stated in Sec. 3.2.2, can be subdivided into the “Parser” and the

“Operation” classes.

The Parser, when receiving “parse” requests, takes the string input and splits it into

different tokens and matches them into one of the supported “Operation” classes.

Additionally, when initializing, it creates a “JexlEngine”[6] object so that it can evaluate

Boolean expressions that a string variable might contain.

Other important functions of the “Parser” will be discussed in Sec. 3.2.3.4

The Operation classes represent all operations that can be executed by the driver. These

operations receive and store the SQL instruction into a “query” variable. Any “LSDOpera-
tion” keeps track of all parameters and their values from its query in a tree map. Before

executing, any LSDOperation must be prepared, i.e., its parameters must be set into the

instruction that will be sent unto the underlying driver. This is the job of the “prepare-
ForLSDExecution” method.

Additionally, different “LSDOperation” classes have other uses for this variable:

• “SelectLSD” extends the “prepareForLSDExecution” to also generate the future’s ID.

• “IsTrue” uses the aforementioned “JexlEngine” to parse the “query” variable and

return its boolean value.

• “IFLSD” uses an “IsTrue” instance to decide whether to execute the first half (the

“then” block) or the second half (the “else” block) of the “query”.

Fig. 3.4 illustrates how a “Statement” object interacts with our “Parser” .

Some SQL code

Statement

parse(SQL)Parser Operation
(Any of its variants)

Figure 3.4: How a “Statement” interacts with the “Parser”

37

CHAPTER 3. A JDBC DRIVER FOR LSD

3.2.3.3 JDBC

The main objects that any JDBC application interacts with the most are the various State-
ment objects and their ResultSet instances. As previously stated, only the “LSDStatement”
and “LSDPreparedStatement” were implemented.

LSDStatement, keeps track of what is the current “Operation” (“activeOp”), the current

underlying “Statement” (“activeStmt”) and the active “ResultSet” (“activeRS”). These are

necessary because each “execute” invocation may have vastly different instructions6, each

with different “ResultSet” objects to iterate and/or other properties the JDBC API exposes

and, thus, so should we.

Additionally, the primary methods for executing SQL instructions, “executeQuery”
and “executeUpdate”, may, instead of sending these instructions to the underlying “Con-
nection”, only update the “LSDConnection” state and possibly return a “LSDResultSet”.

Figs. ?? and ?? shows the difference between the execution of a normal SQL instruction

versus the execution of an LSD instruction. As it can be seen, during a normal SQL

execution, the database is queried and a normal “ResultSet” is returned to the “Statement”.

In case of a LSD instruction, the driver simply returns a future.

LSD-SQL
JDBC Driver

execute("SELECT * FROM Table")

Statement

ResultSet

Database

execute("SELECT * FROM Table")

Figure 3.5: Normal SQL Statement behaviour

LSD-SQL
JDBC Driver

execute("SELECT * FROM Table")

Statement

ResultSet

Database

Figure 3.6: LSD Statement behaviour

LSDPreparedStatement is much like a “LSDStatement” because, even though its base

instruction does not change in the course of its life, its parameters and, therefore, results

may change. Its behaviour is equivalent to the one illustrated in Fig. 3.5.

LSDResultSet, as previously stated, serves only as a wrapper for “LSDFuture” objects,

whose only available method to the application being the “get” method, which returns

the string representing the future’s ID.
6The same LSDStatement may be used first to execute a SELECT query and an UPDATE instruction later.

38

3.2. THE JDBC DRIVER FOR LSD

LSDFuture, besides exposing the future ID of the executed query, it also contains a

method that is only used internally: “resolve”, which executes the query it contains and

saves it into a “result” variable.

3.2.3.4 Savepoints, Rollbacks and Commits

Some of the more important methods a “Connection” exposes to an application are the

”setSavepoint”, ”rollback” and ”commit” methods.

Savepoints are fairly simple to implement, as the only requirement from our “Connec-
tion” is to save the current state. To do this, we make use of two auxiliary variables which

store our current state and then invoking the underlying connection’s “setSavepoint”,

which does most of the necessary work.

Rollbacks are also simple, as all that is needed to be done is restore the data that is in

the auxiliary variables and then invoking the underlying connection’s “rollback” method,

similarly to how savepoints function.

Commit is more complex, due to having to execute all of the LSD operations that the

transaction contains.

Listings 3.12 and 3.13 show the commit protocol7 in Kotlin.

The first step of the protocol is to lock the entire connection (line 2) to prevent any

alterations to its state. Then, each operation in the current transaction is matched to one

of the supported “Operation” types8 (lines 4-6):

• “SelectLSD” operations update their “future” value in the readMap (lines 7-18).

• “IsTrue” operations evaluate their expressions and abort execution if found to be

false (lines 19-30).

• “InsertLSD” or “UpdateLSD” operations are sent to the underlying driver for execu-

tion (lines 32-37).

• “IFLSD” operations evaluate their internal “IsTrue” and return the instruction of

the correct execution branch to the underlying driver for execution (lines 38-47).

If an operation is not matched to one of these, then an Exception is thrown and the

transaction is rolled back (lines 48-53).

After issuing all the necessary instructions to the underlying driver, a “commit” is

issued for the already processed transaction (line 57) and, assuming nothing goes wrong,

the “LSDConnection” resets its state (readMap and operations) in preparation for a new

transaction (lines 60-61).
7Only the essential excerpts.
8All supported operations, before execution, have their “future” parameters resolved. This is done in the

“prepareForExecution” method (found in lines 68-75) found in Listing 3.13

39

CHAPTER 3. A JDBC DRIVER FOR LSD

1 // Lock connection
2 synchronized (t h i s) {
3 // For each operat ion found in ’ operat ions ’ l inked l i s t
4 for (op in operat ions) {
5 // Check which operat ion type i t i s
6 when (op) {
7 i s SelectLSD −> {
8 // I f i t i s a SelectLSD
9 // r e s o l v e futures found i n s i d e the query

10 prepareForExecution (op)
11 // f e t c h future and update i t s query with
12 // a l l the new values
13 val future = readMap [op . future] ! !
14 future . query = op . activeQuery
15 // f i n a l l y r e s o l v e query and ass ign i t s
16 // value to the future
17 future . r e s o l v e (t h i s)
18 }
19 i s IsTrue −> {
20 // I f i t i s a IsTrue
21 // r e s o l v e futures found i n s i d e the query
22 prepareForExecution (op)
23 i f (! op . evaluate ()) {
24 // make sure ’ IsTrue ’ eva luates to TRUE
25 dbConn . r o l l b a c k ()
26 throw LSDException (
27 " IsTrue evaluated to f a l s e ! "
28)
29 }
30 }
31 i s UpdateLSD , i s InsertLSD −> {
32 // I f i t i s a UpdateLSD or an InsertLSD
33 // r e s o l v e futures found i n s i d e the query
34 prepareForExecution (op)
35 dbConn . prepareStatement (op . activeQuery)
36 . executeUpdate ()
37 }

Listing 3.12: The Commit protocol

40

3.2. THE JDBC DRIVER FOR LSD

38 i s IFLSD −> {
39 // I f i t i s a IFLSD
40 // r e s o l v e futures found i n s i d e the query
41 prepareForExecution (op)
42 // Prepare statement and execute i t ,
43 // IFLSD returns the branch of execution that
44 // must be run already parametrized
45 val s t r = parser . convert (op . r e s o l v e (t h i s))
46 dbConn . prepareStatement (s t r) . executeUpdate ()
47 }
48 e l s e −> {
49 // I f i t i s an unsupported operation , r o l l b a c k
50 // and abort , something has gone wrong
51 dbConn . r o l l b a c k ()
52 throw LSDException (" Unrecognized ! ")
53 }
54 }
55 }
56
57 dbConn . commit () // I s sue commit on the connection
58
59 // Reset s t a t e in preparat ion for next t r a n s a c t i o n
60 readMap . c l e a r ()
61 operat ions . c l e a r ()
62 }
63
64 /**
65 * Prepare query by r e s o l v i n g i t s fu tures .
66 * @param op the operat ion
67 */
68 p r i v a t e fun prepareForExecution (op : LSDOperation) {
69 val pair = parser . reso lveFutures (op . activeQuery)
70 op . activeQuery = pair . f i r s t
71 for (i in pair . second . i n d i c e s) {
72 op . parameters [i] = readMap [pair . second [i]] ! ! . r e s u l t
73 }
74 op . prepareForLSDExecution ()
75 }

Listing 3.13: The Commit protocol (cont.)

41

CHAPTER 3. A JDBC DRIVER FOR LSD

3.2.3.5 Class Diagram

In Fig. 3.7, we can see a simplified version of the class diagram of our driver. A more

detailed diagram can be found in Appendix A.

Figure 3.7: LSD-JDBC Driver Simple Class Diagram, made with IntelliJ IDEA’s UML
plugin[54]

42

4

Validation

In this chapter, we will elaborate on what our testing environments were (Sec. 4.1), which

tests we have performed (Sec. 4.2) and discuss our findings (Sec. 4.3).

4.1 Testing Environments

The RDBMS we have chosen for these tests is PostgreSQL, for being a Free and Open-

Source Software database that is robust and sees extensive and popular use in many areas

of computing.

These tests were run (in a distributed fashion) between Nodes 19 through 23 of the

NOVALINCS Cluster[10], machines whose specifications include (for each node) 2 x AMD
Opteron 2376 CPU @ 2.30GHz, 16GB of RAM and 2 x 1 Gbps network connections. One

node would host the database while the rest acted as different clients. Additionally, some

of these tests were also run locally, in a Lenovo Thinkpad P1 Gen 1, with a Intel Core
i7-8750H CPU @ 2.20GHz and 16GB of RAM.

The testing candidates are our newly-implemented LSD-JDBC driver and PostgreSQL’s

JDBC driver (v42.2.16). We will be comparing both of these drivers both in terms of cor-

rectness and performance.

4.2 Tests

4.2.1 Implementation Correctness

The objective of these tests is to make sure that both drivers have the same observable

behaviours given some input. In other words, we want to guarantee both drivers return

the same answer when given the same question.

The PostgreSQL driver will serve as a baseline, as we assume that it functions correctly.

To test the correctness of our solution, we will split these tests into two categories:

• Parser Tests, which test if our Parser can correctly identify which kind of operation

it is processing and if it can do the required transformations upon the query.

43

CHAPTER 4. VALIDATION

• Driver Tests, which runs a given set of queries with both drivers and tests if their

output is the same.

4.2.1.1 Parser Tests

The Parser tests are simple: instantiate a Parser object, give it some input and check if the

output corresponds to the expected result.

Our tests can be divided into the following categories:

• Query Detection, where some String input is given and the Parser returns a Opera-
tion1.

• Conversion, where some String representing an LSD instruction is given and its SQL

counterpart is expected2.

• Future Creation, where some String representing an LSD instruction is given, and a

String representing the query’s future is returned3.

• Future Resolution, where a String representing an LSD instruction is given and whose

expected output is a set of values which represent the futures that are present within

the input query4.

4.2.1.2 Driver Tests

The Driver tests’ function is to test the various operations our driver exposes through the

JDBC API and comparing their results with the results given by another JDBC driver (the
test driver) that is assumed to work correctly. Before this can be done, however, three

databases must be setup and initialized to the exact same state.

First, it tests if our driver can establish a connection to the first database and if it can

execute statements upon said connection.

Afterwards, it prepares a second and third connections, one managed by our driver

and the other managed by the aforementioned test driver and prepares a transaction that

will be executed by both connections. During this transaction’s execution, any values that

are returned by the drivers are compared. To assume a transaction was well executed,

any values outputted by the drivers must match, and so must the final database states.

These tests are run once with the ’autoCommit’ property set to ’true’ and once with

it set to ’false’. In other words, two tests are executed with instructions being treated

as transactions and two tests are executed with instructions being treated as part of a

transaction.

Our new LSD driver passed all of our correctness tests.

1Example input is ’SELECT * FROM table’ with expected output ’StandardSQL’.
2Example input is ’SELECT_LSD * FROM table’ with expected output ’SELECT * FROM table’.
3Example input is ’SELECT_LSD tax FROM products’ with expected output ’products_lsd’.
4Given a map with the entry (’products_tax’, 0.12) and the example input ’UPDATE_LSD tax = {prod-

ucts_tax} FROM products WHERE id = 1’, expect Parser’s output to be an array containing (0.12).

44

4.2. TESTS

4.2.2 Performance

4.2.2.1 Benchmark

As previously mentioned, we will make use of the TPC-C benchmark, more specifically,

a Java implementation of the TPC-C benchmark[30] modified by us to include some LSD

transactions.

To optimize our research efforts, we have adjusted the weights of the instructions

present in the benchmark to guarantee that only New-Order operations are executed.

A single New-Order transaction behaves as follows (see Listings 4.1 and 4.2):

1. The Tax and the Next Order ID are queried and locked (lines 3-6).

2. Some of the customer and warehouse’s data is also queried, but not locked (lines 9-

12).

3. An increment to the Next Order ID is issued (lines 15-17).

4. A new order is inserted into the Order table (lines 20-25).

5. A new order is inserted into the New Order table (lines 28-30).

6. For each item present in the new order, the transaction:

a) Inserts a new order line into the respective table (lines 34-40).

b) Reads and locks the stock of the current item (lines 43-49).

c) Updates the stock of said item (lines 52-56).

7. The transaction commits (line 59).

We have designed two test scenarios:

• A database configured with 10 Warehouses that will have to serve 10 Clients, which

is a very common benchmark.

• A database configured with 1 Warehouse that will still have to serve 10 Clients,

which should generate enough conflicts to lower the overall throughput of the sys-

tem due to transactions aborting.

Each of these scenarios are run for 2 minutes and each benchmark is run 10 times.

Fig. 4.1 shows the average tpmC values measured during these tests.

As it can be seen, our driver has lower performance when compared to PostgreSQL’s

values, even though it seems both drivers follow the same performance trends. Thus, we

must analyse why our driver underperforms when compared to PostgreSQL.

45

CHAPTER 4. VALIDATION

1 // Retr ieve the required data from DISTRICT
2
3 SELECT d_tax , d_next_o_id
4 FROM b m s q l _ d i s t r i c t
5 WHERE d_w_id = ? AND d_id = ?
6 FOR UPDATE
7
8 // Retr ieve the required data from CUSTOMER and WAREHOUSE
9 SELECT c_discount , c _ l a s t , c_cred i t , w_tax

10 FROM bmsql_customer
11 JOIN bmsql_warehouse ON (w_id = c_w_id)
12 WHERE c_w_id = ? AND c_d_id = ? AND c_id = ?
13
14 // Update the DISTRICT bumping the D_NEXT_O_ID
15 UPDATE b m s q l _ d i s t r i c t
16 SET d_next_o_id = d_next_o_id + 1
17 WHERE d_w_id = ? AND d_id = ?
18
19 // I n s e r t the ORDER row
20 INSERT INTO bmsql_oorder
21 (
22 o_id , o_d_id , o_w_id , o_c_id , o_entry_d ,
23 o_ol_cnt , o _ a l l _ l o c a l
24)
25 VALUES (? , ? , ? , ? , ? , ? , ?)
26
27 // I n s e r t the NEW_ORDER row
28 INSERT INTO bmsql_new_order
29 (no_o_id , no_d_id , no_w_id)
30 VALUES (? , ? , ?)

Listing 4.1: The ‘NEW-ORDER’ transaction

(a) 10 Warehouses, 10 Clients (b) 1 Warehouses, 10 Clients

Figure 4.1: LSD: TPC-C Benchmark Results

46

4.2. TESTS

32 // For each ORDER_LINE :
33 // I n s e r t new ORDER_LINE
34 INSERT INTO bmsql_order_line
35 (
36 ol_o_id , ol_d_id , ol_w_id , ol_number ,
37 o l_ i_ id , ol_supply_w_id , ol_quanti ty ,
38 ol_amount , o l _ d i s t _ i n f o
39)
40 VALUES (? , ? , ? , ? , ? , ? , ? , ? , ?)
41
42 // Fetch the current item ’ s stock
43 SELECT s_quantity , s_data ,
44 s_dist_01 , s_dist_02 , s_dist_03 , s_dist_04 ,
45 s_dist_05 , s_dist_06 , s_dist_07 , s_dist_08 ,
46 s_dist_09 , s_dis t_10
47 FROM bmsql_stock
48 WHERE s_w_id = ? AND s _ i _ i d = ?
49 FOR UPDATE
50
51 // Update the current item ’ s stock
52 UPDATE bmsql_stock
53 SET s_quant i ty = ? , s_ytd = s_ytd + ? ,
54 s_order_cnt = s_order_cnt + 1 ,
55 s_remote_cnt = s_remote_cnt + ?
56 WHERE s_w_id = ? AND s _ i _ i d = ?
57
58 // Commit the t r a n s a c t i o n
59 COMMIT

Listing 4.2: The ‘NEW-ORDER’ transaction (cont.)

4.2.2.2 Analysing the Performance

By making use of IntelliJ IDEA’s profiler, we can analyse how much CPU time is being

used for each component present in the call stack of each benchmark run. For this analy-

sis, each run consisted in having 10 clients each execute and commit 1000 transactions.

Essentially, we are evaluating how each driver deals with the same5 workload.

Fig. 4.2 shows the call tree of the benchmark run with PostgreSQL’s driver, with the

percentage values representing the amount of CPU time a given method spent. Something

that is of note here is that the benchmark makes use of Statement Batches6, something

that our driver, at the time of writing, does not support, and would be a great boon to

reducing our overheads when executing in a networked environment.

Similarly to Fig. 4.2, Fig. 4.3 shows the call stack for the same benchmark making use

of the LSD driver. Things of note included here are:

5Approximate, due to the randomness of the order generation process.
6Denoted by the green bubbles in Fig. 4.2

47

CHAPTER 4. VALIDATION

Figure 4.2: PostgreSQL Profiler Results

Figure 4.3: LSD Profiler Results

48

4.2. TESTS

• 19%7 of the time is used during the ’resolveFutures’ phase, which is when our driver

executes queries to the database. This is (at a first glance) better than the previous

46.4% spent by PostgreSQL during its ’executeQuery’ phase, even when accounting

for the 9.3% overhead our solution inserts during its own ’executeQuery’ phase.

• (8.5 + 13.3)%8 of the time is used to prepare and execute IFLSD instructions. When

considering that these instructions are only required once per New Order, this shows

that these operations are our biggest bottleneck and must see greater optimization

efforts. The necessity for these efforts will be further justified later in this chapter.

• 7.5%9 of the time was used during the Insert New Order Line phase, which is an area

that could see further improvements with the previously mentioned implementa-

tion of Statement Batches.

Of course, this analysis would be naive without taking into account how long each

benchmark ran for, and so, we have taken note of them and done some further analysis10:

Table 4.1: Time elapsed for each run, in seconds

PostgreSQL LSD

70.61 s 259.15 s

Table 4.2: LSD Parser and Preparation Overheads

Phase Time

Prepare For Execution 4.5 %

Parser.convert 1.9 %

Parser.parse 1.2 %

Total Percentage 7.60 %

Real Time 19.695 s

Table 4.1 shows, for each driver, how long each benchmark run took, with its data

being taken into consideration when calculating values for the next tables.

Table 4.2 shows the overheads our LSD driver requires when preparing statements

compared to PostgreSQL and how it translates into wasted time. As it can be seen, we

lose approximately twenty seconds of execution to these overheads, which is nearly one
third of the total execution time for the PostgreSQL driver.

7Denoted by the green bubble in Fig. 4.3.
8Denoted by the red bubbles.
9Denoted by the magenta bubble.

10There are slight variations in the percentages for this analysis when compared to the previously shown
due to using a more recent dataset.

49

CHAPTER 4. VALIDATION

Table 4.3: Read Phase Analysis

PostgreSQL LSD

Execute Query 47 % 8.7 %

Resolve Futures 0 % 24.3 %

Total Percentage 47 % 33 %

Real Time 33.188 s 85.519 s

Table 4.4: Write Phase Analysis

PostgreSQL LSD

Execute Update 5.2 % 7.6 %

LSD Execute Update 0 % 2.5 %

Execute Batch 13.2 % 0 %

IfLSD.resolve 0 % 8.2 %

Create NewOrder IsTrue 0 % 6.8 %

Create NewOrder InsertOrderLine 0 % 3 %

Total Percentage 18.4 % 32.7 %

Real Time 12.993 s 84.742 s

Tables 4.3 and 4.4 show the percentages of work of each driver for the ’Read’ and

’Write’ phases respectively and how long each phase lasted. We can see that, for the ’Read’
phase, the LSD driver uses too much time resolving all futures, taking nearly twenty-one

seconds11.

4.2.2.3 Performance of Instructions by Section

For this analysis, we are interested in seeing the decay of performance for both bench-

marks if we change which types of instructions are executed. In other words, we change

the New Order transaction to only execute some of its steps (see Listings 4.1 and 4.2).

For this analysis, we consider the default configuration of the benchmark: each run

lasts two minutes, and each driver tries to commit as many transactions as possible.

This analysis is useful because we can visually see and confirm which parts of the

benchmark are most taxing, performance-wise.

Figures 4.4 through to 4.8 show the performance of each benchmark run up until

a certain point of its execution, with Figure 4.9 representing the full benchmark run.

Figure 4.10 represents the full benchmark run but only executing its queries, no updates

1124.3% of 85.519s = 20.781s

50

4.2. TESTS

Figure 4.4: Executing up to the ’Tax’ step
(including)

Figure 4.5: Executing up to the ’Warehouse’
step (including)

Figure 4.6: Executing up to the ’Update New
Order ID’ step (including)

Figure 4.7: Executing up to the ’Insert Order’
step (including)

Figure 4.8: Executing up to the ’Insert New
Order’ step (including)

Figure 4.9: Normal and complete bench-
mark execution

51

CHAPTER 4. VALIDATION

Figure 4.10: Executing benchmark, but only
queries

Figure 4.11: Executing up to the ’Insert New
Order Line’ step (excluding)

are sent to the database, and Figure 4.11 shows the performance of a benchmark run fully

executed except the final loop which can be found in lines 34-56 in Listing 4.2.

As it can be seen, the LSD performance takes its biggest hit between Figures 4.8

and 4.9. This points us to believing our lack of statement batching is the biggest culprit

for the lack of performance. Other performance dips seen in the other figures can be

attributed to our overheads, which have been discussed previously.

4.3 Discussion

Armed with the previous analyses, we can derive some conclusions about our lack of

performance.

First and foremost, reducing the impact of our overheads would be helpful, and it can

be done by improving our Parser, since all of the three main overheads are dependant

on it. Its costly performance is due to an inherent dependency in the usage of Java’s

’String’ library, which is used to parse and manipulate the instructions received by the

application at various points.

Additionally, implementing the batching of statements in a similar fashion to what

PostgreSQL employs would greatly help in networked environments.

Secondly, we can clearly see that the creation and execution of ’IF_LSD’ instructions

is too taxing. Recalling Section 3.2.3.2 in page 37, this instruction carries with it at all

times three sub-instructions:

• The ’IS-TRUE’ instruction.

• The instruction to be executed if the condition is found to be true.

• The analogous if the condition is false.

52

4.3. DISCUSSION

Keeping in mind that each of these instructions must be evaluated by our Parser, since

any of them can have futures and parameters that must be inserted into the statement,

we can see how costly this single instruction can be.

Further discussion of improvements can be found in Section 5.2.

53

5

Conclusions

In this chapter, we will give some final considerations about what we have accomplished

so far in Section 5.1 and what can be done in the future of this project in Section 5.2.

5.1 Final Considerations

When we began this project, we had set to:

• Do a detailed evaluation of the State of the Art, which we have produced in Chap-

ter 2.

• A proposal for the LSD-SQL API, which we have presented in Chapter 3 and used

for the first prototype of the LSD-JDBC driver.

• A prototype database-agnostic JDBC driver which makes use of LSD, which we have

developed for this project.

• A correctness and performance evaluation of our newly developed driver vs a stan-

dard PostgreSQL driver, which was discussed in Chapter 4.

Out of all of these goals, only the performance was disappointing, as we have found

from our different analyses, with the LSD driver being capable of approximately one

fourth of the throughput of the PostgreSQL driver. However, we still believe that what

we have developed holds some promise, and we have new ideas on how to improve our

prototype.

5.2 Future Work

Some things that have been briefly mentioned in Section 4.3 can definitely be done:

• Improving our Parser by reducing its dependency on the ’String’ library. There are

two ways to achieve this goal:

54

5.2. FUTURE WORK

– The Parser module can be done outside of the driver. Ideally, its functions

could be implemented into a database’s own Parser subsystem but this solution

is very complex and would need to be developed for each database.

– Alternatively, re-implementing the Parser subsystem to make use of an Abstract
Syntax Tree[1] should greatly reduce our overheads at the expense of extra

memory usage.

• Removing the IF_LSD instruction and, instead, changing how our "IS-TRUE" works:

– First, the application should execute a "IS-TRUE". This operation would be

executed by our driver on a separate JDBC connection immediately, and it

should return whether the condition this operation holds is true or false. With

this information, the application can correctly execute the desired branch of

operations.

– Finally, during the ’Commit’ phase, the ’IS-TRUE’ is executed again to check if

its Boolean value remains the same and, if it does not, the transaction can be

aborted.

• Implementing batching of statements. To do this, the driver should keep track

of each operation the application adds to the batch into a data structure. Then,

during the ’Commit’ phase, each of these “proto-batches” should be transformed

into batches created by the database JDBC connection.

Additionally to these improvements, our ’Commit’ protocol can be further optimized.

By making use of concurrency, we can first update the ’readMap’ in parallel and then
execute the remaining operations also in parallel.

Updating the ’readMap’ in parallel is possible because there are no ’Read After Write’
dependencies inside the transaction. This, in turn, enables the execution of the remaining

operations in parallel as well, since all of its correct and final values have already been

read into the ’readMap’.

55

Bibliography

[1] Abstract Syntax Tree - Free On-line Dictionary of Computing. url: http://foldoc.

org/abstract+syntax+tree. (accessed: 22.06.2021) (cit. on p. 55).

[2] M. Armbrust et al. “A view of cloud computing”. In: Communications of the ACM
53.4 (2010), pp. 50–58 (cit. on p. 1).

[3] H. Berenson et al. “A critique of ANSI SQL isolation levels”. In: ACM SIGMOD
Record 24.2 (1995), pp. 1–10 (cit. on p. 7).

[4] A. B. Bondi. “Characteristics of Scalability and Their Impact on Performance”. In:

Proceedings of the 2nd International Workshop on Software and Performance. WOSP

’00. Ottawa, Ontario, Canada: Association for Computing Machinery, 2000, pp. 195–

203. isbn: 158113195X. doi: 10.1145/350391.350432. url: https://doi.org/1

0.1145/350391.350432 (cit. on p. xvii).

[5] A. Castillo O’Sullivan and A. D. Thierer. “Projecting the growth and economic

impact of the internet of things”. In: Available at SSRN 2618794 (2015) (cit. on

p. 1).

[6] Class JexlEngine. url: https://commons.apache.org/proper/commons-jexl/

apidocs/org/apache/commons/jexl3/JexlEngine.html. (accessed: 20.03.2021)

(cit. on p. 37).

[7] E. F. Codd. “A relational model of data for large shared data banks”. In: Software
pioneers. Springer, 2002, pp. 263–294 (cit. on p. 12).

[8] F. Dabek et al. “Event-driven programming for robust software”. In: Proceedings of
the 10th workshop on ACM SIGOPS European workshop. 2002, pp. 186–189 (cit. on

p. 5).

[9] Device Driver. url: https : / / searchenterprisedesktop . techtarget . com /

definition/device-driver. (accessed: 16.03.2021) (cit. on p. xv).

[10] DI-Cluster. url: https://cluster.di.fct.unl.pt. (accessed: 21.05.2021) (cit.

on p. 43).

56

http://foldoc.org/abstract+syntax+tree
http://foldoc.org/abstract+syntax+tree
https://doi.org/10.1145/350391.350432
https://doi.org/10.1145/350391.350432
https://doi.org/10.1145/350391.350432
https://commons.apache.org/proper/commons-jexl/apidocs/org/apache/commons/jexl3/JexlEngine.html
https://commons.apache.org/proper/commons-jexl/apidocs/org/apache/commons/jexl3/JexlEngine.html
https://searchenterprisedesktop.techtarget.com/definition/device-driver
https://searchenterprisedesktop.techtarget.com/definition/device-driver
https://cluster.di.fct.unl.pt

BIBLIOGRAPHY

[11] R. J. Dias, J. M. Lourenço, and N. M. Preguiça. “Efficient and correct transactional

memory programs combining snapshot isolation and static analysis”. In: Proceed-
ings of the 3rd USENIX conference on Hot topics in parallelism (HotPar’11), HotPar.

Vol. 11. 2011 (cit. on p. 20).

[12] R. J. Dias et al. “StarTM: Automatic Verification of Snapshot Isolation in Transac-

tional Memory Java Programs”. In: (2011) (cit. on p. 20).

[13] R. J. Dias et al. “Verification of snapshot isolation in transactional memory Java

programs”. In: European Conference on Object-Oriented Programming. Springer.

2012, pp. 640–664 (cit. on p. 20).

[14] E. W. Dijkstra. “Solution of a problem in concurrent programming control”. In:

Pioneers and Their Contributions to Software Engineering. Springer, 2001, pp. 289–

294 (cit. on p. 4).

[15] D. Distefano, P. W. O’hearn, and H. Yang. “A local shape analysis based on separa-

tion logic”. In: International Conference on Tools and Algorithms for the Construction
and Analysis of Systems. Springer. 2006, pp. 287–302 (cit. on p. 20).

[16] A. Dragojević et al. “FaRM: Fast remote memory”. In: 11th {USENIX} Symposium
on Networked Systems Design and Implementation ({NSDI} 14). 2014, pp. 401–414

(cit. on p. 20).

[17] K. P. Eswaran et al. “The notions of consistency and predicate locks in a database

system”. In: Communications of the ACM 19.11 (1976), pp. 624–633 (cit. on p. 8).

[18] R. Filipe et al. “Stretching the capacity of Hardware Transactional Memory in IBM

POWER architectures”. In: Proceedings of the 24th Symposium on Principles and
Practice of Parallel Programming. 2019, pp. 107–119 (cit. on p. 21).

[19] P. J. Fleming and J. J. Wallace. “How Not to Lie with Statistics: The Correct Way to

Summarize Benchmark Results”. In: Commun. ACM 29.3 (Mar. 1986), pp. 218–221.

issn: 0001-0782. doi: 10.1145/5666.5673. url: https://doi.org/10.1145/56

66.5673 (cit. on p. xiv).

[20] D. P. Friedman and D. S. Wise. The impact of applicative programming on multipro-
cessing. Indiana University, Computer Science Department, 1976 (cit. on p. 5).

[21] Front Accounting. url: https://frontaccounting.com. (accessed: 19.07.2020)

(cit. on p. xv).

[22] Fusion Ticket. url: https://www.openhub.net/p/fusionticket. (accessed:

19.07.2020) (cit. on p. xv).

[23] E. Gamma et al. “Elements of Reusable Object-Oriented Software”. In: Design
Patterns. massachusetts: Addison-Wesley Publishing Company (1995) (cit. on pp. xv,

xvi).

[24] J. Gray et al. “The transaction concept: Virtues and limitations”. In: VLDB. Vol. 81.

1981, pp. 144–154 (cit. on p. 6).

57

https://doi.org/10.1145/5666.5673
https://doi.org/10.1145/5666.5673
https://doi.org/10.1145/5666.5673
https://frontaccounting.com
https://www.openhub.net/p/fusionticket

BIBLIOGRAPHY

[25] C. Hewitt et al. “Actor induction and meta-evaluation”. In: Proceedings of the 1st
annual ACM SIGACT-SIGPLAN symposium on Principles of programming languages.
1973, pp. 153–168 (cit. on p. 5).

[26] IntelliJ IDEA. url: https://www.jetbrains.com/idea/. (accessed: 16.03.2021)

(cit. on p. xvi).

[27] Java Resources. url: https://go.java. (accessed: 16.03.2021) (cit. on p. xvi).

[28] JDBC Basics. url: https://docs.oracle.com/javase/tutorial/jdbc/basics/

index.html. (accessed: 29.07.2020) (cit. on p. 12).

[29] J. Jones. “Abstract syntax tree implementation idioms”. In: Proceedings of the 10th
conference on pattern languages of programs (plop2003). 2003, pp. 1–10 (cit. on p. 34).

[30] jTPCC. url: https://github.com/petergeoghegan/benchmarksql. (accessed:

21.05.2021) (cit. on p. 45).

[31] S. Kabangu. “Benchmarking Databases”. In: (2009) (cit. on p. 14).

[32] D. E. Knuth. The art of computer programming. Vol. 3. Pearson Education, 1997

(cit. on p. 5).

[33] Kotlin Programming Language. url: https://kotlinlang.org. (accessed: 16.03.2021)

(cit. on p. xvi).

[34] H.-T. Kung and J. T. Robinson. “On optimistic methods for concurrency control”.

In: ACM Transactions on Database Systems (TODS) 6.2 (1981), pp. 213–226 (cit. on

p. 9).

[35] L. Lamport. “Time, clocks, and the ordering of events in a distributed system”. In:

Concurrency: the Works of Leslie Lamport. 2019, pp. 179–196 (cit. on p. 4).

[36] H. Q. Le et al. “Transactional memory support in the IBM POWER8 processor”. In:

IBM Journal of Research and Development 59.1 (2015), pp. 8–1 (cit. on p. 21).

[37] M. McCool, J. Reinders, and A. Robison. Structured parallel programming: patterns
for efficient computation. Elsevier, 2012 (cit. on p. 4).

[38] J. Melton and A. R. Simon. SQL: 1999: understanding relational language components.
Elsevier, 2001 (cit. on p. 6).

[39] J. Melton and A. R. Simon. Understanding the new SQL: a complete guide. Morgan

Kaufmann, 1993 (cit. on p. 12).

[40] J. Milton. “Database Language SQL Part 2: Foundation (SQL/Foundation)”. In:

ISO ISO/IEC (1999), pp. 9075–2 (cit. on p. 12).

[41] S. Mu et al. “Extracting more concurrency from distributed transactions”. In: 11th
{USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 14).
2014, pp. 479–494 (cit. on p. 18).

58

https://www.jetbrains.com/idea/
https://go.java
https://docs.oracle.com/javase/tutorial/jdbc/basics/index.html
https://docs.oracle.com/javase/tutorial/jdbc/basics/index.html
https://github.com/petergeoghegan/benchmarksql
https://kotlinlang.org

BIBLIOGRAPHY

[42] T. Nakaike et al. “Quantitative comparison of hardware transactional memory for

Blue Gene/Q, zEnterprise EC12, Intel Core, and POWER8”. In: ACM SIGARCH
Computer Architecture News 43.3S (2015), pp. 144–157 (cit. on p. 21).

[43] G. Prasaad, A. Cheung, and D. Suciu. “Improving High Contention OLTP Perfor-

mance via Transaction Scheduling”. In: arXiv preprint arXiv:1810.01997 (2018)

(cit. on p. 18).

[44] D. Pritchett. “Base: An acid alternative”. In: Queue 6.3 (2008), pp. 48–55 (cit. on

p. 19).

[45] J. C. Reynolds. “Separation logic: A logic for shared mutable data structures”. In:

Proceedings 17th Annual IEEE Symposium on Logic in Computer Science. IEEE. 2002,

pp. 55–74 (cit. on p. 20).

[46] A. Shamis et al. “Fast general distributed transactions with opacity”. In: Proceedings
of the 2019 International Conference on Management of Data. 2019, pp. 433–448 (cit.

on p. 20).

[47] A. Sinkov. Programming the IBM 1401: A Self-Instructional Programmed Manual.
1963 (cit. on p. xiv).

[48] The “java.sql” package. url: https://docs.oracle.com/javase/8/docs/api/

java/sql/package-summary.html. (accessed: 09.03.2021) (cit. on p. 26).

[49] A. Thomasian. “Concurrency control: methods, performance, and analysis”. In:

ACM Computing Surveys (CSUR) 30.1 (1998), pp. 70–119 (cit. on p. 8).

[50] TPC-C OLTP Benchmark. url: https://tpc.org/tpcc/. (accessed: 08.07.2020)

(cit. on p. 2).

[51] TPC-C OLTP Benchmark. url: http://www.tpc.org. (accessed: 04.03.2021) (cit.

on p. 14).

[52] TPC-C OLTP Benchmark Specifications. url: http://www.tpc.org/tpc_documents_

current_versions/current_specifications5.asp. (accessed: 04.03.2021) (cit.

on pp. 15, 16).

[53] S. Tu et al. “Speedy transactions in multicore in-memory databases”. In: Proceed-
ings of the Twenty-Fourth ACM Symposium on Operating Systems Principles. 2013,

pp. 18–32 (cit. on p. 16).

[54] UML class diagrams. url: https://www.jetbrains.com/help/idea/class-

diagram.html. (accessed: 16.03.2021) (cit. on pp. 42, 62).

[55] T. M. Vale et al. Lazy State Determination: More concurrency for contending lineariz-
able transactions. 2020. arXiv: 2007.09733 [cs.DC] (cit. on pp. 2, 21, 24).

[56] What Is A Database? url: https : / / www . oracle . com / database / what - is -

database/. (accessed: 16.03.2021) (cit. on p. xv).

59

https://docs.oracle.com/javase/8/docs/api/java/sql/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/sql/package-summary.html
https://tpc.org/tpcc/
http://www.tpc.org
http://www.tpc.org/tpc_documents_current_versions/current_specifications5.asp
http://www.tpc.org/tpc_documents_current_versions/current_specifications5.asp
https://www.jetbrains.com/help/idea/class-diagram.html
https://www.jetbrains.com/help/idea/class-diagram.html
https://arxiv.org/abs/2007.09733
https://www.oracle.com/database/what-is-database/
https://www.oracle.com/database/what-is-database/

BIBLIOGRAPHY

[57] What Is ODBC? url: https : / / docs . microsoft . com / en - us / sql / odbc /

reference/what- is- odbc?view=sql- server- ver15. (accessed: 29.07.2020)

(cit. on p. 14).

[58] D. Wischik, M. Handley, and M. B. Braun. “The resource pooling principle”. In:

ACM SIGCOMM Computer Communication Review 38.5 (2008), pp. 47–52 (cit. on

p. 1).

[59] Y. Wu et al. “An empirical evaluation of in-memory multi-version concurrency

control”. In: Proceedings of the VLDB Endowment 10.7 (2017), pp. 781–792 (cit. on

pp. 9, 11).

[60] C. Xie et al. “High-performance ACID via modular concurrency control”. In:

Proceedings of the 25th Symposium on Operating Systems Principles. 2015, pp. 279–

294 (cit. on p. 19).

[61] C. Xie et al. “Salt: Combining {ACID} and {BASE} in a Distributed Database”. In:

11th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI}
14). 2014, pp. 495–509 (cit. on p. 19).

[62] X. Yu et al. “Tictoc: Time traveling optimistic concurrency control”. In: Proceedings
of the 2016 International Conference on Management of Data. 2016, pp. 1629–1642

(cit. on p. 17).

This document was created using the (pdf/Xe/Lua)LATEX processor, based on the NOVAthesis template, developed at the Dep. Informática of FCT-NOVA by João M. Lourenço. [1]

[1] J. M. Lourenço. The NOVAthesis LATEX Template User’s Manual. NOVA University Lisbon. 2021. URL: https://github.com/joaomlourenco/novathesis/raw/master/template.pdf (cit. on p. 60).

60

https://docs.microsoft.com/en-us/sql/odbc/reference/what-is-odbc?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/odbc/reference/what-is-odbc?view=sql-server-ver15
https://github.com/joaomlourenco/novathesis
http://www.di.fct.unl.pt
https://docentes.fct.unl.pt/joao-lourenco
https://github.com/joaomlourenco/novathesis/raw/master/template.pdf

A

Detailed Class Diagram for the LSD

JDBC Driver

61

APPENDIX A. DETAILED CLASS DIAGRAM FOR THE LSD JDBC DRIVER

Figure A.1: LSD-JDBC Driver Detailed Class Diagram, made with IntelliJ IDEA’s UML
plugin[54]

62

20
21

E
du

ar
d

o
Su

bt
il

L
A

Z
Y

ST
A

T
E

D
E

T
E

R
M

IN
A

T
IO

N
FO

R
SQ

L
D

A
TA

BA
SE

S

	Front Matter
	Cover
	Front Page
	Copyright
	Dedicatory
	Acknowledgements
	Quote
	Abstract
	Resumo
	Contents
	List of Figures
	List of Tables
	Glossary
	Acronyms

	1 Introduction
	1.1 Context and Motivation
	1.2 Problem and Goals
	1.3 Approach and Contributions
	1.4 Document Layout

	2 Concepts and Related Work
	2.1 Basic Concepts of Asynchronous Programming
	2.1.1 Concurrency and Parallelism
	2.1.2 Asynchronous Programming

	2.2 Transactional Systems
	2.2.1 Introduction
	2.2.2 Isolation Levels
	2.2.3 Concurrency Control Techniques

	2.3 Interacting with the Database
	2.3.1 Structured Query Language
	2.3.2 Java Database Connectivity
	2.3.3 Benchmarking

	2.4 Related Work in High Performance OLTP Databases
	2.4.1 Using Optimistic Concurrency Control Variants
	2.4.2 Using Hybrid Protocols
	2.4.3 Using New Hardware and/or Software Capabilities
	2.4.4 Using Futures
	2.4.5 Discussion

	3 A JDBC Driver for LSD
	3.1 How to implement a JDBC driver?
	3.1.1 JDBC Interfaces and their Roles

	3.2 The JDBC Driver for LSD
	3.2.1 Extending SQL with LSD operations
	3.2.2 Driver Architecture
	3.2.3 Implementation Details

	4 Validation
	4.1 Testing Environments
	4.2 Tests
	4.2.1 Implementation Correctness
	4.2.2 Performance

	4.3 Discussion

	5 Conclusions
	5.1 Final Considerations
	5.2 Future Work

	Bibliography
	A Detailed Class Diagram for the LSD JDBC Driver
	Back Matter
	Back Cover

