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Resumo 

 

A Saúde constitui um bem inestimável que prevalece em qualquer sociedade ao longo da história do ser 

humano. Sendo um bem inestimável os humanos estão dispostos a todos os sacrifícios de modo a asse-

gurarem este precioso bem.   

As técnicas e tecnologias usadas ao longo do tempo, a sua massificação e constante evolução acabam 

por elevar esta indústria extremamente competitiva e cada vez mais sofisticada numa procura constante 

e direcionada para a necessidades mais urgentes da população humana. A digitalização dos processos 

clínicos e a imensidão de dados adquiridos constitui atualmente um enorme capital de conhecimento. 

 

O cancro é a segunda maior causa de morte no mundo, com tendência crescente, e consequentemente 

uma preocupação para a organização mundial de saúde que está a tentar reverter esta tendência. Neste 

contexto, há uma necessidade urgente de projetos e investigações, como esta dissertação, que visam 

antecipar o diagnóstico, prevenir as repercussões da doença, melhorar estilos de vida e aumentar as taxas 

de sobrevivência em pacientes com cancro. Este trabalho concentra-se explicitamente em         pacientes 

com cancro do pulmão. O cancro de pulmão é um dos cancros mais comuns em todo o mundo, sendo a 

causa global mais comum de morte por cancro em homens e a terceira mais comum em mulheres. O 

cancro do pulmão de células não pequenas é responsável por aproximadamente 80% de todas as doenças 

malignas do pulmão. Além disso, a incidência de cancro do pulmão tem aumentando gradualmente nos 

últimos 50 anos, tornando-se um problema de saúde pública mundial. 

 

O conjunto de dados analisado é específico para pacientes com cancro de pulmão de células não peque-

nas e todos os seus atributos foram revistos de uma perspectiva clínica. 

Após a compreensão do conteúdo do conjunto de dados, seguiu-se a fase de pré-processamento dos 

dados, uma análise descritiva de cada atributo e a utilização do método de Kaplan-Meier. Finalmente, 

este trabalho propõe o uso do modelo de risco proporcional multivariado de Cox. 

Além disso, esta dissertação revê o domínio de aplicações, incluindo a estrutura da indústria de Saúde e 

Sistemas de Informação, tal como o conhecimento técnico necessário para implementar algoritmos de 

aprendizagem automática. 

 

Esta dissertação é apoiada pela Holos S.A. e envolvida no projeto CLARIFY (European Union Horizon 

2020- ao abrigo do acordo da bolsa nº 875160). 

 

Palavras-chave: Saúde, cancro do pulmão de células não pequenas, Kaplan-Meier, modelo de risco 

proporcional multivariado de Cox, aprendizagem automática. 
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Abstract 

 

Health is an invaluable asset that prevails in any society throughout human history. As a priceless good, 

humans are willing to make all sacrifices to ensure this precious good.  

The techniques and technologies used over time, their massification and constant evolution, end up 

raising a highly competitive and increasingly sophisticated industry in a constant search directed to the 

population's most pressing needs. The digitalization of clinical processes and the immensity data ac-

quired is currently an enormous knowledge capital. 

 

Cancer is the second leading cause of death worldwide, and its increasing number is a concern for world 

health organisations that are trying to reverse this trend. In this context, there is an urgent need for 

projects and research such as this dissertation that aims to achieve early diagnosis, predict and prevent 

disease repercussions, improve quality of life, and increase survivorship rates in cancer patients. This 

work focuses explicitly on lung cancer patients. Lung cancer is one of the most typical cancers world-

wide, being the most common global cause of cancer death in men and the third most common in 

women. Non-small cell lung cancer (NSCLC) accounts for approximately 80% of all lung malignancies. 

In addition, the incidence of lung cancer has been gradually increasing over the last 50 years, becoming 

a worldwide public health issue. 

The dataset analysed is specific for non-small cell lung cancer patients, and all its attributes were re-

viewed from a clinical perspective.   

After understanding the dataset's content and the pre-processing data phase followed a descriptive anal-

ysis of each attribute, and the use of the Kaplan-Meier method. Finally, this work proposes the use of 

Cox's Multivariate Proportional Hazard Model.  

Additionally, this dissertation reviews the applications domain, including the Healthcare industry struc-

ture and Information Systems and the technical knowledge necessary to implement Machine Learning 

algorithms. 

 

This work was supported by Holos S.A. and engaged with the CLARIFY project (European Union 

Horizon 2020- under grant agreement nº 875160).  

Keywords: Health, Machine Learning, Non-small cell lung cancer, Kaplan-Meier, Cox's Multivariate 

Proportional Hazard Model  
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HIT   Healthcare Information Technology 

EHR  Electronic Health Record 

EMR   Electronic Medical Record 

PHR   Personal Health Record 

ISO   International Organization for Standardization 

CPOE  Computerized Physician Order Entry 

CDSS  Clinical Decision Support System 

GDPR   General Data Protection Regulation  

RBAC   Role-based Access Control  

ABAC   Attribute-based access control  

EGFR   Epidermal Growth Factor Receptor  

ALK   Anaplastic Lymphoma Kinase 
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1 INTRODUCTION 

This first chapter provides the context in which this dissertation was developed and the motivation and 

objectives of the project. 

CLARIFY is a project financed by the European Union Horizon 2020 Research and Innovation Pro-

gramme, comprised by twelve partners, academic and non-academic, with a duration of three years, 

initiated in January 2020. Holos is one of the consortium partners and the only Portuguese company 

involved, and have therefore established the link between this dissertation and the project. 

The purpose of this dissertation will be explained and structured in the following topics, as well as the 

contribution that it aims to give. 

 

1.1 BACKGROUND AND MOTIVATION  

Being cancer the second cause of death worldwide and an increasing number, world health organisations 

are trying to turn around the tendency of these numbers [1]. 

According to the GLOBOCAN (Global Cancer Observatory) [1], the latest statistics show that the 14 

million new cancer cases in 2012 increased up to 18.1 million in 2018, and the predictions for the next 

decades are growing bigger.   

In 2020, approximately 1.8 million new cancer cases and 606.520 cancer deaths were projected to occur 

in the United States [1].  Nevertheless, since 1991, the mortality rate has been declining yearly, resulting 

in a cancer death rate estimate of 27% in 2019 (2.6 million fewer cancer deaths [2]) and 29% in 2020 

(2.9 million fewer cancer deaths).  

Considering this information, we can verify that the number of cancer survivors is growing each year, 

which is one of the reasons this is a subject of enormous interest. 

Survivorship Statistics show that 16.9 million Americans with a history of cancer were alive on 

January 1st, 2019; being the projections for 2030 more than 22.1 million, based on the growth of the 

population.       

From this 16.9 million, 68% were diagnosed five or more years ago, and 18% were diagnosed 20 or 

more years ago [3].  

The majority of the values presented are related to the US since there are no actual cancer sur-

vivor official registries in Europe.    
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In most cases, cancer is not experienced alone, and most of the symptoms experienced after treat-

ment are similar to those experienced by families, friends and caregivers. Therefore, the three groups 

above mentioned are also included in the definition of cancer survivors, which takes the dimension of 

the study group to another level.  

 

1.1 RATIONALE 

Cancer is a matter of public health worldwide.  

In the last decades, numerous discoveries have been made regarding cancer treatments, so the number 

of survivors has substantially increased.  

A cancer survivor is defined as every person who suffers from cancer since the time of the first diagnosis. 

Long-term cancer survivors are those patients who are still alive 5 years or more post-diagnosis [4]. One 

of the main problems that these patients face after treatment is mid/long-term health problems for the 

rest of their lives. These repercussions can be of a physical, psychological or social type, as presented 

in Table 1.1. 

Currently, models for monitoring cancer survivors merely analyse the patient’s clinical history and his-

tory of disease recurrence. There are no evidence-based guidelines for the follow-up of cancer survivors 

and their follow-up model is inadequate and poorly protocolized, besides a lack of specialisation of the 

caregivers. 

As the number of this study group is increasing, the Health Care systems will be overburdened, with 

fewer resources to assist and provide the necessary help until the point that they actually may be unable 

to deliver treatment and post-treatment follow-up care.  

The massive lack of follow-up on sick patients and post-treatment patients after the COVID-19 pan-

demic has emphasized the urgency of the creation of new follow-up techniques, as the health industry 

is still not prepared to answer the population´s demands worldwide, and patients are getting sick and 

dying not because of the disease itself but as a consequence of the lack of treatment and follow-up.  

 

Table 1-1 Cancer survivor’s repercussions types and examples. 

Physical health Psychological health Social health 

Recurrence; 

Long-term/ late effects of 

treatment; 

Effects on 

co-morbidities; 

Death. 

Increased depression; 

Increased anxiety (including fear 

of recurrence); 

Psychosexual problem; 

Quality of life. 

Financial; 

Employment; 

Education; 

Interpersonal; 

Social integration; 

Disability. 
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1.2 PROPOSED SOLUTION 

The healthcare industry is changing, already addressing technology to its evolution as a way to adapt to 

the needs of the population and environmental crises.   

As a part of its evolutions comes the realisation and application of Machine Learning (ML) techniques 

and Artificial Intelligence (AI) in Healthcare that is already improving outcomes.  

The main applications of AI in Healthcare are [4]: 

• Prediction;  

• Diagnosis;  

• Personalised Treatment and Behavior Modification;  

• Drug discovery; 

• Follow-up care.   

 

In this line of action, the CLARIFY project aims to create personalised pathways to follow-up cancer 

survivors, including a part of all applications mentioned above. 

Having a predictive methodology, raising awareness, anticipating diagnosis and preventing disease re-

percussion will reduce the number of deaths, improve lifestyles, and increase survivorship rates. 

 

1.3 CONTRIBUTIONS 

 

The dataset studied in this dissertation was provided by the Medical Oncology Department of the Hos-

pital Universitario Puerta de Hierro Majadahonda (HUPHM) as coordinators of the project. Cases were 

collected from the Spanish Thoracic Tumour Registry, a nationwide registry sponsored by the Spanish 

Lung Cancer Group. The final version of the dataset contains one-thousand two-hundred and forty-four 

(1244) attributes with each variable encoding and the respective description, with both idioms, Spanish 

and English. The dataset contained the medical register of fifteen thousand three hundred and thirty-

seven (15 337) patients. 

Since the project is at its early beginning, the first round of objectives and specifically the subjects where 

this dissertation aims to bring value to, are: 

• Identification of the patient and disease factors and characteristics; 

• Risk stratification of these same factors and characteristics; 

• Predict the best models of follow-up.  
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1.4 OUTLINE OF THE DOCUMENT 

 

This section briefly summarizes the  structure of the dissertation, which is presented as follows: 

 

• Chapter 2 – State of the Art – This section presents the Healthcare Industry, going 

through the Healthcare Data, Analysis and Standards, as well as the Healthcare Infor-

mation Systems.  

 

• Chapter 3 – Machine Learning and AI in Healthcare - The necessary knowledge for the 

practical implementation of the project is reviewed in this section. Definition of the main 

topics and associated terms, analysis streams, methodologies, and contextualise the project 

within these subjects.  

 

• Chapter 4 – Data Engineering – Here are presented the tools used in the development, and 

the dataset used in the project, going from its sources and formats to all the pre-processing 

work. The descriptive analysis performed is also presented in this section. 

 

• Chapter 5 – Cox's Multivariable Proportional hazard Model Results – The development 

of the models, their results and the proportional hazards assumption tests are presented 

here.  

 

• Chapter 6 – Conclusions and Future work – This last section reviews the work developed 

and analyses the results and challenges since the beginning of the dissertation, as well as 

the Future work which identifies the optimizations and evolutions of the work developed. 
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2 STATE OF THE ART  

To create value and add knowledge in any industry or business, it is necessary to understand the sources, 

lifecycles, meanings, the features involved in its transformation, the standards and regulations that 

passed through and finally, the purpose of all its data.    

This chapter starts by providing the relevant prior knowledge around the Healthcare Industry, going 

through the Healthcare Data, Analysis and Standards, as well as the Healthcare Information Systems, 

structures, services and regulations. 

 

2.1 CANCER 

Health is one of the areas that will always prevail in any society and throughout history, as it is necessary 

to all human beings throughout all their lives. With this, health data is extremely sensitive and confi-

dential.  

Statistics concerning cancer patients/survivors are compiled on the following patient characterisation 

factors: sex, ethnicity, age, geographic territory, the status of the first diagnosis, genetics, etc. Over the 

years of statistics development, some of these factors have developed a notable and consistent discrep-

ancy [5]. 

In order to understand the cancer statistics, it is crucial to be aware of the real meaning of some defini-

tions, as well as their imprecisions, considering that many factors are not taken into account when de-

veloping these numbers. Therefore, before presenting some of the most relevant disparities, we will get 

into some definitions.  

 A statistic itself is an approximation of the reality, being excluded factors that can drastically modify 

them. In this case, the following points are concerns that should not be left aside when looking into the 

health subject:  

 

• The fact that the data being analysed has an enormous dimension and different sources, 

which is often a synonym of lack of accuracy and certainty, which leads to misclassifi-

cations.  
• Factors that can be common to both variables of the equation and are not taking into 

account. Smoking is an excellent example of this inaccuracy since it is a cause
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of lung cancer, and it is also a reason for many other diseases. So, there are factors related 

to the risk of cancer that may also be related to the risk of dying from other causes.  

• Factors that can influence the statistics but are not considered because there are not 

enough data and scientific reports about it, or even sometimes it is impossible to calculate 

them.      

Relative survival, which estimates the ratio of observed survival to expected survival, is an 

excellent example of the concerns stated above.  

Observed survival is the actual rate of patients that are still alive for a certain period after diag-

nosis; on the other hand, expected survival is based on the survival rates of the entire population. Both 

survivals consider the usual features, such as age, sex, race, and year of patient diagnosis.  

 Relative survival estimates the probability that a patient will not die of the diagnosed cancer 

(within a given time interval), assuming that the presence of cancer, in this case, is the only factor that 

distinguishes the cancer patient from the general population. 

If we look at this example, smoking, besides being the primary reason for lung cancer, is also a 

risk factor for other diseases, so smokers have a shorter life expectancy than nonsmokers. Consequently, 

expected survival will be unrealistically high, which will be translated into lower relative survival. If 

the population considered was only smokers instead of the standard life tables, this number would be 

much more precise [6]. In the same line of thought, having the actual number of the smoking population 

would be difficult, and even though we may calculate it, it would be necessary to quantify it, which is 

even more challenging.  

 

2.2 HEALTHCARE DATA  

This subchapter aims to review the different Data Categories that Healthcare Information Technologies 

uses throughout all industry and infrastructure.     

There are four data categories, presented in Table 2.1., which are used in every clinical institution or 

hospital, being used by clinicians, nurses and other medical staff, caregivers and lawyers, hospital ad-

ministration, and researchers [7]. This data access is ruled by several standards and laws, which are 

presented in the next chapter. 

As well as the access of this data, its creation is also standardised and must follow the different types of 

imposed classifications to be credible to the world.    

Table 2-1 Summary of healthcare data categories.  

Demographic 

Data 

Socioeconomic 

Data 

Financial Data Clinical Data 

 

Definition 

Elements that 

differentiate 

patients. 

Elements that 

characterise a pa-

tient’s personal 

life. 

Information regar-

ding the payer. 

All the medical data is 

recorded during the care 

process or as a part of a 

clinical trial. 

Examples Name, birth 

date, address, 

etc. 

Religion/culture, 

habits, marital 

status, etc. 

Name, address, 

etc., of the pa-

tient’s insurance 

company. 

Ordered exam, medical 

analysis such as narrative 

reports, comments, etc. 
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2.2.1 DATA STANDARDS IN HEALTHCARE 

The European Committee for Standardization, CEN is an association that brings together the National 

Standardization Bodies of 34 European countries [8]. On the other hand, ISO, International Organization 

for Standardization, is an independent, non-governmental international organisation with a membership 

of 165 national standards bodies [9]. These two entities bring together the most crucial standards for the 

health industry.  

During the International Health Informatics Seminar in 2019 handled by CEN, a resume of the existing 

Health Informatics Standards was made, which enabled the realisation of the existing dimension of the 

health informatics standards scope.  

Concerning the Health Informatics subject, ISO has currently 187 published standards and CEN 

102. Each entity has more than 20 standards in development. Each year, standards suffer updates, and 

new versions are published 1.  

Data standards are the rules by which data is described and recorded, making it easier to create, share, 

understand and integrate. These standards provide trust in the data presented and allow the flow of 

information through the healthcare infrastructure.    

Data standards can be divided into four categories [10,11,12], and some examples are presented in Table 

2.2.: 

1. Data elements and Content- The determinations of the data content to be collected and ex-

changed;   

2. Data interchange formats- Standard formats for electronically encoding the data elements, in-

cluding document architecture for structuring data elements;  

3. Terminologies- The medical terms and concepts used to describe, classify and code the data 

elements and data expression languages and syntax;  

4. Knowledge representation- Standard methods for electronically representing medical literature 

and clinical guidelines.   

 

 

 

 

 

 

 

 

 

 

 

 
1 It is essential to realise that the number of standards in healthcare is enormous. Here we will focus on the ones which are vital to the practical 

understanding of the data and systems used during this dissertation. For more information on the standards, see Dr Robert A. Stegwee, 
12/04/2019 Health-Informatics-Standardization-Seminar. 

https://www.iso.org/members.html
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Table 2-2 Summary of Standards and Developer Organisations. 

Standard       

Category 

Standard Acronym Description Developer 

 

 

Data elements 

and content 

Version 2 V2 Messaging protocol; sev-

eral of the chapters of 

this standard cover clini-

cal content 

Health Level Seven (HL7) 

Health informatics 

— Harmonised data 

types for infor-

mation interchange  

 

ISO 21090 Offer a practical and val-

uable contribution to the 

internal design of health 

information systems. 

International Organization 

for Standardization (ISO) 

https://www.iso.org/obp/ui

/#iso:std:35646:en 

 

 

 

 

Data inter-

change formats 

Digital Imaging and 

Communications in 

Medicine Commit-

tee 

DICOM Format for communi-

cating radiology images 

and data. 

National Electronics Man-

ufacturers Association 

(NEMA) 

Health informatics 

– Electronic Health 

Record Communi-

cations- Part 1- Ref-

erence Model  

ISO 

13606-1: 

2019 

Electronic Health Record 

Communications 

International Organization 

for Standardization (ISO) 

https://www.iso.org/obp/ui

/#iso:std:35646:en 

Fast Health Interop 

Resources 

FHIR® Interoperability standard 

intended to facilitate the 

exchange of healthcare 

information. 

Health Level Seven (HL7) 

 

 

 

Terminologies 

International Classi-

fication of Diseases 

-10 

ICD-10/ 

ICD-11 

 Disease Classification  World Health Organization 

(WHO) 

Systematized No-

menclature of Me-

dicine 

SNOMED Clinical terminology College of American Pa-

thologists 

Logical Observa-

tion Identifiers 

Names and Codes 

LOINC Laboratory test, data ele-

ments. 

Regenstrief Institute 

https://www.iso.org/obp/ui/#iso:std:35646:en
https://www.iso.org/obp/ui/#iso:std:35646:en
https://www.iso.org/obp/ui/#iso:std:35646:en
https://www.iso.org/obp/ui/#iso:std:35646:en
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Unified Medical 

Language System 

UMLS   National Library of Medi-

cine (NLM) 

Clinical Document 

Architecture 

(CDA®) Specifies the structure 

and semantics of “clini-

cal documents”. 

Health Level Seven (HL7) 

Knowledge rep-

resentation and 

Systems   re-

quirements 

Health informatics 

— Requirements 

for an electronic 

health record archi-

tecture 

ISO 

18308  

Standard for Electronic 

Health Record system re-

quirements.  

International Organization 

for Standardization (ISO) 

https://www.iso.org/obp/ui

/#iso:std:35646:en 

 

2.2.2 CLINICAL DATA AND MEDICAL CODING  

Clinical Data is collected by clinicians and other medical staff, to provide the most accurate and com-

plete information to enable them to make the right decisions regarding the patient’s health.  

Clinical Data is an essential component of distinct Electronics and Clinical Systems, so, before getting 

into that, this chapter focuses on understanding the different formats and standards at the roots of its 

creation. 

During the healthcare process, much information, with different sources and formats, is generated, di-

vided into three main groups: medical images, clinical notes, and other [13]. 

Medical images are all the images that come from exams (for example, X-rays, Computed Tomography 

(CT), Magnetic Resonance Imaging (MRI), microscopy image, Positron Emission Tomography (PET) 

between others) [14-15]. With the development and application of learning techniques, the utility and 

value of medical images analysis have been pushing medicine forwards.  

Clinical notes are the most abundant data type; in other words, this type of data carries most of the 

patient’s clinical information. Clinical narrative reports such as admission notes, treatment plans, pre-

discharge summaries, discharge summaries, and death certificates are highly heterogeneous and com-

plex to analyse.  

The category mentioned above as ‘other’ includes all the remaining data collected during the care pro-

cess but is not a part of the two first data groups, including lab results, vital signs, demographic infor-

mation, payment and insurance information, etc. [14].        

Focusing on the Clinical notes, which constitute a significant part of the data that will be analysed in 

this dissertation, it is the data group with a vast number of standards.  

Many countries differ in healthcare models, structures and governance, but the following classifications 

are international and recognised worldwide. 

For example, the International Classification of Diseases (ICD), supported by the World Health Organ-

ization (WHO), is the global health information standard for mortality and morbidity statistics, trans-

lated into 43 languages (International Classification of Diseases (ICD) Information Sheet, 2020) [16] 

and it is the foundation of the analysis of clinical medical notes.  

https://www.iso.org/obp/ui/#iso:std:35646:en
https://www.iso.org/obp/ui/#iso:std:35646:en
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ICD has had new versions and updates over the years, and the last available version is the ICD-10 [17]. 

ICD allows easy storage, retrieval and analysis of health information for evidence-based decision-mak-

ing; sharing and comparing health information between hospitals, regions, settings and countries; and 

data comparisons in the same location across different periods [18]. 

 There are many other clinical reference terminologies, not just regarding diseases, for example, 

the Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT) [19], Logical Observation 

Identifiers Name and Codes (LOINC), which aims to report laboratory and other clinical observations 

[20] between others, as presented in Table 2.2. 

Two-hundred and thirteen (213) vocabularies sources are identified by the US National Library 

of Medicine (NLM); all of them are used in the Unified Medical Language System (UMLS Metathe-

saurus Vocabulary Documentation, 2020) [21].  

The Unified Medical Language System (UMLS) combines all these terminologies with soft-

ware, Figure 2.1., providing the different computer systems with the necessary interoperability to change 

data.  

These vocabulary sources are denominated by Metathesaurus, which is one of three sources of 

knowledge of UMLS.  

Considering that clinical notes are narrative text, Semantic and Lexical tools are the second and third 

sources of knowledge, which have an essential role when treating this type of data, and are heavily 

correlated within UMLS Metathesaurus.  

 

Figure 2-1 Unified Medical Language System (UMLS) sources. 

The UMLS semantic network reduces the complexity of the Metathesaurus by grouping concepts ac-

cording to the semantic types that have been assigned to them [22].  Computable semantic interopera-

bility requires that the meaning of data is ambiguously exchanged from machine to machine, ensuring 

that the meaning exchange between humans is the same.  

On the other hand, the lexical tools focus on the syntactic lexicon of biomedical and general English, 

using several tools to normalise strings, generate lexical variants and create indexes [21].  Syntactic in-

teroperability enables the exchange of the structure of the data.  
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The Lexical Systems Group of The Lister Hill National Center of Biomedical Communications devel-

oped the SPECIALIST Natural Language Processing (NLP) Tools, which helps application developers 

with lexical variation and text analysis tasks in the biomedical domain (The SPECIALIST NLP Tools, 

2020) [23].  

The Natural Language Processing (NLP) techniques are fundamental to the mediation between 

the user's language (clinicians) and the language of online biomedical information resources. It is due 

to these techniques that it is possible to extract structured information from narrative clinical text.  

 

2.3 HEALTHCARE INFORMATION SYSTEMS  

The previous chapter explained the standards concerning the creation and exchange of medical 

data. This chapter will review the systems used in the healthcare industry aligned with these standards. 

Healthcare Information Technology (HIT) is the intersection of Technology, Health Informatics, Infor-

mation, and Systems, Figure 2.2.[24]. This section targets the Systems used in HIT, with a particular 

focus on Electronic Health Records. 

 In order to have an end-to-end vision of the systems themselves, it is made an overview of the 

most relevant electronic services, which are strongly correlated with the data analysed in the upcoming 

chapters.  

As expected, in the review of the Healthcare Information Systems, it could not be missing the 

Security subject. Healthcare is one of the most complex businesses [25], with an immense diversity of 

interactions and quite sensible data, making security one of the biggest trends in the healthcare industry. 

Therefore, it will be presented the goals of information security, the core entities responsible for assuring 

security at the enterprise and international level, and finally, the different types of access controls im-

plemented in the systems.     

 

Figure 2-2 Healthcare Information Technologies components. 
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2.3.1 CLINICAL INFORMATION SYSTEMS  

An Electronic Health Record (EHR) is an electronic version of a patient’s paper record. It is a repository 

of the patient’s data. It includes all the medical treatment histories of the patient, diagnosis, medications, 

laboratory, and test results, among all the information generated before, during and after the care pro-

cess. It is the record where healthcare providers create, import, store and use comprehensive clinical 

information for patient care, including all the data types studied in the Healthcare Data chapter [26-27]. 

A range of other different standard definitions for the EHR lead ISO to categorise these several other 

names for EHR, including Electronic Medical record (EMR), Electronic Patient Record (EPR), Com-

puterized Patient Record (CPR), Personal Health Record (PHR) between others [28]. The difference 

between these terms is mainly related to the access control topic. 

The Electronic Health Record Architecture (EHRA) definition used in technical specification, as most 

of the standards, is  

“The generic structural components from which all EHRs are built, defined in terms of an infor-

mation model.” 

The information in the EHR is hierarchical. The standard ISO 13606-1: 2019- Health Informatics- Elec-

tronic Health Record communications is a guide that provides a detailed review of this hierarchy, with 

the main objective of improving the alignment with other standards within the Health Informatics sub-

ject and promote communication.     

The EHR Communications Reference Model needs to reflect this hierarchical organisation, meeting the 

published protocols. The reference model is specified as an information model, representing the global 

characteristics of the health records and the aggregation between them. This model defines a set of 

classes that form the generic building blocks of the EHR [29].  

The combination of these building blocks for a specific clinical domain is known as Archetype. 

An archetype specifies a particular hierarchy of the record components, for example, rules by 

which the clinical templates should be constructed.  

 

To ensure the meaning and provide a consistent mapping of individual EHR between heterogeneous 

clinical systems, the standard ISO 13606-1 sub-divides the EHR hierarchy into seven main compo-

nents [29-30]: 

1. EHR is a top-level component for a single subject of care, in other words, one-person elec-

tronic record.    

2. Folders (hierarchy) are the high-level organisation within an EHR, specifying the care pro-

vided to a single subject of care, for a single condition, by a single clinical team (episode of 

care per speciality).   

3. Compositions are a set of information produced from a single episode of care (clinical care 

session documents/laboratory test results, etc.).  

4. Sections are the data within a composition that belong under one clinical heading, reflecting 

the workflow and consultations processes (Family history, Subjective symptoms, Objective 

findings, Analysis, Plan, Treatment, etc.).  

5. Entries are the information recorded due to a single action/observation/interpretation (clinical 

statement).  

6. Clusters are the ways to organise the data in structures, such as time series and tables.  

7. Elements are the nodes of the EHR hierarchy; in other words, single values for one instance.     
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2.3.2 ELECTRONIC SERVICES  

A subset known as Electronic Services within the different Health Information systems mainly 

focus on improving the internal processes and supporting health professionals.  

Besides the electronic services related to administrative functions, billing and financial systems, 

two services to support clinicians and optimise the care process, which is quite visible in the context of 

this dissertation, are Computerized Physician Order Entry (CPOE) and Clinical Decision Support Sys-

tem (CDSS).  

The CPOE is a computer application integrated into a clinical information system. Its primary 

function consists in provide an electronic order communication by [31]: 

1. Accepting the provider’s orders for services. 

2. Transmitting the order to the appropriate location.  

3. Returning the status of the order.  

4. Returning results of order execution.     

For example, in the dataset further ahead studied, some attributes specify if a particular exam was 

requested or not, the date of the request and its results. These attributes are a part of the CPOE applica-

tion, which, when inserted/requested, are automatically communicated to the endpoint (laboratory or 

exam centre).  

The CDSS is also a computer application that uses pre-established rules and guidelines and inte-

grates clinical data from several sources, generating alerts and treatments suggestions. It assists physi-

cians by matching patient-specific information to a clinical knowledge base (facts, best practices, guide-

lines, logical rules, and reference information.), providing real-time feedback to support decisions. 
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2.3.3 HEALTH INFORMATION SECURITY 

Over the past decades, information security research has become a well-established area within 

the information systems discipline. Security is the protection of information and data so that only au-

thorised persons or systems can access them, as well as unauthorised persons or systems, cannot read or 

modify them [32-33].  

The main goals of information security are to prevent Confidentiality, Integrity, and Availability 

of private health information.  

Confidentiality stand by the protection of the information from unauthorised access, use and dis-

closure. On the other hand, integrity is the protection of information from modification or deletion. 

Finally, availability protects the information and information systems from disruption or destruction and 

assures the capability of access from the authorised entities at the time needed [34-35].  

The General Data Protection Regulation (GDPR) is a European law regulation on privacy and 

protection of personal data, applicable in the European Union area, integrating work of the EU’s Data  

Protection Directive (DPD), the US’s Health Insurance Portability and Accountability Act 

(HIPAA) and various other data protection regimes [36] 2. 

Within any organisation, in this case, in a hospital, clinic or health entity, the person who is en-

titled to assure the correct use of the data protection rules is the Data Protection Officer (DPO), com-

monly coordinated by the Chief Information Officer (CIO) [37].  

Besides the laws, several standards intend to develop organisational security controls and effec-

tive security management practices. ISO standards are a starting point, although they do not contain 

general information on how security measures should be implemented or maintained [38]3.  

From IT standards perspective, ISO 27002- 2013 Information technology — Security techniques- 

Code of practice for information security controls standard requires that organisations have [39]: 

1. Documented information security policy. 

2. Allocation of information security responsibilities within the organisation. 

3. Information security training for the users. 

4. Security incident reporting and response. 

5. Virus detection and prevention protocols. 

6. Business continuity planning. 

7. Control of propriety software copying.  

8. Protection of personal data (privacy). 

9. Periodic compliance review.  

 

 

 

 

 

 
2 Different countries have different laws for data privacy. See reference number 40, “Big data security and privacy in healthcare: 

A Review”. 
3 In the Portuguese case study presented in reference number 38, “The Adoption of IT Security Standards in a Healthcare Environ-

ment”, the ISO 27002-2005 was the chose standard. A lattes version of this standard was published in 2013, keeping the main 

requirements for organisations mentioned above. 
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2.3.4 ACCESS CONTROL LINES  

Electronic systems require access control mechanisms to regulate how they are accessed. Several solu-

tions have been proposed to address security and access control concerns, being Role-based access con-

trol (RBAC) and Attribute-based access control (ABAC), the most popular models for EHR [40].  

In the RBAC, a role is assigned to each user, by which access to objects is granted. RBAC is defined in 

five components: subjects, roles, objects, operations, and permissions (Figure 2.3.).  

The relationship between the components is: 

1. Subjects (individuals) are assigned to roles (doctor, nurse, and staff). 

2. Roles are associated with permissions that define which operations can be performed over 

which objects.  

 

Figure 2-3- The basic components of RBAC. Source: Reference [41]. 

In the ABAC, each user has access attributed to information objects, which requires experts to assign 

attributes. ABAC is defined in terms of three components: subjects, environments, and objects (Figure 

2.4.).  

Subject attributes refer to the individual, environment attributes to the specific department of a hospital 

or clinical areas, and objects are referent to a single data entry.  

 

Figure 2-4- The basic components of ABAC. Source: Reference [41].
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3 MACHINE LEARNING AND AI IN HEALTHCARE 

This section reviews the necessary knowledge for the practical implementation of the project. Definition 

of the main topics and associated terms, analysis streams, methodologies, and contextualise the project 

within these subjects.  

Understanding the task is crucial to developing and reporting any research, so guidelines are defined 

based on the study’s content and objectives.   

 

3.1  STREAMS OF ANALYTICS AND REASONING 

Big Data, between other characteristics, defines a dataset that is too big to be stored in a conventional 

relational database system. In other words, it is data whose scale, diversity and complexity require new 

architectures, techniques, and analysis in order to extract value from it.  

In this study, we could analyse large quantities of data that wouldn´t be possible to analyze in any other 

way besides with AI and big data techniques. More than the quantity of data, the quality of data is a 

much critical point.  

When it comes to velocity, most of the data generated in real-time needs real-time analysis, the 

major challenge in this area is the ability to process and analyse vast volumes of data in real-time streams 

[4].  

The dataset used in this dissertation is compound by data collected before the study, so there are no 

concerns related to the real-time analysis for now. This topic is quite significant, as, from a long-term 

perspective, all types of follow-up will be performed with a significant digitally component, which will 

require real-time data analysis.  

Every project that requires real-time analysis starts from a static dataset and its analysis, which is where 

this dissertation is inserted.        

Data needs to be processed to be valuable, and the classifications of the analysis used are based on the 

type of output produced. In other words, the classifications are based on the desired results.  

The four categories below classify the different streams of analysis, Figure 3.1.: 

1. Descriptive Analytics uses techniques such as data aggregation and data mining to provide 

historical understanding. It brings insight to the past, focusing on what happened.  

2. Diagnostic Analytics is a form of analysis that examines the data to answer why something 

happened.
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3. Predictive Analytics allows us to understand the future and predict the likelihood of a future 

outcome. It uses regression analysis, multivariate statistics, data mining, pattern matching, 

predictive modelling and machine learning techniques.  

4. Prescriptive Analytics strives to make decisions for optimal outcomes. In other words, it 

attempts to quantify the effect of future decisions to advise on possible outcomes before de-

cisions are made.     

 

The dissertation’s practical development includes, first, a descriptive analysis, following by 

the predictive analysis.  

 

  

 

 

 

 

 

 

 

 

 

 

There are different reasoning approaches that a system can use. The three main methods from 

which the systems can take conclusions are deduction, induction and abduction [4].  

The deduction is the approach most use in reporting systems that allows the system to determine a true 

statement. In deduction reasoning, one statement infers a proposition q, which is logically from a 

permise p.   

On the other hand, induction reasoning enables us to make statements based on evidence gathered until 

that moment.  

The critical point to understanding these two reasoning methods is that evidence is not the same as fact. 

Consequently, statements that are determined by the induction method are likely to be true rather than 

absolute.   

By that, it turns clear that Statistical learning is all about inductive reasoning (considering some data, 

guessing a general hypothesis and making statements or predictions on test data based on these prem-

ises).  

Finally, abduction is an adaptation of induction reasoning. It attempts to use a hypothesis p to explain 

a proposition q. It is precisely the opposite direction flow of deductive reasoning. The best hypothesis 

(most effectively explains the data) is inferred to be the most probably correct one.   

 

 

Data Warehousing, 

Business reporting   

 

 

Data Mining, 

Business Intelligence, 

Data Visualization   

Descriptive Analytics    
 

Prescriptive Analytics    

Predictive Analytics    

Big Data Analytics    

Figure 3-1- Streams of Analytics. Source: Reference [4] 
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3.2  COMPONENTS OF AI AND MACHINE LEARNING   

Traditional software engineering and machine learning have the common objective of solving 

a problem or a set of them. However, it is the approaches that distinguish them. Traditional software 

engineering refers to the development of a function or program, such as that when giving an input, it 

provides an output. Machine learning differs as, rather than providing instruction about the function, it 

is provided an input and an output, and it is expected to determine or predict the function. 

Getting a system to reason, getting a program to learn, discover and predict, getting a program to com-

municate with humans, getting a program to have planning and vision capabilities are some of the abil-

ities that an Artificial Intelligence system can comprise. 

The core concepts of AI include agents developing traits including knowledge, reasoning, problem-

solving, perception, learning, planning and the ability to manipulate and move, Figure 3.2. 

Machine Learning can be understood as an AI application [4]. As all AI tasks use some form of 

data, Data Science or Knowledge Discovery in Databases are terms for the range of techniques used to 

extract information from the data. 

 

Figure 3-2- AI components.Adapted from reference [4] and [42]. 

Machine Learning is the collection of algorithms and techniques that can uncover hidden patterns, un-

known correlations, trends, preferences, and other information to give meaning and value to the data.      

Machine learning algorithms can be categorised as the following:  

1. Supervised learning – refers to the process of learning a model from labeled data. 

2. Unsupervised learning – refers to the process of learning a model from unlabeled data. 

3. Semi-supervised learning – combine both labelled and unlabeled data to generate a 

function.  

4. Reinforcement learning - where the algorithm learns how to act given an observation. 
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5. Deep-Learning – processes that use deep-layered neural networks architectures. Neural 

networks can learn how to accomplish a task like a human brain – supervised, unsuper-

vised, and reinforcement learning.    

Supervised learning will be the focus from now on, as the regression models used in this dissertation 

are a part of this category.  

However, before focusing on this subject is necessary to review the techniques and methodologies for 

data preparation and data mining, which is prior and critical work to be developed before starting the 

model building.   

 

3.3  DATA SCIENCE LOOP 

This chapter emphasises the practical techniques and methodologies for data preparation in data-

mining applications, and Figure 3.3. presents the six phases of the data science loop [4,10,13].  

1. Data cleaning – Raw data requires special attention in this stage. Raw data is not treated 

or processed yet, which is necessary to create value, perform any analysis, and model 

building. Data cleaning and preparation take between 60% to 80% of the total data engi-

neering effort in practice. It is the process of detecting and correcting or removing incor-

rect data entries (Data transformation and normalisation), such as missing values, outli-

ers, inaccurate values, and duplicates elimination.  

2. Analyse & Sample – When analysing the data, two important questions should be asked: 

Is the data valuable to answer the problem? How is the data distributed? 

In this stage, the data is analysed to determine which information will be the most useful 

to the machine learning model. In some cases, it might be necessary to sample the data 

to ensure that the target variable is significantly represented in the data. It can be done 

through stratified sampling — a method that consists of splitting the data into groups 

based on the target feature and sampling independently from each group.  

3. Features engineering – This step consists of a relevance analysis to select the valuable 

features.   

Based on the analysis performed, the data scientist selects the measurable attributes from 

the underlying data to be included in the machine learning model. Applying transfor-

mations to improve the data is one of the most important and time-consuming parts of 

developing a machine learning model, for example, creating new features by combining 

other features. 

4. Model Building – In this phase, data scientists have to choose the best modelling tech-

nique to solve the problem in question. In other words, select the machine learning algo-

rithm(s) and build the model(s).  
5. Hyperparameter Optimization – In this stage, the objective is to choose the best model 

parameters. Machine learning models and training algorithms have many settings that 

can impact how well the resulting model will perform. These settings are called hyperpa-

rameters. 

6. Evaluate & Compare - For every trained model, the data scientists extract performance 

metrics. Evaluate models by comparing their predictions, pick the best model based on 

performance and other desired metrics, by looking into how different features and hy-

perparameter configurations influence the metrics; data scientists can devise new config-

urations that promise superior performance. 
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This framework is a loop, which implies passing through each phase many times as necessary. It is 

continuous work.    

The perfect model does not exist. The data scientist and the groups involved in the ML project have to 

get to a consensus and realise when the goals are met. Otherwise, there will always be space for im-

provements and modifications.   

 

3.4  SURVIVAL ANALYSIS METHODS 

Survival analysis is the area of statistics that include the models and methods developed to analyse 

survival data.  

Survival times are defined as data that measures the time from a defined starting point until the occur-

rence of a given event of interest.  

While binary classifiers typically ignore observations where the event did not happen, one of the main 

objectives in survival analysis is to account for them. These cases are named 'censored' observations; 

in other words, they are the cases where the event has not yet occurred or is not known to have oc-

curred [43-45].  

For this dataset, the event of interest is the patient's death, so the censored data are those where the 

outcome is survived or unknown.   

Within the Survival Analysis methods, there are Non-parametric, Semi-parametric and Parametric    

methods, as illustrated in Figure 3.4.  

 

Figure 3-3 - Survival Analysis Methods. 

 

As not all death events have occurred, censoring is a characteristic of survival analysis that does not 

exclude the patients in this situation.    
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There are four types of censoring [45]: 

• Right censoring – The individuals in a population who have not been subject to the death 

event are labelled as right-censored. Even though we do not have data further ahead of 

that time, we can not assume that the event has occurred.  

• Left censoring - An individual's lifetime is considered left censored if we only know it is 

minor than a specific registered time.  

• Interval censoring – When it is impossible to observe the exact moment when the event 

of interest occurs, but we know that it has occurred during some period, it is called inter-

val censoring. 

• Double censoring- When both right and left censoring are used, it is called double cen-

soring. 

In this dissertation, only right censoring was used in the models developed.  

 

3.4.1 KAPLAN-MEIER METHOD 

The Kaplan-Meier method is a univariate model, which means that only one variable is consid-

ered in the model. Since it does not consider a parametric distribution for the event variable, it is cate-

gorised as a non-Parametric statistical method.  

The survival function S(t) is defined as the probability of surviving, at least, up to time t. In this 

empirical survival function, there are no censoring events. Therefore, the survival function in a specific 

time t is estimated by the proportion of individuals that survived ahead of the instant t, in a 𝑛 dimension 

sample, given by equation (3.1.): 

𝑆(𝑡) =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 >𝑡

𝑛
 , 𝑡 ≥ 0       (3.1) 

The Kaplan-Meier method proposes a non-parametric estimator of this survival function when 

there are censored events.  

The method is based on the basic idea that the probability of surviving k or more periods after 

entering the study is the product of the k observed survival rates for each period, as presented below in 

equation (3.2.) (i.e. the cumulative proportion surviving):  

S(k) =  𝑝1 × 𝑝2 × 𝑝3 × … × 𝑝𝑘  , 𝑘 ∈ ℕ     (3.2) 

 

Here, 𝑝1 is the proportion of individuals surviving the first period, 𝑝2 is the proportion of individuals 

surviving beyond the second period conditional on having survived up to the second period, and so on. 

Below, equation (3.3.), the proportion of individuals surviving period i, having survived up to period i:  

𝑝𝑖 =  
𝑛𝑖−𝑑𝑖

𝑛𝑖
      (3.3) 

where 𝑛𝑖 is the number of individuals alive at the beginning of period and 𝑑𝑖 the number of deaths within 

the period. 
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The Kaplan-Meier estimator of the survival function is then given by equation (3.4.): 

 

𝑆(𝑡) =  ∏
𝑛𝑖− 𝑑𝑖

𝑛𝑖
𝑖:𝑡(𝑖)≤𝑡         (3.4) 

where 𝑛𝑖 is the number of subjects at risk of death just prior to time t, and 𝑑𝑖 are the number of death 

events at time t.  

As one variable can assume different values (e.g., the patient can receive treatment 1 or 2), we 

may face two different groups of patients. The long-rank test is used to test whether there is a difference 

between the survival times of different groups, but it does not allow other explanatory variables to be 

taken into account. 

It is used to test the null hypothesis that there is no difference between the population survival curves 

and the statistic test is given by equation (3.5.): 

𝑥2(log 𝑟𝑎𝑛𝑘) =
𝑂1−𝐸1

𝐸1
+

𝑂2−𝐸2

𝐸2
    (3.5) 

where the 𝑂1 and 𝑂2 are the total number of observed events in groups 1 and 2, respectively, and 𝐸1and 

𝐸2 the total number of expected events.  

 

3.4.2 COX REGRESSION  

Regression-based systems are one of the main approaches within supervised learning [4], and as previ-

ously mentioned, the learning method of these models is inductive.  

The algorithm maps the inputs, in other words, represents the input data x within a particular domain. 

However, x typically represents multiple data points (x1, x2, x3,…, xn). Thus, the goal is to tune a 

predictor function f(x). 

Each record/instance in the dataset is a vector of features x(i). There will also be a target label for each 

instance in supervised learning, y(i). Therefore, the model is trained with inputs in the form {x(i),y(i)} 

[4]. 

Cox’s proportional hazard model is a multiple regression model that enables the difference between 

survival times of specific groups of patients while allowing for other factors. In other words, it is a 

multivariate model that involves time and censorship features and additional data as covariates,              

describing relationships between survival distribution and the covariates.  

The Hazard is the probability of dying (experience the event) given that patients have survived up to a 

given point in time.  

Bellow, equations (3.6.) and (3.7.) present the model’s formulation: 

ln ℎ(𝑡) = ln ℎ0(𝑡) + 𝑏1𝑥1 + ⋯ + 𝑏𝑝 𝑥𝑝    (3.6) 

or    

ln 
ℎ(𝑡)

ℎ0(𝑡)
= 𝑏1𝑥1 + ⋯ + 𝑏𝑝𝑥𝑝      (3.7) 

where h(t) is the Hazard at time t; 𝑥1, 𝑥2, …, 𝑥𝑝 are the explanatory variables; and ℎ0(𝑡) is the baseline 

hazard when all continuous explanatory variables are zero. The coefficients 𝑏1, …, 𝑏𝑝 are estimated 

from data, in other terms, are a unique scaling factor.  
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Likewise, the Hazard can also be presented as in equation (3.8.), the multiplication between the baseline 

and the partial hazards.   

ℎ(𝑡) =  ℎ0(𝑡)  ×  𝑒𝑏1𝑥1+⋯+𝑏𝑝𝑥𝑝     (3.8) 

As the Hazard Ratio (HR) does not depend on time comes the proportional hazard assumption. 

As mentioned, the proportional hazard assumption is that all individuals have the same hazard function 

but a unique scaling factor in front. So the shape of the hazard function, equation (3.9.), is the same for 

all individuals and only a scalar multiple changes per individual. 

     ℎ𝑖(𝑡) = 𝑏𝑖ℎ(𝑡)      (3.9) 

At the core of the assumption is that 𝑏𝑖 is not time-varying, that is, 𝑏𝑖(𝑡) = 𝑏𝑖 which leads to equation 

(3.10.): 

ℎ𝑖(𝑡)

ℎ𝑗(𝑡)
=

𝑏𝑖ℎ(𝑡)

𝑏𝑗ℎ(𝑡)
=

𝑏𝑖

𝑏𝑗
               (3.10) 

 

The baseline profile is the most common patient's profile, and it is the profile to which all variables will 

be compared, and therefore the risk will be calculated based on that comparison. This baseline always 

has the HR= 1. 

As mentioned, all the other covariates will have an HR that will have values depending on its behaviour. 

The values of the Hazard Ratio per covariate can be interpreted as explained below, all the remaining 

covariates equal to the baseline profile defined:   

• If HR = 1, it means that there is no significant difference in risk when comparing these 

variables with the baseline profile.      

• If HR<1, it means there is a reduction in the Hazard. In other words, this variable repre-

sents a risk reduction comparing with the baseline profile defined. 

• HR>1, it means there is an increase in the Hazard. In other words, this variable represents 

a risk increasing comparing with the baseline profile defined. 

As the Hazard measures the instantaneous risk of death, sometimes it can be challenging to illustrate 

from sample data. Instead, it is commonly used the cumulative hazard function H(t). This function is 

obtained from the cumulative survival function S(t) as: 

𝐻(𝑡) =  − ln 𝑆(𝑡)               (3.11) 

Further ahead, a practical example of the advantages of this function will be given, mainly when the 

survival hazards of two groups are close to each other.  

 



 

24 

 

 

 

 

 

 

 

 

4 DATA ENGINEERING    

Data drives learning, so starting from there, the following chapter approaches the tools used in the 

development, the dataset used in the project, going from its sources and formats to all the pre-processing 

work.  

Likewise, understanding its attributes and content, the descriptive analysis and review was essen-

tial to build the models presented in the next chapter. 

 

4.1 DEVELOPMENT TOOLS  

Anaconda is an open-source distribution platform that aims to simplify package management, deploy-

ment and perform Python/R data science and machine learning on a single machine. Anaconda was the 

platform used in this dissertation to access all Python libraries. 

Python is the programming language used in this dissertation development, and it is increasingly popular 

within the data science and machine learning industry.  

Below is the list of the libraries for Machine Learning used: 

• Pandas is a tool to do data aggregation, data manipulation and data visualisation [50]. 

Within pandas, one-dimensional arrays are referred to as Series, and multidimensional 

arrays are referred to as DataFrames. 

• Matplotlib is a python library for data plotting and visualisation techniques [51]. 

• Patsy is a Python package describing statistical models and building design matrices 

(Mainly useful for coding categorical data). 

• Lifelines is a complete survival analysis library written in pure Python. Within lifelines, 

there are several modules[46] : 

o Univariate Models, which include the KaplanMeierFitter 

o Regression Models, which includes the SurvivalRegressions (CoxPHFitter), 

Time-varying survival regression, Testing the proportional hazard assumptions 

(CoxPHFitter.check_assumptions method). 

• Others – The last version of the data provided was in the Excel format, and to import that 

format into Python, the Pandas library was enough. Although, before that, a few versions 

were treated in other formats (For example, SQL, and it was necessary to use a different 

library that could connect to MySQL -MySQL.connector).  
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4.2 DATASET DETAILED REVIEW 

The sensitivity of this data and the knowledge required to analyse it is pretty unique and too authentic. 

Hence, it is essential to mention that all the decisions and selection of the attributes were approved and 

validated by the medical team of Puerta de Hierro-Majadahonda University Hospital (HUPHM).  

This subchapter explains the data set's sources, content, and structure and distinguishes the delimitations 

between what was already defined and what was necessary to define during the pre-processing and 

implementation of the models.   

 

4.2.1 DATASET SOURCES  

The dataset studied was provided by the Medical Oncology Department of HUPHM as coordinators of 

the project.  

Cases were collected from the Spanish Thoracic Tumour Registry, a nationwide registry sponsored by 

the Spanish Lung Cancer Group. In this registry, more than fifty (50) hospitals collected histologically 

confirmed lung cancer cases and information from the EHR. 

The final version of the dataset contains one-thousand two-hundred and forty-four (1244) attributes with 

each variable encoding and the respective description, with both idioms, Spanish and English. Also, the 

dictionary was lately provided organised by attribute groups concerning the nature of the data.  

 

4.2.2 DATASET CONTENT AND STRUCTURE  

There were several versions of the dataset, in fact, in different formats. The final format was provided 

in an Excel file, with each sheet containing a specific data subject. 

Tables were created by group subject, and even though the dictionary is organised in the same way, the 

dataset was not. Before getting into definitions and values details about each attribute used, it is essential 

to review each table as it was in its original version, and with this, specify how many attributes each one 

had, mention some of them that could be worthy analysis, and most importantly, the selection and mod-

ifications performed.  

The timeline used in the development is a matter of discussion and an essential point as it would be one 

of the improvements points in the study. Five out of ten (5/10) tables are recurrent, meaning that they 

have different information over time and mirror the patient’s performance throughout the different 

phases of treatment and the different treatments themselves.  

Besides the attribute itself, many attributes had other text fields to specify the value ‘other’, or even just 

complementary information about the value. These text fields were not processed, which is one of the 

discussion points and optimizations that could add value to the data and the model’s performance.    

Also, the attribute's value could be unknown, which was only considered in the descriptive analysis. 

Unknow values were discarded as they cannot be considered as attributes of patients, given that the 

information is missing. 
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4.3 DATASET PRE-PROCESSING 

The studied dataset was originally raw, which required a considerable effort concerning data 

cleaning, transformation, and normalisation to be then possible to analyse and build the models. This 

subchapter reviews every step of this stage, specifying all the modifications performed from the raw 

data until the dataset used in the models, as well as the features selection and clinical meaning of the 

variables.    

Below is a description of each table's general content, along with considerations concerning the attrib-

utes used and not used in the models, as well as the modifications performed.   

Besides the tables presented below, the dataset also had a table regarding the Clinical Trials, which was 

not used in the dissertation.   

The patient's ID (EHR number) was set as the index of the dataset, as it is a unique number.  

The demographics table 4.1. contains all the demographics information of the patient. This table had six 

(6) attributes from each three (3) were used.   

The ‘type of patient’ attribute was filtered to work only with the non-small cell lung cancer patients. 

This first filter reduced the original 15.337 patients to 12.981 patients. 

The date of birth was used to calculate the age of diagnosis of the patient, along with other date attributes 

mentioned ahead (calculations are specified in the description of the follow-up table.).  

In cases where the date of birth was incomplete (e.g., Unknown day or month), it was replaced with day 

15th (middle day of the month) and June for the month (middle month of the year). 

Finally, the gender variable which did not suffer any modification.  

 

Table 4-1 Demographic attributes  

Variable  Values  

Demographics Type Patient 0, Non-small cell lung cancer   
1, Small cell lung cancer    
2, Carcinoid tumour  
3, Epithelial thymic tumour  
4, Mesothelioma  
5, Others 
-, -1 

Specify Type Patient text 

Date of birth date 

Gender 0, Male  
1, Female 

Race 0, Caucasian  
1, Latin  
2, Asian  
3, African  
4, Others 
-1,- 

Specify race text 
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The smoking habit ,table 4.2., contains all the attributes related to the smoking history of the patient. 

This table contained eight (8) attributes from each; only one (1) was used.  

The remaining attributes were quantitative specifications such as the number of cigars per day and per 

year, the number of years active, whether the patient lived with smokers, and how many years.  

The attribute ‘tobacco history’ had four (4) possible values; from each, the ‘unknown’ was the only one 

not used in the model (but considered in the descriptive analysis).   

 

Table 4-2 Smoking habit attribute.  

Variable  Values  

Smoking Habit Tabaco history 0, Never smoker (<= 100cigars/lifetime)  
1, Former smoker (>= 1 year)   
2, Current smoker   
3, Unknown  

 

The diagnosis, table 4.3., had one hundred and twenty-two (122) attributes from which eighteen (18) 

were used. The original values can be found in Section A, Attachment 1.   

Both dates, data of the first consultation and data of initial diagnosis, were also used to calculate the age 

at diagnosis 4.  

Staging describes cancer based on its size, location, spread, and involvement of other organs. Knowing 

the stage of the cancer is essential to decide the best treatment and to be able to assess the prognosis of 

the disease. 

The different stages of lung cancer are based on the size, location, and involvement of lymph nodes and 

other organs, and can be summarized in 5 different categories: 

o Stage 0: The tumour only exists at the microscopic level and can be removed by micro-

surgery.  

o Stage I: The tumour is in an early stage. 

o Stage II: The tumour is in the initial phase. 

o Stage III: The disease is locally advanced. 

o Stage IV: The disease is in the metastatic phase. 

 

 

 

 

 

 

 
4  Disease Mapping Improvement: The four groups of stages are the general diagnosis groups, but the treatments 

are specific concerning these 16 different diagnoses. If instead of the general groups of diagnosis that were used 

in these models, it would be used the more specific diagnosis groups, we would have another hand of patterns 

along with the treatment lines performed.   
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The ‘Stage at diagnosis’ variable had originally twenty (20) possible values, from which four (4) were 

removed, as it did not apply to the study groups, such as Limited and Extended (it does not concern the 

non-small cell lung cancer), and the value ‘other’. 

From the remaining sixteen (16) possible values, four (4) groups were created, each one concerning 

each stage. These 16 initial values are even more specific groups within each stage, again concerning 

the location and size of the tumours. 

Histopathology diagnoses and studies the tissue’s diseases and involves examining tissues or 

cells under a microscope. A variety of imaging and biochemical techniques allow characterizing tissue 

and the presence or absence of specific biomarkers. 

Histology variable had originally fourteen (14) values, from which seven (7) were removed as they were 

extremely rare or not related to lung cancer (the database also contained "thoracic tumours", which are 

not specific for lung cancer). The remaining seven (7) values (the ones used in the models) can be seen 

below in Table 4.3.  

Another essential diagnosis variable is the molecular markers. The molecular markers tests 

are obtained through tissue biopsy and are therefore invasive techniques, but extremely necessary to 

choose the most appropriate treatment. Therefore, it is necessary to have shreds of evidence that point 

in that direction, for instance, patients who never smoked or patients with a family history of cancer. 

For patients whose tumours contain specific mutations in the epidermal growth factor receptor (EGFR) 

or anaplastic lymphoma kinase (ALK) gene, changes determined by molecular testing using a tumour 

biopsy also impact the treatment choices. Patients with these genes are more likely to be successful than 

patients without them, as the origin is known, and treatments are better mapped. These 2 mutations are 

the most frequent in lung cancer. 

EGFR and ALK are the two mutations studied, even that the dataset contained others. The first variable 

concerning the mutations answers whether the molecular markers analyses were performed at diagnoses 

or not. If not, the value of the mutation in question would be modified to have the value ‘-1’, which was 

not in the original dataset.  
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Table 4-3 Diagnosis attributes.  

Variable  Values  

Diagnosis Date of the first consultation (due to disease symp-
toms before the first consultation in Oncology) 

Date 

Date of initial diagnoses Date of diagnoses  

(Anatomopathological diagnoses) 

Date 

Stage at diagnosis 1, Stage I 
2, Stage II 
3, Stage III 
4, Stage IV 

Histology 0, Adenocarcinoma 
1, Adenosquamous 
3, Large cell carcinoma 
7, Neuroendocrine large cell carcinoma 
2, Squamous 
5, Undifferentiated 
4, Sarcomatoid 

EGFR performed 0, No 
1, Yes 

ALK performed 0, No 
1, Yes 

 EGFR result 0, No 
1, Yes 
-1, Not tested 

 ALK result 0, No 
1, Yes 
-1, Not tested 

 

The EGFR mutation was reduced to one (1) variable, which can assume three values (‘Yes’, ‘No’ or 

‘Not tested’), but initially was distributed in seven (7) different variables. 

The ALK mutation was also reduced to one (1) variable, assuming the three same values of EGFR, but 

originally was distributed into three (3) different variables.  

By adding the ‘Not tested’ value to the EGFR and ALK result variables, it was possible to discard the 

two variables (EGFR and ALK performed) that have the same meaning as the test was not performed.  

One of the most critical factors impacting lung cancer patient´s survival is comorbidities [52]. 

Lung cancer is associated with age and smoking, and both age and smoking are strongly associated with 

comorbidity. Comorbidity, such as cardiovascular diseases, pulmonary and other systems, may influ-

ence prognosis in lung cancer and complicate its treatment. With lung cancer being far more frequent 

in smokers and former smokers, these patients often have tobacco-related illnesses, mainly cardiovas-

cular (ischaemic or hypertensive heart disease, lower limbs arteriopathy, etc.) and respiratory (chronic 

obstructive pulmonary disease (COPD), obstructive sleep apnea, usual interstitial fibrosis. etc.) in na-

ture. They can also have other comorbidities unrelated to tobacco use but frequent in the general popu-

lation, e.g. diabetes and its complications (renal insufficiency, cardiovascular damage). These comor-

bidities can alter the patient’s performance status often more than the tumour development [53].  
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Lung cancer is also more frequent in elderly patients because ageing is a risk factor for developing lung 

cancer. Of course, comorbidities are more frequent with ageing and more severe, independent of the 

physiological alterations inherent to ageing. All these comorbidities can have deleterious effects on the 

diagnostic procedures and the treatment possibilities and thus must be carefully explored [52]. 

The dataset had twenty-two (22) initially attributes that described each comorbidity and an open text 

field to specify others (Section A, Attachment 2). 

  From these 22 attributes, six variables were merged into 3, as the clinical meaning was similar: 

o Dyslipidemia and Hypercholesterolemia 

o Liver disease and Hepatitis 

o Vascular disease and Cardiopathy 

A descriptive analysis was performed considering each one individually, but groups were created con-

cerning the patient’s number of comorbidities for the model's development, as presented in table 4.4.  

 

 

Table 4-4 - Comorbidities attribute values.  

Variable  Values  

Comorbidities Comorbidities  
0, No comorbidities 
1, 1-3 comorbidities  
2, 4-9 comorbidities  

 

 

Personal and family history of cancer table had sixty (60) attributes, from which two (2) were 

used (Table 4.5). 

Regarding the personal history, the dataset contained information about whether the patient had 

or not previous tumours and the type of tumour. To consult descriptive analysis regarding the previous 

tumour type, consult Section A, Attachment 2. 

Concerning the family history, if the patient had a family history of cancer, the number of family 

members with lung cancer/other types of cancer, and specifications about the family member. This table 

had many attributes as there were fields to input the specifications of several family members.  

Table 4-5 - Personal and family cancer history attributes.  

Variable  Values  

Personal and family 
cancer history 

Previous cancers  1, Yes 
0, No 
-1, Unknown 

Cancer in family members  1, Yes 
0, No 
-1, Unknown 
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During treatment, the patient can receive several treatment lines. The change of line is performed when 

the patient does not respond anymore to the current treatment.  

The following table specifies the different treatment lines, including the type of therapy, start and end 

date, the regimen (monotherapy or combination), the drugs, the response of the treatments, the number 

of cycles, etc.  

This table is recurrent; in other words, the same attributes are repeated over time. Each treatment line 

has its values, but the way of characterising them is the same. 

Each treatment line has twelve (12) attributes, times the thirteen (13) lines, which is extremely rare, but 

the maximum treatment lines that a patient can have led to a total of 156 attributes in this table.  

Only the first treatment line was analysed in this study, as the table below shows 5, given that the first 

line is the most specific and effective for the patient. From the fifteen (15) values that this attribute 

initially had: 

o Five of them, precisely, CT intravenous, Neoadjuvant chemotherapy, Adjuvant chem-

otherapy, Oral and intravenous chemotherapy, Oral chemotherapy, were merged into 

one, CT.   

o Four of them, specifically, Concomitant CT-RT, Sequential CT-RT, Adjuvant CT-RT, 

Neoadjuvant CT-RT, were merged into one, CT + RT. 

o Hormonal, Treatment 5 (not specified) and the ones with no information were removed 

from the study, as they were not related to lung cancer or not relevant. 

 

It was then used seven (7) values in the model’s deployment (Table 4-6). To see all the original values, 

consult Section 1- Attachment 3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
5 Disease Mapping Improvement: If all the treatment lines were used in the models, we would have another set of 

patterns and a much more extensive view of the entire treatment process. As this is a process over time, it would 

be better implemented in a model using neural networks, which would enable the creation of layers per specific 

treatment sequence. Otherwise, using all the treatment lines in a Cox model, and considering their timelines, it 

would be necessary to create a variable with all the possible sequences, which would be exhausting, and more than 

that, the accuracy of the model would decrease, as the baseline for this variable would be questionable (considering 

the considerable number of possible treatment line sequences). 
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Table 4-6- First treatment line attribute- Type of therapy.  

Variable (English) Values (English) 

Treatment Line 1 Type of therapy  

(Drug therapy) 

1, CT (Chemotherapy) 
2, TKI (Oral targeted therapy)   
3, CT-RT (Intravenous chemotherapy + radiotherapy) 
4, IO (Immunotherapy) 
5, CT + IO (Intravenous chemotherapy + Immunotherapy) 
6, Others       
7, No drug therapy 

 

The Radiotherapy Treatment is also a recurrent table. Each line of radiotherapy had ten (10) attributes, 

times the nine (9) lines of treatment (which is the maximum that a patient can have), give us a total of 

ninety (90) attributes for this entire table.  

Each line of radiotherapy had information such as the start and end date of the treatments, intention of 

the treatment, type of radiation, the total dosage, among others.     

Once again, it was only considered the first line of radiotherapy and the variable that answer the question 

if it was performed or not (Table 4.7.). 

 

Table 4-7 - Radiotherapy attribute.  

Variable (English) Values (English) 

Radiotherapy Treatment 1 Has the patient received any radiotherapy for 
the thoracic tumours? 

1, Yes 
0, No 
-1, Unknown 

 

The Surgery table is also recurrent. Each line of surgery had seventeen (17) attributes, times the eight 

(8) possible surgeries, give us a total of one-hundred and thirty-six (136) attributes. Each surgery had 

information such as the date, type of surgery, procedure specifications and response. The analysis only 

considered if the patient had one surgery (Table 4.8.). 

 

Table 4-8 - Surgery attribute.  

Variable (English) Values (English) 

Surgery 1 Has any surgery been performed for the tho-
racic tumour? 

1, Yes 
0, No 
-1, Unknown 

 

The Progression/Relapse table 4.9. had 22 attributes times the eleven (11) recurrences, which give 242 

attributes in total. It contained information related to the type of progression and the location specifica-

tion of the progression itself. This data was not used in the models but used for tests. 
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Table 4-9 - Progression/Relapse attribute.  

Variable (English) Values (English) 

Progression/Relapse 1 Specify Progression/Relapse 1, Progression  
2, Relapse  
0, No progression 
-1, No information 

 

The follow-up tables were fifteen (15), each one with thirteen (13) attributes (195 attributes in total). 

If the follow-up was performed, we had the date of the last contact and/or the follow-up loss date, the 

current situation of the patient, and if death, the date of death, as presented in table 4.10. 

Besides these attributes, if the patient was dead, it also had information about the reason for death, which 

was not analysed.    

Different dates were used to calculate the age at diagnosis, as there were missing values or incoherences 

in the dates. The calculations below are presented in the actual order used to calculate the age of diag-

nosis. If a patient did not have the correct data previously used in the calculation, the next one was 

necessary.    

 

Firstly, was used the date of the initial diagnosis, which is the most accurate date that can be used to 

calculate the age at diagnosis [4.1]: 

𝐴𝑔𝑒 𝑎𝑡 𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑠 = 𝐷𝑎𝑡𝑒 𝑜𝑓 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑠 − 𝐷𝑎𝑡𝑒 𝑜𝑓 𝑏𝑖𝑟𝑡ℎ  (4.1) 

For the ones in which the date of initial diagnosis was missing or incorrect, it was used the date of the 

1st consultation [4.2]:  

𝐴𝑔𝑒 𝑎𝑡 𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑠 = 𝐷𝑎𝑡𝑒 𝑜𝑓 1𝑠𝑡 𝑐𝑜𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛 − 𝐷𝑎𝑡𝑒 𝑜𝑓 𝑏𝑖𝑟𝑡ℎ  (4.2) 

At this point, there were still patients who weren’t possible to calculate it, so it was necessary another 

date, the date of the 1st treatment [4.3]: 

𝐴𝑔𝑒 𝑎𝑡 𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑠 = 𝐷𝑎𝑡𝑒 𝑜𝑓 𝑙𝑎𝑠𝑡 𝑑𝑎𝑦 𝑜𝑓 𝑐𝑜𝑛𝑡𝑎𝑐𝑡(𝑓𝑜𝑙𝑙𝑜𝑤 − 𝑢𝑝 1) − 𝐷𝑎𝑡𝑒 𝑜𝑓 𝑏𝑖𝑟𝑡ℎ (4.3) 

Finally, the last option [4.4], the date of the 1st treatment, which is the less accurate of all these options, 

as the patient was already diagnosed by that time.  

𝐴𝑔𝑒 𝑎𝑡 𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑠 = 𝐷𝑎𝑡𝑒 𝑜𝑓 1𝑠𝑡 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑙𝑖𝑛𝑒 − 𝐷𝑎𝑡𝑒 𝑜𝑓 𝑏𝑖𝑟𝑡ℎ  (4.4) 

Still, there were patients without the correct diagnosis age and cases where the age of diagnosis was an 

outlier. In these cases, the patients were removed from the study.  

The age of diagnosis variable (numeric variable), was then converted into groups (categorical variable), 

based on the distribution of the population: 

 

• Group I – Less than 45 years old.  

• Group II  - Between 45  and 70.  

• Group III – More or equal to 70. 

 

The follow-up table was the only which it was necessary to analyse all the fifteen follow-ups as one of 

the goals was to obtain the last situation registered of the patient.  
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A single variable date of death was created in order to join in it all the dates which were distributed in 

the 15 recurrences in the original table (e.g., A patient could have died in the follow-up 4, so the infor-

mation of the previous recurrent tables 1-3, was not the current situation of the patient).   

The survival months were calculated in different ways, first for the dead patients, and once again, using 

different dates for the diagnosis, as there were missing values [4.5-4.8]: 

𝑆𝑢𝑟𝑣𝑖𝑣𝑎𝑙 𝑚𝑜𝑛𝑡ℎ𝑠 = (𝐷𝑎𝑡𝑒 𝑜𝑓 𝑑𝑒𝑎𝑡ℎ − 𝐷𝑎𝑡𝑒 𝑜𝑓 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑠) /30   (4.5) 

𝑆𝑢𝑟𝑣𝑖𝑣𝑎𝑙 𝑚𝑜𝑛𝑡ℎ𝑠 = (𝐷𝑎𝑡𝑒 𝑜𝑓 𝑑𝑒𝑎𝑡ℎ −  𝐷𝑎𝑡𝑒 𝑜𝑓 1𝑠𝑡 𝑐𝑜𝑛𝑠𝑢𝑙𝑡𝑎𝑡𝑖𝑜𝑛)/30  (4.6) 

𝑆𝑢𝑟𝑣𝑖𝑣𝑎𝑙 𝑚𝑜𝑛𝑡ℎ𝑠 = (𝐷𝑎𝑡𝑒 𝑜𝑓 𝑑𝑒𝑎𝑡ℎ −  𝐷𝑎𝑡𝑒 𝑜𝑓 𝑙𝑎𝑠𝑡 𝑑𝑎𝑦 𝑜𝑓 𝑐𝑜𝑛𝑡𝑎𝑐𝑡(𝑓𝑜𝑙𝑙𝑜𝑤 − 𝑢𝑝 1))/30 (4.7) 

𝑆𝑢𝑟𝑣𝑖𝑣𝑎𝑙 𝑚𝑜𝑛𝑡ℎ𝑠 = (𝐷𝑎𝑡𝑒 𝑜𝑓 𝑑𝑒𝑎𝑡ℎ − 𝐷𝑎𝑡𝑒 𝑜𝑓 1𝑠𝑡 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑙𝑖𝑛𝑒)/30  (4.8) 

 

And secondly, for the alive patients[4.9-4.11]: 

 
𝑆𝑢𝑟𝑣𝑖𝑣𝑎𝑙 𝑚𝑜𝑛𝑡ℎ𝑠 = (𝐷𝑎𝑡𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑎𝑠𝑡 𝑐𝑜𝑛𝑡𝑎𝑐𝑡 − 𝐷𝑎𝑡𝑒 𝑜𝑓 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑠) /30  (4.9) 

𝑆𝑢𝑟𝑣𝑖𝑣𝑎𝑙 𝑚𝑜𝑛𝑡ℎ𝑠 = (𝐷𝑎𝑡𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑎𝑠𝑡 𝑐𝑜𝑛𝑡𝑎𝑐𝑡 − 𝐷𝑎𝑡𝑒 𝑜𝑓 1𝑠𝑡 𝑐𝑜𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛) /30             (4.10) 

𝑆𝑢𝑟𝑣𝑖𝑣𝑎𝑙 𝑚𝑜𝑛𝑡ℎ𝑠 = (𝐷𝑎𝑡𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑎𝑠𝑡 𝑐𝑜𝑛𝑡𝑎𝑐𝑡 − 𝐷𝑎𝑡𝑒 𝑜𝑓 1𝑠𝑡 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑙𝑖𝑛𝑒) /30              (4.11) 

 

The survival analysis was performed firstly in days but changed to months as the graphics interpretation 

was easier and to comply with most of the survival studies.  

The date of the last contact was not, in fact, a part of the follow-up table, as it was a generic attribute 

that could concern every table.    

 

Table 4-10 - Follow-up attributes and date of the last contact. 

Follow-up 1 Follow-up 1, Yes 

Date last contact Date 

Situation 1, Alive, no disease 
2, Alive with disease  
0, Dead 
3, Lost follow-up  

Follow-up loss date  Date 

Date of death Date 

Last contact date Date of the last contact  Date 
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4.4  DESCRIPTIVE ANALYSIS AND KAPLAN-MEIER METHOD RESULTS 

After the data curation and, at this point, having defined the meaning of each variable and all the pos-

sible values that each of them can assume (reviewed in the previous section), it is necessary to under-

stand their behaviour within the entire group.   

In this chapter, a distribution diagram for each variable (containing the number of patients per value of 

the attribute) is presented, along with a table with helpful information to understand its behaviour (e.g., 

number of patients, median and mean survival, median and mean age of diagnosis, etc.), and finally the 

results of the Kaplan-Meier method.  

A descriptive analysis was performed with 70,36% of the original dataset, still containing unknown 

variables in several attributes. Finally, the unknown attributes were removed, and the Kaplan-Meier 

method was performed with the 8 578 patients. Figure 4.1. illustrates the steps just described. 

For a more extensive view of all variables and their distribution, consult Section B, Attachment 1. 

 

Figure 4-1 Dataset development during the different phases of the development. 



CHAPTER 4. DATA ENGINEERING 

36 

 

Figure 4-2 - Demographics - Distribution diagram. 

 

 

4.4.1 DEMOGRAPHIC DATA 

Age at diagnosis and gender were the two demographic variables used in the models.  

The diagram in figure 4.2. illustrates both distributions, concerning the 70,36% of the cohort used for 

the descriptive analysis.   

For the variable Age at diagnosis, the group age from 45 until 70 corresponds to 64,43% and based on 

this percentage, it was the baseline profile defined for the models. In the same line of thought, the males 

represent 74,4% of the population and will also be a part of the baseline profile.    

 

 

 

 

 

 

 

 

 

 

 

In the descriptive table 4.11., the values show that the female’s group have higher survival than the 

males, which is also visible in the KMFcurves in figure 4.3.   

To consult an example of the tables creation code and KMF generation code, consult Section C- Attach-

ment 1 and 2.  

 

Table 4-11 – Gender - Descriptive table. 

Gender count median  
survival 

mean  
survival 

median  
age 

mean  
age 

Stage I Stage II Stage III Stage IV 

Male 8029 14,1 22,6 66 65,2 859 705 2419 4046 

Female 2762 16,6 25,4 62 62,2 272 208 656 1626 
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In the graphic generated by the Kaplan-Meier method, it is possible to see that the survival lines of both 

groups cross each other at the end of the time.  

This is a flag that it is possible that this variable does not check the proportional hazard assumption 

when fitting the models. Note that this may be due to the fact that at the end of the studied period, the 

number of patients is much lower.   

 

 

 

Figure 4-3 KMF Gender variable. 

 

The Age at diagnosis variable was a numeric variable at the beginning (created based on the calculations 

presented in the previous chapter). In order to be converted to categorical, it was necessary to see its 

behaviour analysing at the same time the survival. Groups were then defined considering the graphic 

presented in Figure 4.4.  

Several range groups were tested, not having significant changes in the risk associated with it or in the 

model's performance. The final selected Age at diagnosis groups are the ones analysed in the descriptive 

Table 4.12.   
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Figure 4-4 - Age at diagnosis vs Mean survival Months. 

 

 

Table 4-12 - Age at diagnosis - Descriptive table. 

Age at  
diagnosis 

count median  
survival 

mean  
survival 

median  
age 

mean 
age 

Stage I Stage II Stage III Stage IV 

[0,45] 332 18,6 29,0 41 39,8 13 20 80 219 

]45,70] 6953 15,6 25,2 61 60,0 694 563 2002 3694 

[70,...[ 3506 12,8 19,1 75 75,5 424 330 993 1759 

 

 

It is possible to see that the survival decreases as the age at diagnosis of the patient's increases, which is 

also mirrored in the KMF curves, Figure 4.5.    

The descriptive analysis of the gender variable also stated that males are older at diagnosis than females, 

which can also influence the survival numbers as the survival reduces with ageing.   

A boxplot was generated to display the distribution and see the outliers of the group's defined (Figure 

4.6.).  
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Figure 4-5 KMF Age at diagnosis grouped by clinically relevant age range. 

 

 

 

Figure 4-6 Boxplot grouped by Age at diagnosis. 
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4.4.2 SMOKING HABIT DATA 

The diagram in figure 4.7. illustrates the smoking habit distribution, concerning the 70,36% of 

the cohort used for the descriptive analysis.   

For this variable, the former smokers correspond to 47,72% and, based on this percentage, was defined 

as the baseline profile. 

The unknown values were considered in the descriptive analysis but not considered in the KMF method 

or the models in the next chapter.  

 

 

 

 

 

 

 

 

 

In Table 4.13. we can see that patients where the smoking habit is unknown, have a median and mean 

survival vastly different, which indicates this variable's vulnerability.   

 

Table 4-13 Smoking Habit - Descriptive table. 

 

The never smoker have much higher survival than the formers or current smokers, also possible to vis-

ualise in the KMF curve of the variable, Figure 4.8.  

 

 

 

Smokin Habit count median 
survival 

mean  
survival 

median 
age 

mean 
age 

Stage 
I 

Stage 
II 

Stage 
III 

Stage 
IV 

Never  
smoker 

1344 19,5 28,7 68 66,5 141 85 221 897 

Former 
smoker 

5149 15,5 24,2 67 66,2 612 511 1581 2445 

Current  
smoker 

4187 12,8 20,3 61 61,5 363 307 1256 2261 

Unknown 
smoking  
habit 

111 12,6 31,0 66 66,2 15 10 17 69 

Figure 4-7  Smoking Habit - Distribution diagram. 
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Figure 4-9 Diagnosis - Distribution diagram. 

 

 

Figure 4-8 KMF Smoking Habit. 

4.4.3 DIAGNOSIS DATA 

The stage at diagnosis, Histology and the Molecular Markers were the diagnosis variables used in the 

models.  

The diagram in figure 4.9. illustrates these variables distributions, concerning the 70,36% of the cohort 

used for the descriptive analysis.   

For the variable Stage, the Stage IV group corresponds to 52,6% and based on this percentage, it was 

the baseline profile defined for the models. In the same line of thought, the histology Adenocarcinoma 

represents 60,88% of the population and will also be a part of the baseline profile.    

Regarding the Molecular Markers, the baseline was defined as ‘Not tested’ for both ALK and EGFR, 

with 56,38% and 45,66%, respectively. 
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The stage greatly impacts survival at diagnosis. Lung cancer survival remains very low and has hardly 

improved in recent decades despite important advances in treatments such as immunotherapy and tar-

geted therapies. Even so, over half of the cases are diagnosed in stage IV. 

The diagnosis of lung cancer in the early stages remains a challenge and often occurs incidentally in the 

study of other diseases. The treatment strategy also should take into account factors such as histology 

and molecular pathology, among others. 

The descriptive table 4.14. states the difference in survival depending on the stage at diagnosis, and it is 

significant the difference between them.   

 

Table 4-14 - Stages - Descriptive table. 

Stage count median survival mean survival median age mean age Male Female 

Stage I  1131 33,2 41,0 67 66,3 859 272 

Stage II  913 26,8 35,1 66 65,4 705 208 

Stage II  3075 17,8 26,4 65 64,5 2419 656 

Stage IV  5672 10,5 16,2 64 63,8 4046 1626 

 

A boxplot was generated to display the distribution and see the outlier of the group's defined per stage 

at diagnosis  (Figure 4.10.) 

Even looking at the outliers in these groups, it is possible to see a significant decrease in survival for the 

advanced stages (III and IV).  

 

Figure 4-10 Boxplot grouped by Stage at Diagnosis. 

 

 

In Figure 4.11. the KMF result for the stage at diagnosis variables clearly illustrates the difference in 

survival of the different groups. 

For the stage at diagnosis IV, the survival curve terminates at 150 months due to the low survival of the 

group, which means that there are no patients alive at that time (even that more than half were censored).  
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Figure 4-11 KMF - Stage at diagnosis. 

 

The histology variable, as mentioned, is a vital diagnosis, Table 4.15. Note that the Undifferentiated 

value is not the same as the unknown.   

To consult the KMF for the histology variable, consult Section B- Attachment 2. 

 

Table 4-15 - Histology - Descriptive table. 

Histology count median  
survival 

mean  
survival 

median  
age 

mean  
age 

Stage 
I 

Stage 
II 

Stage 
III 

Stage  
IV 

Adenocarcinoma 6570 15,1 23,6 64 63,3 697 454 1372 4047 

Adenosquamous 163 17,1 28,0 66 65,3 23 21 49 70 

Squamous 3210 14,8 23,7 67 66,8 341 386 1402 1081 

Large cell carcinoma 348 10,25 22,6 64 63,4 28 24 99 197 

Sarcomatoid 41 16,3 25,2 65 61,4 7 9 12 13 

Undifferentiated 312 9,05 16,0 64 63,9 14 12 94 192 

Neuroendocrine large 
cell carcinoma 

147 10,3 17,3 64 63,9 21 7 47 72 
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Regarding molecular pathologies, and now just considering the ALK translocation, as the numbers con-

firm Table 4.16., the mutated patients have higher survival than the non-mutated. 

As mentioned, the therapies for patients with molecular markers are specific. Currently, there are new 

targeted therapies (TKIS or monoclonal antibodies), much more specific and less toxic, whose objective 

is to block the development and growth of the cells that cause lung cancer and thus prevent the tumour 

from growing.  

 

Table 4-16 ALK translocation - Descriptive table. 

 

The KMF, presented in Figure 4.12. states precisely the number in the descriptive analysis. Also, we 

can see a difference in survival between the patients whose result was negative and the ones not tested, 

which indicates that could be a reason to suspect the presence of the mutation since the beginning of the 

diagnosis.   

 

Figure 4-12 KMF - ALK mutation. 

 

ALK count median  
survival 

mean  
survival 

 median  
age 

mean  
age 

Stage 
I 

Stage 
II 

Stage 
III 

Stage 
IV 

Mutated ALK 268 18,85 29,1 59 58,3 10 6 54 198 

Not mutated ALK 4439 13,4 20,0 64 63,4 324 265 958 2892 

Not tested ALK 6084 15,7 25,5 66 65,4 797 642 2063 2582 
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The EGFR mutation follows the same reasoning line as the ALK mutated patients, as described above.  

Table 4.17. presents a descriptive analysis of the EGFR mutation. 

 

Table 4-17 - EGFR mutation - Descriptive table. 

EGFR  count median 
survival 

mean 
survival 

 me-
dian 
age 

mean 
age 

Stage 
I 

Stage 
II 

Stage 
III 

Stage 
IV 

Mutated EGFR 1033 19 26,2 67 65,3 82 41 145 765 

Not mutated 
EGFR 

4831 13,3 20,8 63 62,9 313 287 1108 3123 

Not tested EGFR 4927 15,5 25,3 66 65,7 736 585 1822 1784 

 

Mutated EGFR patients have the longest survival, given that these patients are usually non-smokers, but 

develop the disease due to the mutation. In these patients, the doctors are able to provide specific targeted 

therapies that affect only mutated cells, unlike usual chemotherapy that affects both tumour cells and 

non-tumour cells. The difference in survival between mutated and non-mutated patients is significant 

during the first 4-5 years of treatment and is higher in mutated patients due to tyrosin kinase inhibitors 

(TKI). 

 

Figure 4-13 KMF - EGFR mutation. 
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4.4.4 COMORBIDITIES DATA 

 

The diagram in figure 4.14. illustrates the comorbidities distribution, concerning the 70,36% of 

the cohort used for the descriptive analysis.   

To see an individual analysis of the comorbidities, consult Section B- Attachment 3. 

As mentioned in the pre-processing data chapter, the comorbidities were initially binary, so each comor-

bidity was an independent variable, which was then converted to numeric. 

In order to be converted to categorical, it was necessary to see its behaviour analysing at the same time 

the survival. Groups were then defined considering the graphic presented in Section B- Attachment 4. 

Patients with one to three (1-3) corresponded to 47,72% and were defined as the baseline profile based 

on this percentage. 

 

 

Figure 4-14 - Comorbidities - Distribution diagram. 

 

The descriptive analysis Table 4.18. shows that patients with comorbidities have lower survival than 

those with no comorbidities.  

 

Table 4-18 - Comorbidities - Grouped by number of comorbidities - Descriptive table. 

Groups  
comorbidities 

count median  
survival 

mean  
survival 

 median 
age 

mean 
age 

Stage 
I 

Stage 
II 

Stage 
III 

Stage 
IV 

0 2806 15,65 25,04 59 58,91 180 196 786 1644 

[1-3] 6754 14,6 23,22 66 65,80 774 584 1930 3466 

[4-8] 1231 13,3 20,13 69 69,22 177 133 359 562 

 

A boxplot was generated to display the distribution and see the outlier of the group's defined number of 

comorbidities  (Figure 4.15.). 
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Figure 4-15 - Boxplot grouped by Number of Comorbidities. 

The KMF, presented in Figure 4.16. states precisely the number in the descriptive analysis, although it 

is possible to see that the survival curve for the group with more than three comorbidities is quite irreg-

ular since the beginning, and near the 125 months, it crosses over with the group of one to three comor-

bidities. This is a red flag that there is a chance that this variable will fail the non-proportional test in 

the cox model.        

 

Figure 4-16 - KMF Comorbidities. 
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Figure 4-17 - History data - Distribution diagram. 

 

4.4.5 PATIENTS AND FAMILY HISTORY OF CANCER DATA 

 

The diagram in figure 4.17. illustrates the historical data distribution concerning the 70,36% of 

the cohort used for the descriptive analysis.   

To see an individual descriptive analysis of each patient’s previous cancer type, consult Section B- 

Attachment 5. 

As well as the comorbidities, the previous cancers were also independent variables, which were then 

converted to a binary variable, only considering if the patient had it or not. 

Patients with no previous cancer corresponded to 82,25% and were defined as the baseline profile based 

on this percentage. The value ‘unknown’ was considered in the descriptive analysis, Table 4.19., but 

removed from the KMF and the Cox model.  

Regarding the Family history of cancer, it was also only considered if the patient’s family had previous 

cancers or not. No previous cancer in the family corresponded to 40,72% of the population, so it was 

defined as a part of the baseline profile.  

 

 

 

 

 

 

 

 

 

 

Regarding the patient´s cancer history, the number of patients with no previous cancer is higher than 

those with previous cancer.  

 

Table 4-19 - Patient history - Descriptive table. 

Patient history count median  
survival 

mean  
survival 

median 
age 

mean  
age 

Stage I Stage II Stage III Stage IV 

Previous cancer 1787 16,2 25,0 68 67,8 326 192 509 760 

No previous cancer 8876 14,5 22,9 64 63,7 785 708 2529 4854 

Unknown 128 14,2 28,6 64 64,6 20 13 37 58 

 

In the KMF presented in Figure 4.18. it is possible to see that the difference between the survival curves 

is not, in fact, very significant and start to cross over each other near to the 100 months.   
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Figure 4-18 - KMF -  Patient's history of cancer. 

 

Regarding the family history of cancer, there is no significant difference in survival, as shown in Table 

4.20. and the KMF in Figure 4.19. Although we can associate this little difference to the fact that the 

patients aware of its family history may have more precautions and a more frequent follow-up than the 

others.   

 

Table 4-20 - Family history of cancer - Descriptive analysis. 

Family history count median  
survival 

mean  
survival 

median 
age 

mean 
age 

Stage 
I 

Stage 
II 

Stage 
III 

Stage 
IV 

Previous cancer 4277 14,6 22,3 64 63,6 409 356 1225 2287 

No previous 
cancer 

4394 14,7 23,6 65 64,8 414 362 1227 2391 

Unknown 2120 14,7 25,0 65 65,1 308 195 623 994 

 

Figure 4-19 - KMF - Patient's family history of cancer. 
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Figure 4-20 - First Treatment line (Drug therapy). 

Legend: IO: Immunotherapy; CT: Chemotherapy, TKI: Tyrosine-Kinase Inhibitor; CT + RT: Chemotherapy + 

Radiotherapy; CT+ IO: Chemotherapy + Immunotherapy. 

 

 

4.4.6 FIRST TREATMENT LINE (DRUGS THERAPY) DATA 

 

The diagram in figure 4.20. illustrates the first treatment line of drug therapy distribution concerning the 

70,36% of the cohort used for the descriptive analysis.   

Chemotherapy corresponds to 57,16%, and based on this percentage was the baseline profile defined 

for the models.  

 

 

 

 

 

 

 

 

To see the KMF of the first treatment line of drug therapy, consult Section B- Attachment 6. 

As mentioned before in this work, the treatment strategy should take into account factors such as 

histology, molecular pathology, age, PS, comorbidities and the patient’s preferences. Treatment 

decisions should ideally be discussed within a multidisciplinary tumour board that can evaluate and 

change management plans, including recommending additional investigations and changes in treatment 

modality. The best treatment option is selected upon these features to ensure better response and increase 

survival. Nevertheless, the heterogeneity of the disease and high inter variability of the patients may 

alter the patient´s prognosis. 

 

Table 4-21 - First treatment line (Drug therapy) - Descriptive table. 

Drug  
therapy 

count median  
survival 

mean  
survival 

 median 
age 

mean  
age 

Stage 
I 

Stage 
II 

Stage 
III 

Stage 
IV 

IO 475 10,7 14,7 66 65,0 22 9 37 407 

CT 6168 15,6 24,6 64 63,2 375 626 1667 3500 

TKI 727 16,5 23,3 67 65,2 31 7 45 644 

CT + RT 1317 19,9 28,0 64 63,5 63 86 1037 131 

CT + IO 183 10,7 16,4 63 63,0 7 1 13 162 

No drug  
treatment 

1802 7,9 18,9 70 68,8 626 180 258 738 

Others 119 13,4 18,4 63 63,2 7 4 18 90 
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4.4.7 RADIOTHERAPY DATA 

 

For locally advanced, non-resectable stage IIIA tumours, radiation with chemotherapy remains the 

standard of care; for selected patients with IIIB (with pleural effusion) or IV disease, chemotherapy 

remains the standard treatment in conjunction with supportive care.  

The diagram in figure 4.21. illustrates the radiotherapy distributions concerning the 70,36% of the cohort 

used for the descriptive analysis.   

Patients who did not have radiotherapy correspond to 53,40% and the baseline profile was defined based 

on this percentage. 

 

Figure 4-21 - Radiotherapy - Distribution diagram. 

 

Table 4-22 - Radiotherapy  - Descriptive table. 

  count median  
survival 

mean  
survival 

median 
age 

mean  
age 

Stage 
I 

Stage 
II 

Stage 
III 

Stage 
IV 

Radiotherapy 5029 17,8 26,0 63 63,0 332 337 2085 2275 

No radiothe-
rapy 

5762 12 21,0 66 65,6 799 576 990 3397 

 

Figure 4-22 - KMF Radiotherapy. 
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4.4.8 SURGERY DATA 

 

Surgery remains the standard of care in early-stage (I-II) non-small cell lung cancer (NSCLC). Radical 

radiotherapy or stereotactic ablative radiotherapy (SABR) are alternatives. Also, patients with IB or II 

disease are now being offered adjuvant chemotherapy.  Options for locally advanced (III) NSCLC in-

clude surgery with postoperative chemotherapy or chemoradiotherapy. Some stage IIIA tumours are 

resectable but often receive pre or post-operative radiation and/or chemotherapy. 

 

Figure 4-23 - Surgery - Distribution Diagram 

 

 

Table 4-23 - Surgery - Descriptive table. 

  count median  
survival 

mean  
survival 

median 
age 

mean  
age 

Stage 
I 

Stage 
II 

Stage 
III 

Stage 
IV 

Male Female 

Surgery 2984 29,55 38,8 64 63,7 976 716 925 367 2188 796 

No Surgery 7807 11,7 17,4 65 64,7 155 197 2150 5305 5841 1966 

 

 

 

Figure 4-24 - KMF Surgery.
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5 COX’S MULTIVARIABLE PROPORTIONAL HAZARD  

 MODELS RESULTS 

 

This section goes through the development of Cox’s multivariable proportional hazard model. It 

includes the baselines defined, the model's results and evaluation metrics.  

 

 5.1 MODELS SETUP  

 

The following sections present five different models; the first including all variables mentioned in 

the descriptive analysis, including all the diagnosis stages. This model allows the analysis of the 

entire group of lung cancer patients, precisely the difference in survival and risk of the patients with 

a different diagnosis.   

The four remaining models concern each stage of diagnosis separately, allowing a more specific 

analysis of the cohorts. The analysis of each stage model also makes it possible to understand the 

model's results with all stages in a more detailed view.  

 

Computing the Cox Model requires defining a baseline patient’s profile, to which all the other co-

variates will be compared.  

As mentioned in the review of the Cox model, a critical element of the Cox Proportional Hazard 

equation is that the baseline hazard is a function of time t, but not the parameters, whereas the partial 

hazard is a function of the parameters but not time. 

The baseline profile was defined as the most common patient’s profile. It does not appear in the 

analysis tables, as all the other covariates are compared to it. Although, it is possible to see the 

baseline survival curves in the graphics.  

The baseline profile was defined the same for all the tested models, which brings a few points to be 

taken into consideration.  

Below are presented the generic situations where changes were performed in the baseline, and      

during the following sections, when presenting each model individually, the same changes are de-

tailed individually per attribute.  

 
1. The ‘All Stages Model’ differs from all the other models as it has the variable Stages;  

2. In the models specific for each diagnosis, it was necessary to remove some variables, as there were 

variables that did not concern every diagnosis; 

3. In some situations, the baseline was not defined as the most commons patient profile to comply with 

previous baselines (and therefore, it is possible to compare models between themselves). 

5 
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In order to fit a Cox Proportional Hazards model using the Lifelines library, it is necessary to use a one-

hot encoding for categorical columns; in other words, all categorical variables must be converted to bin 

variables.  

The function dmatrices() was used from the patsy library, Section C- Attachment 3 to perform the bi-

narisation of the categorical variables.  

It is at this time that the baseline is selected. One column from each hot-encoded variable must be 

dropped; otherwise, multi-collinearity issues will be created. It is this dropped column that becomes the 

baseline characteristics.  

There are several approaches when dropping variables (e.g. First column). As mentioned above, the 

most common patient profile was chosen as the baseline, which affords an intuitive interpretation as the 

baseline closely resembles the population and induces robustness on estimations. 

Now that the baseline is defined and all categorical variables converted to bin variables, it is time to fit 

the model. To consult an example of the model’s generation code, consult Section C- Attachment 4. 

The next step consists of assessing the results of the fitted model by looking at its significance and 

confidence (which are considered in the result’s table). 

After assessing the fitted model results, verifying whether the model adheres to the proportional hazard 

assumption is necessary. Of note, a red flag for this scenario is when the survival curves for a given 

covariate crossover each other when using Kaplan-Meier (cases flagged in the previous chapter). 

Proportional hazard is a fundamental assumption in Cox regression, whereby we assume that the hazard 

ratios do not depend on time, and there are several approaches to diagnose potential violations. It was 

used CoxPHFitter.check_assumptions method, which computes statistics that check the proportional 

hazard assumption.  

The p-value threshold was set at 0.05, and not that even under the null hypothesis of no violations, some 

covariates will be below the threshold by chance. Similarly, even minor deviances from the proportional 

hazard assumption will be flagged when there are many observations. 

There are two plots for each variable that failed the test. The difference between these two plots is the 

order of how the residual values are displayed: Rank transformed time and KM-transformed time. When 

no pattern is present, the black line in the middle will be relatively flat, indicating that the residuals are 

not correlated with time. 

So, for each model, it will be presented the baseline selected and considerations about it (when neces-

sary), a results table (HR, p-value and interpretation), a graphic of the tables results ordered by signifi-

cance, plot of each variable (survival versus time), and the residual of the variables that failed the non-

proportional test.   
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5.2 COX REGRESSION EVALUATION METRICS  

To assess the fitted model results, there are initially three key points to pay attention to, specifically to 

analyse the variable’s behaviour itself [46-47].   

Firstly, the statistical significance of each covariate. 

The p-value is the probability of obtaining results at least as extreme as the observed results of a statis-

tical hypothesis test, assuming that the null hypothesis is correct.  

The lower the p-value, the greater the statistical significance of the observed difference. If the result of 

this column is below 0.05, it means that the covariate is statistically significant and safe to include. 

Secondly, the effect of each covariate on the hazard ratio, referring back to the Cox Proportional Hazards 

equation, means that a patient's hazard ratio increases or decreases versus the baseline.  

Finally, analyse how confident are the coefficients estimated. For this, will be analysed the values of 

exp(coef) lower 95% and - exp(coef) upper 95%. These bounds can also be viewed visually in the box-

and-whisker plot. When the box-and-whisker of a variable cross the value one (1), it means that the 

variable is not significant, as there are patients in which the variable increases the risk and others where 

it decreases the risk.  

After these variable’s analyses, the Cox model’s output also includes several metrics that can be used 

when comparing models and evaluate the overall model’s performance, Log-likelihood ratio, Akaike 

information criterion and the concordance Index [45]. 

The Akaike information criterion (AIC) is a metric for comparing models as it relies on the log-likeli-

hood. The Akaike information criterion (AIC) is a mathematical method for evaluating how well a 

model fits the data. In statistics, AIC compares different possible models and determines which one best 

fits the data. AIC is calculated from: 

• The number of independent variables used to build the model. 

• The maximum likelihood estimate of the model (how well the model reproduces the data). 

The best-fit model, according to AIC, is the one that explains the greatest amount of variation using the 

fewest possible independent variables. 

The Concordance Index is another censoring-sensitive measure, also known as the c-index. This meas-

ure evaluates the accuracy of the ranking of the predicted time.  

The c-index can assume values between 0 to 1 as: 

• 1.0 is a perfect concordance; 

• 0.5 is the expected result from random predictions; 

• 0.0 is perfect anti-concordance. 

Fitted survival models typically have a concordance index between 0.55 and 0.75. 

As previously mentioned, a critical assumption of the Cox model is the proportional hazards assumption: 

when the predictor variables do not vary over time, the hazard ratio comparing any two observations is 

constant with respect to time. Therefore, to perform credible estimation and inference, after assessing 

the fitted model results, the next step is to verify whether the model adheres to the proportional hazard 

assumption. 

Schoenfeld proposed a chi-squared goodness-of-fit test statistic for the proportional hazards regression 

model which utilized a residual of the form Expected – Observed [48]. 

https://www.investopedia.com/terms/h/hypothesistesting.asp
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Shoenfeld residuals represent the difference between the observed covariate and the expected given the 

risk set at that time [49].  

When viewing this type of plot, we do not want to see any sort of pattern in the residuals. When no 

pattern is present, the black line in the middle will be relatively flat, indicating that the residuals are not 

correlated with time. 

 

5.3  ALL STAGES MODEL  

This model included 8578 patients (number of observations) and 4685 deaths (events observed). 

As mentioned, it includes all the stages of diagnosis. It was tested with 30 attributes (after the vari-

ables binarization) and with the baseline presented in table 5.1.  

 

Table 5-1- All stages Model - Baseline profile. 

Attribute Baseline profile 

Gender  Male 

Age group  ]45,70] 

Stage  IV 

Number of comorbidities  Group 2 – [1,3] 

Smoking habit  Former smoker 

Patient previous cancer  No previous cancer 

Family previous cancer  No previous family cancer 

Histology  Adenocarcinoma 

1st Treatment line  CT 

ALK  Not tested 

EGFR  Not tested 

Surgery  No surgery 

Radiotherapy  No radiotherapy 
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5.3.1 RESULTS 

The model results are presented in Table 5.2., along with its interpretation. 

Table 5-2 - Cox Model Results- All stages model (30 attributes). 
Covariante HR for death p-value Interpretation 

(95% CI) 

Gender-  Female 0.86 (0.80 - 0.93) <0.005 When compared to men, women have 14% less risk of dying 
from lung cancer, considering all the other covariates the 

same. 

Smoker habit 
   

Current smoker 1.15 (1.08 - 1.22) <0.005 Current smokers have more 15% risk than former smokers, 
considering all the other covariates. 

Never smoker 0.77 (0.69 -0.86) <0.005 Never smokers have less 23% risk than former smokers, con-
sidering all the other covariates the same. 

Comorbidities       
No comorbidities 0.94 (0.87 -1.00) 0.06 Patients with no comorbidities have less 6% risk than pa-

tients with 1-3 comorbidities, considering all the other co-
variates the same. 

+ 4 comorbidities 1.06 (0.96 -1.16) 0.26 Patients with more than four (4) comorbidities have a more 
6% risk than patients with 1-3 comorbidities, considering all 

the other covariates the same. 

Age 
   

<45 0.98 (0.83 -1.15) 0.77 Patients with <=45 years old have less 4% risk than patients 
with 45-70 years old, considering all the other covariates the 

same. 

>70 1.21 (1.13 – 1.29) <0.005 Patients with >70 years old have more 21% risk than pa-
tients with 45-70 years old, considering all the other covari-

ates the same. 

Stages       
Stage I 0.17 (0.15 - 0.20) <0.005 Patients diagnosed with stage I have less 83% risk than pa-

tients with stage IV, considering all the other covariates the 
same. 

Stage II 0.33 (0.29 -0.38) <0.005 Patients diagnosed with stage II have less 67% risk than pa-
tients with stage IV, considering all the other covariates the 

same. 

Stage III 0.53 (0.49 -0.58) <0.005 Patients diagnosed with stage III have less 47% risk than pa-
tients with stage IV, considering all the other covariates the 

same. 

History       
Patient with previous 

cancer 
0.98 (0.91 - 1.06) 0.65 Patients with previous cancer have 2% less risk than patients 

with no previous cancer history.  

Patient with family  

history of cancer 

0.97 (0.92 -1.03) 0.31 Patients with a family history of cancer have 3% less risk 

than patients with no family history of cancer. 

Histology 
   

Adenosquamous  0.91 (0.72 -1.14) 0.41 Patients diagnosed with Adenosquamous have less 9% risk 
than patients diagnosed with Adenocarcinoma, considering 

all the other covariates the same. 

Squamous 1.03 (0.95 -1.12) 0.49 Patients diagnosed with Squamous have a more 3% risk than 
patients diagnosed with Adenocarcinoma, considering all 

the other covariates the same. 
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Covariante HR for death p-value Interpretation 
 (95% CI) 

 Large cell carcinoma 1.30 (1.12 -1.52) <0.005 Patients diagnosed with Large cell carcinoma have a more 
30% risk than patients diagnosed with Adenocarcinoma, 

considering all the other covariates the same. 

Sarcomatoid 1.30 (0.79 - 2.14) 0.30 Patients diagnosed with Sarcomatoid have a more 30% risk 
than patients diagnosed with Adenocarcinoma, considering 

all the other covariates the same. 

Undifferentiated 1.26 (1.07-1.49) 0.01 Patients diagnosed with Undifferentiated have a more 26% 
risk than patients diagnosed with Adenocarcinoma, consid-

ering all the other covariates the same. 

Neuroendocrine large 
cell carcinoma 

1.50 (1.16 -1.94) <0.005 Patients diagnosed with Neuroendocrine large cell carci-
noma have a more 50% risk than patients diagnosed with 
Adenocarcinoma, considering all the other covariates the 

same. 
  

1s treatment line       
IO 0.76 (0.66 -0.89) <0.005 Patients with IO as the first treatment line have less 24% risk 

than patients with CT as the first treatment line, considering 
all the other covariates the same.    

No drug Treatment 2.72 (2.47 -2.99) <0.005 Patients with no drug treatment in the first treatment line 
have more 172% risk than patients with CT as the first treat-

ment line, considering all the other  
covariates the same.    

Other  Drugs 0.76 (0.57 -1.01) 0.06 Patients with 'others' as the first treatment line have less 
24% risk than patients with CT as the first treatment line, 

considering all the other covariates the same.    

CT+IO 0.89 (0.71 -1.13) 0.35 Patients with CT+IO as the first treatment line have less 11% 

risk than patients with CT as the first treatment line, consid-

ering all the other covariates the same.    

CT+RT 0.79 (0.71 -0.88) <0.005 Patients with CT+RT as the first treatment line have less 21% 
risk than patients with CT as the first treatment line, consid-

ering all the other covariates the same.    

TKI 0.78 (0.67 -0.92) <0.005 Patients with TKI as the first treatment line have less 22% 
risk than patients with CT as the first treatment line, consid-

ering all the other covariates the same.    

Surgery 0.41 (0.38 – 0.46) <0.005 Patients who did surgery have less 59% risk than patients 
who did not, considering all the other covariates the same.     

Radiotherapy 0.94 (0.88 – 1.00) 0.06 Patients who did radiotherapy have more 6% risk than pa-
tients who did not, considering all the other covariates the 

same.    

Molecular Markers 
   

Not mutated ALK 0.91 (0.84 -1.00) 0.04 Patients without ALK mutation have less 9% risk than non-
tested patients, considering all the other covariates the 

same.    

Mutated ALK 0.57 (0.46 -0.72) <0.005 Patients with ALK mutation have less 43% risk than non-
tested patients,  

considering all the other covariates the same.    

Not mutated EGFR 1.02 (0.92 -1.12) 0.74 Patients without EGFR mutation have 2% more risk than 
nontested patients, 

considering all the other covariates the same.    

Mutated EGFR 0.87 (0.74 -1.01) 0.06 Patients with EGFR mutation have less 13% risk than nonmu-
tated patients, 

considering all the other covariates the same.    
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Upper and lower bounds for each coefficient can also be seen visually in Figure 5.1. Note that when 

viewing the bounds in this way, a variable can be deemed as not significant when the confidence interval 

includes the value one (1). 

Also, to compare the values within variables, a plot of the survival probability against survival time 

(months) was generated, as well as the cumulative hazard against survival time (in the necessary cases). 

Figure 5.2. illustrates some of the survival curves. In the case of the variable stages, it is clear the dif-

ference of survival between the groups, but there are cases in which the curves are very close to each 

other, and these are the best scenarios to use the cumulative hazard, as in the variable Histology case.  

Even though the considerable number of variables, the model have: Concordance of 0.73, Partial AIC 

of  74648.13 and log-likelihood ratio of 2643.17 on 30 df. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-1 Cox Model Results- All stages model (30 attributes). 
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Figure 5-2 - Survival curves of All Stages model. The first image is for the Stages variable, the second and third 

image is for the variable Histology plotting the survival and the cumulative hazard, respectively.  
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Before the final model, the one just presented, the variable molecular marker was tested in two different 

ways:  

• Firstly, it was considered that all the patients who were not tested were negative. This way, we 

discard the variable which indicated if the test was performed or not, ending up with three at-

tributes: Mutated EGFR, Mutated ALK, and Non mutated (baseline). The results of this model 

simulation are in table 5.3.  

• The second way, the version implemented in the final model, uses six attributes ratter then tree: 

Mutated EGFR, not mutated EGFR, not tested EGFR, Mutated ALK, non-mutated ALK, and 

Not tested ALK. The results of this model simulation are in Table 5.2. 

 

Table 5-3 - Molecular markers result considering all non-tested patients non-mutated. 

Molecular Markers 

   

ALK 0.60 (0.48 -0.75) <0.005 Patients with ALK mutation have less 40% risk than 
non-mutated/non-tested patients. 

EGFR 0.85 (0.74 -0.98) 0.02 Patients with EGFR mutation have less 15% risk than 
non-mutated/non-tested patients. 

 

Looking at the results of both simulations and taking into account that the remaining variables of the 

model were the same, we can take several conclusions: 

Since in the 1st simulation, it was considered that all the non-tested were negative, for ALK mutated 

patients, the risk was 40% less than the non-mutated/non-tested, comparing with the 2nd simulation, 

where the non-mutated and non-tested are separated variables, for ALK mutated patients, the risk was 

43% less risk than the non-tested patients (both values significant).  

Regarding the EGFR mutation, we can also see that the results of both models are similar, being the first 

one, the patients with EGFR mutation had 15% less risk than patients non-mutated/non-tested, and the 

second, the patients with EGFR mutation had 16% less risk than the non-tested patients.  

Therefore, being these results significant in both models and similar between themselves, it is a mirror 

to the accuracy of selecting the patients who perform or not the molecular markers test.  

 

5.3.2 TESTING AND INTERPRETING ASSUMPTIONS 

Schoenfeld residuals are then used to assess the proportional hazard assumption. As already mentioned, 

if the proportional hazard assumption holds, we would expect to see a flat smoothed scatterplot of re-

siduals against time. 

In this first model, fifteen (15) variables failed the non-proportional test. The Figures 5.3., 5.4. and 5.5., 

are some examples of the (scaled) Schoenfeld residuals shown for a multivariable Cox regression model 

fitted to a simulated dataset with 30 covariates. 

The remaining variables that failed the proportional hazard assumption can be found in Section D - 

Attachment 1, although the three cases presented below were explicitly selected to explain and inter-

preter the assumptions.  
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Figure 5.3. illustrates the Schoenfeld residuals of the variable Radiotherapy, and it is clear that they are 

incompatible with the proportional hazards assumption, which was expected since the Kaplan-Meier 

method, Figure 4.22.  

 

Figure 5.4. illustrates the Schoenfeld residuals of the variable Mutated EGFR, and we can see that it 

starts to fail at the end of the time, which can be justified as, at that time, the number of patients under 

observation is low.  

Finally, in figure 5.5, the Schoenfeld residuals of the variable Not mutated EGFR show minor changes, 

which we know is possible to happen based on the immense number of variables in the model. In this 

last case, we could discard this variable failure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-4 – All Stages Model - Scaled Scoenfeld     

residuals of Radioterapy variable. 

Figure 5-3 - All Stages Model - Scaled Scoenfeld 

residuals of Mutated EGFR variable. 

 

Figure 5-5 - All Stages Model - Scaled Scoenfeld residuals of Not mutated EGFR variable. 
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5.4 STAGE I MODEL  

This model included 807 patients (number of observations) and 216 deaths (events observed).  

In this model, the variable stage was removed as it only concerns the Stage I diagnosis. It was tested 

with 27 attributes (after the variables binarization)  and with the baseline presented in table 5.4. 

 

Table 5-4 - Stage I Model - Baseline profile. 

Attribute Baseline profile 

Gender  Male 

Age group  ]45,70] 

Number of comorbidities  Group 2 – [1,3] 

Smoking habit  Former smoker 

Patient previous cancer  No previous cancer 

Family previous cancer  No previous family cancer 

Histology  Adenocarcinoma 

1st Treatment line  CT (In fact, the most common patient's profile with stage I, did not 

have drug treatment, but to comply with the previous pattern, we 

maintain CT treatment as baseline). 

ALK  Not tested 

EGFR   Not tested  

Surgery  No surgery (In fact, the most common patient's profile with stage I, 

did the surgery, but in order to comply with the previous pattern, we 

maintain no surgery performed as the baseline – That way, we can see 

the risk of the patients who had surgery compared to the ones who did 

not). 

Radiotherapy  No radiotherapy 
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5.4.1 RESULTS 

The model results are presented in Table 5.5., along with its interpretation. 

Table 5-5 – Cox Model Results- Stage I  model (27 attributes). 

Covariante HR for death p-value Interpretation 

(95% CI) 

Gender- Female 0.96 (0.62-1.51) 0.87 Females have less 4% risk than males, considering all the 
other covariates the same. 

Smoker habit 
   

Current smoker 0.86 (0.62-1.20) 0.38 Current smokers have less 14% risk than former smokers, 
considering all the other covariates. 

Never smoker 0.35 (0.19-0.66) <0.005 Never smokers have less 65% risk than former smokers, con-
sidering all the other covariates the same. 

Comorbidities 
 

    
No comorbidities 1.38 (0.89-2.13) 0.15 Patients with no comorbidities have more 38% risk than pa-

tients with 1-3 comorbidities, considering all the other co-
variates the same. 

+ 4 comorbidities 2.35 (1.68-3.29) <0.005 Patients with more than four (4) comorbidities have more 
135% risk than patients with 1-3 comorbidities, considering 

all the other covariates the same. 

Age 
   

<45 0.41 (0.05-3.50) 0.41 Patients with <=45 years old have less 59% risk than patients 
with 45-70 years old, considering all the other covariates the 

same. 

>70 2.35 (1.70-3.25) <0.005 Patients with >70 years old have more 235% risk than pa-
tients with 45-70 years old, considering all the other covari-

ates the same. 

History 
 

    
Patient with previous 

cancer 
1.24 (0.92-1.67) 0.16 Patients with previous cancer have more 24% risk than pa-

tients with no previous cancer history.  

Patient with family 

history of cancer 

0.74 (0.55-0.99) 0.04 Patients with a family history of cancer have 26% less risk 

than patients with no family history of cancer. 

Histology 
   

Adenosquamous  0.71 (0.27-1.83) 0.47 Patients diagnosed with Adenosquamous have less 29% risk 
than patients diagnosed with Adenocarcinoma, considering 

all the other covariates the same. 

Squamous 0.87 (0.62-1.24) 0.45 Patients diagnosed with Squamous have less 13% risk than 
patients diagnosed with Adenocarcinoma, considering all 

the other covariates the same. 

 Large cell carcinoma 1.27 (0.59-2.74) 0.54 Patients diagnosed with large cell carcinoma have a more 
27% risk than patients diagnosed with Adenocarcinoma, 

considering all the other covariates the same. 

Sarcomatoid 0.47 (0.06-3.66) 0.47 Patients diagnosed with Sarcomatoid have less 53% risk than 
patients diagnosed with Adenocarcinoma, considering all 

the other covariates the same. 

Undifferentiated 0.85 (0.32-2.26) 0.75 Patients diagnosed with Undifferentiated have less 15% risk 
than patients diagnosed with Adenocarcinoma, considering 

all the other covariates the same. 
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Neuroendocrine 
large cell carcinoma 

1.26 (0.39-4.07) 0.70 Patients diagnosed with Neuroendocrine large cell carci-
noma have a more 26% risk than patients diagnosed with 
Adenocarcinoma, considering all the other covariates the 

same. 

1s treatment line 
 

    
IO 2.05 (1.01-4.16) 0.05 Patients with IO as the first treatment line have more 105% 

risk than patients with CT as the first treatment line, consid-
ering all the other covariates the same.    

No drug Treatment 0.51 (0.37-0.70) <0.005 Patients with no drug treatment in the first treatment line 
have less 49% risk than patients with CT as the first treat-
ment line, considering all the other covariates the same.    

Other  Drugs 2.09 (0.43-10.20) 0.36 Patients with 'others' as the first treatment line have more 
109% risk than patients with CT as the first treatment line, 

considering all the other covariates the same.    

CT+IO 0.31 (0.04-2.28) 0.25 Patients with CT+IO as the first treatment line have less 69% 

risk than patients with CT as the first treatment line, consid-

ering all the other covariates the same.    

CT+RT 0.68 (0.39-1.18) 0.17 Patients with CT+RT as the first treatment line have less 32% 
risk than patients with CT as the first treatment line, consid-

ering all the other covariates the same.    

TKI 0.93 (0.39-2.24) 0.88 Patients with TKI as the first treatment line have less 7% risk 
than patients with CT as the first treatment line, considering 

all the other covariates the same.    

Surgery 0.49 (0.33-0.72) <0.005 Patients who did surgery have less 51% risk than patients 
who did not, considering all the other covariates the same.     

Radiotherapy 1.42 (1.02-1.96) 0.04 Patients who did radiotherapy have more 42% risk than pa-
tients who did not, considering all the other covariates the 

same.    

Molecular Markers 
   

Not mutated ALK 0.76 (0.45-1.27) 0.29 Patients without ALK mutation have less 24% risk than non-
tested patients, considering all the other covariates the 

same.    

Mutated ALK 1.62 (0.42-6.21) 0.48 Patients with ALK mutation have less 62% risk than non-
tested patients,  

considering all the other covariates the same.    

Not mutated EGFR 1.19 (0.73-1.95) 0.48 Patients without EGFR mutation have 19% more risk than 
nontested patients, 

considering all the other covariates the same.    

Mutated EGFR 0.99 (0.44-2.25) 0.98 Patients with EGFR mutation have less 1% risk than nonmu-
tated patients, 

considering all the other covariates the same.    

Upper and lower bounds for each coefficient can also be seen visually in Figure 5.6.  

The model has Concordance of 0.72, Partial AIC of  2359.84 and a log-likelihood ratio of 150.46 on 

27 df. 
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Figure 5-6 Cox Model Results- Stage I model (27 attributes). 
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Figure 5-7 Stage I Model - Scaled Scoenfeld residuals of Current smoker variable. 

Figure 5-8 Stage I Model - Scaled Scoenfeld residuals of First treatment line- No drug treatment  variable. 

 

 

 

5.4.2 TESTING AND INTERPRETING ASSUMPTIONS  

 

In this model, three (3) variables failed the non-proportional test. The (scaled) Schoenfeld residuals 

below are presented for a multivariable Cox regression model fit to a simulated dataset with 27 covari-

ates. 
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Figure 5-9 Stage I Model - Scaled Scoenfeld residuals of Histology: Large cell carcinoma variable. 

 

 

 

5.5 STAGE II MODEL  

This model included 707 patients (number of observations) and 248 deaths (events observed).  

It was tested with 24 attributes (after the variables binarization) and with the baseline presented in table 

5.6.  

The treatment line CT+IO was removed in this model, as no patients diagnosed with stage II did drug 

treatments. The drug treatment designated as 'others'  and ‘undifferentiated’ was also removed as there 

were just a few patients. 

 

Table 5-6 - Stage II Model - Baseline profile. 

Attribute Baseline profile 

Gender  Male 

Age group  ]45,70] 

Number of comorbidities  Group 2 – [1,3] 

Smoking habit  Former smoker 

Patient previous cancer  No previous cancer 

Family previous cancer  No previous family cancer 

Histology  Adenocarcinoma 

1st Treatment line  CT  

ALK  Not tested 

EGFR   Not tested  

Surgery  No surgery (In fact, the most common patients profile with stage II, 

did the surgery, but in order to comply with the previous pattern, we 

maintain no surgery performed as the baseline – That way, we can see 

the risk of the patients who had surgery compared to the ones who did 

not). 

Radiotherapy  No radiotherapy 
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5.5.1 RESULTS 

The model results are presented in Table 5.7., along with its interpretation. 

Table 5-7 Cox Model Results- Stage II  model (24 attributes). 
Covariante HR for death p-value Interpretation 

(95% CI) 

Gender- Female 0.89 (0.58-1.35)  0.58 Females have less 11% risk than males, considering all the 
other covariates the same. 

Smoker habit 
   

Current smoker 0.95 (0.71-1.29) 0.75 Current smokers have less 5% risk than former smokers, con-
sidering all the other covariates. 

Never smoker 0.84 (0.43-1.61) 0.59 Never smokers have less 16% risk than former smokers, con-
sidering all the other covariates the same. 

Comorbidities 
 

    
No comorbidities 0.88 (0.63-1.22) 0.44 Patients with no comorbidities have less 12% risk than pa-

tients with 1-3 comorbidities, considering all the other covari-
ates the same. 

+ 4 comorbidities 0.68 (0.45-1.03) 0.07 Patients with more than four (4) comorbidities have less 32% 
risk than patients with 1-3 comorbidities, considering all the 

other covariates the same. 

Age 
   

<45 1.52 (0.68-3.38) 0.31 Patients with <=45 years old have more 52% risk than patients 
with 45-70 years old, considering all the other covariates the 

same. 

>70 1.21 (0.89-1.64) 0.23 Patients with >70 years old have more 21% risk than patients 
with 45-70 years old, considering all the other covariates the 

same. 

History 
 

    
Patient with previous 

cancer 
0.94 (0.68-1.30) 0.71 Patients with previous cancer have less 6% risk than patients 

with no previous cancer history.  

Patient with family 

history of cancer 

0.82 (0.63-1.06) 0.12 Patients with a family history of cancer have 18% less risk than 

patients with no family history of cancer. 

Histology 
   

Adenosquamous  0.76 (0.32-1.77) 0.52 Patients diagnosed with Adenosquamous have less 24% risk 
than patients diagnosed with Adenocarcinoma, considering all 

the other covariates the same. 

Squamous 1.59 (1.14-2.22) 0.01 Patients diagnosed with Squamous have more 59% risk than 
patients diagnosed with Adenocarcinoma, considering all the 

other covariates the same. 

 Large cell carcinoma 1.63 (0.83-3.18) 0.15 Patients diagnosed with large cell carcinoma have a more 63% 
risk than patients diagnosed with Adenocarcinoma, consider-

ing all the other covariates the same. 

Sarcomatoid 3.21 (1.24-8.28) 0.02 Patients diagnosed with Sarcomatoid have more 221% risk 
than patients diagnosed with Adenocarcinoma, considering all 

the other covariates the same. 
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Neuroendocrine 
large cell carcinoma 

1.28 (0.31-5.35) 0.73 Patients diagnosed with Neuroendocrine large cell carcinoma 
have a more 28% risk than patients diagnosed with Adenocar-

cinoma, considering all the other covariates the same. 

1s treatment line 
 

    
IO 0.47 (0.06-3.48) 0.46 Patients with IO as the first treatment line have less 53% risk 

than patients with CT as the first treatment line, considering 
all the other covariates the same.    

No drug Treatment 1.73 (1.21-2.48) <0.005 Patients with no drug treatment in the first treatment line 
havemore 73% risk than patients with CT as the first treatment 

line, considering all the other covariates the same.    

CT+RT 1.24 (0.80-1.92) 0.33 Patients with CT+RT as the first treatment line have more 24% 
risk than patients with CT as the first treatment line, consider-

ing all the other covariates the same.    

TKI 1.68 (0.47-5.95) 0.42 Patients with TKI as the first treatment line have more 68% 
risk than patients with CT as the first treatment line, consider-

ing all the other covariates the same.   
  

Surgery 0.45 (0.32-0.64) <0.005 Patients who did surgery have less 55% risk than patients who 
did not, considering all the other covariates the same.     

Radiotherapy 1.33 (0.98-1.81) 0.07 Patients who did radiotherapy have more 33% risk than pa-
tients who did not, considering all the other covariates the 

same.     
Molecular Markers 

   

Not mutated ALK 1.12 (0.71-1.76) 0.64 Patients without ALK mutation have more 12% risk than non-
tested patients, considering all the other covariates the same.    

Mutated ALK 0.70 (0.09-5.59) 0.74 Patients with ALK mutation have less 30% risk than nontested 
patients,  

considering all the other covariates the same.    

Not mutated EGFR 1.54 (0.99-2.42) 0.06 Patients without EGFR mutation have 54% more risk than non-
tested patients, 

considering all the other covariates the same.    

Mutated EGFR 1.00 (0.45-2.22) 1.00 Patients with EGFR mutation have the same risk as nonmu-
tated patients, 

considering all the other covariates the same.    

 

Upper and lower bounds for each coefficient can also be seen visually in Figure 5.10.   

The model has Concordance of 0.70, Partial AIC of 2744.09 and a log-likelihood ratio of 105.89 on 

24 df. 
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Figure 5-10 - Cox Model Results- Stage II  model (24 attributes). 
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Figure 5-11 Stage II Model - Scaled Scoenfeld residu-

als of First treatment line- No drug treatment  variable. 
Figure 5-12 Stage II Model - Scaled Scoenfeld residuals 

more than 4 comorbidities variable. 

Figure 5-13 Stage II Model - Scaled Scoenfeld resi-

duals of Radiotherapy variable. 

Figure 5-14 Stage II Model - Scaled Scoenfeld residuals 

of Surgery variable. 

 

 

 

 

 

5.5.2 TESTING AND INTERPRETING ASSUMPTIONS  

 

In this model, four (4) variables failed the non-proportional test. The (scaled) Schoenfeld residuals be-

low are presented for a multivariable Cox regression model fit to a simulated dataset with 24 covariates. 
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5.5     STAGE III MODEL  

This model included 2435 patients (number of observations)  and 1183 deaths (events observed). 

In this model, the variable stage was removed as it only concerns the Stage III diagnosis. It was 

tested with 27 attributes (after the variables binarization) and with the baseline presented in table 

5.8. 

 

Table 5-8 - Stage III Model - Baseline profile. 

Attribute Baseline profile 

Gender  Male 

Age group  ]45,70] 

Number of comorbidities  Group 2 – [1,3] 

Smoking habit  Former smoker 

Patient previous cancer  No previous cancer 

Family previous cancer  No previous family cancer 

Histology  Adenocarcinoma 

1st Treatment line  CT  

ALK  Not tested 

EGFR   Not tested  

Surgery  No surgery  

Radiotherapy  No radiotherapy (In fact, the most common patient's profile with stage 

III, had radiotherapy, but to comply with the previous pattern, we main-

tain no radiotherapy performed as the baseline). 
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5.5.1 RESULTS 

The model results are presented in Table 5.9., along with its interpretation. 

Table 5-9 Cox Model Results- Stage III  model (27 attributes). 
Covariante HR for death p-value Interpretation 

(95% CI) 

Gender-  Female 0.92 (0.78-1.08) 0.32 Females have less 8% risk than males, considering all the 
other covariates the same. 

Smoker habit 
   

Current smoker 1.14 (1.01-1.29) 0.04 Current smokers have more 14% risk than former smokers, 
considering all the other covariates. 

Never smoker 0.88 (0.67-1.16) 0.36 Never smokers have less 12% risk than former smokers, con-
sidering all the other covariates the same. 

Comorbidities       
No comorbidities 0.92 (0.79-1.06) 0.23 Patients with no comorbidities have less 8% risk than pa-

tients with 1-3 comorbidities, considering all the other co-
variates the same. 

+ 4 comorbidities 1.09 (0.91-1.30) 0.36 Patients with more than four (4) comorbidities have a more 
9% risk than patients with 1-3 comorbidities, considering all 

the other covariates the same. 

Age 
   

<45 0.67 (0.44-1.02) 0.06 Patients with <=45 years old have less 33% risk than patients 
with 40-65 years old, considering all the other covariates the 

same. 

>70 1.30 (1.14-1.49) <0.005 Patients with >70 years old have more 30% risk than pa-
tients with 40-65 years old, considering all the other  

covariates the same.  
History       

Patient with previous 
cancer 

1.07 (0.92-1.25) 0.37 Patients with previous cancer have more 7% risk than pa-
tients with no previous cancer history.  

Patient with family  

history of cancer 

1.04 (0.92-1.17) 0.53 Patients with a family history of cancer have more 4% risk 

than patients with no family history of cancer. 

Histology 
   

Adenosquamous  1.03 (0.67-1.59) 0.88 Patients diagnosed with Adenosquamous have more 3% risk 
than patients diagnosed with Adenocarcinoma, considering 

all the other covariates the same. 

Squamous 1.16 (1.00-1.35) 0.05 Patients diagnosed with Squamous have a more 16% risk 
than patients diagnosed with Adenocarcinoma, considering 

all the other covariates the same. 

 Large cell carcinoma 1.25 (0.90-1.74) 0.17 Patients diagnosed with Large cell carcinoma have a more 
25% risk than patients diagnosed with Adenocarcinoma, 

considering all the other covariates the same. 

Sarcomatoid 0.85 (0.27-2.67) 0.78 Patients diagnosed with Sarcomatoid have a less 15% risk 
than patients diagnosed with Adenocarcinoma, considering 

all the other covariates the same. 

Undifferentiated 1.04 (0.72-1.50) 0.83 Patients diagnosed with Undifferentiated have a more 4% 
risk than patients diagnosed with Adenocarcinoma, consid-

ering all the other covariates the same. 
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Neuroendocrine large 
cell carcinoma 

1.55 (0.95-2.54) 0.08 Patients diagnosed with Neuroendocrine large cell carci-
noma have a more 55% risk than patients diagnosed with 
Adenocarcinoma, considering all the other covariates the 

same. 

1s treatment line       
IO 1.19 (0.65-2.18) 0.57 Patients with IO as the first treatment line have more 19% 

risk than patients with QT as the first treatment line, consid-
ering all the other covariates the same.    

No drug Treatment 2.25 (1.82-2.78) <0.005 Patients with no drug treatment in the first treatment line 
have more 125% risk than patients with QT as the first treat-

ment line, considering all the other  
covariates the same.    

Other  Drugs 2.17 (0.81-5.84) 0.12 Patients with 'others' as the first treatment line have more 
117% risk than patients with QT as the first treatment line, 

considering all the other covariates the same.    

QT+IO 1.29 (0.48-3.45) 0.62 Patients with QT+IO as the first treatment line have more 

29% risk than patients with QT as the first treatment line, 

considering all the other covariates the same.    

QT+RT 0.83 (0.72-0.95) 0.01 Patients with QT+RT as the first treatment line have less 17% 
risk than patients with QT as the first treatment line, consid-

ering all the other covariates the same.    

TKI 0.81 (0.46-1.44) 0.48 Patients with TKI as the first treatment line have less 19% 
risk than patients with QT as the first treatment line, consid-

ering all the other covariates the same.    

Surgery 0.41 (0.35-0.47) <0.005 Patients who did surgery have less 59% risk than patients 
who did not, considering all the other covariates the same.     

Radiotherapy 0.70 (0.60-0.80) <0.005 Patients who did radiotherapy have less 30% risk than pa-
tients who did not, considering all the other covariates the 

same.    

Molecular Markers 
   

Not mutated ALK 1.09 (0.88-1.35) 0.42 Patients without ALK mutation have more 9% risk than non-
tested patients, considering all the other covariates the 

same.    

Mutated ALK 0.62 (0.35-1.10) 0.10 Patients with ALK mutation have less 38% risk than non-
tested patients,  

considering all the other covariates the same.    

Not mutated EGFR 1.03 (0.84-1.28) 0.75 Patients without EGFR mutation have more 3% risk than 
nontested patients, 

considering all the other covariates the same.    

Mutated EGFR 0.89 (0.63-1.26) 0.50 Patients with EGFR mutation have less 11% risk than nonmu-
tated patients, 

considering all the other covariates the same.    

 

Upper and lower bounds for each coefficient can also be seen visually in Figure 5.10.   

The model has Concordance of 0.68, Partial AIC of  16081.12 and a log-likelihood ratio of 352.48 

on 27 df. 
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Figure 5-15 Cox Model Results- Stage III  model (27 attributes). 

 

5.5.2 TESTING AND INTERPRETING ASSUMPTIONS  

In this model, five (5) variables failed the non-proportional test. The (scaled) Schoenfeld residu-

als below are presented for a multivariable Cox regression model fit to a simulated dataset with 

27 covariates. 

 

 

 

 

 

 

 

 
Figure 5-17 Stage III Model - Scaled Scoenfeld residuals 

of Gender Female variable. 

Figure 5-16 Stage III Model - Scaled Scoenfeld           

residuals of First treatment line- No drug treatment  

variable. 
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Figure 5-18 Stage III Model - Scaled Scoenfeld      

residuals of Surgery variable. 
Figure 5-19 Stage III Model - Scaled Scoenfeld residuals 

of Radiotherapy variable. 

Figure 5-20 Stage III Model - Scaled Scoenfeld residuals of Mutated EGFR variable. 
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 5.6     STAGE IV MODEL  

This model included 4617 patients (number of observations) and 3034 deaths (events observed). 

In this model, the variable stage was removed as it only concerns the Stage IV diagnosis. It was tested 

with 27 attributes (after the variables binarization) and with the baseline presented in table 5.10. 

 

Table 5-10 - Stage IV Model - Baseline profile. 

Attribute Baseline profile 

Gender  Male 

Age group  ]45,70] 

Number of comorbidities  Group 2 – [1,3] 

Smoking habit  Former smoker 

Patient previous cancer  No previous cancer 

Family previous cancer  No previous family cancer 

Histology  Adenocarcinoma 

1st Treatment line  CT  

ALK  Not tested (In fact, the most common patient's profile, did the test 

for the ALK mutation and tested negative, but in order to comply 

with the previous models, we maintain 'not tested' as the baseline). 

EGFR   Not tested (In fact, the most common patient's profile, did the test 

for the EGFR mutation and tested negative, but in order to comply 

with the ALK mutation, we maintain 'not tested' as the baseline). 

Surgery  No surgery  

Radiotherapy  No radiotherapy   
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5.6.1 RESULTS 

The model results are presented in Table 5.11., along with its interpretation. 

Table 5-11 Cox Model Results- Stage IV  model (27 attributes). 
Covariante HR for death p-value Interpretation 

(95% CI) 

Gender-  Female 0.87 (0.79-0.95) <0.005 Females have less 13% risk than males, considering all the 
other covariates the same. 

Smoker habit 
   

Current smoker 1.16 (1.07-1.26) <0.005 Current smokers have a more 16% risk than former smokers, 
considering all the other covariates. 

Never smoker 0.78 (0.69-0.89) <0.005 Never smokers have less 22% risk than former smokers, con-
sidering all the other covariates the same. 

Comorbidities       
No comorbidities 0.94 (0.87-1.03) 0.18 Patients with no comorbidities have less 6% risk than patients 

with 1-3 comorbidities, considering all the other covariates the 
same. 

+ 4 comorbidities 1.02 (0.91-1.16) 0.70 Patients with more than four (4) comorbidities have a more 
2% risk than patients with 1-3 comorbidities, considering all 

the other covariates the same. 

Age 
   

<45 1.06 (0.88-1.27) 0.56 Patients with <=45 years old have more 6% risk than patients 
with 40-65 years old, considering all the other covariates the 

same. 

>70 1.11 (1.02-1.21) 0.02 Patients with >70 years old have more 11% risk than patients 
with 40-65 years old, considering all the other covariates the 

same. 
  

History       
Patient with previous 

cancer 
0.93 (0.83-1.03) 0.15 Patients with previous cancer have more 7% risk than patients 

with no previous cancer history.  

Patient with family  

history of cancer 

1.00 (0.93-1.07) 0.96 Patients with a family history of cancer have the same risk as 

patients with no family history of cancer. 

Histology 
   

Adenosquamous  0.88 (0.64-1.19) 0.40 Patients diagnosed with Adenosquamous have less 12% risk 
than patients diagnosed with Adenocarcinoma, considering all 

the other covariates the same. 

Squamous 0.91 (0.81-1.03) 0.13 Patients diagnosed with Squamous have a less 9% risk than pa-
tients diagnosed with Adenocarcinoma, considering all the 

other covariates the same. 

 Large cell carcinoma 1.21 (1.00-1.46) 0.05 Patients diagnosed with Large cell carcinoma have a more 21% 
risk than patients diagnosed with Adenocarcinoma, consider-

ing all the other covariates the same. 
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Sarcomatoid 1.24 (0.59-2.62) 0.58 Patients diagnosed with Sarcomatoid have a more 24% risk 
than patients diagnosed with Adenocarcinoma, considering all 

the other covariates the same. 

Undifferentiated 1.26 (1.04-1.53) 0.02 Patients diagnosed with Undifferentiated have a more 26% 
risk than patients diagnosed with Adenocarcinoma, consider-

ing all the other covariates the same. 

Neuroendocrine large 
cell carcinoma 

1.37 (1.00-1.89) 0.05 Patients diagnosed with Neuroendocrine large cell carcinoma 
have a more 37% risk than patients diagnosed with Adenocar-

cinoma, considering all the other covariates the same. 

1s treatment line       
IO 0.78 (0.66-0.93) 0.01 Patients with IO as the first treatment line have less 22% risk 

than patients with QT as the first treatment line, considering 
all the other covariates the same.    

No drug Treatment 3.99 (3.58-4.45) <0.005 Patients with no drug treatment in the first treatment line 
have more 299% risk than patients with CT as the first treat-

ment line, considering all the other  
covariates the same.    

Other  Drugs 0.70 (0.52-0.96) 0.03 Patients with 'others' as the first treatment line have less 30% 
risk than patients with CT as the first treatment line, consider-

ing all the other covariates the same.    

CT+IO 0.90 (0.70-1.15) 0.39 Patients with CT+IO as the first treatment line have less 10% 

risk than patients with CT as the first treatment line, consider-

ing all the other covariates the same.    

CT+RT 0.64 (0.49-0.84) <0.005 Patients with CT+RT as the first treatment line have less 36% 
risk than patients with CT as the first treatment line, consider-

ing all the other covariates the same.    

TKI 0.78 (0.66-0.93) 0.01 Patients with TKI as the first treatment line have less 22% risk 
than patients with CT as the first treatment line, considering 

all the other covariates the same.    

Surgery 0.38 (0.32-0.45) <0.005 Patients who did surgery have less 62% risk than patients who 
did not, considering all the other covariates the same.     

Radiotherapy 0.96 (0.89-1.03) 0.28 Patients who did radiotherapy have less 4% risk than patients 
who did not, considering all the other covariates the same.    

Molecular Markers 
   

Not mutated ALK 0.86 (0.77-0.95) <0.005 Patients without ALK mutation have less 14% risk than non-
tested patients, considering all the other covariates the same.    

Mutated ALK 0.55 (0.43-0.72) <0.005 Patients with ALK mutation have less 45% risk than nontested 
patients,  

considering all the other covariates the same.    

Not mutated EGFR 0.93 (0.82-1.05) 0.22 Patients without EGFR mutation have less 7% risk than non-
tested patients, 

considering all the other covariates the same.    

Mutated EGFR 0.80 (0.67-0.95) 0.01 Patients with EGFR mutation have less 20% risk than nonmu-
tated patients, 

considering all the other covariates the same.    

 

Upper and lower bounds for each coefficient can also be seen visually in Figure 5.21.   

The model has Concordance of 0.68, Partial AIC of  44973.56 and a log-likelihood ratio of 1059.00 

on 27 df. 
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Figure 5-21 Cox Model Results- Stage IV  model (27 attributes). 

 

5.6.2 TESTING AND INTERPRETING ASSUMPTIONS  

In this model, ten (10) variables failed the non-proportional test. The (scaled) Schoenfeld residuals be-

low are presented for a multivariable Cox regression model fit to a simulated dataset with 27 covariates. 

Unlike the previous stage individual models, a lot more variables failed the Stage IV model non-pro-

portional test.  

Figure 5.22. illustrates the Schoenfeld residuals of the variable Radiotherapy, and it is clear that they 

are incompatible with the proportional hazards assumption, which was expected since the Kaplan-Meier 

method, Figure 4.22.  

Figure 5.23. illustrates the Schoenfeld residuals of the variable Mutated EGFR, and we can see that it 

starts to fail at the end of the time, which can be justified as, at that time, the number of patients under 

observation is low.  
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Figure 5-22 - Stage IV  Model - Scaled Scoenfeld         

residuals of Mutated EGFR variable. 

Figure 5-24 Stage IV  Model - Scaled Scoenfeld residuals of Histology: Large cell carcinoma variable. 

Finally, in figure 5.24. the Schoenfeld residuals of the variable Histology: Large cell carcinoma show 

minor changes, which we know is possible to happen based on the immense number of variables in the 

model, but also since the variable histology have seven (7) possible values and the survival curves 

crossed each other in the Kaplan-Meier method, Section B- Attachment 2.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It should be noted that the results presented here are innovative and are already allowing the Spanish 

physician community to visualise and understand the survival patterns of patients with lung cancer and 

what is the impact of several explanatory variables on survival. 

 

 

Figure 5-23 - Stage IV  Model - Scaled Scoenfeld         

residuals of Radioterapy variable. 
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6 CONCLUSIONS AND FUTURE WORK 

The conclusions section reviews the work developed and analyses the results and challenges since the 

beginning of the dissertation.  

The Future work section identifies the optimizations that could be done in the models, the following 

steps within the project and evolutions of the work developed. 

 

6.1. CONCLUSIONS 

From a technical point of view, knowing and understanding the industry and architecture of the systems 

where every work is inserted is fundamental. There would be no way of evolution and innovation if the 

big picture where all the work is inserted would not be known. As a matter of fact, the word ‘work’ 

could be replaced by data, as it is the core of every possible knowledge source. 

With this in mind, the first step of every data project is learning the applications domain, which includes 

studying all underlying areas—in this case, understanding the healthcare industry, the core systems, the 

main processes and standards that the analysed data passed through.    

In that way, this dissertation started with an overview of clinical data and medical coding, followed by 

the healthcare information systems. Here, particular attention was given to the EHR, which was the 

source of the data used in this dissertation. 

The complexity of the medical systems and the interaction between them is enormous. Each topic could 

be treated and have content to be a dissertation by itself; that is why some topics are only approached at 

a high level. For example, the security and access controls lines were mentioned but not too detailed, as 

they are crucial subjects for information systems and services.  

It was then studied the different ML algorithms categories, in which it was stated that Supervised learn-

ing would be the focus, as the regression models used in this dissertation are a part of this group. 

In the next phase, it was necessary to interpret the data from a clinical point of view, and it is at this time 

that the Data science loop starts.  

Before getting into the different phases of the loop which this dissertation passed through, one should 

emphasize the importance of the interaction and follow-up with the subject experts. In the healthcare 

case, and here, specifically in the oncology area, the interpretation of the data is highly complex. More 

than anyone, doctors and specialists handle diagnosis and treatments for years, and without them, it 

would be impossible to create value. As human beings, our interpretations are conditioned by our expe-

riences and studies and change continuously over time.  
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So, one of the main challenges, and one of the most interesting, was to see this evolution on both sides, 

clinical experts/doctors and engineers. As a part of the engineer's team, trying to understand the clinical 

meaning and interaction between variables, mapping the process of care and the disease itself, it would 

be unthinkable without the support of the other parts. 

That said, it follows the data engineering and pre-processing phase, which was by far the more time-

consuming phase.  

As previously said, every project that requires real-time analysis starts from a static dataset and its anal-

ysis. Several datasets were provided before the final one presented in this dissertation. 

The first phase of the data science loop is data cleaning, which required special attention as the dataset 

was raw. It was the process of detecting and correcting or removing incorrect data entries, such as miss-

ing values, outliers, inaccurate values, and duplicates elimination.  

Following the second and third phases, the Analysis and Sample, and Feature engineering, which were 

the phases that required more returning in order to optimize the results and, at the same time, maintaining 

the clinical meaning. Regarding the features selection, the first filter was clinical relevance, not only 

based on the other oncology studies; indeed, there are attributes scientifically proved as significant, but 

also the need to understand the remaining ones, such as comorbidities and mutations.  

The fourth and fifth phases of the data science loop, the Model building and Hyperparameter optimiza-

tion, respectively, were also performed more than once. Each time that a new variable was added or 

modified, a new model was generated.  

The Cox multivariable proportional hazard model was chosen from the beginning because it fills the 

requirements and goals of this dissertation, specifically the relationship between the risk of an event 

over time and the features of the sample. 

In this phase, five models were built—the first one, including the different diagnosis stages and the 

remaining models individually by stage at diagnosis.   

Finally, the Evaluation and Comparison phases assess the fitted model results and compare the model’s 

performance. 

Assessing the fitted model results included analysing the statistical significance of each covariate, the 

effect of each covariate on the hazard ratio and analyse how confident are the coefficients estimated. 

The “All stages model” allowed the analysis of the entire group of non-small cell lung cancer patients, 

enable the analysis of the survival and risk of the patients with a different diagnosis. It is clinically 

established the differences between initial and advanced stages at diagnosis. The model's results show 

precisely that, so in a statistical point of view, the models state what was supposed. This conclusion can 

either be seen in the All stages model (in the survival curves of the variables Stage) or by analysing the 

overall performance of the individual stage models.  

Also, it is possible to correlate the failure of some variables in the assumptions tests of the “All stages 

model” with the failure of those same variables in the individual stages model.  

Indeed, these phases are part of a loop, so even though they are presented sequenced in this document, 

it was not developed that way, and the presented steps, decisions and results are the final ones.  

 

 

Fitted survival models typically have a concordance index between 0.55 and 0.75 [46], and the concor- 

dance indexes obtained were 0.73 and 0.68, respectively the best and the worst. Although, as stated, 
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they were not statistically optimized to keep all the features and have risks associated with every varia-

ble.  

Note that all the included variables were transformed and optimized, so having that in mind, to improve 

the model's results, the approach would be to remove the not significant ones.  

Although, before this approach, there is another critical point to be considered regarding the baselines 

defined. 

The baselines were defined as the most common patient's profile so that all the other variables would 

describe the risk comparing with it. The baselines were defined the same for all the models tested. So, 

regarding the All stages model, the baseline is ‘correct’; in other words, all the attributes are the most 

common patient’s profile. For the remaining models, some attributes defined as the baseline are not 

the most common characteristics.  

It was selected this way to comply and be possible to analyse the variable’s results between models. 

This analysis is important and relevant, but the optimization of these models passes, first of all, to com-

pletely separate the diagnosis analysis from the predictive analysis. That way, the prediction would 

exclusively have into consideration the diagnosis.  

For either one of these cases, the work developed throughout this dissertation is innovative and relevant 

as the objective was indeed the identification of factors/characteristics; Risk stratification, and predict 

the best models of follow-up.  
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6.2. FUTURE WORK  

 

This section presents the optimizations that could be done in the models, the following steps within the 

project, and evolutions of the work developed. 

So, within the models, some optimizations were already mentioned, but to summarize, to optimize ma-

thematically the model, the approach would be to remove the insignificant features and define the base-

line of the individual stage model, as the most common patient's profile. Also, some improvements can 

be done regarding the patterns, for example, if instead of the general groups of diagnosis (4) that were 

used in these models, would be used the more specific diagnosis groups (16), we would have another 

hand of patterns along with the treatment lines performed.   

Within the project, the next steps, which are already being developed by Holos S.A. would be to develop 

an interface where the doctors/clinicians could have access to the statistics and have real-time data to 

support their decisions.  

Indeed, the objective is that the analysis remains autonomous after being deployed, but also having in 

mind that the data is continuously being updated and requires a certain follow-up. It may and probably 

will be necessary to perform changes in the models, as new characteristics will be added, new treatments 

will be created, and as a result of this, new patterns will appear.  

Finally, regarding the Cox model itself, other complex models are proved to have better results. So, 

besides the optimizations mentioned, the evolution of the Cox model passes by extending the Cox pro-

portional hazards model with neural networks [47]. Also, the use of Deep Neural Networks for survival 

Analysis based on a multi-task framework has proved better results in terms of the model’s performance 

[54].  
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8 ATTACHMENTS 

SECTION A   

This attachment section includes the original values of some attributes studied.  

Section A- Attachment 1 - Diagnosis table- Original values.  

Variable Values 

Diagnosis Stage at diagnosis 24, I 
1, IA 
25, IA1 
26, IA2 
28, IA3 
2, IB 
27, II 
3, IIA 
4, IIB 
15, III 
5, IIIA 
6, IIIB 
18, IIIC 
7, IV 
20, IVA 
21, IVB 
30, Limited 
31, Extended 
888, Others 
-1, - 

Histology 0, Adenocarcinoma 
1, Adenosquamous 
3, Large cell carcinoma 
6, Small cell lung cancer (microcytic) 
7, Neuroendocrine large cell carcinoma 
11, Thymic carcinoma 
2, Squamous 
9, Mesothelioma  
5, Undifferentiated 
4, Sarcomatoid 
10, Thymoma 
8, Carcinoidtumour 
12,Others 
-1, - 

Were molecular markers analyses 
performed at diagnoses? 

1, Yes 
0, No 
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EGFR performed 1, Yes 

ALK performed 1, Yes 

Result EGFR: Negative 1, Yes 

Result EGFR: T790M 1, Yes 

Result EGFR: T790 1, Yes 

Result EGFR: Exon19 1, Yes 

Result EGFR: Exon21 1, Yes 

Result EGFR: NOS 1, Yes 

Result EGFR: Exon 20 1, Yes 

Result EGFR: Others 1, Yes 

Result ALK IHQ 0, Negative  
1, Positive 

Result ALK FISH 1, Translocated   
0, Non-Translocated 

Result ALK RNA 1, Detected  
0, Non detected 

  

 

Section A- Attachment 2 - Comorbidities table - Original values.  

Variable  Values  

Comorbidities No comorbidities  1, Yes 

Comorbidity: Asthma 1, Yes 

Comorbidity: Cardiopathy  1, Yes 

Comorbidity: Diabetes Mellitus (DM) 1, Yes 

Comorbidity: Dyslipidemia  1, Yes 

Comorbidity: Chronic obstructive pulmonary disease  1, Yes 

Comorbidity: Alcoholism/Ex Alcoholism  1, Yes 

Comorbidity: Hepatitis 1, Yes 

Comorbidity: Hypercholesterolemia  1, Yes 

Comorbidity: HT 1, Yes 

Comorbidity: Renal disease 1, Yes 

Comorbidity: Obesity 1, Yes 

Comorbidity: Depressive syndrome / Anxiety 1, Yes 

Comorbidity: Tuberculosis 1, Yes 



 

94 

 

Comorbidity: Vascular disease 1, Yes 

Comorbidity: Others 1, Yes 

Comorbidity: Liver disease   1, Yes 

Comorbidity: Gastrointestinal  1, Yes 

Comorbidity; Neurodegenerative disorder  1, Yes 

Comorbidity: Benign prostatic Hyperplasia  1, Yes 

Comorbidity: Obstructive sleep Apnea 1, Yes  

 

 

 

Section A- Attachment 3 - Treatment line 1 - Original values. 

 Variable Values 

Treatment Line 1 Type of therapy 1, CT intravenous  
2, Oral targeted therapy   
3, Neoadjuvant chemotherapy  
4, Adjuvant chemotherapy 
6, Concomitant CT-RT  
7, Sequential CT-RT    
8, Adjuvant CT-RT   
9, Neoadjuvant CT-RT 
10, Immunotherapy 
12, Hormonal  
13, Oral and intravenous chemotherapy   
14, Oral chemotherapy   
15, Intravenous chemotherapy + immunotherapy  
11, Others       
-1, - 
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SECTION B  

This attachment section contains the complete diagram with all variables and a few tables concerning 

the descriptive analysis of the variables.  

Section B- Attachment 1 – Complete diagram -All variables and their distribution 
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Section B- Attachment 2 – KMF Histology. 
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Section B- Attachment 3 - Comorbidities - Descriptive table. 

 

Section B- Attachment 4 - Comorbidities of patients vs Mena Survival Months.

 

Comorbidity count median 
survival 

mean 
survival 

median 
age 

mean 
age 

Stage 
I 

Stage 
II 

Stage 
III 

Stage 
IV 

Male Female 

No comorbidities 1739 16,2 26,02 58 58,04 105 127 479 1028 1110 629 

Asthma 216 13,5 21,48 64 63,29 30 14 55 117 102 114 

Vascular disease 2114 13,7 21,61 69 69,26 295 212 614 993 1813 301 

Diabetes mellitus 2095 13,7 21,05 69 68,18 221 192 614 1068 6252 2444 

Dyslipidemia 3552 14,5 22,47 68 67,35 435 336 964 1817 2738 814 

COPD 2412 14,65 22,96 67 67,22 381 262 801 968 2140 272 

Alcoholism/Ex-al-
coholism 

778 9,8 18,33 64 63,83 71 75 235 397 739 39 

Renal disease 295 10,8 18,99 72 71,03 39 37 88 131 246 49 

Obesity 469 16,6 23,31 66 65,29 63 55 137 214 352 117 

Depressive syn-
drome anxiety 

759 14,7 23,10 63 63,01 76 66 203 414 384 375 

Tuberculosis 190 13,35 21,82 65,5 65,18 24 20 48 98 148 42 

Liver disease 222 13,35 19,29 62 60,97 25 14 63 120 186 36 

Gastrointestinal 62 11,95 19,12 65 65,89 4 6 14 38 50 12 

Neurodegenerative 
disorder 

8 5,85 8,36 81,5 74,13 0 1 2 5 7 1 

Benign prostatic 
hyperplasia 

104 7,9 13,45 74 73,83 7 10 38 49 104 0 

Obstructive sleep 
apnea 

40 8,1 16,81 63,5 64,43 2 9 10 19 33 7 

HT 4515 14,1 22,25 69 68,28 575 414 1247 2279 3549 966 
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Section B- Attachment 5 - Patient’s previous cancer - Descriptive table. 

 

 

 

 

Previous cancer count median  
survival 

mean  
survival 

median 
age 

mean  
age 

Stage 
I 

Stage 
II 

Stage 
III 

Stage 
IV 

No previous tumors 9004 14,45 23,02 64 63,71 805 721 2566 4912 

Breast 115 19,6 29,52 64 64,50 9 7 36 63 

Head and neck  235 16,1 21,80 66 65,56 59 26 77 73 

Germinal tumors 10 15,95 33,73 68 65,90 1 2 2 5 

Sarcoma 10 27,2 40,88 63 64,00 2 0 1 7 

Central nervous system 8 9,6 23,09 66 68,50 1 1 2 4 

Unknown origin carci-
noma 

2 37,9 37,90 66,5 66,50 0 0 1 1 

Colorectal 164 19 27,28 69 68,60 35 15 43 71 

Esophagogastric 29 12,6 27,95 69 67,07 8 7 6 8 

Pancreatic 7 5,5 15,40 57 60,71 3 0 2 2 

Gallbladder 9 16,6 16,68 68 65,67 2 0 2 5 

Liver 14 12,4 18,69 63 62,93 3 1 4 6 

Melanoma 33 14,4 20,42 68 65,39 7 4 8 14 

Skin no melanoma 90 13,9 19,65 70,5 68,99 7 4 34 45 

Bladder/urinary tract 275 16,1 23,76 70 70,04 43 36 89 107 

Renal 37 15,6 30,10 67 68,14 7 5 10 15 

Prostate 292 14,95 24,00 71 71,25 44 32 71 145 

Uterus/Cervical 40 27,55 32,00 63,5 64,10 7 8 9 16 

Lymphoma 62 17,7 22,00 65 64,19 13 12 14 23 

Leukemia 17 9,2 14,48 68 66,24 1 0 7 9 

Lung  62 20,1 32,30 67 66,58 24 7 17 14 

Ovarian 5 6,4 25,70 66 65,00 1 0 1 3 

Others 271 15,7 26,38 68 67,37 49 25 73 124 
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Section B- Attachment 6  - KMF – First treatment line (Drug therapy). 
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SECTION C  

This attachment section contains pieces of the code in order to clarify some functions used 

during development.  

Section C- Attachment 1 -  Descriptive table examples. 
####################### 

#!/usr/bin/env python 

#-*- coding: utf-8 -*- 

#@author: Filipa Matos 

####################### 

 

import pandas as pd 

import matplotlib.pyplot as plt 

 

#Gender table – Descriptive Analysis  

 

gender_info=[ 

   ['Male' , analysis_1.survival_days[analysis_1['gender']==0].count(), 

    analysis_1.survival_days[analysis_1['gender']==0].median(), 

    analysis_1.survival_days[analysis_1['gender']==0].mean(), 

    analysis_1.Age_diagnosis[analysis_1['gender']==0].median(), 

    analysis_1.Age_diagnosis[analysis_1['gender']==0].mean(), 

    analysis_1.survival_days[(analysis_1['gender']==0) &  

  (analysis_1['stage_at_diagnosis_groups']== 1.0)].count(), 

    analysis_1.survival_days[(analysis_1['gender']==0) &  

  (analysis_1['stage_at_diagnosis_groups']== 2.0)].count(), 

    analysis_1.survival_days[(analysis_1['gender']==0) &  

  (analysis_1['stage_at_diagnosis_groups']== 3.0)].count(), 

    analysis_1.survival_days[(analysis_1['gender']==0) & 

  (analysis_1['stage_at_diagnosis_groups']== 0.0)].count(), 

    (analysis_1.survival_days[(analysis_1['gender']==0) & ((analysis_1[

'tabac_info']== 1)|(analysis_1['tabac_info']== 2))].count()), 

    analysis_1.survival_days[(analysis_1['gender']==0) & (analysis_1['t

abac_info']== 0)].count(), 

    analysis_1.survival_days[(analysis_1['gender']==0) & (analysis_1['t

abac_info']== 3)].count()], 

     

    ['Female' , analysis_1.survival_days[analysis_1['gender']==1].count

(), 

    analysis_1.survival_days[analysis_1['gender']==1].median(), 

    analysis_1.survival_days[analysis_1['gender']==1].mean(), 

    analysis_1.Age_diagnosis[analysis_1['gender']==1].median(), 

    analysis_1.Age_diagnosis[analysis_1['gender']==1].mean(), 

    analysis_1.survival_days[(analysis_1['gender']==1) & 

  (analysis_1['stage_at_diagnosis_groups']== 1.0)].count(), 

    analysis_1.survival_days[(analysis_1['gender']==1) & 

  (analysis_1['stage_at_diagnosis_groups']== 2.0)].count(), 

    analysis_1.survival_days[(analysis_1['gender']==1) & 

  (analysis_1['stage_at_diagnosis_groups']== 3.0)].count(), 

    analysis_1.survival_days[(analysis_1['gender']==1) &  

  (analysis_1['stage_at_diagnosis_groups']== 0.0)].count(), 

    (analysis_1.survival_days[(analysis_1['gender']==1) &  



 

101 

 

 ((analysis_1['tabac_info']== 1)|(analysis_1['tabac_info']== 2))]

.count()), 

    analysis_1.survival_days[(analysis_1['gender']==1) & 

  (analysis_1['tabac_info']== 0)].count(), 

    analysis_1.survival_days[(analysis_1['gender']==1) &  

 (analysis_1['tabac_info']== 3)].count()]] 

     

     

table_gender_info = pd.DataFrame(gender_info, columns = ['Gender',  

'count', 'median survival','mean survival','median age','mean age','sta

geI','stageII','stageIII','stageIV','Former Or Current','No smoker', 

'Unknonw smoking habit'])  

table_gender_info.round(2) 

 

#EXPORT TO EXCEL   

with pd.ExcelWriter(r'C:\ Desktop\project\result_tables_excel\Descri

ptive analysis\gender.xlsx')  

 as writer:table_age_info.to_excel(writer, sheet_name = 'gender

') 

 

 

Section C- Attachment 2 – Kaplan Meier examples. 
####################### 

#!/usr/bin/env python 

#-*- coding: utf-8 -*- 

#@author: Filipa Matos 

####################### 

 

import pandas as pd 

import matplotlib.pyplot as plt 

from lifelines import KaplanMeierFitter 

from lifelines.statistics import logrank_test 

from lifelines.plotting import add_at_risk_counts 

 

 

#KM Gender curve 

 

male=df_original[df_original['gender']==0] 

female=df_original[df_original['gender']==1] 

T=male['survival_days'] 

E=male['dead_alive'] 

T1=female['survival_days'] 

E1=female['dead_alive'] 

 

kmf_male = KaplanMeierFitter() 

 

ax = plt.subplot(111) 

ax = kmf_male.fit(T, E, label="Male").plot(ax=ax) 

 

kmf_female = KaplanMeierFitter() 

ax = kmf_female.fit(T1, E1, label="Female",).plot(ax=ax) 
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#logrank_test 

results=logrank_test(T,T1,event_observed_A=E, event_observed_B=E1) 

results.print_summary() 

 

add_at_risk_counts(kmf_male, kmf_female, ax=ax) 

plt.title('KMF - Gender') 

plt.tight_layout() 

 

#KM Comorbidities curve 

 

no_comorb=df_original[df_original['number_comorb']==0] 

one_3_comorb=df_original[df_original['number_comorb']==1] 

more_3_comorb=df_original[df_original['number_comorb']==3] 

 

T=no_comorb['survival_days'] 

E=no_comorb['dead_alive'] 

 

T1=one_3_comorb['survival_days'] 

E1=one_3_comorb['dead_alive'] 

 

T2=more_3_comorb['survival_days'] 

E2=more_3_comorb['dead_alive'] 

 

kmf_zero = KaplanMeierFitter() 

 

ax = plt.subplot(111) 

ax = kmf_zero.fit(T, E, label="No Comorbidities").plot(ax=ax,figsize=(7

, 6)) 

 

kmf_one_3 = KaplanMeierFitter() 

ax = kmf_one_3.fit(T1, E1, label="1-3 Comorbidities",).plot(ax=ax,figsi

ze=(7, 6)) 

 

kmf_more_3 = KaplanMeierFitter() 

ax = kmf_more_3.fit(T2, E2, label=">3 comorbidities",).plot(ax=ax,figsi

ze=(7, 6)) 

 

#logrank_test 

results=logrank_test(T,T2,event_observed_A=E, event_observed_B=E2) 

results.print_summary() 

 

add_at_risk_counts(kmf_zero, kmf_one_3,kmf_more_3, ax=ax) 

 

L=ax.legend() 

L=ax.legend(bbox_to_anchor=(1,1)) 

#plt.xlabel('Survival time (Months)',axes=ax) 

plt.ylabel('Survival (%)',axes=ax) 

plt.title('KMF - Comorbidities') 

plt.tight_layout() 
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Section C- Attachment 3 - Categorical variable into bin variables funtion. 

from patsy import dmatrices 

 

#Define varibles to be included in the expression 

model_expr = 'survival_days ~ gender + tabac_info + number_comorb + 

group_age+ stage_at_diagnosis_groups + patient_previous_cancer +  

family_cancer+ histology +treat_line_type_therapy+ radio_therapy +  

surgery + mutated_alk + mutated_egfr +survival_days + dead_alive' 

 

#Use the model expression to break out the CELL_TYPE categorical variab

le into 1-0 type columns 

y, X = dmatrices(model_expr, df_original ,eval_env=1, return_type='data

frame') 

 

#Print out the first few rows 

X.head() 

 

Section C- Attachment 4 -Code Cox Model example. 

 

import pandas as pd 

import matplotlib.pyplot as plt 

from lifelines import CoxPHFitter 

 

#Run the Cox model 

cph = CoxPHFitter() 

 

# X is the input data 

cph.fit(X, duration_col='survival_days', event_col='dead_alive') 

 

#Printing the summary table 

cph.print_summary() 

 

#Plot results  

plt.figure(figsize=(10, 10)) 

cph.plot() 

 

#Survival curves from a variable (Example: Stage variable) 

 

cph.plot_partial_effects_on_outcome(covariates=['stage_at_diagnosis_gro

ups[T.1]','stage_at_diagnosis_groups[T.2]','stage_at_diagnosis_groups[T

.3]',], values=[[1,0,0],[0,1,0],[0,0,1],[0,0,0]]) 

plt.xlim(right=250, left=0) 

plt.ylim(-0.04,1) 

plt.xlabel('Survival time (Months)') 

plt.ylabel('Survival (%)') 

plt.title('Stage at diagnosis') 

 

L=plt.legend() 

L=plt.legend(bbox_to_anchor=(1.3,1.0)) 

L.get_texts()[0].set_text('Stage I') 

L.get_texts()[1].set_text('Stage II') 
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L.get_texts()[2].set_text('Stage III') 

L.get_texts()[3].set_text('Stage IV') 

 

 

SECTION D 

Section D - Attachment 1 – All stages model  
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Section D - Attachment 2 - Stage IV Model 
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