
Pedro Miguel Ortiz da Silva

Master of Science

Automatic Dispenser for Kitchen Robots

Dissertation submitted in partial fulfillment
of the requirements for the degree of

Master of Science in
Electrical and Computer Engineering

Adviser: Prof, José António Barata de Oliveira,
NOVA University of Lisbon

Co-adviser: Francisco Marques, Research Engineer,
UNINOVA-CTS

Examination Committee

November, 2020

Automatic Dispenser for Kitchen Robots

Copyright © Pedro Miguel Ortiz da Silva, Faculty of Sciences and Technology, NOVA

University Lisbon.

The Faculty of Sciences and Technology and the NOVA University Lisbon have the right,

perpetual and without geographical boundaries, to file and publish this dissertation

through printed copies reproduced on paper or on digital form, or by any other means

known or that may be invented, and to disseminate through scientific repositories and

admit its copying and distribution for non-commercial, educational or research purposes,

as long as credit is given to the author and editor.

This document was created using the (pdf)LATEX processor, based in the “novathesis” template[1], developed at the Dep. Informática of FCT-NOVA [2].
[1] https://github.com/joaomlourenco/novathesis [2] http://www.di.fct.unl.pt

https://github.com/joaomlourenco/novathesis
http://www.di.fct.unl.pt

Acknowledgements

Quero agradecer ao meu orientador Professor José António Barata e ao meu co-orientador

Francisco Marques por todo o apoio e aconselhamento no desenvolvimentos desta disser-

tação.

Agradeço também à Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa

e ao Departamento de Engenharia Eletrotécnica e de Compuradores por me ter propor-

cionado o ensino e as ferramentas que me permitiram realizar este percurso.

Agradeço aos meus pais e ao meu irmão por acreditarem sempre em mim, e por estarem

sempre ao meu lado e pela força que sempre me deram. Obrigado também a toda a minha

familia por estarem sempre presentes e por terem feito parte deste precurso.

Agradeço à minha namorada pelo apoio incondicional e motivação que me dá, por me

ajudar nos maus momentos e por fazer os bons momentos ainda melhores.

Obrigado ao meu padrinho e ao meu irmão de faculdade, Gonçalo Horta e João Miguel,

por terem sido tão importantes nestes anos, por me terem ajudado e por estarem sempre

presentes, não só na faculdade mas também fora dela.

Obrigado a todos os meus amigos, tanto aos que fiz na faculdade como os mais anti-

gos, por terem feito parte deste percurso e com quem partilhei os melhores e piores

momentos, com os quais sempre pude contar e que nunca me deixaram ficar mal.

v

Abstract

In the last years we have seen technology and human-machine-interaction exponen-

tially evolve and having great developments. With these developments and the integra-

tion of technology in every day life, a natural change in quotidian life is expected, and a

place where we can see these changes is in the kitchen.

One of technology’s objectives is to ease a task or do it completely on its own, with the

rising pace at which the society lives it became a necessity to reduce the wasted time in

every way we can. This dissertation objective was to reduce the wasted time, by being

integrated in the kitchen it will reduce the time the user needs to be present and therefore

use the free time as he wishes. There are already some implemented solutions, however,

those solutions still have some problems that end up limiting the possibility of user ab-

sence, the ones that permit total absence don’t permit any user input as to change any

recipe information during its execution.

As a solution for this, an automatic dispenser was developed as the objective of this disser-

tation, the goal of this dispenser is to deliver the required ingredients for a given recipe,

this recipe will be given by the main machine where this dispenser is to connect and

be a module of. The development of this work started with looking into some existing

solutions and identify their major issues, and with those in mind define software and

hardware architectures, to better answer the problems at hand and get to an improved

solution which the user can rely on.

Keywords: Kitchen Robot, Automatic Dispenser, Controllers.

vii

Resumo

Nos últimos anos a tecnologia e as interações humano-máquina têm sofrido uma

evolução exponencial e com grandes desenvolvimentos. Com estes desenvolvimentos e

integração dessas tecnologias no dia a dia vem uma mudança natural na vida quotidiana,

uma zona onde podemos observar estas mudanças é na cozinha.

Um dos objetivos da tecnologia é o de facilitar tarefas ou fazê-las por completo, com o

ritmo cada vez mais acelerado com que a sociedade vive, tornou-se numa necessidade re-

duzir o tempo desperdiçado nas mais diversas áreas. Esta dissertação surge com o objetivo

de reduzir esse tempo desperdiçado a cozinhar, sendo esta uma tarefa que necessita de

algum tempo, tempo esse que poderia ser utilizado para lazer. Apesar de existirem já al-

gumas soluções implementadas, existem ainda alguns problemas que acabam por limitar

a possibilidade de uma ausência total do utilizador, as que permitem esta ausência, não

permitem qualquer alteração por parte do utilizador na receita, após inciar o processo.

De forma a solucionar estas questões, foi desenvolvido um dispensador automático nesta

dissertação, o objetivo deste dispensador é o de dispensar ingredientes para uma dada

receita, esta receita é dada pela máquina principal à qual este dispensador deve ser co-

nectado, e da qual deve ser um modulo. O desenvolvimento desta dissertação começou

por analizar as soluções já exisentes e identificar os seus maiores problemas, e a partindo

destes, definir arquiteturas de software e hardware que respondem da melhor forma aos

mesmos, de modo a obter uma melhor solução final em que o utilizador possa confiar.

Palavras-chave: Robô de cozinha, Dispensador Automático, Controlo.

ix

Contents

List of Figures xiii

List of Tables xv

1 Introduction 1

1.1 Context and Motivation . 1

1.2 Main project . 2

1.3 Dissertation Objectives . 3

2 Related Work 5

2.1 Current Existing Solutions . 5

2.1.1 Recipe Following Solutions . 5

2.1.2 Kitchen Robots . 6

2.1.3 Autonomous Kitchens . 8

2.2 Under Development Work . 10

2.3 Unsolved Problems . 13

2.4 Used Technologies . 13

2.4.1 Fuzzy Control [23] . 13

2.4.2 ROS [14] . 20

2.4.3 Node-Red [13] . 22

2.4.4 Behaviour Trees [7] . 24

3 Automatic Dispenser 27

3.1 Software Architecture . 27

3.2 Hardware . 29

3.3 Software . 33

4 Experimental results 41

4.1 Complete System . 44

4.2 Velocity controller . 50

5 Conclusions 53

5.1 Future Work . 54

xi

CONTENTS

Bibliography 57

xii

List of Figures

2.1 CookingNavi[1] . 6

2.2 MimiCook . 6

2.3 Kitchen Robots Examples . 7

2.4 OneCook . 7

2.5 Sereneti Kitchen[8] . 8

2.6 Flippy[4] . 8

2.7 Spyce[9] . 9

2.8 Prometheus [18] . 9

2.9 Moley [24] . 10

2.10 Autonomous Robot in Aware Kitchen . 11

2.11 Control algorithm for estimation of nitrogen and addition of urea 12

3.1 Software Architecture with all the modules and their direct connections . . . 27

3.2 Hardware components connections diagram 29

3.3 Solid ingredients dispenser on the platform 30

3.4 Liquid ingredients dispenser on the platform 30

3.5 Arduino and DRV8825 stepper motor driver connections 31

3.6 DC motor dispenser 3D model . 31

3.7 Stepper motor dispenser prototype . 32

3.8 Software Architecture with all the modules, connections and services 33

3.9 Recipe sequence chart . 36

3.10 Reset revolver sequence chart . 37

3.11 Empty sequence chart . 38

3.12 Refill sequence chart . 39

3.13 Dispense sequence chart . 40

4.1 Rubber tube in the rotative platform from an outside container 42

4.2 Pump connected to outside container . 42

4.3 Side view of the solids dispenser, showing the exit of the ingredients and the

endless screw . 43

4.4 Rotative platform with dc motor dispensers 44

4.5 Components connections . 45

4.6 Pump and stepper motor . 45

xiii

List of Figures

4.7 Solid ingredients dispenser with stepper motor 45

4.8 Salt drop graph . 47

4.9 Pepper drop graph . 47

4.10 Velocity output with smallest of maximum defuzzifier 51

4.11 Velocity output with mean of maximum defuzzifier 51

4.12 Velocity output with center average defuzzifier 52

xiv

List of Tables

4.1 Test results for salt using dc motors . 46

4.2 Test results for pepper using dc motors . 46

4.3 Olive Oil test results using dc motors . 46

4.4 First test results for Salt with stepper motors 48

4.5 Salt test results for stepper motors after adjustments 49

4.6 Pepper test results for stepper motors after adjustments 49

4.7 Olive Oil test results . 49

4.8 Olive Oil test comparison . 49

4.9 Salt test comparison . 50

4.10 Pepper test comparison . 50

xv

C
h
a
p
t
e
r

1
Introduction

1.1 Context and Motivation

In the recent years, technology and Human-Machine-Interaction have seen an exponential

evolution with great developments. With this in mind, it is now possible to see that every

aspect in quotidian life is changing, like cooking. Cooking is also a field where technology

can be implemented to make the process easier, making it more automated and helping

through some steps of it, possibly doing it entirely on its own. One of the main purposes

of technology is to help or simplify a user’s task, automating it completely or to a certain

point. Nowadays with life’s increased pace, everyone wants to decrease as much waste as

possible, and so, every option that accelerates a process or releases the user of it is taken

into consideration as to free as much time as possible.

It is then important to look at everything that consumes this time we want to free, with

cooking being one of these time consuming tasks. We must look into every part of the

process to understand where to implement technological changes and provide as much

support as possible to the user. We can split the cooking process into different steps and

implement different solutions for each one, some of these steps might be, getting the

recipe, food preparation beforehand, food processing and so on. Currently, every time we

want to cook something we have to be present, to prepare the ingredients, to put them in

the right order or to change plates between steps.

Each of this tasks require most of our attention, we need to check the time of every action,

put the right quantity of ingredients and try not to miss any detail to get the desired

final result. For that we may use some help from the technological solutions available for

each step, for example, to find and follow a recipe there are already some implemented

technologies that may help in this process, by audiovisual means they make it easier to

know what and when to do every action with precision during the whole process. It is

1

CHAPTER 1. INTRODUCTION

also possible to get most of the process automated, either by getting a kitchen robot or

a full autonomous kitchen. The first option contains and provides a variety of tools and

programs, to do some specific processes simplifying the ingredients preparation and food

confection. In the last one the kitchen is closed during the process to prevent any harm

to the human and there is no need for human inputs, making it possible not only to be

totally absent but it also releases the user of the need to know anything about the recipe.

1.2 Main project

As explained in the previous section, technology is already implemented into food prepa-

ration, as such, kitchen robots are increasingly used appliances, either at home or at work,

to ease the meal preparation process. With this in mind, the project in which this dis-

sertation is inserted, aims to research and develop new advanced technological solutions.

The solutions are to be applied in kitchen robots in order to develop an equipment which

is the main hub of the kitchen, and to reach that goal features linked to the following

solutions will be implemented:

1. Interface and connectivity;

2. Nutritional intelligence;

3. Food replenishment and traceability;

4. Sensing and automation;

5. Analytical intelligence for equipment management.

This project aims to support the research and technological development associated to the

innovations foreseen in the short term, and contribute decisively to the future of kitchen

robots, in order to anticipate technological trends and the demands of new consumers

/ users, and start to explore the potential that can be implemented in the medium and

long term. Future kitchen robots generations will be sustained in a new and completely

different approach, in a way that they can be used and understood by the consumer, may

it be a professional or an amateur.

There are already some predicted functionalities for the future of this robots. The develop-

ment of an app to make it possible to operate the machine from afar, provide information

about the cost, the time taken to prepare the meal, the nutritional information and more.

Making it a connected machine is also a possible solution, this will ease the after sale

costumer experience, with over the air updates made autonomously that reduce mainte-

nance/repair cost and time.

It’s intention of this project that the solution developed contribute to simplify the meal

preparation process, making the robot able to operate more independently and reducing

the time that the user needs to spend during the process. To achieve that, the machine

will have an automatic dispenser module that can be added to the main frame of the

2

1.3. DISSERTATION OBJECTIVES

machine.

This module pretends to release the user of the tedious task of monitoring and control-

ling every phase of the process while providing at the same time, the option to change

any desired aspect of the meal, this will let the user decide whether he wants to abstract

himself of all the process or to give some personal modifications.

1.3 Dissertation Objectives

As mentioned before, technology is impacting every aspect in life, one of the fields where

this is happening is in the kitchen, we already took a look into the project in which this

dissertation is inserted and its proposed solutions and problems, with this in mind the

objectives of this dissertation were defined. This dissertation consists in designing and

building an automatic dispenser for a kitchen robot.

This automatic dispenser will have more quantity and variety of ingredients, with par-

ticular attention to the seasoning, it will be flexible, in a way that lets the user manage

and modify the recipe during the confection, making use of the available sensors and

user preferences. It will be modular, which means it can be added to the machine later

and only if the user finds it useful, and will be controlled making use of scales , motors

and controllers that to measure and process data in order to develop the better answer to

what is requested.

3

C
h
a
p
t
e
r

2
Related Work

In this section we will look into the current existing solutions, as to understand what is the

current status of the problem at hand, as well as under development projects, this way it

will be possible to understand how to better develop our final solution. The technologies

that will be used will also be explained in this section, since they are a part of what is

already implemented, even if not in these particular applications.

2.1 Current Existing Solutions

We will now look into different kinds of solutions that are already implemented, these

solutions will be split into three different groups based on their autonomy level, we look

into their differences and problems, and understand where does the solution proposed in

this dissertation fit.

2.1.1 Recipe Following Solutions

Since the main purpose of this project is to ease the cooking process and all its tasks,

it’s wise to consider every type of help that’s possible to provide, for example, providing

help during the recipe following. During this process the user has to be capable of giving

attention to every detail in the recipe as well as execute every step with precision, there

are already some implemented solutions with this in mind:

1. Cooking Navi[1]: Cooking Navi it’s an application developed as a cooking naviga-

tion system, the main objective of this application is to guide the user during the

cooking process. To guide him through all the steps of the recipe, it makes use of

not only text recipes, but also audio and video guides with the purpose of releasing

the user of the struggle from trying to read an heavy text while focusing on cooking.

5

CHAPTER 2. RELATED WORK

It also offers the possibility of cooking various recipes in parallel based on a flow

chart system.

Figure 2.1: CookingNavi[1]

2. MimiCook[20]: This system, although with a different method, has the same goal

as the previous one, to help the user through the cooking process, guiding him

through all the steps of the recipe. It provides an Augmented Reality environment

making use of a computer, a depth camera, a projector and a scaling device. By

using this setup recipes are embodied in the cooking area, using the depth camera

to check if the user is making everything correctly, like using the right objects. With

the projector it is possible to draw guidelines and signal the next object or step, it

is also possible to show a scale projected onto the table using the information from

the scaling device that shows the user when the desired weight is reached, making

it easier to follow the recipe without errors.

Figure 2.2: MimiCook

2.1.2 Kitchen Robots

The main reason for the use of kitchen robots is to automate the process of cooking and

release the user from the stress of preparing the meal or knowing how to make it. While

the objective of this project is to improve the kitchen robots even further, making it

possible for the user to be absent while the robot cooks, there are already some solutions

proposed that still need the interference of the user, some of the most relevant are:

6

2.1. CURRENT EXISTING SOLUTIONS

1. Yämmi [25], Bimby[3], KenWood Cooking Chef [5], LadyMaxx [17], Chef Ex-

press[6]: The Five of them are kitchen robots designed with some of the main

functions needed to assist a cooker. They make use of a collection of tools, options

and accessories provided by the machines, there is also the possibility of buying ad-

ditional accessories to get even more options. Some of them have a recipe database

adapted to the specific use of that robot, in which, each recipe consists in guiding

the user through the use of the robot, changing between buttons and tools used in

each step and the ingredients needed to add. The user has to be part of the process

and needs to be present for most of the time.

(a) Yämmi (b) Bimby (c) KenWood Cook-
ing Chef

(d) LadyMaxx (e) Chef Express

Figure 2.3: Kitchen Robots Examples

2. OneCook[15]: OneCook it’s also a kitchen robot, but instead of having a recipe

database that guides the user through the use of the machine and the ingredients

to use, it cooks the meal by itself. This robot only needs ingredients prepared

previously and stored in specified containers, it also allows you to buy food packages

with all the needed ingredients ready to put into the machine. This makes this

preparation the only moment in which the user needs to be present.

Figure 2.4: OneCook

7

CHAPTER 2. RELATED WORK

3. Sereneti Kitchen[21]: Like the previous one, this robot cooks the meal by itself

and doesn’t need any external inputs during the cook process. It only needs previ-

ously prepared ingredients that are stored by order of use in containers inside the

machine, after storing these ingredients the user can use an app to schedule the

preparation of the meal without being there to start it manually, however this robot

offers a limited set of recipes as the only tool it has is a rotative robotic arm.

Figure 2.5: Sereneti Kitchen[8]

4. Flippy[10]: Flippy is a different way of looking at the kitchen robots, instead of

being designed to help the user cook a lot of dishes, it is designed to do a specific

function, in this case being flip burgers. It needs constant monitoring of a human,

as an helper in this specific task, it’s a system composed by a control panel and a

robotic arm with a flipping tool made of different materials.

Figure 2.6: Flippy[4]

2.1.3 Autonomous Kitchens

Apart from kitchen robots or recipe following helpers, there are already some solutions

regarding autonomous kitchens. In those solutions the goal is to make the cooking process

8

2.1. CURRENT EXISTING SOLUTIONS

completely automated, without the need of human inputs, after getting the instructions

for the desired meal these kitchens cook by their own. Some examples are the follow:

1. Spyce[22]: Spyce is the name of a restaurant in Boston in which all the meals are

cooked by an autonomous kitchen. It was developed by MIT students with the goal

of lowering the meal price. This system works by having a conveyor that gets the

ingredients out of the warehouse in the right amounts, putting them in bowls that

rotate while cooking. These bowls are placed in a way that lets the customers see

their meal being prepared, without the need of external inputs, except in the final

steps, like plate presentation.

Figure 2.7: Spyce[9]

2. Prometheus[16]: Prometheus is an autonomous kitchen, but unlike the previous

one, it’s not built to serve in a restaurant, instead, it works in an area like a con-

ventional kitchen. Having the recipes and actions programmed into it, it can cook

the entire meal all by itself, it has a robotic arm ready to use all the necessary tools

adapted to it, and another one which acts like a support for recipients. This way,

with the recipes prepared to be followed by this kitchen alone, it can prepare full

meals without any intervention by humans.

Figure 2.8: Prometheus [18]

9

CHAPTER 2. RELATED WORK

3. Moley[11]: Moley is an autonomous kitchen, and like the previous one, it works in a

closed environment where the human cannot interfere or customize anything. This

kitchen also works with robotic arms, but in this case, the arms are not specifically

used to hold or be tools as they resemble human arms. The recipes are made for

this kitchen using sensors to record human actions, like wrist movement sensors.

This makes it possible for this kitchen to use it’s arms to redo every single step, and

prepare the meal in the exact same way as the person used to record the process.

Figure 2.9: Moley [24]

2.2 Under Development Work

In this section we will look into under development projects that are in some way linked to

kitchen automation, being it by autonomous kitchens, kitchen robots, control algorithms

or architectures and explain how they work.

1. Intelligent Kitchen: Cooking Support by LCD and Mobile Robot with IC-Labeled

Objects[12]: This kitchen’s objective is to help the user through the cooking process

by trying to predict his next move. By making use of a set of sensors, this system is

capable of observe actions and record them, treating them as a0, a1, a2... (Action 0,

Action1, Action 2...), and records a series of actions as action pattern p0=a0, a4, a3.

The IC Labels on the objects provide information such as the object in which it is

attached and where it is, with this it is possible to know if, for example, the human

took a cup out of the cupboard. It then uses the PrefixSpan algorithm, which usage

is to discover sequential patterns in sequence databases, to extract this recorded

patterns and then foresee the next most probable move, based on the number of

occurrences of a given action, after the previous one, on the whole set of recorded

action patterns.

It’s also possible to treat some actions as noise in a pattern, this mechanism is imple-

mented to deal with the redundancy of human behaviour. If the probability of this

10

2.2. UNDER DEVELOPMENT WORK

action is greater than the established threshold the system points out this action for

the user to follow.

2. Autonomous Robot in Aware Kitchen[19]:This project aims to develop intelligent

service robots that operate in standard human environments. Its goal is to enable

a robot to do, like humans, all sensing, deliberation and action selection on board.

Making use of the concept of ubiquitous robotics, which is the combination of obiq-

uitous computing with intelligent perception and control. Computing is obiquitous

when computing devices are distributed and embedded invisibly into the objects of

everyday life.

By equiping a normal kitchen with sensors and RFID tags, it’s transformed into an

AwareKitchen. The kitchen observes and learns, through the sensors, how to do a

process by recording information from a human doing it, to then create an activity

model. The robot learns from these models and use them as resources to learn

high-performance action routines. Making it possible to record human routines

and apply that knowledge to the robot to get the desired tasks done.

This robot can perceive what’s inside a cupboard the same way it perceives what is

in its hand, by reading the information gathered by the sensors. During the process,

the robot knows he has to take that specific cup, it then receives the information

from the sensors to know where the cup is and to get it. This gives the robot the

autonomy to take on a task without human intervention.

Figure 2.10: Autonomous Robot in Aware Kitchen

11

CHAPTER 2. RELATED WORK

3. Automatic fertilizer dispenser[2]: This research proposes a solution to maintain

soil fertility with nitrogen, phosphorous and potassium , by measuring the amount

of nutrients present and provide them.The presence and quantity of nutrients is

measured through sensors and chemical processes, and used to choose a suitable

fertilizer.

The main system can be splitted into three main parts: sensor system, microcon-

troller and dispensary system. It is then divided into two subsystems: Sensor system,

to estimate the presence of nutrients in the soil, and an intelligent system for esti-

mation and control of the required amount of fertilizers.

Since this project is not related to kitchen areas, our main focus will be in the dispen-

sary system, this system controls the flow of fertilizers to the soil. To measure the

quantity of nutrients needed, a table is used to set the set the amount of nutrients

depending on the soil fertility rate, setting levels as low, medium and high. The dis-

pensary system consists of containers to store the fertilizers, a mixer compartment

to collect them, valves and relays. Selenoid valves operated by relays are used to

control the flow of fertilizers from the storage compartment to the mixer and from

the mixer to the soil.

The algorithm for estimation of the three fertilizers is similar and can be shown by

the diagram below. The addition of the fertilizer works by means of the ON time

of a valve, where ’t0’ is the opening time in seconds to add maintenance dosage

of the fertilizer, i.e. when the nutrient levels are within the limits. When there is

high nutrient levels the used time is ’t0-t1’ for a reduced valve opening time. If the

nutrient level is low, the time used is ’t0+t2’ for an increased valve opening time.

Figure 2.11: Control algorithm for estimation of nitrogen and addition of urea

12

2.3. UNSOLVED PROBLEMS

2.3 Unsolved Problems

If we take a closer look into every solution explained in the previous section, it’s possible

to spot some problems yet to be solved, some steps where these solutions do not apply

or pose a problem to the implementation of any change desired by the user. In terms of

autonomy and time release from the user, the least optimal solutions would be the recipe

following helpers. While they help the user during this task, and contribute to the good

quality of the meal, thanks to the help provided by these applications to do every action

as described in the recipe, their only function is to guide the user. This means that the

user as to be present, and not to interfere punctually but to be the main actuator in the

process.

On the other hand, the autonomous kitchens are the complete opposite, these solutions

offer the most time saving ability by working in a closed environment. In this environment

the process is entirely automated and user input free, as a down side, they also make it

harder or impossible to adjust some step in the recipe or to change it completely to match

the like of the user. Between these two extremes we have the kitchen robots, depending

on the chosen machine it’s possible to have more or less tools at our disposition, and with

this choice the time saving ability changes as well.

However, independently of which is the chosen machine, user inputs are always necessary

at some time, may them be by preparing the food beforehand, by needing to time a process

or by putting the ingredients in the machine at the right time. All of these actions while

permitting some adjustment in the recipe for the user to get the exact meal he wants, also

require the user to spend time at some point of the process, this makes it impossible to

be totally absent during the process which is the ultimate goal.

2.4 Used Technologies

This section will present the technologies used in the development of this dissertation,

the control algorithm for the velocity controller, the model used for decision making and

the tools for software implementation and hardware integration. We will take a look

into these technologies and we will also understand were they chosen to implement this

solution.

2.4.1 Fuzzy Control [23]

As the main goal of this solution is to dispense the given ingredients, a way to improve its

efficiency is to implement a velocity controller, the motor velocity should be optimised

depending on the weight that’s required, the one that’s left to drop as well as the one

already dispensed, if we look into the evolution of the dropped weight, it is not linear, as

the ingredient can be clustered, or have empty spaces in the container. To overcome this

drawbacks, a nonlinear controller is required as to better answer to the situation at hand,

for this dissertation, the chosen algorithm is the fuzzy control algorithm.

13

CHAPTER 2. RELATED WORK

Fuzzy control is non linear control algorithm, based on a set of rules and actions depend-

ing on them. A rule works as an IF-THEN statement and the words used to qualify the

inputs and outputs are characterised by membership functions. We can take the next

sentence as an example, "IF speed is low, THEN apply more force to the accelerator", in

this sentence the words "low"and "more"are characterised by the membership functions.

The starting point for the construction of a fuzzy system is to obtain a collection of fuzzy

IF-THEN rules, and bring them together in a single system, either from human experts

or based on domain knowledge. There three types of fuzzy systems that are commonly

used, pure fuzzy systems, Takogi-Sugeno-Kang(TSK) and fuzzy systems with fuzzifier

and defuzzifier.

1. Pure fuzzy systems:In this systems the basic configuration is purely done by IF-

THEN rules. The fuzzy inference engine then combines these fuzzy rules a mapping

from input fuzzy sets to output fuzzy sets, based on fuzzy logic principles (these

sets are words in natural language). The problem of this method is that the rules

are purely made from natural language whereas in engineering systems the inputs

and outputs are valued variables;

2. Takogi-Sugeno-Kang(TSK):To solve the previous method problem, this one uses

if-then rules in a different way, by introducing real values. Instead of using only

natural language, this method gives actual values to the inputs or output, for exam-

ple, "IF something is high THEN output is x", where x is an actual value instead of

a natural word like "high".

The problems in this system are related to the use of actual values. When one of the

parts of the rule is a mathematical formula it may not provide a natural framework

to represent human knowledge. And not only that, but thanks to this, there is not

much freedom left to apply different principles in fuzzy logic, and so the versatility

of fuzzy systems is not well represented in this framework;

3. Fuzzy systems with fuzzifier and defuzzifier:In order to solve the problems posed

to the previous systems, there is a third method which consists in adding a fuzzifier

and a defuzzifier to the system. The fuzzifier transforms a real valued variable into

a fuzzy set to the input, and the defuzzifier transforms a fuzzy set into a real valued

variable for the output. This makes it possible to maintain the freedom level of the

system while obtaining the desired behaviour for the system.

As we can see, the last system is built in order to solve the problems posed by the

previous ones, as such, the one we will be using is the fuzzy system with fuzzifier and

defuzzifier.

14

2.4. USED TECHNOLOGIES

2.4.1.1 Membership Functions

As explained before, fuzzy systems are not as fuzzy as their name, the membership func-

tions used to transform words into actual values have to be calculated, as such, in this

subsection we will explore this process. There are various ways of representing a set

and its members, we can list every element of that set or specify some conditions that

represent the given set, therefore telling us if the element we are looking at is a part of

that set or not:

A = {x ∈U‖x meets some conditions} (2.1)

There is yet another method called membership method. This method introduces

a membership function, denoted by µA which output is either 1 or 0 if the element is

respectively part or not of the set:

µA(x) =

1 if x ∈ A

0 if x < A
(2.2)

In the previous sub section we talked about the utilisation of fuzzy sets in order to

use real valued variables in fuzzy logic. A fuzzy set is characterised by a membership

function (µA) that instead of taking only the values of 1 or 0, takes values in the interval,

[0,1]. For example, if we want to evaluate if a number is close to 0, we can either set a

threshold to consider this number close or not, making the output 0 or 1 depending on

that value.

Another way to do this is to set a fuzzy set with a membership function that gives us how

close is the value to 0. The fuzziness of a fuzzy set is mainly because the properties used

to characterise it are usually fuzzy, for example, the numbers close to 0 can be evaluated

in different ways.

With this in mind we can set different membership functions to characterise the same

description, the equations below both describe numbers close to 0, the first one defines it

as a triangular function while the second one defines it as a Gaussian function:

µA(x) =

0 if x < −1

x+ 1 if − 1 ≤ x < 0

1− x if 0 ≤ x < 1

0 if 1 ≤ x

(2.3)

µA(x) = e−x
2

(2.4)

There are two approaches to define a membership function, we can either use the

knowledge of human experts, or use data collected from various sensors to determine it.

In both approaches we first define the structures off the membership functions and then

fine tune the parameters based on the collected data. After defining these functions, we

15

CHAPTER 2. RELATED WORK

need to use a fuzzy inference engine, this engine uses fuzzy logic principles to combine

the fuzzy logic if-then rules into mapping from the fuzzy set A in U to a fuzzy set B in

V.In order to use this membership functions as inputs and outputs we need to use and

understand fuzzifiers and defuzzifiers.

2.4.1.2 Fuzzifiers

To transform a real valued variable into a membership function in a fuzzy set we need a

fuzzifier.

There are some criteria to design this fuzzifier, at first, the fuzzifier should consider

a point x∗ where it has a large membership value. Second, If the input to the system

has noise, it is important that the fuzzifier helps to suppress this noise. And third, the

fuzzifier should help to simplify the computations made in the fuzzy inference engine.

We will now look into three types of fuzzifiers:

1. Singleton fuzzifier:This fuzzifier works in a way similar to a truth or false state-

ment, it maps a real valued point x∗ ∈U into a membership function which value is

1 at x∗ and 0 at all other points in U:

µA =

1 if x = x∗

0 otherwise
(2.5)

2. Gaussian fuzzifier:The Gaussian fuzzifier maps x∗ ∈ U into a fuzzy set which has

the Gaussian membership function

µA(x) = e−(x1−x1
∗

a1
)2

? ... ? e−(xn−xn
∗

an
)2

(2.6)

where ai are positive parameters and the ? is usually chosen as algebraic product or

min. The greater the value of ai , the greater the noise cancelling ability;

3. Triangular fuzzifier:This fuzzifier maps x∗ ∈ U into a fuzzy set which has the fol-

lowing triangular membership function

µA(x) =

(1− |x1−x1
∗|

b1
) ? ... ? (1− |xn−xn

∗|
bn

) if |x1 − x1
∗| ≤ bi , i = 1,2, ...,n

0 otherwise
(2.7)

where bi are positive parameters and the ? is usually chosen as algebraic product or

min. The greater the value of bi , the greater the noise cancelling ability.

We can make the following remarks about the three fuzzifiers:

1. The singleton fuzzifier greatly simplifies the computation involved in the fuzzy

inference engine for any type of membership functions;

16

2.4. USED TECHNOLOGIES

2. If the membership functions of the fuzzy rules are Gaussian or triangular, the Gaus-

sian or triangular fuzzifiers, respectively, also simplify the computation in the infer-

ence engine;

3. The Gaussian and triangular fuzzifiers can suppress noise in the input, but the

singleton cannot.

Depending on the membership functions defined, we may choose different fuzzifiers,

to implement the one that best applies to the solution at hand.

2.4.1.3 Defuzzifiers

To get a useful and understandable output, it’s needed to transform the membership

function into a real valued output, to do this, we use a defuzzifier.

The defuzzifier is defined as a mapping from fuzzy set B in V ⊂ R which is the output

from the inference engine. The task of the fuzzifier is to specify a point in V that best

represents the fuzzy set B’(which is the union or intersection of M fuzzy sets). There is a

number of choices to determine the representing point. When choosing a defuzzification

scheme the following three criteria should be taken into consideration:

1. Plausibility: The point y* should represent B’ from an intuitive point of view, for

example, in the middle of the support of B’, or has a high degree of membership in

B’;

2. Computational simplicity: This is an important criterion to achieve a real-time

operation which is needed in fuzzy controllers;

3. Continuity: A small change in B’ should not result in a large change in y*.

Next, with this criteria in mind, three types of defuzzifiers are proposed:

1. Center of gravity defuzzifier: This type of defuzzifier specifies y* as the center of

the area covered by the membership function, that is,∫
V
yµB′ (y)dy∫
V
µB′ (y)dy

(2.8)

where
∫
V

is the conventional integral.

If we take µB′ (y) as the probability density function of a random variable, this de-

fuzzifier gives the mean value of the random variable. It is also possible to eliminate

the y ∈ V , whose membership values are too small, getting Vα defined as

Vα = {y ∈ V |µB′ (y) ≥ α} (2.9)

and α is a constant. While this defuzzifier has an intuitive plausibility it is also

computationally intensive.

17

CHAPTER 2. RELATED WORK

2. Center average defuzzifier:As B’ is a union or intersection of M fuzzy sets, a good

approximation of 2.8 is the weighted average of the centers of M fuzzy sets. Let ȳl

be the center of the l’th fuzzy set and wl be its weight, this defuzzifier determines

y* as

y∗ =
∑M
l=1 ȳ

lwl∑M
l=1wl

(2.10)

This is the most commonly used defuzzifier. It is computationally simple and intu-

itively plausible.

3. Maximum defuzzifier: This defuzzifier chooses y* as the point in V at which µB′ (y)

achieves its maximum value. Defining the set

hgt(B′) = {y ∈ V |µB′ (y) = sup
y∈V

µB′ (y)} (2.11)

y∗ = anypointinhgt(B′) (2.12)

The mean of the maximum fuzzifier is

y∗ =

∫
hgt(B′) ydy∫
hgt(B′)dy

(2.13)

The maximum defuzzifiers are intuitively plausible and computationally simple.

However, small changes in B’ may result in large changes in y*.

We may choose the defuzzifier that applies the best to our needs, evaluating each one.

2.4.1.4 Inference Engine

As explained at the start of this section, inference engines are used to map inputs and

outputs in their respective fuzzy sets. To do this there are some commonly used formulas

to define the outputs from A’ to B’:

1. Product inference engine:

µ′B(y) =
M

max
l=1

[sup
X∈U

(µA′ (x)
n∏
i=1

µAti (xi)µB′ (y))] (2.14)

2. Minimum inference engine:

µ′B(y) =
M

max
l=1

[sup
X∈U

min(µA′ (X),µAl1(x1),µAl2(x2), ...,µAln(xn),µBl (y)) (2.15)

This two inference engines are the most commonly used for fuzzy control systems, their

main advantage is their computational simplicity. However, as a disadvantage is the fact

that if at some x ∈ U the µAli (xi)’s are very small, then the µB′ (y) will be very small. The

next three fuzzy inference engines overcome this problem.

18

2.4. USED TECHNOLOGIES

1. Lukasiewicz inference engine:

µ′B(y) =
M

min
t=1
{sup
X∈U

min[µA′ (X),1−
n

min
i=1

(µAli (xi)) +µBl (y)]} (2.16)

2. Zadeh inference engine:

µ′B(y) =
M

min
l=1
{sup
X∈U

min[µA′ (X),max(min(µAl1(x1), ...,µAln(xn),µBl (y)),1−
n

min
i=1

(µAli (xi)))]}

(2.17)

3. Dienes-Resher inference engine:

µ′B(y) =
M

min
l=1
{sup
X∈U

min[µA′ (X),max(1−
n

min
i=1

(µAli (xi)),µBl (y))]} (2.18)

If we take a look into the inference engines shown previously, we can see some differ-

ences between the two groups. If the membership value of the input at point x* is very

small, then the product and the minimum inference engines give very small membership

values. Whereas the Lukasiewicz, Zadeh and Dienes-Resher inference engines give very

large membership values. It is also important to keep in mind that the product inference

engine gives the smallest output while the Lukasiewicz inference engine gives the largest

membership value, the other three inference engines are in between.

19

CHAPTER 2. RELATED WORK

2.4.2 ROS [14]

ROS is an open-source, meta-operating system for robots. It provides the services you

expected from an operating system, including hardware abstraction, low-level device

control, implementation of commonly-used functionality, message-passing between pro-

cesses, and package management. It also provides tools and libraries for obtaining, build-

ing, writing, and running code across multiple computers. Some of the issues in the

development of software for robots where ROS can help are:

1. Distributed computation, many modern robot systems rely on software that spans

many different processes and runs across several different computers, for example,

Some robots carry multiple computers, each of which controls a subset of the robot’s

sensors or actuators, or when multiple robots attempt to cooperate on a shared

task, they often need to communicate with one another to coordinate their efforts.

The common thread through these cases is a need for communication between

multiple processes that may or may not live on the same computer. ROS provides

two relatively simple, seamless mechanisms for this kind of communication

2. Software reuse, the rapid progress of robotics research has resulted in a growing

collection of good algorithms for common tasks such as navigation, motion plan-

ning, mapping, and many others. Of course, the existence of these algorithms is

only truly useful if there is a way to apply them in new contexts, without the need

to reimplement each algorithm for each new system.

3. ROS’s standard packages provide stable, debugged implementations of many im-

portant robotics algorithms.

4. Its message passing interface is becoming a standard for robot software interop-

erability, which means that ROS interfaces to both the latest hardware and to im-

plementations of cutting edge algorithms are quite often available. This sort of

uniform interface greatly reduces the effort to connect different blocks of code.

5. Rapid testing, one of the reasons that software development for robots is often more

challenging than other kinds of development is that testing can be time consum-

ing and error-prone. Physical robots may not always be available to work with,

and when they are, the process is sometimes slow and finicky. Working with ROS

provides two effective workarounds to this problem.

ROS systems separate the low-level direct control of the hardware and high-level

processing and decision making into separate programs. Because of this separation, we

can temporarily replace those low-level programs (and their corresponding hardware)

with a simulator, to test the behaviour of the high-level part of the system.

ROS also provides a simple way to record and play back sensor data and other kinds

of messages. This facility means that we can obtain more leverage from the time we do

20

2.4. USED TECHNOLOGIES

spend operating a physical robot. By recording the robot’s sensor data, we can replay it

many times to test different ways of processing that same data. In ROS, these recordings

are called “bags” and a tool called rosbag is used to record and replay them.

Next we will be looking into some of ROS basic concepts:

1. Packages: All ROS software is organized into packages. A ROS package is a collec-

tion of files, generally including both executables and supporting files, that serves

a specific purpose. Each package is defined by a manifest, this file defines some de-

tails about the package, including its name, version, maintainer, and dependencies.

The directory containing package.xml is called the package directory. (In fact, this

is the definition of a ROS package, any directory that ROS can find that contains a

file named package.xml is a package directory.

2. Nodes and Ros Master: A running instance of a ROS program is called a node. One

of the basic goals of ROS is to enable roboticists to design software as a collection

of small, mostly independent programs called nodes that all run at the same time.

For this to work, those nodes must be able to communicate with one another. The

part of ROS that facilitates this communication is called the ROS master. The

master should be running for the entire time that ROS is being used. Unlike killing

and restarting the master, killing and restarting a node usually does not have a

major impact on other nodes, even for nodes that are exchanging messages, those

connections would be dropped when the node is killed and reestablished when the

node restarts.

3. Topics and Messages: The primary mechanism that ROS nodes use to communi-

cate is to send messages. Messages in ROS are organized into named topics. The

way it works is as follow, a node that wants to share information will publish mes-

sages on the appropriate topic or topics, a node that wants to receive information

will subscribe to the topic or topics that it’s interested in. The ROS master takes

care of ensuring that publishers and subscribers can find each other, the messages

themselves are sent directly from publisher to subscriber.

4. Services: Even though messages are the primary method for communication in

ROS, they have some limitations, an alternative method of communication is called

service calls. Service calls differ from messages in two ways:

a) Service calls are bi-directional. One node sends information to another node

and waits for a response. Information flows in both directions. In contrast,

when a message is published, there is no response or guarantee that anyone is

subscribing to those messages;

b) Service calls implement one-to-one communication. Each service call is initi-

ated by one node, and the response goes back to that same node. On the other

21

CHAPTER 2. RELATED WORK

hand, each message is associated with a topic that might have many publishers

and many subscribers.

2.4.3 Node-Red [13]

Node-Red is a programming tool for wiring together hardware devices, API’s and online

services. It provides a browser-based editor that makes it easy to connect together flows

using the wide range of nodes in the palette that can be deployed to its runtime in a

single-click.

It is built on Node.js, taking advantage of its event-driven, non-blocking model, making

it ideal to run on low-cost hardware, such as the raspberry pi as well as in the cloud. As a

way to easely cooperate while developing, the created flows are stored in json, which can

be easily stored, imported and exported. Next we will explore some key concepts:

1. Flows: Node-red programs or flows are a collection wired together to exchange

messages. If we take a deeper look at it, a flow is a list of JavaScript objects that

describe the nodes and their configurations, as well as the list of downstream nodes

they are connected to, the wires;

2. Messages: As said in the previous point, messages passed between node in Node-

red are, by convention, Javascript Objects called "msg", consisting of a set of named

properties. These messages contain a payload which is often their main property,

although nodes can also attach other properties to a message, that may be used to

carry other information into the next node in the flow. Messages are the primary

data structure used in node-red and are, in most cases, the only data that a node has

to work with when it is activated. This ensures that a Node-RED flow is conceptually

clean and stateless, each node is self-contained, working with input messages and

creating output messages, this means that the effect of a node’s processing is either

contained in its output messages, or caused by internal node logic that changes

external things such as files, IO pins on the Raspberry Pi or Dropbox files; there

are no side effects that could affect the behaviour of other nodes or subsequent

calls to the same node. This is one of the key advantages of a flow-based language.

Because nodes are self contained and typically only interact with other nodes using

messages, you can be sure that they have no unintended side effects and so can be

safely re-used when you create new flows. To safely re-use these blocks of code it is

only needed to use a copy of the initial node.

3. Nodes: Nodes are the primary building block of node-red flows. When a flow is run-

ning messages are generated, consumed and processed by nodes. Nodes consist of

code that runs in the node-red service and an HTML file consisting of a description

of the node, so that it appears in the node pane with a category, colour, name and an

icon, code to configure the node, and help text. Nodes can have at most one input,

and zero or more outputs. During the initialization process, the node is loaded into

22

2.4. USED TECHNOLOGIES

the Node RED service. When the browser accesses the Node RED editor, the code

for the installed nodes is loaded into the editor page. There are 3 core node types:

a) Input Nodes: Generate messages for downstream nodes;

b) Output Nodes: Consume messages, either to an external service or pin on a

device, or generate response messages;

c) Processing Nodes: Nodes that process data in some way emitting new or mod-

ified messages.

In addition to these core types, there are two more categories:

a) Credential Nodes: These are nodes that hold the credentials used by one or

more nodes to connect to an outside system or service, these are created when

it’s needed to configure a node that requires credentials such as an API key or

name and password. Once created, a credentials node can be reused by other

nodes of the same type to connect to similar protocols or services. Even when

all nodes that use those credentials are deleted from your flow, the credentials

node will remain, so it’s a good idea to remove unused credentials nodes when

they are no longer needed.

b) User Created Nodes: Programmable nodes such as function nodes, or sub-

flows are nodes created by you to do some custom work or reuse flow segments

in other flows.

4. Wires: Wires define the connections between node input and output endpoints in a

flow. They typically connect the output endpoints of nodes to inputs of downstream

nodes indicating that messages generated by one node should be processed by the

connected node next. Note that it is possible to connect more than one node to an

endpoint using wires. When multiple nodes are connected to an output endpoint,

messages are sent to each connected node in turn in the order they were wired to

the output. When more than one node output is connected to an input endpoint,

messages from any of those nodes will be processed by the connected node when

they arrive. It is also possible to connect downstream nodes to upstream nodes to

form loops.

5. Context: While generally messages are the only way to get data into and out of

nodes, there is one exception to this rule which is available to function nodes. func-

tion nodes have access to a special object called context that is used to hold data

in memory that lasts from one message arriving to the next[4]. This is important

for nodes that need to maintain an index or count or sum data in messages. In

addition to this local context, a global context context.global is available for sharing

data between all of the function nodes of a flow. Some use cases for context will be

covered when the function node is discussed in more detail.

23

CHAPTER 2. RELATED WORK

6. Function Nodes: The function node is a node that’s used when there is no existing

node dedicated to the task at hand. It’s used for doing specialised data process-

ing or formatting for example. As the name implies, a function node exposes a

single JavaScript function. Using the function node, it’s possible to write our own

JavaScript code that runs against the messages passed in and returns zero or more

messages to downstream nodes for processing. Function nodes are written using

the built-in code editor.

7. Sub-flows: As said in previous points, flows can be stored in nodes and become a

sub-flow. While it’s possible to save flow segments it’s much better to have them as

nodes, this a level of encapsulation and information hiding that importing saved

flows doesn’t offer. Encapsulation means that it is organised into a single node that

can be referred to using a single name, information hiding means that the inner

workings of the sub-flow are hidden, it’s possible to change how the sub-flow does

its job and the flows that use it will not change and don’t need to take that change

into account.

2.4.4 Behaviour Trees [7]

A Behaviour Tree is a mathematical model used to describe a plan or sequence of tasks.

Their main advantage is the capability to create very complex tasks composed of simpler

tasks that can be easily abstracted. Behaviour Trees are also very readable and easy to

understand and debug making them less error-prone than other approaches.Behaviour

trees can be pictured as usual trees, they start from the root and grow to the leafs, these

leafs and roots are nodes, and there are six types of nodes, four control flow nodes, Fall-

back, Sequence, Parallel and Decorator, and two execution nodes, Action and Condition.

The root is the node without parents, the nodes that don’t have children nodes are the

leafs, these nodes must be one of the execution type nodes, Action or Condition.

The execution of the behaviour tree works in a control loop and time steps, in each time

step of the control loop the root of the behaviour tree is ticked. This tick is then pro-

gressed down the tree according to the types of each node. Once a tick reaches a leaf

node, which is an action or condition node, the node makes the desired computation, pos-

sibly affecting some state or variable and then returns either success, failure or running.

This return status is then progressed up the tree, back to the root. If a running node does

no longer receive a tick, it has to stop (preempted). The stopping of a preempted action

is implemented by the halt procedure. Before advancing further into the explanation of

the behaviour tree, we will look into each type of node.

1. Fallback: Fallback nodes are used to find and execute the first child that does not

fail. This node will return immediately with a status code of success or running

when one of its children returns success or running. The children are ticked in

order of importance, from left to right.

24

2.4. USED TECHNOLOGIES

2. Sequence: As an opposite of the previous node, Sequence nodes are used to find

and execute the first child that has not yet succeeded. A sequence node will return

immediately with a status code of failure or running when one of its children returns

failure or running.

3. Parallel:The parallel node ticks its children in parallel and returns success if M <=

N children return success, it returns failure if N M + 1 children return failure, and

it returns running otherwise, where N is the number of children and M <= N is a

user defined threshold.

4. Decorator:The decorator node manipulates the return status of its child according

to the policy defined by the user, some common examples of this are, the decorator

retry which retries the execution of a node if it fails and the decorator negation that

inverts the success or failure outcome.

5. Action: An Action node performs an action, and returns Success if the action is

completed, Failure if it can not be completed and Running if completion is under

way.

6. Condition: A Condition node determines if a condition C has been met. Conditions

are technically a subset of the Actions, but are given a separate category to improve

readability of the behaviour tree and emphasize the fact that they never return

running and do not change any internal states or variables.

25

C
h
a
p
t
e
r

3
Automatic Dispenser

This chapter will explain how the automatic dispenser system will be implemented, we

will first look into the software architecture followed by the hardware architecture and

implementation and finally the software implementation. A diagram is shown in figure

3.1 as to show the connections between different software components, followed by an

explanation on their interactions, what data is sent and received in each component

and how is this data structured. For the hardware section, the physical behaviour of

the system will be explained, this behaviour includes how it is built, how the physical

system answers to the software instructions, and images that will show the full setup. The

software implementation will how the software works and how are the tasks processed,

making use of diagrams and sequence charts.

3.1 Software Architecture

This machine main goal is to follow a given recipe, going through every step in the list of

steps that constitute the recipe, as it is possible to see in figure 3.1.

Figure 3.1: Software Architecture with all the modules and their direct connections

27

CHAPTER 3. AUTOMATIC DISPENSER

The dispenser module can be splitted in some submodules, these modules are:

1. Dispenser Supervisor Behaviour Tree: when a task arrives, this module, making

use of the Behaviour Trees model, chooses which services must be used, these ser-

vices is chosen based on the task at hand. If the task at hand requires the system to

retrieve some information from the stored ingredients it has to communicate with

the Storage System;

2. Storage System: this module holds the information of the ingredients and their

container, this module can be used to either check an ingredient status, using the

CheckIngredient.srv, or to update the storage information, using the UpdateStor-
age.srv;

3. Dispenser System: this module handles all operations with the dispensers, if a task

requires an interaction with this system it must be done through the Dispense.srv.

This system is responsible for the control of the platform revolver and dispenser con-

tainers. It can receive "Dispense"requests for a given ingredient and dispenser ID

and sends commands to the motor controllers to activate for a certain time. When

there is a need to rotate the platform, either to reset it or to position another con-

tainer to dispense, this system uses the message type JointState, to send the desired

rotation to the Dispenser Revolver Controller, if what is needed is to dispense an

ingredient it will communicate with the Dispenser Controller Node-red flow;

4. Revolver Controller: when a message of the type JointState arrives this controller

it will actuate on the motor that’s responsible for the platform rotation;

5. Dispenser Controller Node-red flow: if the task arrives to this module trough the

service Dispense.srv, this flow will retrieve the ingredient and container information,

with this it will set the desired weight and will communicate with the arduino for

the motors to start. The arduinos are then responsible to stop that motor when the

weight is reached.

28

3.2. HARDWARE

3.2 Hardware

To understand the hardware implementation of this system we will start by looking at

the connections between the system components, these connections are shown in figure

3.2.

Figure 3.2: Hardware components connections diagram

As already said, the dispenser will be based on a rotative platform where the contain-

ers are placed, this platform can rotate so the right ingredient container stays above the

main container where the ingredients are to drop. The dispensers in the platform are

shown in the figures 3.3 and 3.4.

The rotation of the platform is handled by DC motors, this way, with the ROS im-

plementation, it is possible to set the angle of the motor rotation, and set the platform

position with precision, making it possible to correctly set the right container to drop or

to reset the platform to its original position.

There are two types of containers, the ones for solid ingredients and the ones for liquid in-

gredients. The solid type ones, are made in the shape of a box, with a hole on the opposite

for the ingredient to drop into the main container by means of an endless screw which

function is to push the ingredient through it. The liquid type ones are made through a

common container that can hold liquids and work by means of a valve, which pulls the

liquid out of its container to the main one, there is also a small container, in order to store

liquids that usually are required in less quantity, as can be seen in figure 3.4.

29

CHAPTER 3. AUTOMATIC DISPENSER

Figure 3.3: Solid ingredients dispenser on the platform

Figure 3.4: Liquid ingredients dispenser on the platform

30

3.2. HARDWARE

The solid type containers will have their endless screw attached to a stepper motor, this

way it is possible to control the velocity at which the screw rotates and consequently the

quantity and velocity at which the ingredient is provided. The liquid type containers will

also have a stepper motor attached to their valve, and in the same way as the other con-

tainers, this stepper motor can be controlled in order to control the velocity at which the

liquid is poured. These stepper motors are controlled through a DRV8825 stepper motor

driver, and these drivers are connected to arduinos, in order to set functions to control

their velocity. The arduino and drives connections as well as both solids dispensers, the

with the dc motor and the one with the stepper motor can be seen in the figures 3.5, 3.6,

3.7.

Figure 3.5: Arduino and DRV8825 stepper motor driver connections

Figure 3.6: DC motor dispenser 3D model

31

CHAPTER 3. AUTOMATIC DISPENSER

Figure 3.7: Stepper motor dispenser prototype

In addition, the main container will have a load cell, in order to track its weight so

that the motors can be controlled and it knows when to stop the process, this load cell

is connected to the raspberry pi by the means of an HX711 Module which amplifies and

converts the analog signal in order to make it readable to the raspberry pi. Finally every

arduino and DC motor will be connected to the main processor which is the raspberry pi,

where the ROS services and node-red flows are running.

32

3.3. SOFTWARE

3.3 Software

To better understand the software in this system we will look into the architecture shown

before, but this time with a little more detail as can be seen in figure 3.8, this figure while

similar to the one in the architecture section, it also shows the services and node-red flows

used during the system operation. This systems software is built based on two modules,

the dispenser supervisor behaviour tree and the dispenser system, one controls the flow

of operations and the other handles all dispense and revolver tasks. Both can be seen in

the diagram below.

Figure 3.8: Software Architecture with all the modules, connections and services

The process starts when a recipe is selected from the dropdown in the main machine,

when this recipe is selected, the list of steps which constitutes the recipe is set as the

operation flow, as explained before, a step is built of different parameters that depend on

the task at hand. If the task is other than the ones handled by the dispenser, for example

heating or mixing, the task is not sent to the dispenser supervisor, instead, it stays the

main machine controller, in order to execute it, these tasks can be, for example, heating or

mixing. If the task is one that the dispenser module can handle, it is sent to the dispenser

supervisor one step at a time through the ExecuteTasksrv, when the request is received by

the supervisor through the ExecuteTasksrv service it stores it in a queue.

The dispenser supervisor follows a behaviour tree algorithm, following nodes of the tree

with them returning success, running, or failure, defining the next step depending on

the return status of each node, this response is different depoending on the used control

node. This algorithm is used in order to get the next task and execute every step in the

most efficient way.

The supervisor continues to the get next task node, this node checks if the queue has any

pending task, if not, it keeps reentering the node and checking the queue until a new task

shows up, when a task shows up, it sets it as the next task and follows the nodes down

the tree. After explaining the way the flow of information and actions works, we can take

33

CHAPTER 3. AUTOMATIC DISPENSER

a closer look on how the services interact.

The Dispenser GUI Dashboard interacts with the Automatic Dispenser primarily through

two distinct services, ExecuteTask and ReportTaskCompletion. Additionally it also uses

Trigger and SetBool services in the Calibration process. The ExecuteTask service works as

a direct way to control the automatic dispenser and the ingredients within its containers.

There are four different types of tasks the dispenser can perform, Dispense, Refill, Empty
and Reset revolver. The following sequence charts and explanations reflect the flow of

each process.

To create a recipe the Yammy Controller must beforehand verify if the required ingre-

dients are available for the chosen recipe. In order to do that the CheckRecipe service

must be used. If an ingredient is either missing or in lower quantity than required for

the recipe the response will arrive with an ErrorId (UNSUFICIENTQTY/INGREDIENT-

MISMATCH) and an error message stating the origin of the error. If there is no error the

controller can then send an ExecuteTask (DISPENSE) stating the ingredients names and

quantities as they are required in the recipe. This process can be seen in the figure 3.9.

The first node the behaviour tree ticks is the “IsReset” node, to check if the request type is

Reset revolver, to reset the dispenser positions, if it is, it enters the "Dispense"node, which,

using the dispense service, sends a request to the dispenser system for the dispenser po-

sitions to be reset.This process can be seen in the figure 3.10. When that is not the case,

the next sequence branch checks if the request type is Empty, if so, it completely empties

the dispenser given in dispenser ID. The current quantity is set to 0 in the Storage System

and the dispenser is free and can be filled with other ingredients.This process can be seen

in the figure 3.11.

If that is not the request type, the next sequence branch starts by checking if the request

type is Refill, if so, it initiates the refill process. The quantity of a given ingredient is

added to the storage system, if the dispenser was empty prior to the refill request, the

calibration process takes place. The dispenser will automatically perform calibration,

prompting the user to confirm the calibration was finished correctly using the Trigger

service. The GUI should then respond to the supervisor using the SetBool service with

the user selection. In case the calibration is not finished yet another Trigger for the GUI

is sent and the process repeats itself until it finishes successfully.This process can be seen

in the figure 3.12.

Every time that the system uses the UpdateStoragesrv service before updating with the

new value, being it a new ingredient, an old ingredient but in a new container, or just a

refill of a container, the system always verifies if the type of the container is the same as

the ingredient, if there is already an ingredient in the container checks if the one being

added is the as the one already there, and in case of dispense, after checking that it’s

the right ingredient, it checks if it has at least the needed quantity. If the request type is

“Dispense”, if it is, it checks if the ingredient is available, this checks if the ingredient is

in the system storage, if it has at least the needed quantity and if the ingredient in the

selected container matches the one in the parameters of the task(both name and container

34

3.3. SOFTWARE

number sent in the step), if so, it tries to dispense the required ingredient using the Dis-
pense.srv to the dispenser system that will use the other Dispense.srv to communicate with

the Dispenser Controller node-red, both the sequence chart and the node-red flow can be

seen in figure 3.13.

When the request is received by the ROS service node the flow checks which container

should dispense, and how much should be delivered, activating the motor of that con-

tainer, while the arduino connected to it controls the motor speed and direction, while

always checking the weight. When the weight is reached the flow builds the response

message and sends it back to the dispenser supervisor trough the dispenser service, re-

turning success if the ingredient was correctly dispensed, or failure, if it was impossible

for some reason. If the return state was success, it updates the ingredient storage and fol-

lows the tree to report task completion. If neither of the branches return a successful task

completion, the system informs the user that the task was not completed. When the task

is completed, the main machine controller is informed through the ReportTaskCompletion,

it checks if it’s from a sent instruction, if not, it shows an error to the user, otherwise it

sets the task as fulfilled and continues to the next one.

35

CHAPTER 3. AUTOMATIC DISPENSER

Figure 3.9: Recipe sequence chart
36

3.3. SOFTWARE

Figure 3.10: Reset revolver sequence chart
37

CHAPTER 3. AUTOMATIC DISPENSER

Figure 3.11: Empty sequence chart
38

3.3. SOFTWARE

Figure 3.12: Refill sequence chart
39

CHAPTER 3. AUTOMATIC DISPENSER

Figure 3.13: Dispense sequence chart
40

C
h
a
p
t
e
r

4
Experimental results

The architecture and physical structure defined in the previous section will now be used

for the tests. The velocity controller will be tested only in a simulation environment as

it was not possible to implement it in the complete system setup and the whole system

will be tested using different setups, like different dispensers structures and types, which

results will be compared in the end.

Before starting the tests, it is important to understand which ingredients will be used

and why, the dispenser will handle most of the ingredient requisitions, as such it has to

be able to hold these ingredients as well as dispense them. As a way of verifying this

capability, the tests will cover more than one type of ingredients, being the two major

groups liquids and solids. For the liquids group, the only ingredient that will be tested

will be olive oil, since it’s a liquid that have some viscosity properties, it will represent

an harder to deliver liquid and consequently represent the worst case scenario. For the

solids group, it is important to know that these ingredients can come in many forms and

sizes, as such we can take into account two types of ingredients and one of them can still

be divided in two groups, the big ones, like slices of an apple, and the granular ones, such

as salt, and even in this group there can be different levels of granularity, as such, the

tests will be made with salt and pepper, while the pepper has really small grains, salt has

some larger ones. With this three types of ingredients, most of the possible ingredients

are represented.

After defining the ingredients that are going to be used, it’s needed to decide how will

these ingredients be dispensed, first we will look into the liquids group, the liquids to

dispense can be stored in a small container that can be placed on the rotative platform

or,if there is the need to it, in a larger container outside of the platform to store liquids

that are used in bigger quantities, if the container has a size that is not supported by the

platform. An example of this difference can be water and olive oil, usually the water is

41

CHAPTER 4. EXPERIMENTAL RESULTS

used in much bigger quantities than olive oil, therefore, needing a much bigger container

which is not suited for the rotative platform. This is possible thanks to the way that the

liquid will be pushed to the main container, it will be made by using a pump that will be

controlled by a stepper motor, so it will be possible to control the velocity and to stop at

will, the rubber tube passing through the pump just has to be long enough to reach both

containers, since the size of this tube and the container used will affect the test results,

both of them will be the same for every test made with this ingredient. The main goal of

the test will be to check the amount of time it takes to deliver the right quantity and if

it is possible to stop at the right weight with as better precision as possible. This system

can be seen in the figures 4.1 and 4.2.

Figure 4.1: Rubber tube in the rotative platform from an outside container

Figure 4.2: Pump connected to outside container

It is possible to dispense different ingredients using the same container as long as it is

42

part of the same group, for example, the liquids container will be used to dispense olive

oil, however, it can also be used to dispense water, since the system to push the liquid

from one container to the other will work in the exact same way.

Now that the way liquids will be dispensed is defined, we will define how the solid

ingredients dispense will work. As said before, it is possible to split this big group into

two smaller ones, big solids and small solids, the big ones, like chunks of meat or slices

of fruit, have no effective way to dispense and get an accurate weight, as the size of this

slices may vary and have different weights. As such, in a way to overcome this difficulty

and still provide an intervention free experience to the user, the dispense of this type of

ingredients will be made through a door in the container, letting all of the content fall

into the main container, for this to happen, the desired weight of the ingredient must be

checked and added to the container before the recipe begins, after this, when the step for

this ingredient is received by the controller, it checks the type of the controller and just

opens the door in order to dispense the desired ingredient in the inserted quantity.

For the small solids group we will have a different approach, these ingredients are used in

a variety of recipes, has such they will have a container in which it is possible to save them

for a long time, with this in mind, it is impossible to have the same dispense mechanism.

As explained before, this mechanism will consist of a motor connected to an endless

screw that will push the ingredient to the hole on the opposite side of the container, the

mechanism will be the same for every small ingredient, as the screw is large enough to

grab the ingredient regardless of the grain size. This can be seen in the figure 4.3.

Figure 4.3: Side view of the solids dispenser, showing the exit of the ingredients and the
endless screw

After testing the whole system, the velocity controller tests will start, as explained

before, the tests will be made in a simulation environment, which will be made in a

node-red flow that will replicate the sequence made in the actual system. After selecting

the desired ingredient, the flow receives every information that is needed for the normal

43

CHAPTER 4. EXPERIMENTAL RESULTS

operation and begins to dispense it. The velocity at which the ingredient is dispensed

will be made using the data received during the whole system tests, in order to get

a representation as close as possible to a real implementation. The controller will be

tested using different defuzzifiers to decide which one is the best and the results will be

compared to the ones obtained in the whole system tests with a constant velocity.

In the following subsections we will look into each test with more detail and discuss the

obtained results.

4.1 Complete System

After defining the needed concepts, objectives and procedures the tests on the physical

components for the whole system started. As explained before, the containers are set on

a rotative platform, which positions the right one above the main container, there are no

tests results for this as its just a simple rotation, and after testing it several times, the

selected container is always on the right place. Before testing the container with the pre-

viously described setup, with the stepper motors and drivers, the dispensers were built in

a simpler way to test if it would be efficient enough, and to test in a easier way the whole

process of dispensing an ingredient. On this initial setup, the dispensers were built with

a smaller container and endless screw, and connected to a dc motor. With this setup the

velocity is not controlled and the dc motor can be directly connected to the raspberry pi.

To test the whole process, a complete recipe is inserted into the main machine controller

node-red flow, after this, the whole recipe is processed, and each step is verified and sent

to the dispenser supervisor going through the validation processes, that were previously

explained. In every test the verification processes were always correct and the selected

container was the right one, as such, the evaluation of results will be based on the pro-

vided quantity of the ingredient, and on the amount of time it took to deliver that same

amount. The tests setup can be seen in the figures 4.4, 4.5, 4.6, 4.7.

Figure 4.4: Rotative platform with dc motor dispensers

44

4.1. COMPLETE SYSTEM

Figure 4.5: Components connections

Figure 4.6: Pump and stepper motor

Figure 4.7: Solid ingredients dispenser with stepper motor

45

CHAPTER 4. EXPERIMENTAL RESULTS

The ingredients chosen for the test were, salt, pepper and olive oil. These ingredients

were chosen because not only are the three of them widely used, they represent different

kind of dispensing, while the salt and pepper are solid ingredients, olive oil is liquid, and

between the salt and the pepper the granularity is different, so it is possible to evaluate

the performance of the dispenser with different granularities. As there was no weight

control implemented, and the system had to be manually stopped, and to better replicate

what would be the average performance of the dispensers, for each time there were three

tests for the solid ingredients which results can be seen in the tables 4.1, 4.2 and 4.3.

Time (s) Average Weight (g) Standard Deviation
3.6 2.5 0
4.3 2-5 1.41
8.7 8-11 1.12

17.4 22-24 1.83
26 32-37 1.80

34.8 43-48 1.92
43.5 54-56 1.24
52.2 64-70 2.62

Table 4.1: Test results for salt using dc motors

Time (s) Average Weight (g) Standard Deviation
2 1.67 0.47
5 3.67 0.47

10 8.33 0.47
15 11.67 0.47
20 16.33 0.47
25 20.67 0.47

Table 4.2: Test results for pepper using dc motors

Time (s) Weight (g)
30 50
60 100

Table 4.3: Olive Oil test results using dc motors

For this system, as the load cells were not implemented yet, these results were used

not only to test the velocity of the motors, but also to set the time needed to reach the any

weight using linear regression. The graphs built based on the tests above are shown in

figures 4.8 and 4.9.

46

4.1. COMPLETE SYSTEM

Figure 4.8: Salt drop graph

Figure 4.9: Pepper drop graph

47

CHAPTER 4. EXPERIMENTAL RESULTS

After these first set of tests, and realising that the time they take to dispense a given

weight is higher than what is desired, the dispenser containers and motors were changed,

and the load cells to measure the weight were installed on the container in which the

ingredients are to fall. As explained before, each container has a stepper motor attached

to its endless screw, which is connected to an arduino nano through a DRV8825 stepper

motor driver, to control its rotation speed and direction, and then connected to the rasp-

berry pi. To have a fair comparison, the ingredients used were the same, following the

same reasoning. Has the new containers were much bigger than the previous ones, they

couldn’t be installed on the rotative platform, and were tested separately, since this dis-

penser is made to be modular, it doesn’t affect the final result, even when the dispensers

will be set on the platform. Before starting the tests, since the load cells can’t be used on

the ingredient container and have to be set on the main one, it’s needed to compensate for

the time it takes for the ingredient to fall, as such, the weight limit is set 2 grams lower

then the desired one, this way, after the motor stops the final weight is reached thanks to

the material that is already falling into the main container. The test results for this new

system are shown in table 4.4.

Expected Time (s) Average Weight (g)
2.5 1.1 3.8
5 2.3 5.2

10 2.9 11.5
25 10 27.5
35 14 36.2
48 21 50.1
65 25 65
70 26.2 71

Table 4.4: First test results for Salt with stepper motors

48

4.1. COMPLETE SYSTEM

This time only the salt was tested as it was already possible to see a large disparity

between the expected weight and the delivered one, as such, instead of adjusting the

weight limit to stop again, the dispensers were tilted 30 degrees up, this way when the

screw is stopped, there is less chance that the ingredient falls after stopping, resulting

in a much better end result. After this change the previous tests restarted, and we can

already see that the disparity between what is expected and the real outcome is never

higher than 0.3 grams. This is better than what is necessary in a real application, since

there is no recipe which measures have this precision. The results obtained are in the

tables 4.5, 4.6 and 4.7.

Expected Time (s) Average Weight (g)
2.5 1 2.4
5 2 4.8

10 2.9 10
25 9.8 25
35 14.5 34.8
48 20 48
65 25.1 64.8
70 26.5 70.3

Table 4.5: Salt test results for stepper motors after adjustments

Expected Time (s) Average Weight (g)
2 1.3 2

10 3.2 9.8
20 9.8 20
40 17 40.2

Table 4.6: Pepper test results for stepper motors after adjustments

Time (s) Weight (g)
22.5 50
45 100

Table 4.7: Olive Oil test results

With all the tests made it is now possible to evaluate the obtained results. First we

will look at the liquid ingredients results, we can see a direct comparison by looking at

the average weight dispensed by second, this is possible to see in table 4.8.

Motor Type Weight/Time (g/s)
DC 1.67

Stepper 2.22

Table 4.8: Olive Oil test comparison

49

CHAPTER 4. EXPERIMENTAL RESULTS

Comparing the amount of olive oil dispensed in one second, within the same envi-

ronment, being the only difference the motor that was used, with the stepper motor it

dispensed almost one more gram per second than with the dc motor, this happens thanks

to the higher rotation speed and force that is possible to produce using the stepper motor.

There is, however, a downside to the much faster stepper motor, if the motor is rotating

too fast, the pump will start to pull bubbles of air with the liquid, resulting in a slower

deliver time, as such it is important to keep an high speed rotation while taking this into

account and defining a suitable velocity as was done in the test.

Looking now at the results for the solid ingredients, similarly to the previous comparison,

a direct comparison between the weight dispensed by second is present in tables 4.9 and

4.10.

Motor Type Weight/Time (g/s)
DC 1.25

Stepper 2.55

Table 4.9: Salt test comparison

Motor Type Weight/Time (g/s)
DC 0.88

Stepper 2.28

Table 4.10: Pepper test comparison

It is possible to see that the use of the stepper motors provide a much more efficient

way of dispensing the tested ingredients, with the salt, the weight dispensed is more than

twice the amount on the DC motors, and in the pepper test the gap is even wider, this is

easily explained by the fact that the stepper motors are not only faster than the DC ones,

but also stronger, this enables the use of a larger endless screw which catches more of the

ingredient to dispense, both of this aspects combined result in observed result.

4.2 Velocity controller

As already said, the velocity controller was tested is a simulation environment, the user

can select one of the two possible ingredients, each one has its own weight drop rate,

depending on the input velocity, this equations were obtained based in the previously

done tests with the dc motors. Before selecting the desired ingredient the user has to

provide the desired weight, and then press on the ingredient. Making use of the equations

defined on the first tests of the real system, the flow starts the simulation, the output of

the velocity will be a percentage of the maximum velocity, this way the evolution of the

output can be pictured in any motor as long as we know its maximum velocity, and can

predict the outcome when implemented in a real system.

50

4.2. VELOCITY CONTROLLER

Every 0.4 seconds the flow checks how many of the weight has already dropped,

how much is left and the current velocity, with these parameters it makes the necessary

computation in order to increase or decrease the velocity of the motor or to stop it. The

main goal of this controller is to get the maximum possible velocity at each time while

keeping the weight drop as precise as possible, since if it was always kept at the minimum

speed it would take too long and it was the opposite, the maximum speed, there was a risk

of delivering to much of the ingredient because of the gap between the weight measured

on the main container and amount of ingredient that is falling into it.

The results from these tests are represented by the graphs 4.10, 4.11 and 4.12, each

graph and defuzzification method will be evaluated.

Figure 4.10: Velocity output with smallest of maximum defuzzifier

As we can see in the figure 4.10, the velocity percentage suffers great changes when

a certain point is reached, as explained before, with this type of defuzification small

changes in the input can create great changes in the output, and that’s possible to see

here, as the weight left to drop is lowering, when a certain value is reached the velocity

output lowers drastically, creating a step like response.

Figure 4.11: Velocity output with mean of maximum defuzzifier

In the figure 4.11, as the method used for defuzzification is the mean of maximum,

the response pattern is similar to the previous one, however, with this defuzzifier these

changes in the output occur earlier in the process, this happens because as the weight

drops, the highest membership value output taken into account is higher than the previ-

ous test, in this system, an higher output value equals to a lower velocity.

51

CHAPTER 4. EXPERIMENTAL RESULTS

Figure 4.12: Velocity output with center average defuzzifier

Contrary to the previous two results, in the figure 4.12 the velocity output is much

more linear, as the method for defuzification is the center average deffuzifier when a small

change occurs in the input it doesn’t create a drastic change in the output, instead it slowly

changes, even if the input suffers a big change, the change in the output will no directly

scale with it, instead it will be smaller, turning the output in a more linear variation

over time. When taking all of the results and discussion into account the most desirable

solution would be the center average defuzzification method, since the three methods

take a similar amount of time while this method put less strain on the components, since

there are smoother transactions in speed output throughout the process.

52

C
h
a
p
t
e
r

5
Conclusions

In the beginning of this document, the goal of this dissertation was defined, this goal was

to develop an automatic dispenser that would be attached to its main machine in order

to dispense the required ingredients based on its recipe. Although a final fully functional

system with all the capabilities was not possible to be developed, a functional prototype

could be built, this prototype had most of the desired main functionalities like ingredient

storage management, some of the ingredient types dispensing and a communication with

a simulated main machine.

The functions that were not possible to implement were also covered in this document,

either by explaining or simulating them or by developing them without the implemen-

tation on the full setup. The velocity controller, while it could not be implemented, it

was still developed and implemented on a simulation environment, and the dispensers

with the stepper motors and load cells, were built and tested in a real environment but

were not tested in the rotating platform. However, the rotating platform is a very reliable

system and so no problem should arise in that integration process.

Even with these drawbacks, the main goal was achieved, while this dispenser is not a final

version, it is already a functional one, and the next steps could already be defined, some

of the future capabilities could also be tested and even without the full implementation

it was possible to evaluate these new solutions and, with the obtained results, make some

decisions on what will be the best to implement when developing this dispenser further.

53

CHAPTER 5. CONCLUSIONS

5.1 Future Work

In the course of this dissertation some of the possible solutions were explored and im-

plemented, however, it was only possible to build one physical working model. As the

dispenser will be modular it was possible to test it without the main machine integration

without compromising the final result, since when the main machine is included in the

setup, only the communication between both must be changed. When testing the liquid

ingredients, the container used was out of the platform and too big to be a reasonable

solution, also, there was no physical model for the big solid ingredients. As the hardware

used for the tests was not the optimal one, it was impossible for the velocity controller to

be implemented in the the real environment tests, it was also not possible to test every

controller configuration in the simulation environment. This also affected the number of

ingredients tested, since there were only three of them, and the load cells used needed to

be installed on the main container thanks to the way they work, also, these load cells have

a maximum weight capability much lower than what is desired for the final solution.

If we take a look at the obstacles described above, it is possible to see improvement oppor-

tunities, first of all, as of now the connection method between the main machine and the

dispenser module is serial, when the main machine will be assembled, it will be possible

to use a more efficient way to communicate, also the way the connection is structured,

like the data format, may change and become more efficient. This data structure new

configuration may also imply a software new structure, so it is important to also keep the

software implementation as modular as possible as to keep this improvements possible

in a single module if only that is needed, instead of changing the whole system.

For the dispenser module physical model, some improvements may also be explored, the

new containers for the small solid ingredients may be adapted to the rotative platform

and the liquids big container should be designed so that it could be attached to the mod-

ule, so when the module would be assembled, it would be only one complete piece. The

rotative platform may also be changed when it will be tested with the main machine, the

idea is to mount it on it, so it is important to have a good fit, when the main machine

physical module will be known, the overall system is to be adapted in order to improve

its efficiency in dispensing the ingredients. Also, the load cells should be changed for

new weight measure devices as the weight they need to hold would be much bigger than

the one used during the test phase, this new weight measure component should also be

evaluated for the need to place a device on each individual dispenser or in the main one,

since this may imply a slower connection, a more expensive approach or much harder

implementation.

For the velocity controller to be implemented in the full setup, the hardware needs to be

improved, a research on new and better hardware should be conducted, however, this will

imply a more expensive solution, so the best would be to evaluate different solutions and

agree on the more balanced one. When this new hardware is implemented, a new con-

troller should be explored and not only that, but experiment with the different possible

54

5.1. FUTURE WORK

configurations for each controller, since one important feature of this module should be

how fast it can dispense the ingredient, since there are recipe where this could be impor-

tant, the velocity controller would optimise this field of work while keeping the module

precise. It is important that not only after these changes but also before them, to serve

as performance comparison, more ingredients should be tested in the dispensers, these

new ingredients should cover a wider range of peculiarities, such as humidity, different

granularities, cluster formation and more.

55

Bibliography

[1] H., R., O., J., I., I. Ide, S. Satoh, S., S., S., T., and H. “Cooking navi: Assistant for

daily cooking in kitchen.” In: Jan. 2005. doi: 10.1145/1101149.1101228.

[2] A. Amrutha, R. Lekha, and A. Sreedevi. “Automatic soil nutrient detection and

fertilizer dispensary system.” In: Proceedings of 2016 International Conference on
Robotics: Current Trends and Future Challenges (RCTFC) (2017), pp. 1–5.

[3] Bimby. https://bimby.vorwerk.pt/bimby/. [Online; accessed 19-July-2019].

[4] Burger-flipping robot takes four-day break immediately after landing new job. https:

//www.theverge.com/2018/3/8/17095730/robot-burger-flipping-fast-

food-caliburger-miso-robotics-flippy. [Online; accessed 19-July-2019].

[5] BWorld Robot Control Software. http://www.kenwoodworld.com/pt-pt. [Online;

accessed 19-July-2019].

[6] Chef EXPRESS Pingo Doce. http://www.chefexpress.pt/. [Online; accessed

19-July-2019].

[7] M. Colledanchise and P. Ögren. “Behavior trees in robotics and AI: An introduc-

tion.” In: (2017). doi: 10.1201/9780429489105. arXiv: 1709.00084.

[8] Cooki: a Desktop Robotic Chef That Does Everything. https://spectrum.ieee.org/

automaton/robotics/home-robots/cooki-a-desktop-robotic-chef-that-

does-everything. [Online; accessed 19-July-2019].

[9] Downtown Boston’s Robotic Restaurant Gets $21 Million to Fund Expansion. https:

//boston.eater.com/2018/9/7/17832612/spyce-robotic-restaurant-21-

million-dollar-series-a-funding. [Online; accessed 19-July-2019].

[10] Flippy | Miso Robotics. https://misorobotics.com/flippy/. [Online; accessed

19-July-2019].

[11] Moley – The world’s first robotic kitchen. http://www.moley.com. [Online; accessed

19-July-2019].

[12] Y. Nakauchi, T. Fukuda, K. Noguchi, and T. Matsubara. “Intelligent kitchen: Cook-

ing support by LCD and mobile robot with IC-labeled objects.” In: 2005 IEEE/RSJ
International Conference on Intelligent Robots and Systems, IROS (2005), pp. 2464–

2469.

57

https://doi.org/10.1145/1101149.1101228
https://bimby.vorwerk.pt/bimby/
https://www.theverge.com/2018/3/8/17095730/robot-burger-flipping-fast-food-caliburger-miso-robotics-flippy
https://www.theverge.com/2018/3/8/17095730/robot-burger-flipping-fast-food-caliburger-miso-robotics-flippy
https://www.theverge.com/2018/3/8/17095730/robot-burger-flipping-fast-food-caliburger-miso-robotics-flippy
http://www.kenwoodworld.com/pt-pt
http://www.chefexpress.pt/
https://doi.org/10.1201/9780429489105
http://arxiv.org/abs/1709.00084
https://spectrum.ieee.org/automaton/robotics/home-robots/cooki-a-desktop-robotic-chef-that-does-everything
https://spectrum.ieee.org/automaton/robotics/home-robots/cooki-a-desktop-robotic-chef-that-does-everything
https://spectrum.ieee.org/automaton/robotics/home-robots/cooki-a-desktop-robotic-chef-that-does-everything
https://boston.eater.com/2018/9/7/17832612/spyce-robotic-restaurant-21-million-dollar-series-a-funding
https://boston.eater.com/2018/9/7/17832612/spyce-robotic-restaurant-21-million-dollar-series-a-funding
https://boston.eater.com/2018/9/7/17832612/spyce-robotic-restaurant-21-million-dollar-series-a-funding
https://misorobotics.com/flippy/
http://www.moley.com

BIBLIOGRAPHY

[13] Node RED Programming Guide Programming the IoT. [Online; accessed 20-February-

2020]. url: http://noderedguide.com/.

[14] J. M. O’Kane. A gentle introduction to ROS. 2.1.3. 2016, p. 155. isbn: 978-

1492143239.

[15] OneCook: the Robotic Private Chef to Free Your Cooking Time by Team TNL — Kick-
starter. https://www.kickstarter.com/projects/tech-no-logic/onecook-

the-robotic-private-chef-to-free-your-cook. [Online; accessed 19-July-

2019].

[16] Prometheus Kitchen. http://www.prometheuskitchen.com/. [Online; accessed

19-July-2019].

[17] Robot de cocina “ Ladymaxx Gourmet ” Instrucciones de uso. https://www.singer.

ag/fileadmin/ladymaxx/Ladymaxx_UserManual_ES_PT.pdf. [Online; accessed

19-July-2019].

[18] Robotic Kitchen - High Tech Cooking Robot Chef. https://www.indiegogo.com/

projects/robotic- kitchen- high- tech- cooking- robot- chef. [Online; ac-

cessed 19-July-2019].

[19] R. B. Rusu, B. Gerkey, and M. Beetz. “Robots in the kitchen: Exploiting ubiquitous

sensing and actuation.” In: Robotics and Autonomous Systems 56 (10 2005), pp. 844–

856.

[20] A. Sato, K. Watanabe, and J. Rekimoto. “MimiCook: A cooking assistant system

with situated guidance.” In: Feb. 2014, pp. 121–124. doi: 10.1145/2540930.

2540952.

[21] Sereneti | Sereneti. http://sereneti.com/. [Online; accessed 19-July-2019].

[22] Spyce – Culinary excellence elevated by technology. https://www.spyce.com. [On-

line; accessed 19-July-2019].

[23] L.-X. Wang. A Course in Fuzzy Systems and Control. 1997. isbn: 9780135408827.

[24] Who Are Moley Robotics and Why We Will Change Your Future. https://medium.

com/foodofthefuture/who-are-moley-robotics-and-why-we-will-change-

your-future-1ef7bf588fc0. [Online; accessed 19-July-2019].

[25] Yammi. https://www.yammi.pt. [Online; accessed 19-July-2019].

58

http://noderedguide.com/
https://www.kickstarter.com/projects/tech-no-logic/onecook-the-robotic-private-chef-to-free-your-cook
https://www.kickstarter.com/projects/tech-no-logic/onecook-the-robotic-private-chef-to-free-your-cook
http://www.prometheuskitchen.com/
https://www.singer.ag/fileadmin/ladymaxx/Ladymaxx_UserManual_ES_PT.pdf
https://www.singer.ag/fileadmin/ladymaxx/Ladymaxx_UserManual_ES_PT.pdf
https://www.indiegogo.com/projects/robotic-kitchen-high-tech-cooking-robot-chef
https://www.indiegogo.com/projects/robotic-kitchen-high-tech-cooking-robot-chef
https://doi.org/10.1145/2540930.2540952
https://doi.org/10.1145/2540930.2540952
http://sereneti.com/
https://www.spyce.com
https://medium.com/foodofthefuture/who-are-moley-robotics-and-why-we-will-change-your-future-1ef7bf588fc0
https://medium.com/foodofthefuture/who-are-moley-robotics-and-why-we-will-change-your-future-1ef7bf588fc0
https://medium.com/foodofthefuture/who-are-moley-robotics-and-why-we-will-change-your-future-1ef7bf588fc0
https://www.yammi.pt

	List of Figures
	List of Tables
	Introduction
	Context and Motivation
	Main project
	Dissertation Objectives

	Related Work
	Current Existing Solutions
	Recipe Following Solutions
	Kitchen Robots
	Autonomous Kitchens

	Under Development Work
	Unsolved Problems
	Used Technologies
	Fuzzy Control Fuzzy
	ROS ROS
	Node-Red NodeRed
	Behaviour Trees BT

	Automatic Dispenser
	Software Architecture
	Hardware
	Software

	Experimental results
	Complete System
	Velocity controller

	Conclusions
	Future Work

	Bibliography

