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Abstract: We study—with existence and unicity results—a variant of the SIR model for an infectious
disease incorporating both the possibility of a death outcome—in a short period of time—and a
regime switch that can account for the mitigation measures used to control the spreading of the
infections, such as a total lockdown. This model is parametrised by three parameters: the basic
reproduction number, the mortality rate of the infected, and the duration of the disease. We discuss a
particular example of application to Portuguese COVID-19 data in two short periods just after the
start of the epidemic in 4 March 2020, with the first two cases dated that day. We propose a simple
and effective method for the estimation of the main parameters of the disease, namely, the basic
reproduction number and the mortality rate of the infected. We correct these estimated values to take
into account the asymptomatic non-diagnosed members of the population. We compare the outcome
of the model in the cases of the existence, or not, of a regime switch, and under three different
scenarios, with a remarkable agreement between model and data deaths in the case of our basis
scenario. In a final short remark, we deal with the existence of symmetries for the proposed model.

Keywords: infection modelling; SIR type models; regime switching in ordinary differential equations;
real data; SARS-COVID-19

1. Introduction

In this paper, we study a variant of the SIR model for an infectious disease, incorpo-
rating the possibility of a death outcome, and focus on a short period of time in order to
describe the difference in the evolution of subpopulations with, or without, mitigating
measures such as a lockdown. The SIR model—SIR for Susceptible, Infected, Recovered—was
introduced in [1] (see also [2] for a present day account) and still is at the root of the most
used models for epidemics. It is similar to the system of ordinary differential equations
given in Formula (1), the difference being that in the SIR model there is no equation for the
proportion of those in the population that have died once infected; that is, the equation
for the variable d. The introduction of a death outcome in a SIR model has not been a
widely studied subject, maybe because of the difficulties in the biological interpretation
of parameters or parameter estimation (as is clearly stated in [3] (p. 34)). In the specific
case of the data analysis presented here, it is possible to satisfactorily estimate a death rate
parameter, and the biological interpretation is simple, within the bounds of the following
caveat that pervades the data set we use: we do not distinguish deaths classified under
the two categories—death caused by the infection and death caused by some other disease
than COVID-19 on a person with a positive diagnostic of the infection. In the real data
application we perform, our goal is to analyse a disease in a period of less than 70 days, and
so the demographic fluctuations are not significative, since the lethality rate is known to be
small, at this date; moreover, as it follows from [1] (p. 110): “Since the course of an epidemic
is short compared with the life of an individual, the population may be considered as
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remaining constant, except in as far as it is modified by deaths due to the epidemic disease
itself”. Nevertheless, if the disease has a rapid progression with an outcome of possible
death, the death toll of the disease has a socially significant impact. Moreover, the death
toll of such an epidemic can be determined daily; as such, if the model has, as one of its
computed results, the deaths of the infected in the population, an assessment of the quality
of the model can be performed; we attempt such an assessment in Remark 11. In this work,
we need only the most elementary concepts on mathematical epidemic modelling. A very
thorough introduction to epidemic modelling can be read in [2]. Some other introduc-
tory expositions of the mathematics of epidemics are, for instance, [3] (pp. 15–53) or [4]
(pp. 345–410).

The modelling of the current epidemic has been the subject of many studies, and it is
impossible to mention even a significant part; we chose to recall some references that we
find to be closely related to our approach. For instance, in [5], the authors consider eight
compartments, and they estimate the parameters using data between day 1 and day 46; the
details of the estimation procedures are not given. In [6], the authors use—among other
models—a compartment model of SEIR type, with an additional group of exposed patients
for which there is a delay between being exposed and being infected; they refer to the use of
maximum likelihood estimation with a Poisson likelihood as an estimation procedure. The
work [7] also considers a SIR type model but with natural deaths, and considers explicitly
a discretisation procedure to solve the differential equations. Let us stress the following
author’s very important remark that justifies the care needed to consider prospective
results of these kinds of models. “. . . Predicting the behaviour of the epidemic with high
accuracy is nearly impossible due to there being many unknown factors, e.g., . . . and
parameters of the epidemic”. We must point out that different models have different
advantages and weaknesses. For instance, in [8], a review of 72 articles on the mathematical
models of the COVID-19 pandemic leads the authors to the conclusion that, although
epidemiological models take into account the dynamics of the spread of the infectious
disease in a population, they are also highly dependent on the estimation of parameters,
and do not take into account the variability of parameters during the course of the epidemic.
This observation of May 2021 shows the opportunity of studying epidemiological models
with regime switching, which is a major contribution of the present work.

The introduction of birth and death in compartmental SIR type models (see, for
instance [9] (p. 30)) aims at describing the evolution of a disease in a long term scenario, of
several years, in which demographic fluctuations have to be taken into account. We must
presently stress the following caveat for these models. Relying on SIR type epidemiological
models to produce predictions on the course of an epidemic can be deceiving, as the
work [10] clearly shows; in it, the authors consider a SIR model, with scenarios defined
by parameters adjusted for qualitative information—such as the real number of infected—
and then compare the evolution given by the model with the observed data. The main
conclusion is that: . . . The constructed SIR model failed to forecast the actual spread and
pattern of the epidemic in the long term. The study of SIR type compartmental models
with a subpopulation of the deaths caused by infection, which is to be applied in shorter
periods for which the mortality and birth rates of the population can be considered as
irrelevant, has already been considered by several authors.

In [11], not related to the COVID-19 pandemic, there is a thorough study—with
equilibrium points and stability—of a SEIR model with two additional compartments—
asymptomatic infectious and dead once infected. The model has at least eleven primary
parameters and a simulation study with parameters obtained from real data from a study
of Ebola disease. The qualitative analysis of a system of ODE of the SIR type model can
shed light on the characteristic features of the evolution of the variables, such as susceptible,
infected, and recovered. Such a study is developed in [12] for a SIR model, in which the
proportion of deaths caused by disease is not a variable and, having as additional parame-
ters, the protection rate and the isolation rate; these parameters being non-estimable; due to
the lack of data, the model is exploited with plausible given values for the parameters. The
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models proposed in [13] consider, besides the usual subpopulations in a SEIR type model
“. . . the number of individuals that pass away due to the disease, divided by the total population”.
The author considers that all variables are measurable with the exception of the exposed,
and considers eight parameters for the models. The estimation procedure considered is of
constrained weighted least squares type and simulation results are presented for different
sets of parameters corresponding to typified disease cases such as recurrent epidemic and
short lockdown period. A remarkable modelling work on the current COVID-19 pandemic
is presented in [14]. The authors consider an ODE model with ten variables—susceptible,
exposed, asymptomatic, quarantined asymptomatic, severely infected, hospitalised, reco-
vered, recovered asymptomatic, deceased, and protective susceptible. They calibrate the
parameters employing the least square method to the proposed model to obtain the best-fit
parameters for Ghana and Egypt; they perform a sensitivity analysis and study the optimal
control using two control variables that are incorporated into the ODE initial system to
reduce the disease transmission and the quarantine for asymptomatic infected individuals.
The work in [15] aims at describing the COVID-19 epidemics in Wuhan, Toronto, and Italy.
It is a network model, as the “. . . individuals (are classified) by their average number of
contacts in a typical day (time unit for the modelling)”, and to each of these numbers,
there corresponds a set of classes of a SEIR type model with additional subpopulations of
asymptomatically infected, symptomatically infected, hospitalised and dead. The main
results are the theoretical derivations of the “. . . epidemic threshold defined as the average
number of secondary cases produced by an infected individual in a completely susceptible
population and of the final epidemic size”. These results are exploited in a simulation
study for which the authors consider phases such as before and after lockdown. In [16],
the author considers an alternative for the regime switching—of rough type—considered
here, but for a SEIR type model in which the coefficients are supposed to take two (or three
values) on two (or three) complementary intervals of the time domain. A study of a regime
switching models for the evolution of an infected population that influenced this work
is [17]. A recent study of a SI(RD) model with regime switching with a logistic function is
presented in [18]; the authors use a neural network to detect the regime change points, and
a grid search for the estimation of the usual parameters. A more recently published study
of a SIR model with deaths and with changing parameters applied to Spanish data is given
in [19]; the SI(RD) model studied in this article was, independently, being discussed by us
at least since November 2020 (see [20,21]). In this work, we consider data from the first
wave of the COVID-19 pandemic in Portugal. Other very recent works that also consider
data from Portugal are [22,23].

We now state the main results of this work.

1. We study the model proposed—a susceptible-infected-(recovered-dead) model with
regime switching—proving that there are two ways to achieve the regime switching
(the rough way and the smooth way), and that these are equivalent for all practi-
cal purposes;

2. Given a bivariate set of data—(daily cases-lethality)—we propose a new simple
method to estimate the parameters of the model specially suited to the jagged cha-
racter of the observations using a binomial model; this amounts to hypothesise that
there is a mechanism that corrupts, by noise, the observed trajectories of the ordinary
differential equations of the model.

3. We show that, taking into account important qualitative information, there are secon-
dary parameters—that modify the primary parameters—that can be set according
to reasonable scenarios, such that in one of these scenarios, the lethality rate can be
recovered with a very small error.

2. The SI(RD) Model

In this section, we detail the main concepts and specify the notations used next. Some
of the concepts presented in the following are classical concepts in the infectious disease
modelling literature. Variants of the SIR model were considered by one of the authors
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in [24] and, for the COVID-19 epidemic context, in [25,26]. In the following, we will focus
on the main differences between previous models and the one we study in this work. In
the SI(RD) model—which is a variant of the SIR model with an additional compartment
represented by D in the acronym SI(RD) for the deceased elements of the population—
the members of a population are categorised into one of four groups: S, those who are
susceptible to being infected; I, those who have been infected and are able to spread the
disease to susceptible individuals; R, those who have recovered from the disease and are
immune to subsequent re-infection and D, those who died while infected. The movement
of individuals is one-way only according to the scheme: S→ I → (R, D). The parameters
of the model are:

• α the daily infection rate of the susceptible population;
• β the recovery rate is a rate which controls how fast members progress into the I and

R groups, respectively;
• µ is the death rate among those infected;
• γ = α/β is a composite parameter, which—in case µ = 0—is often used, and is

referred to as the contact number.

The SI(RD) model is described by a system of ordinary differential equations (ODE)
for the functions s, i, r, d—given in formulas (1)—depicting the time evolution of the pro-
portions of the population in each group, that is, s in S, i in I, r in R and d in D; as so,
s, i, r, d refer, respectively, to the fraction of the population in the susceptible, infected,
recovered and dead subpopulation groups. The ODE system in the Cauchy problem of
Formula (1) can also be found in [19] (p. 2).

s′(t) = −αi(t)s(t) , s(t1) = s0

i′(t) = i(t)(−β− µ + αs(t)) , i(t1) = i0
r′(t) = βi(t) , r(t1) = r0

d′(t) = µi(t) , d(t1) = d0 .

(1)

When initial conditions for these groups—susceptible, infected, recovered and dead—
are specified, the change in size of these groups may be plotted over time by solving
numerically the system of four ordinary differential equations which, for constant or
regular time varying parameters, has a unique regular solution.

The inspection of these equations will reveal details of the dynamics of the disease in
a population (see, for a related approach of this discussion, [27] (pp. 44, 45)).

• If the fraction of the population in the infected group is initially increasing (i.e.,
i′(0) = i0 > 0), an epidemic has begun. For any t > 0 in a neighbourhood of zero—
such that i(t) > 0—and if almost all population is susceptible—that is, s0 ≈ 1—we
have that:

i′(t) > 0⇔ i(t)(−β− µ + αs(t)) > 0⇔ α

β + µ
>

1
s(t)
≈ 1

s0
≈ 1 . (2)

As a consequence, for the SI(RD) model, we define the composite parameter γ̃, corres-
ponding to γ := α/β in the SIR model—since in SIR model, there is no µ parameter—
by:

γ̃ =
α

β + µ
.

• At the peak point of an epidemic—with i(t) 6= 0—we should have that i′(t) = 0, by
Formula (2), and so, the peak point of an epidemic occurs at a time tπ such that:

s(tπ) =
β + µ

α
=

1
γ̃

.
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Remark 1 (Basic reproduction number). The basic reproduction number R0 is the expected
number of secondary cases produced by a single infected individual in a completely susceptible
population. Usually, it is defined as,

R0 = T · Ca · Du ,

with:

• T—the transmissibility which is the probability an individual infecting another given there
was contact between them;

• Ca—the average rate of contact between susceptible and infected individuals;
• Du—the duration of the infection in individuals; in the SI(RD) model, the infection ends with

two possible outcomes: either recovered or dead.

We may identify α = T · Ca and Du = (β + µ)−1, and doing so, we have the identification:

R0 =
α

β + µ
= γ̃ . (3)

The contact number γ̃—alias, the basic reproduction number—may be understood as the
average number of susceptible members of the population; an infected individual spreads the disease
to, while that individual is in the infected group.

Remark 2. Let us notice that, at some time t1, we have i′(t1) > 0 if, and only if, with i(t1) > 0
we have,

s(t1) ·
α

β + µ
= s(t1) · γ̃ > 1 . (4)

Remark 3 (On the positive and bounded solutions of ODE system in Formula (1)). We
observe that the sum of the righthand terms of the four equations in Formula (1) is zero. As a
consequence of this observation, we have that, for all t and by integration, the sum s(t) + i(t) +
r(t) + d(t) is constant; since at time t1, we want to deal with proportions we have that s0 + i0 +
r0 + d0 = 1 and so, we may conclude that for all t, we have that s(t) + i(t) + r(t) + d(t) = 1.
Furthermore, if the solutions are all non-negative, the relation s(t) + i(t) + r(t) + d(t) = 1,
valid for all t, this implies that all the solutions are bounded. The proof to show that the solutions
are bounded for the SIR type models may be done in several ways; the most efective proceeds by
considering one equation at a time, by expressing the equation in integral form in such a way that
an exponential function appears, guaranteeing the positivity of solutions (see for instance [28]). By
dealing with one equation after another, it is possible to take into account relations such as the one
observed in Formula (4) above.

3. SI(RD) Models with Regime Switching (Two Different Values for the Parameter R0)

For the modelling purposes of our work, we are interested in considering that the
parameters of the SI(RD) model, namely, the basic reproduction number R0 alias γ̃, the
duration of the infection Du alias δ and the mortality rate µ—that have to be estimated
or calibrated from the observations—may vary in disjoint and complementary intervals
of time. So, firstly, we are going to select the main parameters of the model. For that, we
first observe that the parameters α and β can be expressed as functions of the primary
parametersR0 alias γ̃, Du alias δ and µ. By using Formula (3) and the fact that α = T · Ca
and Du = (β + µ)−1, we have that:

α(γ̃, δ) :=
γ̃

δ
and β(δ, µ) :=

1
δ
− µ ,
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and so, the system of ODE in (1) can be rewritten as:
s′(t) = −α(γ̃, δ)i(t)s(t) , s(t1) = s0

i′(t) = i(t)(−β(δ, µ)− µ + α(γ̃, δ)s(t)) , i(t1) = i0
r′(t) = β(δ, µ)i(t) , r(t1) = r0

d′(t) = µi(t) , d(t1) = d0 ,

(5)

a formulation that only uses the parameters γ̃, the contact number, δ, the duration of the
disease and µ, the mortality rate among the infected.

We now present the main ideas for the study of the SI(RD) model that we have been
considering, but with regime switching. Consider a phenomena modelled by a system
of ODE—such as the one in Formulas (5)—denoted for simplicity by y′(t) = F(t, y(t), θ1)
with θ1 ∈ Θ ∈ Rd a chosen fixed parameter and t ∈ [0, T] and F : [0, T]×R4 ×Θ −→ R

4

a regular function of the first two variables say, twice differentiable. The change in the
dynamics of phenomena may be rendered, in the ODE of the model, by a change in the
right-hand side of the ODE, that is, by considering y′(t) = H(t, y(t), θ1) with a function
H different from the function F for, let us say as an example, t ∈ [Ta, Tb] ⊂ [0, T]; this
may be called a pure functional regime switching. Another basic rendition amounts to
just change the parameter, that is considering y′(t) = F(t, y(t), θ2) for t ∈ [Ta, Tb] ⊂ [0, T]
and θ2 ∈ Θ ∈ Rd another chosen fixed parameter different from θ1; this type of regime
switching may be called a pure parametric regime switching. A more general mixed
regime switching can be considered by changing both the righthand side of the ODE and
the parameter in some subintervals of the original time domain [0, T]. In this work we
consider, and compare, two different forms of regime switching with the same purpose,
to wit, the rough (R) regime switching and the smooth (S) regime switching. Let us
consider a first example of pure parametric regime switching, the rough regime switching
in the context of a standard existence and unicity theorem for ODE for instance, the global
Cauchy-Lipschitz theorem (see [29] (pp. 152–154) and [30] (pp. 119–121)) or with the
denomination Picard-Lindelöf theorem [31] (p. 8)).

Definition 1 (A rough regime switching for ODE). Suppose that the following conditions are
verified for θ ∈ {θ1, θ2} ⊂ Θ ⊂ Rd.

(j) The function F(t, y, θ) : [0, T]×R4 −→ R
4 is a continuous function.

(jj) For some constant M = M(θ) > 0, the uniform Lipschitz condition in the variable t given by,

‖F(t, x1, θ)− F(t, x2, θ)‖ ≤ M‖x1 − x2‖ ,

is verified for all values of the variables (t, x) ∈ [0, T]×R4.

Let the first regime solution be y1(t) for t ∈ [0, Ta], the unique solution of the ODE y′(t) =
F(t, y(t), θ1) for t ∈ [0, Ta] ⊂ [0, T] with a given set of initial conditions, which exists and is
unique by the Cauchy–Lipschitz theorem. Let the second regime solution be y2(t) for t ∈ [Ta, T]
the unique solution of y′(t) = F(t, y(t), θ2) for t ∈ [Ta, T] ⊂ [0, T] taking as initial conditions
y1(Ta), that is, the terminal value of the solution in the first regime. Then, the continuous function
defined by,

y1,2(t) =

{
y1(t) , t ∈ [0, Ta]

y2(t) , t ∈ [Ta, T] ,
(6)

is the a rough regime switching function for the ODE given by y′(t) = F(t, y(t), θ) for θ ∈
{θ1, θ2}.

We observe that y1,2(t) : [0, T] −→ R
4 is obtained in t ∈ [0, T] by glueing the solution

y1(t) for t ∈ [0, Ta] and the solution y2(t) for t ∈ [Ta, T] and so y1,2(t) is the continuous
function in [0, T] that coincides with y1(t) for t ∈ [0, Ta] and with y2(t) for t ∈ [Ta, T].
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Remark 4 (On the rough regime switching as a solution of an ODE). A question that
arises naturally may be formulated in the following way: is the rough regime switching function
for the ODE given by y′(t) = F(t, y(t), θ) for θ ∈ {θ1, θ2} a bona fide solution of an ODE?
The answer is no in the usual sense, because of the following. The rough regime switching
here described by y1,2(t) is not differentiable at the point Ta in general. In fact, supposing that
F(Ta, y1(Ta), θ1) 6= F(Ta, y1(Ta), θ2) and observing that by construction, under the hypothesis of
the continuity of the function F(t, y, θ), we have that:

lim
t→Ta ,t<Ta

y′1,2(t) = lim
t→Ta ,t<Ta

y′1(t) = F(Ta, y1(Ta), θ1) 6= F(Ta, y1(Ta), θ2) =

= lim
t→Ta ,t>Ta

y′2(t) = lim
t→Ta ,t>Ta

y′1,2(t)

despite the fact that y1,2(t) is differentiable in [0, Ta[∪]Ta, T] as y1(t) is differentiable in [0, Ta] and
y2(t) is differentiable in [Ta, T]. Being so, the function y1,2(t) may not be considered as a usual
solution of a Cauchy type problem. In Theorem 2 of Section 6, we consider extended solutions of an
ODE in the sense of Carathéodory, and we show that the rough regime switching function described
above can, nevertheless, be considered as a solution of an ODE, although only in an extended sense.

We now define a second form of regime switching that we will also use in this work,
namely the smooth (S) regime switching.

Definition 2 (A smooth regime switching with transition function G). Let t0, t1 ∈ [0, T],
with t0 < t1, be some fixed values. Let the function G(t, λ) defined for all t ∈ [0,+∞[ and for
every value of the parameter λ ∈ R, be a twice differentiable function of its two variables. Suppose
that there exists a value of the parameter λ01 = λ(t0, t1) such that G(0, λ01) = 0, G(t, λ01) ≈ 0
for t ∈ [0, t0] ⊂ [0, T] and G(t, λ01) ≈ 1 for t ∈ [t1, T] ⊂ [0, T]. The smooth regime switching
solution associated to the two Cauchy problems with ODE given by:

y′(t) = F(t, y(t), θ) , (7)

for the parameters θ ∈ {θ1, θ2} ⊂ Θ ∈ Rd and with transition function G, is the solution of the
correspondent ODE given by:

y′(t) = F(t, y(t), θ1)(1− G(t, λ01)) + F(t, y(t), θ2)G(t, λ01) . (8)

An example of a function G of Definition 2 is the function given by Formula (9) and
depicted in Figure 1. In this example, the parameter λ controls the extension of the regime
changing interval [t0, t1] ⊂ [0, T].

10 20 30 40 50 60 70

0.2

0.4

0.6

0.8

1.0
G@Ν,x,Η,Θ,ΤD=H1-ã

H-1+ΗL Θ Hx+ΝLL
1

1-Τ and 1-G@Ν,x,Η,Θ,ΤD

Figure 1. Regime switching drive function (red) and its complement to one (blue).

Remark 5 (On the existence of the smooth regime switching with transition function G
as in Definition 2). It is clear that, due to the regularity of the function G, if the two Cauchy
problems—for the values θ1 and θ2 of the parameters—given by the ODE in Formula (7) and
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arbitrary initial conditions have unique solutions, then any Cauchy problem given by the ODE in
Formula (8) also has a unique solution.

This second form of the regime switching here considered, namely the smooth (S)
regime switching, provides a solution for the problem of the change in the dynamics of
the phenomena in our ODE model representation, given a choice of function G a smooth
solution in [0, T], and given a choice of fixed times t0, t1 ∈ [0, T].

In the following, we will consider a smooth regime switching model, as just described
with a function such as the one in Figure 1, that is:

G(t, ν, η, θ, τ) :=
(

1− e(η−1)θ(ν+t)
) 1

1−τ , (9)

with a multidimensional parameter λ := (ν, η, θ, τ) controlling the main characteristics of
the function. Our use of the specific function G in Formula (9), in our modelling, stems
from the possibility of performing a stability analysis similar to the one presented in [17].
With the following definitions: α1 = α(γ̃1, δ1), α2 = α(γ̃2, δ2), β1 := −β(δ1, µ1), and
β2 := −β(δ2, µ2), the ODE that we consider is obtained from ODE in Formulas (5) by
means of the procedure that gave the ODE in Formula (8), that is,

s′(t) = [−α1(1− G(t, λ))− α2G(t, λ)]i(t)s(t) , s(t1) = s0

i′(t) = i(t)[(−β1 − µ1 + α1s(t))(1− G(t, λ)) + (−β2 − µ2 + α2s(t))G(t, λ)], i(t1) = i0
r′(t) = [β1(1− G(t, λ)) + β2G(t, λ)]i(t) , r(t1) = r0

d′(t) = [µ1(1− G(t, λ)) + µ2G(t, λ)]i(t) , d(t1) = d0 .

(10)

In order to obtain the results of the model, for the smooth regime switching case—
results presented in Section 5—the system of ODE in Formula (10) is to be integrated
numerically. The software used was Mathematica ™ (see [32]). The existence and unique-
ness of solutions for such a model pose no problem, as pointed out in Remark 5.

4. Data and Parameter Estimation

The data considered in this study—represented in Tables 1 and 2 and Figure 2—are
composed of two daily reported time series; the series of the number of infected and the
series of the number of deaths attributed to the infection.

The data used were extracted from a public available source transcribing informa-
tion from the Portuguese General Direction of Health (DGS) and can be retrieved at
https://pt.wikipedia.org/wiki/Predefinição:Tabela_Covid-19_Portugal_região/dia_(DGS)
(the website was accessed on on 31 October 2020). The precise numbers do not really matter
for our work, only the general trends matter; the methods introduced can be applied to
other sets of data with the same characteristics. The number of infected is the number of
individuals with positive outcome on an infection test; most commonly a PCR test.

As far as we know, with obvious exceptions, the reported deaths are of those persons
who died having had a positive outcome on an infection test. There are natural questions
arising from this data description; these questions do not have known answers because, for
the moment, there is no practical and affordable way of getting the answers. What is the
real number of infections in the whole population? What is the real lethality rate—alias,
the case fatality rate—of the disease? This uncertainty is reflected on the outcomes of any
model relying on parameters connected to these unknown numbers. In Section 4.5, we will
consider the use of some secondary parameters to overcome this issue.

https://drive.google.com/file/d/1s_JQUwjZ_Ywkh70t7MUdUpoaKIViVhW3/view?usp=sharing
https://drive.google.com/file/d/1s_JQUwjZ_Ywkh70t7MUdUpoaKIViVhW3/view?usp=sharing
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Table 1. Data: 208 daily infection numbers; 4 March to 27 September 2020, Portugal.

2, 3, 4, 8, 9, 9, 2, 18, 19, 34, 57, 76, 86, 117, 194, 143, 235, 260, 320, 460, 302, 633, 549, 724,
902, 792, 446, 1035, 808, 783, 852, 638, 754, 452, 712, 699, 815, 1516, 515, 598, 349, 514,
643, 750, 181, 663, 521, 657, 516, 603, 371, 444, 595, 472, 163, 295, 183, 551, 295, 161, 92,
242, 178, 480, 533, 553, 138, 175, 98, 234, 219, 187, 264, 227, 226, 173, 223, 228, 252, 288,
271, 152, 165, 219, 285, 304, 350, 257, 297, 200, 195, 366, 331, 377, 382, 342, 192, 421, 294,
310, 270, 283, 227, 346, 300, 336, 417, 375, 377, 292, 259, 345, 367, 311, 451, 323, 457, 266,
229, 313, 328, 374, 413, 328, 232, 287, 443, 418, 602, 342, 291, 306, 233, 375, 339, 312, 313,
246, 135, 127, 252, 229, 313, 263, 209, 135, 111, 203, 255, 204, 238, 153, 106, 112, 167, 213,
290, 186, 131, 157, 120, 278, 325, 235, 198, 121, 132, 214, 253, 291, 219, 241, 145, 123, 192,
362, 399, 401, 374, 320, 244, 231, 390, 418, 406, 486, 315, 249, 388, 646, 585, 687, 497, 673,
613, 425, 605, 770, 780, 849, 552, 623, 463, 793, 700, 919, 864, 665.

Table 2. Data: 208 death daily numbers; 4 March to 27 September 2020, Portugal.

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 3, 6, 3, 8, 10, 10, 17, 16, 24, 19, 21, 20, 27, 22, 37, 20, 29, 16, 34, 35,
29, 26, 35, 34, 31, 32, 32, 30, 28, 30, 27, 21, 27, 23, 35, 34, 26, 23, 25, 20, 25, 16, 18, 16, 20, 20, 11, 15, 16,
9, 12, 9, 9, 19, 12, 9, 6, 13, 15, 13, 16, 16, 14, 12, 13, 14, 14, 12, 14, 13, 14, 13, 14, 14, 12, 11, 8, 10, 9, 5, 6,
7, 5, 7, 1, 7, 5, 3, 2, 1, 1, 3, 1, 2, 4, 6, 3, 6, 6, 6, 3, 4, 8, 3, 8, 11, 7, 9, 6, 9, 2, 13, 2, 8, 6, 2, 6, 8, 3, 3, 2, 5, 2, 6,
5, 3, 7, 4, 1, 2, 3, 3, 2, 8, 2, 1, 0, 1, 1, 3, 3, 4, 6, 3, 2, 3, 6, 2, 3, 3, 1, 5, 2, 2, 4, 2, 2, 5, 4, 2, 2, 6, 3, 1, 3, 2, 3, 2,
4, 5, 2, 3, 3, 3, 3, 3, 5, 7, 4, 4, 3, 10, 6, 5, 13, 8, 5, 3, 3, 5, 8, 9

We now address the problem of estimating the parameters of the model from the
data. We first observe, as it is usually observed in the usual graphic curves of epidemics
evolution, e.g., Figure 2, that we may distinguish several periods the most remarkable
being the initial growth period, starting 4 March 2020, with the first two cases being
acknowledged and ending in 18 March (day 15)—with the emergency state declaration,
effective 22 March—and the following period, ending in 9 May, day 67, as a consequence of
the lockdown measures. We will concentrate our analysis in these first two periods as they
correspond to a regime switch—derived from the emergency status applied from 22 March
on (day 19)—for a determined set of viral clades; it is already known (see the genomic
analysis of Instituto Ricardo Jorge in Portugal—https://insaflu.insa.pt/covid19/(accessed
on 30 June 2020)—and, in France [33]) that the two following pairs of increasing-decreasing
infection numbers corresponding to sets of different viral clads and strains—as shown
in Figure 3—and so, they may require a completely different set of parameters; if not, a
different model.

50 100 150 200
Days

500

1000

1500

Daily infected
Infected & 12 days MA; March 4 to September 27

50 100 150 200
Days

5

10

15

20

25

30

35

Daily deaths
Deaths & 12 days MA; March 4 to September 27

Figure 2. Daily infected and death numbers and 12-day moving averages in Portugal.

The identification of these periods can be done, for instance, with a moving average
that smoothes the rough oscillations. In Figure 2, it can be observed that there is a clear
maximum in the 12th day moving average of the infected, and there is a sort of plateau of
maximum values for the death numbers. This allows us to define the starting and ending
dates of the two periods under consideration for computational purposes.

https://insaflu.insa.pt/covid19/
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From the data on the infected, we can estimate the parameterR0 ≡ γ̃ and get some
information on the duration of the infection, the Du ≡ δ parameter. From the mortality
data, we can estimate the mortality rate µ and get some additional information on the
δ parameter.

Figure 3. Clades and strains of SARS-COVID-19 in Portugal by Instituto Ricardo Jorge.

4.1. On the Assumed Value for δ the Duration of the Disease

It is an acknowledged fact (see [34]) that the viral load for infections of this type of
disease becomes undetectable after a few days, between 6 and 14. In the particular case
of this disease, it was observed that, in the vast majority of cases, after 5 days (see [35]),
the viral load becomes undetectable. As a consequence, we will assume that our basis
scenario corresponds to δ = 7.5 days, and we will consider two extreme scenarios with
parameter values δ = 5 days and δ = 10 days. Further on—see Section 4.4—we will see
that the lethality rate estimates, with a three and eleven days delay, define an interval
[3, 11] consistent with the proposed duration day interval for the disease [5, 10], as the main
contagious period of the infection.

4.2. Determination of the Initial Date of the Decreasing Trend Period

Given a whole set of time labeled data points i1, i2, . . . , in, . . . of the number of infected
the determination of the date where the regime switch may be taken to happen can be
performed with a moving average sequence Mn(k), the average of the k day values prior
to the current date, defined by:

Mn(k) :=
1
k

k

∑
j=1

in−k+j , for n ≥ k .

Intuitively, the sequence (Mn(k))n≥k, for k = 1, 2, . . . is closer to (in)n≥k the smaller
the value of k. Moreover, for a sequence (in)n≥1 with a rising trend, we should always have
Mn(k) < in+1, and so, the first time label n such that Mn(k) ≥ in+1 may be considered the
time stamp of rising trend break. The same applies mutatis mutandis to a decreasing trend.
For our data we know that the regime switch must have occurred between days 15 and 30
on account of the lockdown determination on 18 March 2020 (day 15). For k = 4, 5, . . . , 12
we had n = 26 for the first index n such that Mn(k) ≥ in+1 and so we take the date n = 26
as the starting date of the decreasing trend in the data that will be used for estimation of
the contact number.

4.3. Estimation of γ̃ the Contact Number

We propose the following method that is suited for the type of data considered with
well defined growth characteristics: data defining a jagged line such that a regularisation
obtained by a moving average that smoothes the rough oscillations—see Figure 2—is
increasing in the first considered sub-period and decreasing in the second sub-period. To
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account for the jagged characteristic of the line corresponding to the data—a characteristic
that is possibly due noise contamination originated from delays in collecting and reporting
the observed numbers—we will consider a binomial type model, that is, the following
hypothesis for each of the sub-periods of dates {1, . . . , 67}.
1. The length of the period τ is determined and we have (in)0≤n≤nτ a sequence of

daily observations of the number of infected. There is a sequence of random varia-
bles (In)1≤n≤nτ such that the initial i0 is arbitrary but the remaining observed data
(in)1≤n≤nτ is a realisation of this sample.

2. There exists a random variable Zτ , taking two values u, d—with u representing the
magnitude of the upward jump and d representing the magnitude of a downward
jump—such that P[Zτ = u] = pu and P[Zτ = d] = pd with pu + pd = 1 and
pu, pd > 0. For (Zτ

n)n≥1 a sample of Zτ we have, for n ≥ 1, that:

In+1 = Zτ
n+1 In , I0 ≡ i0 . (11)

The values u, pu, d, pd are the parameters to be estimated and they depend on the
period considered.

As a consequence of these hypothesis we have the following immediate conclusions.

1. The maximum likelihood estimator of pu, as a consequence of the distribution of Zτ ,
is given by:

p̂u(N) :=
#{1 ≤ n ≤ N : In+1 > In}

N
. (12)

2. By the law of large numbers we have that for N ≥ 1 large enough,

ŝN :=
1
N

N

∑
n=1

in+1

in
≈ EP[Zτ ] , ŝ2

N :=
1

N − 1

N

∑
n=1

(
in+1

in
− ŝN

)2
≈ VP[Zτ ] , (13)

that is, ŝN may be taken as a good approximation of EP[Zτ ]—the expectation of
Zτ—and ŝ2

N is a good approximation of VP[Zτ ], the variance of Zτ .
3. By the method of moments, we can determine the couple of estimators (û, d̂) for the

parameter couple (u, d) as the solutions of the equations derived from the law of Zτ

given by, {
puu + (1− pu)d = E[Zτ ]
puu2 + (1− pu)d2 − (puu + (1− pu)d)2 = V[Zτ ] ,

considering the estimator p̂u(N) of pu given by Formula (12) and the estimator of
E[Zτ ] (respectivelyV[Zτ ]) given by Formula (13). There are two sets of solutions—
Formulas (14) and (15)—and we have to choose the set that corresponds to the period
characteristic, that is, in the first period we should have the greatest u with the highest
probability and in the second period the greatest d with the higher probability.

û1 := ŝN −
√
(1− p̂u(N)) p̂u(N)ŝ2

N
p̂u(N)

d̂1 :=
ŝN(1− p̂u(N))+

√
(1− p̂u(N)) p̂u(N)ŝ2

N
1− p̂u(N)

(14)


û2 := ŝN +

√
(1− p̂u(N)) p̂u(N)ŝ2

N
p̂u(N)

d̂2 :=
ŝN(1− p̂u(N))−

√
(1− p̂u(N)) p̂u(N)ŝ2

N
1− p̂u(N)

(15)

Finally, we will take γ̃ = û for the first period and γ̃ = d̂ for the second period, and
the computed results are presented in Table 3.
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Table 3. Estimates of pu, pd and ofR0 for the two successive sub-periods.

Periods p̂u(N) u p̂d(N) d ̂̃γ = R̂0

[1, 25] 0.833333 2.33474 0.166667 −2.04242 2.33474

[26, 67] 0.487805 1.94555 0.512195 0.411811 0.411811

Remark 6 (Comments on the estimates of Table 3). In the first period, days 1 to 25, that is,
4 March to 28 March, the estimated value of pu is perfectly compatible with the strongly increasing
character of the observations, and the estimated values ofR0— highlighted in boldface—are similar
to other estimations of this parameter; for instanceR0 = 2.6 a value used in the Imperial College
study paper, see [36] or [37] andR0 = 2.28 for a very particular subpopulation of a cruise ship. In
the second period, days 25 to 67, that is, 28 March to 9 May, we observe that there is almost equal
probability for either an upward or a downward probability and the downward parameter estimate
gives us a lesser but still high estimate forR0.

4.4. Estimation of µ the Lethality Rate

The estimation of the lethality rate must be accomplished by establishing some func-
tional relation with the number of infected. Among several different models tried, including
ARMA models, we finally observed that the simplest model, that is the linear fit, was the
adequate model for the two periods. We then considered, for the two periods indepen-
dently, a linear fit with vanishing constant, of the daily deaths dDt given as a function of
the daily infected dIt but with varying time delays. Based on both the lowest AIC—Akaike
Information Criterion (see [38] for both AIC e BIC thorough developments)—and the
highest R-squared the best model was a linear fit with vanishing constant with a delay of
three days in the first period and a delay of eleven days in the second period. That is,

dDt+∆ = µdIt + εt , t ≥ 1 , ∆ = 3, 11 . (16)

We recall that the p-value in Table 4 is the probability of observing a t-statistic at least
as far from zero as the one obtained from the data used in the estimation; given that the
p-value in the table the model is adequate.

Table 4. Estimates µ̂ of the lethality µ for the two successive sub-periods.

Periods ∆ µ̂ St. Error t-Stat p-Value Adj. R2 BIC AIC

[1, 25] 3 0.0306118 0.00155902 19.6353 2.71833× 10−16 0.938957 123.008 120.57

[26, 67] 11 0.0350414 0.00210826 16.621 8.02743× 10−20 0.867616 302.68 299.21

Remark 7 (Comments on the estimates of Table 4). Despite the remarkable statistical properties
of the estimates obtained in the two periods under analysis, the values obtained for the lethality rate
µ̂—highlighted in boldface—are excessive if we consider the whole population of infected including
also the undiagnosed and/or asymptomatic cases. In the following Section 4.5 we put forward an
explanation and a correction to this excess of deaths.

Remark 8 (On the nature of the most adequate ODE model). The lethality model we obtained
as the best fit in Formula (16) suggests that the ODE model should comprise a delay in the
differential equation corresponding to the lethality. The use of delay differential equations (DDE) in
epidemiology is not new, see for instance [39]. Also, in [40] there is an application to the multi-group
SIR model with mass action incidence and with discrete time delay based on the construction of a
Lyapunov functional for the DDE model. As it is well known, the DDE models require the study of
stability that can be quite demanding (see, for instance, [41] (p. 36)).
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4.5. Further Hypothesis on the Results of the Estimation Procedure

As early as 8 May 2020, it was a common assumption that the total number of in-
fections was much higher than the officially reported (see [42]). In fact, already in [43],
it is stated that the total number of infected was between 3 and 20 times the number of
reported infection cases. Moreover, recently in 5 October 2020, Dr. Michael Ryan, head
of emergencies at the WHO said, that . . . “best estimates indicate that roughly 1 in 10
people worldwide may have been infected by the coronavirus—more than 20 times the
number of confirmed cases” (see https://www.cnbc.com/2020/10/05/who-10percent-of-
worlds-people-may-have-been-infected-with-virus-.html (accessed on 6 October 2020)).
As a consequence, since our model applies to the whole population, we will further assume
the following:

• We will consider that the real number of infected is 20 times higher than the number
reported. As a consequence, the model parameters γ̃ and µ are to be modified to take
this assumption in consideration.

• The estimated value for the parameter γ̃ has to be replaced by the value γ̃c given by,

γ̃c = γ̃
1 + 19ζ

20
,

with ζ ∈]0, 1[, a secondary parameter, being the correction needed to take into account
that the non diagnosed infected cases must correspond to non symptomatic cases and,
as such, with a contagion force inferior to those infected with symptoms and tested
with a positive outcome. Having no prior information available, we will consider that
ζ = 0.5 correspond to our basis scenario, and we will base our main conclusions on
the observations of the outcomes of the model under this particular scenario.

• In the same way, the estimated value for the parameter µ should be replaced by the
value µc given by,

µc = µ
1 + 19θ

20
, (17)

with θ ∈]0, 1[, another secondary parameter, being the correction needed to take into
account the mortality rate due to the infection in the asymptomatic and not tested with
a positive outcome. Having no prior information available, we will suppose that θ = 0
correspond to our basis scenario and θ = 0.25 and θ = 0.5 to alternative scenarios.

• For the initially immune Ii we consider that in the first period these are supposed to
be 2.5% of the population. In the second period the initially immune are those who
either recovered or died at the end of the preceding period.

• For the smooth regime switching model drive function G, shown in Figure 1, the
parameter choice λ0 := (0, η, θ, τ) = (0, 0.85, 1.39, 0.994) ensures that for t0 = 16
we have G(t0, λ0) = 0.00238659 ≈ 0, for t1 = 22 we have G(t1, λ0) = 0.181604,
for t2 = 26 we gave G(t2, λ0) = 0.477708 ≈ 0.5 and that for t3 = 40 we gave
G(t3, λ0) = 0.960981 ≈ 1 and so, the smooth regime switching unfolds, essentially,
between day 16, the declaration of starting time of the lockdown, and day 40.

5. Results of the Model

We now apply the model given by the ODE systems in Formula (5) and in Formula (10)
to the two different sub-periods considering the different set of parameters indicated above.
For the second sub-period and the ODE systems in Formula (5), the initial conditions are
the terminal conditions of the preceding sub-period. In the numerical integration of the
rough regime switching ODE we take day 20 that is, 23 March the following day to the
emergency state declaration, in Portugal, to be the beginning of the second sub-period with
a different regime.

Let us give a summary of the assumptions for the basis scenario by interpreting the
parameters in Table 5. In this scenario ζ = 0.5, that is, those infected but not diagnosed as
such have a contagion force γc = 0.525γ with γ being the contagion force of those with

https://www.cnbc.com/2020/10/05/who-10percent-of-worlds-people-may-have-been-infected-with-virus-.html
https://www.cnbc.com/2020/10/05/who-10percent-of-worlds-people-may-have-been-infected-with-virus-.html
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an positive diagnostic infection; θ = 0 and so µc = µ/20 meaning that mortality rate for
the asymptomatic infected and not tested with a positive outcome is one twentieth of the
mortality for those infected and with a positive outcome on a test; and, finally, δ = 7.5 states
that the duration of the infection in the basis scenario is 7.5 days. We will first consider the
results for the basis scenario and after, the results for the extreme scenarios I and II defined
for specific choices of the secondary parameters ζ, θ and δ as in Table 5 (see Section 4.5 for
the need of establishing scenarios for the secondary parameters).

Table 5. Parameters for basis scenario and extreme scenarios I and II.

Parameters Extreme Scenario I Basis Scenario Extreme Scenario II

ζ 0.3 0.5 0.7

θ 0.25 0 0.5

δ 5 7.5 10

5.1. Results of the Model in the Basis Scenario

In Figure 4 we have the numerical solutions of the ODE systems for the two periods
considered, for the constant parameter case—that is, with no regime switching—and
for both the regime switching cases the smooth and the rough case in the case of the
base scenario (see Table 5 for the values of the secondary parameters ζ, θ and δ in the
basis scenario). The yellow constant line at height one—explained in Remark 3—is just
the sum of proportions and is drawn for control purposes. The terminal values, at date
67 corresponding to May 9th, for the proportions in each subpopulations—susceptible,
infected, recovered and dead—are given in Table 6.
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Proportions as function of time Hin daysL: constant parameters
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Proportions as function of time Hin daysL: R-regime switching
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Proportions as function of time Hin daysL: S-regime switching

Figure 4. Solutions of the SI(RD) ODE: constant parameters, R-RS and S-RS; ζ = 0.5.

Remark 9 (Comments on the ODE solutions displayed in Figure 4). With, susceptible in blue,
infected in red, recovered in green, dead in magenta, and with the sum of proportions in yellow, the
ODE model without regimes, on the left-hand side, and the ODE models with regimes are clearly
different. In the case of the rough regime switching the effect of the regime change is clear both in
the susceptible and the infected. At first sight, the final values of the proportions between the rough
regime switching and the smooth regime switching; on the right-hand side, if they differ, they differ
slightly (see Table 6).

Remark 10 (Comments on the differences displayed in Figure 5 and on Table 6). As expected,
the regime switch has the following effects: the increase of the susceptible, the sharp fall of the infected,
the decline of the recovered and the most remarkable diminution of the deaths of the infected. In each
instance, the change between the constant parameter evolution and the regime switching evolution
was more pronounced for the rough regime switching, as expected.
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Table 6. Numerical results of the ODE model of Figures 4 and 5 at date 67.

Regime ζ θ δ Susceptible Infected Recovered Deaths

Constant 0.5 0 7.5 0.588081 0.0147572 0.368176 0.00398521

Smooth RS 0.5 0 7.5 0.71313 0.000537805 0.258525 0.00280666

Rough RS 0.5 0 7.5 0.746942 0.000271394 0.225357 0.00243014

10 20 30 40 50 60 70

0.60

0.65

0.70

0.75

0.80

0.85

0.90
Susceptibles - HSLRS: blue thin line; HRLRS brown thin line

10 20 30 40 50 60 70

0.01

0.02

0.03

0.04

0.05

Infected - HSLRS: red thin line; HRLRS brown thin line

10 20 30 40 50 60 70

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Recovered - HSLRS: green thin line; HRLRS brown thin line

10 20 30 40 50 60 70

0.001

0.002

0.003

0.004
Dead - HSLRS: magenta thin line; HRLRS brown thin line

Figure 5. Comparing constant parameters with (R) and (S) regime switching; ζ = 0.5.

Remark 11 (On the agreement between the death results of the model and the death
numbers of the data). The introduction of a death compartment in the model can be used to
ascertain the quality of the model as well as of the parameter estimation procedures. We will now
compare the results of the model with the real data. The lowest death rate—for the whole infected
population corresponding to the rough regime switching—given by the model in Table 6, at day
67, is 2430.14 deaths per million; by reversing the procedure we applied to the estimated lethality
rate in order to have a rate applied to the whole infected population in Formula (17) we have that
the number of deaths of infected in regard to the diagnosed population is 2430.14/20 = 121.507
deaths per million. The data number of deaths caused by infection corresponding to the pandemic
status at day 67, the end of the second period under analysis, should be taken at date 78 in Table 2,
corresponding to 20 May 2020, due to the 11-day time lag between the deaths and the infected, and
this value is 1263; in [44], we get, for 20 May, 1247 deaths because they did not count the number
of deaths which occurred on 20 May, which was 37. For coherence with our computations, we will
consider the death toll as 1263. Taking into account the estimate of the Portuguese population of
10,188,013 (see https://www.worldometers.info/world-population/portugal-population/ (accessed
on 15 October 2020), we have the number of deaths of infected per million equal to 123.969. So,
the ratio of the data number/model number is 123.969/121.507 = 1.0203, that is, an excess of
2% of the data over the model. This can be considered as a good agreement between model and
data given that we used an estimate for the total population number in Portugal. We nevertheless
observe that the true death toll of the epidemic may be larger than the accounted (see [45], for an
early suggestion of this possibility) and that there is also the possibility that the model studied does
not cover some important aspects of the epidemic evolution. This problem may be a feature common
to the compartmental models; for instance in [5] (p. 857a) the authors predict a 0.06% percentage of
deaths in a time horizon of 350 days—a very high value for a death of infected estimate of the whole
population—which is a result comparable to the rough regime switching evolution for the extreme
scenario I in Table 7 ahead.

https://www.worldometers.info/world-population/portugal-population/
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5.2. Results of the Model in the Extreme Scenarios I and II

The consideration of alternative scenarios—with a different set of secondary
parameters—allows for a better overview of the descriptive power of the model. As
proposed in Section 4.5, we can consider several different values for the secondary parame-
ters ζ, θ and δ, allowing the definition of two extreme scenarios in Table 5. The extreme
scenario I has the lowest values for the ζ secondary parameter—and, as a consequence,
also for the contact number γ̃— and also for the δ parameter, which is the duration of the
disease. The extreme scenario II, with the numerical results in Table 8, is the opposite.

Table 7. Numerical results of the ODE model for extreme scenario I at date 67.

Regime ζ θ δ Susceptible Infected Recovered Deaths

Constant 0.3 0.25 5 0.801685 0.000413846 0.107069 0.0658329

e Smooth RS 0.3 0.25 5 0.815603 6.82517× 10−6 0.0981462 0.0612436

Rough RS 0.3 0.25 5 0.822341 3.1775× 10−6 0.0937749 0.058881

Table 8. Numerical results of the ODE model for extreme scenario II at date 67.

Regime ζ θ δ Susceptible Infected Recovered Deaths

Constant 0.7 0.5 10 0.361501 0.0420978 0.0849807 0.48642

Smooth RS 0.7 0.5 10 0.604511 0.00413745 0.0279379 0.338413

Rough RS 0.7 0.5 10 0.67301 0.00232243 0.0214171 0.27825

Remark 12 (On the results of the model for the extreme scenarios I and II and consequent
conclusions about the basis scenario assumptions). With respect to the basis scenario, the
extreme scenario I has a larger death toll with an increasing proportion in the susceptible population
while the proportions of infected and recovered are much smaller in the extreme scenario I when
compared with the same proportions in the basis scenario. In the extreme scenario II (see Table 8),
the proportion of susceptible is smaller but the proportion of recovered is comparable while the
proportion of deaths is larger almost 114-fold for the regime switching model. As so and given the
agreement between data and model numbers for the death toll in Remark 11, we must conclude
that the assumptions made for the basis scenario are the most adequate. We stress that this fact
gives us important information about the disease stated in the following conclusions. For the
asymptomatic and/or undiagnosed the most plausible value of the contact number is 50%
of the contact number of the diagnosed. The most plausible mortality rate, caused by the
disease, for the asymptomatic and/or undiagnosed is zero and the most plausible value
for the duration of the disease is 7.5 days.

6. On the Regime Switching SI(RD) ODE Models: Existence and Unicity Results

An allegedly alternative to the rough regime switching considered in this work—
that it seems being used by some authors (see [16], for instance)—is to consider that the
coefficients of the SIR type model—for instance, SEIR or SI(RD) models—are not constant
but take two (or three) different values in two (or three) complementary intervals of the
time domain. In fact, we will observe in Remark 14 that the two approaches to the rough
regime switching are essentially the same. For the alternative rough regime switching,
the usual Lipschitz type existence theorem or even the Peano existence theorem for ODE
do not apply as the function in the righthand term of the ODE—with such discontinuous
time varying parameters—is not continuous. Existence and unicity of solutions for such a
model is a crucial question. A different approach is needed; following [46] (pp. 41–44), we
consider the definition of an extended solution of a differential equation,
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Definition 3 (Extended solution of an ODE). Let a differential equation be given by,

Y ′(t) = f (t, Y(t)) , Y(0) = y0 ∈ R4 , (18)

or in the equivalent integral form with the appropriate Lebesgue measure du inR4,

Y(t) = y0 +
∫ t

0
f (u, Y(u))du , (19)

for f (t, y) : I ×D → R
4 a non necessarily continuous function, with I ⊂ [0,+∞[ and D ⊂ R4.

An extended solution Y(t) of the ODE in Formula (18) is an absolutely continuous function
Y(t) (see for a precise definition [47] (pp. 144–150)) such that f (t, Y(t)) ∈ D for t ∈ I and
Formula (18), or equivalently, Formula (19), is verified for all t ∈ I, possibly with the exception of a
set of null Lebesgue measure.

We now recall Caratheodory’s existence theorem (see [46] (p. 43)), in the context of
the model we are studying, a theorem that ensures the existence of an extended solution
under general conditions.

Theorem 1 (Caratheodory’s existence theorem). Suppose that f (t, y) : I ×D → R
4 verifies:

(i) f (t, y) is measurable in the variable t, for fixed y, and continuous in the variable y, for fixed t.
(ii) there exists a Lebesgue integrable function m(t), defined on a neighbourhood of the initial time,

let us say I, such that | f (t, y)| ≤ m(t) for (t, y) ∈ I ×D.

Then, for a given initial condition, given in a neighbourhood of the initial time, there exists an
extended solution according to Definition 3.

We now state and prove an important result for our work, showing that the rough
regime switching function of Definition 1 is, essentially, an extended solution of the ODE
of the SI(RD) model in Formula (1), in agreement with what was announced in Remark 4.

Theorem 2 (Existence and unicity in the SI(RD) model with rough regime switching).
Consider the SI(RD) model given by the Cauchy problem n Formulas (1), that is:

s′(t) = −α(γ̃, δ)i(t)s(t) , s(t1) = s0

i′(t) = i(t)(−β(δ, µ)− µ + α(γ̃, δ)s(t)) , i(t1) = i0
r′(t) = β(δ, µ)i(t) , r(t1) = r0

d′(t) = µi(t) , d(t1) = d0 ,

with a time dependent vectorial parameter θ = θ(t) = (γ̃, δ, µ), such that for some t0 ∈]0, T[:

θ(t) =

{
θ1 , t ∈ [0, t0[

θ2 , t ∈ [t0, T] .

Then, by Theorem 1, this Cauchy problem has an extended solution in the sense of Definition 3.
Moreover, any two different solutions differ possibly only on a set of zero Lebesgue measure, and so
the extended solution is unique.

Proof. In order to address the problem of the existence of extended solutions for the rough
regime switching models, we observe that the ODE in Formulas (5)—with time changing,
discontinuous, parameters γ̃(t), δ(t) and µ(t)—may be represented as:

Y ′(t) = M(Θ(t), Y(t)) · Y(t) , (20)
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with Y(t) := (s(t), i(t), r(t), d(t))t, Θ(t) := (α(γ̃(t), δ(t)), β(δ(t), µ(t)), µ(t)) and:

M(Θ(t), Y(t)) :=

:=


−α(γ̃(t), δ(t))i(t) 0 0 0

0 −β(δ(t), µ(t))− µ(t) + α(γ̃(t), δ(t))s(t) 0 0
0 β(δ(t), µ(t)) 0 0
0 µ(t) 0 0

 .
(21)

As a consequence, the ODE in Formula (20) can be represented as in Formula (18) with
f (t, y) : [0,+∞[×R4 → R

4 such that (t, y) 7→ M(Θ(t), y) · y. We have, for the Euclidean
norm ‖·‖ inR4, with mij(t, y) the matrix components of M(Θ(t), y) and using the fact that
the Frobenius norm dominates the matrix norm associated with the Euclidean norm,

‖ f (t, y)‖ = ‖M(Θ(t), y) · y‖ ≤ ‖M(Θ(t), y)‖‖y‖ ≤
(

4

∑
i,j=1

∣∣mij(t, y)
∣∣2) 1

2

‖y‖ ≤

≤ N(t)L(‖y‖) ,

(22)

with L(s) := s and since s(t), i(t) ≤ 1, with N(t) given by the expression:

[
α2(γ̃(t), δ(t)) + (β(δ(t), µ(t)) + µ(t) + α(γ̃(t), δ(t))2 + β2(δ(t), µ(t)) + µ2(t)

] 1
2 . (23)

By Caratheodory’s existence theorem (see Theorem 1 above), the extended solution for
equation given in Formula (18)—for a given initial condition and in the case of the rough
regime switching models here considered—exists as a consequence of the estimate in
Formula (22) by observing that the components of y are proportions, and so L(‖y‖) is
bounded, and that N(t) in Formula (23) is bounded and measurable, and so it is Lebesgue-
integrable in any compact interval of the time variable.

We now address the unicity of solutions for the regime switching ODE problems
already mentioned in this section. For that purpose, we will prove that the function f (t, y)
satisfies a Lipschitz condition in the variable y for each fixed t. By resorting to Formulas (5)
and with β := β(δ(t), µ(t)), α := α(γ̃(t), δ(t)) and µ := µ(t), for notation simplification,
we have that,

f (t, y1)− f (t, y2) =


−α(i1(t)s1(t)− i2(t)s2(t))

(i1(t)− i2(t))(−β− µ) + α(i1(t)s1(t)− i2(t)s2(t))

β(i1(t)− i2(t))

µ(i1(t)− i2(t)) .

(24)

We now use the fact that i1(t)s1(t)− i2(t)s2(t) = i1(t)(s1(t)− s2(t)) + s2(t)(i1(t)−
i2(t)) to obtain that,

f (t, y1)− f (t, y2) = M∆(Θ(t), y1, y2) · (y1 − y2) ,

where, with the same simplified notations for α, β and µ, we have:

M∆(Θ(t), y1, y2) :=


−αi1(t) −αs2(t) 0 0
αi1(t) −β− µ + s2(t) 0 0

0 β 0 0
0 µ 0 0

 . (25)

Now, using the Euclidean norm ‖·‖ inR4, the fact that the Frobenius norm dominates
the matrix norm associated with the Euclidean norm, the fact that all components of y
are non-negative and bounded by one, as proportions always are, we have that, if the
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parameters α, β and µ are bounded measurable functions, then ‖M∆(Θ(t), y1, y2)‖ is
bounded, by a bounded measurable function k(t) given by:

k(t) :=
[
3α2(γ̃(t), δ(t)) + (β(δ(t), µ(t)) + µ(t) + 1)2 + β2(δ(t), µ(t)) + µ2(t)

] 1
2

and then we have:

‖ f (t, y1)− f (t, y2)‖ = ‖M∆(Θ(t), y1, y2)‖‖y1 − y2‖ ≤ k(t)‖y1 − y2‖ , (26)

thus ensuring a boundedness condition that implies the Lipschitz character of f (t, y).
Now, either directly using theorem 18.4.13 in [48] (p. 337) or using Osgood’s uniqueness
theorem—as presented for instance, in [49] (p. 58) or in [50] (pp. 149–151)—we may
conclude that the extended solution, that we know to exist, is unique, in the sense that
two solutions may only differ on a set of Lebesgue measures equal to zero.

Remark 13 (Existence alternative proof). We could also quote Wintner’s theorem as referred
by [51], stating that if ‖ f (t, y)‖ ≤ N(t)L(‖y‖) with N and L piecewise continuous, positive
and L nondecreasing, such that for some c > 0∫ +∞

c

1
L(s)

ds = +∞ ,

then the ODE in Formula (18) has a solution for a given initial condition, by observing that the
quoted theorem is valid, under the assumption that f (t, y) is continuous with the possible exception
of points of a null Lebesgue set of the time variable, by considering extended solutions instead
of usual solutions, which have a continuous derivative, and as L(t) and N(t) both satisfy the
hypotheses of Wintner’s theorem for parameters γ̃(t), δ(t) and µ(t), taking each two (or three)
distinct values in two (or three) complementary intervals of the time domain.

We observe that these existence and uniqueness results are essential for a numerical
integration of the ODE, but that no result of convergence numerical is implied—in the exis-
tence and uniqueness results above—for the regime switching ODE with discontinuous co-
efficients. Nevertheless, the Lipschitz condition with respect to the y variable—such as the
one in Formula (26)—is sufficient for the convergence of the Euler method (see [52] (p. 74)).

Remark 14 (On the existence of essentially only one rough regime switching model). We
also observe that our definition of a rough regime switching as the continuous function obtained by
glueing the usual solutions of ODE in complementary time intervals—as described in Section 3—is
equal almost everywhere in the time variable, with respect to the Lebesgue measure, to any extended
solution of the alternative rough regime switching obtained by solving an ODE with discontinuous
parameters, which is the best we can expect for extended solutions.

Remark 15 (Existence and unicity of solutions for the smooth regime switching). It is clear
that the existence and unicity of a solution for the smooth regime switching model in Section 3
may be dealt either by the usual Cauchy-Lipschitz existence and unicity theorem or by the results of
this section, with the necessary adaptations of the definitions of the matrices M(Θ(t), Y(t)) and
M∆(Θ(t), y1, y2). An example of smooth regime switching was studied in [17] with two coupled
ODE, having in each equation two evolution regimes in such a way that the transition in time,
between these regimes, is achieved by a coupling function similar to the function in Formula (9).

Remark 16 (On the Lie symmetries for ODE models with regime switching). There are
at least two ways of considering symmetries on the model developed in this work. The first and
more simple one is the usual reversibility in time for ODE. In fact it is clear from the expression
of an ODE in integral form in Formula (19)—using t = −s as the variable change—that the
generalised solution of a ODE for a regime switching model proved using Carathéodory’s theorem is
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reversible in time. The second and profound one is related to the Lie symmetries for the differential
model in Formula (5) with added regime switching as studied in this work. Lie type symmetries for
ODE in general are the object of several reference works, for instance in [53]. For the SIR and the
SI(RD) models, Lie symmetries were presented in [54,55], following the general proposals of using
Lie symmetries in epidemiology developed in [56,57]. The study of Lie symmetries for ODE with
regime switching remains to be done. A natural approach is to use the ideas of bifurcation theory, as
masterfully developed in [58,59].

7. Discussion, Conclusions and Further Work

We introduced, studied, and applied a SIR type model with a compartment for
deaths—occurring by force of the infection—and with regime switching to model pandemic
mitigation measures such as a lockdown. The model depends on three main parameters,
to wit, the basic reproduction number, the lethality rate and the duration of the disease.
The statistical methodologies introduced to estimate the main parameters of the model—
using real data of the initial period of the pandemia in Portugal—are natural, and provide
estimates in line with values reported in the literature. Nevertheless, these values have
to be resized in order to account for the true dimension of the infected population; this
resizing creates secondary parameters which are impossible to estimate, due to the lack of
proper data. When fed with the resized parameters—for some scenario chosen values of
the secondary parameters—the model gives results in line with what is to be expected, for
instance, the lowering of the death toll of mortality when a mitigating measure of lockdown
type is present and, for the lethality also, a remarkable agreement within an excess of 2%
of the observed data over the model. We must conclude that the assumptions made for
the basis scenario are the most adequate of the three scenarios proposed; we observe that
this fact gives us important information, about the disease, stated in the following. For
the asymptomatic and/or undiagnosed the most plausible value of the contact number is
50% of the contact number of the diagnosed. The most plausible mortality rate—caused
by the disease—for the asymptomatic and/or undiagnosed is zero and the most plausible
value for the duration of the disease is 7.5 days. The methodology introduced is applicable
whenever there are clear regime switchings in the evolution and correspondent estimates of
the relevant parameters occurring by force of control measures such as lockdown. The main
advantage of the SI(RD) model studied in this work is that, in its simplicity, it allowed us to
recover the past behaviour of the lethality which is the main social nefarious consequence
of an epidemic. One line of investigation that our work opens up to is to replace parameters
by parametric functions depending on parametric variables that may capture the effects
of our secondary parameters; this line of investigation seems justified by the importance
of the secondary parameters in the conclusions we attained. An alternative to this line
of investigation is to randomise the parameters; with this approach we would have to
prescribe probability distributions for the parameters and then use Monte Carlo simulation
to get probability distributions for the proportions of susceptible, recovered and dead, at
the end of the period studied.
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