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Abstract  

Buildings consume approximately 40% of energy in total, which contributes negatively to the 
environment. Building Energy Management Systems (BEMS) have been used to monitor energy 
consumption and increase usage efficiency. In this study, the components and importance of 
BEMS are emphasized. The data from the management system of the Chamchuri 5 building 
in Chulalongkorn University, Thailand, were used as a template for data-driven modeling for 
energy usage in smart buildings to analyze the patterns of energy consumption.  Using multilevel 
modeling on the Chamchuri 5 building, the main factors that consume energy on a macro and 
micro level are analyzed. Energy variation between zones and floors was spotted. 
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1. INTRODUCTION 

Energy consumption in buildings is one of the major sources of CO2 emissions (IEA 2021), 

(Cao et al., 2016). It is important to determine the energy patterns in buildings to be able to provide 

suggestions in order to lower their consumption and increase energy efficiencies. Nowadays, with 

technological advancements, analysts have been able to collect and study data about energy usage 

through building energy systems and offer energy solutions and recommendations. In this thesis, 

energy consumption problems in buildings will be discussed followed by the importance of 

building energy management systems (BEMS) and their components. Furthermore, a case study 

of the Chamchuri campus building in Thailand will be analyzed to reveal the energy drivers in the 

building using multilevel modeling. 

Energy management and efficiency plans are triggered by many reasons. To mention a few, 

cost reduction, the change towards sustainable cultures and values, and reducing carbon 

footprint. In Thailand, Chulalongkorn University is highly committed to the community and 

sustainability. As reported in their sustainability report 2018-2020, 72 million dollars are spent on 

sustainable projects and research. The university offers more than 1300 courses to promote 

sustainability. Its mission includes many environmental and CSR-oriented plans one of these 

initiatives is to ensure a sustainable building design by providing a BEMS in all the buildings 

on campus and installing solar roofs as a source of renewable energy (Chulalongkorn	University	

Sustainability	Report,	2018-2020). Additionally, the efforts of the university in sustainability 

have been recognized, the university has been awarded many energy awards (CUBEMS, 2021).	

2. LITERATURE REVIEW 

Energy consumption in buildings is one of the major sources of CO2 emissions. It has been 

reported that energy consumed by these buildings makes up for 28% of the global carbon emissions 
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(IEA 2021). In addition, they use up 40% of the total energy consumed in the US and EU (Cao et 

al., 2016). Moreover, energy consumption is heightened by various factors. Population growth 

constitutes a major energy consumer. This growth has been caused by an annual increase of floor 

area which amounts to 2.5%, which is outpacing the observed 0.5% to 1% declining rate in energy 

used per square meter as reported in 2010. Therefore, a minimum of 2.5% reduction in energy is 

required to balance the constant outgrowth in population per year (IEA 2021). 

 Other factors include the surge in demand for rapid changes in the lifestyle, which comes 

with a rise in technological advancements needed to enhance the living standards resulting in more 

energy being consumed. Additionally, the continuous climate change is causing an over-utilization 

of HVAC systems to maintain a comfortable ambiance. Furthermore, the use of fossil fuel energy 

sources has seen an annual growth rate of 0.7% since 2010 (Cao et al., 2016).  

In 2019, the International Energy Agency (IEA) recorded a staggering 10 gigatons of CO2, 

which is the highest level of carbon emissions from buildings reported to date (Figure 1). IEA 

analysts have interpreted this surge to be caused by the extreme weather events that year 

consequent to climate change. As an example, mid-2019 witnessed the second record for the 

hottest year. This record was a result of the pre-warned El-Nino phenomenon which is known for 

causing extreme shifts in the location of warm ocean waters, characterized by much warmer waters 

in central and eastern parts of the basin and cooler than normal in the western tropical Pacific. As 

the waters became extremely hot, consequently, the usage of air conditioning systems increased  

to reach tolerable  indoor temperatures  and  unfortunately, this increase surpassed the efforts made 

to reduce energy usage (Cao et al., 2016).  
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Figure 1: Carbon emissions level in gigatons from year 1990 to 2030 (IEA 2021) 

 

 

 

 

 

 

 

 

 

Carbon emissions are in constant growth which affects the environment severely. In efforts 

to mitigate these impacts, many countries started to impose laws and sanctions to restrict the level 

of CO2 emissions. Moreover, there is an observed increase in awareness campaigns raised to 

inform the population of the huge impact of pollution caused by energy consumption in hopes of 

raising more environment-conscious behaviors. As an example, corporate social responsibility 

concepts are now widely used in many firms; clearly, there is a trend moving towards greener 

sources of energy, and energy optimization.  

Undoubtedly, these overall increases in environmental consciousness and the availability 

of data enhanced the understanding of the main causes for energy consumption. Powerful entities 

with the ability to put changes in effect have started to act accordingly, Europe is currently 

implementing a project to gradually renovate their existing buildings which constitute the largest 

percentage of buildings in Europe by focusing on fronts as well as their heating systems. Following 

in their steps, China is investing in energy efficiency solutions in new buildings as part of their 

plans for expanding in construction and urbanization (Cao et al., 2016).  
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Potential conscious building solutions could focus on the aforementioned HVAC systems 

which consume a large amount of energy whether the purpose is for cooling or heating. That is 

where architectural design could come into play. Several passive techniques could be implemented 

depending on the climate conditions for the studied areas, their implementation can be used to 

considerably decrease the need for AC. Some of these passive solutions are building orientations, 

altering wall thicknesses, and thermal insulation systems which impact the thermal transmittances 

expressed by U-values of walls and roofs and reduce the heat exchange leading to better energy 

efficiencies and savings. Additionally, one could put into account the heat gain and loss of the 

materials used, the presence of traditional construction methods like earth construction, proper 

design for shading devices, windows’ size and orientation, natural ventilation systems & skylights, 

etc. Moreover, the integration of building energy management systems, which will be explained 

later, is used in sustainable and smart buildings. 

Further, the idea of zero energy building (ZEB) is becoming more attractive as an 

innovative approach in building design. These buildings use renewable energy sources to supply 

the building with the required energy (Torcellini et al., 2006). More countries are encouraging the 

implementation of this concept in buildings’ construction as it is a combination of the traditionally 

used passive techniques in construction and renewable energy technologies. For example, the 

Chamchuri building has a solar energy roof that contributes to the energy supply for the building 

(CUBEMS, 2021).  

2.1. Building Energy Management Systems (BEMS) 

BEMS have been evolving over many decades, driven by the concept of energy efficiency. 

They started with very limited capacities in the 1970s, then transcended to computer-based 

systems, with the rise in technological advancements and the spread of computers. Some of the 
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major manufacturers of BEMS are Siemens, Toshiba, Hitachi, and GE (Asare-Bediako et al., 

2012).  In the 2000s, BEMS evolved to a combined hardware and software system, while 

nowadays, compact chips (Asare-Bediako et al., 2012) and cloud networks are being used 

(Memoori, 2017).  

2.1.1. Importance Of BEMS  
BEMS are used in the equipment in residential and commercial buildings equipment to 

manage and control the energy usage of mechanical and electrical systems while ensuring the 

required standards of indoor air quality and performance are maintained. Building managers use 

BEMS to collect data about heating, cooling, light, vertical transportation, security systems, IT 

networks, etc.  (Yang et al., 2017). This pivotal data paved the road for many applications such as 

“Supervisory Control and Data Acquisition (SCADA) with Energy Management System (EMS) 

functionalities, dispatcher training simulator (DTS) and optimal power flow (OPF)” (Asare-

Bediako et al., 2012).   

One form of monitoring is the supervision of the energy level used in each building area. 

These systems can be utilized for a localized adjustment of temperature in certain areas of the 

building through HVAC control instead of a centralized temperature system. Remote monitoring 

is also possible with the ability to control the BEMS to mitigate the risks that arise from emergency 

events by sending alarms in case of anomalies or a security failure. Such features give smart 

buildings an edge not only for being energy and cost effective but also for the provision of security 

and comfort as well that is lacked in other buildings. 

These systems also allow access to stored data, which enables the analysis of the data history of 

the building to use it as a benchmark to compare with other buildings or even to forecast future 

energy patterns. Nevertheless, the implementation of BEMS requires continuous maintenance to 
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ensure adequate performance and quality of the retrieved data. More importantly, a thorough 

understanding of the system and the combination of the available information for decision making 

without compromising the performance is crucial. Calibration and maintenance are important to 

determine the percentage of error in the readings, to be able to evaluate the quality of the data, and 

decide whether these data could be used for analysis. For example, the American Society of 

Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) used some guidelines for the 

calibration of devices and models. There is a level of accepted error, above this threshold, the error 

is considered to be too high. For instance, a mean of bias error (MBE)can be calculated. A positive 

value of MBE indicates an overestimation of the readings while a negative value indicates an 

underestimation of the readings (Ruiz & Bandera, 2017). 

The type of BEMS to use depends on the budget of the project, its size, and purpose. The 

system is usually more effective and easier to implement when it is embedded during the early 

design stage of a building rather than applying it to an existing building. Although the system has 

a high initial cost, it is balanced out energy savings that reduce the operating costs of a 

building.  Many studies worked on estimating the value of cost and energy saving, however, due 

to varied results an exact reduction rate remains undetermined (Climate	 Technology	 Centre	&	

Network,2016). 

2.1.2. BEMS Components 
BEMS are a combination of computers, networks, processors, and sensors. The internet of 

things maintains communications between all the components in the building as well as decision-

making through data mining(Gaber et al., 2019). Taking sensors as an example, they are 

distributed throughout the building to perform many essential functions. From light and voltage 

sensors to fire and smoke detectors installed to actuate alarms in case of any abnormal readings to 
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ensure the security of the building and its inhabitants. This collection of data are then grouped 

and sent to another part of the BEMS (Asare-Bediako et al., 2012). Measuring devices then 

provide detailed information and time series data for different sources of energy consumption and 

transmit these data. 

Figure 2: BEMS components (Asare-Bediako et al., 2012) 

  The data retrieval from the BEMS is combined with data mining. Data mining allows a 

better understanding of the data collected, we can deduct a model that best fits those datasets 

and even predict future patterns (Chen et al., 2015). It enables the visualization of patterns, peaks, 

extract hidden patterns, make classification and clustering using statistical methods and machine 

learning which then help us initiate the actuators in the system. Each dataset has its level of 

complexity (Chen et al., 2015). Furthermore, smart appliances can be integrated into the system to 

enhance energy efficiency and allow smoother control. Enabled information and communication 

technology will then pave the way for the collection of the previously mentioned data from the 

sensors, meters, and appliances to start monitoring and controlling various processes. Finally, the 

choice of the manufacturer and the management system is dependent on the needed specifications, 
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some systems only present the information, while others can perform automated control actions, 

and energy forecasting (Asare-Bediako et al., 2012).  

3. METHODOLOGY 

This section will cover the methodology used in the analysis of the research question “Data-

driven Modeling of Smart Building Energy Management.” Using the Chamchuri 5 building in 

Chulalongkorn University, Bangkok, Thailand as a case study. The nature of the longitudinal 

clustered nature of the available dataset will be explained as well as a description of the analysis 

methods, and the multilevel model used.  

3.1. Longitudinal Data 

The available data for the building are granular, longitudinal data. Longitudinal data are 

extensively used in countless fields; namely, social, medical, financial studies, and many more 

domains. Unlike cross-sectional data that provide data for a single point in time, longitudinal data 

represent the different readings over time for a certain variable by recurrently assessing it. Such as 

these time intervals can be minutes, days, months; additionally, they can be the same between 

different people or even variable intervals.   

This type of data are also useful in tracking alterations within a specified time period to 

further analyze the data. These alterations are known as “growth models” or “growth curve 

analysis”. The reason for the name “growth” is that the change was assumed to be increasing over 

time while in fact change can decrease or have other forms (Singer & Willett, 2009). 

However, analyzing these types of data can be challenging. Over the years, statistical 

concepts were being used in data analysis; where linear models are used to examine and interpret 

datasets, nevertheless sometimes the available data are too complex and are better represented by 
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other non-linear functions to comprehend numerous underlying patterns. In addition, missing data 

can be problematic(Fitzmaurice et al., 2008). 

Moreover, exploiting the various statistical models to analyze these datasets enable solving 

several research questions as they allow the examination of changes within a person known as 

level-1 analysis and similarly track the changes among individuals over time known as level-2  

(Singer & Willett, 2009). For instance, level-1 can cover the variation in energy consumption in a 

certain zone over time. In this case, it is more descriptive for each zone; on the contrary, level-

2 looks at the difference between the zones over time, it shows the connection between the 

predictors and whether the zones have different patterns among them. Each level studies a specific 

outcome with a set of predictors. Leading to considering (Singer & Willett, 2009). These two levels 

together can be combined into a multilevel model. 

3.2. Clustering  

Data mining consists of several techniques such as classification, clustering, decision 

tree, and neural networking to name a few (Finch et al., 2016). One of the techniques that will 

be used in this case study analysis is clustering. Whereas, clustering is quite different from 

classification, as clustering consists of forming groups for the data while classification is 

predetermined (Finch et al., 2016). For instance, clustering consists of assembling data into distinct 

groups or “clusters,” each cluster is different from the other while data within one cluster are 

similar (Finch et al., 2016).  In the case study in question, the data will be clustered into 

subsets such that different zones are nested within floors nested in a building. Consequently, in 

this case, the used dataset is considered to be multilevel in structure (Finch et al., 2016). 

Moreover,   clustering makes data search and retrieval easier and more efficient especially when 

dealing with large datasets (Finch et al., 2016)(Rao, 2014). 
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 The interclass correlation (ICC) formula demonstrated below which varies from 0 to 1 is can 

be used to calculate the correlation strength between individual data within the same cluster. 

Where the value of ICC is directly proportional to the strength of correlation between data.  

Equation 1: Interclass correlation formula, (Finch et al., 2016) 

𝐼𝐶𝐶 =
𝜏%

𝜏% + 𝜎% 
 

Furthermore, the ICC shows to which extent the nested data can influence the 

variable being studied. Thus, a higher ICC value draws attention to the importance of multilevel 

modeling during the study. Therefore, simple linear regression models are not convenient for the 

analysis of this  data structure instead, multilayered modeling will then be more efficient (Finch et 

al., 2016).  

3.3.  Multilevel Modeling 

After understanding the type of data, we will be dealing with, now we will move to the type of 

modeling that is used in the analysis. Multilevel analysis is one of the methods used to 

analyze multiple levels of nested data. Careful analysis is important in this case study to avoid 

errors in the analysis as the variance between the zones is different from the variance between the 

floors (Snijders & Bosker, 1999). Multilevel modeling is often referred to as “hierarchical linear 

models, mixed models, or random coefficient models” (Snijders & Bosker, 1999). This model is 

typically used in the analysis of the nested dataset to understand the energy consumption patterns 

and the main sources of energy loads. 

This model is based on the analysis of variance ANOVA and regression, which include 

random and fixed effects (Snijders & Bosker, 1999). They could be linear or any nonlinear 

function. Moreover, this model allows analysis for the macro-level, micro-level, and cross-level 

interaction. This cross-level interaction represents the relationship between the different levels; for 
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instance, it illustrates the relationship between the individuals in the zones in  level-1 and the 

floors in level-2(Finch et al., 2016).  

4. CASE STUDY 

In Chulalongkorn university, the Chamchuri 5 building has an area of 11,700 

square meters and consists of seven floors (Pipattanasomporn et al., 2020). The first and 

second floors have a similar architectural design that stands out from the rest of the floors in 

the building. Each story is divided into several zones that serve different functions in the 

building as shown in (Table1) below.  

 

Moreover, the adoption of a building energy management system (BEMS) in 

the Chamchuri 5 building allowed the generation of large amounts of granular data. Air 

conditioning, light and plugs loads in KW have been collected through a BEMS that is installed 

in the building (Figure 2) in order to study the energy consumption patterns. For instance, 

energy load peaks, detection of anomalies, zones that consume large amounts of energy, 

areas of improvement that can help in cost savings and energy efficiency. In addition, internal 

Figure 3: Chamchuri 5 building layout,(CUBEMS,2021)  
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environmental data such as temperature (Celsius), humidity (%), and light (lux) are similarly 

available for each zone to add a deeper understanding of the energy trends. This dataset 

has a particularly granular level. To illustrate, the data are available for each zone on each 

floor at a one-minute interval for a period of 549 days starting from 1st of July 2018 until 31st of 

December 2019 in a csv file format. Data are available for each AC unit, lighting, and plug 

loads in addition to the environmental data.(Pipattanasomporn et al., 2020) 

Table 1: Functions of zones in the Chamchuri 5 building, (CUBEMS, 2021). 

 
ZONES’ FUNCTIONS 

 
           ZONE 

 
FLOOR 

1 2 3 4 5 

FIRST Sitting Hall 
 

Electrical 
engine room 

 

Central stair 
hall 

 

Around the 
building 

- 

SECOND Registration 
and processing 

office 

Admin 
department, 

registration & 
processing 

office 

Central stair 
hall 

Procurement 
and finance 
department 

- 

THIRD  University 
resource 

management 
center 

 

Finance 
department 

 

Central stair 
hall 

 

Planning and 
information 

work 
 

Analyze the 
project & admin 

activities 
 

FOURTH  Infrastructure 
department 

 

Planning, 
design, and 

physical system 
information 
department 

Central stair 
hall 

 

Accounting 
department 

 

Building 
department 

 

FIFTH  Mission group 
civil servants 

and employees 
 

Mission, 
benefits, and 

personnel 
relations 

 

Central stair 
hall 

 

HR 
development 
department 

 

HR 
development 
department 

 

 SIXTH Office of 
strategy 

management 
 

Office of 
research 

administration 
 

Central stair 
hall 

 

Office of 
academic admin 

 

Office of 
academic admin 

 

SEVENTH Registration 
line inspect & 
procurement 

parcels 

Legal library & 
procurement 
organization 

 

Central hall 
 

Office 3 
 

Legal & legal 
center 
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4.1. BEMS Description 

The overall Chulalongkorn University-BEMS system includes 21 energy monitoring units 

(EMU), 30 digital meters, 24 multi-sensors, 7 gateways, and a CU-BEMS server. Whereas, 

EMUs, multi-sensors, gateways, and the server have been developed in-house (Pipattanasomporn 

et al., 2020).  

• EMU: used to measure the power loads and transfer the readings in watts through 

“Ethernet LAN with Modbus protocol” (Pipattanasomporn et al., 2020). The EMUs 

are designed to store data in case of connection problems to avoid any data loss. In 

addition, all the devices are calibrated before usage. The EMU readings have been 

estimated to have an average of 1% error.  

• Digital meters: basic Siemens meters are being used to measure large AC 

compressors’ loads and communicate the readings through Modbus TCP.  

• Multi sensors: these sensors were made at the university to measure the following 

environmental data; temperature in Celsius, humidity in percentage, and the light in lux 

using a wireless network to communicate the readings.  

• Gateway: the gateways have been developed at the university as well to collect the 

readings each minute from the multi-sensors.  

Figure 4: Chamchuri 5 building BEMS components,(Pipattanasomporn et al., 2020) 
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As is normally found in data records, the datasets have some missing readings.  The data of the 

period from the 15th of September 2018 to the 5th of March 2019 were missing due to the 

maintenance of the system, this period was ignored during the calculation of data availability. In 

most of the sensors, data are available for 95% of the time or more  (Pipattanasomporn et al., 

2020). In this case study, for simplification, only the data from the 6th  of March 2019 onwards are 

used to avoid the calibration period and have more robust results. Furthermore, the elevator loads 

as well as the emergency exit signs’ loads, were not recorded, they are assumed to be 1 to 2% of 

the total building load (Pipattanasomporn et al., 2020).  

4.2. Data Analysis & Results 

The datasets have been used to study the energy consumption of the building on both a 

macro and micro level and understand the behavior of the consumption, the patterns for the 

building, floors, and zones as well as identifying the main contributors of energy usage. The 

files are in a csv format, each floor has a separate file.  

As previously mentioned, high granular data from the 6th of March 2019 were used, 

resulting in a total of 301 days; it is a one-minute interval data. Therefore, we have 433,440 

minutes, which are equivalent to the number of rows for each floor. The number of columns 

varies from one floor to another as it depends on the number of AC units, lighting, plugs, 

etc. First, the average power consumption has been calculated for each floor, then for the light, 

AC and plug separately as well as the total for each floor which was added as separate columns 

in the data frame for each floor, their values could be seen in (Table 2). These calculations 

help to get an insight into the main factors of energy consumption. Afterward, the energy 

consumption values in megawatt-hour (MegaWh) are added together to give the total value 

of building consumption.  
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4.2.1. Macro Results 

As seen in (Table 2) and (Figure 3), the first floor has the highest values in the AC, light, 

and plug loads resulting in the highest total energy consumption. It is evidently clear that the main 

source for the high consumption of the first floor is the lighting, it represents 49.66% of the first-

floor consumption. This might be due to the fact that it contains the main hall of the 

building where everyone passes through to access the rest of the building, moreover, it has the 

surrounding of the building, therefore, the light might be continuously turned on to 

accommodate usage. The second highest consumer of energy is the seventh floor followed by the 

second, fifth, third, and fourth floors. While the sixth floor has the least energy consumption.   

Table 2: Energy consumption values per floor in megawatt hour (MWh) and energy consumption percentage % with respect to 
the minimum values 

Floor 1  2 3 4 5 6 7 Total 

Building 

Total Energy MWh 
% difference 

731.9 
491% 

207.9 
68% 

155.3 
25% 

153.9 
24% 

159.8 
29% 

123.9 
0% 

220.1 
78% 

1752.9 

Light MWh 
% difference 

363.4 
1067% 

31.2 
0% 

43.9 
41% 

31.1 
0% 

40.8 
31% 

39.2 
26% 

42.9 
38% 

592.6 

AC MWh 
% difference 

238.8 
216% 

164.8 
118% 

100.7 
33% 

107.4 
42% 

106.6 
41% 

75.5 
0% 

171.7 
127% 

965.4 

Plug MWh 
% difference 

129.6 
2238% 

12 
116% 

10.6 
91% 

15.4 
177% 

12.5 
125% 

92 
66% 

5.5 
0% 

194.8 

 

Even though many floors share the same architectural plans, yet they have different consumption 

patterns, this might be due to numerous factors one of them is the diverse functions of the different 

zones. However, the exact reason for the difference in consumption is unknown due to the lack of 

information availability provided by the university. For instance, the first floor has almost 5 times 

the values of the sixth floor in the total consumption (Table 3). Similarly, the sixth floor has the 

least AC consumption. Moreover, the first floor has the highest plug consumption, this might be 

due to the fact that it has the electric engine room. Besides, the second floor has the minimum light 

consumption. In addition, the second floor has the least light values while the seventh floor has the 
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least plug values. Unlike the first floor, the rest of the floors have high AC consumption varying 

from 61% to 78% of their energy consumption. As a result, almost half of the energy consumed 

by the Chamchuri 5 building is AC. This can be interpreted by the nature of Bangkok’s weather 

that requires AC to achieve the comfort zone. For a university campus, it is quite important to 

ensure such comfort for the employees to ensure a suitable working environment contributing to 

higher productivity and ability to concentrate. Moreover, it is noticed that the plug loads represent 

the least percentage of the total energy consumption for each floor as well as the building as a 

whole. To illustrate, it represents 11% of the energy of the Chamchuri building. In the same way 

for the rest of the floors, the plugs’ load varies from 3% to 18% (Figure 4). 

Figure 5: AC, plug & light repartition in each floor 

 



18 
 

Figure 6: Total energy consumption in each floor of the Chamchuri 5 building in MWh 

4.2.2. Micro Results 

Finally, going more in depth in the analysis by studying each zone. The below table shows 

the microanalysis of the total energy consumption of each zone in each floor in MWh. 

Table 3: Energy consumption values per zone in MWh 

               Floors 

Zones 

1  2 3 4 5 6 7 

1 58.560 90.566 47.577 52.829 52.688 34.208 70.547 

2 400.226 91.105 43.791 30.787 37.191 37.043 56.268 

3 157.674 6.087 6.641 4.872 4.608 6.471 2.029 

4 115.416 20.190 37.712 46.753 43.820 32.533 59.503 

5 - - 19.553 18.693 21.528 13.621 31.750 

The first and second floors only have four zones while the rest have five. The values 

presented in (Table 3) show that zone one is the main energy consumer for all the floors except for 

the first and second floors. This could be proportional to the zone’s relatively large area and the 

nature of the zone function. While the second zone is the main one for the first and second floors. 

En
er
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W
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The least consuming zone is zone 4 for the first floor. While the least one for the rest of the floors 

is zone 3, I believe this is due to the fact that zone 3 represents the staircase and is not air-

conditioned. As mentioned before the air conditioning system is the main source of energy 

consumption in the building; thus, eliminating it from zone 3 it reduced its consumption 

significantly. In addition, the staircase doesn’t need appliances like an office that need computers, 

printers, etc., for instance. As a result, the energy loads decrease. Moreover, zone 2 on the first 

floor has the highest energy consumption in the whole building this might be due to its function, 

which is an electrical engine room. 

Figure 7 Energy repartition for each zones 1,2,3,4,5 in the different  floors 

 
The AC accounts for more than 50% of the energy consumption per zone whenever for the 

zones that contain AC. This is expected since the HVAC electric loads are known to be the biggest 

contributor. However, it can be seen that there is a considerable variation between the AC 

percentages between different zones in the different floors, an energy pattern couldn’t be deducted 

from the result. For instance, in zone 2 floor 2, the AC consumption exceeds 90%, while for zone 

2 floor 3, the AC consumption is around 60%. BEMS can act according to these variations to help 

in managing the energy consumption of the building. Moreover, the plug consumption seems to 
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be less than the light consumption for most of the zones, which correlates with the macro analysis. 

Furthermore, zone 4 on the first floor has a significantly high percentage of energy consumed in 

lighting compared to the other zones. To illustrate, this zone represents the surrounding of the 

Chamchuri 5 building thus, it doesn’t require any air conditioning system nor plugs. Therefore, 

100% of its energy consumed is light., which is explained by the nature of the function of this 

zone.  

4.3. Multilevel Modeling  

Multilevel modeling is one of the techniques used to deal with this type of longitudinal, 

clustered data. As previously mentioned, the dataset consists of three levels: level-1 unit the zones 

are nested in level-2 the floors, and finally nested in level-3, which is the building itself. Hence, 

the energy loads could be affected by the different zones. This could be due to the fact that each 

zone serves a different purpose, the orientation of the zone in the building affects the heat 

absorption of the walls, the size of the windows, the different appliances in the zone, the behavior 

of the occupants in the space, etc. 

To apply the multilevel model, first data must be cleaned and restructured. The readings for 

the power loads are recorded every minute, however, this interval can be small compared to the 

total time that is used for this study, 301 days. Therefore, for better visualization, the daily power 

loads are calculated by computing the algebraic average readings for each day. Then, the multi-

level modeling is executed based on the daily loads. 

Moreover, the data contain missing readings, thus, the data need to be cleaned. The missing 

data can be categorized into two cases. The first one, if the readings are known at the previous and 

preceding time intervals, i.e., if the reading at minute 3 is missing and the readings at minutes 2 

and 4 are available, then an estimation at minute 3 is obtained via linear interpolation between the 
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available readings. This assumption can be valid since the effect of the interpolation on daily 

consumption is insignificant. The second case happens when two consecutive readings or more 

are missing. In that case, the whole day is eliminated from the study since an estimation might be 

misleading and will not present the actual energy consumption. Furthermore, if the data are 

missing for only one of the load categories, and it belongs to the second case, the day is removed 

for the floor. The cleaning of the data was performed by using if conditions for the whole dataset. 

The number of removed days for each floor is 13, 8, 29, 109, 90, 9, and 21 from floors 1 to 7 

respectively. Around 30% of the days were eliminated for floors 4 and 5, while less than 10% of 

the days for the rest of the floors. Afterward, a table was made to group the seven csv files together 

and restructured to represent the different levels: the building, floor 1, 2,..., 7, zone 11,12,…57. 

Each zone is represented with two digits, the first one represents the zone number, while the second 

one represents the floor number. For example, zone 12 denotes zone one on floor two. In this 

model, two levels will be used as the third level has only one building. 

In Matlab, the function lme was used to fit a linear regression model for the variables in 

the dataset or table. First off, a model is defined to predict the energy loads in which regressors 

may include zone-level features and, floor-level features. The syntax of the Matlab function that 

represents the two-level model is as follows: 

§ lme= fitlme(tbl,formula) 

lm_group_AC = fitlme(tbl,AC ~ Day +Zones+ (Floor|Zones)') 

lm_group_Light = fitlme(tbl,Light ~ Day +Zones+ (Floor|Zones)') 

lm_group_Plug = fitlme(tbl,Plug ~ Day +Zones+ (Floor|Zones)') 

lm_group_Total = fitlme(tbl,Total ~ Day +Zones+ (Floor|Zones)') 
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Where the dataset is presented in a table named “tbl”, “Total” is the total power load per 

day, and “Day” is the time interval used. Total, AC, Plug, and Light are used each separately in a 

model as the dependent variable. “Zones”, and “Floor” represent the different clusters. Zones and 

Day are interpreted in the models as independent variables. The formula is written using the 

Wilkinson notation (Wilkinson,1973). The nesting structure is incorporated in the model, the 

higher level is written first then the lower level in the syntax. Additionally, cross interaction 

between variables could be included in the model if needed, this represents the case when variables 

impact each other. Multiple models could be used in the analysis, comparisons could be performed 

between them to identify the best fit for the data. This assessment could be done by comparing the 

values of AIC and BIC of the used models. Smaller values for the AIC and BIC refer to a better 

model, for example, it helps whether to include a variable or not in a model (Finch et al., 2016). 

For the Chamchuri 5 building, four models were used to model the AC, Plug, Light, and total 

energy respectively. The results of these models are shown in table 4. 

Table 4 shows the results for the fixed effects. It includes the name of the variables and the 

estimate’s value for each of the four models. Moreover, the star notation is added to show the 

significance of the estimate. These values will be useful to interpret the model. For instance, it 

highlights the zones that have high consumption patterns, one zone can consume a lot of AC while 

another one can have the light as its main source of consumption. Therefore, the energy 

optimization’s solutions are different from one zone to another. To illustrate, the p-values for each 

variable are an indicator of whether it is significant or not in the performed study.  The null 

hypothesis states that there is no correlation between the random effect and the response. A p-

value that is smaller than alpha indicates a statistically significant variable and vice versa. As seen 

in table 4 with a 95% confidence level, in the light model, zone 31 estimate’s value is equal to 
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14.114***. This result demonstrates that zone 31 consumes a lot of light compared to zone 11 

which is due to its functionality, as zone 31 is the central hall. Light sensors could be installed in 

this area to reduce the consumption of light. Another example, in the AC model, the p-values for 

zone 3 in all the floors (Zone 31, 32,33,34,35,36,37) are bigger than alpha. Thus, these zones are 

not significant. Which correlates with the previous results from the microanalysis, which states 

that zone 3 represents the stairs and has no AC. For the same model, the remaining variables are 

significant. In all of the light and plug models’ estimates, their p-values are smaller than alpha 

which indicates that they are significant. Therefore, we can reject the null hypothesis. The 

estimates’ values are relative to zone 1 on floor 1. Therefore, a positive value means that this 

variable has a higher energy consumption and vice versa. For example, the AC estimate for zone 

21 is equal to 33.191***, because this zone has the highest AC loads and has much larger loads 

compared to zone 11. While some other zones have estimates’ values that are quite negative, this 

might be due to their function, as some of them are offices, they might consume less energy than 

the reference zone 11.  Besides, the higher the value of “Day,” the lower the response value will 

be for all the models except for the light. This could be explained by the fact that as we move 

further in time, we approach winter thus the energy loads resulting from AC and plugs decrease 

while more light loads are needed.  

Finally, looking at the results of the random effects in (Appendix 1), we can deduce that 

the patterns of the energy consumption somehow are correlated between the floors, as the 

correlations’ values are relatively high.  
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Table 4 Fixed effects results from Matlab 

Name AC Estimate Light estimate Plug estimate Total estimate 
Intercept 0.90082*** 6.3909***   1.7098*** 9.0016*** 
Zone_21 33.191*** 0.75038*** 13.454*** 47.395***  
Zone_31 -1.0213e-14 14.114*** -0.43935*** 13.675***  
Zone_41 -1.0671e-14   9.556*** -1.6496*** 7.9064***      
Zone_12 8.8234*** -3.9096*** -0.50134*** 4.4125***        
Zone_22 11.861*** -5.8891*** -1.4724*** 4.4994*** 
Zone_32 0.0028623 -5.9787*** -1.3418*** -7.3176***   
Zone_42 2.2196*** -5.9517*** -1.6201*** -5.3522*** 
Zone_13 4.7283*** -4.7922*** -1.3966*** -1.4604*** 
Zone_23 3.7433*** -4.4139*** -1.3349*** -2.0055*** 
Zone_33 0.028547 -6.0667*** -1.1827*** -7.2208***  
Zone_43 4.1344*** -5.5185*** -1.4233*** -2.8074*** 
Zone_53 1.8328*** -5.7752*** -1.4419*** -5.3843*** 
Zone_14 5.0801***  -5.0341*** -0.5857*** -0.53974 
Zone_24 3.798*** -5.8998*** -1.4399*** -3.5417***     
Zone_34 0.23763 -6.1512*** -1.2071*** -7.1207*** 
Zone_44 4.7388*** -5.0776*** -1.2246*** -1.5634***  
Zone_54 2.0958*** -6.0525*** -1.3828*** -5.3395*** 
Zone_15 4.9481*** -4.912*** -1.119*** -1.0829* 
Zone_25 3.8716*** -5.31*** -1.5179*** -2.9564*** 
Zone_35 0.15924 -6.1815*** -1.3602*** -7.3825*** 
Zone_45 3.8581***  -5.0978*** -0.96689*** -2.2066*** 
Zone_55 1.8841*** -5.5264*** -1.5128*** -5.1551*** 
Zone_16 4.1211*** -5.1071*** -1.2143*** -2.2002*** 
Zone_26 3.4824***        -3.9019*** -1.2537*** -1.6733*** 
Zone_36 -0.21569 -5.5823*** -1.3957*** -7.1937***   
Zone_46 3.8736*** -5.0683*** -1.2927*** -2.4875*** 
Zone_56 1.2683*** -5.6712***  -1.4986*** -5.9015*** 
Zone_17 8.7438*** -5.6905*** -1.4675*** 1.5858*** 
Zone_27 6.436*** -5.2265*** -1.5783*** -0.36886 
Zone_37 0.031303 -6.4107*** -1.4664*** -7.8458*** 
Zone_47 6.1528*** -4.6553*** -1.3768*** 0.12065     
Zone_57 2.4451*** -4.6087*** -1.5728*** -3.7364*** 
Day -0.0060166*** 0.00081564*** -0.00040228*** -0.0056032*** 
∗ 𝜌 − 𝑣𝑎𝑙𝑢𝑒 < 0.05, ∗∗ 𝜌 − 𝑣𝑎𝑙𝑢𝑒 < 0.01, ∗∗∗ 𝜌 − 𝑣𝑎𝑙𝑢𝑒 < 0.001 
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5. RECOMMENDATIONS & CONCLUSION  

There exist some limitations in this study, some of these are the lack of some knowledge 

and data about the building. For instance, the study is performed only on the data from March to 

December 2019 due to missing data, and even in this period still, there are some missing data. 

Therefore, better data availability will improve future analysis and reduce results bias. 

Additionally, the time intervals of the missing data are not the same on all the floors. To solve this 

issue, more sensors could be added to replace the other ones during maintenance. Moreover, data 

including supplementary metrics could be used as well for a deeper analysis. For example, data 

collected through additional sensors can help to analyze hidden patterns and correlations between 

variables affecting the response. In addition, knowledge regarding the insulation of the building, 

area of the spaces in the building, the exact appliances used, lighting system, shading devices, type 

of AC that is used in the building, and occupants’ behavior and number. For example, the number 

of occupants in each zone can vary with time, this information can be added to the model. The 

aforementioned data and knowledge can provide a better understanding of energy usage and can 

enable analysts to find solutions for energy optimization. For example, insulation material could 

be proposed, a control system can be implemented, energy efficiency solutions can be 

recommended, etc. Moreover, for future work studying the energy supplies could be helpful as it 

can have an impact on the energy consumption patterns of the building. Further, the energy 

harvested from the solar PV panels installed can be better utilized and stored by the information 

obtained from the modeling.  
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7. APPENDIX 

Appendix 1: Correlations Matrix for the random effects 
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Appendix 2: Energy repartition for each zone in the different floors 

 


