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Abstract
A necessary and sufficient condition is presented for a graph algebra to satisfy a
bracketing identity. The associative spectrum of an arbitrary graph algebra is shown
to be either constant or exponentially growing.
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6 Introduction to Part II

This paper continues our study, initiated in [2], of associative spectra of graph algebras.
Introduced by Csákány and Waldhauser [1], the associative spectrum of a binary
operation or of the corresponding groupoid is a method of quantifying the degree of
(non)-associativity of the operation. Graph algebras were introduced by Shallon [5] as
a way of encoding an arbitrary directed graph as an algebra with a binary operation.
We refer the reader to the first part of this study [2]—henceforth called “Part I”—
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for formal definitions, background, motivations, and further details that will not be
repeated in this outline. We continue the numbering of sections from Part I, so that we
can conveniently refer to theorems, definitions, etc. of Part I simply by their numbers.

In Part I, we determined the possible associative spectra of undirected graphs and
classified undirected graphs by their spectra; there are only three distinct possibilities:
constant 1, powers of 2, and Catalan numbers. Furthermore, we characterized the
antiassociative digraphs, and we determined the associative spectra of certain families
of digraphs, such as paths, cycles, and graphs on two vertices.

In this paper, we turn our attention to graph algebras associated with arbitrary
digraphs, which may be finite or infinite. In Sect. 7, we provide a necessary and
sufficient condition for a graph algebra to satisfy a nontrivial bracketing identity. The
condition is expressed in terms of several numerical structural parameters associated,
on the one hand, with the digraph and, on the other hand, with a pair of bracketings.
We discuss in Sect. 8 how some of the results of Part I are obtained as special cases
of this condition.

This result seems a first step towards a general description of the associative spectra
of graph algebras associated with arbitrary digraphs. Such a general result, however,
eludes us. We can nevertheless establish bounds for the possible associative spectra
of graph algebras. As shown in Sect. 9, the associative spectrum of a graph algebra
is either a constant sequence bounded above by 2 or it grows exponentially, the least
possible growth rate of an exponential spectrum being αn , where α ≈ 1.755 is the
following cubic algebraic integer:
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This stands in stark contrast with associative spectra of arbitrary groupoids, where
various subexponential spectra such as polynomials of arbitrary degrees are possible.

In Sect. 10, we present some open problems related to this work and indicate
possible directions for further research.

7 Satisfaction of bracketing identities by digraphs

We now turn to the general case of arbitrary directed graphs. We are going to define
several numerical parameters pertaining, on the one hand, to a pair of distinct brack-
etings t and t ′ of size n and, on the other hand, to a digraph G. For easy reference, the
various parameters are collected in Table 1 with cross-references to their definitions.
With the help of these parameters, we can provide necessary and sufficient conditions
for the graph algebra of a digraph to satisfy a bracketing identity. These conditions
are put together in Theorem 7.31.

Recall the basic definitions and notation from Sect. 2, as well as the parameters
Ht,t ′ , Mt,t ′ , and Lt,t ′ from Definition 4.2. The following lemma extends Lemma 4.4.

Lemma 7.1 Let t, t ′ ∈ Bn, t �= t ′, and let G be a digraph such that A(G) satisfies
the identity t ≈ t ′. Denote H := Ht,t ′ , M := Mt,t ′ , L := Lt,t ′ . Let r be the integer
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Table 1 Parameters of pairs of
bracketings and graphs

Parameter Definition Parameter Definition

Ht,t ′ 4.2 MG 7.2

Mt,t ′ 4.2 PG 7.4

Lt,t ′ 4.2 EG 7.4

Yt,t ′ 7.8 OG 7.4

Zt,t ′ 7.11 ZG 7.14

ωt,t ′ 7.20 BG 7.17

λt,t ′ 7.25 ωG 7.22

λG 7.27

provided by Lemma 4.4. Then, there exists an integer s with L + 1 ≤ s ≤ r and
s ≡ L (mod M) such that the following holds: if v0 → v1 → · · · → vH and
vL → v′

L+1 → v′
L+2 → · · · → v′

H are walks in G, then vs → v′
L+1 and v′

s → vL+1
are edges in G. In particular, vL+1 and v′

L+1 belong to the same nontrivial strongly
connected component.

Proof By the definition of L , there exists a vertex xd ∈ Xn such that either dT (xd) =
L + 1 < dT ′(xd) or dT ′(xd) = L + 1 < dT (xd). By changing the roles of T and T ′,
if necessary, we may assume that dT (xd) = L + 1 < dT ′(xd). Let xp be the parent of
xd in T , and let xq be the parent of xd in T ′.

Assume that v0 → v1 → · · · → vH and vL → v′
L+1 → v′

L+2 → · · · → v′
H

are walks in G. By applying Lemma 4.4 to the first walk mentioned and to the walk
v0 → · · · → vL → v′

L+1 → · · · → v′
H , we obtain the edges vr → vL+1 and

v′
r → v′

L+1, so vL+1 → · · · → vr → vL+1 and v′
L+1 → · · · → v′

r → v′
L+1

are closed walks in G. Let W be the walk that starts with v0 → · · · → vL and
continues by going around the closed walk vL+1 → · · · → vr → vL+1 until it
reaches length h(T ), and let W ′ be the closed walk v′

L+1 → · · · → v′
r → v′

L+1. Let
ϕ : Xn → V (G) be the collapsing map of (T , xd) on (W ,W ′) (see Definition 2.8).
Since ϕ is a homomorphism of T into G, it is also a homomorphism of T ′ into G
by Proposition 2.1. Since (xq , xd) ∈ E(T ′), we have (ϕ(xq), ϕ(xd)) ∈ E(G). By
definition, ϕ(xd) = v′

L+1. In order to determine ϕ(xq), note first that q < d because
(xq , xd) is an edge in T ′. This implies that xq /∈ Txd , and thus, ϕ(xq) lies in W , so
ϕ(xq) = vs for some s ∈ {0, 1, . . . , r}. Since dT (xq) ≥ L + 1, ϕ(xq) lies on the
closed walk vL+1 → · · · → vr → vL+1. Therefore, s is the unique element of the set
{L + 1, . . . , r} such that s ≡ dT (xq) (mod r − L); note that the value of s does not
depend on the walks v0 → v1 → · · · → vH and vL → v′

L+1 → v′
L+2 → · · · → v′

H
but only on t and t ′. Since r ≡ L (mod M), the number r − L is divisible by M ;
therefore, s ≡ dT (xq) ≡ L (mod M).

Switching the roles of the closed walks vL+1 → · · · → vr → vL+1 and v′
L+1 →

· · · → v′
r → v′

L+1, a similar argument shows that (v′
s, vL+1) ∈ E(G). Now we have

the closed walk vL+1 → · · · → vs → v′
L+1 → · · · → v′

s → vL+1 in G. This means,
in particular, that vL+1 and v′

L+1 belong to the same nontrivial strongly connected
component. ��
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λG = 1

ωG(�, r)

� \ r 1 2 3 4 5 6 7 8 · · ·
1 3 – – – – – – – · · ·
2 6 4 – – – – – – · · ·
3 7 7 5 – – – – – · · ·
4 8 8 8 6 – – – – · · ·
5 8 8 8 7 7 – – – · · ·
6 8 8 8 8 8 8 – – · · ·
7 9 9 9 9 9 9 9 – · · ·
8 10 10 10 10 10 10 10 10 · · ·
...

...
...

...
...

...
...

...
...

Fig. 1 Graph G and its structural parameters

Definition 7.2 For a digraph G, let MG be the least common multiple of the set of
all numbers m for which there exists a strongly connected component of G that is an
m-whirl (see Definition 4.7), with the convention that the least common multiple of
the empty set is 1. If there is no finite upper bound on such numbers m, then define
MG := ∞.

Example 7.3 Consider the graphG shown in Fig. 1. Highlighted as shaded regions, the
nontrivial strongly connected components are a 3-whirl and a 4-whirl. Consequently,
MG = lcm(3, 4) = 12.

Definition 7.4 Let G = (V , E) be a digraph. Recall from Definition 4.10 that a walk
inG is pleasant, if all its vertices belong to trivial strongly connected components (i.e.,
loopless one-vertex components). A walk in G is winding, if all its vertices belong to
a single nontrivial strongly connected component of G.

Let K be a nontrivial strongly connected component of G. A path v0 → v1 →
· · · → v� in G is called an entryway to K if v0 → v1 → · · · → v�−1 is a pleasant
path and v� ∈ K . Analogously, v0 → v1 → · · · → v� is called an outlet from K if
v0 ∈ K and v1 → v2 → · · · → v� is a pleasant path.
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Denote by PG , EG and OG the length of the longest pleasant path, entryway, and
outlet in G, respectively. If there is no finite upper bound on the length of pleasant
paths, entryways, or outlets in G, then define PG := ∞, EG := ∞, OG := ∞,
respectively. If there is no pleasant path, entryway, or outlet inG, then let PG := −∞,
EG := −∞, OG := −∞, respectively.

Example 7.5 In the graph G of Fig. 1, the longest pleasant path is p0 → p1 → · · · →
p9, the longest entryway is e0 → e1 → e2 → e3 → e4, and the longest outlet is
o0 → o1 → o2 → o3. Therefore, PG = 9, EG = 4, OG = 3.

Lemma 7.6 If A(G) for a digraph G satisfies the identity t ≈ t ′ for t, t ′ ∈ Bn, t �= t ′,
then MG |Mt,t ′ and PG < Ht,t ′ .

Proof This follows immediately from Lemmata 4.8 and 4.11. ��
Lemma 7.7 Let t, t ′ ∈ Bn, t �= t ′, and let G be a digraph such that A(G) satisfies the
identity t ≈ t ′. Then, EG ≤ Lt,t ′ + 1.

Proof Denote H := Ht,t ′ , L := Lt,t ′ . Suppose, to the contrary, that there is an
entryway W : v0 → v1 → · · · → vk , where k > L + 1. Then, vk belongs to a
nontrivial strongly connected component K and the other vertices of W belong to
trivial strongly connected components. ExtendingW , if necessary, with vertices of K ,
we obtain a walk v0 → v1 → · · · → vH , and Lemma 4.4 implies that vL+1 belongs
to a nontrivial strongly connected component. This is a contradiction. ��
Definition 7.8 Let t, t ′ ∈ Bn , t �= t ′, and denote T := G(t), T ′ := G(t ′). Let Yt,t ′ be
the largest integer m such that for all xi ∈ Xn ,(

h(Txi ) ≤ m ∨ h(T ′
xi ) ≤ m

) �⇒ Txi = T ′
xi .

In other words, the rooted induced subtrees of T and T ′ of height at most Yt,t ′ are
identical. Note that −1 ≤ Yt,t ′ < Ht,t ′ , and the equality Yt,t ′ = −1 holds if and only
if T and T ′ have different sets of leaves.

Example 7.9 Figure 2 shows two DFS trees corresponding to certain terms t, t ′ ∈ B14.
It is easy to verify that Yt,t ′ = 3: all subtrees of height at most 3 are identical in the
two trees, but the subtrees rooted at x3 are distinct and have height 4.

Lemma 7.10 Let t, t ′ ∈ Bn, t �= t ′, and let G be a digraph such that A(G) satisfies
the identity t ≈ t ′. Then, OG ≤ Yt,t ′ + 1.

Proof Denote Y := Yt,t ′ . By the definition of Y , there exists xd ∈ Xn such that
Txd �= T ′

xd and h(Txd ) = Y + 1 ≤ h(T ′
xd ) or h(T ′

xd ) = Y + 1 ≤ h(Txd ). We may
assume, by changing the roles of t and t ′ if necessary, that h(Txd ) = Y + 1 ≤ h(T ′

xd ).
By the definition of a DFS tree, V (Txd ) = X[d,e] and V (T ′

xd ) = X[d,e′] for some
e, e′ ∈ [n].Assume that NT

o (xd) = {xi1, xi2 , . . . , xi�}withd+1 = i1 < i2 < · · · < i�;
hence, V (Txi j ) = X[i j ,i j+1−1] for 1 ≤ j ≤ � − 1 and V (Txi� ) = X[i�,e]. For all
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Fig. 2 DFS trees with Yt,t ′ = 3,
Zt,t ′ = 2
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xi j ∈ NT
o (xd) it holds that h(Txi j ) ≤ h(Txd ) − 1 = Y ; hence, Txi j = T ′

xi j
by the

definition of Y . For all xi j ∈ NT
o (xd) with i j > e′, we obviously have xi j /∈ V (T ′

xd ),

and hence, xi j /∈ NT ′
o (xd). An easy inductive argument shows that xi j ∈ NT ′

o (xd) for
all xi j ∈ NT

o (xd) with i j ≤ e′,
Wemust have e �= e′. (Suppose e = e′. Then, NT

o (xd) = NT ′
o (xd) and consequently

Txd = T ′
xd , contradicting our assumptions. Hence, we must have e �= e′.) If e < e′,

then NT
o (xd) ⊂ NT ′

o (xd); in particular, xe+1 ∈ NT ′
o (xd). If e > e′, then NT

o (xd) ⊃
NT ′
o (xd); in particular, xe′+1 ∈ NT

o (xd).
Suppose now, to the contrary of the statement of the lemma, that OG > Y + 1, i.e.,

that G has an outletW : v0 → v1 → · · · → vk with k > Y + 1. Then, v0 belongs to a
nontrivial strongly connected component K and the remaining vertices of W belong
to trivial strongly connected components. In particular, there exists a cycle C in K to
which v0 belongs.

Consider first the case when e < e′. Let W ′ : v1 → · · · → vk , let xp be the parent
of xd in T , and let ϕ : Xn → V (G) be the collapsing map of (T , xd) on (C,W ′)
satisfying ϕ(xp) = v0. By Proposition 2.1, ϕ is a homomorphism of T ′ into G.
Since (xd , xe+1) is an edge of T ′, we have the edge (ϕ(xd), ϕ(xe+1)) ∈ E(G). Since
ϕ(xd) = v1 and ϕ(xe+1) belongs to C , this implies that v1 belongs to the strongly
connected component K , a contradiction.

The case when e > e′ is treated similarly. Let W ′ : v1 → · · · → vk , let xp′ be
the parent of xd in T ′, and let ϕ : Xn → V (G) be the collapsing map of (T ′, xd) on
(C,W ′) satisfying ϕ(xp′) = v0. Note that in this case h(T ′

xd ) = h(Txd ) = Y + 1 < k,
so it is indeed possible to collapse T ′

xd on v1 → · · · → vk . A similar argument as
above now shows that (ϕ(xd), ϕ(xe′+1)) ∈ E(G), which implies that v1 belongs to
the strongly connected component K , a contradiction. ��
Definition 7.11 Let t, t ′ ∈ Bn , t �= t ′, and denote T := G(t), T ′ := G(t ′). Let Zt,t ′
be the smallest nonnegative number m such that there exists xi ∈ Xn with Txi = T ′

xi ,
h(Txi ) = h(T ′

xi ) = m, and xi has distinct parents in T and T ′. Such a number m
always exists (see Lemma 7.13) and it must clearly be smaller than the heights of T
and T ′. Hence, 0 ≤ Zt,t ′ < Ht,t ′ .
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Example 7.12 For the DFS trees of Fig. 2, it holds that Zt,t ′ = 2, as witnessed by the
subtrees rooted at x11.

The next lemma shows that the parameter Zt,t ′ is well defined: for distinct DFS
trees T and T ′ of size n, there always exists a vertex xi ∈ Xn such that Txi = T ′

xi and
xi has distinct parents in T and T ′.

Lemma 7.13 Let T and T ′ be DFS trees of size n. Assume that for all xi ∈ Xn \ {x1},
it holds that if Txi = T ′

xi , then xi has the same parent in T and in T ′. Then, T = T ′.

Proof We proceed by induction on n. The statement obviously holds for n = 1 and
n = 2. Assume that the statement holds for all DFS trees of size k. Let T and T ′
be DFS trees of size k + 1 satisfying the condition that for all xi ∈ Xk+1 \ {x1}, if
Txi = T ′

xi , then xi has the same parent in T and T ′.
Since xk+1 is a leaf in both T and T ′, we have Txk+1 = T ′

xk+1
; hence, xk+1 has

the same parent in T and T ′, say xp. Consider T := T \ {xk+1}, T ′ := T ′ \ {xk+1}.
Clearly T and T

′
are DFS trees of size k, and T = T + (xp, xk+1) and T ′ = T

′ +
(xp, xk+1) (where the notation T + (xp, xk+1) stands for adjoining a new vertex

xk+1 and a new edge (xp, xk+1) to T ). Let xi ∈ Xk and assume that T xi = T
′
xi . If

xp /∈ V (T xi ) = V (T
′
xi ), then Txi = T xi = T

′
xi = T ′

xi . If xp ∈ V (T xi ) = V (T
′
xi ),

then Txi = T xi + (xp, xk+1) = T
′
xi + (xp, xk+1) = T ′

xi . In either case, our assumption

on T and T ′ implies that xi has the same parent in T and T ′ and hence also in T
and T

′
. Consequently, T and T

′
satisfy the condition of the inductive hypothesis, so

T = T
′
. Therefore, T = T + (xp, xk+1) = T

′ + (xp, xk+1) = T ′. ��
Definition 7.14 For a digraph G, let ZG be the largest nonnegative integerm such that
there exist a strongly connected component K of G that is a whirl, a block B of K ,
vertices u, w ∈ B and a walk u → v0 → v1 → · · · → vm but (w, v0) /∈ E(G). If
there is no finite upper bound on such numbers m, then define ZG := ∞. If no such
number m exists, then define ZG := −∞.

Example 7.15 In the graph G of Fig. 1, vertices u and w belong to the same block of
a whirl. The path u → z0 → z1 and the non-edge (w, z0) witness that ZG = 1.

Lemma 7.16 Let t, t ′ ∈ Bn, t �= t ′, and let G be a digraph such that A(G) satisfies
the identity t ≈ t ′. Assume that u and w are vertices belonging to the same block of a
nontrivial strongly connected component. If u → v0 → v1 → · · · → vZt,t ′ is a walk
in G, then w → v0 is an edge. Consequently, ZG < Zt,t ′ .

Proof Denote M := Mt,t ′ , Z := Zt,t ′ . By Lemma 4.8, the strongly connected com-
ponent K containing u and w is an m-whirl for some divisor m of M ; let Ba be the
block containing u and w. By the definition of Z , there exists xd ∈ Xn such that
Txd = T ′

xd , h(Txd ) = Z , and the parent xp of xd in T is distinct from the parent xq
of xd in T ′. Observe that dT (xp) = dT (xd) − 1 ≡ dT ′(xd) − 1 = dT ′(xq) ≡ dT (xq)
(mod M); hence, also dT (xp) ≡ dT (xq) (mod m). Let C be a cycle of length m in
K containing the vertex u. Let W : v0 → v1 → · · · → vZ be any walk in G such
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that u → v0 is an edge, and let ϕ : Xn → V (G) be the collapsing map of (T , xd)
on (C,W ) with ϕ(xp) = u (also ϕ(xq) = u). Let ψ : Xn → V (G) be the map that
coincides with ϕ everywhere except at xq and satisfies ψ(xq) = w. Moreover, since
Txd = T ′

xd , the vertex xq lies outside of Txd and so do its children in T (because xd is
not a child of xq in T ) and its parent in T (because if the parent of xq lay in Txd , then so
would xq , as Txd is closed under descendants). Therefore, the images of these vertices
under ϕ lie in K (actually in C). Since u and w belong to the same block Ba , the
inneighbours (outneighbours, resp.) of u and w within K are the same. Consequently,
ψ is a homomorphism of T into G, so, by Proposition 2.1, ψ is a homomorphism of
T ′ into G; hence, (w, v0) = (ψ(xq), ψ(xd)) ∈ E(G). ��
Definition 7.17 For a digraph G, let BG be the largest integer m such that there exist
a walk v0 → v1 → · · · → vm and edges vm → vm+1, vm → v′

m+1 such that vm+1
and v′

m+1 belong to distinct nontrivial strongly connected components. If there is no
finite upper bound on such numbers m, then define BG := ∞. If no such number m
exists, then define BG := −∞.

Example 7.18 In the graph G of Fig. 1, the path b0 → b1 → b2 and the edges b2 → v

and b2 → v′ witness that BG = 2.

Lemma 7.19 Let t, t ′ ∈ Bn, t �= t ′, and let G be a digraph such that A(G) satisfies
the identity t ≈ t ′. Denote L := Lt,t ′ . If v0 → v1 → · · · → vL+1 is a walk
and vL → v′

L+1 is an edge in G such that vL+1 and v′
L+1 belong to nontrivial

strongly connected components K and K ′, respectively, then K = K ′. Consequently,
BG < Lt,t ′ .

Proof Denote H := Ht,t ′ , L := Lt,t ′ . Using the given walks and vertices of K and K ′,
we can build walks v0 → · · · → vH and vL → v′

L+1 → · · · → v′
H . By Lemma 7.1,

vL+1 and v′
L+1 belong to the same strongly connected component, i.e., K = K ′. ��

Definition 7.20 Let t, t ′ ∈ Bn , t �= t ′, and denote T := G(t), T ′ := G(t ′). Let

Δt,t ′ := {x ∈ Xn | Tx �= T ′
x },

Ωt,t ′ := {
(dT (x), h(Tx ))

∣∣ x ∈ Δt,t ′
} ∪ {

(dT ′(x), h(T ′
x ))

∣∣ x ∈ Δt,t ′
}
,

ξt,t ′ := min{d + h | (d, h) ∈ Ωt,t ′ },

and define the map ωt,t ′ : N → N by the rule

ωt,t ′(r) :=
{
min{d + h | (d, h) ∈ Ωt,t ′ and d ≤ r}, if r < ξt,t ′ ,

ξt,t ′, if r ≥ ξt,t ′ .

Note that ωt,t ′(0) = Ht,t ′ and ωt,t ′(r) > Lt,t ′ for all r ∈ N. Moreover, ωt,t ′ is a
nonincreasing function, and we may specify ωt,t ′ by writing down the first few values
of ωt,t ′ until ξt,t ′ is reached.
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Fig. 3 DFS trees with ωt,t ′ = (6, 4, 4, 3, . . .) and λt,t ′ = 1

Example 7.21 Figure 3 shows twoDFS trees corresponding to certain terms t, t ′ ∈ B20.
Note that Lt,t ′ = 2. It is easy to verify that

Δt,t ′ = {x1, x2, x3, x4, x5, x7, x8, x9, x10, x11, x16, x17, x18},
Ωt,t ′ = {(0, 7), (0, 6)︸ ︷︷ ︸

x1

, (1, 3), (1, 4)︸ ︷︷ ︸
x2

, (2, 2), (2, 3)︸ ︷︷ ︸
x3

, (3, 1), (3, 2)︸ ︷︷ ︸
x4

, (4, 0), (4, 1)︸ ︷︷ ︸
x5

,

(1, 6), (1, 5)︸ ︷︷ ︸
x7

, (2, 5), (2, 4)︸ ︷︷ ︸
x8

, (3, 4), (3, 3)︸ ︷︷ ︸
x9

, (4, 3), (4, 2)︸ ︷︷ ︸
x10

, (5, 2), (5, 0)︸ ︷︷ ︸
x11

,

(2, 3), (2, 2)︸ ︷︷ ︸
x16

, (3, 0), (3, 1)︸ ︷︷ ︸
x17

, (3, 2), (4, 0)︸ ︷︷ ︸
x18

},

ξt,t ′ = 3,

whence ωt,t ′ : N → N is the map 0 �→ 6, 1 �→ 4, 2 �→ 4, i �→ 3 for i ≥ 3, or, using
the shorthand, ωt,t ′ = (6, 4, 4, 3, . . . ).

Definition 7.22 Let G be a digraph. For �, r ∈ N with � ≥ r ≥ 1, let ωG(�, r) be the
largest integerm such that there exist a walk v0 → v1 → · · · → v�, where v� belongs
to a nontrivial strongly connected component, and a walk vr−1 → v′

r → v′
r+1 →

· · · → v′
m such that v′

� belongs to a trivial strongly connected component. If there is no
finite upper bound on such numbersm, then define ωG(�, r) := ∞. If no such number
m exists, then define ωG(�, r) := −∞. Note that ωG(�, r) ≥ � + OG − 1 whenever
OG ≥ 1 (if o0 → o1 → · · · → oOG is an outlet of length OG ≥ 1, then consider a
walk v0 → v1 → · · · → v� going around the strongly connected component of o0 so
that v�−1 = o0 and the walk vr−1 → · · · → v�−1 → o1 → · · · → oOG ).

Example 7.23 It is not difficult to verify that for the graph G of Fig. 1, the parameter
ωG(�, r) has the value presented in the table in Fig. 1. For the values not shown in the
table, that is, for �, r ∈ N such that � ≥ 6 and � ≥ r ≥ 1, it holds thatωG(�, r) = �+2.
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Lemma 7.24 Let t, t ′ ∈ Bn, t �= t ′, and let G be a digraph such that A(G) satisfies
the identity t ≈ t ′. Denote L := Lt,t ′ , ω := ωt,t ′ . If v0 → v1 → · · · → vL+1 is
a walk in G such that vL+1 belongs to a nontrivial strongly connected component,
r ∈ {1, . . . , L + 1}, and vr−1 → v′

r → v′
r+1 → · · · → v′

ω(r) is a walk in G (recall
that ω(r) ≥ L + 1), then v′

L+1 belongs to a nontrivial strongly connected component.
Consequently, ωG(Lt,t ′ + 1, r) < ωt,t ′(r) for all r ∈ {1, . . . , Lt,t ′ + 1}.
Proof Denote H := Ht,t ′ , M := Mt,t ′ , T := G(t), T ′ := G(t ′). Let K be the strongly
connected component of vL+1. By Lemma 4.8, K is anm-whirl for some divisorm of
M . Let Ba be the block of K containing vL+1, and let Ba−1 be the predecessor block
of Ba .

If ω(r) ≥ H , then the claim follows immediately from Lemma 4.4. We can thus
assume that ω(r) < H . By the definition of ω(r) and Ωt,t ′ , there exists a vertex
xd ∈ Xn such that Txd �= T ′

xd , and either dT (xd) ≤ r and dT (xd) + h(Txd ) = ω(r)
or dT ′(xd) ≤ r and dT ′(xd) + h(T ′

xd ) = ω(r); moreover, for all xi ∈ Xn such that
Txi �= T ′

xi , it holds that dT (xi ) ≤ r implies dT (xi ) + h(Txi ) ≥ ω(r), and dT ′(xi ) ≤ r
implies dT ′(xi ) + h(T ′

xi ) ≥ ω(r). We may assume, by changing the roles of t and t ′ if
necessary, that dT (xd) ≤ r and dT (xd) + h(Txd ) = ω(r). Note that if dT (xd) ≤ L or
dT ′(xd) ≤ L , then, by the definition of L , we have dT (xd) = dT ′(xd). Since dT (xd) ≤
r ≤ L + 1, it follows from our assumptions that either dT (xd) = dT ′(xd) ≤ L + 1
and h(Txd ) ≤ h(T ′

xd ), or dT (xd) = L + 1 < dT ′(xd).
We are going to make use of the homomorphism ϕ : T → G that is defined as

follows. Fix anm-cycle C in K that contains the vertex vL+1, and letW be a walk that
starts with v0 → v1 → · · · → vL+1 and continues around C until it reaches length
h(T ). Let W ′ be the walk vdT (xd ) → · · · → vr−1 → v′

r → v′
r+1 → · · · → v′

ω(r)
if dT (xd) < r and v′

r → v′
r+1 → · · · → v′

ω(r) if dT (xd) = r . Note that W ′ has
length exactly h(Txd ) because dT (xd) + h(Txd ) = ω(r). Let ϕ : Xn → V (G) be the
collapsing map of (T , xd) on (W ,W ′). By Proposition 2.1, ϕ is also a homomorphism
of T ′ into G.

We have V (Txd ) = X[d,e] and V (T ′
xd ) = X[d,e′] for some e, e′ ∈ [n]. Consequently

V (Txd ) ⊆ V (T ′
xd ) (if e ≤ e′) or V (T ′

xd ) ⊆ V (Txd ) (if e
′ ≤ e). We will consider several

cases and subcases.
Case 1: V (Txd ) � V (T ′

xd ), i.e., e < e′. Then, necessarily r = dT (xd) = L + 1 and
xe+1 ∈ V (T ′

xd ) \ V (Txd ); note that W
′ is the walk v′

L+1 → · · · → v′
ω(r). Let xp be

the parent of xe+1 in T ′. Then, d ≤ p < e+ 1, so xp ∈ V (Txd ). Moreover, since xe+1
has different parents in T and T ′, we must have dT (xe+1) ≥ L + 1 by the definition
of L . Since ϕ : T ′ → G is a homomorphism, we have (ϕ(xp), ϕ(xe+1)) ∈ E(G).
Since xp ∈ V (Txd ), we have ϕ(xp) ∈ {v′

r , v
′
r+1, . . . , v

′
ω(r)}; since xe+1 /∈ V (Txd ) and

dT (xe+1) ≥ L + 1, we have ϕ(xe+1) ∈ K . Now we can extend the walk v0 → · · · →
vL → v′

L+1 → · · · → ϕ(xp) → ϕ(xe+1) with vertices of K so that we obtain a
walk of length H , and Lemma 4.4 implies that v′

L+1 belongs to a nontrivial strongly
connected component, in fact, to K by Lemma 4.9.

Case 2: V (Txd ) ⊇ V (T ′
xd ), i.e., e ≥ e′. Then, ϕ maps V (T ′

xd ) on W ′.
Case 2.1: h(Txd ) < h(T ′

xd ) =: h′. Let xd = u0, u1, . . . , uh′ be a longest path in
T ′
xd . Write di := dT (ui ) for i ∈ {0, . . . , h′}. Since h(Txd ) < h(T ′

xd ), the sequence
d0, d1, . . . , dh′ cannot be strictly increasing, so there is an index i ∈ {0, . . . , h′ − 1}
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such that di ≥ di+1; in fact, di+1 ≥ L + 1 by the definition of L . Then,
(ϕ(ui ), ϕ(ui+1)) = (v′

di
, v′

di+1
) ∈ E(G), so v′

di+1
→ · · · → v′

di
→ v′

di+1
is a

closed walk in G. Now, an application of Lemma 4.4 to the walk that starts with
v0 → · · · → vr−1 → v′

r → · · · → v′
di+1

and continues around the closed walk
v′
di+1

→ · · · → v′
di

→ v′
di+1

until it reaches length H shows that v′
L+1 belongs to a

nontrivial strongly connected component.
Case 2.2: h(Txd ) ≥ h(T ′

xd ). Recall that either dT (xd) = dT ′(xd) ≤ L + 1 and
h(Txd ) ≤ h(T ′

xd ), or dT (xd) = L + 1 < dT ′(xd). We consider separately these two
cases.

Case 2.2.1: dT (xd) = dT ′(xd) ≤ L + 1 and h(Txd ) ≤ h(T ′
xd ). It follows from

our assumptions that h(Txd ) = h(T ′
xd ). If V (Txd ) � V (T ′

xd ), then we can repeat
the above argument with the roles of t and t ′ switched, and we will reach Case 1
and we are done. We can now assume that V (Txd ) = V (T ′

xd ) (note that this holds if
dT (xd) = dT ′(xd) ≤ L). Observe that now the roles of t and t ′ are symmetric; we
would reach this point in the argument even if t and t ′ were switched, and we may
swap them if necessary.

Since Txd �= T ′
xd , there exists an element xq ∈ V (Txd ) such that dT (xq) �= dT ′(xq);

assume that the index q is the smallest possible. Swapping the roles of t and t ′, if
necessary, we may assume that dT (xq) < dT ′(xq); moreover, dT (xq) ≥ L + 1 by the
definition of L . Let xp be the parent of xq in T ′. Then, p < q, so by the choice of xq ,
we have dT (xp) = dT ′(xp) = dT ′(xq) − 1 ≥ dT (xq) ≥ L + 1. Since ϕ : T ′ → G is a
homomorphism, we have (ϕ(xp), ϕ(xq)) = (v′

dp
, v′

dq
) ∈ E(G), where dp := dT (xp),

dq := dT (xq). Then, v′
dq

→ · · · → v′
dp

→ v′
dq

is a closed walk in G. It then

follows easily from Lemma 4.4 that v′
L+1 belongs to a nontrivial strongly connected

component.
Case 2.2.2: dT (xd) = L + 1 < dT ′(xd). Since 1 ≤ r ≤ L + 1 and dT (xd) ≤ r , we

have r = L + 1 in this case; therefore, W ′ is the walk v′
L+1 → · · · → v′

ω(r). Let xp
be the parent of xd in T ′. Then, p < d, so xp /∈ V (Txd ), and dT (xp) ≡ dT ′(xp) =
dT ′(xd) − 1 ≡ dT (xd) − 1 = L (mod M). Moreover, dT ′(xp) ≥ L + 1, so also
dT (xp) ≥ L + 1 by the definition of L , and we have w := ϕ(xp) ∈ Ba−1. Since
ϕ : T ′ → G is a homomorphism, we have (ϕ(xp), ϕ(xd)) = (w, v′

L+1) ∈ E(G).
Define homomorphisms ψ : T → G and ψ ′ : T ′ → G as follows. Let ψ be the

collapsing map of (T , xd) on (C,W ′) that maps the parent of xd in T to w, and let ψ ′
be the collapsing map of (T ′, xd) on (C,W ′) that maps the parent of xd in T ′ to w.

Recall that we are assuming that V (Txd ) ⊇ V (T ′
xd ) and h(Txd ) ≥ h(T ′

xd ). If
V (Txd ) � V (T ′

xd ), then using a similar argument as in Case 1 with the homomor-
phism ψ ′ in place of ϕ, we can find an edge from W ′ to K , from which it follows that
v′
L+1 belongs to a nontrivial strongly connected component. We can thus assume that

V (Txd ) = V (T ′
xd ). If h(Txd ) > h(T ′

xd ), then using a similar argument as in Case 2.1
with the homomorphismψ ′ in place of ϕ, we can find a closed walk inW ′, fromwhich
it follows that v′

L+1 belongs to a nontrivial strongly connected component.We can thus
assume that h(Txd ) = h(T ′

xd ). Now, using a similar argument as in Case 2.2.1 with the
homomorphism ψ or ψ ′ in place of ϕ, we can find a closed walk in W ′, from which
it again follows that v′

L+1 belongs to a nontrivial strongly connected component. ��
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Fig. 4 Illustration for
Lemma 7.29

u0 u1 uL

uL+1 w

v0 v1 vλ

⇐⇒

K

Definition 7.25 Let t, t ′ ∈ Bn , t �= t ′, and denote T := G(t), T ′ := G(t ′). Let

Λt,t ′ := {
x ∈ Xn

∣∣ dT (x) �= dT ′(x), Lt,t ′ + 1 ∈ {dT (x), dT ′(x)}},
and let

λt,t ′ := min
{
max(h(Tx ), h(T ′

x ))
∣∣ x ∈ Λt,t ′

}
.

Note that Λt,t ′ �= ∅ by the definition of Lt,t ′ ; hence, λt,t ′ is well defined and λt,t ′ ≥ 0.

Example 7.26 For the DFS trees of Fig. 3, it holds that

Λt,t ′ = {x14, x18, x19},
λt,t ′ = min{max(1, 1)︸ ︷︷ ︸

x14

,max(2, 0)︸ ︷︷ ︸
x18

,max(1, 1)︸ ︷︷ ︸
x19

} = min{1, 2, 1} = 1.

Definition 7.27 Let G be a digraph. Let λG be the largest integer m such that there
exist an entryway u0 → u1 → · · · → uEG (of maximal length EG) to a nontrivial
strongly connected component K , a vertex w in K with w → uEG and a walk v0 →
v1 → · · · → vm such that exactly one of the pairs (w, v0) and (uEG−1, v0) is an
edge and the other is not. If there is no upper bound for such numbers m, then define
λG := ∞. If no such number m exists (this holds in particular when EG ≤ 0), then
define λG := −∞.

Example 7.28 In the graph G of Fig. 1, the longest entryway e0 → e1 → e2 → e3 →
e4, the path λ0 → λ1, the edges v → e4 and v → λ0 and the nonedge (e3, λ0)witness
that λG = 1.

Lemma 7.29 Let t, t ′ ∈ Bn, t �= t ′, and let G be a digraph such thatA(G) satisfies the
identity t ≈ t ′. Denote L := Lt,t ′ , λ := λt,t ′ . Assume that EG = L + 1, u0 → u1 →
· · · → uL → uL+1 is an entryway to a nontrivial strongly connected component K ,
w is a vertex in K with w → uL+1, and v0 → v1 → · · · → vλ is a walk in G. Then,
w → v0 is an edge if and only if uL → v0 is an edge. (See Fig. 4.) Consequently,
λG < λt,t ′ .
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Proof Denote M := Mt,t ′ , L := Lt,t ′ , λ := λt,t ′ . By the definition of λ, there exists
an element xd ∈ Xn such that L + 1 ∈ {dT (xd), dT ′(xd)}, dT (xd) �= dT ′(xd), and
max(h(Txd ), h(T ′

xd )) = λ. By changing the roles of t and t ′ if necessary, we may
assume that dT (xd) = L + 1 < dT ′(xd). Let xp and xq be the parents of xd in T and
T ′, respectively. Then, dT (xp) = dT (xd) − 1 = L , dT ′(xq) = dT ′(xd) − 1 ≥ L + 1
and dT ′(xq) = dT ′(xd) − 1 ≡ dT (xd) − 1 = L (mod M).

Denote by W the entryway u0 → u1 → · · · → uL → uL+1 and by W ′ the walk
v0 → v1 → · · · → vλ. By Lemma 4.8, K is an m-whirl for some divisor m of M . Let
C be an m-cycle in K that includes the vertices w and uL+1.

If (uL , v0) ∈ E(G), then let W ′′ be the walk that extends W with vertices of C to
a walk of length h(T ), and consider the collapsing map ϕ : Xn → V (G) of (T , xd)
to (W ′′,W ′). Observe that ϕ(xq) = w. (In order to see this, we need to verify that
xq /∈ Txd , dT (xq) ≥ L + 1 and dT (xq) ≡ L (mod m). The condition xq /∈ Txd holds
because q < d, as xq is the parent of xd in T ′. If dT (xq) ≤ L , then dT (xq) = dT ′(xq)
by the definition of L; hence, dT ′(xq) ≤ L , which is a contradiction because we
have seen that dT ′(xq) ≥ L + 1. We have also seen that dT ′(xq) ≡ L (mod M),
and dT (xq) ≡ dT ′(xq) (mod M) by the definition of M . These imply dT (xq) ≡ L
(mod M), and then dT (xq) ≡ L (mod m) follows, as m |M .) By Proposition 2.1, ϕ
is a homomorphism T ′ → G, so (ϕ(xq), ϕ(xd)) = (w, v0) ∈ E(G).

If (w, v0) ∈ E(G), then let W ′′ be the walk that extends W with vertices of C to a
walk of length h(T ′), and consider the collapsing map ϕ′ : Xn → V (G) of (T ′, xd)
to (W ′′,W ′). Observe that ϕ′(xp) = uL . (In order to see this, we need to verify that
dT ′(xp) = L . We know that dT (xp) = L , so dT (xp) = dT ′(xp) by the definition of
L . From this it follows that dT ′(xp) = L .) By Proposition 2.1, ϕ′ is a homomorphism
T → G, so (ϕ′(xp), ϕ′(xd)) = (uL , v0) ∈ E(G). ��
Remark 7.30 Note that the walk v0 → v1 → · · · → vλ in Lemma 7.29 may include
vertices in the nontrivial strongly connected component K . In particular, Lemma 7.29
asserts that if G satisfies t ≈ t ′, L := Lt,t ′ , EG = L + 1, and u0 → u1 → · · · →
uL → uL+1 is an entryway, then there is an edge uL → v for every vertex v in the
block B of uL+1 in K . This follows by choosing any vertex w from the predecessor
block of B and taking v0 → v1 → · · · → vλ to be any walk starting at v and going
around K until it reaches length λ.

We have established above several necessary conditions for a digraph to satisfy a
bracketing identity. We show next that these conditions are also sufficient.

Theorem 7.31 Let G be a digraph, and let t, t ′ ∈ Bn with t �= t ′. Then, A(G) satisfies
the identity t ≈ t ′ if and only if the following conditions hold:

(i) Every nontrivial strongly connected component of G is a whirl.
(ii) There is no path fromanontrivial strongly connected component of G to another.
(iii) MG |Mt,t ′ .
(iv) PG < Ht,t ′ .
(v) EG ≤ Lt,t ′ + 1.
(vi) OG ≤ Yt,t ′ + 1.
(vii) ZG < Zt,t ′ .
(viii) BG < Lt,t ′ .
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(ix) ωG(Lt,t ′ + 1, r) < ωt,t ′(r) for all r ∈ {1, . . . , Lt,t ′ + 1}.
(x) If EG = Lt,t ′ + 1, then λG < λt,t ′ .

Proof Denote T := G(t), T ′ := G(t ′), H := Ht,t ′ ,M := Mt,t ′ , L := Lt,t ′ ,Y := Yt,t ′ ,
Z := Zt,t ′ , ω := ωt,t ′ , λ := λt,t ′ . The necessity of the conditions is established
in previous lemmata: condition (i) follows from Lemma 4.8, (ii) from Lemma 4.9,
(iii) and (iv) from Lemma 7.6, (v) from Lemma 7.7, (vi) from Lemma 7.10, (vii)
from Lemma 7.16, (viii) from Lemma 7.19, (ix) from Lemma 7.24, and (x) from
Lemma 7.29.

For sufficiency, assume that the digraph G = (V , E) and the bracketings t, t ′ ∈ Bn

satisfy the conditions. In order to show that A(G) satisfies the identity t ≈ t ′, it
suffices, by Proposition 2.1, to show that a map ϕ : Xn → V is a homomorphism of T
into G if and only if it is a homomorphism of T ′ into G. So, assume that ϕ : Xn → V
is a homomorphism of T into G. We need to verify that ϕ is a homomorphism of T ′
into G.

The image of any path in T under ϕ is a walk in G. By conditions (ii), (v) and
(vi), it is either a pleasant path, or it comprises an entryway (of length at most L + 1,
possibly 0) to a nontrivial strongly connected component K , followed by a winding
walk in K , again followed by an outlet from K (of length at most Y + 1, possibly 0).
Since T contains a path of length h(T ) ≥ H , condition (iv) implies that the image of
ϕ contains a vertex belonging to a nontrivial strongly connected component of G.

Our goal is to show that for any edge (a, b) of T ′, its image (ϕ(a), ϕ(b)) is an edge
of G. Since T and T ′ are identical up to level L , it holds that if (a, b) is an edge of
T ′ with dT ′(a) < L , then (a, b) is also an edge of T and hence (ϕ(a), ϕ(b)) ∈ E(G).
Therefore, we can focus on edges (a, b) ∈ E(T ′) with dT ′(a) ≥ L .

Let x� ∈ Xn be an arbitrary vertex with dT ′(x�) = L . Then, also dT (x�) = L
and V (Tx�

) = V (T ′
x�

) = X[�,�′] for some �′ ≥ �. We will be done if we show
that (ϕ(a), ϕ(b)) ∈ E(G) holds for every edge (a, b) of the rooted induced subtree
T ′
x�
. The remainder of the proof is a case analysis. The first case distinction is made

according to which vertices of Tx�
, if any, are mapped to nontrivial strongly connected

components. Each case leads to several subcases. Figure 5 illustrates several main
cases and subcases, showing relevant parts of the tree T and highlighting vertices that
are mapped to nontrivial strongly connected components.

Case 1: Assume that ϕ maps no vertex of Tx�
to a nontrivial strongly connected

component of G. Let x1 =: u0 → u1 → · · · → uL := x� be the path from x1 to x� in
T ′ (equivalently, in T ). We make a further case distinction on whether any vertex on
this path is mapped to a nontrivial strongly connected component.

Case 1.1: Assume that there is an index i ∈ {0, . . . , L − 1} such that ϕ(ui ) lies in
a nontrivial strongly connected component of G. It follows from condition (vi) that
h(Tx�

) ≤ Y ; hence, Tx�
= T ′

x�
by the definition of Y . Therefore, (ϕ(a), ϕ(b)) is clearly

an edge of G for every edge (a, b) of T ′
x�
.

Case 1.2: Assume that for all i ∈ {0, . . . , L −1}, ϕ(ui ) belongs to a trivial strongly
connected component. Since the image of ϕ contains a vertex belonging to a nontrivial
strongly connected component of G, there exists an index j ∈ {0, . . . , L − 1} such
that Tu j contains a vertex that is mapped by ϕ to a nontrivial strongly connected
component (at least Tx1 = Tu0 satisfies this). Assume that j is the largest such index.
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u0 = x1

u1

ui

uL = x

Tx

Case 1.1

u0 = v0 = x1

u1 = v1

uj = vj

uj+1

uL = x

vj+1

w = vc
uj+2

y = ud

Tx

Case 1.2

u0 = x1

u1

uL = x

Tx

Case 2

u0 = x1

u1

uL = x

v vTx

Case 3

Fig. 5 Various cases considered in the proof of Theorem 7.31. Hollow vertices are mapped to a nontrivial
strongly connected component of G

By condition (v), Tu j contains a vertex w such that ϕ(w) lies in a nontrivial strongly
connected component K and c := dT (w) ≤ L + 1. Let x1 =: v0 → v1 → · · · → vc
be the path from x1 tow in T ; note that vi = ui for all i ≤ j . Then, ϕ(v0) → ϕ(v1) →
· · · → ϕ(vc) is a walk in G. Continuing this in a suitable way with vertices from K ,
we obtain a walk of length L + 1 in G, the last vertex of which belongs to K . Let
then y be a vertex of maximum depth in Tu j+1 , let d := dT (y), and consider the path
u0 → u1 → · · · → u j+1 → u′

j+2 → · · · → u′
d from x1 to y in T . By the choice

of j , the walk ϕ(u0) → ϕ(u1) → · · · → ϕ(u j+1) → ϕ(u′
j+2) → · · · → ϕ(u′

d)

is pleasant. It follows from condition (ix) that d < ω( j + 1). By the definition
of ω and Ωt,t ′ we have Tu j+1 = T ′

u j+1
and hence Tx�

= T ′
x�
, and it follows that

(ϕ(a), ϕ(b)) ∈ E(G) for every edge (a, b) of T ′
x�
.

Case 2: Assume that ϕ(x�) belongs to a nontrivial strongly connected component K
ofG. By conditions (i) and (iii), K is anm-whirl for a divisorm ofM . By condition (ii),
ϕ maps each vertex of Tx�

to K or to an outlet from K . Let (a, b) be an edge of T ′
x�
.

We consider different cases according to whether a and b are mapped to K or not.
Case 2.1: Assume that ϕ(a) /∈ K . Then, h(Ta) < OG ≤ Y + 1 by condition (vi);

therefore, Ta = T ′
a by the definition of Y , so (a, b) ∈ E(T ) and hence (ϕ(a), ϕ(b)) ∈

E(G).
Case 2.2: Assume that ϕ(a), ϕ(b) ∈ K . Since dT (a) ≡ dT ′(a) = dT ′(b) − 1 ≡

dT (b) − 1 (mod M), the vertices ϕ(a) and ϕ(b) lie in consecutive blocks of the
m-whirl K . Therefore, (ϕ(a), ϕ(b)) ∈ E(G).

Case 2.3: Assume that ϕ(a) ∈ K and ϕ(b) /∈ K . Again by condition (vi), we have
h(Tb) < OG ≤ Y + 1, and therefore, Tb = T ′

b. Let c be the parent of b in T ; note that
c ∈ V (Tx�

). If c = a, then (ϕ(a), ϕ(b)) = (ϕ(c), ϕ(b)) ∈ E(G) and we are done.
If c �= a, then h(Tb) ≥ Z ≥ 0, so there exists a path b =: v0 → v1 → · · · → vZ
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in T . Then, ϕ(c) → ϕ(b) → ϕ(v1) → · · · → ϕ(vZ ) is a walk in G. We must
also have ϕ(c) ∈ K . (Suppose, to the contrary, that ϕ(c) /∈ K . Then, h(Tc) ≤ Y by
condition (vi); hence, Tc = T ′

c by the definition of Y , so (c, b) is an edge of both T
and T ′. This contradicts the fact that a is the unique parent of b in T ′.) Moreover,
dT (a) ≡ dT ′(a) = dT ′(b) − 1 ≡ dT (b) − 1 = dT (c) (mod M). Therefore, ϕ(a) and
ϕ(c) belong to the same block of them-whirl K , and it now follows from condition (vii)
that (ϕ(a), ϕ(b)) ∈ E(G).

Case 3: Assume that ϕ maps some vertices of Tx�
to nontrivial strongly connected

components of G but ϕ(x�) belongs to a trivial strongly connected component. If v

is a vertex of Tx�
such that ϕ(v) ∈ K , where K is a nontrivial strongly connected

component, and x1 =: u0 → u1 → · · · → uL → · · · → uq := v is the path from
x1 to v in T , then ϕ(ui ) ∈ K for all i ∈ {L + 1, . . . , q} by conditions (ii) and (v).
Together with condition (viii), this implies that if v and v′ are vertices of Tx�

such that
ϕ(v) ∈ K ,ϕ(v′) ∈ K ′, where K and K ′ are nontrivial strongly connected components,
then K = K ′. So, let us assume that K is the unique nontrivial strongly connected
component with nonempty intersection with ϕ(V (Tx�

)). By conditions (i) and (iii), K
is an m-whirl for a divisor m of M . Moreover, ϕ(u0) → ϕ(u1) → · · · → ϕ(uL+1) is
an entryway of length L +1, so condition (v) implies EG = L +1. Now condition (x)
in turn implies λG < λ.

Let xr ∈ V (T ′
x�

) with dT ′(xr ) = L + 1, i.e., xr is a child of x� in T ′, and let
x� =: v0 → v1 → · · · → vz := xr be the path from x� to xr in T . We are going to
show that (ϕ(x�), ϕ(xr )) ∈ E(G) and that (ϕ(a), ϕ(b)) ∈ E(G) for every edge (a, b)
of T ′

xr . Since xr was chosen arbitrarily among the children of x�, this will cover all
edges of T ′

x�
and we will be done. We consider different possibilities.

Case 3.1: Assume that ϕ(xr ) /∈ K .
Case 3.1.1: Assume that ϕ(vi ) ∈ K for some i ∈ {1, . . . , z − 1}. Then, necessarily

z > 1; hence, dT (xr ) > L + 1. In particular, ϕ(v1) ∈ K by condition (v) and ϕ(xr )
lies on an outlet, so h(Txr ) ≤ Y by condition (vi). Consequently, Txr = T ′

xr by the
definition of Y ; therefore, (ϕ(a), ϕ(b)) ∈ E(G) for every edge (a, b) of T ′

xr . It remains
to show that (ϕ(x�), ϕ(xr )) ∈ E(G).

Observe that also ϕ(vz−1) ∈ K . (Suppose, to the contrary, that ϕ(vz−1) /∈ K . Then,
a similar argument as above shows that Tvz−1 = T ′

vz−1
. Recall that the parent of xr in

T ′ is x�. Since z > 1, we must have vz−1 �= x�. Consequently, (vz−1, xr ) /∈ E(T ′
vz−1

),
which contradicts the fact that (vz−1, xr ) ∈ E(Tvz−1) = E(T ′

vz−1
).)

This means that

dT (vz−1) = dT (xr ) − 1 ≡ dT ′(xr ) − 1 = dT ′(x�)

= L = dT (x�) = dT (v1) − 1 (mod M),

so ϕ(vz−1) and ϕ(v1) lie on consecutive blocks of K . Since dT ′(xr ) = L + 1 <

dT (xr ) and Txr = T ′
xr , we have λ ≤ max(h(Txr ), h(T ′

xr )) = h(Txr ) by the def-
inition of λ. Therefore, there exists a path xr → y1 → · · · → yλ in T , and
its image ϕ(xr ) → ϕ(y1) → · · · → ϕ(yλ) is a walk of length λ in G. Since
ϕ(x1) → · · · → ϕ(x�) → ϕ(v1) is an entryway of length L + 1 = EG and we have
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edges (ϕ(vz−1), ϕ(v1)), (ϕ(vz−1), ϕ(xr )) ∈ E(G), the inequality λG < λ implies
(ϕ(x�), ϕ(xr )) ∈ E(G), as desired.

Case 3.1.2: Assume that ϕ(vi ) /∈ K for all i ∈ {1, . . . , z−1}. Then, actually ϕ(x) /∈
K for every vertex x ∈ V (Tv1) (for, if there were x ∈ V (Tv1) such that ϕ(x) ∈ K ,
then, since dT (v1) = L + 1 = EG , we would have ϕ(v1) ∈ K , a contradiction).
There is, however, an edge (x�, y) in T with ϕ(y) ∈ K , so condition (ix) implies that
dT (v1)+h(Tv1) ≤ ωG(L+1, L+1) < ω(L+1) because dT (v1) = L+1. It follows
from the definition of ω(L + 1) that (dT (v1), h(Tv1)) /∈ Ωt,t ′ ; hence, Tv1 = T ′

v1
. We

have xr ∈ V (Tv1). The only rooted induced subtrees of T ′
x�

containing the vertex xr
are T ′

xr and T ′
x�
; hence, v1 = xr or v1 = x�. The case v1 = x� is impossible because

v1 is the vertex following x� on the path from x� to xr in T ; therefore, v1 = xr .
Then, (ϕ(x�), ϕ(xr )) = (ϕ(x�), ϕ(v1)) ∈ E(G). Furthermore, Tv1 = T ′

v1
implies that

(ϕ(a), ϕ(b)) ∈ E(G) for every edge (a, b) of T ′
v1

= T ′
xr .

Case 3.2: Assume that ϕ(xr ) ∈ K . Then, ϕ(vi ) ∈ K for all i ∈ {1, . . . , z}. We
have

dT (xr ) ≡ dT ′(xr ) = dT ′(x�) + 1 = dT (x�) + 1 = dT (v1) (mod M),

so ϕ(xr ) and ϕ(v1) are in the same block Bi of K . Letw be a vertex in the predecessor
block Bi−1; then, w → ϕ(xr ) and w → ϕ(v1) are edges. Since ϕ(x1) → · · · →
ϕ(x�) → ϕ(v1) is an entryway of length L + 1 = EG and since there certainly exists
a walk of length λ starting from ϕ(xr ) (just walk along vertices of K ), the inequality
λG < λ implies that (ϕ(x�), ϕ(xr )) ∈ E(G).

We are going to show that ϕ maps T ′
xr homomorphically into G. We go through

the vertices in T ′
xr in depth-first-search order, and we show that every edge of T ′

xr is
mapped to an edge of G. As we will see, it suffices to go along each branch of T ′

xr only
so far until we reach a vertex v such that ϕ(v) /∈ K ; once such a vertex is reached, the
induced subtree rooted at v will automatically be mapped homomorphically into G.

So, let (a, b) ∈ E(T ′
xr ) and assume that we have already shown that every vertex

on the path xr → · · · → a in T ′ is mapped into K by ϕ and every edge along this
path is mapped to an edge of G. In particular, ϕ(a) ∈ K . Let c be the parent of b in T ;
(c, b) ∈ E(T ). If a = c, then we clearly have (ϕ(a), ϕ(b)) = (ϕ(c), ϕ(b)) ∈ E(G).
Assume from now on that a �= c. We need to consider several cases.

Case 3.2.1: Assume that ϕ(b) ∈ K . Then, dT (a) ≡ dT ′(a) = dT ′(b)−1 ≡ dT (b)−
1, that is, ϕ(a) and ϕ(b) lie in consecutive blocks of K ; then, clearly (ϕ(a), ϕ(b)) ∈
E(G).

Case 3.2.2: Assume that ϕ(b) /∈ K .
Case 3.2.2.1: Assume that ϕ(c) ∈ K . Then, ϕ(b) lies in an outlet, so h(Tb) ≤ Y ,

whence Tb = T ′
b. Since a �= c, we have h(Tb) ≥ Z ≥ 0 by the definition of Z , so G

has an outlet of length at least Z + 1 starting with ϕ(c) → ϕ(b) → · · · . Moreover,
dT (c) = dT (b) − 1 ≡ dT ′(b) − 1 = dT ′(a) ≡ dT (a) (mod M), so ϕ(a) and ϕ(c) are
in the same block of K . Now it follows from condition (vii) that (ϕ(a), ϕ(b)) ∈ E(G).
From Tb = T ′

b it follows that ϕ maps all edges of the subtree T ′
b to edges of G.

Case 3.2.2.2:Assume thatϕ(c) /∈ K .We claim that c = x�. Suppose, to the contrary,
that the path x� =: y0 → y1 → · · · → yp := c from x� to c in T has length p ≥ 1.
Then, ϕ(yi ) /∈ K for all i ∈ {0, 1, . . . , p} (otherwise ϕ(c) would lie in an outlet, so
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h(Tc) ≤ Y , whence Tc = T ′
c , which is clearly a contradiction since (c, b) is an edge

in T but not in T ′). In fact, ϕ(x) /∈ K for all x ∈ V (Ty1) by condition (v). Recall the
path x� =: v0 → v1 → · · · → vz := xr in T . Since ϕ(x�) /∈ K , ϕ(xr ) ∈ K , and
dT (v1) = L + 1, condition (v) implies ϕ(v1) ∈ K . Then, condition (ix) implies that
dT (y1) + h(Ty1) ≤ ωG(L + 1, L + 1) < ω(L + 1); hence, (dT (y1), h(Ty1)) /∈ Ωt,t ′ ,
so Ty1 = T ′

y1 . Since (c, b) is an edge in Ty1 , this implies that (c, b) is also an edge of
T ′, a contradiction.

Since c = x�, we have dT (b) = L + 1. Since ϕ(b) /∈ K , condition (v) implies
that ϕ(x) /∈ K for all x ∈ V (Tb). Using again the fact that x� → v1 is an edge
of T , ϕ(v1) ∈ K , and dT (v1) = L + 1, condition (ix) implies dT (b) + h(Tb) ≤
ωG(L + 1, L + 1) < ω(L + 1); hence, (dT (b), h(Tb)) /∈ Ωt,t ′ , so Tb = T ′

b. On
the other hand, dT ′(b) > L + 1. Therefore, λ ≤ max(h(Tb), h(T ′

b)) = h(Tb) by the
definition of λ, so there is a path of length λ starting at ϕ(b). Furthermore, dT (a) ≡
dT ′(a) = dT ′(b) − 1 ≡ dT (b) − 1 = dT (c) = L = dT (v1) − 1 (mod M), so ϕ(a)

and ϕ(v1) lie in consecutive blocks of K , that is, ϕ(a) → ϕ(v1) is an edge. Now the
inequality λG < λ implies that (ϕ(a), ϕ(b)) ∈ E(G). From Tb = T ′

b it follows that ϕ
maps all edges of the subtree T ′

b to edges of G.
This exhausts all cases, and we conclude that ϕ is a homomorphism of T ′ to G.

Switching the roles of T and T ′, the same argument shows that every homomorphism
of T ′ to G is a homomorphism of T to G. Proposition 2.1 now yields A(G) |� t ≈ t ′.

��

8 Special cases

As an illustration of the parameters and results of the previous section, we now present
how some of the main results of Part I can be derived as special cases of Theorem 7.31.
When restricted to undirected graphs, Theorem 7.31 is reduced to the following propo-
sition, which together with Lemma 3.1 leads to Theorem 3.3.

Proposition 8.1 Let G be an undirected graph.

(i) If every connected component of G is either trivial or a complete graph with
loops, then A(G) satisfies every bracketing identity.

(ii) If every connected component is either trivial, a complete graph with loops, or a
complete bipartite graph, and the last case occurs at least once, then G satisfies
a nontrivial bracketing identity t ≈ t ′ if and only if Mt,t ′ is even.

(iii) Otherwise G satisfies no nontrivial bracketing identity.

Proof The strongly connected components of an undirected graph are just its connected
components, and every symmetric edge is part of a cycle. Therefore, an undirected
graph G has no pleasant path of nonzero length and consequently no entryway nor
outlet of nonzero length; thus, PG ≤ 0, EG ≤ 0, OG ≤ 0. It also clearly holds that
BG = −∞, λG = −∞, and ωG(�, r) = −∞ for all �, r ∈ N with � ≥ r ≥ 1. The
only whirls with symmetric edges are 1-whirls (i.e., complete graphs with loops) and
2-whirls (i.e., complete bipartite graphs). From this it also easy to see that ZG = −∞,
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For this reason, condition (ii) of Theorem 7.31 is automatically satisfied, and con-
ditions (iv)–(x) obviously hold for any t, t ′ ∈ Bn with t �= t ′. Therefore, it is only
conditions (i) and (iii) that matter.

Consider first the case that every nontrivial connected component of G is a 1-whirl.
Then, MG = 1. Since 1 | Mt,t ′ for any t, t ′ ∈ Bn , t �= t ′, it holds that A(G) satisfies
every bracketing identity.

Consider now the case that every nontrivial connected component of G is a 1-whirl
or a 2-whirl and at least one of the components is a 2-whirl. Then, MG = 2, so A(G)

satisfies a nontrivial bracketing identity t ≈ t ′ if and only if 2 |Mt,t ′ .
Finally, in the case when G has a nontrivial connected component that is not a

whirl, A(G) satisfies no nontrivial bracketing identity. ��
A characterization of associative digraphs (i.e., digraphs satisfying x1(x2x3) ≈

(x1x2)x3) equivalent to Proposition 4.1 is obtained as a special case of Theorem 7.31.

Proposition 8.2 Let G be a digraph. Then, A(G) satisfies the identity x1(x2x3) ≈
(x1x2)x3 if and only if the nontrivial strongly connected components of G are complete
graphs with loops, and for every vertex v ∈ V (G), the outneighbourhood of v is a
nontrivial strongly connected component.

Proof Denote t := x1(x2x3) and t ′ := (x1x2)x3. It is straightforward to verify that
this pair of bracketings has the following parameters (see Figure 5 of Part I):

Ht,t ′ = 1, Lt,t ′ = 0, Mt,t ′ = 1, Yt,t ′ = −1, Zt,t ′ = 0,

Ωt,t ′ = {(0, 2), (0, 1), (1, 1), (1, 0)}, ωt,t ′ = (1, 1, . . . ),

Λt,t ′ = {x3}, λt,t ′ = 0.

With these parameters, the conditions of Theorem 7.31 forA(G) to satisfy the identity
t ≈ t ′ are reduced to the following:

(i) Every nontrivial strongly connected component of G is a whirl.
(ii) There is nopath fromanontrivial strongly connected component ofG to another.
(iii) MG = 1.
(iv) PG ≤ 0.
(v) EG ≤ 1. (This follows already from (iv).)
(vi) OG ≤ 0.
(vii) ZG = −∞. (This is also a consequence of (i) and (vi).)
(viii) BG = −∞. In view of conditions (iv) and (vi), thismeans that all outneighbours

of a vertex belong to the same nontrivial strongly connected component.
(ix) ωG(1, 1) = −∞. (This is also a consequence of (iv) and (vi).)
(x) If EG = 1, then λG = −∞. This means that for any vertex v belonging to

a trivial strongly connected component, if (v, u) is an edge, then (v,w) is an
edge for all vertices w in the strongly connected component of u.

The above conditions are easily seen to be equivalent to the following: the nontrivial
strongly connected components of G are complete graphs with loops, and for every
vertex v ∈ V (G), the outneighbourhood of v is an entire nontrivial strongly connected
component. ��
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9 Spectrum dichotomy

Theorem 7.31 provides a necessary and sufficient condition for a graph algebra to
satisfy a nontrivial bracketing identity. However, the theorem does not directly give
information on the number of distinct term operations of a graph algebra induced
by the bracketings of a given size. Although a general description of the associative
spectra of digraphs still eludes us, we can find some bounds for the possible associative
spectra. In fact, as we will see in Theorem 9.6, the associative spectrum of a graph
algebra is either constant at most 2 or it grows exponentially.

In preparation for this dichotomy result, we shall determine the associative spec-
trum of the graph algebra corresponding to a certain graph on three vertices (see
Proposition 9.3).

Lemma 9.1 For n ≥ 2 let Rn be the set of words ρ of length n over the alphabet {0, 1}
that satisfy the following three conditions:

(i) ρ does not start with 01,
(ii) ρ does not end with 10,
(iii) ρ does not contain 101.

Then, |Rn| is asymptotically (αn),1 where α ≈ 1.755 is the unique positive root of
the polynomial x4 − x3 − x2 − 1.

Proof It is straightforward to verify that the map ψ defined by the following formula
is a bijection from Rn−1 ∪ Rn−2 ∪ Rn−4 to Rn for all n ≥ 6:

ψ(ρ) =

⎧⎪⎨
⎪⎩

ρ1, if ρ ∈ Rn−1,

ρ00, if ρ ∈ Rn−2,

ρ1000, if ρ ∈ Rn−4.

Thus, we have the recurrence relation |Rn| = |Rn−1| + |Rn−2| + |Rn−4|. The charac-
teristic polynomial of this linear recurrence is x4 − x3 − x2 − 1, and its roots are

α ≈ 1.755, β ≈ 0.123 + 0.745i, γ ≈ 0.123 − 0.745i, δ = −1.

Therefore, |Rn| = a · αn + b · βn + c · γ n + d · δn for suitable complex numbers
a, b, c, d. Since α is the only characteristic root of absolute value greater than one,
the dominant term is a · αn ; hence, we have |Rn| = (αn). ��
Remark 9.2 The sequence of values |Rn| appears as sequence A005251 in the OEIS
[6].

Proposition 9.3 The associative spectrum sn of the graph algebra corresponding to the
graph G given by V (G) = {u, v, w}, E(G) = {(u, v), (u, w), (w,w)} is sn = |Rn−1|
for all n ≥ 3. Hence, sn is asymptotically (αn).

1 This means that there exist positive constants c1, c2 such that c1αn ≤ |Rn | ≤ c2α
n .
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Proof For anyDFS tree T of size n ≥ 3, amapϕ : Xn → {u, v, w} is a homomorphism
of T into G if and only if either ϕ(Xn) = w, or ϕ(x1) = u and all vertices mapped to
v are leaves of depth one in T :

∀p ∈ Xn : ϕ(p) = v �⇒ dT (p) = 1 and h(Tp) = 0.

By Proposition 2.1, this implies that A(G) satisfies a bracketing identity t ≈ t ′ if and
only if the corresponding DFS trees G(t) and G(t ′) have the same leaves on level one.
Thus, sn counts the number of subsets of S ⊆ {x2, . . . , xn} that can occur as the set of
“depth-one leaves” of a DFS tree of size n. We claim that such sets S are characterized
by the following three conditions:

(a) if x3 ∈ S, then x2 ∈ S;
(b) if xn−1 ∈ S, then xn ∈ S;
(c) if xi , xi+2 ∈ S, then xi+1 ∈ S for all 2 ≤ i ≤ n − 2.

It is clear that these conditions are necessary. Conversely, assume that S =
{xi1 , . . . , xis } ⊆ {x2, . . . , xn} with 2 ≤ i1 < · · · < is ≤ n satisfies the three con-
ditions above. Let us construct a DFS tree T of size n as follows. For each xik ∈ S, let
xik be a child of the root x1, and let xik have no children. If k < s and ik+1 > ik + 1,
then let xik+1 be also a child of x1, and let xik+2, . . . , xik+1−1 be the children of xik+1.
Note that condition (c) guarantees that this is a nonempty set of children; hence, xik+1
is not a leaf. In addition, if x2 /∈ S (i.e., i1 > 2), then let x2 be a child of x1, and let
x3, . . . , xi1−1 be the children of x2. Again, condition (a) ensures that at least x3 will
be a child of x2; hence, x2 is not a leaf in this case. Similarly, if xn /∈ S (i.e., is < n),
then let xis+1 be a child of x1, and let xis+2, . . . , xn be the children of xis+1. Condition
(b) guarantees that xis+1 is not a leaf. This construction yields a DFS tree T whose
depth-one leaves are exactly the elements of S.

If we encode a set S ⊆ {x2, . . . , xn} by a word χ ∈ {0, 1}n−1 in a standard way
(i.e., χi = 1 if and only if i + 1 ∈ S), then conditions (a)–(c) translate to conditions
(i)–(ii) of Lemma 9.1. Thus, we can conclude that sn = |Rn−1| = (αn). ��
Lemma 9.4 For n > 1, the number of DFS trees on n vertices of height at most 2 is
2n−2.

Proof The depth sequence of a DFS tree on n vertices of height at most 2 is clearly
an element of {0} × {1} × {1, 2}n−2, because the root x1 is the only vertex at depth 0,
x2 must have depth 1, and the remaining vertices may have depth 1 or 2. Conversely,
every tuple (d1, d2, . . . , dn) ∈ {0} × {1} × {1, 2}n−2 is a zag sequence and hence a
depth sequence of some DFS tree by Proposition 2.6. The claim now follows, since
DFS trees are uniquely determined by their depth sequences by Proposition 2.5, and
|{0} × {1} × {1, 2}n−2| = 2n−2. ��
Lemma 9.5 Let ∼ be the equivalence relation on Bn that relates t and t ′ if and only if
T := G(t) and T ′ := G(t ′) coincide up to level one, i.e.,

∀p ∈ Xn : dT (p) = 1 ⇐⇒ dT ′(p) = 1.

Then, |Bn/∼| = 2n−2 for n ≥ 2.
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Proof We need to count sets S ⊆ {x2, . . . , xn} that can occur as the set of depth-one
vertices of a DFS tree of size n. Clearly, x2 ∈ S holds for such sets. We claim that
this condition is also sufficient. Indeed, let S = {xi1 , . . . , xis } ⊆ {x2, . . . , xn} with
2 = i1 < · · · < is ≤ n, and let us construct a DFS tree T as follows. For each xik ∈ S,
let xik be a child of the root x1, and let xik+1, . . . , xik+1−1 be the children of xik (it is
possible that this is an empty set of children). Then, the depth-one vertices of T are
exactly the elements of S. We can conclude that |Bn/∼| is the number of subsets of
{x2, . . . , xn} that contain x2, and this is obviously 2n−2. ��

Byadirected bipartite graphwemean a bipartite graphG = (V , E)with bipartition
V = V1 ∪ V2 such that E ⊆ V1 × V2 (i.e., all edges go to the “same direction”). The
weakly connected components of a digraph G are its induced subgraphs on (the vertex
sets of) the connected components of the underlying undirected graph of G.

Theorem 9.6 For any digraphG,we have the following threemutually exclusive cases.

(i) The associative spectrumofA(G) is constant1. These digraphs are characterized
in Proposition 4.1 or, equivalently, in Proposition 8.2.

(ii) The associative spectrum of A(G) is constant 2. This holds if and only if each
weakly connected component of G is either associative or a directed bipartite
graph with at least one edge, and the latter occurs at least once.

(iii) In all other cases the associative spectrum of A(G) is bounded below by the
spectrum of the graph given in Proposition 9.3, i.e., sn(A(G)) ≥ |Rn−1| =
(αn) (cf. Lemma 9.1).

Proof Let G be an arbitrary digraph, and let sn = sn(A(G)) denote the associative
spectrum and σn = σn(A(G)) denote the fine associative spectrum of the corre-
sponding graph algebra. Let us assume that sn does not grow exponentially. Then, G
satisfies conditions (i) and (ii) of Theorem 7.31 (otherwise the associative spectrum
would consist of the Catalan numbers). If MG ≥ 2, then G contains an induced
subgraph that is isomorphic to the directed cycle Cm for some m ≥ 2; hence,
sn ≥ sn(Cm) ≥ sn(C2) = 2n−2 by Proposition 5.4 and Remark 5.5, contradict-
ing our assumption on the growth of the spectrum. If PG ≥ 2, then condition (iv)
of Theorem 7.31 shows that all bracketings corresponding to DFS trees of height
at most 2 fall into different equivalence classes of the fine spectrum σn . Therefore,
Lemma 9.4 implies that sn ≥ 2n−2, a contradiction. If EG ≥ 2, then by condition (v)
of Theorem 7.31, bracketings t, t ′ ∈ Bn fall into different equivalence classes of the
fine spectrum whenever the corresponding DFS trees differ at level one. Hence, by
Lemma 9.5, we have sn ≥ 2n−2, which is a contradiction again. A similar argument
using condition (vi) of Theorem 7.31 and Lemma 5.6 shows that OG ≥ 1 also leads
to the contradiction sn ≥ 2n−2.

We have proved thus far that ifA(G) has a subexponential spectrum, thenG satisfies
conditions (i) and (ii) of Theorem 7.31 and the (in)equalities MG = 1, PG ≤ 1,
EG ≤ 1, OG ≤ 0. Let us assume that conditions (i) and (ii) of Theorem 7.31 and these
(in)equalities hold, and let V0 be the union of the vertex sets of the nontrivial strongly
connected components ofG (if there are any). From PG ≤ 1, EG ≤ 1 and OG ≤ 0 we
can see that no vertex of V \ V0 can have an inneighbour and an outneighbour at the
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same time. Let V1 be the set of vertices from V \V0 that have an outneighbour, and let
V2 := V \(V0∪V1). Thus, V = V0∪V1∪V2 (some of these sets might be empty), and
the subgraph induced on V1 ∪ V2 is a directed bipartite graph, whereas the subgraph
induced on V0 is a disjoint union of complete graphs with loops by conditions (i) and
(ii) of Theorem 7.31 and by MG = 1. Since OG ≤ 0, there is no edge from V0 to
V1 ∪ V2, and there is no edge from V2 to V0 by the definition of V2, but we may have
edges from V1 to V0.

Let (v1, v0) be such an edge (i.e., v1 ∈ V1 and v0 ∈ V0). If v′
0 is another vertex in

the strongly connected component of v0, then we must have the edge (v1, v
′
0). Indeed,

if this was not the case, then subgraph induced on {v1, v0, v′
0} would be isomorphic

to the graph of Proposition 5.9, and it has an exponential spectrum. (Note that the
spectrum of any induced subgraph provides a lower estimate of the spectrum of the
whole graph.) On the other hand, if v′

0 belongs to another nontrivial strongly connected
component, then the presence of the edge (v1, v

′
0) would give rise to an induced

subgraph isomorphic to that of Proposition 5.8, again contradicting our assumption
about the subexponential growth of the spectrum. Thus, we have proved that if a vertex
of V1 has outneighbours in V0, then these outneighbours form a nontrivial strongly
connected component.

Finally, if a vertex v1 ∈ V1 has an outneighbour v0 ∈ V0 and also an outneighbour
v2 ∈ V2, then the subgraph induced on {v1, v2, v0} is isomorphic to the graph of
Proposition 9.3, forcing again an exponential spectrum. Thus, some vertices of V1 have
outneighbours only in V0, while others have outneighbours only in V2. The former
vertices together with V0 form an associative graph (see Proposition 8.2), while the
latter vertices together with V2 form a directed bipartite graph. This proves that every
digraph with a subexponential associative spectrum belongs to cases (i) or (ii) of the
current theorem.

It only remains to prove that the spectrum of a directed bipartite graph with at least
one edge is constant 2. But this is easily done with the help of Theorem 7.31. All
conditions except for (iv) are satisfied trivially for all t, t ′ ∈ Bn with t �= t ′. Condition
(iv) gives 1 = PG < Ht,t ′ , which means that σn has two equivalence classes: {t} and
Bn \ {t}, where t = ((· · · ((x1x2)x3) · · · )xn−1)xn is the bracketing that corresponds
to the unique DFS tree of size n and height 1. ��

Remark 9.7 Theorem 9.6 implies that there are only two different bounded spectra
of graph algebras, namely constant 1 and constant 2. For arbitrary groupoids, all
sequences of the form (2, . . . , 2, 1, 1, . . . ) can occur as associative spectra, and there
are other bounded spectra (e.g., constant 3), too [1]. Theorem 9.6 also implies that
unbounded spectra of graph algebras grow exponentially, the smallest growth rate
being(αn). This is not true for arbitrary groupoids either: there exist groupoids with
polynomial spectra of arbitrary degrees [3].

10 Open problems and directions for further research

We conclude this paper with a few open problems and possible directions for further
research.
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1. Theorem 7.31 characterizes the graph varieties (in the sense of Pöschel [4]) defined
by bracketing identities. Natural questions about them arise. For example, can we
find generators for such graph varieties? Is a graph variety definable by a set of
bracketing identities definable by a finite set of bracketing identities, or even by a
single bracketing identity?

2. It follows from the characterization of graph varieties (see Pöschel [4]) that the
associative spectrum of a digraph G is bounded below by the spectrum of any
induced subgraph, any strong homomorphic image, and any direct power of G.
How is the associative spectrum affected by other graph constructions, such as
formation of graph minors?

3. Could the results on bracketing identities be adapted to other kinds of identities? A
case that looks similar and might be doable is that of identities in which each term
is linear, i.e., every variable occurs exactly once, but the order of variables is not
specified.

4. Let us call two graphs equivalent if all of their parameters (listed in the second
column of Table 1) coincide. By Theorem 7.31, the graph algebras of equivalent
graphs have the same (fine) associative spectrum. Is the converse true? If negative,
are there infinitely many equivalence classes of graphs with the same spectrum?

5. Find a canonical representative in each equivalence class of graphs that is in some
sense the simplest, smallest, or nicest. It would then suffice to study the spectra of
these graphs.

6. Is it true that for every graph G there exists a finite graph G ′ such that A(G) and
A(G ′) have the same associative spectrum?

7. Are there uncountably many different associative spectra of graph algebras? (A
positive answer to the previous question would give a negative answer to this one.)
The graph parameters are elements of N ∪ {∞,−∞} except for ωG , so it is only
the parameter ωG that may permit uncountably many equivalence classes.
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