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ABSTRACT 

Power system modelling affects decisions on over $450 billion worth of assets world-wide each year. 

While complex and computationally demanding models, when properly simplified a balance between 

accuracy and simulation time can be achieved. Solutions and results for this thoroughly studied 

problem tend to be rather case-specific, and the Portuguese system presents challenges that make 

existing approaches insufficient. To better understand this system and how its peculiarities can be used 

to reduce its modelling complexity, a model of the Portuguese electricity system using PLEXOS 

software was developed and used to test the impact of different clustering techniques on the model’s 

output results. We show that including natural hydro inflow in the clustering to find representative 

days for a system where hydro generation plays such a large role can improve model output accuracy. 

This is typically ignored in the literature. Additionally, we demonstrate that using data disregarding 

daylight saving time changes can have an impact on results. Finally, we indicate that intraday 

downsampling might have limited effect on modelling accuracy, and open the way for future work on 

weighting clustering input dimensions differently to improve accuracy of representative days. 
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1. INTRODUCTION 

The supply of electricity needs to meet demand for electricity almost precisely at every moment in 

time: that is the major uniqueness of Electricity Markets in comparison to all other markets. We need 

to fully understand this physical phenomenon to comprehend today’s market design. Furthermore, 

electricity is considered an essential commodity to the welfare of modern society, meaning that 

shortages and blackouts can have grave negative impacts. 

As the electricity sector evolved through the past century, so did the ideas around the role of the State 

in the market for electricity (Figueira, 2018; Hannah, 1979; Matos, Mendes, Faria, & Cruz, 2004). In the 

second half of the 20th Century the paradigm changed from the State being at the same time 

stakeholder, generator, transmitter, distributor, retailer, and (self)regulator to a more decentralised, 

dynamic, and competitive market with independent regulators (Fortunato et al., 2008). 

The Single European Act, signed in 1986, set the goals of liberalization of the parts of the energy 

markets that could be efficiently liberalised, and of integrating the separate European markets into a 

single market. Only the first goal has been mostly accomplished so far, as since July 2007 all consumers 

in the European Union (EU)1 are free to choose their energy provider for both electricity and natural 

gas, making it still relevant to study each market individually (Vasconcelos, 2019). 

Because of the markets’ size, the peculiarities of each of the islands, the lack of granular data for the 

islands, and the markets being physically separated, this study will only encompass the Portuguese 

mainland, referring only to the mainland when the Portuguese electricity market, system, and grid are 

referenced. 

 

Figure 1 – A. Diagram exemplifying a vertically integrated electricity market monopoly.                        
B. Diagram exemplifying a wholesale and retail competition electricity market. 

 
1 Except for some islands and new EU Member States. 
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Working up to downstream on the electricity market as it is shaped in Portugal nowadays (Figure 1.B) 

we start with the actual energy generation or production. The unbundling of the incumbent company 

(from Figure 1.A to Figure 1.B) and gradual liberalization of the sector was started in 1994 

(Vasconcelos, 2019). The electricity generation market is today a relatively free market, where any 

company can participate. However, as grid capacity is limited, new generation capacity cannot be 

connected to the grid at will. There are several ways to be granted access to the grid, with the most 

commonly used system being public auctions ran by the Transmission System Operator, Redes 

Energéticas Nacionais, with the supervision of the National Regulatory Authority, Entidade Reguladora 

dos Serviços Energéticos, emphasising the need for accurate system modelling in order to achieve 

optimal capacity installation and generation mix2.  

In Energy Economics studies, similar electricity generation facilities are usually grouped into generation 

types. Different generation types have distinct characteristics and so are used to meet different ends. 

Since supply needs to meet demand at all points in time, there has to be enough installed capacity of 

dispatchable electricity generation to cover peak net demand3. There are only a few hours in a year 

when demand reaches certain peaks, meaning that to meet these peaks there would need to be power 

plants built solely to run for a few hours a year. The decision to build these plants is based on the 

comparison of the Value of Lost Load (VoLL)4 with the average cost of these powerplants for the few 

hours they would run.  

Economically, the decision of which powerplant(s) to build depends on the combination of their fixed 

cost (FC) and short-run marginal cost (SRMC). Powerplants with a large FC and low SRMC will be built 

to meet baseload demand, i.e., to run for most hours in the year, while powerplants with low FC and 

high SRMC will be built to meet peak demand, running for less time. 

There are also strategic (e.g., fuel diversification), political (e.g., fuel dependency), environmental (e.g., 

emissions, noise, visual, landscape) and technology-related (e.g., dispatchability, capacity factor5) 

reasons to choose different generation technologies. Some can be translated into market-based 

approaches, as the case of emissions with the European Union Emissions Trading System (EU ETS). This 

cap and trade scheme introduced in the EU in 2013 sets a cap on emissions for each country that are 

auctioned for the countries’ larger polluting agents and can then be traded, forming a market price for 

emissions (European Comission, 2015). Other factors such as the low-risk high-cost chance of a nuclear 

disaster, or the dependency on fuel from other countries are more difficult to translate into figures.  

 

 
2 Generation mix is the combination of the different electricity generation types used to meet demand at 

a given time. 
3 Because, by definition, Intermittent Renewable Energy Sources (IRES) cannot be used at will, and it 

cannot be guaranteed that they will be producing at the moments of peak demand, the only way to ensure there 
are no blackouts at peak times is to have dispatchable electricity generators that cover demand net of renewable 
generation and imports at each point in time. 

4 VoLL is usually defined as the value attributed by consumers to unsupplied energy (Glowacki, 2016). 
5 Capacity factor is a measure of the overall usage rate of a powerplant. It is calculated as the actual 

generation of a powerplant in a given period over the total possible generation for that period (capacity times 
the number of hours in that period) (Morales Pedraza, 2019). 
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Figure 2 – Theoretical comparison of total cost and running time of fossil fuel and nuclear generators 
– screening curve. 

In Figure 2 we can see how different combinations of FC and SRMC lead to different build decisions 

depending on the running time predicted for a powerplant. The lowest curve at each point indicates 

the lowest cost technology for a powerplant that needs to run for that many hours in a year. In this 

example, if the running time for a certain capacity in a year is predicted to be higher than 0 and up to 

H1 then an open cycle gas turbine (OCGT) plant would be built because it has the lowest FC even 

though it has the highest SRMC; if between H1 and H2 then combined cycle gas turbine (CCGT); if 

between H2 and H3 then a coal plant; and if higher than H3 a nuclear powerplant would be built since 

it has the lowest SRMC even though the FCs are the highest. 

After the build decisions have been settled, there needs to be decided which units will be running at 

each timeframe (usually hourly). In a perfect competition scenario, the generation mix is formed by 

arranging the different generators in their merit order by SRMC (subject to technical constraints). 

Then, for the demand at a given point in time the market price should be the SRMC of the last 

generator in the merit order to be generating. In Figure 3 we can find an example of such merit order. 

In this example, and ignoring technical constraints, if demand equals D1, then all generators would be 

producing at full capacity except for OCGT that would be producing only enough electricity to meet 

what is left of demand. If in the next hour demand went down to D2, OCGT would stop generating, 

and CCGT would produce slightly less. 

The decision of which generation units to run will also settle the wholesale market price of electricity 

for that timeframe. In the example from Figure 3, the market price when generating D1 would be P1, 

the SRMC of OCGT, meaning that OCGT would be breaking even, and the rest of the generators would 

be making a profit or paying for the investments. If demand went down to D2 the market price would 

decrease to CCGT’s SRMC (P2). 
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Figure 3 – Example of generation merit order. 

In the real markets, there are many more generators and constraints such as ramp up/down costs, 

minimum generation levels, minimum down times, maintenance stops, subsidies (usually for 

renewables), and different market timeframes, making the price formation a much more complex 

process.  

This problem also gets less simple when considering renewable energy sources (RES). RES can be 

dispatchable, meaning that the timing of the electricity production can be controlled, or intermittent 

(IRES) when generation depends on the natural availability of a resource (although it is usually possible 

to curtail the generation). The most common examples of IRES are solar, wind and hydro run-of-river, 

where generation depends on solar radiation, wind and river flow, respectively, and the marginal cost 

is null. Dispatchable RES can have a set marginal cost, such as in the case of biomass or biogas 

generators where the marginal cost is linked to the cost of the (renewable) fuel burnt, or they can have 

an opportunity cost as it happens with hydro reservoir where the water available to generate is limited 

so it cannot be generating at all times even though the resource was not paid for. In the case of hydro 

pumped storage the marginal cost is a mix of the opportunity cost (because of the limited amount of 

water) and the cost of the energy used to pump the water upstream as a way to store energy. 

This market model for electricity generation then leads to a liberalised market where different 

timeframes lead to different prices given by a match between bids and offers. In Portugal, since 2001 

the market has been integrated with the Spanish one, forming Mercado Ibérico de Electricidade 

(MIBEL), however the two countries still remain as separate bidding-zones. Even though all electricity 

sold at MIBEL is the same, green generation can already be traded as a separate product6. 

 
6 No consistent and reliable green electricity demand data was found that could be introduced in the 

model. 
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The above-mentioned market characteristics need to be considered when modelling an electricity 

system. This can be done to a greater or lesser extent depending on the detail and complexity needed 

for the model. These characteristics need to be combined to the particular way each market is either 

set or evolving towards. 

The way electricity is generated and consumed is also in constant evolution. In Portugal, between 2016 

and 2020, there was a 74% increase in hydro pumped storage generation capacity, while hydro 

reservoir remained stable and hydro run-of-river actually decreased over 4% in generation capacity 

(ENTSO-E, 2021). This comes to aid the problem of generation time adequacy because pump storage 

is to this date the most efficient and green way to store energy at a large scale, providing better control 

over electricity generation, and reducing the volatility introduced by rapidly growing IRES, such as solar 

and wind.  

New vehicle-to-grid (V2G) solutions have been presented as a future option for energy storage by 

taking advantage of storage capacity that would exist anyway but is not being used for lack of storage 

management. V2G means electric vehicles charging timings being smartly managed, charging off-peak 

(valley filling) and consuming energy from the batteries during peak demand (peak shaving), providing 

grid flexibility to minimize demand peaks (Wagner, 2013). V2G solutions are already being tested in 

Portugal (Energias de Portugal, 2018; SGS, 2021). 

Active consumers’, commonly called prosumers for being both producers and consumers of electricity, 

tendency to grow can bring further variability to the power system, negatively affecting grid 

management (European Comission, 2019; Šajn, 2016; Vasconcelos, 2019). 

To this date, V2G and prosumers do not have enough impact in the Portuguese electricity system to 

have meaningful impact on today’s systems, nor is there readily available data on their behaviour in 

the system. Nevertheless, V2G, prosumers, green energy demand, and cross-zonal trades7 are all 

challenges that can be modelled and introduce complexity into the simulation. 

According to ENTSO-E (2021), which only includes units with net generation capacity equal to or 

greater than 1 Megawatt (MW), wind generation capacity in Portugal grew from 4617 MW in 2016 to 

5183 MW at the start of 2021 (12%). Even though solar generation installed capacity was much lower 

than wind’s in 2016 at 251 MW, it expanded at a much faster pace to 569 MW, increasing 127% over 

the same period. The more comprehensive data published by the national entity for energy (DGEG – 

Direção Geral de Energia e Geologia) show a smaller increase of wind (3%) and solar (105%) generation 

capacity over the same five-year period (Direção Geral de Energia e Geologia, 2021). Regardless of the 

source the conclusions are similar, wind generation is already a very representative part of Portugal’s 

electricity generation (about a quarter of total installed capacity), and solar generation has been 

growing significantly and is expected to keep that tendency at least in the near future (Prado, 2020). 

 
7 Electricity exchanges between different bidding-zones (e.g., between Portugal and Spain). 
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Figure 4 - Hydro generation capacity as a percentage of total installed capacity in European countries 
in 2021. Source: ENTSOE (2021). 

Figure 4 presents the hydro generation capacity as a percentage of total capacity in major EU power 

systems. It showcases a particularity of the Portuguese power system where hydro generation plays a 

very important role, representing over one third of total capacity, thus making modelling rather 

dependent on hydro availability. 

The International Energy Agency (2019) reports that in 2018 over $450 billion were invested globally 

in electricity generation capacity, of which more than half was on RES. These investment decisions 

affect not only everyone who consumes electricity, but also literally every living being on the planet 

since it deeply impacts resource usage and pollution. As of 2016 electricity and heating production 

accounted for more than 40% of global CO2 emissions (International Energy Agency, 2018). 

It is clear then that the electricity sector is an important and changing one. To make decisions in these 

areas we rely on the use of models. However, these models are large and complex, and we need to 

reduce complexity where possible. One way to do that is through representative days. 

In the remainder of this thesis we review the literature on power system modelling and their purpose, 

the selection of representative days and the measuring of their accuracy. We then describe how we 

built such model for the Portuguese electricity system, reduced its complexity, and measured the 

accuracy of said complexity reduction. 
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2. LITERATURE REVIEW 

Since the creation of the first energy system models by the International Energy Agency (IEA) and the 

International Institute for Applied Systems Analysis in the 1970s (Pfenninger, 2017) the energy systems 

have become much more complex and variable. Power system modelling has continued to evolve, 

allowing build and policy decisions to be reliably data driven.  

Power systems are only one category over a multitude of model types, varying in scope and aim, that 

have been used to different ends (Poncelet, 2018; Scott, 2021): 

• Integrated assessment models (IAMs) study long-term interdisciplinary problems of a global 

scope. Several authors (see e.g., Clarke et al., 2014; Moss et al., 2010) used IAMs to analyse 

policies for climate change mitigation. 

• Energy-economy models are used to study the interaction between an energy and an 

economic system. These are usually modelled at a national or regional level and with a time 

scope between 20 and 100 years. Messner & Schrattenholzer (2000) linked a macroeconomic 

model with a detailed energy supply model to integrate the influence of energy supply costs 

in macroeconomic production factors optimisation. 

• Energy-system planning models have their scope limited to the energy systems in particular, 

usually modelling the entire chain from extraction to final energy consumption in all major 

forms for a particular country or region over multiple decades. Götz, Blesl, Fahl, & Voß (2012) 

used these models to study how to set policy targets to reduce greenhouse gas emission across 

EU ETS and non-ETS sectors. 

• Power-system planning models’ scope is restricted to only the power system itself, with the 

upside of allowing more detailed representations of such complex models. These models can 

be further categorised: 

▪ Generation expansion planning (GEP) is used to understand which generation units 

should be installed or decommissioned to meet expect demand over a planning 

horizon. GEP usually ignores or greatly simplifies transmission costs. 

▪ Transmission expansion planning (TEP) aims to minimise transmission costs. 

▪ Combined generation and transmission expansion planning (CGTEP) takes into 

account both the need to plan installed capacity and its location, considering the 

transmission costs associated. 

Our model is framed as a power system planning model, in particular market monitoring of unit 

commitment, which needs to be taken into account by GEP models. For the remainder of this section 

we will detail how power system models in particular have been used, their complexity reduced, and 

their accuracy measured. 

Krajačić, Duić, & Carvalho (2011) used the H2RES model to perform system planning and present 

technical solutions for 100% RES electricity production scenarios in Portugal. The authors showed that 

a 100% RES solution favours hydro and wind power, with large pump storage hydro facilities to avoid 

unnecessary rejection of variable renewable generation and smooth net demand curves.  

Elliston, MacGill, & Diesendorf (2013) simulated the Australian power system to seek the least costly 

solutions for supplying the Australian National Electricity Market (NEM) with 100% RES electricity in 
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2030. The authors found that, depending on the discount rate and the future emission prices, going 

100% renewable could be a cheaper solution for the Australian NEM. 

Pillai & Bak-Jensen (2010) studied how increasing electric vehicle (EV) loads affects a typical Danish 

primary distribution network, both with controlled and uncontrolled charging modes. The study 

concluded that only a 10% (of total cars) integration of uncontrolled charging EVs is feasible, with a 

much larger integration to be possible with controlled charging. For this study the authors used a 

model of the power system of the Danish island of Bornholm. 

The first two above-mentioned examples emphasise the evermore recurring need to steer focus into 

RES when modelling power systems, as they are more difficult to model and predict due to intrinsic 

volatility and at the same time are growing in contribution to the systems. The third highlights the 

advantages of introducing V2G and prosumers to power system models. 

Simulating an electricity system over many years and correctly considering investment decisions, 

medium-term constraints, and financial incentives can prove computationally difficult, especially when 

needed to run thousands of times using Monte Carlo methods to estimate marginal costs (Booth, 1972; 

Mazumdar & Chrzan, 1995). There are 8760 hours in a non-leap year for which inputs and constraints 

need to be considered, both separately and taking into consideration the previous and following hours’ 

generation profile. A decision to generate at a given time is not independently taken due to 

opportunity costs, ramp up and ramp down costs, minimum generation levels, minimum up and down 

time, and other constraints.  

In order to account for some of the aforementioned chronological dependency, the most common 

aggregation for electricity demand data in the literature is representative days (Yeganefar, Amin-

Naseri, & Sheikh-El-Eslami, 2020). However, the methods to select these typical days in a way that 

maintains the essential variability for the models differ considerably (Kotzur, Markewitz, Robinius, & 

Stolten, 2018). Aggregating hourly year-long profiles into representative days or weeks can 

considerably reduce this massive computational requirement and, if properly achieved, maintain high 

accuracy while allowing for more and quicker simulations. Green, Staffell, & Vasilakos (2014) have 

shown that clustering year-long profiles into 6 to 10 representative days can increase the processing 

speed by a factor of over 100. 

Having established the value of accurately modelling electricity systems, and the need to reduce the 

complexity and computational cost of such systems, the next step is to consider how this complexity 

reduction has previously been undertaken. 

There are academic studies that look solely into clustering demand data (Hassan, Khosravi, Jaafar, & 

Raza, 2014), usually net of IRES (Sisternes & Webster, 2013; Yeganefar et al., 2020),  studies that cluster 

demand and wind generation separately (Green et al., 2014), and studies that consider load, wind, and 

solar generation as IRES become a considerable part of installed capacity (Merrick, 2016; 

Nahmmacher, Schmid, Hirth, & Knopf, 2016; Poncelet, Hoschle, Delarue, Virag, & Drhaeseleer, 2017). 

Studies have used other dimensions, usually to different ends.  

Several authors (see e.g., Merrick, 2016; Nahmmacher et al., 2016; Poncelet et al., 2017) have all 

clearly stated that, as IRES become an increasingly important part of energy systems, using net demand 

to find representative days tends to deeply underestimate of the variability introduced by IRES. These 
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studies emphasize the importance of including IRES along with demand on future works to find 

representative days for systems with significant IRES penetration. This means that, to select 

representative days, we should include each series individually rather than diluting them by netting 

demand. Furthermore, as markets evolve we should investigate which new dimensions can be further 

included to improve selection. 

Pina, Silva, & Ferrão (2011) developed new modelling methodologies using a typical weekday, 

Saturday, and Sunday for each season for the Portuguese island of São Miguel (Azores). Unlike our 

study, the aim of their research was to examine modelling techniques rather than clustering 

techniques, and to validate the study for the peculiar insular electricity system of São Miguel island. 

To the best of our knowledge, no studies on clustering for modelling only the Portuguese mainland 

electricity system have been published. 

To understand how accurate dimension reduction methods are we can compare and measure model 

input data and/or model output(s) (Kristiansen, Korpås, & Härtel, 2017). Härtel, Kristiansen, & Korpås 

(2017) have shown that the most accurate sampling technique when comparing the model input data 

will not necessarily yield the most accurate model output. On the one hand, assessing accuracy in 

terms of model input data can present a more generalisable conclusion. However, the more case-

specific approach of assessing accuracy in terms of model output can show how clustering actually 

does impact the end-goal of modelling. 

Studies have used both methods to compare sampling techniques applied to power system planning 

models. Within each method, the variables used to make the comparisons also differ.  

For measuring accuracy in terms of model input data Kotzur et al. (2018) used solar irradiation, 

temperature, electricity load, and wind profile, whereas Nahmmacher et al. (2016) compared the daily 

profiles of onshore wind, solar photovoltaic (PV), and electricity demand. 

Liu, Sioshansi, & Conejo (2018), Kristiansen et al (2017), and Scott, Carvalho, Botterud, & Silva (2019) 

analysed results using both methods. The first study compared wind, solar, and demand daily duration 

curves (input data) and investment decisions (model output). Kristiansen et al. (2017) compared load, 

onshore wind, offshore wind, solar, and hydro (input data) and operational cost performance (model 

output), showing that the ranking of sampling techniques was not the same with both comparison 

methods. Scott et al. (2019) analysed the normalised root mean square deviation (NRMSD) of duration 

curves of demand, wind, solar and ramp (model inputs), and also compared expansion model results. 

However, measuring the dimension reduction techniques’ accuracy was found most commonly in 

terms of power system planning model outputs. Green et al. (2014) used electricity cost, carbon 

intensity, annual output and revenue, and number of plant start-ups and outages. Teichgraeber & 

Brandt (2019) used problem specific objective functions (battery charge/discharge optimization and 

gas turbine scheduling). Pfenninger (2017) compared deployed capacity of key technologies and the 

levelized cost of electricity. Yeganefar et al. (2020) used new capacity added to the generation fleet 

(long-term planning modelling). Sisternes & Webster (2013) used generators’ capacity and 

commitment. Assessing each model output individually allows a very comprehensive analysis of the 

results, but it also makes them difficult to process and analyse. Instead, Merrick (2016) used a single 

comparison metric composed of several model outputs. This solution makes it much simpler to 
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compare results but hides how clustering variations affect different model outputs individually, and is 

highly dependent on the relevance of the combination of outputs used.  

The tendency seems to be putting more focus on assessing if a clustering technique can provide 

accurate model results. Nevertheless, always bearing in mind the results are more case specific. This 

emphasises the importance of building an accurate power system model to compare on, that still is 

general enough to allow extrapolating results. 

Previous studies not only vary in the way the model is built and assessed, but also in the clustering 

techniques used. 

Instead of using complex clustering methods, one could consider simply grouping hours with (almost) 

the same demand, however it has been shown that such does not occur frequently within the same 

year. According to Merrick (2016), with less than 40 clusters one can capture the vast majority of the 

variance of a year’s 8760 hours of demand. However, if also including a wind and a solar profile, 

approximately 1000 hours are required to capture similarly low variance. Even though this is already a 

considerable downsize from the original 8760 hours, it is not enough of a computation reduction for 

some studies. Furthermore, this would assume there are no constraints that span across time, i.e., that 

hours could be treated as chronologically independent. As described in section 1, the models should 

consider the hourly sequencies. For that reason most studies take into account constraints across time 

by using representative days (or weeks), assuming chronological independency between days (or 

weeks). In this case, 20 days out of 365 in a year would be enough to have a low level of variance if 

only gross demand was to be modelled, rising to 300 days if considering wind and solar profiles. The 

results are even worse when aggregating weekly, as no two identical weeks were found in Merrick’s 

study when considering load and availability of wind and solar (Merrick, 2016). 

Representative load curves are typical daily curves representing a group of load profiles with analogous 

demand patterns. Introduced by Balachandra & Chandru (1999), were later used by Green et al. (2014) 

to demonstrate how complete year-long profiles of the British electricity system can be processed 

about 60 times faster using only a set of 6 to 10 representative hours and still yield accurate results for 

estimation of average and marginal cost of electricity. However, their results when modelling rare 

events such as plant starts, outages and peak requirements were shown to be much less accurate, with 

clustering results grossly underestimating them. This comes to show that approaches that assume 

chronological independency become less accurate and thus less relevant with the increase of IRES. 

In these studies the k-means algorithm (or a variant of it) was used to cluster the data set as a whole. 

However, the hardest parts to accurately model are in both ends of the demand spectrum, i.e., the 

high peaks and the low plunges, due to the nature of marginal costs of the generation mix.  

Pineda & Morales (2018) used a variant of k-means by choosing a medoid only after performing all k-

means iterations in order to reduce smoothing results. 

Liu et al. (2018) and Teichgraeber & Brandt (2019) used dynamic time warping (DTW) distance as a 

shape-based clustering method to find representative days. Introduced in Sakoe & Chiba (1971, 1978) 

applied to speech recognition, DTW finds optimal alignment between two sequential sets of data, 

having been demonstrated to have meaningful applications with time series (Petitjean, Ketterlin, & 

Gançarski, 2011).  
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Pfenninger (2017) used various combinations of three different methods to increase the 

computational tractability of high-resolution planning model of Great Britain’s electricity system with 

25 years of simulated wind and solar PV generation: downsampling, clustering, and heuristics. This 

study differs from most others for including a longer than usual dataset, combining methods that 

tackle different aspects of the problem, and comparing simulations of the same model with different 

scenarios of share of IRES in the generation mix. Downsampling is the simplest of the three methods, 

consisting of reducing the resolution of the whole series (e.g., from hourly to 3-hourly). However 

simple a method, downsampling tended to worsen results when modelling with a high share of 

renewables, as high variability usually requires high time resolution to be correctly modelled. To 

cluster, the author used both k-means and hierarchical approaches, describing that the sum of squared 

error tended to flatten off between 10 and 15 clusters. The third method used, heuristic selection, 

refers to selecting days or weeks based on pre-defined criteria such as the week containing the 

maximum and minimum daily average of a time series. When combined with clustering, heuristic 

selection allows to select extreme days that would otherwise be flattened out even though they can 

be very important to model. The author concluded that approaches including heuristic methods 

tended to yield stabler results and can therefore be preferable for models with a high share of IRES.  

From this literature we conclude that power system modelling has an important economic impact, and 

reducing its complexity is a pertinent problem that is becoming increasingly more difficult as markets 

evolve into more volatile scenarios (e.g., with more IRES). The most widely used approach to this 

problem is to select representative days rather than hours due to chronological dependencies. To 

select these days we should cluster all IRES individually and not use net demand, and to assess their 

accuracy consider the effect on model outputs rather than inputs. However, from the literature it is 

not clear how a hydro dominated system like Portugal, with the associated additional weather 

dependant variables, should be modelled. 
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3. RESEARCH QUESTIONS AND OBJECTIVES 

Various studies, namely the ones mentioned in Section 2, have explored multiple methods to reduce 

the complexity and computational requirements of electricity system modelling, and to evaluate the 

accuracy of said methods. 

This research aims to better understand how techniques to reduce modelling complexity can be 

efficiently applied to the Portuguese power system in particular. We sought to adapt and combine 

some of the techniques mentioned in the previous section to the specific characteristics of the 

Portuguese system. We studied the effects of different clustering techniques using three different 

methods to compare the accuracy of the clustering, setting out to address the following questions: 

Q1: How many representative days are needed to effectively model a year of the Portuguese 

power system? 

The number of representative days needed to accurately model a power system directly affects how 

much of the modelling costs and computational demand can be reduced. As the number of 

representative days increases, so should the modelling accuracy. However, this tends to happen at 

increasingly smaller improvement rates, providing a trade-off between modelling costs and accuracy. 

Q2: Is the clustering accuracy affected by using input data that ignore daylight saving time 

(DST) change (time seasonality)? 

This question in particular was not found in any of the literature reviewed. Time series data in UTC 

(Coordinated Universal Time) ignores daylight saving time changes and is commonly used for time 

series datasets since it avoids having an hour with missing data and another with two records each 

year. When using a dataset that considers DST, such as CET (Central European Time), those two hours 

a year need to be fixed. However, people tend to have a schedule that takes the DST into consideration, 

meaning that the influences on electricity demand profiles from people’s quotidian activities tend to 

be always at the same CET time, but not UTC. For example, if a factory starts working at 9 a.m. CET, it 

will provoke an increase in demand at 9 a.m. CET the whole year, but at 9 a.m. UTC half of the year 

and 10 a.m. UTC the other half. However, as this does not impact the profiles of IRES, the effects of 

time seasonality on the clustering might change when including IRES series. 

Q3: Does the unusual prevalence of hydro generation capacity of the Portuguese system mean 

that hydro generation data can improve the clustering accuracy? 

Even though it is becoming increasingly recurrent to include wind and solar data in the clustering for 

complexity reduction studies (see section 2), hydro natural inflow tends to be left out of the clustering. 

Because, contrarily to most systems studied in the literature reviewed, over a third of the installed 

capacity in Portugal is hydro (see Figure 4), this can be a meaningful dimension to include when 

clustering for the Portuguese system. 

Q4: Should all input data dimensions be given the same weight when clustering? 

In section 2 we have described various approaches to clustering representative days for power system 

modelling, with studies including different model input data in their clustering, and with that having 

different results. Some dimensions are more volatile between days (see section 4.2) and harder to 
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represent (see section 4.3), but if these are not more important for the model then including them 

could maximise representativeness of unimportant series. However, incorporating a certain dimension 

into the clustering does not need to be a zero-sum game. We developed a new approach and studied 

how weighting differently the various dimensions in the clustering affects the model’s accuracy. For 

example, we are introducing hydro natural inflow. Would this be given the same weight as what we 

were already considering? Hydro is very important for generation capacity but maybe less volatile. Can 

we understand how the volatility, correlation with demand, and capacity of that type of generation 

affect the weighting given to that dimension? 

Q5: Do intraday aggregations (downsampling) have a significant impact on the model’s 

accuracy when combined with other techniques? 

The number of representative days can only be reduced up to a certain point before accuracy starts 

dropping drastically. However, a model’s complexity can also be reduced with intraday aggregations, 

such as downsampling. Pfenninger (2017) showed that downsampling can worsen results when 

clustering with high shares of renewables. However, the major renewables in Portugal are hydro and 

wind, which present much less intraday variability than for example solar (see section 4.2). 

Furthermore, we intend to combine downsampling with the previously described weighting technique.  

In order to answer these questions we started by collecting, analysing, and preprocessing the data. We 

then constructed and benchmarked a model of the Portuguese electricity system, and developed both 

a weighting and a downsampling approach to subsequently cluster the data (with and without these 

two approaches). Finally, recursively ran the model with the clustered data, extracted and compared 

the results. 
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4. METHODOLOGY 

In this section we describe the overall methodology used for this study. It starts with collecting the 

data that is then used to create a working model of the Portuguese electricity system (section 4.1). 

Then we analysed the model input data to better understand how it behaves in order to efficiently 

reduce its complexity (section 4.2). Afterwards the data was preprocessed using the techniques 

developed for this study (section 4.3) before being clustered (section 4.4). Finally, we had to develop 

metrics to effectively measure the accuracy of the previously applied complexity reduction techniques, 

comparing model results with the ones of the original model (section 4.5). 

 

Figure 5 – Overview of process steps. 

Figure 5 presents an overview of the process steps that had to be repeated for each different 

combination of weighting, downsampling, time seasonality (CET/UTC), and number of clusters. This 

was a rather time-consuming task, specially setting up the model with the different clustered input 

data, and extracting and comparing the results. 

In the remainder of this section we outline each of these tasks in detail. 

4.1. DATA COLLECTION AND ELECTRICITY MARKET MODEL DEVELOPMENT 

The main objective of the modelling was to develop a representation of the Portuguese electricity 

system in order to apply already developed clustering techniques and also to explore new ways to 

aggregate intra-annual temporal variability of electricity demand data along with wind, solar and hydro 

availability. Thus, studying how different clustering algorithms and different partition sizes affect the 

accuracy of simulations on the Portuguese electricity system. The intention is to further understand 

which variables of the system can be accurately simulated taking only a fraction of the original 

simulation time and what methods can be used to improve this accuracy. 

A simplified model of the Portuguese electricity system was developed using PLEXOS market 

simulation software. PLEXOS is a problem-solving engine, providing a single integrated hub for multiple 

systems and allowing modelling options from very simple to intricate and complex systems. PLEXOS 

translates the model runs into a series of linear-programming problems that then need a solver to be 

optimised. The solver package used for this study was the open-source GNU Linear Programming Kit8. 

 
8 The model was created and ran on a laptop running with Windows 10 Pro 64bits with an Intel® Core™ 

i7-8550U CPU @ 1.80GHz processor and 16GB RAM. 
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The ultimate goal of this model was not to replicate the real system in the most complete and factual 

way, but rather to make it a working practical representation of the system, allowing the study of how 

reducing input data affects the model’s outputs.  

Portugal was modelled as a single region, assuming it to be as an isolated copper plate with no 

transmission system constraints, neglectable transmission losses and no cross-zonal trades. 

Three groups of generation types were considered:  

• combustion generators: fossil hard coal, fossil gas, and biomass9; 

• dispatchable renewables: hydro pumped storage, and hydro reservoir; 

• intermittent renewables: solar, wind, and hydro run-of-river. 

The generation capacity per unit type was replicated from European Network of Transmission System 

Operators for Electricity (ENTSO-E) Transparency Platform (TP) data (ENTSO-E, 2021). However, 

because the aim of this study was not to understand which generators are specifically dispatched, 

clustered unit commitment (CUC)10 was used so that all different generators of the same type were 

grouped into an average one, having as many of these units as in the real system, and sticking to the 

real total maximum generation capacity described in TP. This meant that transmission system costs 

could also be disregarded for the purpose of this study. Since specific generation efficiency (heat rate) 

data was not readily and reliably available and fuel prices tend to be rather volatile, we considered 

standard and constant industry values for these variables. 

For fossil fuelled generators, emission costs were implied in fuel costs instead of modelling emission 

costs separately, meaning that emission costs were considered constant along with fuel prices. 

The model was developed for 5 years (2016-2020), taking in hourly data from ENTSO-E (2021) for 

Portuguese load11, and solar, wind and hydro run-of-river generation. 

According to ENTSO-E’s TP data, hydro generation capacity represents over a third of Portugal’s total 

capacity (see Figure 4). Hydro (with its subtypes of generation) has very particular characteristics, and 

misrepresenting it in a system where it plays such a large role can deeply affect the model’s 

performance. In order to more accurately simulate hydro generation, hourly historical generation 

values from run-of-river units taken from TP were used as a proxy to natural inflow. For reservoir 

generators, since their generation can be controlled up to a certain point, natural inflow had to be 

calculated as hourly generation minus the hourly average of the difference between the week’s final 

 
9 Biomass is considered a renewable energy source in the European Union assuming its fuel’s origin is 

guaranteed to be sustainable. For the purpose of this study all biomass powerplants were considered equal in 
efficiency and fuel costs, rending irrelevant the fuel’s source to the study’s outcome. Furthermore, biomass was 
grouped into the combustion generators’ group rather than dispatchable renewables’ because of modelling 
similarity when disregarding costs of emissions, such as the case. See EU’s biomass definition and sustainability 
criteria at: https://ec.europa.eu/energy/topics/renewable-energy/biomass_en 

10 CUC consists of grouping identical or similar powerplants to reduce the model’s complexity by turning 
binary commitment variables of all plants within a group into a single integer variable. CUC has been shown to 
introduce very little error into power system models while reducing the computational cost, although grouping 
nonidentical generation units can increase the error (Meus, Poncelet, & Delarue, 2018). 

11 We used load and demand interchangeably since transmission losses were not modelled. 

https://ec.europa.eu/energy/topics/renewable-energy/biomass_en
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and initial stored energy12 split between pumped hydro and hydro reservoir according to their relative 

generation capacity. For hydro pumped storage, natural inflow was calculated similarly to hydro 

reservoir’s, plus a deduction of the pumped energy weighted by the pump efficiency, set at 75% as per 

industry standards. Hydro pumped storage and hydro reservoir’s storage capacity were defined 

separately, and the maximum storage in historic data for the four years was split by the two types of 

generators according to their relative generation capacity. 

Hydro pumped storage was the only modelled way to store generated energy for later consumption. 

This way the model should pump water upstream when prices are low enough to justify the 25% 

energy loss and generate when prices are higher. 

In practical terms this means that the model has three intermittent generators with zero marginal cost: 

solar, wind and hydro run-of-river; a dispatchable zero marginal cost generator: hydro reservoir; a 

storage facility and dispatchable generator at either no marginal cost (from natural inflow) or at a 

marginal cost of the pumped energy divided by the pumping efficiency: hydro pumped storage; and 

three dispatchable combustion generators at three different marginal prices: fossil hard coal (22.5€/ 

Megawatt-hour) (MWh), biomass (48€/MWh), and fossil gas (64€/MWh) (see Table 1). These last three 

tend to represent what is known as baseload, an intermediate load step, and peak load prices, 

respectively. 

The lack of data found on specifications of the Portuguese electricity market was a recurring problem, 

managed by making assumptions based on general benchmark values for the global markets. 

The creation of a central provision of input data for modelling has been suggested by Wiese et al. 

(2018). In this publication the authors describe the benefits of open source centralised and harmonised 

energy modelling data. ENTSO-E’s TP, which is the main data source of our study, was shown to be a 

great step towards this ideal situation, even though it still lacks detailed metadata, and format and 

source harmonisation. These were some of the constraints we faced to find and process the necessary 

data. 

Prices and technical parameters were sourced as follows. The average operating heat rates of hard 

coal, natural gas and biomass power plants were derived based on TYNDP  (2018), Open Power System 

Data (2017), and U.S. Energy Information Administration (2018). The price of natural gas was assumed 

to be approximately the non-household price declared for Portugal by Eurostat (2018). The price of 

coal was taken as €/tonne from Brito & Villalobos (2018) and converted to €/Gigajoule (GJ) at the rate 

of 1 tonne of coal equivalent equalling 29,3076 GJ. The price of biomass varies significantly between 

powerplants and depends on particular deals done with different suppliers, therefore the price of 

biomass was assumed based on knowledge from power plants operating with this source. The pumping 

efficiency of hydro power plants was established as an industry standard of 75% from Open Power 

System Data (2017). The minimum stable capacity was inferred from the calculations in TYNDP (2018) 

for hard coal and natural gas. Due to lack of conclusive data, the minimum stable capacity for hydro, 

biomass and wind power plants was considered to be 20% of maximum capacity, whereas solar was 

set to have no minimum stable capacity due to the technology’s nature. 

 
12 TP’s data on hydro storage is represented weekly and measured as potential energy rather than water 

volume. It is presented together for hydro pumped storage and hydro reservoir. 
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Table 1 - Combustion generation costs and properties 

 
Fuel price 

(€/GJ) 

Heat rate 

(GJ/MWh) 

Electricity 

cost 

(€/MWh) 

Efficiency (%) 

Minimum stable 

capacity (% of 

max) 

Natural Gas 8 8 64 45% 35% 

Hard Coal 2.5 9 22.5 40% 43% 

Biomass 4 12 48 30% 20% 

 

The possibility of wind turbines being curtailed was disregarded since it usually takes place due to 

energy imbalances or network constraints, neither being the object of this study. Furthermore, no 

feed-in tariffs or minimum running times were considered, and so no negative prices were expected 

to be observed. 

Once all the data was collected to represent the Portuguese system and a PLEXOS model created with 

this data, we tested the validity of the model. To make sure the model was representative of the actual 

Portuguese market we ran it and compared prices and generation to the actual ones, fine-tuning fuel 

prices and storage capacity in order to make it as reliable as possible. The final model showed average 

hourly prices similar to the average Portuguese spot prices (OMIE, 2021) (see Figure 6), and coal, gas 

and biomass generation volumes in line with the actual ones (ENTSO-E, 2021) (see Figure 7). 

 

Figure 6 – Comparison between yearly average PLEXOS model price and OMIE Spot prices for 
Portugal (OMIE, 2021). 
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Figure 7 – Comparison between yearly total generation of biomass, gas, and coal from PLEXOS model 
and TP’s actual generation. 

4.2. DATA EXPLORATORY ANALYSIS 

We then analysed the raw model input datasets to better understand their behaviour and the need 

for preprocessing. Each of the dimensions that comprise the dataset have their own specific yearly and 

daily profiles. 

 

Figure 8 – Correlation matrix between the five-year hourly series of load, solar, wind, and the natural 
inflow of hydro run-of-river, pumped storage, and reservoir. 
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Figure 8 presents the correlation matrix between each of the six five-year hourly input series: load, 

solar, wind, and the natural inflow for hydro run-of-river, pumped storage, and reservoir. It shows load 

to have some positive correlation with solar generation and even more with the three natural inflows. 

Solar and wind generation have some negative correlation, and both have close to no correlation with 

the natural inflows. The natural inflows are highly positively correlated within themselves, which was 

to be expected by both their similar nature and way they were calculated (portrayed in detail in the 

previous section). 

The lack of correlation between load, solar, and wind depicts a difficulty when trying to represent all 

the series in a limited number of days. In the remainder of this section we analyse the series’ profiles, 

explaining their patterns and how they differ. 

 

Figure 9 – Monthly total GWh of Load, Solar, Wind, and Hydro Run-of-River by year (2016-2020) 

Figure 9 presents load, solar, wind, and hydro run-of-river yearly profiles as monthly total Gigawatt-

hour (GWh) for each of the five years included in the study. From this frame of graphics we can analyse 

the overall profiles of each of the dimensions, and also the specific behaviour of each dimension in 

each year in Portugal. 

Load has little seasonality, being slightly higher during winter months, despite the Portuguese winter 

not being considered a severe one compared to its summer, probably because of how poorly prepared 

Portuguese houses are for colder temperatures (Gouveia & Palma, 2021). The cold spell felt 

throughout Europe in late February to March 2018 (Copernicus, 2018) led to a peak demand month in 

March. Between April and June 2020, as the Covid pandemic hit, load faced a considerable plunge, 

having reached a 16-year low in April (Supiro, 2020). 

Solar’s average yearly profile shows a clear peak of generation during summer months and a plunge in 

winter months, with a smooth transition between them. From one year to the other the generation 
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tends to be rather stable, and the increase in 2019 and again in 2020 are due to new generation 

capacity being built (as described in section 1) rather than any weather abnormality. 

Wind presents an opposite yearly profile to solar, albeit not as pronounced, with the winters being 

windier than the summers. During the depicted years in particular, 2018 had a low wind summer, and 

there were wind generation peaks in March 2018 and November 2019. 

Natural inflow, mostly encompassed by rain, is represented by the hydro run-of-river profile13. Similarly 

to wind generation, it tends it be higher during winter and also spring whilst lower in the summers. 

However, this is the dimension with the largest inter-annual variability, being largely influenced by 

periods of drenches and droughts. Water availability was high in 2016 up until May, whilst 2017 was a 

very dry year (Lusa, 2017). This drought ended in March 2018, which was the second rainiest March in 

Portugal in 87 years (Ferreira, 2018). This was followed by a dry 2019 up until November, having a very 

rainy December following suit to the start of 2020. Extreme weather events caused by climate change 

(Stott, 2016) are an ever more recurring problem, introducing difficulties when modelling power 

systems by increasing volatility and uncertainty. 

 

Figure 10 – Hourly average MWh daily profile in CET by month for load, solar, wind, and hydro run-
of-river, average of 2016-2020. 

Figure 10 presents the daily profiles of each of the four dimensions described in Figure 9, with the 

average MWh for each hour of the day, with a monthly detail (same months of different years 

averaged). 

 
13 Because of the way natural inflow for hydro pumped storage and hydro reservoirs was obtained as 

described in section 4.1, their profiles are very similar to hydro run-of-rivers, albeit with different magnitudes, as 
portrayed in Figure 8. 
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Load tends to peak around the start and end of the workday, with clear off-peak hours during the 

night. Winter’s after-work peaks tend to be higher as heating systems are turned on, and summer 

curves tend to stagnate during working hours, as cooling systems during the hottest hours increase 

demand. 

Solar electricity generation profile mimics the Sun’s relative movement in the sky, being higher and 

out for longer during the summer, and lower and for a shorter period in the winter.  

Wind is usually rather stable within each day, tending to slightly slow down around the warmest hours 

of the day. Once again it shows that warmer months are usually less windy. 

Natural hydro inflow is usually higher during mornings and evenings, with the largest differentiation 

factor still being the time of the year, with much more hydro availability during the winter and spring. 

From this we conclude that whereas representativeness of load and wind needs to focus more on 

intraday variance, for solar and hydro natural inflow the emphasis should be more on seasonality.  

 

Figure 11 – Hourly average load MWh by weekday in CET, 2016-2020 Portugal. 

As illustrated in Figure 11, load daily profile is also dependent on the weekday, being lower on 

weekends and peaking later in these mornings. This is not the case for other series, which means that 

focussing the clustering less on other dimensions besides just load should lead to less segregation 

between weekdays. This implies that to model demand, representative days need to account not just 

intraday and seasonal variances, but also intraweek ones. 

4.3. DATA PREPROCESSING 

Having understood how our input datasets behave, we then have to process them for the clustering. 

Separate standardization for each of the inputs (e.g., load, wind and solar) helps reducing the weight 

of the more stochastic wind series in the clustering algorithms, which presents much larger variations 
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(i.e., point’s distance) than load or solar, even though it is not necessarily more important to the 

model14. 

 

Figure 12 – Standardised and Non-Standardised Load, Solar, and Wind data clustered together using 
k-means with 4 clusters for 2016. 

Figure 12 shows an example of how not standardizing the data can affect clustering results. It presents 

the results of the same k-means clustering into four clusters of 24-hour profiles of load, solar and wind, 

with the same input data preprocessed differently, providing a clear view on how the clustering effort 

is exogenously allocated when the data had been standardised by dimension (top row) compared to 

when the clustered data had not been standardised (bottom row). In Figure 12 line charts of the top 

row the load profiles were clustered into days with high, two medium (one with after working hours 

peak) and low demand, the solar profiles into days with more peak production and more hours of 

generation (summer-like profiles) and  two days with less hours of production (winter-like profiles, one 

cloudier than the other), and the wind profiles were mostly separated into two groups (windy and non-

windy days). On the other hand, in the bottom row load profiles were clustered only into high and low 

demand days, solar had much less clear winter/summer separation with mostly just a cloudier day, 

and wind was clustered into four visually different profiles. This shows that not standardizing the input 

data can lead to a larger focus on wind since it has more inter-day variability then the other dimensions. 

As the original data comes from a reliable source and has no missing values15, it is predicted that no 

outlier was produced by poor data quality. The outliers seen in Figure 13 are in fact an important aspect 

of the model input, especially the ones that represent hours of high net demand that will lead to 

blackouts if there is not enough installed capacity. 

 
14 This hypothesis was tested by weighting the different dimensions as described in Section 4.4 
15 Except for the daylight saving time changes in the CET datasets, where the two hours were averaged. 
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Since we intended to maintain the data’s original shape and did not treat outliers, standardization was 

favoured over Max-Min Normalization (Bhandari, 2020). 

The result was a data table with 144 columns which were the concatenation of the 24 hours in a day 

for each of the 6 dimensions, and as many rows as there were days for each of the years separately. 

 

Figure 13 – Boxplots of load, solar, wind, and hydro run-of-river input datasets and of load net of 
solar, wind, and run-of-river. 

4.4. CLUSTERING 

After the raw data for hourly load, solar generation, wind generation, hydro run-of-river generation, 

hydro pumped storage natural inflow, and hydro reservoir natural inflow were preprocessed, different 

clustering techniques were tried out and tested. 

When clustering with k-means, the resulting centroid is an average value of input points, whereas with 

k-medoids we get an actual day as output. Because of this, k-means tends to overly smooth the data 

in a way that can make it unrealistic when examining intertemporal constraints in the modelled 

system. Thus, preventing the clustering from capturing the actual variability of the system. 

Also bearing in mind that one of the goals was to cluster with multiple combinations of the six input 

data dimensions (load, solar, wind, hydro run-of-river, hydro pumped storage, and hydro reservoir) we 

opted to use k-medoids with Euclidean distance to cluster the data. This way ensuring we could use 

the medoids data of the same day for the dimensions that were not being used for the clustering. For 

example, when clustering only with load, solar and wind data, the data for the three hydro dimensions 

would be picked from each medoid’s reference day. Others such as Heuberger, Staffell, Shah, & Dowell 

(2017) and Pineda & Morales (2018)have opted to cluster using k-means and after all iterations use 

the closest points to the centroids as medoids to avoid smoothing effects. 

As it was shown in section 2, the most common procedure in similar studies is to either only use 

demand data or to also include solar and wind generation, with a tendency to include IRES as their 

contribution to the electricity systems increases. Since the largest renewable energy source in Portugal 
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is hydro, we have decided to test clustering with load, solar, and wind (from here onwards referred to 

as clustering with 3 dimensions), to test with also intermittent hydro (adding hydro run-of-river to 

cluster with 4 dimensions), and finally to include the dispatchable hydro by adding the natural inflow 

of hydro pumped storage and hydro reservoir (clustering with 6 dimensions). All data was taken in 

hourly, except for the calculated natural inflow for hydro pumped storage and reservoir, which was 

weekly. In order to feed the model with these last two dimensions and still run it with hourly 

granularity, the weekly values were taken as an hourly average for all hours of each week. 

Using the three hydro natural inflow data sets as separate dimensions could mean overly focusing on 

hydro data and not add much information to the clustering given that the three series are highly 

correlated (Figure 8). In order to understand which series contribute the most to the clustering without 

ruling any of them out, we have tested clustering with different weights for each dimension. Because 

the clustering used the Euclidean distance, the weighting was performed by multiplying the 

standardised values for each dimension by the square root of the weight. In practical terms, if the 

weights of all dimensions are the same there is no weighting, if the weight of a dimension is zero it is 

not being considered for the clustering, and if the weight of a dimension is 2 it is the same as including 

that dimension two times in the Euclidean distance (see demonstration in the annexes – section 9). 

As the number of representative days can only be reduced to a certain amount while maintaining 

reasonable representativeness, we have also attempted to combine it with reducing intraday 

dimensionality, as suggested by Pfenninger (2017). This downsampling was achieved by averaging 

consecutive hours, easing the 24h different daily hours to 12, 8, 6, 4, 2, and 1 different one(s).16 

Standardization and weighting were performed as follows: 

√𝑤 ×
𝑥 − 𝜇

𝜎
 

Where 𝑥 is the input hourly value (already downsampled if that is the case), 𝜇 is the average of the set 

of 𝑥’s hour and dimension, 𝜎 is the standard deviation of the set of 𝑥’s hour and dimension, and 𝑤 is 

the weight given to 𝑥’s dimension. When downsampling was applied, 𝑥 would be the average value of 

the intraday aggregated hours for 𝑥’s dimension and day. 

To perform and pipeline these tasks, a python script was developed, using the scikit-learn KMedoids 

package (scikit-learn, 2019) for clustering. 

In an attempt to improve the efficiency of the clustering, parallelisation of the processing was 

introduced into the script using a multiprocessing python package. However, this package proved 

incompatible with the combination of the environment used to develop the scripts (Spyder for 

Windows) and modular programming, used to ensure code consistency and homogeneous 

maintenance of the scripts. This parallelisation strategy was dropped as it did not provide much added 

value to the study, since the recursive clustering was a minor part of the consumption of processing 

time and capacity, with the majority of it being used to take the clustered data and transform it into a 

format that the PLEXOS model could feed from and then extract and compare the outputs. 

 
16 Since the granularity of the natural inflow for hydro pumped storage and hydro reservoir is weekly (all 

daily values within a week are the same average ones due to raw data restrictions), there is no impact in changing 
the data granularity of these two dimensions. 
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4.5. ASSESSMENT OF CLUSTERING APPROACHES 

In section 2 we have detailed how different comparison metrics have been used in previous studies, 

and the meaningfulness of their results. In this research we aimed not to understand how accurate our 

clustering was, but rather how representative in the model it was. This meant that instead of using 

metrics that compare the clustering, e.g., Euclidean distance between the original dataset and the 

cluster centre, more complex model output comparison metrics had to be devised. 

The NRMSD of three comparison metrics was used to assess and compare the accuracy of each model 

run: hourly price duration curve, yearly generation by unit type, and yearly total generation cost. 

NRMSD for each of the comparison metrics was calculated as follows: 

√
∑ (𝑥𝑖𝑐 − 𝑥𝑖𝑜)

2𝑛
𝑖=1

𝑛
∑ 𝑥𝑖𝑜
𝑛
𝑖=1
𝑛

 

Where 𝑥𝑖𝑜 is the 𝑖 -th value output of the original model run, 𝑥𝑖𝑐 is the 𝑖-th value output of the clustered 

model run, and 𝑛 is the number of data points of the calculated comparison metric. 

The hourly price duration curve is the price profile ordered descendant. It compares how well the 

model predicted the amount of time a certain market price was matched. This metric had 43848 data 

points17 from each model run. 

The yearly generation by unit type describes how much each of the 8 different generation unit types18 

produced in each year. This metric compares not only the total amounts generated but also how it was 

distributed between the different units. The metric had 40 data points19 from each model run. 

The third and last comparison metric - yearly generation cost - represents the total wholesale 

generation cost of the entire system for each of the five years (meaning 5 data points from each model 

run). We have also used this metric to understand how the NRMSD is distributed between the five 

years of the study, i.e., which years were more or less difficult to accurately cluster according to this 

metric. 

We have decided to use these metrics because they represent key outputs for models to replicate. The 

above-mentioned metrics present an overview of price formation, unit commitment, and system costs, 

respectively. 

We have also experimented clustering each dimension separately and then using the combinations of 

clusters of the various dimensions as the medoids, however this method proved to be both inefficient 

and unscalable. 

Consecutively running the model with differently clustered data, extracting the results and comparing 

them was a rather laborious task. There were infinite dimension-weighting combinations that could 

be tested, along with downsampling and time seasonality. This had to be performed at a large-enough 

scale to have a decent variety of combinations to compare. The comparison would still be meaningful 

 
17 365 days times 5 years (plus two days for the two non-leap years of 2016 and 2020) times 24h. 
18 Biomass, coal, gas, hydro pumped storage, hydro reservoir, hydro run-of-river, solar, and wind. 
19 8 unit types times 5 years. 
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even with much less comparison points if we used a set of k clusters that showed some return and 

tended to not be very volatile. So, we decided to use only 6, 8, 10, 12, and 14 clusters to perform this 

task recursively and then run for 1-20, 25, 30, 40, 50, and 100 clusters for the most promising cases. 
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5. RESULTS AND DISCUSSION 

In this section we review the results of the different clustering approaches for representative day 

selection. First we tested the behaviour of the three comparison metrics used in this study. Figure 14 

provides a representative example of that, showing a tendency for the three metrics to correlate, with 

more similarities between the NRMSD of yearly generation by unit type and total yearly cost, while 

hourly price duration curve had overall larger errors. This points out that price is the most difficult and 

sensitive model output. Changing, for example, wind input, will directly affect wind and gas20 

production, but only indirectly have repercussions on the price if it changes the highest SRMC at that 

point in time. 

There was some error volatility, with cases of lower k number of clusters having less error. This was to 

be expected when clustering with k-medoids, since it requires real data points for medoids. As the 

number of clusters increases, a larger part of the whole dataset is included, but not necessarily adding 

to the same days previously picked, which can affect sensitive outputs. Using the average of the 

NRMSD of the three comparison methods helped flatten this variance. 

 

Figure 14 – NRMSD of price duration curve, generation by unit type, and total generation cost by 
clustering with load, solar, and wind data all with the same weight. 

Figure 15 showcases an example of using Euclidean distance between original and clustered input 

datasets as accuracy metrics, opposed to the model output metrics we have used. In this example, 

results always get better as k number of clusters increases, since more of the total original dataset is 

used via medoids. Wind appears to be more difficult to cluster than load and solar, due it’s the volatility 

mention in section 4.2. Even though the Euclidean distance for Solar seems to be very low, it does not 

mean it is sufficiently represented with only one day, emphasising the need to judge the clustering 

based on its effects on model outputs rather than its inputs. 

 
20 Assuming that net load is demanding all generators to produce at that point in time since gas was the 

last generator in the merit order. 
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Figure 15 – Euclidean distance between original input data (of load, solar and wind) and the medoids 
from clustering with these dimensions all with the same weight, by number of clusters. 

Figure 16 to Figure 18 showcase how clustering with data in CET versus UTC can lead to different model 

results, depending on the dimensions used to cluster. When clustering only with load, solar and wind 

data, time seasonality did appear to have an impact on the results (see Figure 16). However, when 

hydro was included in the clustering, this impact tended to fade, with the distinction becoming unclear 

(see Figure 17 and Figure 18). 

Because of the data constraints on natural inflow for hydro pumped storage and reservoir (mentioned 

in section 4) these dimensions only have weekly variances. For this reason it came with no surprise 

that introducing these dimensions led to fading the differences between using CET and UTC data. 

However, this also happened when only introducing hydro run-of-river. This might have to do with 

natural river inflow not being linked to schedules but rather with natural events (e.g., temperature 

changes). This means that using input data in CET instead of UTC might not impact systems where the 

overwhelming presence of IRES reduces the relative importance of demand in the model. 
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Figure 16 – Average NRMSD comparing clustering with CET vs UTC data, with 3 dimensions (load, 
solar, and wind) all with the same weight. 

 

Figure 17 – Average NRMSD comparing clustering with CET vs UTC data, with 4 dimensions (load, 
solar, wind, and hydro run-of-river) all with the same weight. 
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Figure 18 – Average NRMSD comparing clustering with CET vs UTC data, with 6 dimensions (load, 
solar, wind, hydro run-of-river, hydro pumped storage, and hydro reservoir) all with the same weight. 

 

Figure 19 – Average NRMSD of price duration curve, generation by unit type, and total generation 
cost by k number of clusters (CET). Detail by dimensions used for clustering, all dimensions having 

the same weight. 

Figure 19 shows the difference in average NRMSD of the three metrics using 3, 4, and 6 dimensions for 
clustering. Clustering with only load, solar, and wind (3 dimension) was consistently the worst option, 
even if not by a large margin. Clustering with 4 and 6 dimensions returned comparable results, 
although clustering with the 6 dimensions showed some separation with more than 10 clusters, 
converging again with over 20 clusters. This happens because with fewer k clusters the clustering 
chooses very similar days when considering 6 or 4 dimensions. However, as k increases, the clustering 
has more freedom to choose a larger variety of representative days, and because it has more detailed 
information with 6 dimensions than with 4, it tends to choose representative days more accurately. 
This shows that, if we can use a higher k number of clusters, it is useful to include multiple hydro series. 
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The average reduction on the average NRMSD of the three comparison metrics for k clusters between 
1-20 was 32% from using 3 to 4 cluster dimension, and 11% from using 4 to 6 dimensions. 

From these figures we can also infer that, even though the error tends to fall as k grows, the increase 

in accuracy becomes rather low with k larger than 12. Intuitively using the elbow method and also by 

analysing the decreasing rate-of-return, between 4 and 8 clusters would be considered the cut-off 

point since after that the return becomes residual. This number of days needed to efficiently represent 

the system is slightly lower than in most of similar studies (on different systems). To accurately model 

Great Britain’s electricity system Green et al. (2014) used 6 to 10 representative days, while Pfenninger 

(2017) found the best trade-off between 10 to 15. 

 

Figure 20 – Average NRMSD of price duration curve, generation by unit type, and total generation 
cost by number of clusters. Detail by downsampling, with all hours (CET) with original values versus 

all 24 hours in each day averaged out. Clustering with all 6 dimensions having the same weight. 

Figure 20 portraits the effect of downsampling in the average NRMSD of the three comparison metrics. 

Reducing intraday granularity by averaging out consecutive hours had little to no effect on model 

results according to all three of the accuracy metrics used. Figure 21 depicts a similar comparison, but 

this time clustering with only 3 dimensions. While in this case downsampling introduced even more 

volatility to the results, the overall differences were a rather small and not conclusive decrease in 

accuracy. These results, although for a different system and using different metrics, oppose the 

conclusions from Pfenninger (2017) stating that downsampling consistently worsens results when 

considering high shares of IRES by smoothing peak demand. 



32 
 

 

Figure 21 – Average NRMSD of price duration curve, generation by unit type, and total generation 
cost by number of clusters. Detail by downsampling, with all hours (CET) with original values versus 
all 24 hours in each day averaged out. Clustering with only load, solar and wind, the 3 dimensions 

having the same weight. 

We have tested many different combinations of weighting for the various dimensions. In an attempt 

to pin down which dimensions positively (and negatively) affected the clustering accuracy, we doubled, 

halved, and increased by 50% the weight of each of the six dimensions individually. The results were 

not always consistent nor had a straight-forward interpretation. A more detailed analysis of the results 

(see all results in Table 4) led to the broad conclusion that results improved by increasing the weight 

of solar and wind data, and by decreasing the weight of hydro pumped storage and hydro reservoir 

(however the effect of reducing the weight of dispatchable hydro sources’ natural inflow was not as 

conclusive). 
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Figure 22 – Average NRMSD of price duration curve, generation by unit type, and total generation 
cost by number of clusters (CET). Comparison of no downsampling with all six dimensions with the 
same weight versus downsampling to one average value a day, and solar and wind with 50% more 

weight each. 

Figure 22 presents the comparison of no downsampling and no weighting with the six dimensions (the 

unweighted approach) versus downsampling to the minimum one average value per day and 

emphasising solar and wind dimensions by 50% (the weighted and downsampled approach). The 

results of the later tend to be slightly better, while the first has much more volatility. This decrease in 

volatility is interesting, as it seems to imply that, without the weighting, unimportant series were 

changing the selected days significantly, which led to, by chance, improve results in some cases and in 

others worsen them. 

Figure 23 presents a comparison of the Euclidean distances between the original load dataset and the 

load medoids from clustering with the same two techniques used in Figure 22, plus clustering using 

only 3 dimensions without weighting or downsampling. If we were to use this model input comparison 

instead of the model output metrics, the conclusions would be opposite to the ones previously 

described, once again showing that using model output comparison metrics is much more relevant to 

analyse. 
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Figure 23 – Euclidean distance between original input data of load and the medoids from clustering 
with: three dimensions unweighted with no downsampling; six dimensions unweighted with no 

downsampling; and six dimensions downsampling to one average value a day. 

Table 2 and Table 3 detail the distribution of the total cost NRMSD by each year for the unweighted 

approach (Table 2) and the weighted and downsampled approach (Table 3). From these tables we can 

infer that while the unweighted approach had much more difficulty modelling the costs for the year of 

2020 for smaller k clusters and for 2017 for larger k (Table 2), the weighted and downsampled 

approach did not concentrate its error in any particular year (Table 3). A more detailed analysis into 

the yearly generation of each unit type lets us know that the unweighted method tended to 

underestimate hydro and wind generation, while not over-estimating solar enough to counter-

balance, leading to higher combustion generation. The weighted and downsampled method estimated 

wind and solar generation more precisely, but still tended to underestimate hydro availability. As 

described in section 4.2, 2017 was a very dry year meaning that underestimating another significant 

RES source such as wind led to overestimating costs in the unweighted approach. 2020 was a rather 

odd year with a significant increase in solar and a couple of months of historically low demand due to 

lockdown, being hard to pin down the reason(s) for the poorer results. 
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Table 2 – Detailed model results of the distribution of the total cost NRMSD by each year for model 
runs with no downsampling and no weighting with the six dimensions (CET) with 1-20, 25, 30, 40, 50 

k clusters. 

  

  

Number of 

Clusters 

% NRMSD 

Cost 2016 

% NRMSD 

Cost 2017 

% NRMSD 

Cost 2018 

% NRMSD 

Cost 2019 

% NRMSD 

Cost 2020 

1 27% 0% 25% 12% 36% 

2 38% 2% 17% 4% 39% 

3 17% 20% 11% 0% 51% 

4 27% 28% 40% 4% 0% 

5 21% 50% 25% 1% 3% 

6 49% 0% 12% 25% 15% 

7 14% 13% 16% 14% 43% 

8 2% 6% 9% 30% 54% 

9 3% 5% 9% 19% 63% 

10 3% 12% 8% 12% 65% 

11 5% 12% 16% 8% 58% 

12 10% 22% 11% 1% 55% 

13 7% 30% 3% 10% 50% 

14 0% 12% 47% 1% 40% 

15 0% 20% 16% 25% 39% 

16 0% 43% 14% 9% 33% 

17 0% 43% 17% 8% 32% 

18 1% 59% 14% 1% 26% 

19 1% 70% 22% 2% 5% 

20 1% 87% 1% 9% 1% 

25 5% 34% 58% 0% 2% 

30 6% 15% 10% 8% 60% 

40 0% 20% 49% 21% 10% 

50 3% 41% 50% 3% 2% 

100 0% 39% 53% 0% 7% 
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Table 3 – Detailed model results of the distribution of the total cost NRMSD by each year for model 
runs with downsampling to the minimum one average value per day and emphasising solar and wind 

dimensions by 50% (CET) with 1-20, 25, 30, 40, 50, and 100 k clusters. 

Number of 

Clusters 

% NRMSD 

Cost 2016 

% NRMSD 

Cost 2017 

% NRMSD 

Cost 2018 

% NRMSD 

Cost 2019 

% NRMSD 

Cost 2020 

1 59% 12% 17% 11% 1% 

2 0% 6% 14% 58% 22% 

3 37% 3% 0% 49% 11% 

4 43% 6% 16% 8% 28% 

5 23% 0% 9% 5% 63% 

6 53% 12% 13% 0% 21% 

7 74% 11% 15% 1% 0% 

8 2% 56% 0% 38% 4% 

9 2% 46% 8% 35% 9% 

10 13% 47% 5% 30% 6% 

11 0% 57% 6% 24% 13% 

12 41% 4% 27% 17% 10% 

13 9% 1% 60% 26% 4% 

14 27% 12% 2% 60% 0% 

15 24% 16% 7% 53% 1% 

16 15% 44% 13% 11% 16% 

17 4% 59% 15% 0% 22% 

18 0% 48% 47% 1% 4% 

19 32% 44% 13% 9% 2% 

20 23% 16% 58% 3% 0% 

25 15% 0% 36% 45% 4% 

30 1% 3% 2% 34% 60% 

40 8% 9% 8% 34% 42% 

50 28% 19% 0% 27% 26% 

100 3% 52% 37% 0% 8% 
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6. CONCLUSIONS 

Modelling power systems allows for efficient data-driven decision-making. In order to test an 

immensity of hypothesis in said models, their complexity needs to be reduced, most commonly using 

representative days. We have studied ways to improve the accuracy of selecting representative days, 

in particular for the Portuguese electricity system. To achieve this goal we have modelled a 

representation of this system using PLEXOS, developed new clustering approaches and combined them 

with existing ones, selected model output comparison metrics, recursively ran the model with 

clustered inputs, and compared their results with the ones from running the model with the full 

dataset. 

The results described in the section above enabled us to address the questions presented in section 3. 

Firstly, we tried to understand how many representative days were needed to effectively model a year 

of the Portuguese power system (Q1). For the clustering techniques used, 4 to 8 representative days 

were enough to model the system with relatively low error. Further increasing the number of 

representative days had the benefit of reducing result volatility, while residually increasing accuracy. 

Afterwards we studied the effect of using input data that ignored daylight saving time changes. Time 

seasonality impacted results when only load, solar, and wind were taken as clustering inputs, with data 

in CET outperforming data in UTC (Q2). When hydro was included in the clustering this difference faded 

and results were not conclusive. As more series that do not vary with society’s routines were 

introduced, time seasonality’s impact was minimized. 

Because hydro has such a large impact in the Portuguese system, we investigated if it should be 

considered when clustering to find representative days (Q3). Introducing hydro run-over-river to the 

clustering input had a positive impact on results (32% average reduction on 1-20 k clusters for the 

average of the NRMSD for the three comparison metrics), as expected by the unusually large system 

dependency on hydro generation of over a third of total installed capacity. Further including natural 

inflow for hydro pumped storage and reservoir had a much more reduced impact (only -11% difference 

of the same average metrics comparing to including only 4 dimensions). However, this might have to 

do with the data limitations of the latter two dimensions. 

We then applied the weighting technique we have developed to the clustering input data in order to 

study if all dimensions should be given the same weight, and how weighting optimises results (Q4). 

Many different combinations of weightings for the various input dimensions were tested, with only 

not very strong conclusions being drawn. Putting more weight on solar and wind input data (up to 

doubling it) tended to improve model results and reduce their volatility. The impact of different 

weightings is probably very case-specific, and even for the same system it might not continuously hold 

up. As IRES capacity continues to grow and change the relative importance of each of the unit types, 

their weights in the clustering should also be updated accordingly in order to avoid introducing some 

bias to the model. 

Finally, we analysed the impact of intraday aggregations (downsampling) in the model’s accuracy when 

combining it with other techniques (Q5). Reducing intraday granularity, in this case by averaging 

consecutive hours, presented very little to no negative impact on model output results. However, this 
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complexity-reduction technique should be further studied in other models of the Portuguese system 

where all input data dimensions have full (hourly) granularity. 
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7. LIMITATIONS AND RECOMMENDATIONS FOR FUTURE WORKS 

This study expanded the literature by investigating methods to create representative days for the 

Portuguese electricity system, combining different comparison metrics with multiple clustering, time 

seasonality, downsampling and weighting techniques. However, the research needed to make 

assumptions and overcome challenges that may have implications in the results. In addition, these 

findings suggest further areas for exploration. 

Hydro generation is important for some countries like Portugal, however the available hydro data was 

limited because ENTSO-E’s TP only publishes weekly hydro storage data, needed to calculate natural 

inflow for hydro pumped storage and hydro reservoir. We believe that having a hydro pumped storage 

and hydro reservoir dataset with less granularity (weekly) than the rest of the dataset (hourly) might 

have reduced the relevance of the conclusions taken when comparing clustering with all 6 dimensions. 

We thus reenforce the need for more complete, centralised, harmonised, and well-documented power 

system modelling data sources as presented by Wiese et al. (2018). As prosumers, V2G, and green 

energy demand become ever more frequent, the importance of including them in power system 

models also increases. However, this will only be possible with the publication of reliable, consistent, 

and well-documented data on these dimensions. 

The three model accuracy measures used (NRMSD of hourly price duration curve, yearly generation 

per unit type, and yearly total costs) tended to be rather correlated between each other, indicating 

that all three metrics were broadly measuring model performance and not providing contradictory 

results. However, they also tended to have small NRMSD variation between different k number of 

clusters and clustering techniques, limiting the range of comparisons that could be made.  

From this experience we conclude that more diversified comparison metrics could be tested for a more 

insightful comparison, eventually using metrics that take into account high and low peak events. 

Extreme events (at both ends of the spectrum) are the most difficult to model and can have great 

impacts on build decisions. For example, long periods of drought can mean that more dispatchable 

powerplants might need to be built in order to counterbalance IRES’s volatility, as dispatchable hydro 

would not have enough stored energy for peak shaving. 

Some of the aforementioned results’ volatility could have been introduced by using k-medoids, so for 

future works we suggest comparing results with different clustering methods, namely by choosing a 

medoid only after all k-means iterations have ran, as performed by Pineda & Morales (2018). DTW 

could also be implemented with the mentioned clustering techniques. However, the datasets would 

need to be set out differently, as concatenating various dimensions the way we did it (see section 4.3) 

breaks the intertemporal sequence of a timeseries. 

Differently weighting clustering input dimensions was shown to be able to improve modelling results. 

However, we were not able to study how case-specific these findings are, and what are the 

consequences of maintaining the weights of each dimension as a system evolves and changes its 

dynamics, namely when the penetration of IRES increases. In order to find optimal weights, a 

correlation between each dimension’s characteristics and its weight could be established and 

compared in models with different capacity mixes. Ideally, investigating a formula for deciding the 

weight for each dimension based on their relative capacity, volatility, profile type, and other attributes. 
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9. ANNEXES 

The demonstration bellow demonstrates how weighting dimensions in the Euclidean distance is 

equivalent to multiplying the values of a dimension by the square root of the weight right before 

calculating the Euclidean distance. This example showcases that including a dimension twice in the 

Euclidean distance is equivalent to weighting the same dimension by 2 using the square root of the 

weight. 

𝑑(𝑎𝑖 , 𝑏𝑖) = √(𝑎𝑖,𝑥 − 𝑏𝑖,𝑥)2 + (𝑎𝑖,𝑦 − 𝑏𝑖,𝑦)2 + (𝑎𝑖,𝑦 − 𝑏𝑖,𝑦)2 = √(𝑎𝑖,𝑥 − 𝑏𝑖,𝑥)2 + 2 ∗ (𝑎𝑖,𝑦 − 𝑏𝑖,𝑦)2

= √(𝑎𝑖,𝑥 − 𝑏𝑖,𝑥)
2 + (√2(𝑎𝑖,𝑦 − 𝑏𝑖,𝑦))

2 = √(𝑎𝑖,𝑥 − 𝑏𝑖,𝑥)
2 + (√2 ∗ 𝑎𝑖,𝑦 −√2 ∗ 𝑏𝑖,𝑦))

2 

Where 𝑖 is the hour of the days 𝑎 and 𝑏, for the dimensions 𝑥 and 𝑦.  
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Table 4 – Detailed model results for all model runs with clustered data  
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0,5 1 1 1 1 1 24 CET 6 0,121 0,078 0,092 0,097 0% 9% 18% 2% 70% 

0,5 1 1 1 1 1 24 CET 8 0,100 0,075 0,054 0,076 0% 28% 59% 6% 7% 

0,5 1 1 1 1 1 24 CET 10 0,067 0,050 0,041 0,053 5% 46% 47% 1% 1% 

0,5 1 1 1 1 1 24 CET 12 0,081 0,051 0,049 0,061 5% 31% 54% 2% 9% 

0,5 1 1 1 1 1 24 CET 14 0,067 0,036 0,028 0,044 29% 0% 1% 39% 31% 

0,5 1,5 1,5 1 1 1 24 CET 6 0,119 0,091 0,101 0,103 14% 32% 34% 16% 5% 

0,5 1,5 1,5 1 1 1 24 CET 8 0,124 0,081 0,085 0,097 9% 8% 71% 1% 11% 

0,5 1,5 1,5 1 1 1 24 CET 10 0,123 0,085 0,090 0,099 2% 1% 61% 21% 15% 

0,5 1,5 1,5 1 1 1 24 CET 12 0,114 0,068 0,074 0,085 7% 6% 51% 31% 5% 

0,5 1,5 1,5 1 1 1 24 CET 14 0,112 0,063 0,066 0,080 27% 1% 41% 20% 11% 

1 0,5 1 1 1 1 24 CET 6 0,137 0,087 0,055 0,093 1% 0% 3% 0% 96% 

1 0,5 1 1 1 1 24 CET 8 0,140 0,070 0,047 0,086 16% 0% 17% 5% 61% 
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1 0,5 1 1 1 1 24 CET 10 0,106 0,068 0,053 0,075 26% 22% 10% 3% 38% 

1 0,5 1 1 1 1 24 CET 12 0,100 0,058 0,035 0,064 36% 0% 8% 0% 55% 

1 0,5 1 1 1 1 24 CET 14 0,096 0,051 0,045 0,064 25% 13% 7% 1% 54% 

1 1 0,5 1 1 1 24 CET 6 0,147 0,122 0,097 0,122 8% 14% 0% 9% 68% 

1 1 0,5 1 1 1 24 CET 8 0,140 0,098 0,086 0,108 7% 9% 4% 53% 27% 

1 1 0,5 1 1 1 24 CET 10 0,132 0,087 0,081 0,100 1% 8% 16% 37% 38% 

1 1 0,5 1 1 1 24 CET 12 0,124 0,074 0,074 0,091 5% 29% 8% 29% 29% 

1 1 0,5 1 1 1 24 CET 14 0,116 0,075 0,071 0,087 6% 9% 27% 21% 38% 

1 1 1 0 0 0 1 CET 1 0,445 0,483 0,458 0,462 43% 12% 3% 4% 39% 

1 1 1 0 0 0 1 CET 2 0,445 0,315 0,319 0,360 49% 14% 0% 16% 21% 

1 1 1 0 0 0 1 CET 3 0,445 0,321 0,307 0,358 48% 0% 0% 26% 26% 

1 1 1 0 0 0 1 CET 4 0,202 0,224 0,208 0,211 15% 14% 25% 5% 41% 

1 1 1 0 0 0 1 CET 5 0,234 0,213 0,137 0,195 1% 38% 38% 15% 7% 

1 1 1 0 0 0 1 CET 6 0,254 0,212 0,191 0,219 39% 17% 34% 8% 1% 
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1 1 1 0 0 0 1 CET 7 0,113 0,196 0,167 0,159 23% 9% 56% 2% 10% 

1 1 1 0 0 0 1 CET 8 0,143 0,097 0,057 0,099 51% 5% 18% 6% 20% 

1 1 1 0 0 0 1 CET 9 0,172 0,126 0,087 0,128 36% 0% 2% 8% 54% 

1 1 1 0 0 0 1 CET 10 0,133 0,190 0,155 0,159 5% 3% 41% 2% 49% 

1 1 1 0 0 0 1 CET 11 0,110 0,229 0,200 0,180 27% 2% 42% 1% 29% 

1 1 1 0 0 0 1 CET 12 0,131 0,226 0,214 0,191 61% 0% 26% 10% 4% 

1 1 1 0 0 0 1 CET 13 0,134 0,149 0,121 0,135 52% 0% 15% 26% 6% 

1 1 1 0 0 0 1 CET 14 0,107 0,174 0,163 0,148 9% 1% 73% 13% 4% 
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1 1 1 0 0 0 1 CET 16 0,147 0,133 0,110 0,130 34% 0% 20% 27% 19% 

1 1 1 0 0 0 1 CET 17 0,214 0,220 0,208 0,214 90% 0% 3% 2% 4% 

1 1 1 0 0 0 1 CET 18 0,232 0,195 0,179 0,202 58% 0% 35% 2% 5% 

1 1 1 0 0 0 1 CET 19 0,215 0,163 0,145 0,175 32% 7% 50% 5% 6% 

1 1 1 0 0 0 1 CET 20 0,207 0,129 0,105 0,147 42% 4% 30% 10% 14% 
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1 1 1 0 0 0 1 CET 25 0,138 0,096 0,078 0,104 39% 1% 29% 11% 20% 

1 1 1 0 0 0 1 CET 30 0,098 0,103 0,081 0,094 0% 0% 2% 70% 27% 

1 1 1 0 0 0 1 CET 40 0,088 0,085 0,062 0,079 15% 1% 22% 46% 16% 

1 1 1 0 0 0 1 CET 50 0,105 0,094 0,079 0,093 15% 0% 28% 21% 36% 

1 1 1 0 0 0 1 CET 100 0,091 0,067 0,032 0,063 24% 1% 4% 63% 8% 

1 1 1 0 0 0 24 CET 1 0,419 0,398 0,368 0,395 66% 6% 16% 6% 6% 

1 1 1 0 0 0 24 CET 2 0,128 0,391 0,310 0,276 34% 19% 30% 5% 12% 

1 1 1 0 0 0 24 CET 3 0,174 0,219 0,216 0,203 20% 32% 40% 0% 9% 

1 1 1 0 0 0 24 CET 4 0,217 0,222 0,216 0,219 56% 4% 33% 6% 1% 

1 1 1 0 0 0 24 CET 5 0,164 0,146 0,140 0,150 61% 14% 0% 24% 0% 

1 1 1 0 0 0 24 CET 6 0,207 0,177 0,173 0,186 51% 0% 44% 5% 0% 

1 1 1 0 0 0 24 CET 7 0,224 0,162 0,155 0,181 45% 4% 31% 19% 1% 

1 1 1 0 0 0 24 CET 8 0,168 0,159 0,142 0,156 18% 25% 29% 16% 12% 

1 1 1 0 0 0 24 CET 9 0,137 0,130 0,121 0,129 0% 45% 21% 21% 14% 
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1 1 1 0 0 0 24 CET 10 0,214 0,134 0,124 0,157 0% 30% 30% 30% 11% 

1 1 1 0 0 0 24 CET 11 0,157 0,100 0,079 0,112 5% 4% 68% 7% 16% 

1 1 1 0 0 0 24 CET 12 0,149 0,095 0,076 0,107 1% 2% 53% 42% 3% 

1 1 1 0 0 0 24 CET 13 0,169 0,111 0,107 0,129 1% 1% 51% 38% 8% 

1 1 1 0 0 0 24 CET 14 0,157 0,092 0,070 0,106 11% 1% 7% 73% 6% 

1 1 1 0 0 0 24 CET 15 0,147 0,096 0,081 0,108 14% 16% 37% 18% 15% 

1 1 1 0 0 0 24 CET 16 0,166 0,104 0,091 0,120 29% 0% 34% 15% 22% 

1 1 1 0 0 0 24 CET 17 0,157 0,098 0,085 0,113 24% 0% 48% 2% 26% 

1 1 1 0 0 0 24 CET 18 0,167 0,106 0,092 0,122 21% 0% 48% 5% 26% 

1 1 1 0 0 0 24 CET 19 0,140 0,084 0,063 0,096 60% 2% 8% 12% 18% 

1 1 1 0 0 0 24 CET 20 0,130 0,081 0,060 0,090 43% 0% 24% 13% 21% 

1 1 1 0 0 0 24 CET 25 0,133 0,114 0,104 0,117 27% 31% 17% 12% 13% 

1 1 1 0 0 0 24 CET 30 0,136 0,092 0,078 0,102 18% 32% 0% 19% 31% 

1 1 1 0 0 0 24 CET 40 0,121 0,078 0,059 0,086 24% 34% 10% 0% 32% 
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1 1 1 0 0 0 24 CET 50 0,113 0,078 0,056 0,082 59% 10% 1% 3% 27% 

1 1 1 0 0 0 24 CET 100 0,087 0,044 0,025 0,052 20% 8% 3% 69% 0% 

1 1 1 0 0 0 24 UTC 1 0,446 0,462 0,465 0,457 43% 18% 10% 3% 26% 

1 1 1 0 0 0 24 UTC 2 0,271 0,259 0,229 0,253 44% 4% 27% 1% 24% 

1 1 1 0 0 0 24 UTC 3 0,172 0,385 0,362 0,306 12% 16% 46% 7% 19% 

1 1 1 0 0 0 24 UTC 4 0,231 0,236 0,216 0,227 49% 24% 11% 15% 0% 

1 1 1 0 0 0 24 UTC 5 0,271 0,282 0,285 0,280 36% 20% 3% 15% 26% 

1 1 1 0 0 0 24 UTC 6 0,236 0,212 0,207 0,218 53% 18% 2% 0% 28% 

1 1 1 0 0 0 24 UTC 7 0,246 0,243 0,248 0,245 31% 12% 4% 8% 46% 

1 1 1 0 0 0 24 UTC 8 0,235 0,174 0,165 0,191 16% 45% 18% 14% 7% 

1 1 1 0 0 0 24 UTC 9 0,193 0,158 0,139 0,163 19% 15% 51% 4% 11% 

1 1 1 0 0 0 24 UTC 10 0,159 0,169 0,161 0,163 37% 13% 46% 1% 3% 

1 1 1 0 0 0 24 UTC 11 0,199 0,123 0,113 0,145 12% 13% 63% 5% 7% 

1 1 1 0 0 0 24 UTC 12 0,158 0,184 0,179 0,174 34% 8% 40% 3% 15% 
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1 1 1 0 0 0 24 UTC 13 0,204 0,161 0,158 0,174 6% 8% 59% 4% 24% 

1 1 1 0 0 0 24 UTC 14 0,199 0,162 0,158 0,173 2% 9% 55% 8% 27% 

1 1 1 0 0 0 24 UTC 15 0,192 0,140 0,139 0,157 3% 13% 57% 2% 26% 

1 1 1 0 0 0 24 UTC 16 0,185 0,133 0,128 0,149 6% 13% 67% 2% 12% 

1 1 1 0 0 0 24 UTC 17 0,172 0,130 0,122 0,141 0% 4% 82% 1% 13% 

1 1 1 0 0 0 24 UTC 18 0,165 0,123 0,110 0,133 0% 6% 56% 14% 24% 

1 1 1 0 0 0 24 UTC 19 0,163 0,129 0,114 0,135 2% 2% 60% 9% 28% 

1 1 1 0 0 0 24 UTC 20 0,164 0,119 0,107 0,130 4% 1% 67% 1% 28% 

1 1 1 0 0 0 24 UTC 25 0,154 0,118 0,116 0,129 83% 5% 7% 1% 5% 

1 1 1 0 0 0 24 UTC 30 0,121 0,064 0,043 0,076 1% 14% 41% 10% 33% 

1 1 1 0 0 0 24 UTC 40 0,101 0,071 0,055 0,076 12% 30% 7% 39% 12% 

1 1 1 0 0 0 24 UTC 50 0,102 0,045 0,031 0,059 47% 22% 19% 12% 1% 

1 1 1 0 0 0 24 UTC 100 0,098 0,073 0,057 0,076 20% 30% 3% 45% 3% 

1 1 1 0,5 0,5 0,5 24 CET 6 0,118 0,089 0,064 0,090 37% 0% 33% 2% 28% 
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1 1 1 0,5 0,5 0,5 24 CET 8 0,118 0,077 0,070 0,088 3% 8% 43% 2% 44% 

1 1 1 0,5 0,5 0,5 24 CET 10 0,092 0,066 0,053 0,070 1% 0% 77% 5% 17% 

1 1 1 0,5 0,5 0,5 24 CET 12 0,086 0,046 0,031 0,054 3% 1% 91% 4% 2% 

1 1 1 0,5 0,5 0,5 24 CET 14 0,085 0,048 0,034 0,056 0% 17% 75% 8% 0% 

1 1 1 0,5 1 1 24 CET 6 0,101 0,081 0,038 0,074 14% 1% 8% 73% 4% 

1 1 1 0,5 1 1 24 CET 8 0,108 0,078 0,061 0,083 0% 19% 20% 32% 30% 

1 1 1 0,5 1 1 24 CET 10 0,110 0,072 0,070 0,084 11% 18% 43% 25% 3% 

1 1 1 0,5 1 1 24 CET 12 0,109 0,063 0,066 0,079 10% 20% 61% 8% 1% 

1 1 1 0,5 1 1 24 CET 14 0,114 0,060 0,056 0,076 15% 12% 65% 4% 4% 

1 1 1 1 0 0 1 CET 1 0,445 0,376 0,358 0,393 54% 11% 17% 13% 4% 

1 1 1 1 0 0 1 CET 2 0,306 0,131 0,087 0,175 18% 5% 17% 10% 50% 

1 1 1 1 0 0 1 CET 3 0,284 0,166 0,128 0,193 5% 13% 43% 34% 5% 

1 1 1 1 0 0 1 CET 4 0,259 0,136 0,107 0,167 38% 39% 7% 4% 12% 

1 1 1 1 0 0 1 CET 5 0,194 0,097 0,045 0,112 0% 55% 44% 1% 1% 
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1 1 1 1 0 0 1 CET 6 0,154 0,114 0,061 0,110 1% 7% 1% 85% 6% 

1 1 1 1 0 0 1 CET 7 0,137 0,079 0,057 0,091 29% 1% 16% 50% 4% 

1 1 1 1 0 0 1 CET 8 0,178 0,088 0,042 0,103 31% 2% 24% 40% 3% 

1 1 1 1 0 0 1 CET 9 0,149 0,086 0,038 0,091 44% 43% 2% 10% 0% 

1 1 1 1 0 0 1 CET 10 0,142 0,113 0,068 0,107 30% 13% 20% 7% 29% 

1 1 1 1 0 0 1 CET 11 0,117 0,110 0,089 0,106 1% 24% 41% 4% 30% 

1 1 1 1 0 0 1 CET 12 0,107 0,060 0,025 0,064 27% 1% 3% 0% 69% 

1 1 1 1 0 0 1 CET 13 0,105 0,057 0,035 0,065 31% 16% 16% 6% 31% 

1 1 1 1 0 0 1 CET 14 0,094 0,060 0,036 0,063 9% 8% 68% 12% 3% 

1 1 1 1 0 0 1 CET 15 0,100 0,068 0,052 0,073 15% 37% 8% 35% 5% 

1 1 1 1 0 0 1 CET 16 0,117 0,065 0,048 0,076 25% 28% 15% 15% 17% 

1 1 1 1 0 0 1 CET 17 0,090 0,057 0,040 0,062 0% 46% 44% 4% 5% 

1 1 1 1 0 0 1 CET 18 0,097 0,049 0,030 0,059 0% 12% 36% 0% 52% 

1 1 1 1 0 0 1 CET 19 0,105 0,054 0,026 0,062 10% 2% 39% 17% 33% 
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1 1 1 1 0 0 1 CET 20 0,092 0,053 0,025 0,057 2% 13% 32% 26% 27% 

1 1 1 1 0 0 1 CET 25 0,069 0,042 0,031 0,048 0% 3% 46% 3% 48% 

1 1 1 1 0 0 1 CET 30 0,066 0,044 0,035 0,048 7% 3% 65% 2% 23% 

1 1 1 1 0 0 1 CET 40 0,057 0,041 0,028 0,042 2% 5% 35% 1% 58% 

1 1 1 1 0 0 1 CET 50 0,063 0,034 0,022 0,040 28% 15% 5% 7% 44% 

1 1 1 1 0 0 1 CET 100 0,033 0,035 0,027 0,032 3% 5% 1% 57% 34% 

1 1 1 1 0 0 24 CET 1 0,445 0,311 0,315 0,357 24% 4% 21% 10% 41% 

1 1 1 1 0 0 24 CET 2 0,254 0,173 0,153 0,194 23% 8% 7% 6% 56% 

1 1 1 1 0 0 24 CET 3 0,169 0,145 0,126 0,147 34% 5% 43% 6% 12% 

1 1 1 1 0 0 24 CET 4 0,064 0,121 0,107 0,097 7% 0% 51% 9% 33% 

1 1 1 1 0 0 24 CET 5 0,067 0,125 0,099 0,097 2% 18% 48% 7% 26% 

1 1 1 1 0 0 24 CET 6 0,058 0,097 0,075 0,076 2% 51% 5% 8% 35% 

1 1 1 1 0 0 24 CET 7 0,049 0,081 0,065 0,065 6% 26% 1% 4% 63% 

1 1 1 1 0 0 24 CET 8 0,118 0,094 0,085 0,099 0% 15% 59% 25% 0% 
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1 1 1 1 0 0 24 CET 9 0,125 0,076 0,060 0,087 8% 0% 77% 6% 8% 

1 1 1 1 0 0 24 CET 10 0,091 0,090 0,077 0,086 13% 2% 45% 1% 39% 

1 1 1 1 0 0 24 CET 11 0,089 0,099 0,087 0,092 11% 0% 31% 3% 55% 

1 1 1 1 0 0 24 CET 12 0,102 0,089 0,077 0,089 20% 13% 17% 9% 41% 

1 1 1 1 0 0 24 CET 13 0,107 0,096 0,088 0,097 20% 14% 23% 11% 32% 

1 1 1 1 0 0 24 CET 14 0,103 0,085 0,071 0,086 9% 22% 31% 10% 27% 

1 1 1 1 0 0 24 CET 15 0,101 0,083 0,070 0,084 9% 14% 33% 7% 37% 

1 1 1 1 0 0 24 CET 16 0,085 0,078 0,063 0,075 3% 3% 33% 9% 51% 

1 1 1 1 0 0 24 CET 17 0,084 0,084 0,077 0,082 5% 6% 39% 10% 40% 

1 1 1 1 0 0 24 CET 18 0,084 0,069 0,062 0,072 1% 4% 55% 6% 35% 

1 1 1 1 0 0 24 CET 19 0,076 0,077 0,072 0,075 0% 11% 40% 6% 44% 

1 1 1 1 0 0 24 CET 20 0,078 0,082 0,076 0,078 2% 14% 25% 19% 40% 

1 1 1 1 0 0 24 CET 25 0,071 0,047 0,041 0,053 2% 2% 50% 1% 46% 

1 1 1 1 0 0 24 CET 30 0,071 0,047 0,039 0,053 6% 1% 51% 0% 42% 
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1 1 1 1 0 0 24 CET 40 0,066 0,050 0,045 0,054 5% 15% 7% 7% 66% 

1 1 1 1 0 0 24 CET 50 0,056 0,036 0,034 0,042 14% 31% 6% 9% 40% 

1 1 1 1 0 0 24 CET 100 0,056 0,019 0,020 0,032 26% 1% 5% 38% 31% 

1 1 1 1 0 0 24 UTC 1 0,439 0,291 0,289 0,340 25% 3% 25% 10% 38% 

1 1 1 1 0 0 24 UTC 2 0,241 0,190 0,186 0,206 19% 27% 23% 2% 29% 

1 1 1 1 0 0 24 UTC 3 0,169 0,167 0,151 0,162 1% 13% 54% 5% 27% 

1 1 1 1 0 0 24 UTC 4 0,098 0,145 0,093 0,112 1% 9% 39% 40% 10% 

1 1 1 1 0 0 24 UTC 5 0,069 0,112 0,069 0,084 21% 0% 26% 36% 17% 

1 1 1 1 0 0 24 UTC 6 0,068 0,097 0,073 0,079 8% 37% 1% 6% 48% 

1 1 1 1 0 0 24 UTC 7 0,093 0,108 0,080 0,094 11% 3% 60% 12% 15% 

1 1 1 1 0 0 24 UTC 8 0,129 0,110 0,075 0,104 2% 5% 48% 44% 0% 

1 1 1 1 0 0 24 UTC 9 0,122 0,099 0,073 0,098 2% 12% 35% 48% 4% 

1 1 1 1 0 0 24 UTC 10 0,133 0,086 0,073 0,097 26% 0% 48% 16% 10% 

1 1 1 1 0 0 24 UTC 11 0,114 0,080 0,066 0,087 27% 0% 47% 3% 23% 
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1 1 1 1 0 0 24 UTC 12 0,126 0,079 0,073 0,093 25% 0% 69% 1% 5% 

1 1 1 1 0 0 24 UTC 13 0,126 0,071 0,066 0,087 44% 0% 55% 1% 0% 

1 1 1 1 0 0 24 UTC 14 0,120 0,066 0,051 0,079 18% 5% 55% 20% 0% 

1 1 1 1 0 0 24 UTC 15 0,112 0,066 0,055 0,078 14% 8% 56% 20% 1% 

1 1 1 1 0 0 24 UTC 16 0,097 0,062 0,058 0,072 6% 0% 78% 14% 2% 

1 1 1 1 0 0 24 UTC 17 0,093 0,060 0,059 0,071 2% 3% 65% 20% 10% 

1 1 1 1 0 0 24 UTC 18 0,090 0,061 0,061 0,071 6% 3% 55% 31% 5% 

1 1 1 1 0 0 24 UTC 19 0,083 0,044 0,039 0,055 15% 20% 50% 12% 2% 

1 1 1 1 0 0 24 UTC 20 0,054 0,040 0,039 0,044 4% 15% 38% 38% 6% 

1 1 1 1 0 0 24 UTC 25 0,085 0,038 0,021 0,048 15% 51% 0% 25% 9% 

1 1 1 1 0 0 24 UTC 30 0,092 0,042 0,031 0,055 10% 6% 72% 6% 6% 

1 1 1 1 0 0 24 UTC 40 0,065 0,041 0,033 0,046 8% 4% 44% 13% 31% 

1 1 1 1 0 0 24 UTC 50 0,068 0,038 0,028 0,045 0% 15% 64% 2% 19% 

1 1 1 1 0 0 24 UTC 100 0,048 0,021 0,016 0,028 18% 19% 10% 3% 50% 
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1 1 1 1 0,5 1 24 CET 6 0,109 0,078 0,037 0,075 7% 0% 7% 58% 29% 

1 1 1 1 0,5 1 24 CET 8 0,101 0,071 0,050 0,074 3% 28% 23% 24% 22% 

1 1 1 1 0,5 1 24 CET 10 0,107 0,058 0,058 0,075 1% 18% 48% 8% 25% 

1 1 1 1 0,5 1 24 CET 12 0,087 0,045 0,040 0,057 9% 27% 42% 2% 20% 

1 1 1 1 0,5 1 24 CET 14 0,080 0,042 0,030 0,051 22% 17% 28% 27% 6% 

1 1 1 1 1 0,5 24 CET 6 0,109 0,078 0,037 0,075 7% 0% 5% 59% 29% 

1 1 1 1 1 0,5 24 CET 8 0,102 0,071 0,051 0,075 3% 27% 22% 24% 24% 

1 1 1 1 1 0,5 24 CET 10 0,107 0,058 0,058 0,075 1% 18% 48% 8% 25% 

1 1 1 1 1 0,5 24 CET 12 0,087 0,045 0,040 0,057 9% 27% 42% 2% 20% 

1 1 1 1 1 0,5 24 CET 14 0,080 0,039 0,032 0,050 19% 27% 24% 24% 5% 

1 1 1 1 1 1 1 CET 1 0,445 0,331 0,332 0,369 67% 0% 19% 13% 1% 

1 1 1 1 1 1 1 CET 2 0,251 0,154 0,130 0,179 1% 63% 12% 3% 22% 

1 1 1 1 1 1 1 CET 3 0,203 0,105 0,066 0,125 9% 65% 19% 1% 6% 

1 1 1 1 1 1 1 CET 4 0,129 0,111 0,110 0,116 2% 68% 28% 0% 1% 
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1 1 1 1 1 1 1 CET 5 0,117 0,085 0,059 0,087 40% 21% 4% 2% 34% 

1 1 1 1 1 1 1 CET 6 0,127 0,079 0,056 0,088 3% 87% 7% 1% 3% 

1 1 1 1 1 1 1 CET 7 0,130 0,059 0,033 0,074 4% 75% 11% 3% 7% 

1 1 1 1 1 1 1 CET 8 0,174 0,090 0,083 0,115 1% 10% 47% 14% 27% 

1 1 1 1 1 1 1 CET 9 0,158 0,082 0,066 0,102 1% 5% 43% 23% 28% 

1 1 1 1 1 1 1 CET 10 0,146 0,067 0,048 0,087 3% 5% 32% 7% 53% 

1 1 1 1 1 1 1 CET 11 0,143 0,061 0,042 0,082 29% 5% 15% 9% 42% 

1 1 1 1 1 1 1 CET 12 0,133 0,059 0,027 0,073 68% 0% 7% 3% 22% 

1 1 1 1 1 1 1 CET 13 0,130 0,067 0,030 0,076 81% 13% 0% 2% 5% 

1 1 1 1 1 1 1 CET 14 0,117 0,059 0,032 0,069 59% 23% 6% 12% 0% 

1 1 1 1 1 1 1 CET 15 0,108 0,062 0,038 0,069 46% 32% 2% 8% 12% 

1 1 1 1 1 1 1 CET 16 0,093 0,052 0,030 0,058 38% 10% 7% 1% 44% 

1 1 1 1 1 1 1 CET 17 0,089 0,052 0,029 0,056 33% 6% 20% 12% 29% 

1 1 1 1 1 1 1 CET 18 0,083 0,052 0,028 0,054 19% 8% 21% 13% 40% 
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1 1 1 1 1 1 1 CET 19 0,084 0,046 0,018 0,049 16% 12% 35% 31% 6% 

1 1 1 1 1 1 1 CET 20 0,091 0,045 0,023 0,053 5% 9% 4% 81% 1% 

1 1 1 1 1 1 1 CET 25 0,080 0,041 0,020 0,047 32% 56% 4% 5% 3% 

1 1 1 1 1 1 1 CET 30 0,078 0,037 0,022 0,046 45% 45% 0% 2% 8% 

1 1 1 1 1 1 1 CET 40 0,072 0,030 0,013 0,039 2% 79% 1% 6% 13% 

1 1 1 1 1 1 1 CET 50 0,060 0,031 0,015 0,035 6% 0% 47% 41% 7% 

1 1 1 1 1 1 1 CET 100 0,059 0,022 0,010 0,030 0% 29% 17% 25% 29% 

1 1 1 1 1 1 2 CET 6 0,156 0,088 0,088 0,111 8% 33% 9% 7% 42% 

1 1 1 1 1 1 2 CET 8 0,155 0,066 0,061 0,094 4% 24% 8% 54% 11% 

1 1 1 1 1 1 2 CET 10 0,115 0,050 0,024 0,063 38% 8% 1% 31% 21% 

1 1 1 1 1 1 2 CET 12 0,114 0,053 0,035 0,067 43% 3% 13% 37% 4% 

1 1 1 1 1 1 2 CET 14 0,111 0,052 0,040 0,068 24% 10% 29% 37% 0% 

1 1 1 1 1 1 3 CET 6 0,112 0,081 0,066 0,086 27% 19% 6% 3% 44% 

1 1 1 1 1 1 3 CET 8 0,101 0,061 0,038 0,067 19% 1% 31% 16% 33% 
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1 1 1 1 1 1 3 CET 10 0,120 0,067 0,064 0,084 28% 0% 40% 29% 3% 

1 1 1 1 1 1 3 CET 12 0,103 0,055 0,050 0,069 43% 5% 27% 22% 3% 

1 1 1 1 1 1 3 CET 14 0,108 0,056 0,057 0,074 24% 26% 23% 22% 5% 

1 1 1 1 1 1 4 CET 6 0,131 0,073 0,027 0,077 19% 37% 16% 22% 6% 

1 1 1 1 1 1 4 CET 8 0,123 0,102 0,083 0,103 21% 20% 4% 33% 22% 

1 1 1 1 1 1 4 CET 10 0,131 0,092 0,076 0,100 50% 7% 2% 25% 16% 

1 1 1 1 1 1 4 CET 12 0,100 0,055 0,045 0,066 35% 11% 21% 32% 1% 

1 1 1 1 1 1 4 CET 14 0,115 0,047 0,032 0,065 21% 6% 14% 45% 13% 

1 1 1 1 1 1 6 CET 6 0,137 0,110 0,086 0,111 6% 27% 2% 12% 52% 

1 1 1 1 1 1 6 CET 8 0,089 0,063 0,044 0,065 4% 19% 1% 53% 22% 

1 1 1 1 1 1 6 CET 10 0,116 0,054 0,040 0,070 25% 8% 0% 25% 41% 

1 1 1 1 1 1 6 CET 12 0,119 0,076 0,066 0,087 18% 48% 11% 1% 23% 

1 1 1 1 1 1 6 CET 14 0,104 0,056 0,037 0,066 33% 41% 3% 3% 21% 

1 1 1 1 1 1 8 CET 6 0,138 0,088 0,060 0,095 17% 3% 6% 26% 47% 
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1 1 1 1 1 1 8 CET 8 0,109 0,062 0,043 0,071 0% 0% 7% 75% 18% 

1 1 1 1 1 1 8 CET 10 0,116 0,063 0,056 0,078 1% 43% 1% 11% 43% 

1 1 1 1 1 1 8 CET 12 0,096 0,056 0,045 0,066 0% 77% 6% 9% 7% 

1 1 1 1 1 1 8 CET 14 0,092 0,041 0,025 0,053 0% 58% 3% 2% 37% 

1 1 1 1 1 1 12 CET 6 0,122 0,074 0,050 0,082 69% 0% 18% 12% 0% 

1 1 1 1 1 1 12 CET 8 0,104 0,066 0,058 0,076 2% 6% 1% 37% 53% 

1 1 1 1 1 1 12 CET 10 0,115 0,071 0,062 0,083 13% 1% 3% 50% 34% 

1 1 1 1 1 1 12 CET 12 0,108 0,060 0,058 0,076 15% 3% 26% 31% 26% 

1 1 1 1 1 1 12 CET 14 0,115 0,067 0,061 0,081 9% 22% 31% 0% 38% 

1 1 1 1 1 1 24 CET 1 0,445 0,307 0,293 0,348 27% 0% 25% 12% 36% 

1 1 1 1 1 1 24 CET 2 0,164 0,137 0,111 0,137 38% 2% 17% 4% 39% 

1 1 1 1 1 1 24 CET 3 0,233 0,167 0,150 0,183 17% 20% 11% 0% 51% 

1 1 1 1 1 1 24 CET 4 0,149 0,091 0,068 0,102 27% 28% 40% 4% 0% 

1 1 1 1 1 1 24 CET 5 0,107 0,109 0,083 0,100 21% 50% 25% 1% 3% 
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1 1 1 1 1 1 24 CET 6 0,119 0,078 0,060 0,086 49% 0% 12% 25% 15% 

1 1 1 1 1 1 24 CET 7 0,118 0,075 0,029 0,074 14% 13% 16% 14% 43% 

1 1 1 1 1 1 24 CET 8 0,143 0,090 0,088 0,107 2% 6% 9% 30% 54% 

1 1 1 1 1 1 24 CET 9 0,140 0,073 0,068 0,094 3% 5% 9% 19% 63% 

1 1 1 1 1 1 24 CET 10 0,120 0,065 0,061 0,082 3% 12% 8% 12% 65% 

1 1 1 1 1 1 24 CET 11 0,112 0,059 0,051 0,074 5% 12% 16% 8% 58% 

1 1 1 1 1 1 24 CET 12 0,100 0,054 0,050 0,068 10% 22% 11% 1% 55% 

1 1 1 1 1 1 24 CET 13 0,088 0,053 0,046 0,062 7% 30% 3% 10% 50% 

1 1 1 1 1 1 24 CET 14 0,088 0,047 0,042 0,059 0% 12% 47% 1% 40% 

1 1 1 1 1 1 24 CET 15 0,087 0,047 0,041 0,058 0% 20% 16% 25% 39% 

1 1 1 1 1 1 24 CET 16 0,093 0,051 0,043 0,063 0% 43% 14% 9% 33% 

1 1 1 1 1 1 24 CET 17 0,096 0,048 0,038 0,061 0% 43% 17% 8% 32% 

1 1 1 1 1 1 24 CET 18 0,091 0,045 0,034 0,057 1% 59% 14% 1% 26% 

1 1 1 1 1 1 24 CET 19 0,088 0,041 0,025 0,051 1% 70% 22% 2% 5% 
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1 1 1 1 1 1 24 CET 20 0,089 0,050 0,034 0,058 1% 87% 1% 9% 1% 

1 1 1 1 1 1 24 CET 25 0,089 0,041 0,038 0,056 5% 34% 58% 0% 2% 

1 1 1 1 1 1 24 CET 30 0,073 0,035 0,025 0,044 6% 15% 10% 8% 60% 

1 1 1 1 1 1 24 CET 40 0,077 0,038 0,037 0,051 0% 20% 49% 21% 10% 

1 1 1 1 1 1 24 CET 50 0,075 0,044 0,041 0,054 3% 41% 50% 3% 2% 

1 1 1 1 1 1 24 CET 100 0,039 0,014 0,011 0,021 0% 39% 53% 0% 7% 

1 1 1 1 1 1 24 UTC 1 0,446 0,300 0,283 0,343 26% 0% 26% 10% 38% 

1 1 1 1 1 1 24 UTC 2 0,256 0,181 0,161 0,200 22% 1% 8% 50% 19% 

1 1 1 1 1 1 24 UTC 3 0,198 0,154 0,139 0,164 27% 2% 0% 62% 8% 

1 1 1 1 1 1 24 UTC 4 0,171 0,110 0,069 0,117 57% 1% 0% 24% 19% 

1 1 1 1 1 1 24 UTC 5 0,129 0,080 0,053 0,087 1% 22% 47% 28% 1% 

1 1 1 1 1 1 24 UTC 6 0,129 0,061 0,041 0,077 3% 9% 39% 48% 1% 

1 1 1 1 1 1 24 UTC 7 0,130 0,067 0,047 0,081 0% 51% 20% 21% 7% 

1 1 1 1 1 1 24 UTC 8 0,157 0,092 0,076 0,108 28% 2% 20% 8% 43% 
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1 1 1 1 1 1 24 UTC 9 0,133 0,079 0,057 0,090 33% 9% 11% 19% 28% 

1 1 1 1 1 1 24 UTC 10 0,129 0,083 0,066 0,092 23% 33% 24% 0% 21% 

1 1 1 1 1 1 24 UTC 11 0,125 0,077 0,064 0,089 20% 28% 27% 1% 25% 

1 1 1 1 1 1 24 UTC 12 0,113 0,068 0,053 0,078 33% 30% 4% 3% 30% 

1 1 1 1 1 1 24 UTC 13 0,108 0,069 0,054 0,077 28% 26% 3% 8% 36% 

1 1 1 1 1 1 24 UTC 14 0,096 0,059 0,042 0,066 29% 38% 1% 1% 31% 

1 1 1 1 1 1 24 UTC 15 0,088 0,049 0,037 0,058 34% 32% 6% 0% 28% 

1 1 1 1 1 1 24 UTC 16 0,090 0,038 0,025 0,051 70% 1% 12% 1% 17% 

1 1 1 1 1 1 24 UTC 17 0,074 0,044 0,030 0,049 81% 5% 5% 7% 2% 

1 1 1 1 1 1 24 UTC 18 0,070 0,040 0,033 0,048 69% 24% 2% 4% 1% 

1 1 1 1 1 1 24 UTC 19 0,064 0,036 0,029 0,043 71% 8% 2% 0% 19% 

1 1 1 1 1 1 24 UTC 20 0,073 0,041 0,039 0,051 27% 43% 21% 3% 6% 

1 1 1 1 1 1 24 UTC 25 0,078 0,030 0,025 0,044 16% 11% 24% 47% 3% 

1 1 1 1 1 1 24 UTC 30 0,072 0,035 0,028 0,045 14% 5% 8% 70% 3% 
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1 1 1 1 1 1 24 UTC 40 0,057 0,027 0,024 0,036 37% 32% 22% 6% 4% 

1 1 1 1 1 1 24 UTC 50 0,057 0,026 0,023 0,035 24% 15% 9% 48% 3% 

1 1 1 1 1 1 24 UTC 100 0,044 0,019 0,021 0,028 32% 38% 6% 18% 5% 

1 1 1 1 1 1,5 24 CET 6 0,132 0,096 0,053 0,094 23% 3% 28% 0% 45% 

1 1 1 1 1 1,5 24 CET 8 0,117 0,080 0,052 0,083 0% 12% 58% 17% 14% 

1 1 1 1 1 1,5 24 CET 10 0,119 0,078 0,063 0,087 7% 17% 59% 0% 16% 

1 1 1 1 1 1,5 24 CET 12 0,103 0,063 0,050 0,072 9% 1% 85% 1% 4% 

1 1 1 1 1 1,5 24 CET 14 0,114 0,060 0,054 0,076 16% 3% 65% 15% 1% 

1 1 1 1 1 2 24 CET 6 0,114 0,086 0,040 0,080 4% 39% 4% 1% 51% 

1 1 1 1 1 2 24 CET 8 0,101 0,081 0,052 0,078 5% 69% 19% 7% 0% 

1 1 1 1 1 2 24 CET 10 0,092 0,072 0,058 0,074 7% 40% 48% 5% 0% 

1 1 1 1 1 2 24 CET 12 0,090 0,062 0,040 0,064 5% 80% 3% 12% 1% 

1 1 1 1 1 2 24 CET 14 0,110 0,056 0,030 0,065 23% 54% 13% 8% 1% 

1 1 1 1 1,5 1 24 CET 6 0,132 0,096 0,053 0,094 23% 3% 28% 0% 45% 
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1 1 1 1 1,5 1 24 CET 8 0,117 0,080 0,052 0,083 0% 12% 58% 17% 14% 

1 1 1 1 1,5 1 24 CET 10 0,119 0,078 0,063 0,087 7% 17% 59% 0% 16% 

1 1 1 1 1,5 1 24 CET 12 0,103 0,063 0,050 0,072 9% 1% 85% 1% 4% 

1 1 1 1 1,5 1 24 CET 14 0,114 0,060 0,054 0,076 16% 3% 65% 15% 1% 

1 1 1 1 2 1 24 CET 6 0,124 0,092 0,049 0,088 3% 26% 5% 0% 65% 

1 1 1 1 2 1 24 CET 8 0,105 0,079 0,045 0,076 7% 57% 26% 10% 0% 

1 1 1 1 2 1 24 CET 10 0,091 0,067 0,048 0,069 10% 14% 68% 8% 0% 

1 1 1 1 2 1 24 CET 12 0,091 0,056 0,019 0,055 20% 12% 12% 52% 3% 

1 1 1 1 2 1 24 CET 14 0,112 0,053 0,024 0,063 35% 30% 20% 13% 2% 

1 1 1 1,5 1 1 24 CET 6 0,145 0,090 0,072 0,102 24% 0% 21% 19% 36% 

1 1 1 1,5 1 1 24 CET 8 0,118 0,076 0,076 0,090 14% 11% 7% 62% 6% 

1 1 1 1,5 1 1 24 CET 10 0,108 0,065 0,068 0,081 15% 7% 43% 34% 2% 

1 1 1 1,5 1 1 24 CET 12 0,106 0,051 0,053 0,070 12% 3% 47% 23% 15% 

1 1 1 1,5 1 1 24 CET 14 0,095 0,061 0,065 0,074 19% 14% 59% 6% 3% 
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1 1 1 2 1 1 24 CET 6 0,102 0,070 0,031 0,067 3% 22% 6% 65% 4% 

1 1 1 2 1 1 24 CET 8 0,085 0,096 0,093 0,091 39% 8% 51% 0% 2% 

1 1 1 2 1 1 24 CET 10 0,107 0,083 0,078 0,089 24% 6% 67% 3% 0% 

1 1 1 2 1 1 24 CET 12 0,098 0,054 0,037 0,063 69% 1% 28% 2% 1% 

1 1 1 2 1 1 24 CET 14 0,092 0,052 0,047 0,064 61% 3% 27% 4% 4% 

1 1 1,5 1 1 1 24 CET 6 0,099 0,073 0,052 0,074 0% 4% 27% 4% 64% 

1 1 1,5 1 1 1 24 CET 8 0,110 0,063 0,032 0,068 29% 5% 13% 20% 32% 

1 1 1,5 1 1 1 24 CET 10 0,102 0,054 0,026 0,061 7% 71% 4% 11% 8% 

1 1 1,5 1 1 1 24 CET 12 0,104 0,051 0,027 0,061 7% 50% 6% 4% 33% 

1 1 1,5 1 1 1 24 CET 14 0,105 0,048 0,029 0,061 20% 25% 7% 27% 21% 

1 1 2 1 1 1 24 CET 6 0,115 0,070 0,046 0,077 8% 1% 0% 3% 88% 

1 1 2 1 1 1 24 CET 8 0,090 0,062 0,049 0,067 12% 12% 58% 12% 6% 

1 1 2 1 1 1 24 CET 10 0,096 0,055 0,052 0,067 1% 1% 23% 58% 16% 

1 1 2 1 1 1 24 CET 12 0,101 0,051 0,054 0,069 6% 0% 47% 39% 8% 



70 
 

W
e

ig
h

t 
Lo

ad
 

W
e

ig
h

t 
So

la
r 

W
e

ig
h

t 
W

in
d

 

W
e

ig
h

t 
R

u
n

-o
f-

ri
ve

r 

W
e

ig
h

t 
P

u
m

p
ed

 

st
o

ra
ge

 

W
e

ig
h

t 

R
es

e
rv

o
ir

 

D
o

w
n

sa
m

p
lin

g 

(#
 h

o
u

rs
) 

Ti
m

e 

C
lu

st
er

s 

N
R

M
SD

 P
ri

ce
 

N
R

M
SD

 

G
en

er
at

io
n

 

N
R

M
SD

 C
o

st
 

A
ve

ra
ge

 o
f 

3
 

m
et

ri
cs

 N
R

M
SD

 

%
 N

R
M

SD
 C

o
st

 

20
16

 

%
 N

R
M

SD
 C

o
st

 

20
17

 

%
 N

R
M

SD
 C

o
st

 

20
18

 

%
 N

R
M

SD
 C

o
st

 

20
19

 

%
 N

R
M

SD
 C

o
st

 

20
20

 

1 1 2 1 1 1 24 CET 14 0,103 0,052 0,054 0,069 3% 6% 6% 62% 24% 

1 1,2 1 1 1 1 24 CET 6 0,101 0,086 0,063 0,083 4% 26% 4% 49% 16% 

1 1,2 1 1 1 1 24 CET 8 0,146 0,087 0,066 0,099 3% 4% 1% 36% 56% 

1 1,2 1 1 1 1 24 CET 10 0,116 0,067 0,056 0,080 11% 0% 6% 2% 81% 

1 1,2 1 1 1 1 24 CET 12 0,103 0,061 0,049 0,071 1% 1% 0% 32% 66% 

1 1,2 1 1 1 1 24 CET 14 0,096 0,053 0,041 0,063 2% 3% 27% 16% 52% 

1 1,2 1,2 1 1 1 24 CET 6 0,100 0,079 0,083 0,087 49% 1% 34% 9% 7% 

1 1,2 1,2 1 1 1 24 CET 8 0,111 0,071 0,065 0,082 8% 18% 68% 4% 2% 

1 1,2 1,2 1 1 1 24 CET 10 0,115 0,074 0,070 0,086 9% 6% 51% 0% 34% 

1 1,2 1,2 1 1 1 24 CET 12 0,114 0,050 0,035 0,067 8% 2% 20% 5% 64% 

1 1,2 1,2 1 1 1 24 CET 14 0,108 0,052 0,041 0,067 21% 13% 6% 44% 17% 

1 1,3 1,3 1 1 1 24 CET 6 0,085 0,074 0,053 0,071 1% 0% 2% 82% 15% 

1 1,3 1,3 1 1 1 24 CET 8 0,103 0,071 0,059 0,078 0% 22% 10% 51% 16% 

1 1,3 1,3 1 1 1 24 CET 10 0,101 0,065 0,053 0,073 2% 15% 6% 29% 49% 
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1 1,3 1,3 1 1 1 24 CET 12 0,089 0,051 0,044 0,061 21% 11% 2% 49% 16% 

1 1,3 1,3 1 1 1 24 CET 14 0,109 0,058 0,053 0,073 20% 21% 10% 35% 14% 

1 1,4 1,4 1 1 1 24 CET 6 0,118 0,084 0,058 0,087 5% 34% 49% 12% 0% 

1 1,4 1,4 1 1 1 24 CET 8 0,134 0,073 0,061 0,089 0% 21% 36% 36% 6% 

1 1,4 1,4 1 1 1 24 CET 10 0,101 0,069 0,068 0,079 0% 8% 86% 5% 0% 

1 1,4 1,4 1 1 1 24 CET 12 0,091 0,053 0,055 0,066 6% 8% 74% 4% 7% 

1 1,4 1,4 1 1 1 24 CET 14 0,075 0,049 0,045 0,056 2% 18% 39% 18% 24% 

1 1,5 1 1 1 1 24 CET 6 0,134 0,092 0,076 0,101 25% 2% 0% 16% 57% 

1 1,5 1 1 1 1 24 CET 8 0,104 0,075 0,043 0,074 9% 25% 14% 0% 52% 

1 1,5 1 1 1 1 24 CET 10 0,109 0,064 0,040 0,071 15% 6% 8% 4% 68% 

1 1,5 1 1 1 1 24 CET 12 0,090 0,051 0,026 0,056 13% 12% 23% 2% 49% 

1 1,5 1 1 1 1 24 CET 14 0,090 0,067 0,053 0,070 18% 28% 21% 10% 23% 

1 1,5 1,5 0,5 0,5 0,5 24 CET 6 0,137 0,080 0,060 0,092 14% 24% 1% 27% 35% 

1 1,5 1,5 0,5 0,5 0,5 24 CET 8 0,134 0,083 0,072 0,097 11% 0% 33% 45% 11% 
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1 1,5 1,5 0,5 0,5 0,5 24 CET 10 0,114 0,062 0,043 0,073 38% 48% 0% 8% 7% 

1 1,5 1,5 0,5 0,5 0,5 24 CET 12 0,112 0,056 0,052 0,074 29% 1% 35% 29% 6% 

1 1,5 1,5 0,5 0,5 0,5 24 CET 14 0,112 0,049 0,047 0,069 30% 3% 8% 59% 0% 

1 1,5 1,5 1 1 1 1 CET 1 0,445 0,349 0,353 0,382 59% 12% 17% 11% 1% 

1 1,5 1,5 1 1 1 1 CET 2 0,268 0,160 0,122 0,184 0% 6% 14% 58% 22% 

1 1,5 1,5 1 1 1 1 CET 3 0,238 0,125 0,105 0,156 37% 3% 0% 49% 11% 

1 1,5 1,5 1 1 1 1 CET 4 0,196 0,094 0,044 0,112 43% 6% 16% 8% 28% 

1 1,5 1,5 1 1 1 1 CET 5 0,165 0,080 0,056 0,100 23% 0% 9% 5% 63% 

1 1,5 1,5 1 1 1 1 CET 6 0,146 0,074 0,047 0,089 53% 12% 13% 0% 21% 

1 1,5 1,5 1 1 1 1 CET 7 0,141 0,067 0,032 0,080 74% 11% 15% 1% 0% 

1 1,5 1,5 1 1 1 1 CET 8 0,126 0,074 0,048 0,083 2% 56% 0% 38% 4% 

1 1,5 1,5 1 1 1 1 CET 9 0,139 0,073 0,051 0,088 2% 46% 8% 35% 9% 

1 1,5 1,5 1 1 1 1 CET 10 0,145 0,063 0,047 0,085 13% 47% 5% 30% 6% 

1 1,5 1,5 1 1 1 1 CET 11 0,134 0,063 0,051 0,083 0% 57% 6% 24% 13% 
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1 1,5 1,5 1 1 1 1 CET 12 0,121 0,058 0,029 0,069 41% 4% 27% 17% 10% 

1 1,5 1,5 1 1 1 1 CET 13 0,119 0,063 0,032 0,071 9% 1% 60% 26% 4% 

1 1,5 1,5 1 1 1 1 CET 14 0,122 0,056 0,032 0,070 27% 12% 2% 60% 0% 

1 1,5 1,5 1 1 1 1 CET 15 0,121 0,051 0,028 0,067 24% 16% 7% 53% 1% 

1 1,5 1,5 1 1 1 1 CET 16 0,121 0,050 0,019 0,064 15% 44% 13% 11% 16% 

1 1,5 1,5 1 1 1 1 CET 17 0,112 0,049 0,019 0,060 4% 59% 15% 0% 22% 

1 1,5 1,5 1 1 1 1 CET 18 0,112 0,051 0,033 0,065 0% 48% 47% 1% 4% 

1 1,5 1,5 1 1 1 1 CET 19 0,106 0,047 0,027 0,060 32% 44% 13% 9% 2% 

1 1,5 1,5 1 1 1 1 CET 20 0,112 0,049 0,033 0,065 23% 16% 58% 3% 0% 

1 1,5 1,5 1 1 1 1 CET 25 0,082 0,045 0,025 0,051 15% 0% 36% 45% 4% 

1 1,5 1,5 1 1 1 1 CET 30 0,056 0,044 0,031 0,044 1% 3% 2% 34% 60% 

1 1,5 1,5 1 1 1 1 CET 40 0,068 0,034 0,014 0,039 8% 9% 8% 34% 42% 

1 1,5 1,5 1 1 1 1 CET 50 0,076 0,028 0,007 0,037 28% 19% 0% 27% 26% 

1 1,5 1,5 1 1 1 1 CET 100 0,045 0,024 0,011 0,027 3% 52% 37% 0% 8% 
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1 1,5 1,5 1 1 1 24 CET 1 0,445 0,307 0,293 0,348 27% 0% 25% 12% 36% 

1 1,5 1,5 1 1 1 24 CET 2 0,184 0,152 0,112 0,149 28% 23% 15% 3% 30% 

1 1,5 1,5 1 1 1 24 CET 3 0,192 0,140 0,129 0,153 11% 43% 2% 8% 36% 

1 1,5 1,5 1 1 1 24 CET 4 0,180 0,115 0,102 0,132 30% 32% 0% 1% 37% 

1 1,5 1,5 1 1 1 24 CET 5 0,126 0,070 0,045 0,080 16% 4% 67% 13% 0% 

1 1,5 1,5 1 1 1 24 CET 6 0,117 0,059 0,043 0,073 11% 7% 58% 25% 0% 

1 1,5 1,5 1 1 1 24 CET 7 0,130 0,071 0,057 0,086 0% 0% 44% 25% 31% 

1 1,5 1,5 1 1 1 24 CET 8 0,103 0,060 0,040 0,067 0% 1% 31% 51% 17% 

1 1,5 1,5 1 1 1 24 CET 9 0,103 0,063 0,043 0,070 1% 0% 0% 83% 15% 

1 1,5 1,5 1 1 1 24 CET 10 0,087 0,056 0,025 0,056 1% 9% 43% 46% 1% 

1 1,5 1,5 1 1 1 24 CET 11 0,091 0,053 0,018 0,054 0% 3% 42% 54% 1% 

1 1,5 1,5 1 1 1 24 CET 12 0,092 0,059 0,044 0,065 0% 1% 13% 9% 76% 

1 1,5 1,5 1 1 1 24 CET 13 0,091 0,051 0,035 0,059 5% 0% 2% 44% 49% 

1 1,5 1,5 1 1 1 24 CET 14 0,088 0,049 0,033 0,057 15% 10% 1% 39% 36% 
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1 1,5 1,5 1 1 1 24 CET 15 0,090 0,050 0,034 0,058 3% 16% 30% 20% 31% 

1 1,5 1,5 1 1 1 24 CET 16 0,096 0,047 0,035 0,059 5% 16% 24% 16% 38% 

1 1,5 1,5 1 1 1 24 CET 17 0,097 0,044 0,031 0,057 1% 17% 2% 19% 62% 

1 1,5 1,5 1 1 1 24 CET 18 0,094 0,047 0,040 0,060 1% 37% 16% 2% 45% 

1 1,5 1,5 1 1 1 24 CET 19 0,084 0,044 0,032 0,053 3% 83% 5% 2% 7% 

1 1,5 1,5 1 1 1 24 CET 20 0,088 0,043 0,033 0,055 1% 43% 41% 3% 12% 

1 1,5 1,5 1 1 1 24 CET 25 0,091 0,043 0,042 0,059 13% 39% 33% 0% 15% 

1 1,5 1,5 1 1 1 24 CET 30 0,088 0,036 0,035 0,053 6% 35% 35% 5% 19% 

1 1,5 1,5 1 1 1 24 CET 40 0,068 0,025 0,022 0,038 17% 12% 25% 15% 31% 

1 1,5 1,5 1 1 1 24 CET 50 0,069 0,026 0,022 0,039 1% 9% 37% 16% 37% 

1 1,5 1,5 1 1 1 24 CET 100 0,035 0,018 0,016 0,023 4% 35% 8% 33% 20% 

1 1,6 1,6 1 1 1 24 CET 6 0,084 0,068 0,051 0,068 6% 46% 36% 11% 1% 

1 1,6 1,6 1 1 1 24 CET 8 0,115 0,075 0,076 0,089 9% 38% 4% 25% 24% 

1 1,6 1,6 1 1 1 24 CET 10 0,115 0,066 0,066 0,082 20% 46% 0% 22% 11% 
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1 1,6 1,6 1 1 1 24 CET 12 0,097 0,059 0,050 0,069 19% 63% 3% 2% 13% 

1 1,6 1,6 1 1 1 24 CET 14 0,096 0,037 0,026 0,053 29% 37% 18% 2% 14% 

1 1,7 1,7 1 1 1 24 CET 6 0,096 0,073 0,062 0,077 3% 18% 28% 48% 2% 

1 1,7 1,7 1 1 1 24 CET 8 0,136 0,071 0,054 0,087 4% 28% 13% 28% 27% 

1 1,7 1,7 1 1 1 24 CET 10 0,118 0,060 0,048 0,075 17% 0% 70% 3% 9% 

1 1,7 1,7 1 1 1 24 CET 12 0,128 0,068 0,063 0,086 13% 0% 69% 1% 17% 

1 1,7 1,7 1 1 1 24 CET 14 0,109 0,061 0,065 0,078 20% 1% 73% 6% 0% 

1 1,8 1,8 1 1 1 24 CET 6 0,088 0,070 0,064 0,074 5% 4% 68% 16% 6% 

1 1,8 1,8 1 1 1 24 CET 8 0,135 0,082 0,082 0,099 0% 15% 22% 3% 60% 

1 1,8 1,8 1 1 1 24 CET 10 0,137 0,080 0,086 0,101 4% 4% 44% 13% 34% 

1 1,8 1,8 1 1 1 24 CET 12 0,123 0,067 0,072 0,087 8% 5% 49% 12% 26% 

1 1,8 1,8 1 1 1 24 CET 14 0,107 0,051 0,045 0,068 22% 14% 51% 2% 11% 

1 2 1 1 1 1 24 CET 6 0,093 0,062 0,042 0,066 3% 8% 77% 11% 2% 

1 2 1 1 1 1 24 CET 8 0,119 0,083 0,065 0,089 0% 35% 32% 0% 32% 
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1 2 1 1 1 1 24 CET 10 0,122 0,084 0,076 0,094 31% 17% 32% 0% 20% 

1 2 1 1 1 1 24 CET 12 0,116 0,074 0,056 0,082 28% 12% 42% 2% 15% 

1 2 1 1 1 1 24 CET 14 0,112 0,068 0,058 0,079 43% 7% 6% 4% 39% 

1 2 2 1 1 1 24 CET 6 0,092 0,086 0,078 0,085 0% 9% 84% 7% 0% 

1 2 2 1 1 1 24 CET 8 0,093 0,068 0,048 0,070 6% 0% 49% 16% 29% 

1 2 2 1 1 1 24 CET 10 0,113 0,051 0,038 0,067 26% 11% 42% 13% 8% 

1 2 2 1 1 1 24 CET 12 0,113 0,070 0,079 0,087 15% 6% 74% 2% 4% 

1 2 2 1 1 1 24 CET 14 0,106 0,067 0,074 0,082 6% 15% 78% 1% 0% 

1,5 1 1 1 1 1 24 CET 6 0,146 0,102 0,058 0,102 6% 0% 5% 23% 66% 

1,5 1 1 1 1 1 24 CET 8 0,126 0,079 0,061 0,088 8% 2% 3% 74% 12% 

1,5 1 1 1 1 1 24 CET 10 0,095 0,053 0,029 0,059 23% 35% 0% 42% 0% 

1,5 1 1 1 1 1 24 CET 12 0,102 0,052 0,041 0,065 31% 18% 18% 12% 21% 

1,5 1 1 1 1 1 24 CET 14 0,106 0,054 0,048 0,069 48% 16% 3% 2% 30% 

1,5 1,5 1,5 1,5 1 1 24 CET 6 0,111 0,092 0,038 0,080 22% 8% 11% 15% 44% 
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1,5 1,5 1,5 1,5 1 1 24 CET 8 0,132 0,070 0,049 0,084 49% 3% 36% 1% 12% 

1,5 1,5 1,5 1,5 1 1 24 CET 10 0,131 0,073 0,060 0,088 52% 4% 8% 2% 34% 

1,5 1,5 1,5 1,5 1 1 24 CET 12 0,124 0,060 0,059 0,081 25% 23% 37% 6% 10% 

1,5 1,5 1,5 1,5 1 1 24 CET 14 0,117 0,052 0,049 0,072 54% 1% 26% 8% 10% 

2 1 1 1 1 1 24 CET 6 0,142 0,115 0,104 0,121 20% 1% 60% 7% 12% 

2 1 1 1 1 1 24 CET 8 0,130 0,091 0,068 0,096 0% 1% 47% 30% 23% 

2 1 1 1 1 1 24 CET 10 0,114 0,063 0,049 0,076 26% 2% 46% 8% 17% 

2 1 1 1 1 1 24 CET 12 0,092 0,059 0,050 0,067 6% 13% 46% 2% 33% 

2 1 1 1 1 1 24 CET 14 0,076 0,051 0,025 0,050 3% 0% 53% 5% 39% 

2 2 2 1 1 1 24 CET 6 0,118 0,089 0,064 0,090 37% 0% 33% 2% 28% 

2 2 2 1 1 1 24 CET 8 0,118 0,077 0,070 0,088 3% 8% 43% 2% 44% 

2 2 2 1 1 1 24 CET 10 0,092 0,066 0,053 0,070 1% 0% 77% 5% 17% 

2 2 2 1 1 1 24 CET 12 0,086 0,046 0,031 0,054 3% 1% 91% 4% 2% 

2 2 2 1 1 1 24 CET 14 0,085 0,048 0,034 0,056 0% 17% 75% 8% 0% 



79 
 

W
e

ig
h

t 
Lo

ad
 

W
e

ig
h

t 
So

la
r 

W
e

ig
h

t 
W

in
d

 

W
e

ig
h

t 
R

u
n

-o
f-

ri
ve

r 

W
e

ig
h

t 
P

u
m

p
ed

 

st
o

ra
ge

 

W
e

ig
h

t 

R
es

e
rv

o
ir

 

D
o

w
n

sa
m

p
lin

g 

(#
 h

o
u

rs
) 

Ti
m

e 

C
lu

st
er

s 

N
R

M
SD

 P
ri

ce
 

N
R

M
SD

 

G
en

er
at

io
n

 

N
R

M
SD

 C
o

st
 

A
ve

ra
ge

 o
f 

3
 

m
et

ri
cs

 N
R

M
SD

 

%
 N

R
M

SD
 C

o
st

 

20
16

 

%
 N

R
M

SD
 C

o
st

 

20
17

 

%
 N

R
M

SD
 C

o
st

 

20
18

 

%
 N

R
M

SD
 C

o
st

 

20
19

 

%
 N

R
M

SD
 C

o
st

 

20
20

 

2 2 2 2 1 1 24 CET 6 0,124 0,069 0,035 0,076 47% 13% 13% 9% 18% 

2 2 2 2 1 1 24 CET 8 0,122 0,070 0,049 0,081 3% 3% 92% 0% 2% 

2 2 2 2 1 1 24 CET 10 0,113 0,074 0,069 0,085 1% 0% 62% 3% 33% 

2 2 2 2 1 1 24 CET 12 0,117 0,077 0,084 0,093 10% 13% 59% 0% 18% 

2 2 2 2 1 1 24 CET 14 0,107 0,058 0,051 0,072 12% 12% 62% 14% 1% 

3 1 1 1 1 1 24 CET 6 0,124 0,121 0,093 0,113 44% 0% 36% 4% 16% 

3 1 1 1 1 1 24 CET 8 0,106 0,059 0,039 0,068 12% 78% 4% 5% 1% 

3 1 1 1 1 1 24 CET 10 0,122 0,094 0,068 0,094 15% 54% 2% 18% 10% 

3 1 1 1 1 1 24 CET 12 0,092 0,070 0,059 0,074 18% 16% 9% 37% 19% 

3 1 1 1 1 1 24 CET 14 0,093 0,060 0,048 0,067 29% 20% 1% 21% 28% 
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