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Abstract 

 
With the fast-growing of data-rich systems, dealing with complex decision 

problems is unavoidable. Normalization is a crucial step in most multi criteria 

decision making (MCDM) models, to produce comparable and dimensionless 

data from heterogeneous data. Further, MCDM requires data to be numerical 

and comparable to be aggregated into a single score per alternative, thus provid-

ing their ranking.  

Several normalization techniques are available, but their performance de-

pends on a number of characteristics of the problem at hand i.e., different nor-

malization techniques may provide different rankings for alternatives. Therefore, 

it is a challenge to select a suitable normalization technique to represent an ap-

propriate mapping from source data to a common scale. There are some attempts 

in the literature to address the subject of normalization in MCDM, but there is 

still a lack of assessment frameworks for evaluating normalization techniques.  

Hence, the main contribution and objective of this study is to develop an 

assessment framework for analysing the effects of normalization techniques on 

ranking of alternatives in MCDM methods and recommend the most appropriate 

technique for specific decision problems. The proposed assessment framework 

consists of four steps: (i) determining data types; (ii) chose potential candidate 

normalization techniques; (iii) analysis and evaluation of techniques; and (iv) se-

lection of the best normalization technique. To validate the efficiency and robust-

ness of the proposed framework, six normalization techniques (Max, Max-Min, 

Sum, Vector, Logarithmic, and Fuzzification) are selected from linear, semi-lin-

ear, and non-linear categories, and tested with four well known MCDM methods 

(TOPSIS, SAW, AHP, and ELECTRE), from scoring, comparative, and ranking 

methods. Designing the proposed assessment framework led to a conceptual 

model allowing an automatic decision-making process, besides recommending 

the most appropriate normalization technique for MCDM problems. Further-

more, the role of normalization techniques for dynamic multi criteria decision 
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making (DMCDM) in collaborative networks is explored, specifically related to 

problems of selection of suppliers, business partners, resources, etc. 

To validate and test the utility and applicability of the assessment frame-

work, a number of case studies are discussed and benchmarking and testimonies 

from experts are used. Also, an evaluation by the research community of the 

work developed is presented. The validation process demonstrated that the pro-

posed assessment framework increases the accuracy of results in MCDM deci-

sion problems.  

 

Keywords: Multi Criteria Decision Making, MCDM, Normalization, Dy-

namic MCDM, Data Fusion, Aggregation.  
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Resumo 

 

Com o rápido crescimento dos sistemas ricos em dados, lidar com 

problemas de decisão complexos é inevitável. A normalização é uma etapa 

crucial na maioria dos modelos de tomada de decisão multicritério (MCDM), 

para produzir dados comparáveis e adimensionais a partir de dados 

heterogéneos, porque os dados precisam ser numéricos e comparáveis para 

serem agregados em uma única pontuação por alternativa. Como tal, várias 

técnicas de normalização estão disponíveis, mas o seu desempenho depende de 

uma série de características do problema em questão, ou seja, diferentes técnicas 

de normalização podem resultar em diferentes classificações para as alternativas. 

Portanto, é um desafio selecionar uma técnica de normalização adequada para 

representar o mapeamento dos dados de origem para uma escala comum. 

Existem algumas tentativas na literatura de abordar o assunto da normalização, 

mas ainda há uma falta de estrutura de avaliação para avaliar as técnicas de 

normalização sobre qual técnica é mais apropriada para os métodos MCDM. 

Assim, a principal contribuição e objetivo deste estudo são desenvolver 

uma ferramenta de avaliação para analisar os efeitos das técnicas de 

normalização na seriação de alternativas em métodos MCDM e recomendar a 

técnica mais adequada para problemas de decisão específicos. A estrutura de 

avaliação da ferramenta proposta consiste em quatro etapas: (i) determinar os 

tipos de dados, (ii) selecionar potenciais técnicas de normalização, (iii) análise e 

avaliação de técnicas em problemas de MCDM, e (iv) recomendação da melhor 

técnica para o problema de decisão. Para validar a eficácia e robustez da 

ferramenta proposta, seis técnicas de normalização (Max, Max-Min, Sum, Vector, 

Logarithmic e Fuzzification) foram selecionadas - das categorias lineares, 

semilineares e não lineares-  e quatro conhecidos métodos de MCDM foram 

escolhidos (TOPSIS, SAW, AHP e ELECTRE). O desenho da ferramenta de 

avaliação proposta levou ao modelo conceptual que forneceu um processo 

automático de tomada de decisão, além de recomendar a técnica de normalização 



x 

 

mais adequada para problemas de decisão. Além disso, é explorado o papel das 

técnicas de normalização para tomada de decisão multicritério dinâmica 

(DMCDM) em redes colaborativas, especificamente relacionadas com problemas 

de seleção de fornecedores, parceiros de negócios, recursos, etc. 

Para validar e testar a utilidade e aplicabilidade da ferramenta de avaliação, 

uma série de casos de estudo são discutidos e benchmarking e testemunhos de 

especialistas são usados. Além disso, uma avaliação do trabalho desenvolvido 

pela comunidade de investigação também é apresentada. Esta validação 

demonstrou que a ferramenta proposta aumenta a precisão dos resultados em 

problemas de decisão multicritério. 

 

Palavras-chave: Tomada de decisão multicritério, MCDM, normalização, 

MCDM dinâmico, fusão de dados, agregação. 
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1 Introduction 

This chapter introduces the main topic of this research. The problem state-

ments and motivations to do this research are described and then the research 

question and related hypothesis are explained as well. The summary of the re-

search method and adopted works from the literature are presented shortly. The 

outline of this dissertation ends this chapter. 

 

1.1 Problem Statement and Motivation 

Human beings use multi-criteria decision-making methods (MCDM), 

sometimes also called multiple attribute decision-making (MADM), in many 

daily activities to solve decision problems and find the best decision, in face of 

several criteria and alternatives (Zavadskas and Turskis, 2010). A multi-criteria 

decision-making (MCDM) problem can be defined by a decision matrix, com-

posed of a finite set of alternatives Ai (i=1, …, m), a set of criteria Cj (j=1,…, n), 

the relative importance of the criteria (or weights) Wj, and the matrix cell ele-

ments, rij, representing the rating for  alternative Ai with respect to criteria Cj 

(Jahan et al., 2016; Triantaphyllou, 2000). Each criterion may be measured in dif-

ferent units and can be expressed either as a qualitative or quantitative value, for 

example, size (qualitative), degrees, kilograms or meters, which is an obstacle for 

the aggregation/ranking process (Zavadskas and Turskis, 2010). Hence, there is 

a need to use normalization to prepare dimensionless and comparable criteria 

1 
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values to allow their aggregation into a final score (Jahan et al., 2016; 

Triantaphyllou, 2000; Zavadskas and Turskis, 2010).  

Summarizing, the first step for modeling and applying most MCDM meth-

ods, to solve decision problems, is to choose a suitable normalization technique 

for the problem at hand. There are several normalization techniques introduced 

in the literature. Jahan and Edwards (2015) identified thirty-one normalization 

methods for transforming raw data into dimensionless criteria to be used in 

MCDM decision problems. However, so far, there is no consensus in the litera-

ture about which normalization technique is more suitable for many well-known 

MCDM methods (Vafaei et al., 2015). The process of normalization maps criteria 

values into the interval [0-1] by keeping approximately the same magnitude, so, 

different normalization techniques may address different ranking for alterna-

tives. Thus, it causes deviation from initial ordering/ranking (Chatterjee and 

Chakraborty, 2014). In other words, if the normalization technique is not suitable 

for a specific decision problem or for the chosen MCDM method, the best deci-

sion solution may be overlooked (Chatterjee and Chakraborty, 2014; Vafaei et al., 

2018a). Therefore, the idea of recommending appropriate normalization tech-

niques for usage with MCDM methods will improve the accuracy of decision 

solutions.    

There are many performance metrics to assess classification problems (see 

for example (Eftekhary et al., 2012) but unfortunately, there are very few studies 

on assessing normalization techniques for MCDM methods and the question of 

how to choose and recommend the best technique, i.e., the one which better rep-

resents the input/raw data, still remains. For instance, Chakraborty and Yeh 

(2007) explored the effects of four normalization techniques (vector, Max-Min, 

Max, and Sum) in the SAW method, using a Ranking Consistency Index (RCI), 

to assess the best normalization technique. In another study, Celen (2014) dis-

cussed the impacts of four normalization techniques (Vector, Max-Min, Max and 

Sum) in the TOPSIS method and evaluated the suitability of these techniques by 

using consistency conditions. There are other contributions on assessing normal-

ization techniques in MCDM which will be explained in the next chapter.  

Although related approaches can be found in the literature, there is a lack 

of a comprehensive assessment framework that manages the process of choosing 
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the best normalization technique for MCDM decision problems. So, this is the 

main motivation for this research. Specifically, the motivation for carrying out 

this study includes three important issues, listed below (Vafaei et al., 2016a):  

✓ The crucial importance of data normalization for decision making prob-

lems where we need to fuse/aggregate multiple data to obtain a final score 

per alternative. 

✓ The absence of a general assessment framework to recommend the best 

normalization technique for each well-known MCDM method. 

✓ The fact that there are very few research studies in the literature about 

data normalization and their effects on MCDM decision problems. 

In summary, the main aim of this thesis is to develop an assessment frame-

work to evaluate different normalization techniques, using several metrics, and 

to recommend appropriate techniques for decision makers to handle MCDM 

problems.  

 

1.2 Research Question and Hypothesis 

As mentioned above, there are few studies about normalization techniques 

for MCDM methods, and most methods use the simple 1/N (where N is the big-

gest value for one criterion), without further consideration on how it might affect 

the final ranking, if other normalization technique is used instead of it. Therefore, 

the general open question to be answered in this thesis, is “which are the best 

normalization techniques for well-known MCDM methods?”. Specifically, in this 

thesis we will try to answer the following research question: 

 
 

In order to better analyze, interpret and answer the above research ques-

tion, some sub-research questions require attention, as follows: 

What are the characteristics and different steps of an evaluation framework 
to assess and recommend appropriate normalization techniques for well-
known MCDM methods, namely SAW, TOPSIS, AHP, and ELECTRE? 
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1. How can we effectively enhance the robustness of the assessment 

framework? 

2. How can we classify normalization techniques based on their effects 

and behaviors on normalized values? 

3. What are the effects of different input data on normalized values and 

thereby on ranking of alternatives in decision problems? 

4. Which are the suitable metrics for building an assessment frame-

work?  

5. Which metrics guarantee covering several categories of mathemati-

cal measurements? 

6. How to combine the results from different metrics to recommend the 

best normalization technique? 

 
The following hypothesis is proposed to address the mentioned research ques-
tion: 
 

 
 

1.3 Research Method 

This section discusses the research method adopted to answer the research 

questions. We opt for a classical research method (Camarinha-Matos, 2015), 

which consists of seven steps , as illustrated in Figure 1.  

 

If we build a strong assessment framework to identify the best normaliza-

tion technique for decision problems, using well-known MCDM methods, 

then we can ensure more robust results for ranking alternatives in deci-

sion problems. In other words, this assessment framework should support 

decision makers by recommending which normalization technique is 

more appropriate to solve their decision problems. 
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Figure 1: Classical Research Methodology adopted from (Camarinha-Matos, 2015). 

 

Specifically, the steps of this classical research method when tailored for 

this thesis research work are the following: 

Step 1- Research Question / Problem: Defining the research question con-

sidering the role of normalization in decision problems and motivation to formu-

late the research questions.    

Step 2- Background / Observation: Collecting background information 

about the problem. In this observation some main topics are addressed, namely: 

multi criteria decision making (MCDM) methods, the role of normalization tech-

niques in MCDM, taxonomy of MCDM methods and normalization techniques, 

different metrics for evaluating normalization techniques in MCDM problems, 

and glance at dynamic systems in collaborative networks. 

Step 3- Formulate Hypothesis: Formulating potential solutions, to build 

the hypothesis, to answer the research question based on previous knowledge, 

state of the art, and gathered data. 

Step 4- Design Experiment: Three evolutionary phases are defined to de-

velop the proposed hypothesis, which leads to design the conceptual model of 

the assessment framework. 

Step 5- Test Hypothesis / Collect Data: Different validation scenarios are 

applied to test and validate the proposed assessment framework, namely: case 

Step1: Research Question/Problem

Step2: Background/Observation

Step3: Formulate Hypothesis

Step4: Design Experiment

Step5: Test Hyphotesis/Collect Data

Step6: Interpret/Analyse Result

Step7: Publish Results
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studies (with different scaling), benchmarking, and reviewers' testimonies. The 

results are summarized to support interpretation. 

Step 6- Interpret / Analyse Results: Analysis and interpretation of obtained 

results from validation scenarios for the proposed framework.  

Step 7- Publish findings: Publishing of intermediate findings were done 

since the beginning of this research work with the aim to obtain expert comments 

for the next thesis phases developments. The research work was published in 

indexed and recognized international journals as well as peer-reviewed confer-

ences. 

 

1.4 Thesis Outline 

This thesis is organized into five chapters. A brief overview of each chapter 

is: 

Chapter 1- Introduction: Describes the problem statements and motiva-

tions for the research work and defines the research question and hypothesis. 

Then the research method is described and the chapter finishes with the outline 

of this thesis.  

Chapter 2- Background and Literature Review: This chapter describes the 

literature background for this research, as well as the required information to 

address challenges related to this thesis. It introduces and discusses the main 

concepts of multi criteria decision making (MCDM), the main existing normali-

zation techniques and their role in MCDM, and presents a taxonomy for MCDM 

methods and other for normalization techniques. The literature review also dis-

cusses previous works about evaluation of normalization techniques in MCDM 

and recommendations of normalization techniques for specific problems.  Fur-

ther, some insights about dynamic systems and collaborative networks are intro-

duced.  

Chapter 3- Assessment Framework: This chapter presents and discusses 

the proposed framework and uses case studies and illustrative examples to en-

hance readability and deepen the explanation of the used methods. This chapter 

also describes well-known assessment tools and metrics, with the reasoning for 

selecting them to develop the proposed assessment framework. Furthermore, the 
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framework's conceptual model for recommending the best normalization tech-

nique in MCDM methods and its respective automatic decision process, are ad-

dressed. 

Chapter 4- Evaluation and Validation:  This chapter discusses the valida-

tion and testing process of the proposed assessment framework to recommend 

the best normalization technique in MCDM method. The evaluation's method 

focuses on case studies, benchmarking, and expert testimonies; as well as ac-

cepted research work by the research community, such as panels, presentations 

and publications.  

Chapter 5- Conclusion and Future Work: This chapter includes the main 

findings and analysis of the obtained results using the proposed assessment 

framework. Also, this chapter concludes this thesis research work and indicates 

open issues for future research. 

  



28 

 

 

  
 



29 

 

 

2 Background and Literature Review 

This chapter provides a concise literature review on established approaches 

as well as the state-of-the-art research on multi-criteria decision making (MCDM) 

and normalization techniques. It is organized as follows: Section 2.1 introduces 

the underlying concepts of decision making and discusses the background of 

multi-criteria decision making (MCDM) methods as well as their taxonomy. Sec-

tion 2.2 introduces dynamic multi criteria decision making and collaborative net-

works. Section 2.3 presents and discusses existing normalization techniques, then 

it introduces a taxonomy for normalization techniques, explored in this thesis, 

and finishes with a review of previous works about evaluation of normalization 

techniques in MCDM methods. 

 

2.1 Multiple Criteria Decision Making (MCDM)  

 

2.1.1 Overview and taxonomy 

Everybody makes decisions in their daily lives, as for example: “Should I 

take an umbrella today”? “Where should I go for lunch”? To make decisions we 

need access to information (or data) and to reach a decision we need to combine 

the retrieved data (e.g. prices and service of potential restaurants for having 

lunch) to obtain a final score for the candidate decision alternatives 

(Triantaphyllou, 2000).  

2 
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In general, the aim of MCDM (sometimes also called Multiple Attribute De-

cision Making - MADM) is to select the best decision alternative, i.e. the one with 

the highest degree of satisfaction for all relevant attributes or criteria (Kazimieras 

Zavadskas et al., 2014; Ribeiro, 1996). Decision makers' goals, preferences, alter-

natives and outcomes could be represented by  five components of any MCDM 

problem, as described below (Kumar et al., 2017; San Cristobal Mateo, 2012; 

Triantaphyllou, 2000; Wang et al., 2009; Yoon and Hwang, 1995): 

Alternative: The set of candidate solutions for any decision-making problem. 

Criteria: the set of independent attributes/elements chosen to rate the alter-

natives. 

Units: Criteria may be expressed in different units, so, usage of normaliza-

tion techniques is obligatory to ensure comparable and dimensionless units for 

rating and ranking all criteria/attributes in decision making problems. 

Weights: The relative importance of each criterion is expressed by a weight. 

It may be assigned directly by analysts or decision makers or by using trade-off 

methods. 

Decision Matrix: it is a graphical representation for decision problems, 

where columns include the set of criteria and rows depict alternatives and the 

cells include the score for each criterion per alternative.  

𝐷 = [

𝑟11 ⋯ 𝑟1𝑚

⋮ ⋱ ⋮
𝑟𝑛1 ⋯ 𝑟𝑛𝑚

] (2-1) 

Where i=1,..,m denotes the alternatives and j=1,…,n refers to the attrib-

utes/criteria; rij represents value of the jth attribute/criteria related to ith alterna-

tive. 

The main goal of MCDM methods is to help decision makers evaluate real-

word situations based on qualitative/quantitative criteria/objectives in cer-

tain/uncertain/ risky environments, namely to find the most suitable course of 

action/choice/strategy/policy among several available options (Kazimieras 

Zavadskas et al., 2014). Usually, MCDM methods could be classified in two major 

categories: Multi Attribute Decision Making (MADM) - used in discrete prob-
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lems; and Multi Objective Decision Making (MODM) – used in continuous prob-

lems (see for example:  (Belton and Stewart, 2002; Chen and Hwang, 1992; 

Hayashi, 2000; Kazimieras Zavadskas et al., 2014; Korhonen et al., 1992; Ribeiro, 

1996; Zimmermann, 1986; Zimmermann and Sebastian, 1994). Figure 2 depicts 

this general classification of MCDM. 

 

 

Figure 2: Broad classification of MCDM methods (adopted from (Kazimieras Zavadskas et 

al., 2014)) 

 

MODM methods are utilized when the number of alternatives is within a 

domain (continuous domain) and alternatives are non-predetermined, i.e. the 

choice is made within a limited continuous space of alternatives. The goal of 

MODM is to find the optimal alternative/objective by considering a set of con-

straints and a set of quantifiable objectives (Jahan and Edwards, 2013; Kazimieras 

Zavadskas et al., 2014). 

On the other hand, MADM methods assume a limited set of alternatives 

from where the best one will be selected, by comparing the alternatives with re-

spect to each criteria (attributes) (Kumar et al., 2017).  In general, MADM meth-

ods include a pre-defined set of criteria to be assessed (i.e., rating process) and 

then rank (order) the pre-defined set of alternatives. 

Other differences between these two types of MCDM methods are summa-

rized in the Table 1. 
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Table 1: Comparison of MODM and MADM approaches (adopted from  (Malczewski, 

1999; Mendoza and Martins, 2006)) 

Criteria for comparison MODM MADM 

   

Objectives defined Explicitly Implicitly 

Criteria/Attributes defined Implicitly Explicitly 

Constraints defined Explicitly Implicitly 

Alternatives defined Implicitly Explicitly 

Number of alternatives Continuous domain Discrete domain 

Decision maker’s control Significant Limited 

Decision modelling paradigm Process-oriented Outcome-oriented 

Relevant to Design/search Evaluation/choice 

 

It should be noted that in this thesis we use the MCDM acronym instead of 

MADM because most literature does not distinguish MCDM and MADM and 

just uses the general MCDM nomenclature for discrete decision problems. Fur-

thermore, we use this form because MCDM acronym is more commonly known 

in the addressed research area.  

As mentioned above, the goal of MCDM methods is to support decision 

makers to make the best decision possible, based on pre-selected alternatives and 

criteria with relative  associated weights (Yoon and Hwang, 1995). Usually, 

MCDM methods define the priority of alternatives by using mathematical algo-

rithms based on experts' judgments to rank alternatives (Triantaphyllou, 2000). 

MCDM methods are applied in a wide range of problems such as financial appli-

cation, software engineering, sports, e-business, site selection, supplier selection, 

etc. (see for example: (Ahmad and Laplante, 2006; Chen and Hwang, 1992; 

Golden et al., 1989; Lee and Kozar, 2006; Mead, 2006; Pais et al., 2010; Srdjevic, 

2007)).  

There are many different MCDM methods proposed in the literature 

(Cinelli et al., 2020; Hwang and Yoon, 1981b; Tzeng and Huang, 2011; Yoon and 

Hwang, 1995)  and Figure 3 shows a summarized taxonomy by the type of logical 

representation methods (from (Ribeiro et al., 2011)). As Figure 3 depicts MCDM 
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methods can be classified into two main categories Compensatory and Non-

Compensatory methods. The Non-compensatory category can be sub-divided in 

three MCDM methods: Dominance, MaxMin, and MaxMax. Compensatory 

methods can be sub-divided in further three sub-classes:  Scoring, Ordering, and 

Comparative methods. And the compensatory sub-class includes: (1) Weighted 

Average, Weighted Product, and Weighted Aggregated Sum Product Assess-

ment Method (WASPAS) methods which belong to the Scoring sub-class; (2) 

TOPSIS, VIKOR, and Lexicographic methods, which belong to Ranking sub-

class; and (3) AHP and ELECTRE, which belong to the Comparative sub-class.  

 

 

Figure 3: Taxonomy of MCDM methods (adapted from (Ribeiro et al., 2011)) 

 

The main advantages of using compensatory methods is their ability to al-

low trade-offs between good and bad performance of different criteria, through 

compensation between those two types of criteria (Bhole and Deshmukh, 2018). 

For instance, in a car selection problem, the poor performance of internal design 

of the car could be compensated by good performance of fuel consumption. 

Bhole and Deshmukh (2018) stated about compensatory methods: "The mathe-

matical calculation of MCDM can give better decision for one criterion and poor 

for another criterion this is an obligatory thing". Most well-known MCDM meth-

ods belong to this high-level compensatory category, so, the focus of this thesis 
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is on compensatory methods and from each sub-class (scoring, raking and com-

parative) at least one MCDM method is chosen to evaluate their most adequate 

normalization procedure. In summary, the chosen MCDM methods to be studied 

in this thesis are: Sum Weighted Average (which is often known as Simple Ad-

ditive Weighting (SAW) method), TOPSIS, AHP, and ELECTRE. A brief expla-

nation about the chosen four MCDM methods (SAW, TOPSIS, AHP, ELECTRE) 

is described below. Also, a brief overview of other relevant methods namely VI-

KOR, WP, and WASPAS is mentioned in the following.   

 

2.1.2 MCDM Scoring Methods: -Simple Additive Weighting (SAW) 

The Simple Additive Weighting (SAW) method was first defined by 

Churchman and Ackoff (1945) for the portfolio selection problem. SAW is now-

adays  the most well-known and widely used method in dealing with multiple 

criteria decision problems (Bendra Wardana et al., 2020; Tzeng and Huang, 2011; 

Yoon and Hwang, 1995; Zhou et al., 2006). The general SAW method includes the 

following steps: 

Step 1: Define a decision matrix (Equation (2-1)).  

Step 2: Normalize the criteria scores.  

Step 3: Calculate all alternatives' rating by aggregating the criteria scores 

for each alternative. 

𝐴𝑉𝑖 = ∑ 𝑤𝑗  𝑛𝑖𝑗

𝑛

𝑗=1

 (2-2) 

 

where nij are the normalized values per alternative, wj is the weight of cri-

terion j, and j =1,…,n and i = 1,…,m. 

 

2.1.3 MCDM Ranking methods: Technique for Order of Preference by Simi-

larity to Ideal Solution (TOPSIS) 

TOPSIS is a technique for order performance by similarity to an ideal solu-

tion, developed by Hwang and Yoon (1981b) and it is one of the most well-known 

MCDM methods. It ranks alternatives based on the shortest distance from a pos-

itive ideal solution (PIS) and the farthest distance from a negative ideal solution 
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(NIS). PIS is the most beneficial and lowest cost of alternatives and NIS is the 

lowest benefit and highest cost (Cheng et al., 1999). TOPSIS is a classical MCDM 

method used in many different areas such as Supply Chain Management and 

Logistics; Design, Engineering and Manufacturing Systems; Business and Mar-

keting Management; Health, Safety and Environment Management, and so forth 

(Alimoradi et al., 2011; Behzadian et al., 2012; Kahraman et al., 2009; Khorshidi 

and Hassani, 2013; Krohling and Campanharo, 2011; Kwong and Tam, 2002; 

Mahdavi et al., 2008; Meshram et al., 2020). In general, the TOPSIS method in-

cludes the following steps (Joshi et al., 2011; Tzeng and Huang, 2011; Yoon and 

Hwang, 1995): 

Step 1: Define the decision matrix (Equation (2-1)).  

Step 2: Normalize the scores per criterion. The preferred normalization 

technique for TOPSIS method is Vector normalization and the formula is below. 

      𝑛𝑖𝑗 =
𝑟𝑖𝑗

√∑ 𝑟𝑖𝑗
2𝑛

𝑗=1

 (2-3) 

where j =1,…,n; and i = 1,…,m. 

Step3: Calculate the weighted normalized scores in the decision matrix by 

multiplying the normalized criterion values by its associated weight: 

      𝑉𝑖𝑗 = 𝑤𝑗  𝑛𝑖𝑗 (2-4) 

where wj represents the weight of the jth criterion and nij is the normalized 

value of the ith alternative related to the jth criterion. 

Step 4: Determine the positive ideal solution (PIS) and negative ideal solu-

tion (NIS). 

PIS = {𝑉1
+, … , 𝑉𝑛

+} = {(𝑀𝑎𝑥 𝑉𝑖𝑗|𝑗𝜖𝐽), (𝑀𝑖𝑛 𝑉𝑖𝑗|𝑗𝜖𝐽′)} 

NIS = {𝑉1
−, … , 𝑉𝑛

−} = {(𝑀𝑖𝑛 𝑉𝑖𝑗|𝑗𝜖𝐽), (𝑀𝑎𝑥 𝑉𝑖𝑗|𝑗𝜖𝐽′)} 
(2-5) 

where j=1,…,n and J represents the positive factors and 𝐽′ are the negative 

factors (e.g., in the car selection example, fuel consumption and price are nega-

tive factors or criteria and comfort and safety are positive criteria, so, we should 

minimize the Vij for PIS and maximize Vij for NIS, while comfort and safety are 

positive criteria and we should maximize Vij for PIS and minimize Vij for NIS.) 
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Step 5: Calculate the distances of all alternatives to the positive ideal solu-

tion (𝐷𝑖
+) and to the negative ideal (𝐷𝑖

−) solution. 

𝐷𝑖
+ = √∑ (𝑉𝑖𝑗 − 𝑉𝑗

+)2𝑛
𝑗=1      

𝐷𝑖
− = √∑ (𝑉𝑖𝑗 − 𝑉𝑗

−)2𝑛
𝑗=1      

(2-6) 

Step 6: Calculate the relative closeness of each alternative as follow: 

𝐶𝑖
∗ =

𝐷𝑖
−

𝐷𝑖
++𝐷𝑖

−   (2-7) 

where C*i relies between 0 and 1 and the higher value corresponds to better 
performance. 
 

2.1.4 MCDM Comparative Methods: Analytic Hierarchy Process (AHP) 

The Analytic Hierarchy Process (AHP) was introduced by Saaty (1977, 

1980) to solve unstructured problems, mostly in economics, social sciences, and 

management (Cheng et al., 1999).  For example, AHP has been used in a vast 

range of problems from simple ones (e.g. selecting a school) to harder ones (e.g. 

allocating budgets and energy domains) (Cheng et al., 1999). When applying the 

AHP method, the decision maker has to structure the decision problem and break 

it into a hierarchical top-down process. Then, he/she will perform a pairwise 

matrix comparison of criteria using a [1-9] scale (corresponding to semantic in-

terpretations such has “A is much more important than B” regarding a criterion). 

Then a normalization is performed, dividing each criterion score per its sum (col-

umn). After, the rating of criteria (in AHP terminology denoted as priorities) is 

determined using either Eigen vectors or a simplified version with a weighted 

sum (SAW)  (Gaudenzi and Borghesi, 2006; Zahedi, 1986). AHP involves five 

main steps (Tzeng and Huang, 2011; Yoon and Hwang, 1995):  

Step 1: Decompose the problem into a hierarchical structure;  

Step 2: Employ pairwise comparisons to establish the priority amongst cri-

teria. 

Notice that, a pairwise comparison is the process of comparing the relative 

importance, preference, or likelihood of two elements (objectives) with respect to 

another element (the goal). Pairwise comparisons are carried out to establish pri-

orities. Decision elements at each hierarchy level are compared pairwisely and 

then the reciprocal matrix is completed.  
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Step 3: Determine the logical consistency and if the consistency index CI> 

10%, revise the pairwise classifications until the consistency index is below 10%. 

When using AHP, we may face inconsistent judgments of input data which may 

cause some bad effects on the decision process. For example, A1 may be preferred 

to A2 and A2 to A3, but A3 may be preferred to A1. To deal with such situations, 

Saaty (Saaty, 1980) defined a measure of deviation that is called a consistency 

index as shown in equation (2-8):  

𝐶𝐼 =
𝜆𝑚𝑎𝑥 − 𝑁

𝑁 − 1
 (2-8) 

 

Where N is the dimension of the matrix and λmax is the largest eigenvalue 

of the matrix A. Saaty (1980) suggested that the value of the CI should not exceed 

0.1 for a confident results. 

Step 4: Estimate the relative weights by combining the individual subjective 

judgments of a team of decision makers. We can use the eigenvalue method to 

estimate the relative weights of the decision elements. In order to estimate the 

relative weight of the decision elements in a matrix, we can use the formula 

(Tzeng and Huang, 2011):  

𝐴. 𝑊 = 𝜆𝑚𝑎𝑥 (2-9) 

Where W is the weight of criteria and λmax is the largest eigenvalue of the 

decision matrix A. 

Step 5: Determine the priority of alternatives by aggregating relative 

weights obtained by combining the criterion priorities and priorities of each de-

cision alternatives relative to each criterion.  

Since in our work we discuss the suitability of normalization techniques for 

the AHP method, we will only focus on step 4 and 5 of AHP. Step 4 needs nor-

malizing process and using different normalization techniques leads to different 

ranking of alternatives in step 5. 
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2.1.5 MCDM Comparative methods: ELimination Et Choice Translating RE-

ality (ELECTRE) 

ELimination Et Choice Translating REality (ELECTRE) was first devised 

by B. Roy (1968). It is based on outranking relations and dichotomizing pre-

ferred and non-preferred alternatives. ELECTRE finds outranking relationships, 

then renders a set of preferred alternatives by forming a kernel (Tzeng and 

Huang, 2011). A variety of ELECTRE methods, such as ELECTRE I, II, III, IV, IS 

and TRI were developed for different purposes (Tzeng and Huang, 2011). How-

ever, each type is based on the same concept, although operating in different 

ways. 

This method uses concordance and discordance representing the satisfac-

tion or dissatisfaction of the decision maker. In this study we use  ELECTRE I 

method formalization (Tzeng and Huang, 2011; Yoon and Hwang, 1995), which 

includes the following steps: 

Step 1: Define the decision matrix (Equation (2-1)).  

Step 2: Normalize the values of the decision matrix. The preferred normal-

ization technique for the ELECTRE method is Vector (please see equation (2-3)). 

In this thesis, different normalization techniques to be used and their effects on 

ELECTRE method are analysed. 

Step 3: Calculate the weighted normalized decision matrix (𝑣𝑖𝑗) by multi-

plying the normalized decision matrix by its associated weights. 

      𝑣𝑖𝑗 = 𝑤𝑗  𝑛𝑖𝑗 (2-10) 

where wj represents the weight of the jth criterion and nij is the normalized 

value of the ith alternative related to the jth criterion. 

Step 4: Determine the concordance (C) and discordance (D) sets for each 

pair of alternatives Ap and Aq using the formula below: 

𝐶(𝑝, 𝑞) = {𝑗|𝑣𝑝𝑗 ≥ 𝑣𝑞𝑗} 

𝐷(𝑝, 𝑞) = {𝑗|𝑣𝑝𝑗 < 𝑣𝑞𝑗} 
(2-11) 

It should be mentioned that 𝑣𝑝𝑗  and 𝑣𝑝𝑗 are the weighted normalized value 

of alternative Ap and Aq with respect to the jth criterion. In other words, C( p, q) is 
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the collection of criteria where Ap is better than or equal to Aq and D( p, q) is the 

collection of criteria where Ap is worse than Aq.  

Step 5: Calculate the concordance and discordance indexes. Each concord-

ance and discordance set is measured by concordance (Cpq) and discordance (Dpq) 

indices as below: 

𝐶𝑝𝑞 = ∑ 𝑤𝑗∗

𝑗∗

 

𝐷𝑝𝑞 =
∑ |𝑣𝑝𝑗+ − 𝑣𝑞𝑗+|𝑗+

∑ |𝑣𝑝𝑗 − 𝑣𝑞𝑗|𝑗

 

(2-12) 

Where j* and j+ are attributes contained in the concordance set C(p, q) and 

discordance set of  D( p, q) respectively. Also, 𝑣𝑝𝑗+  and 𝑣𝑞𝑗+  are weighted normal-

ized values of alternative Ap and Aq with respect to the jth criterion in discordance 

set of  D( p, q); and  𝑣𝑝𝑗  and 𝑣𝑝𝑗 are the weighted normalized value of alternative 

Ap and Aq with respect to the jth criterion in concordance set of  C( p, q). Moreover, 

𝑤𝑗∗ is the weight of criterion j in concordance set of C( p, q). 

Step 6: Indicate outranking relationships. ELECTRE shows that alternative 

Ap is over the alternative Aq when: 

𝐶𝑝𝑞 ≥ 𝐶̅ and 𝐷𝑝𝑞 < �̅� (2-13) 

Where, 𝐶̅ and �̅� are the averages of Cpq and Dpq. 

In other words, a higher concordance index Cpq and a lower discordance 

index Dpq cause stronger dominance relationship for the alternative Ap over the 

alternative Aq.  

Step 7: Calculate the net concordance (Cnet) and net discordance (Dnet) in-

dexes using following formula: 

𝐶𝑝 = ∑ 𝐶𝑝𝑘

𝑚

𝑘=1
𝑘≠𝑝

− ∑ 𝐶𝑘𝑝

𝑚

𝑘=1
𝑘≠𝑝

 

𝐷𝑝 = ∑ 𝐷𝑝𝑘

𝑚

𝑘=1
𝑘≠𝑝

− ∑ 𝐷𝑘𝑝

𝑚

𝑘=1
𝑘≠𝑝

 

(2-14) 
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Cp measures the degree of dominance of Ap with respect to the other alter-

natives. Also, Ap measures the relative weakness of alternative Ap with respect 

to the other alternatives.  

The final selection and sorting of alternatives is dependent on holding both 

the maximum Cp and the minimum Dp indexes. If both indexes are not satisfied, 

the alternative with highest average rank could be considered as the best alter-

native. 

 

2.1.6 Other relevant MCDM methods 

There are some other MCDM methods in the literature that are quite well-

known namely VIKOR, WP, and WASPAS. Figure 3 shows that VIKOR belongs 

to ranking classification, and WP and WASPAS are classified as scoring methods. 

It should be noticed that we did not focus on these three methods and just used 

VIKOR in the small case study in section 3.1.1.3 and WASPAS in section 4.2.2.2. 

Also, WP is used by one of the mentioned paper in benchmarking part in section 

4.2.4.4. So, we prefer to have a brief description of these three well-known meth-

ods in this thesis in the following. 

 

 VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) 

The VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) 

method was developed by Opricovic (1998) for multi criteria optimization of 

complex systems. This method calculates the compromise ranking list, the com-

promise solution, and the weight stability intervals which lead to rank and select 

alternatives when there are conflicts between criteria. The VIKOR method 

measures the closeness to the ideal solution (Tzeng and Huang, 2011). 

Step 1: Define decision matrixes (Equation (2-1)).  

Step 2: Normalize the value of decision matrixes. In this thesis, different 

normalization techniques to be used and their effects on VIKTOR method are 

analyzed. 

Step 3: Calculate the positive ideal solution (𝑓𝑖
∗) and the negative ideal so-

lution (𝑓𝑖
−). 

f𝑗
∗ = {(𝑀𝑎𝑥 𝑓𝑖𝑗|𝑗𝜖𝐽), (𝑀𝑖𝑛 𝑓𝑖𝑗|𝑗𝜖𝐽′)} (2-15) 
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f𝑗
− = {(𝑀𝑖𝑛 𝑓𝑖𝑗|𝑗𝜖𝐽), (𝑀𝑎𝑥 𝑓𝑖𝑗|𝑗𝜖𝐼𝐽′)} 

where j=1,…,n and J represents the positive factors and 𝐽′ represents the 

negative factors.  

Step 4: Calculate the values of Sk and Rk using the equations bellow:  

𝑆𝑘 = ∑ 𝑤𝑗 |𝑓𝑗
∗ − 𝑓𝑘𝑗| |𝑓𝑗

∗ − 𝑓𝑗
−|⁄𝑚

𝑗=1      

𝑅𝑘 = 𝑚𝑎𝑥𝑗{𝑤𝑗 |𝑓𝑗
∗ − 𝑓𝑘𝑗| |𝑓𝑗

∗ − 𝑓𝑗
−|⁄ }     

(2-16) 

Where j=1,..,n and k=1,…,m and wj are the weights of criteria which demon-

strate their relative importance. 

Step 5: Calculate Qk that is the values of interests ratio brought by scheme, 

j=1,2, …, n using bellow formula: 

𝑄𝑘 = 𝑣 (𝑆𝑘 − 𝑆∗) (𝑆− − 𝑆∗) + (1 − 𝑣)(𝑅𝑘 − 𝑅∗) (𝑅− − 𝑅∗)⁄⁄          (2-17) 

Where k=1,…,m (alternatives) and 𝑣 represents the weight of "the majority 

of criteria" strategy or the largest group's utility value, here v=0.5 that is bor-

rowed from (Tzeng and Huang, 2011). Also, S*=min Sk, 𝑆− =max Sk, R*=min Rk, 

and 𝑅− =max Rk.  

Step 6: Rank alternatives based on obtained Q, R, and S in decreasing orders 

(i.e., three tables for ranking are available). 

Step 7: Alternative (a) could be ranked as the best with the minimum Q if 

the following two condition are met simultaneously: 

• C1. "Acceptable advantage": 

𝑄(𝑎) − 𝑄(𝑎) ≥ 𝐷𝑄     
DQ=1/(J-1)     

(2-18) 

Where a is the alternative with the second position and J= number 

of alternatives. 

• C2. "Acceptable stability in decision making" 

Alternative a must be the best rank for S or R. This compromise so-

lution is stable within a decision-making process, which could be: 

“voting by majority rule” (when v > 0.5 is needed), “by consensus” 

v ≈ 0.5, or “with vote” (v < 0.5). Here, v is the weight of the decision-

making strategy “the majority of criteria” (or “the maximum group 

utility”). 
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If one of the conditions is not satisfied, then a set of compromise solutions 

is proposed, which consists of: 

• Alternative a′ and a″ if only condition C2 is not satisfied, or 

• Alternative a′, a″,…, an if condition C1 is not satisfied; and an is de-

termined by the following relation:  

  

𝑄(𝑎𝑛) − 𝑄(𝑎) < 𝐷𝑄     
DQ=1/(J-1)     

(2-19) 

where, 𝑄(𝑎𝑛) is for maximum n (the positions of these alternatives are “in 

closeness”).  

The best alternative, ranked by Q, is the one with the minimum value of Q. 

The main ranking result is the compromise ranking list of alternatives, and the 

compromise solution with the “advantage rate”. 

 

 Weighted Product (WP) 

The Weighted Product method (WP) can rank alternatives without normal-

ization of criteria values because the weights may provide scores on the [0,1] 

scale. We did not address this method but one of the borrowed case studies in 

section 4.2.4.4 used this method in their paper. So, it could be helpful to have an 

overview of this method in this thesis. The following formulation (equation 

(2-20)) presents the value of alternative Ai: (Hwang and Yoon, 1981a; 

Triantaphyllou, 2000) 

𝑉(𝐴𝑖) = 𝑉𝑖 = ∏ 𝑥
𝑖𝑗

𝑤𝑗

𝑛

𝑗=1

 (2-20) 

Where Vi is the value of alternative i, wj is the weight of criterion j and 

i=1,…,m is the number of alternatives being scored. 

In the above formula, multiplying the attribute values causes the associa-

tion of weights in the exponents. Also, the positive power implies benefit criteria 

and the negative power represents the cost criteria. To rank alternatives, the 

equation (2-21) should apply:  
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𝑅𝑖 =
𝑉(𝐴𝑖)

𝑉(𝐴∗)
=

∏ 𝑥
𝑖𝑗

𝑤𝑗𝑛
𝑗=1

∏ (𝑥𝑗
∗)

𝑤𝑗𝑛
𝑗=1

 (2-21) 

Where xj*is the most favourable value for the jth criterion (the maximum 

values for the benefit and the minimum values for the cost criteria). 

It is clear that 0≤Ri ≤1 and for the ordering of the alternatives the higher 

value has the higher rank (Hwang and Yoon, 1981a; Triantaphyllou, 2000).  

 

 Weighted Aggregated Sum Product Assessment Method (WASPAS) 

The Weighted Aggregated Sum Product Assessment Method (WASPAS) 

method,  introduced by Chakraborty and Zavadskasthe (2014), is acombination 

of the Simple Additive Weighting (SAW) and the Weighted Product (WP) 

method to handle MCDM problems. The related formula to rank alternative is 

determined by equation (2-22). 

𝑄𝑖 = 0.5 ∑ 𝑛𝑖𝑗  𝑤𝑗 + 0.5 ∏(𝑛𝑖𝑗)
𝑤𝑗

𝑛

𝑗=1

𝑛

𝑗=1

 (2-22) 

Where Qi is the ranking of ith alternative, nij is the normalized values of rij, 

and wj is the weight of jth criterion.  

 

2.2 Dynamic Multi Criteria Decision Making (DMCDM) and Collabo-

rative Networks  

2.2.1 Dynamic Multi-Criteria Decision Methods 

As mentioned above, the main goal of any MCDM problem is to select the 

best alternative, among a set of feasible choices, according to a pre-defined set of 

criteria (Triantaphyllou, 2000; Yoon and Hwang, 1995). However, many deci-

sions are taken over time, which implies a dynamic process of combining current 

and past data/information (Campanella and Ribeiro, 2011; Lin et al., 2008; Saaty, 

2007). For example, when selecting a supplier among various potential candi-

dates, their good or bad past behaviour should be considered in the final decision 

(Campanella and Ribeiro, 2011; Zulueta et al., 2013). This type of problems are 

commonly called Dynamic Multi-Criteria Decision Making (DMCDM) problems 

because they consider past behaviour and/or changeable conditions of criteria 
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ratings, or even addition or removal of alternatives/criteria over time (Arrais-

Castro et al., 2015b; Campanella et al., 2011; Campanella and Ribeiro, 2011; Jassbi 

et al., 2014b; Lin et al., 2008; Saaty, 2007; Simoes et al., 2012; Zulueta et al., 2013). 

In other words, DMCDM rates and ranks alternatives based on information col-

lected at multiple time periods (Campanella and Ribeiro, 2011; Xu, 2008; Xu and 

Yager, 2008; Yao, 2010; Zhang et al., 2011; Zulueta et al., 2013).  

To solve DMCDM problems, some authors proposed approaches consider-

ing time or space. Campanella et al. (2012) designed a dynamic model for sup-

plier selection with multiple input and output using historical information for a 

business-to-business system. Their model (Campanella and Ribeiro, 2011) was 

successfully tested in two very different applications, a hazard avoidance land-

ing of Spacecraft (including a large set of alternatives (e.g. images)) in changeable 

periods of time and another of supplier selection (Arrais-Castro et al., 2015b; 

Simoes et al., 2012). Later, Campanella et al. (2011) applied the DMCDM model 

for supplier selection and combined it with an optimization process to select the 

optimum supplier in a network of collaborative businesses (B2B supplier selec-

tion). In a recent study, Arrais-Castro et al. (2015b) extended the concept by using 

a data fusion approach (Ribeiro et al., 2014) in supplier selection and applied his-

torical, current, and forecasting information in each iteration of a dynamic deci-

sion system. In addition, Jassbi et al. (2014a) proposed a new model for group 

DMCDM problems which is influenced by time, population, and location. Xu 

(2008) proposed a dynamic weighted averaging operator to solve DMCDM prob-

lems and introduced some methods to obtain associated weights, while, Xu and 

Yager (2008) applied uncertain dynamic intuitionistic fuzzy weighted averaging 

operator to DMCDM examples. Zulueta et al. (2013) proposed a novel aggrega-

tion process using associative bipolar operators to deal with DMCDM problems 

that show associativity property (that is the selected associative aggregation op-

erator for the computation of dynamic ratings in their study). They (Zulueta et 

al., 2013) mentioned that “This feature allows to exploit the associativity property to 

represent the rating behaviour of alternatives over different periods as well as to model 

effects of rating changes above and below the neutral element on the final aggregated 

value.” 
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Some other authors developed optimization techniques in order to address 

dynamic decision processes. For example, one technique is the partially observ-

able Markov decision process (POMDP), which is a special case of Markov deci-

sion process and used by (Astrgm, 1965; Da Costa and Buede, 2000; Monahan, 

1982; Smallwood and Sondik, 1973; Sondik, 1971, 1978). Another technique is dy-

namic decision networks (DDN) which is a combination of Bayesian networks 

(BN), influence diagrams, and multi-attribute utility theory (Da Costa and Buede, 

1999, 2000). 

In the last decade the need for DMCDM emerged as important to achieve 

more flexible decision making models, where time (and/or space) is of im-

portance, particularly to ensure support for changing environments or even fore-

casts (Jassbi et al., 2014b).  The vital step to solve DMCDM problems is the deter-

mination of a proper aggregation method to calculate the dynamic ratings 

(Ribeiro et al., 2010; Yager and Rybalov, 1998; Zulueta et al., 2013). The choice of 

aggregation operator can modify the computing cost and determine different 

outcomes (Ribeiro et al., 2010; Yager and Rybalov, 1998; Zulueta et al., 2013).  

The DMCDM approach of (Campanella and Ribeiro, 2011), extended by 

(Jassbi et al., 2014b), is shown in (Figure 4).  Observing Figure 4 we see that: (i) 

the first decision matrix contains information related to past data; (ii) the second 

matrix includes current scores for the same or another alternative or criteria; 

while (iii) the third matrix includes forecast values for criteria. The dynamic pro-

cess starts by determining the result vectors for each three matrixes and then ag-

gregating them to obtain a final vector of scores per alternative. This resulting 

vector is passed as historical data for the next iteration and so on until a stopping 

criterion is reached (dynamicity of the process). In the past, present, and future 

decision matrixes, xij represent the value of criterion Ci with respect to alternative 

Aj.  
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Figure 4: DMCDM model using past, present, and future information/data (borrowed from 

(Jassbi et al., 2014b)). 

 

More details about the dynamic process and the three matrixes and result-

ing vectors is available in (Campanella and Ribeiro, 2011; Jassbi et al., 2014b). No-

tice that in this thesis the focus is on the effects of normalization techniques on 

both MCDM and DMCDM methods and recommending the most suitable tech-

nique for evaluation case studies. So, we only discuss the first iteration of the 

dynamic system (normalization) to simplify the explanation (please see section 

3.2.1.1). 

 

2.2.2 Collaborative Networks 

Due to globalization and highly demanding contexts, companies are forced 

to increasingly integrate collaborative networks to overcome their difficulties 

and improve their competitiveness levels for survival  (Camarinha-Matos et al., 

2011, 2013; Oliveira et al., 2010).  

There are several definitions for CN (Collaborative Networks) in the 

literature (Alves et al., 2007; Camarinha-Matos and Afsarmanesh, 2005; Chituc 

and Azevedo, 2005; Parung and Bititci, 2008). Camarinha and Afsarmanesh 

(2005) defined CN as: “a network consisting of a variety of entities (e.g. organizations, 

people, even intelligent machines) that are largely autonomous, geographically 

distributed, and heterogeneous in terms of their operating environment, culture, social 
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capital and goals, but which decide to collaborate to better achieve common or compatible 

goals (e.g. problem solving, production, or innovation), and whose interactions are 

supported by computer networks”. Collaborative Networks are also defined as a 

group of enterprises that have their own goals and strategies but the aim of 

having better achievements persuades them to define compatible goals and 

jointly generate value together (Camarinha-Matos and Afsarmanesh, 2005). 

Andres and Poler (2016) said that “In CN, each enterprise defines its own objectives 

and formulates its own strategies; therefore, distinct interests are involved, which may 

lead to conflictive situations that derive from disagreements in the selection of strategies.” 

The development of collaborative networks, particularly in what concerns 

dynamic selection of business partners is based on effective and efficient 

normalization techniques to ensure appropriate and meaningful data processing 

and analysis. Some contributions in this direction can be found in (Addo-

Tenkorang and Helo, 2016; Arrais-Castro et al., 2015a, 2018; Babar and Arif, 2017; 

Campanella et al., 2012; Golov and Rönnbäck, 2015; Ribeiro et al., 2014).  

Collaborative systems are information systems tailored to overcome the 

obstacles inherent in the creation of value through joint effort (Moghaddam and 

Nof, 2018; Nikolic et al., 2017; Nunamaker and Briggs, 2015). As stated in (Li et 

al., 2014), due to business division and outsourcing, from design and 

manufacturing to sales, a complete business process is divided into a set of 

business process fragments. These are carried out within different enterprises’ 

organizational boundaries and related business data sets, and, in this complex 

scenario, how to form a collaborative information system across heterogeneous 

infrastructures, rapidly and dynamically, determines whether the enterprise 

network can succeed or not.  

It is noteworthy that in this thesis we will focus our research on collabora-

tive networks with a decision making perspective, for selection problems (details 

in section 3.3.1.1)  – i.e., where MCDM methods can be applied - such as selection 

of supplier, partner, resources, etc (Appio et al., 2017; Arrais-Castro et al., 2015a, 

2018; Camarinha-Matos et al., 2017; Camarinha-Matos and Afsarmanesh, 2005, 

2006; Campanella et al., 2012). Hence, it is out of scope to go deeper into other 

aspects of collaborative networks and here we only introduce specific related lit-
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erature. Selim et al. (2008) used multi-objective decision making in order to de-

velop collaborative production–distribution planning supply chain system. Ale-

many et al. (2011) developed an application to support decision makers in supply 

chain systems by collaborative planning (CP). Multi-enterprise collaborative de-

cision support system (MECDSS) frameworks are used by Shafiei et al. (2012) to 

make seamless integration between all partners/members in collaborative envi-

ronment without any dependency on the user’s knowledge. Arrais-Castro et al. 

(2015a) developed a decision making model in a collaborative system by combin-

ing dynamic multi-criteria decision making (MCDM) and software agents for op-

timal selection of partners/suppliers. In their model, historical, current and fu-

ture information are considered (Arrais-Castro et al., 2015a). Arrais-Castro et al. 

(2012) also proposed a new framework for Agile/Virtual Enterprises that share 

all resources such as knowledge, market, and customers in a competitive 

environment which is dynamic and reconfigurable (Arrais-Castro et al., 2012). 

Nematollahi et al. (2017) proposed a new collaborative method in supply chain 

(SC) networks in order to optimize the profit of the SC by considering corporate 

social responsibility (CSR) activities that can define the popularity of products 

and demands for these products.  Verdecho et al. (2012) used the Analytic Net-

work Process (ANP) to define the structures performance of elements under a 

performance management framework. The result would help collaborative net-

works to identify contributions of each participant to achieve the strategy of col-

laboration (Verdecho et al., 2012). Guillaume et al. (2014) proposed a decision 

problem in collaborative supply chain system to help decision makers to select 

the best partner (alternative) under imprecise criteria that is optimal for itself and 

for other partners in the collaborative network. Varela and Ribeiro (2014) devel-

oped a dynamic multi-criteria decision making model to support decision mak-

ers in distributed dynamic manufacturing scheduling problems.  

Approaches using computational intelligence methods are also proposed in 

the literature within this topic. For example, Zha et al. (2008) proposed a new 

hybrid decision model and a multi-agent framework for collaborative decision 

which rely on algorithms like compromise decision support problem technique 

(cDSP), fuzzy cDSP, and fuzzy synthetic decision model (FSD). Dao et al. (2014) 

used a novel Genetic Algorithm (GA) to find optimal solutions for integration of 

partner selection and collaborative transportation scheduling in Virtual 
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Enterprise.  Zhang et al. (2013) combined genetic algorithm with TOPSIS method 

and proposed a new multi-criterion optimization method for supply chain 

management. Che and Chiang (2012) combined the Rough Sets Theory with AHP 

in collaborative supply-chain to optimize the cycle-time estimation procedure.  

In the study of Lu et al. (2013) fuzzy analytic hierarchy process (FAHP) is 

proposed to define and analyze the key processes in SC networks with the 

defined weightings. 

As mentioned above, a collaborative case study from (Arrais-Castro et al., 

2015a, 2018) is used for research in this thesis (Section 3.2.1.1). It uses a Dynamic 

Multiple Criteria Decision Making Method (DMCDM) (Campanella et al., 2012; 

Ribeiro et al., 2014) mixed with a data fusion approach (Ribeiro et al., 2014). The 

case objective is the evaluation and selection of suppliers or business partners, 

through the use of software agents and a negotiation process to capture business 

opportunities, evaluate and select businesses (suppliers or partners), and process 

associated orders within a spatial-temporal changeable context (Vafaei et al., 

2019). 

 

2.3 Normalization  

2.3.1 Introduction 

 

There are several definitions for data normalization, depending on the 

study domain. For example, in Databases, data normalization is viewed as a pro-

cess where data attributes, within a data model, are organized in tables to in-

crease the cohesion and efficiency of managing data (Vafaei et al., 2016b). In sta-

tistics and its applications, the most common definition is the process of adjusting 

values measured on different scales to a common scale, often prior to aggregating 

or averaging them (Vafaei et al., 2016b). Many other definitions exist, depending 

on the context or study domain (see for example (Wikipedia contributors, 2004)).  

In this thesis, since we focus on normalization techniques for MCDM, nor-

malization is viewed as a transformation process of raw data to obtain numerical 

and comparable criteria by using a common scale (Vafaei et al., 2016b, 2018a). 

Furthermore, in MCDM, normalization techniques usually map attributes (crite-

ria) with different measurement units to a common scale in the interval [0-1] 
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(Pavlicic, 2001; Vafaei et al., 2016b). In other words, normalization is a transfor-

mation process to obtain numerical and comparable input data by using a com-

mon scale. Table 2 illustrates a normalization process on input data that maps a 

criterion price to the interval [0-1] using two linear normalization techniques (N5 

and N10 from Table 4 and Table 5). It is obvious the difference of obtained values 

- even if both from the linear class - because with Max technique (N5 – cost crite-

ria) we never attain the upper limit of the normalized interval, i.e. 1.  

Table 2: Normalization of input data for a cost criterion “car price” 

Car selection Price 
Cost Normalization 

Max (N5) Max-Min (N10) 

A 11,000.00 € 0.45 1.00 

B 14,000.00 € 0.3 0.67 

C 16,000.00 € 0.2 0.44 

D 20,000.00 € 0 0.00 

 

In recent years, data normalization is receiving considerable attention due 

to its essential role as a pre-processing step for complex decision-making prob-

lems based on large amounts of data. Especially, for developments in Big Data, 

Artificial Intelligence (AI), Machine Learning (ML), Data mining, Internet of 

Things (IoT), Cyber-Physical Systems (CPS), Data Visualization (DV), Optimiza-

tion, etc., normalization's role is distinguished and deemed crucial. Relevant lit-

erature  discussing the importance of normalization in these topics are: Big Data 

(Golov and Rönnbäck, 2017); Artificial Intelligence (Arabameri et al., 2020; Perny 

and Pomerol, 1999; Sola and Sevilla, 1997); Machine Learning (Jo, 2019; Wahid et 

al., 2018); Data mining (Al Shalabi et al., 2006; Al Shalabi and Shaaban, 2006; 

Haque et al., 2014); Internet of Things (IoT) (Liu et al., 2019; Rathee et al., 2021; 

Ray, 2016); Cyber-Physical Systems (Huang et al., 2018; Junejo and Goh, 2016); 

Data Visualization (Mangat et al., 2014); Optimization algorithms (Budiman et al., 

2020, 2021; Eftekhary et al., 2012; Fayazbakhsh et al., 2009; Migilinskas and 

Ustinovichius, 2007; Nayak et al., 2014).  

For instance the integration of MCDM and Artificial Intelligence techniques 

reached success in handling real-world problems (Doumpos and Grigoroudis, 
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2013) by enabling decision makers to better structure complex decision problems 

in static and distributed environments. Doumpos and Grigoroudisby (2013) men-

tion that combining  MCDM&AI is important for “handling of massive data sets, 

the modelling of ill-structured information, the construction of advanced deci-

sion models, and the development of efficient computational optimization algo-

rithms for problem solving”. Several AI techniques are introduced in the litera-

ture which are used in combination with MCDM, such as Fuzzy Logic (FL), Ge-

netic Algorithm (GA), Neural Network (NN), Heuristic or meta-heuristics, 

Knowledge-Based (KB), Expert Systems (ES), Tabu-Search (TS), Simulated-an-

nealing (SA), Dampster Shafer (DS), and Self-Organizing-Map (SOM). FL is per-

haps the most popular technique to be used with MCDM methods (e.g., Fuzzy-

AHP, Fuzzy-ANP, and Fuzzy-TOPSIS, etc.) (Aliasi et al., 2008). Ribeiro (Ribeiro, 

1996) discussed the main theories and method is applied for Fuzzy MCDM 

problems. In another study, Ribeiro et al. (Ribeiro et al., 2014) combined compu-

tational intelligence and MCDM and introduced FIF (Fuzzy Information Fusion) 

algorithm to aggregate data in presence of qualitative and quantitative criteria at 

the same time using particle swarm optimization (PSO) and Tabu search algo-

rithms to select the optimal landing place for aircraft (Ribeiro et al., 2014). There 

are some other research works on combining AI techniques with MCDM meth-

ods such as Ho (2008) that uses 8 meta-heuristics along with AHP, Pan (2008) 

that applies Fuzzy-AHP for bridge construction methods selection, Sheu (2008) 

that uses Fuzzy-AHP, Fuzzy-TOPSIS, and Fuzzy-MCDM for global logistic op-

erational model, Kulturel-Konak et al. (2007) that apply TS for system redun-

dancy allocation problem, Efendigil et al. (2008) that implement ANN and Fuzzy-

AHP for third-party logistics providers selection, and Wu et al. (2009) that use 

Fuzzy-ANP for site selection problem. Kahraman et al. (Kahraman et al., 2003) 

used Fuzzy-AHP for supplier selection to overcome the uncertainty regarding 

assessing the evaluation scores by humans in crisp AHP.  

Another area where normalization and MCDM are being applied is the re-

lationship between Cyber-Physical Systems and Internet of Things (Jeschke, 

2013). Camarinha and Afsarmanesh (2014) mention that “there is a growing con-

vergence between the two areas since CPSs are becoming more Internet-based”. 

For example, in a smart car parking (section 3.1.1.2), data from the parking space 

is transferred to the car drivers with the help of CPS and IoT technologies. Data 
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is collected from sensors, which are installed in the parking lot, and transferred 

to the data center to be processed with MCDM methods, to determine the rank-

ing of alternatives (best parking spaces). The best parking spaces are provided to 

the car drivers to support them making more informed decisions. The smart car 

parking example shows a robust relationship between the cyber physical system 

(CPS), Internet of Thing (IoT) and multi-criteria decision making (MCDM) con-

cepts, where normalization has an important role in preparing dimensionless 

data from heterogeneous input data sets from sensors (Vafaei et al., 2016a).   

Summarizing, normalization in MCDM entails that after collecting input 

data, we must do some pre-processing to ensure comparability of data, thus mak-

ing it useful for decision modelling (Etzkorn, 2012). This pre-processing should 

consider two important points (Etzkorn, 2012; Vafaei et al., 2018a): 

1. All non-numeric data should first be converted into numerical data to 

allow normalization;  

2. Choosing a suitable normalization technique to ensure a common scale 

and appropriate modeling representation (benefit or cost criteria) as 

well as comparability on criteria aggregation to obtain alternative rat-

ings. 

Next, we will provide a survey of normalization for MCDM methods. 

 

2.3.2 Survey on normalization techniques for MCDM  

Numerous normalization techniques have been proposed in the literature 

and most MCDM methods use one of these techniques. Jahan and Edwards 

(Jahan, 2018; Jahan and Edwards, 2015) pointed to some important features that 

have influencing effects on the capability of normalization techniques and should 

be considered when choosing, developing and evaluating them. 
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Figure 5: Relevant aspects for assessing normalization techniques (Jahan, 2018; Jahan and 

Edwards, 2015) 

As Figure 5 shows, one important aspect is the capability of removing 

scales, because the basic role of any normalization technique is to convert differ-

ent criteria measurement units (in MCDM models) into dimensionless units and 

making them comparable for aggregation in decision matrixes (Jahan, 2018; 

Jahan and Edwards, 2015). Symmetry is another feature present in some normal-

ization techniques, that allows conversion of cost criteria into benefit ones (Jahan, 

2018; Jahan and Edwards, 2015). The next property is rank reversal which may 

cause different rankings by adding or removing alternatives (Jahan, 2018; Jahan 

and Edwards, 2015). Rank reversal could happen when selecting a unsuitable 

normalization technique (Jahan, 2018; Jahan and Edwards, 2015).  Handling neg-

ative values is also an important capability, when dealing with negative values 

in criteria of MCDM methods (Jahan, 2018; Jahan and Edwards, 2015). Figure 5 

also includes data types as an important feature. Previous research done by the 

author of this thesis proved that the types of input data may have great influence 

in ranking alternatives for any MCDM method (Vafaei et al., 2019). For example, 

including zero or decimal numbers in the input data using Sum or Logarithmic 

normalization techniques are not recommended because it may produce unde-

fined and infinite normalized values for the two mentioned techniques (Vafaei et 

al., 2019).  

There are some specific works on normalization techniques for MCDM 

problems such as (Celen, 2014; Dehghan-Manshadi et al., 2007; Fayazbakhsh et 

Normalization 
Techniques

Capability in 
Removing 

Scales

Symetrry: 
Cost & 
Benefit

Rank 
Revesal

Handling 
negative 

values

Data Types



54 

 

al., 2009; Hwang and Yoon, 1981a; Jahan et al., 2012; Jee and Kang, 2000; Milani et 

al., 2005; Shih et al., 2007). However, those studies are always performed on par-

ticular contexts and do not propose a general assessment process, and this is the 

challenge for this research work. 

Jahan and Edwards (2015) published an interesting paper with an exhaus-

tive survey on normalization techniques. These authors identified thirty-one nor-

malization methods for transforming raw data into dimensionless criteria, clas-

sified them in 4 groups, and discussed some specific pros and cons for each tech-

nique.  

Here we follow their classification (Jahan and Edwards, 2015) and the 4 

groups are depicted in: Table 3 (Sum-based); Table 4 (Ratio-based); Table 5 (Max-

min based); and Table 6 (Other). Further, Jahan and Edwards (2015) tried to di-

vide all normalization techniques into benefit and cost criteria and discussed 

their pros and cons. Please notice that rij is the rating of alternative i with respect 

to criterion j and nij is the normalized value of rij. 

Table 3 includes 4 sum-based normalization techniques: N1) linear-sum; 

N2) Vector; N3) Logarithmic; and N4) Enhanced accuracy. The first three nor-

malization techniques (N1, N2, N3) are common in MCDM methods, while the 

last one (N4) is less common. Jahan and Edwards (2015) mentioned that the result 

of all sum based normalization techniques depends on the number of alterna-

tives, so, rank reversal (add/remove alternatives) will clearly affect the results, 

i.e. the alternatives' ranking. The logarithmic normalization technique, proposed 

by Zavadskas and Turskis (2008), is usually used when criteria values display a 

clear monotonic increase or decrease. 
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Table 3: Sum-based normalization techniques for cost and benefit criteria (Jahan and 

Edwards, 2015) 

Normalization technique Condition of use Formula 

1- Linear: Sum normalization 

(Jahan and Edwards, 2015; Wang 

and Luo, 2010) 

Benefit criteria 𝑛𝑖𝑗
+ =

𝑟𝑖𝑗

∑ 𝑟𝑖𝑗
𝑚
𝑖=1

 

Cost criteria 𝑛𝑖𝑗
− =

1
𝑟𝑖𝑗

⁄

∑ 1
𝑟𝑖𝑗

⁄𝑚
𝑖=1

 

2- Vector normalization (Delft and 

Nijkamp, 1977; Jahan and 

Edwards, 2015) 

Benefit criteria 
𝑛𝑖𝑗

+ =
𝑟𝑖𝑗

√∑ 𝑟𝑖𝑗
2𝑚

𝑖=1

 

Cost criteria 
𝑛𝑖𝑗

− = 1 −
𝑟𝑖𝑗

√∑ 𝑟𝑖𝑗
2𝑚

𝑖=1

 

3- Logarithmic normalization 

(Jahan and Edwards, 2015; 

Kazimieras ZAVADSKAS and 

Turskis, 2008) 

Benefit criteria 𝑛𝑖𝑗
+ =

ln (𝑟𝑖𝑗)

ln (∏ 𝑟𝑖𝑗)𝑚
𝑖=1

 

Cost criteria 
𝑛𝑖𝑗

− =

1 −
ln (𝑟𝑖𝑗)

ln (∏ 𝑟𝑖𝑗)𝑚
𝑖=1

𝑚 − 1
 

4- Enhanced accuracy method 

(Jahan and Edwards, 2015; Zeng et 

al., 2013) 

Benefit criteria 𝑛𝑖𝑗
+ = 1 −

𝑟𝑗
𝑚𝑎𝑥 − 𝑟𝑖𝑗

∑ (𝑟𝑗
𝑚𝑎𝑥 − 𝑟𝑖𝑗)𝑚

𝑖=1

 

Cost criteria 𝑛𝑖𝑗
− = 1 −

𝑟𝑖𝑗 − 𝑟𝑗
𝑚𝑖𝑛

∑ (𝑟𝑖𝑗 − 𝑟𝑗
𝑚𝑖𝑛)𝑚

𝑖=1

 

 

Ratio-based normalization techniques are shown in Table 4. It includes five 

normalization techniques: N5) Max; (N6) Min; N7) Markovic normalization; N8) 

Tzeng & Huang normalization; and N9) Non-linear normalization.  Max (N5) 

and Min (N6) are rather common and currently used in many fields of science; 

while N7, N8 and N9 are less common. 
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Table 4: Ratio-based normalization techniques for cost and benefit criteria (Jahan and Edwards, 

2015) 

Normalization technique Condition of use Formula 

5- Linear: Max (Celen, 2014; Jahan 

and Edwards, 2015) 

Benefit criteria 𝑛𝑖𝑗
+ =

𝑟𝑖𝑗

𝑟𝑚𝑎𝑥
 

Cost criteria 𝑛𝑖𝑗
− = 1 −

𝑟𝑖𝑗

𝑟𝑚𝑎𝑥
 

6- Linear: Min  (Jahan and 

Edwards, 2015; Zhou et al., 

2006) 

Benefit/Cost 𝑛𝑖𝑗 =
𝑟𝑚𝑖𝑛

𝑟𝑖𝑗
 

7- Markovic´ method (Jahan and 

Edwards, 2015; Tzeng and 

Huang, 2011) 

Benefit/Cost 𝑛𝑖𝑗 = 1 −
𝑟𝑖𝑗 − 𝑟𝑗

𝑚𝑖𝑛

𝑟𝑗
𝑚𝑎𝑥  

8- Tzeng and Huang method 

(Jahan and Edwards, 2015; 

Tzeng and Huang, 2011) 

Benefit/Cost 𝑛𝑖𝑗 =
1 𝑟𝑖𝑗⁄

1 𝑟𝑗
𝑚𝑎𝑥⁄

=
𝑟𝑗

𝑚𝑎𝑥

𝑟𝑖𝑗
 

9- Non-linear normalization 

(Jahan and Edwards, 2015; 

Kazimieras ZAVADSKAS and 

Turskis, 2008) 

Benefit criteria 𝑛𝑖𝑗
+ = (

𝑟𝑖𝑗

𝑟𝑗
𝑚𝑎𝑥)

2

 

Cost criteria 𝑛𝑖𝑗
− = (

𝑟𝑗
𝑚𝑖𝑛

𝑟𝑖𝑗
)

3

 

 

Three max-min based normalization techniques are introduced in Table 5. 

Linear max–min (N10) produces dimensionless units within the straight line 

(∝r_ij+β), while the others (N11 & N12) do not have this advantage (Jahan and 

Edwards, 2015). The main disadvantage of Linear max–min (N10) is related to 

the effect of rank reversal (adding or removing alternatives) on the obtained re-

sults in MCDM methods because it causes changing the maximum and minimum 

values (Jahan and Edwards, 2015). Also, Jahan and Edward (2015) showed, with 

a numerical example, that Lai and Hwang normalization technique (N11) results 

on values greater than 1, hence, this can prove problematic for many MCDM 

methods. 
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Table 5: Max–min normalization techniques for cost and benefit criteria (Jahan and 

Edwards, 2015) 

Normalization technique Condition of use Formula 

10- Linear : Max-Min  (Jahan and 

Edwards, 2015; Kazimieras 

ZAVADSKAS and Turskis, 2008; 

Patro and Sahu, 2015; Tzeng and 

Huang, 2011)   

Benefit criteria 𝑛𝑖𝑗
+ =

𝑟𝑖𝑗 − 𝑟𝑗
𝑚𝑖𝑛

𝑟𝑗
𝑚𝑎𝑥 − 𝑟𝑗

𝑚𝑖𝑛
 

Cost criteria 𝑛𝑖𝑗
− =

𝑟𝑗
𝑚𝑎𝑥 − 𝑟𝑖𝑗

𝑟𝑗
𝑚𝑎𝑥 − 𝑟𝑗

𝑚𝑖𝑛
 

11- Lai and Hwang method (Jahan 

and Edwards, 2015; Lai and 

Hwang, 1994; Opricovic and 

Tzeng, 2004) 

Benefit criteria 𝑛𝑖𝑗
+ =

𝑟𝑖𝑗

𝑟𝑗
𝑚𝑎𝑥 − 𝑟𝑗

𝑚𝑖𝑛
 

Cost criteria 𝑛𝑖𝑗
− =

𝑟𝑖𝑗

𝑟𝑗
𝑚𝑖𝑛 − 𝑟𝑗

𝑚𝑎𝑥
 

12- Zavadskas and Turskis 

normalization (Jahan and 

Edwards, 2015; Kazimieras 

ZAVADSKAS and Turskis, 

2008) 

Benefit criteria 𝑛𝑖𝑗
+ = 1 − |

𝑟𝑗
𝑚𝑎𝑥 − 𝑟𝑖𝑗

𝑟𝑗
𝑚𝑎𝑥 | 

Cost criteria 𝑛𝑖𝑗
− = 1 − |

𝑟𝑗
𝑚𝑖𝑛 − 𝑟𝑖𝑗

𝑟𝑗
𝑚𝑖𝑛

| 

 

Table 6 lists 6 unclassified normalization techniques, which are also suitable 

for use with benefit, cost, and target values criteria: N13) nominal-is-best; N14) 

Linear method-ideal; N15) Non-monotonic; 16) Comprehensive normalization 

technique; N17) Target-based; N18) Distance for target criteria; and N19) Z-trans-

formation. Nominal-is-best normalization (N13) was introduced by  (Wu, 2002) 

and applicable until target value is less than the maximum performance rating 

(Jahan and Edwards, 2015). N14 was introduced by Zhou et al. (2006) with three 

formulas for cost, benefit and target criteria. Jahan and Edwards (2015) men-

tioned that non-monotonic normalization (N15) has a higher concentration to-

wards the values zero/one because of presence of 𝑒 (Euler's number), and for 

Comprehensive normalization technique (N16) Jahan and Edwards (2015) 

claimed that this technique does not cover the whole numerical domain (0-1) be-

cause there are no values for less than 0.37. Jahan et al. (2011) also stated that the 

comprehensive normalization technique (N16) covers a wide range of criteria by 

using an exponential function. The target-based normalization technique (N17),  
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proposed by Jahan et al.  (2012), and they used numerical examples to show nor-

malized values by Target-based (N17). In Table 6, Target value (Tj) is the desira-

ble level of achievements for each attribute that is defined by decision makers 

(Stewart, 1992). Also, 𝜇𝑗  and 𝜎𝑗 that are used in the formulas of Table 6 are de-

fined in the columns of N19. When a criterion is a benefit one, high values corre-

spond to high normalized values (maximization - benefit); when it is a cost crite-

rion high values will correspond to low normalized values (minimization - cost). 

Another interesting normalization technique is Fuzzification (N20), as 

shown in Table 7 Fuzzification is the process of converting crisp values into lin-

guistic terms by using membership functions (Schmid, 2005). Several functions 

can be used for fuzzification (e.g., Trapezoidal, Gaussian, Logarithmic, Triangu-

lar). Normalizing data with such functions is a mechanism for transforming raw 

data into fuzzy sets (functions), which appropriately represent concepts under-

standable for decision makers and enables dealing with alternatives and criteria 

in MCDM (Ribeiro et al., 1995, 2014). In this thesis we chose trapezoidal member-

ship functions because they are linear, but others such as sigmoid or gaussian 

could be used. 
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Table 6: Some other normalization techniques (Jahan and Edwards, 2015) 

Normalization 
technique 

Condition of use Formula 

13- Nominal-is-best method 

(Jahan and Edwards, 2015; 

Wu, 2002) 

Benefit/Cost 𝑛𝑖𝑗 =
|𝑟𝑖𝑗 − 𝑇𝑗|

𝑟𝑖𝑗
𝑚𝑎𝑥 − 𝑇𝑗

 

14- Linear method-ideal 

(Jahan and Edwards, 2015; 

Zhou et al., 2006)   

Cost criteria 𝑛𝑖𝑗
− =

𝑟𝑗
𝑚𝑖𝑛

𝑟𝑖𝑗
 

Benefit criteria 𝑛𝑖𝑗
+ =

𝑟𝑖𝑗

𝑟𝑗
𝑚𝑎𝑥 

Target criteria 𝑛𝑖𝑗 =
𝑚𝑖𝑛{𝑟𝑖𝑗 − 𝑇𝑗}

𝑚𝑎𝑥{𝑟𝑖𝑗 − 𝑇𝑗}
 

15- Non-monotonic 

normalization (Jahan et 

al., 2012; Shih et al., 2007) 

Benefit/Cost 
𝑛𝑖𝑗 = 𝑒

(𝑟𝑖𝑗−𝑟𝑗)
2

−2𝜎𝑗
2

 

16- Comprehensive 

normalization technique 

(Bahraminasab et al., 2014; 

Jahan and Edwards, 2015)  

Benefit/Cost 
𝑛𝑖𝑗 = 1 − 𝑒

|𝑟𝑖𝑗−𝑇𝑗|

𝑚𝑖𝑛{𝑟𝑗
𝑖𝑛𝑥−𝑇}−𝑚𝑎𝑥{𝑟𝑗

𝑚𝑎𝑥−𝑇𝑗}
 

17- Target-based 

normalization technique 

(Jahan et al., 2012; Jahan 

and Edwards, 2015)   

Benefit/Cost 𝑛𝑖𝑗 = 1 −
|𝑟𝑖𝑗 − 𝑇𝑗|

𝑀𝑎𝑥{𝑟𝑖𝑗
𝑚𝑎𝑥 , 𝑇𝑗} − 𝑀𝑖𝑛{𝑟𝑖𝑗

𝑚𝑖𝑛 , 𝑇𝑗}
 

18- Distance for target 

criteria (Jahan and 

Edwards, 2015; Zeng et al., 

2013) 

If  𝑟𝑖𝑗 > (𝜇𝑗 + 1.96𝜎𝑗) 𝑛𝑖𝑗 =
𝑟𝑖𝑗 − (𝜇

𝑗
+ 1.96𝜎𝑗)

∑ (𝑟𝑖𝑗 − (𝜇
𝑗

+ 1.96𝜎𝑗))𝑚
𝑖=1

 

If  (𝜇𝑗 − 1.96𝜎𝑗) > 𝑟𝑖𝑗 𝑛𝑖𝑗 =
(𝜇

𝑗
+ 1.96𝜎𝑗) − 𝑟𝑖𝑗

∑ ((𝜇
𝑗

+ 1.96𝜎𝑗) − 𝑟𝑖𝑗)𝑚
𝑖=1

 

If  𝑟𝑖𝑗 ∈ (𝜇 ± 1.96𝜎) 1 

19- Z-transformation for 

which 

the scale would be around 
zero 

𝜇𝑗 =
∑ 𝑟𝑖𝑗

𝑚
𝑖=1

𝑚
 

𝜎𝑗 = √
∑ (𝑟𝑖𝑗 − 𝜇𝑗)2𝑚

𝑖=1

𝑚
 

𝑛𝑖𝑗 =
𝑟𝑖𝑗 − 𝜇𝑗

𝜎𝑗
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An important issue on the variables/criteria “fuzzification” is to select suit-

able membership functions since we need to consider the context and objective 

(Ribeiro et al., 2014). There are various proposals in the literature on how to fuzz-

ify concepts/criteria (data)  to normalize and allow comparable data (Ross, 2004; 

Tzeng and Huang, 2011), however, these studies do not formally recognize fuzz-

ification as another normalization technique. Even without formally acknowl-

edging fuzzification as a normalization technique, many authors applied fuzzifi-

cation as a normalization technique in order to deal with dimensionless data in 

fuzzy multi-criteria decision making problems (see for example (Ribeiro et al., 

2014; Tzeng and Huang, 2011; Zhang et al., 2014)). Other examples for decision 

problems include: Pires et al. (Pires et al., 1996) and Ribeiro and Varela (Ribeiro 

and Varela, 2003) which used fuzzification for solving optimization problems. 

Table 7: Fuzzification normalization techniques (adapted from (Ribeiro, 1996; Ross, 2004)) 

Normalization 
technique 

Condition of use Formula (chosen) 

20-Fuzzification– 

membership 

functions (Ribeiro, 

1996; Ross, 2004) 

Benefit Criteria 

Open right trapezoidal  membership 
function: 

 

𝑛𝑖𝑗 =
𝑥 − 𝑎

𝑏 − 𝑎
   𝑤ℎ𝑒𝑟𝑒 𝑐 = 𝑑 

Cost criteria 

Open left trapezoidal membership 
function: 

 

 

𝑛𝑖𝑗 =
𝑑 − 𝑥

𝑑 − 𝑐
   𝑤ℎ𝑒𝑟𝑒 𝑎 = 𝑏 

 

As observed on the above tables, most normalization techniques are di-

vided in two formulas, one for benefit and another for cost criteria, to ensure that 

the final decision objective (rating) is correct, i.e., when it is a benefit criterion 
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higher values correspond to high normalized values (maximization - benefit) and 

when it is a cost criterion high values correspond to low normalized values (min-

imization - cost). The same logic applies to fuzzification techniques, i.e., member-

ships functions can be monotonically increasing or decreasing to represent, re-

spectively, benefit or cost (Table 7). 

For this research work we selected at least one normalization technique 

from each of the above five tables (Table 3, Table 4, Table 5, and Table 6 and Table 

7):  Sum (N1), Vector (N2), and Logarithmic (N3) techniques from Table 3; Max 

(N5) technique from Table 4; Max-Min (N10) technique from Table 5; Target-

based (N17) normalization technique form Table 6 and Fuzzification (N20) from 

Table 7. Along the research done for this thesis, N17 (Target-based) was only 

used in specific cases (section 3.3.1.1) and N20 was sometimes substituted by N3 

(Logarithmic), because – as mentioned- any function can be used for normalizing 

with a fuzzification process.  

As mentioned above, we selected 7 normalization techniques for our com-

parison study. The objective was to ensure we included normalization techniques 

from all categories (linear, semi-linear and non-linear) for evaluating the pro-

posed assessment framework developed. Further, the chosen normalization tech-

niques are also well-known in the literature and widely used by decision makers 

in decision problems. So,  Figure 6 depicts the selected normalization techniques, 

divided in 3 categories, which are later studied in chapters 3 and 4 to analyse 

their effects on MCDM problems. 
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Figure 6: Well-known normalization techniques from three categories (adapted from (Jahan and 
Edwards, 2015)). 

 

To simplify the discussion on the next sections of the thesis, about the se-

lected normalization techniques' formulas, Table 8 summarizes them, with both 

the formulation for benefit and cost criteria. 

 

 

 

 

 

 

 

 

 

 

Normalization 
Techniques

Linear

Max

Max-Min

Sum

Semi Linear

Vector

Target based

Non Linear

Logarithmic

Fuzzification
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Table 8: The seven chosen normalization techniques to be compared in this thesis. 

Number 
Normalization 

technique 
Condition 

of use 
Formula 

N1  Linear: Max  

Benefit 
criteria 

𝑛𝑖𝑗
+ =

𝑟𝑖𝑗

𝑟𝑚𝑎𝑥

 

Cost criteria 𝑛𝑖𝑗
− = 1 −

𝑟𝑖𝑗

𝑟𝑚𝑎𝑥

 

N2 Linear: Max-Min  

Benefit 
criteria 

𝑛𝑖𝑗
+ =

𝑟𝑖𝑗 − 𝑟𝑚𝑖𝑛

𝑟𝑚𝑎𝑥 − 𝑟𝑚𝑖𝑛

 

Cost criteria 𝑛𝑖𝑗
− =

𝑟𝑚𝑎𝑥 − 𝑟𝑖𝑗

𝑟𝑚𝑎𝑥 − 𝑟𝑚𝑖𝑛

 

N3 Linear: sum  

Benefit 
criteria 

𝑛𝑖𝑗
+ =

𝑟𝑖𝑗

∑ 𝑟𝑖𝑗
𝑚
𝑖=1

 

Cost criteria 𝑛𝑖𝑗
− =

1
𝑟𝑖𝑗⁄

∑ 1
𝑟𝑖𝑗⁄𝑚

𝑖=1

 

N4 Semi-linear: Vector  

Benefit 
criteria 

𝑛𝑖𝑗
+ =

𝑟𝑖𝑗

√∑ 𝑟𝑖𝑗
2𝑚

𝑖=1

 

Cost criteria 
𝑛𝑖𝑗

− = 1 −
𝑟𝑖𝑗

√∑ 𝑟𝑖𝑗
2𝑚

𝑖=1

 

N5   Non-linear: Logarithmic  

Benefit 
criteria 

𝑛𝑖𝑗
+ =

ln (𝑟𝑖𝑗)

ln (∏ 𝑟𝑖𝑗)
𝑚
𝑖=1

 

Cost criteria 
𝑛𝑖𝑗

− =

1 −
ln (𝑟𝑖𝑗)

ln (∏ 𝑟𝑖𝑗)
𝑚
𝑖=1

𝑚 − 1
 

N6 
Non-linear: Fuzzification 
– membership functions 
(see Table 7) 

Benefit 
criteria 

𝑛𝑖𝑗 =
𝑥 − 𝑎

𝑏 − 𝑎
   𝑤ℎ𝑒𝑟𝑒 𝑐 = 𝑑 

Cost criteria 𝑛𝑖𝑗 =
𝑑 − 𝑥

𝑑 − 𝑐
   𝑤ℎ𝑒𝑟𝑒 𝑎 = 𝑏 

N7 Semi-linear: Target based 
Benefit & 

Cost criteria 
𝑛𝑖𝑗 = 1 −

|𝑟𝑖𝑗 − 𝑇𝑗|

𝑀𝑎𝑥{𝑟𝑖𝑗
𝑚𝑎𝑥 , 𝑇𝑗} − 𝑀𝑖𝑛{𝑟𝑖𝑗

𝑚𝑖𝑛, 𝑇𝑗}
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2.3.3 Assessing normalization techniques in MCDM Methods 

As mentioned above, over the last decades, several normalization 

techniques have been proposed to produce dimensionless data from 

heterogeneous data sets (Jahan and Edwards, 2015). As such, selection of the best 

normalization technique is a crucial step in the aggregation/fusion process (i.e., 

finding which one better represents the input/raw data) to rank alternatives in 

MCDM problems. 

There are many performance metrics to assess classification problems (see 

for example (Budiman et al., 2020, 2021; Eftekhary et al., 2012; Fayazbakhsh et al., 

2009; Migilinskas and Ustinovichius, 2007; Nayak et al., 2014)) but unfortunately, 

there are few studies on specific metrics for assessing normalization techniques 

in MCDM methods and the question of how to choose the appropriate one is still 

an open one. In classification problems of the type “selecting features” or “clas-

sifying objects” we may have access to ground-truth results for comparison, how-

ever, in MCDM we only obtain a rating for the candidate alternatives and this 

rating depends both on the method and normalization technique used (Vafaei et 

al., 2018a).  

Furthermore, if the normalization technique is not suitable for the decision 

problem or for the chosen MCDM method, the best decision solution may be 

overlooked, which may cause serious errors of judgement (Chatterjee and 

Chakraborty, 2014). As Chatterjee and Chakraborty (Chatterjee and Chakraborty, 

2014) say “In fact, while the normalization process scales the criteria values to be ap-

proximately of the same magnitude, different normalization techniques may yield differ-

ent solutions and, therefore, may cause deviation from the originally recommended solu-

tions” (Vafaei et al., 2018a).  

There are some interesting approaches  for choosing normalization 

techniques in specific MCDM problems are: (Baghla and Bansal, 2014; Celen, 

2014; Chakraborty and Yeh, 2007, 2009, 2012; Chatterjee and Chakraborty, 2014; 

Chawade et al., 2014; Jahan, 2018; Krylovas et al., 2018; Lakshmi and Venkatesan, 

2014; Mathew et al., 2017; Milani et al., 2005; Opricovic and Tzeng, 2004; 

Papathanasiou et al., 2016; Pavlicic, 2001; Peldschus, 2007; Podviezko and 

Podvezko, 2015; Vafaei et al., 2016a, 2018a, 2019; Yazdani et al., 2017; Zavadskas 

et al., 2003, 2006).Some of these authors already discussed metrics/approaches 
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for how to assess normalization techniques in decision problems, but our 

approach advances those studies by proposing what we believe are more 

appropriate metrics, i.e. an assessment framework to classify the best technique 

for MCDM. For instance, Pavlicic (2001) analyzed the effects of simple (divided 

by max), linear and vector normalization techniques on simulations results of 

TOPSIS, ELECTRE, and SAW MCDM methods.  Specifically, he showed that 

results depend on the initial measurement units (e.g., temperature measured in 

Celsius or Fahrenheit) when using vector or simple normalization techniques. It 

should be noted that Pavlicic (2001) was an inspiration for also exploring other 

suitable normalization techniques for TOPSIS and to elaborate a more robust 

assessment method, due to the shortcomings of normalization techniques for 

MDCM methods.   

Zavadskas et al. (2003) applied four linear and one non-linear normalization 

techniques in their study and showed that the non-linear one improved the 

quality of the transformation step and consequent final decision in their study. 

Opricovic and Tzeng (2004) analyzed the effect of Vector normalization in 

TOPSIS and Linear normalization techniques (namely- Max-Min) in the VIKOR 

method, but without mentioning any conclusion about the preference for  

normalization techniques in respect to those MCDM methods. 

Milani et al. (2005) analyzed the effects of different normalization 

techniques (Vector, Max, and Sum) on TOPSIS for a gear material selection case 

study. They just demonstrated the different rankings of alternatives using 

different normalization techniques, without discussing the normalization 

techniques comparison. 

Zavadskas et al. (2006) measured the accuracy of determining the relative 

significance of alternatives as a function of the initial criteria values with TOPSIS 

method using Vector and Lai and Hwang normalization techniques. The 

proposed methodology calculated the error of obtained results from the initial 

criteria values. The authors mentioned that the final results of MCDM depend on 

errors of initial values as well as on the selection of MCDM methods and 

normalization techniques (Zavadskas et al., 2006). However, this study did not 

include metrics such as Minkowski distance, Standard deviation, etc.  
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The study of Peldschus (2007) focused on the effects of normalization 

techniques on the optimal solution and discussed the suitability of linear and 

non-linear normalization techniques. The obtained results of the case study 

suggested that the non-linear normalization technique improved the quality of 

the evaluation (Peldschus, 2007). Again, this study was partial because the 

authors did not address, for example, distance metrics, or comparison metrics 

such as correlation.  

Chakraborty and Yeh (2007) explored the effects of four normalization 

techniques (Vector, Max-Min, Max, and Sum) in SAW (Simple Additive 

Weighting) method using Ranking Consistency Index (RCI) to assess the best 

normalization technique. In another study, Chakraborty and Yeh (2009) 

evaluated the same normalization techniques in TOPSIS using the same metrics 

(RCI). In this thesis, RCI metric is selected because it presents 

similarity/dissimilarity of different normalization techniques. However, these 

studies did not evaluate other metrics such as mean squared error, Minkowski 

distance, etc.  

Chakraborty and Yeh (2012) applied four normalization techniques namely 

Max, Max-Min, Sum, and Vector for SAW and TOPSIS methods to analyze the 

effect of the mentioned techniques on the ranking of alternatives. The authors 

used Spearman correlation and calculated the average of correlation (Mean ks 

values) for each normalization techniques for both SAW and TOPSIS methods 

and recommended using Max normalization technique for both SAW and TOP-

SIS methods. From this study we borrowed the correlation metric because it is 

important for comparing the consistency of different normalization techniques 

in MCDM methods.  

Celen (2014) analyzed the impact of vector normalization and three linear 

normalizations (vector, max-min, max and sum) techniques in the TOPSIS 

method. They used a consistency process for assessing banks performance in 

Turkey, which included using Pearson correlation. The conclusion was that 

vector normalization is the best technique for TOPSIS, in the proposed 

application. Here, we advanced this work by testing other normalization 

techniques and also discussing a more general assessment approach to select the 

best normalization technique for TOPSIS.  
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Chawade et al. (2014) introduced an open-source tool, called “Normalizer”, 

and used 12 different normalization techniques for the related data sets  and 

displayed  a comparative evaluation with several quantitative and qualitative 

plots. However, this study did not include metrics such as mean squared error, 

Minkowski distance, standard deviation, etc.   

Lakshmi and Venkatesan (2014) assessed five normalization techniques 

(Max, Max-Min, Sum, Vector, and Fuzzification (Gaussian membership 

function)) to analyze the effects of using different normalization techniques on 

the TOPSIS method. The authors of a related paper (Lakshmi and Venkatesan, 

2014) calculated time complexity and space complexity for each normalization 

technique with the help of MATLAB and recommended the Sum normalization 

technique as the best technique for the case study using the TOPSIS method. 

However, this study did not include metrics such as correlation, mean squared 

error, Minkowski distance, standard deviation, etc.  

Baghla and Bansal (2014) analyzed the effects of three normalization 

techniques namely Max, Max-Min, and Vector techniques, besides comparing the 

performance of AHP and ANP for determining the weights in VIKOR method. 

The simulation results in their research showed up Vector has the one giving the 

best results in their case study. However, this study did not include metrics such 

as mean squared error, Minkowski distance, standard deviation, etc.   

 Chatterjee and Chakraborty (2014) used four different normalization 

techniques as  Vector, Ma-Min, Jüttler’s-Körth, and Non-linear normalization by 

Jahan and Edwards in TOPSIS, PROMETHEE II, and GRA (Grey Relational 

Analysis). They calculated Average of Spearman correlation (Mean ks values) for 

each normalization techniques and MCDM method. The authors concluded that 

TOPSIS is the most sensitive method using different normalization techniques 

while PROMETHEE II is the less sensitive method. Also, the results from the case 

study concluded that Vector normalization displayed better performance among 

the three tested MCDM methods. From this study we borrowed the average of 

Spearman correlation (Mean ks values metric for our assessment framework).   

Mathew et al. (2014) compared the effect of six normalization techniques 

using Spearman correlation in weighted aggregated sum product assessment 

(WASPAS) method and recommended Max-Min as the best one for WASPAS 
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method. However, this study did not include metrics such as mean squared 

error, Minkowski distance, standard deviation, etc.  

Podviezko and Podvezko (2015) showed the influence effects of data 

transformation (normalization process) on TOPSIS and SAW methods. They 

suggested to implement different normalization techniques as much as possible 

in MCDM methods and analyze their effects on the ranking results considering 

which technique covers utility of the decision maker. They suggest the evaluation 

should be done by decision makers intervention and we believe this process will 

have biases. 

Papathanasiou et al. (2016) proposed a new web-based decision support 

system to rank alternatives and compare them using different normalization 

techniques on the MCDM methods TOPSIS and VIKOR. However, they did not 

compare the normalization techniques using suitable metrics.  

Yazdani et al. (2017) implemented the Gray Complex Proportional 

Assessment (COPRAS) COPRAS-G method in material selection case study 

using five normalization techniques (Vector, Logarithmic, Sum, Max, and Non-

linear by Turskis). The authors used two case studies to compare the results of 

initial normalization of COPRAS-G with the chosen five normalization 

techniques. For the first case, there were no differences between ranking of 

alternatives using different techniques and good correlation existed between all 

techniques and the initial technique of COPRAS-G, however, case 2 showed 

different results and considering the errors from the initial method of COPRAS-

G non-linear normalization by Turskis had the accepted performance (Yazdani 

et al., 2017). However, this study did not include metrics such as mean squared 

error, Minkowski distance, standard deviation, etc.  

Jahan (2018) developed range target-based normalization technique in 

WASPAS method and implemented ANOVA to compare the efficiency of Non-

monotonic, Comprehensive, and Target-based (point and range) normalization 

techniques. However, this study did not include metrics such as mean squared 

error, Minkowski distance, standard deviation, etc. to have a robust comparison 

between different normalization techniques. 

Krylovas et al. (2018) discussed the optimal parameters for normalization 
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techniques by approximation of real data with appropriate probability 

distributions and compared the efficiency of normalization techniques in the 

final solution of MCDM problems. However, this study did not include metrics 

such as mean squared error, Minkowski distance, standard deviation, etc.   to be 

ensure about the robustness of comparison between several normalization 

techniques. 

Aytekin (2021) analysed and tested the effects of 23 normalization 

techniques on 14 different scenarios (decision matrices) and used the SAW 

method as an aggregation technique for checking rank reversal. The authors 

pointed out that several features have effects on the selection of normalization 

techniques such as rank reversal, the range of normalized values, obtaining the 

same optimization aspect for all criteria, and the validity of results (Aytekin, 

2021). They calculated maximum and minimum of normalized values for each 

scenario while still there is a lack of assessment framework that is consisted of 

different metrics such as mean squared error, Minkowski distance, standard 

deviation, etc. to be ensure about the robustness of comparison between several 

normalization techniques and recommend the best techniques to decision 

makers. 

As already mentioned in this section, there are several studies regarding the 

evaluation of normalization techniques for MCDM problems, however, they lack 

providing a general recommendation framework for choosing the most suitable 

normalization technique.  Hence, in chapter 3 of this thesis we propose and 

discuss a developed evaluation framework to recommend the more suitable 

normalization technique for MCDM problems. 

 

2.4 Summary 

This chapter addressed a literature review on the main topics related to this 

thesis, multi criteria decision making (MCDM) methods and the definition and 

importance of normalization techniques in MCDM. Also, a taxonomy of MCDM 

from literature is presented and the selected MCDM methods to be used in this 

research are detailed. Furthermore, dynamic multicriteria decision making 

(DMCDM) and collaborative networks are briefly introduced in this chapter for 

MCDM methods. 
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Moreover, a complete survey of the most well-known normalization tech-

niques is introduced as well as their importance and effects on the final results of 

the MCDM methods. Although, there are some studies on evaluating the effects 

of different normalization techniques on MCDM methods, including recommen-

dation of the best technique for specific case studies, still there is a lack of a gen-

eral assessment framework to be used in decision problems for recommending 

the best normalization technique. The existence of this gap is the main concern 

and motivation for developing an assessment framework (chapter 3) in this re-

search work.  Concluding, this chapter covers the fundamental concepts associ-

ated with the development of an assessment framework for recommending the 

best normalization techniques in MCDM problems. The contributions for this 

thesis chapter are supported by the following publications: Vafaei et al. (2016a, 

2016b, 2018a, 2018b, 2019, 2020, 2022).  
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3 Assessment Framework 

This chapter focuses on the proposal of a framework, developed during the 

research work for this thesis. The main aim of this framework is to offer a novel 

assessment tool to recommend which normalization technique is more suitable 

for usage with well-known MCDM methods. The framework development 

evolved along several improvement cycles, to achieve a consistent tool, propos-

ing the necessary steps to select the best normalization technique. The chapter is 

divided into three research phases, each describing the framework evolution, to-

wards the final goal of building a decision support tool to help decision makers 

and analysts on their work with MCDM methods. Furthermore, this chapter in-

troduces an automatic process to recommend the best normalization technique 

for MCDM methods.  

 

3.1 Phase 1 of assessment framework evolution 

In the first phase of the framework's development and evolution, we tested 

three promising metrics (Vafaei et al., 2018a) for assessing normalization tech-

niques in MCDM methods, divided as follows:  

Step a) Determine Ranking Consistency Index (RCI) [from(Chakraborty 

and Yeh, 2009)]: 

3 
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This index is borrowed from (Chakraborty and Yeh, 2009) and demon-

strates how well a specific normalization technique produces rankings similar to 

other techniques.  RCI is the ratio between the total number of times a specific 

normalization technique produces a similar/dissimilar ranking of alternatives 

with other techniques and the total number of simulation runs (Chakraborty and 

Yeh, 2009). Also, a consistency weight (CW) is calculated for each specific nor-

malization technique to assign weights to the formula  (Chakraborty and Yeh, 

2009). This metric is chosen because of its ability to indicate the similarity/dis-

similarity of each specific normalization technique, compared with other tech-

niques. However, there is no general formula for this metric because of its char-

acteristics, regarding decision problems and the number of normalization tech-

niques. Hence, we calculate the RCI for each normalization technique and then 

we count the total number of times that these normalizations are similar or dis-

similar in the ranking of alternatives in tested decision problems. In this study, 

the number of iterations for simulation runs is assumed 1. Details about the cal-

culation process (RCI, CW, etc.) are provided in section 3.1.1. For interpretation 

of the RCI results (Chakraborty and Yeh, 2009), the normalization techniques 

with higher RCI are more desirable because they have more similarity and less 

dissimilarity with other normalization techniques, i.e. the higher the value of RCI 

the better. 

 

Step b) Calculation of Pearson and Spearman correlations between rank-

ing of alternative/alternatives' values to determine the mean ks values [from 

(Chatterjee and Chakraborty, 2014)]:  

The reason to select Pearson correlation was that it is the first known corre-

lational measure, developed by Karl Pearson in 1948, based on an idea from Sir 

Francis Galton in the late 1800s; further, all posterior correlation measures de-

rived from the original Pearson formula (Chee, 2013; Cramer, 1998). Pearson cor-

relation measures the linear relationship between two ratio/interval variables 

and its values lie between -1 and +1 (Chee, 2013; Cramer, 1998). Pearson correla-

tion has some pros and cons such as its ability to define the strength of the rela-

tions between two variables in a simple way, while sharing variance (covary) 

(Chee, 2013). On the other hand, Pearson correlation weakness is its inability to 

measure relationships of non-linear variables (i.e. displaying correlation zero 
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when there are non-linear relationships). Pearson correlation (P) formulation is 

(Chee, 2013; Cramer, 1998): 

𝑃𝑒𝑎𝑟𝑠𝑜𝑛_𝐶𝑜𝑟𝑟 = 𝑃 =
𝑛(∑ 𝑥𝑦) − ∑ 𝑥 ∑ 𝑦

√[𝑛(∑ 𝑥2) − (∑ 𝑥)2][𝑛(∑ 𝑦2) − (∑ 𝑦)2]
 (3-1) 

 

Where, n= number of paired variables, x=the first variable, y=the second 

variable, and xy=the product of the two paired variables.  

The reasoning for choosing Spearman’s rank correlation coefficient was that 

it is a non-parametric test to define the degree of association between two varia-

bles without any assumption about the data distribution (Wang and Luo, 2010). 

Spearman’s correlation coefficient is usually a good metric to define the associa-

tion and strength of a relationship between two sets of data and variables with 

ordinal scales. Spearman’s correlation coefficient (S) is defined as (Chakraborty 

and Yeh, 2009): 

𝑆𝑝𝑒𝑎𝑟𝑚𝑎𝑛_𝐶𝑜𝑟𝑟 = S = 1 − 6
∑ 𝐷𝑖

2𝑚
𝑖=1

𝑚(𝑚2 − 1)
 (3-2) 

Where, Di is the difference between values/ranks ri and riand m is the 

number of alternatives; S value lies between –1 and +1.   

Therefore, in this step b) of the first Phase, we start by calculating Pearson 

correlation (Celen, 2014) and  Spearman correlation, both between ranking/val-

ues of alternatives, (Wang and Luo, 2010) and then we compare the results. In 

this evaluation, for all pairs of normalization techniques, we calculated their cor-

relation and also the average ks value to determine the mean ranking agreement 

among them, using ranking/values of alternatives with Pearson and Spearman 

correlations. The higher the value of the Mean ks value the better. Because, it 

means that the method which has higher rank is more correlated with the other 

normalization techniques. 

 

Step c) Analysis and evaluation of normalization techniques con-

sistency with three conditions [borrowed from (Celen, 2014)]:  

This step is inspired on Celen (2014) and consists of three conditions to an-

alyze the effect of different normalization techniques on ranking alternatives us-
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ing MCDM methods. Celen (2014) conditions are interesting to evaluate how nor-

malization techniques behave on decision problems and which one is more sim-

ilar to the others.  

 

Condition 1: The result should consider a distributional property, location, 

of normalized values (metrics for measure of location) such as means, 

standard deviations, minimum and maximum values. However, since loca-

tion is not enough to determine similarity in distributional properties, we 

proceed to also use conditions 2 and 3.  

 

Condition 2: Check for normal distributions to ensure consistency using 

Kolmogorov- Smirnov test to measure Skewness and Kurtosis. Skewness is 

a measure of symmetry, or more precisely, the lack of symmetry and Kur-

tosis is a measure of whether the data are heavy-tailed or light-tailed rela-

tive to a normal distribution. If the amount of Skewness and Kurtosis is be-

tween (-2, 2), there is a possibility data have normal distributions. However, 

to be sure about normal distributions we also need to calculate the statistic 

test and significant level test (Sig) (Field, 2000; Trochim and Donnelly, 

2006). The amount of statistical test should be less than 1 and the amount of 

significant level test (Sig) should be more than 0.05 (sig > 0.05)(Field, 2000; 

Trochim and Donnelly, 2006). 

 

Condition 3: This condition encompasses the comparison between three 

best and worst ranking results for robustness purposes. When normaliza-

tion techniques rank alternatives, mostly in the same order, we can say the 

results are more robust. The calculation process is explained below in sec-

tion 3.1.1.  

 

3.1.1 Test cases for Phase 1 

In order to validate the robustness of this assessment framework's phase 1, 

we applied it to some case studies and illustrative examples using the chosen 

normalization techniques (Table 8): Max, Max-Min, Sum, Vector, Logarithmic, 

and Fuzzification except Target-based. Further, we tested benefit and cost criteria 

normalization formulas, related to the characteristics of criteria in those case 
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studies and illustrative examples. The case studies and examples use well-known 

MCDM methods such as: TOPSIS, ELECTRE, SAW, VIKOR, and AHP. Further, 

to focus on the effect of different normalization techniques on the chosen MCDM 

methods we applied equal weights for criteria in all tested case studies.   

It should also be noticed that there were some doubts in condition 2 of Step 

c for proving normal distribution of different normalization techniques regard-

ing the Kolmogorov-Smirnov test. Generally, the amount of statistical test should 

be less than 1 and the amount of significant level test (Sig) should be more than 

0.05 (sig > 0.05) to have normal distribution. However, some techniques (from 

Table 15) have statistic tests<1 and sig <0.05, i.e.  normal distributions cannot be 

proven. Moreover, not all conditions of Step c produce numerical and compara-

ble results to compare their numeric results with Steps a & b. So, we will imple-

ment Step a & b for the rest of the case studies in phase 1 and postpone further 

research about step c-phase 1 to a future stage. 

 
 

 TOPSIS Method [adapted from (Vafaei et al., 2018a)] 

This numerical example is based on a project of autonomous landing of 

drones with hazard avoidance, where the criteria are hazard maps 

(http://www.ca3-uninova.org/project_iluv). We reduced the illustrative exam-

ple to only 3 criteria (C1, C2, C3), corresponding to the hazard maps of illumina-

tion, reachability, and land texture; and 16 alternatives (A1, A2, …, A16) from the 

90.000 real alternatives (300 pixels by 300 pixels hazard map), which correspond 

to candidate location sites for landing. This small subset is enough to analyze the 

effects of different normalization techniques and see the different rankings. In 

the original large case study it was impossible to see the different ranking of al-

ternatives in presence of different normalization techniques easily. Table 9 shows 

the data used for assessing the framework where C1 and C2 are criteria of type 

benefit, i.e., the higher the raw values the better they should be on the normali-

zation and C3 is a cost criterion for which low normalized values are desirable. 

After collecting the input data, we tested six (shown in Table 8) of the most well-

known normalization techniques (Jahan and Edwards, 2015; Nayak et al., 2014; 

Peldschus, 2007; Zavadskas et al., 2003) and analyzed their effect on this case 

study to select the best location sites for landing.  

http://www.ca3-uninova.org/project_iluv
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Table 9: Decision matrix for landing drones 

 C1 
(illumination) 

C2 
(reachability) 

C3 
(land texture) 

A1 138.6090 0.3349 6.4543 

A2 154.7214 0.3395 11.4244 

A3 158.3081 0.3441 11.4244 

A4 157.3082 0.3487 6.8542 

A5 144.5976 0.3301 11.2616 

A6 138.5982 0.3346 11.2616 

A7 131.5989 0.3391 11.1988 

A8 132.5988 0.3437 11.1988 

A9 144.5976 0.3252 11.2616 

A10 138.5982 0.3297 11.2616 

A11 132.5988 0.3342 11.1988 

A12 135.9513 0.3387 6.8974 

A13 119.7141 0.3204 11.2616 

A14 112.7148 0.3248 11.1988 

A15 112.7148 0.3292 11.1988 

A16 128.9520 0.3337 6.8974 

 

In step 1 of TOPSIS method, the decision matrix is defined (see Table 9).  

In step 2, we calculate the normalized decision matrix. To illustrate this pro-

cess, we use alternative A3 with respect to C1, with the six tested normalization 

techniques mentioned above (Max, Max-Min, Sum, Vector, Logarithmic, and 

Fuzzification). Below, we illustrate the numerical calculations, and the results are 

summarized in Table 10. 

 

𝑛𝑀𝑎𝑥,   3 =
158.3081

158.3081
= 1 

 

𝑛𝑀𝑎𝑥−𝑀𝑖𝑛,   3 =
158.3081 − 112.7148

158.3081 − 112.7148
= 1 

 

 𝑛𝐿𝑖𝑛𝑒𝑎𝑟,   3 =
158.3081

138.609 + 154.7214 + ⋯ + 128.952
= 0.0725 

 

𝑛𝑉𝑒𝑐𝑡𝑜𝑟,   3 =
158.3081

√138.6092 + 154.72142 + ⋯ + 128.9522
= 0.2887 
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𝑛𝐿𝑜𝑔𝑎𝑟𝑖𝑡ℎ𝑚𝑖𝑐,   3 =
ln (158.3081)

ln (138.609 ∗ 154.7214 ∗ ⋯ ∗ 128.952)
= 0.0645 

 

For Fuzzification we used the proposed trapezoidal membership functions 

(N20-Table 7), which were adapted to this case study criteria domains, as illus-

trated in Figure 7. Notice the two benefit criteria, C1 and C2 with right open trap-

ezoidal functions and cost criteria C3 with open left trapezoidal function.    

 

   
C1 domain [130, 180, 201, 

201] 
C2 domain [0.1, 0.6, 1, 1] C3 domain [3, 3, 10, 25] 

Figure 7: Fuzzification of Criteria for Landing Drones 

In step 3 of TOPSIS, we calculate the weighted normalized decision matrix 

by multiplying weights to the criteria of the normalized decision matrix. As men-

tioned before, for simplicity purposes we considered all criteria of equal im-

portance, hence, for the three criteria weights are 0.3333.  

In step 4 of TOPSIS method, after choosing the maximum and minimum 

criteria value from the weighted normalized matrix, we calculated the positive-

ideal and negative-ideal solutions based on the criterion's nature (cost or benefit 

ones). Illustrating for A3 alternative: 

𝐷𝑀𝑎𝑥,   3
+ = √(0.333 − 0.333)2 + (0.3286 − 0.333)2 + (0 − 0.333)2 = 0.0043 

 

𝐷𝑀𝑎𝑥,   3
− = √(0.333 − 0.2370)2 + (0.3286 − 0.3059)2 + (0 − 0.1453)2 = 0.1755 

 

For performing step 5 and step 6 of TOPSIS, we calculate the relative close-

ness and the ranking of alternatives using positive and negative ideal solution 

values. Table 10 shows the results of all tested normalization techniques for al-

ternative A3, as follows: 
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𝐶𝑀𝑎𝑥,   3
∗ =

0.1756

0.1756 + 0.0044
= 0.9756 

Table 10: Result of TOPSIS steps for A3 

  

Max 
(N1) 

Max-
Min 
(N2) 

Sum 
(N3) 

Vector 
(N4) 

Loga-
rithmic 

(N5) 

Fuzzi-
fica-
tion 
(N6) 

Normalized decision matrix 

C1 1 1 0.0725 0.2888 0.0645 1 

C2 0.9868 0.8375 0.0643 0.2572 0.0932 0.4882 

C3 0 0 0.0528 0.7234 0.0622 0.9050 

Positive and negative ideal 
solutions 

D+ 0.0044 0.0541 0.0003 0.0011 0.0021 0.0031 

D- 0.1756 0.5479 0.0153 0.0492 0.0015 0.3349 

Relative closeness values 

[D-/(D- +D+ )] 
C3* 0.9756 0.9101 0.9817 0.9772 0.4244 0.9908 

Rank of normalization tech-
niques 

Rank 1 1 1 1 12 1 

The relative closeness values and comparison of ranking results for the 16 

alternatives with six normalization techniques are shown in Table 11. It is inter-

esting to observe that A3 is considered the best candidate for five of the six nor-

malization techniques: Max (N1), Max-Min (N2), Sum (N3), Vector (N4), and 

Fuzzification (N6) techniques; while for A9, N5 is the best for logarithmic nor-

malization. 

Table 11: Relative closeness (RC) and Ranking of alternatives (R) 

 Max (N1) 
Max-Min 

(N2) 
Sum (N3) Vector (N4) 

Logarithmic 
(N5) 

Fuzzification 
(N6) 

 RC R RC R RC R RC R RC R RC R 

A1 0.2704 15 0.3901 15 0.2252 15 0.2772 15 0.5031 8 0.8345 8 

A2 0.9366 2 0.8196 2 0.9501 2 0.9380 2 0.4851 10 0.9820 2 

A3 0.9756 1 0.9101 1 0.9817 1 0.9772 1 0.4244 12 0.9908 1 

A4 0.4239 13 0.6030 8 0.3816 13 0.4325 13 0.3629 15 0.9131 5 

A5 0.8202 3 0.6323 6 0.8553 3 0.8189 3 0.6718 3 0.9626 3 

A6 0.7753 5 0.6508 4 0.8160 5 0.7703 5 0.5245 6 0.8577 6 

A7 0.7173 9 0.6454 5 0.7668 9 0.7096 9 0.3751 14 0.1786 12 

A8 0.7283 7 0.6927 3 0.7756 7 0.7204 7 0.2864 16 0.2715 10 

A9 0.8087 4 0.5775 10 0.8470 4 0.8089 4 0.7999 1 0.9540 4 

A10 0.7684 6 0.5944 9 0.8111 6 0.7645 6 0.6517 4 0.8557 7 

A11 0.7213 8 0.6031 7 0.7710 8 0.7145 8 0.5026 9 0.2695 11 

A12 0.2754 14 0.4305 12 0.2592 14 0.2806 14 0.3967 13 0.5888 9 

A13 0.6225 10 0.4284 13 0.6850 10 0.6147 10 0.6784 2 0.0777 13 

A14 0.5841 12 0.4255 14 0.6502 12 0.5749 12 0.5835 5 0.0745 15 

A15 0.5866 11 0.4531 11 0.6520 11 0.5770 11 0.5098 7 0.0758 14 

A16 0.2086 16 0.3253 16 0.2092 16 0.2120 16 0.4830 11 0.0259 16 
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Since there is no consensus about which is the best normalization technique 

just by looking at the results obtained we now apply the assessment framework 

metrics of phase 1, for selecting the best normalization technique. The calcula-

tions for the three steps of the on-going framework are as follows: 

 
Step a) Determine the Ranking Consistency Index (RCI): 

Since we have 6 normalization techniques, we start by defining the con-

sistency weight (CW) as follows:  

1- If a method is consistent with all other 5 methods, then CW = 5/5 = 1. 

2- If a method is consistent with 4 of the other 5 methods, then CW = 4/5. 

3- If a method is consistent with 3 of the other 5 methods, then CW = 3/5. 

4- If a method is consistent with 2 of the other 5 methods, then CW = 2/5. 

5- If a method is consistent with 1 of the other 5 methods, then CW = 1/5. 

6- If a method is not consistent with any of the other methods, then CW = 

0/5=0. 

And then the ranking consistency index (RCI), for instance for N1, is cal-

culated as: 

RCI (N1) = [(T123456 * (CW=1) )+ (T12345 * (CW=4/5))+ (T13456 * 

(CW=4/5))+ (T12456 * (CW=4/5))+ (T12346 * (CW=4/5))+ (T12356 * (CW=4/5))+ 

(T1234 * (CW=3/5))+ (T1235 * (CW=3/5))+ (T1236 * (CW=3/5))+ (T1245 * 

(CW=3/5))+ (T1246 * (CW=3/5))+ (T1256 * (CW=3/5))+ (T1346 * (CW=3/5))+ 

(T1356 * (CW=3/5))+ (T1345 * (CW=3/5))+ (T1456 * (CW=3/5))+ (T123 * 

(CW=2/5))+ (T124 * (CW=2/5))+ (T125* (CW=2/5))+ (T126 * (CW=2/5)) + (T134 

* (CW=2/5))+ (T135 * (CW=2/5))+ (T136 * (CW=2/5))+ (T145 * (CW=2/5))+ 

(T146 * (CW=2/5))+ (T156 * (CW=2/5))+ (T12 * (CW=1/5))+ (T13 * (CW=1/5))+ 

(T14 * (CW=1/5))+ (T15 * (CW=1/5))+ (T16 * (CW=1/5))+ (TD123456 * 

(CW=0))/TS] 

Where,   

TS = Total number of times the iteration of simulation was run (in this 
study TS=1) 

TD123456 = the Total number of times N1, N2, N3, N4, N5, and N6 
produced different rankings. 
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T123456 = Total number of times N1, N2, N3, N4, N5, and N6 pro-
duced the same ranking. 

T12345 = Total number of times N1, N2, N3, N4, and N5 produced the 
same ranking. 

T1234 = Total number of times N1, N2, N3, and N4 produced the same 
ranking. 

T123 = Total number of times N1, N2, and N3 produced the same 
ranking. 

T12 = Total number of times N1 and N2 produced the same ranking. 

 

The RCI (Ranking Consistency Index) for the other normalization tech-

niques is calculated similarly to the above formula and the results are depicted 

in Table 12. As shown, RCI points to Max (N1), Sum(N3), and vector normaliza-

tion (N4) as the best normalization techniques for this case study with TOPSIS 

method and the worst one is logarithmic (N5). 

Table 12: Ranking consistency index of normalization techniques. 

 RCI Rank 

N1 40 1 

N2 24.2 5 

N3 40 1 

N4 40 1 

N5 6.8 6 

N6 28.6 4 

Step b) We now calculate the Pearson and Spearman correlation between 

ranking alternative values from Table 11 and results are depicted in Table 13. 

Also, the results of Pearson and Spearman correlation between the relative close-

ness of alternatives are depicted in Table 14. Furthermore, for all pairs of normal-

ization techniques, we calculate their Pearson and Spearman correlations and the 

average ks values to determine the mean ranking agreement among them, as 

shown in Table 13 and Table 14. 
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Table 13: Pearson (P) and Spearman (S) correlation between rankings of alternatives and 

their mean ks values. 

 N1 N2 N3 N4 N5 N6 Mean ks value Rank 

 P S P S P S P S P S P S P S P S 

N1  0.808 0.808 1 1 1 1 0.244 0.244 0.714 0.714 0.753 0.753 1 1 

N2 0.808 0.808  0.808 0.808 0.808 0.808 -0.323 -0.323 0.641 0.641 0.548 0.548 5 5 

N3 1 1 0.808 0.808  1 1 0.244 0.244 0.714 0.714 0.753 0.753 1 1 

N4 1 1 0.808 0.808 1 1  0.244 0.244 0.714 0.714 0.753 0.753 1 1 

N5 0.244 0.244 
-

0.323 
-0.323 0.244 0.244 0.244 0.244  0.032 0.032 0.088 0.088 6 6 

N6 0.714 0.714 0.641 0.641 0.714 0.714 0.714 0.714 0.032 0.032  0.563 0.563 4 4 

Table 14: Pearson (P) and Spearman (S) correlation between relative closeness of alterna-

tives and their mean ks values. 

 N1 N2 N3 N4 N5 N6 Mean ks value Rank 

 P S P S P S P S P S P S P S P S 

N1  0.835 0.995 0.992 0.999 0.999 1 0.234 0.998 0.366 0.996 0.685 0.9987 2 3 

N2 0.835 0.995  0.776 0.999 0.844 0.999 -0.224 0.998 0.552 0.997 0.556 0.9989 4 2 

N3 0.992 0.992 0.776 0.992  0.989 0.999 0.266 0.998 0.267 0.996 0.658 0.9985 3 4 

N4 0.999 1 0.844 0.995 0.989 0.999  0.232 0.998 0.386 0.996 0.690 0.9989 1 1 

N5 0.234 0.998 -0.224 0.998 0.266 0.998 0.232 0.998  0.170 0.996 0.136 0.998 6 5 

N6 0.366 0.996 0.552 0.997 0.267 0.996 0.386 0.996 0.170 -0.096   0.348 0.996 5 6 

 

Step c) Analysis and evaluation of normalization techniques consistency 

with three conditions:  

Condition 1 & 2: For the first condition of the assessment approach, we de-

termined the descriptive statistics for the six normalization techniques (see Table 

15). By just looking at Table 15 we could not determine similarity in distributional 

properties, so, we also applied the Kolmogorov–Smirnov test (Condition 2) to 

check the consistency of normalization techniques for normal distribution. 

Table 15: Condition 1 & 2. Descriptive statistics and, Kolmogorov-Smirnov test for nor-

malization techniques. 

  N1 N2 N3 N4 N5 N6 

Statistics of 
closeness 
coefficient values 
(Condition 1) 

Mean 0.6389 0.5739 0.6648 0.6370 0.5149 0.5571 

Std. deviation 0.2346 0.1588 0.2551 0.2321 0.1355 0.3966 

Minimum 0.2086 0.3253 0.2092 0.2120 0.2864 0.0259 

Maximum 0.9756 0.9101 0.9817 0.9772 0.7999 0.9908 

Kolmogorov-
Smirnov test 
statistics 
(Condition 2) 

Skewness -0.2164 0.4168 -0.5719 -0.8760 0.4381 -0.6273 

Kurtosis -1.9673 -0.1026 -0.5665 -0.5441 -0.0649 -0.5574 

Statistic 0.193 0.152 0.227 0.185 0.159 0.258 

Sig. 0.112 0.200 0.027 0.145 0.200 0.006 
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Since for condition 2 (see Table 15) the amount of Skewness and Kurtosis is 

between (-2, 2), it is possible to have normal distributions. However, to be sure 

about normal distributions, the statistic test and significant level test (Sig) were 

calculated. The amount of statistical test should be less than 1 and the amount of 

significant level test (Sig) should be higher than 0.05 (sig > 0.05). In Table 15, for 

all normalization techniques in Kolmogorov-Smirnov test, the amount of statistic 

tests is less than 1 and the significant level test (Sig) for N1, N2, N4 and N5 is 

higher than 0.05. However, for cases N3 and N6, since their sig <0.05 the normal 

distributions could not be proven.  

Condition 3: For the third condition, we examined the result of TOPSIS by 

choosing the highest three and the lowest three ranked alternatives for each nor-

malization technique (see Table 16). As it is shown, the logarithmic normalization 

technique (N5) has very different scoring in comparison with the other tech-

niques. Also, max-min (N2) and fuzzification (N6) have some different scores 

from the others (they are highlighted in Table 16 with the grey color). The other 

three techniques (N1, N3, and N4) have similar results, which seem to indicate 

these normalization techniques generate more consistent results. 

Table 16: Condition 3 – comparison of best and worst normalization techniques. 

 Rank N1 N2 N3 N4 N5 N6 

Three 
highest 
rank 

1 A3 A3 A3 A3 A9 A3 

2 A2 A2 A2 A2 A13 A2 

3 A5 A8 A5 A5 A5 A5 

Three 
lowest 
rank 

14 A12 A14 A12 A12 A7 A15 

15 A1 A1 A1 A1 A4 A14 

16 A16 A16 A16 A16 A8 A16 

 

The results from Table 15 and Table 16 reveal that Step c of phase1 of the 

assessment framework is not enough to judge the best normalization technique 

for MCDM methods. So, to recommend the best normalization technique for 

TOPSIS method, we also need to analyse the results from Steps a and b (Table 12, 

Table 13, and Table 14) of phase 1 and the summarized results are shown in Table 

17. 
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Table 17: The results of Step a (RCI), Step C. (Pearson (P) and Spearman (S) correlation) for 

TOPSIS method 

 RCI Mean Ks (Ranking of Alt.) Mean Ks (Alt. values) 
  P S P S 

Max (N1) 1 1 1 2 3 
Max-Min (N2) 5 5 5 4 2 
Sum (N3) 1 1 1 3 4 
Vector (N4) 1 1 1 1 1 
Logarithmic (N5) 6 6 6 6 5 
Fuzzification (N6) 4 4 4 5 6 

 

The results of Steps a), b) and c) of phase 1 of our assessment approach (Ta-

ble 17), show there is a consensus between different metrics (RCI, Mean Ks for 

alternative values and Mean Ks for ranking of alternatives) regarding Vector nor-

malization technique (N4), which shows being the best technique for this case 

study with TOPSIS method. Furthermore, it seems that Logarithmic normaliza-

tion technique is the worst technique for this case study. Concluding, with our 

Phase 1 assessment framework approach, we not only validated Chakraborty & 

Yeh (2009) result of Vector normalization being the best technique as well as  

identified the worst solution (Logarithmic), which definitively should not be 

used as normalization technique for this case study.  

 

 AHP Method: case study [adapted from (Vafaei et al., 2016a)] 

In this case study, we discuss the suitability of our phase 1 assessment 

framework for evaluating four normalization techniques from Table 8 (Max, 

Max-Min, Sum, Vector) with an illustrative example of smart car parking, using 

the AHP method. Here we do not use N5 (logarithmic), N6 (Fuzzification and N7 

(target-based) from the selected techniques (see Table 8) due to AHP being a pair-

wise comparative method (step 2 of AHP method (see section 2.1.4)) where it is 

impossible to individually represent each criterion either by a membership func-

tion or defining a criterion target.   Further, we discarded the logarithmic nor-

malization technique because we obtained negative and infinite data (due to the 

characteristics of pairwise matrixes), hence it is not usable (appropriate) for the 

AHP method (likewise any other similar fuzzification technique). Notice that 

Logarithmic normalization technique could be seen as a fuzzification process be-

cause it uses a Sigmoid membership functions to represent criteria 
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This illustrative case consists of 3 criteria (C1, C2, C3), which correspond to 

time to park, distance, and size of the parking space, and 7 alternatives (A1, A2, 

…, A7), which correspond to candidate location sites for parking. Finding the 

best place for parking the car is the goal; C1 and C2 are cost criteria, where low 

values are better, and C3 is a benefit criterion, where high values are desirable. 

Following the AHP method we define three pairwise comparison matrices for 

each criterion (Table 18, Table 19, Table 20) and then one pairwise comparison 

matrix between criteria (Table 21). To these four matrixes, we apply the five nor-

malization techniques, separately, to determine the ranking of alternatives and 

compare results.  

Table 18: Pairwise Comparison matrix with respect to the time. 

 A1 A2 A3 A4 A5 A6 A7 

A1 1 1/3 1/2 3 1/3 2 1 

A2 3 1 1 4 1 3 1 

A3 2 1 1 2 1/2 3 2 

A4 1/3 1/4 1/2 1 1/4 1 1/3 

A5 3 1 2 4 1 3 1 

A6 1/2 1/3 1/3 1 1/3 1 3 

A7 1 1 1/2 3 1 1/3 1 

 

Table 19: Pairwise Comparison matrix with respect to the distance 

 A1 A2 A3 A4 A5 A6 A7 

A1 1 1/2 2 4 1/3 1/6 1 

A2 2 1 3 5 1/2 1/4 1 

A3 1/2 1/3 1 5 1/4 1/4 2 

A4 1/4 1/5 1/5 1 1/5 1/5 1/7 

A5 3 2 4 5 1 1 3 

A6 6 4 4 5 1 1 2 

A7 1 1 1/2 7 1/3 1/2 1 

 

Table 20: Pairwise Comparison matrix with respect to the size of the parking space 

 A1 A2 A3 A4 A5 A6 A7 

A1 1 4 4 5 1/2 2 5 

A2 1/4 1 1 3 1/3 1/3 1/5 

A3 1/4 1 1 1 1/4 1/5 1/4 

A4 1/5 1/3 1 1 1/5 1/6 1/9 

A5 2 3 4 5 1 1 2 

A6 1/2 3 5 6 1 1 1/2 

A7 1/5 5 4 9 1/2 2 1 
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Table 21: Pairwise Comparison matrix between criteria 

 C1 C2 C3 

C1 1 4 7 

C2 1/4 1 4 

C3 1/7 1/4 1 

 

We start by testing the Sum normalization, the usual normalization tech-

nique for AHP (Saaty, 1980) because it ensures column sum per alternative is 

equal to one that is defined by Saaty (1980). The other normalization techniques 

do not include this characteristic and the sum of the normalized values can be 

bigger than 1; hence, for comparison purposes, we opted for re-normalizing the 

other four tested techniques using the Sum normalization technique. For illus-

trating the alternatives rating procedure, we show the calculation for vector nor-

malization of alternative A1, and the final results for all alternatives are shown 

in Table 22 and Table 23: 
 

𝑃11 =
𝑥11

√∑ 𝑥1𝑗
7
𝑗=1

=
1

√(12) + (32) + (22) + (
1
3

2

) + (32) + (
1
2

2

) + (1)2

= 0.7974 

 
 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃1 =
0.7974 + 0.8390 + 0.8091 + 0.5991 + 0.8227 + 0.6524 + 0.7583

7
= 0.7540 

 

𝐴11 =
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃1

𝑆𝑢𝑚
=

0.7974

4.8050
= 0.1659 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐴1 =
0.1659 + 0.1814 + 0.1659 + 0.1304 + 0.1769 + 0.1393 + 0.1598

7
= 0.1605 

 

Table 22: Normalization results for vector normalization technique related to C1. 

 P1 P2 P3 P4 P5 P6 P7 Average 

P1 0.7974 0.8390 0.8091 0.5991 0.8227 0.6524 0.7583 0.7540 

P2 0.3922 0.5169 0.6182 0.4655 0.4681 0.4786 0.7583 0.5283 

P3 0.5948 0.5169 0.6182 0.7327 0.7341 0.4786 0.5165 0.5988 

P4 0.9325 0.8792 0.8091 0.8664 0.8670 0.8262 0.9194 0.8714 

P5 0.3922 0.5169 0.2365 0.4655 0.4681 0.4786 0.7583 0.4737 

P6 0.8987 0.8390 0.8727 0.8664 0.8227 0.8262 0.2748 0.7715 

P7 0.7974 0.5169 0.8091 0.5991 0.4681 0.9421 0.7583 0.6987 

sum 4.8051 4.6247 4.7730 4.5946 4.6508 4.6829 4.7437 4.6964 
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Table 23: Re-normalization results for vector normalization technique related to C1. 

 A1 A2 A3 A4 A5 A6 A7 Average 

A1 0.1659 0.1814 0.1695 0.1304 0.1769 0.1393 0.1598 0.1605 

A2 0.0816 0.1118 0.1295 0.1013 0.1007 0.1022 0.1598 0.1124 

A3 0.1238 0.1118 0.1295 0.1595 0.1578 0.1022 0.1089 0.1276 

A4 0.1941 0.1901 0.1695 0.1886 0.1864 0.1764 0.1938 0.1856 

A5 0.0816 0.1118 0.0495 0.1013 0.1007 0.1022 0.1598 0.1010 

A6 0.1870 0.1814 0.1828 0.1886 0.1769 0.1764 0.0579 0.1644 

A7 0.1659 0.1118 0.1695 0.1304 0.1007 0.2012 0.1598 0.1485 

sum 1 1 1 1 1 1 1 1 

 

Similar calculation processes are performed for the other comparison ma-

trixes, using the remaining four normalization techniques. The global weights of 

alternatives and ranking results for the tested normalization techniques are 

shown in Table 24. As it can be seen in Table 24, there is consensus on which 

normalization techniques is better for alternatives A2, A3, A4, and A5 (i.e. they 

all have the same ranking), but for the other alternatives, there was no consensus. 

 

Table 24: Global score (G) and Ranking (R) of alternatives for the smart parking example 

using AHP method. 

 Max (N1) 
Max-Min 

(N2) 
Sum (N3) Vector (N4) 

 G R G R G R G R 

A1 0.1972 2 0.1925 2 0.1505 4 0.1693 2 
A2 0.0681 6 0.0634 6 0.0762 6 0.1165 6 
A3 0.1143 5 0.1161 5 0.0993 5 0.1297 5 
A4 0.2469 1 0.2658 1 0.2876 1 0.1755 1 
A5 0.0460 7 0.0291 7 0.0749 7 0.1101 7 
A6 0.1765 3 0.1869 3 0.1598 2 0.1450 4 
A7 0.1509 4 0.1462 4 0.1517 3 0.1538 3 

 
In phase 1, we calculated RCI, Pearson and Spearman correlation and mean 

ks values with the global weights of alternatives and also with the ranks of alter-

natives to assess the suitability of the four tested normalization techniques for 

the AHP method. It should be noticed that in the related paper (Vafaei et al., 

2016a) only the Pearson correlation with the global weights of alternatives and 

Spearman correlation with the rank of alternatives were calculated. In this thesis, 

in order to show the complete calculation, we included calculations for Pearson 

and Spearman with both global weights and ranks of alternatives. Table 25 shows 

the results of step a & b-phase 1.  
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Table 25: The results of Step a & b-phase 1. RCI, Pearson (P) and Spearman (S) correla-

tion for AHP method 
 

  Correlation with rank of Alt. Correlation with Alt. Values 
 

RCI P S P S 
 

Value Rank ks  Rank ks  Rank ks  Rank Ks Rank 

Max (N1) 18 1 0.9524 1 0.7333 1 0.9606 1 0.9993 1 

Max-Min 
(N2) 

18 1 0.9524 1 0.7333 1 0.9564 2 0.9991 2 

sum (N3) 16.3333 4 0.8810 4 0.3333 4 0.9029 4 0.9991 3 

Vector 
(N4) 

17.6667 3 0.9286 3 0.6 3 0.9263 3 0.9983 4 

 

Hence, Table 25 displays that there exists a complete consensus between 

Pearson and Spearman correlation’s results and RCI. It is clear that the best nor-

malization technique is Max because it has the highest mean ks values for both 

Pearson and Spearman correlations and RCI. 

Summarizing, although Max is elected as the most suitable normalization 

technique, it requires a re-normalization with Sum normalization technique be-

cause the sum of the normalized values has to be 1 (for more information about 

AHP method please see Section 2.1.4). Therefore, we may conclude that a combi-

nation of Max normalization with Linear-Sum seems the most appropriate for 

AHP. 

 

 Illustrative test for ELECTRE, SAW, VIKORs Methods [Adapted from 

(Vafaei et al., 2016b) and (Vafaei et al., 2018b)] 

In this section we present a small numerical example with 7 alternatives and 

3 criteria to discuss the results of step a & b of phase 1 (determining RCI and 

comparative study between ranking of alternatives using Pearson and Spearman 

correlation to determine the mean ks value). 

Table 26 shows the example's input data used for discussing the chosen six 

normalization techniques (N1, N2, N3, N4, N5, and N6 except N7 from Table 8) 

with three MCDM methods (ELECTRE, SAW, VIKORs), where C1 and C2 are 

benefit criteria, i.e. the higher the raw values the better they should be on the 

normalization, and C3 is a cost criterion, where low normalized values are desir-

able. Table 27, Table 28, and Table 29 depict the results of ELECTRE, SAW, and 

VIKOR methods using selected normalization techniques (see Table 8). For more 
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information about ELECTRE, SAW, and VIKOR methods and their steps please 

see section 2.1. 

Table 26: Decision matrix for the illustrative example. 

 C1 C2  C3  

A1 171.3068 0.3176 3.9516 

A2 178.0288 0.3219 5.5274 

A3 179.3276 0.3263 5.5274 

A4 171.3068 0.3127 3.9516 

A5 179.3276 0.3171 5.5274 

A6 171.0295 0.3214 5.8126 

A7 162.0905 0.3079 10.6341 

 

Table 27: Ranking (R) of alternatives using ELECTRE method. 

 Max 
Max-
Min 

Sum Vector 
Loga-

rithmic 
Fuzzifi-
cation 

A1 3 2 3 3 4 1 

A2 1 2 1 1 6 1 

A3 1 2 1 1 6 1 

A4 3 2 3 3 4 1 

A5 3 2 5 3 1 1 

A6 3 1 5 3 3 1 

A7 7 7 5 7 1 1 

 

Table 28: Alternatives' Values (AV) and Ranking (R) of alternatives using SAW method. 

 Max (N1) 
Max-Min 

(N2) 
Sum (N3) Vector (N4) 

Logarithmic 
(N5) 

Fuzzifica-
tion (N6) 

 AV R AV R AV R AV R AV R AV R 

A1 0.8521 1 0.6876 4 0.1589 1 0.5038 1 0.1444 2 0.7540 5 

A2 0.8195 4 0.8165 2 0.1430 4 0.4783 4 0.1426 4 0.8017 3 

A3 0.8264 3 0.9212 1 0.1440 3 0.4810 3 0.1421 5 0.8133 1 

A4 0.8471 2 0.5989 6 0.1581 2 0.5019 2 0.1450 1 0.7507 6 

A5 0.8170 5 0.7547 3 0.1427 5 0.4774 5 0.1433 3 0.8071 2 

A6 0.7970 6 0.6580 5 0.1388 6 0.4673 6 0.1421 6 0.7547 4 

A7 0.6152 7 0 7 0.1145 7 0.3574 7 0.1405 7 0.6721 7 

 

Table 29: Alternatives' Values (AV) and Ranking (R) of alternatives using VIKORs method. 

 Max (N1) 
Max-Min 

(N2) 
Sum (N3) Vector (N4) 

Logarithmic 
(N5) 

Fuzzifica-
tion (N6) 

 AV R AV R AV R AV R AV R AV R 

A1 0.7636 4 0.8732 4 1 1 0.9754 1 0.3839 4 0.7900 5 

A2 0.8669 3 0.9041 3 0.3906 4 0.8223 4 0.2562 5 0.9589 3 

A3 0.9457 1 0.9985 1 0.4013 3 0.8574 3 0.1536 6 1 1 

A4 0.6199 6 0.8251 5 0.9923 2 0.9501 2 0.7745 1 0.7786 6 

A5 0.9259 2 0.9081 2 0.3868 5 0.8098 5 0.4553 3 0.9781 2 

A6 0.7506 5 0.7229 6 0.3156 6 0.7140 6 0.0247 7 0.7928 4 

A7 0 7 0 7 0 7 0 7 0.5665 2 0 7 
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Observing the results, it shows that there are different ranks for alternatives 

using selected normalization techniques. Hence, it is difficult to select the best 

normalization technique for these three MCDM methods and to choose the best 

technique for each MCDM method we apply the on-going evaluation framework. 

Table 30, Table 31, and Table 32 show the results of step a & b, for ELECTRE, 

SAW, and VIKOR methods. Notice that for ELECTRE method we could not use 

Pearson and Spearman correlation with the alternatives' values because this 

method requires preferences (elimination) between criteria and does not produce 

alternatives' values. 

 

Table 30: The results of Step a & b-phase 1. RCI, Pearson (P) and Spearman (S) correlation and 

their Mean ks (ks) for ELECTRE method 

   
Correlation with rank of alterna-

tives 
 

 RCI P S 

 Value Rank ks Rank ks Rank 

Max (N1) 7.8 1 0.3395 1 0.4107 1 

Max-Min 
(N2) 

1 6 0.2598 3 0.3821 3 

sum (N3) 6.4 3 0.1558 4 0.2821 4 

Vector (N4) 7.8 1 0.3395 2 0.4107 2 

Logarithmic 
(N5) 

1.6 5 -0.6439 6 -0.5179 6 

Fuzzifica-
tion (N6) 

5.4 4 -0.0260 5 0.0250 5 

 

Table 31: The results of Step a & b-phase 1. RCI, Pearson (P) and Spearman (S) and their Mean 

ks (ks) correlation for SAW method 
 

  
Correlation with rank of 

Alt. 
 Correlation with Alt. Val-

ues 
 

 
RCI P S P S  

Value Rank ks  Rank ks  Rank ks  Rank ks Rank 

Max (N1) 24 2 0.65 2 0.65 2 0.8795 1 0.9738 4 

Max-Min 
(N2) 

17.8 5 0.4 5 0.4 5 0.7736 4 0.9786 2 

sum (N3) 25.2 1 0.65 2 0.65 2 0.8125 3 0.9690 5 

Vector 
(N4) 

24 2 0.65 1 0.65 1 0.8755 2 0.9876 1 

Logarith-
mic (N5) 

21 4 0.5143 4 0.5143 4 0.6689 5 0.9688 6 

Fuzzifica-
tion (N6) 

16.4 6 0.2500 6 0.2500 6 0.6653 6 0.9764 3 
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Table 32: The results of Step a & b-phase 1. RCI, Pearson (P) and Spearman (S) correlation and 

their Mean ks (ks) for VIKORs method 
 

  
Correlation with rank of 

Alt. 
 Correlation with Alt. Val-

ues 
 

 
RCI P S P S  

Value Rank ks  Rank ks  Rank ks  Rank ks Rank 

Max 9.4 1 0.4 2 0.4 2 0.5440 4 0.9867 3 

Max-Min 8.4 2 0.4857 1 0.4857 1 0.6309 2 0.9870 2 

sum 8 4 0.3857 3 0.3857 3 0.4941 5 0.9811 5 

Vector 8.2 3 0.3857 3 0.3857 3 0.6701 1 0.9885 1 

Logarith-
mic 

0.6 6 -0.2357 6 -0.2357 6 -0.1978 6 0.9635 6 

Fuzzifica-
tion 

7.8 5 0.2929 5 0.2929 5 0.5831 3 0.9853 4 

 

Table 30 results show that for ELECTRE method there is consensus between 

RCI, Pearson and Spearman results regarding Max being the best normalization 

technique and Logarithmic being the worst one (Table 30).  

For SAW method, there is no consensus between RCI and correlation with 

the ranking of alternatives and correlation with the alternatives' values. The ob-

tained results from correlation with the rank of alternatives reveal that Vector 

(N4) has the highest Mean ks value (both Pearson and Spearman) for SAW (Table 

31). Hence, Vector (N4) normalization technique could be more appropriate for 

SAW method but this statement will need more metrics to be sure.   

As Table 32 shows, there is a consensus between Pearson and Spearman 

correlation for both using rank of alternatives and alternative values for VIKORs 

method. Based on the obtained results, both Max-Min (N2) and Vector (N4) are 

suitable normalization techniques for VIKOR, however to decide which one is 

better will require to add more metrics.  

Summarizing, the best technique for ELECTRE is Max (N1), for SAW 

method is Vector (N4), and for VIKORs method, Max-Min (N2) and Vector (N4) 

are both suitable normalization techniques. However, SAW and VIKOR methods 

will need to more metrics on the assessment framework to be sure about recom-

mending techniques in the related case studies. 
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3.2 Phase 2 of assessment framework evolution 

In phase 2 of the assessment framework development, we modified Step c 

of Phase 1 (section 3.1) Analysis and evaluation of normalization techniques con-

sistency with three conditions (Celen, 2014)- because this step is rather limited 

and only analyses the behaviour of different normalization techniques and pro-

vides interpretative results for determining RCI and correlation.  First,  metrics 

in condition 2 assume datasets without outliers and having normal distributions, 

therefore,  they cannot be generalized, i.e. those metrics are quite specific for 

Celen (2014) case study. Generally, for confirming normal distributions, using 

Kolmogorov-Smirnov test, the value of statistical test should be less than 1 and 

the value of significant level test (Sig) should be more than 0.05 (sig > 0.05) (Field, 

2000; Trochim and Donnelly, 2006). So, we decided to eliminate condition 2 of 

step c (from phase 1).  

Second, condition 3 - Checking similarity ranking of alternatives by com-

parison of best and worst ranking of three results/alternatives - is rather cum-

bersome for case studies with a large number of alternatives and the results do 

not seem to positively contribute to the selection of the best normalization tech-

nique.  Therefore, we removed this condition in phase 2 of the assessment frame-

work to improve the comparison results' robustness. 

Furthermore, in this phase 2 we also modified Step b) of phase 1 (3.1)- Com-

parative study between ranking of alternative/alternatives' values using Pearson 

and Spearman correlations to determine the mean ks value -  , because the ob-

served results from Table 13, Table 25, Table 30, Table 31, and Table 32 show that 

Pearson and Spearman always produce the same results for calculating the cor-

relation between ranking of alternatives. Spearman (Chakraborty and Yeh, 2009; 

Wang and Luo, 2010) is good for calculating the correlation between ranking of 

alternatives because it is a suitable non-parametric test to define the strength of 

a relationship between two sets of data and deals with ordinal scale variables; 

Pearson correlation is good for finding the relation strength between alternatives' 

values because of its ability to define the correlation between real numbers, in a 

simple way, by sharing variance (Chee, 2013). Furthermore, in this phase we 

questioned the usefulness of using both correlations comparison because, as 

mentioned before, Spearman formulation is derived from Pearson formula. So, 
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in order to avoid any confusion for decision makers by producing different re-

sults using Pearson and Spearman, we propose to use just Pearson correlation in 

the framework.  

In addition, besides modifying Step b) & c) we added a new step to the 

evaluation framework in phase 2, namely Step d, to develop the robustness of 

the assessment framework's results by measure the proximity (using Minkowski 

distances metrics) and data dispersion (using standard deviation metric) in 

MCDM decision problems. The novel four steps of phase 2 are as follows: 

Step a: Determine the Ranking Consistency Index (RCI) (Chakraborty and 

Yeh, 2009). 

Step b: Calculate Pearson correlation (equations (3-1)) and its mean value 

(ks) (Chatterjee and Chakraborty, 2014). 

Step c: Calculate the Standard Deviation (STD) of alternatives’ values for 

each normalization technique to assess the spreading out of data set using alter-

natives' values (Bland and Altman, 1996; Rumsey, 2009; Yeh, 2003). STD provides 

a measure of the spread out of the dataset from its mean and its formulation (3-3) 

is expressed as: 

𝑆𝑇𝐷 = √
∑ (𝑥𝑖 − �̅�)2𝑞

𝑖=1

𝑞 − 1
 (3-3) 

Where xi are the observed values and �̅� is the mean value of the observed 

values, and q is the number of observations. More explanations about the calcu-

lation process and interpretation of this metric can be seen in section 3.2.1.1.   

Step d: Calculate Minkowski distances (Guo, 2004; Han et al., 2012; Hassan 

et al., 2014; Shih et al., 2007) for three well-known distances (equations (3-5),(3-6), 

and (3-7)) to ensure consistency on evaluating normalization techniques through 

distances. The Minkowski distance formula is (3-4):  

𝑀𝑖𝑛𝑘𝑜𝑤𝑠𝑘𝑖_𝑑(𝑥, 𝑦) = √∑|(𝑥𝑖 − 𝑦𝑖)𝑝|

𝑛

𝑖=1

𝑝

 (3-4) 

As Minkowski distance formula (3-4) shows, it is a generalization of Eu-

clidean, Manhattan, and Chebyshev distances, where p is a real number such 
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that p≥1 and xi and yi are the observed alternatives' values and n is the number 

of alternatives. 

This formula represents the Manhattan distance when p=1 (equation (3-5)) 

and Euclidean distance when p=2 (equation (3-6)): 

• Manhattan (p=1):      

𝑀𝑎𝑛ℎ𝑎𝑡𝑡𝑎𝑛_𝑑(𝑥, 𝑦) = ∑|(𝑥𝑖 − 𝑦𝑖)|

𝑛

𝑖=1

 (3-5) 

 

• Euclidean (p=2):   

𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛_𝑑(𝑥, 𝑦) = √∑(𝑥𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

 (3-6) 

 

• Chebyshev (p=∞):    

 In dealing with the limit case of p=∞, the equation (3-4) represents 

the supremum distance and it is called Chebyshev distance (equa-

tion(3-7)), which gives the maximum difference in values between 

the two objects. 

𝐶ℎ𝑒𝑏𝑦𝑠ℎ𝑒𝑣_𝑑(𝑥, 𝑦) = lim
𝑝→∞

(∑|𝑥𝑖 − 𝑦𝑖|
𝑝

𝑛

𝑖=1

)

1/𝑝

= max
𝑖

(|𝑥𝑖 − 𝑦𝑖|) (3-7) 

 

In the above formulas, xi and yi are the observed alternatives' values and n 

is the number of alternatives. More explanation about the calculations process 

and interpretation of this step is described in section 3.2.1.1. 

 

3.2.1 Test Cases for Phase 2 

In this section, we test the evaluation framework applicability, to detect 

faults, to allow improving the efficiency of the framework. To simplify the test-

ing, such as in Phase 1 we apply equal weights for criteria in all case studies. 
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 SAW with DMCDM and CN [adapted from (Vafaei et al., 2019)] 

In this phase we test the suitability of the chosen six normalization tech-

niques (N1, N2, N3, N4, N5, and N6 except N7 from Table 8) applied to a bor-

rowed case study  (Arrais-Castro et al., 2015a), which consists of evaluating and 

ranking a set of six business partners for product design service provision. The 

case includes six alternatives to design services, with three agencies and three 

independent businesses as alternatives to be evaluated and ranked.  

The set of criteria for past and future evaluation, are (Table 33): cost per 

hour; on-time delivery performance; delay penalty, based on the number of days 

orders were delayed and performance evolution; quality rating, about work de-

livered; lack of quality penalty, consisting on a penalty based on the number of 

complains per order and performance evolution; and portfolio rating. Also, the 

set of criteria for present evaluation are (Table 33): quoted price; delivery time 

(quoted); lead time, portfolio rating, and strategic rating.  

In the original case study  (Arrais-Castro et al., 2015a) the chosen data nor-

malization technique was fuzzification (N6, from Table 8) and the method was 

DMCDM (Dynamic Multiple Criteria Decision Making) (see section2.2)  . We re-

duced the original six alternatives in the past and future decision matrixes to 5 

(A1, A2, …, A5) because there is no information related to A6 for past and future, 

and we merged 2 criteria (Delivery time and Lead time from the original paper) 

of present data because they have the same characteristics. Further, with this 

merge and reduction we could show the capacity of the dynamic model to handle 

adding or deleting alternatives or criteria. 

Table 33 shows the example´s input data (Arrais-Castro et al., 2015a), where 

Cost per hour, Delay penalty, Lack of quality, Quoted price, Delivery time, and 

Lead time are cost criteria -  low normalized values are desirable - while the rest 

of the criteria are benefit ones - higher values are better. Furthermore, we only 

discuss the first iteration of the dynamic system to simplify the explanation. 
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Table 33: Input data adapted from (Arrais-Castro et al., 2015a) 

 

Cost per 
hour (Aver-

age) 

On time de-
livery perfor-

mance 

Delay pen-
alty 

Quality rating 
(work deliv-

ered) 

Lack of 
Quality 
Penalty 

Portfolio 
Rating 

Quoted 
Price 

Lead 
Time 

Portfo-
lio Rat-

ing 

Stra-
tegic 
Rat-
ing 

 
Past 

fu-
ture 

Past 
fu-

ture 
Past 

fu-
ture 

Past 
fu-
ture 

Past 
fu-

ture 
Past 

fu-
ture 

Present 

 
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 

A1= 
Agency 1 

72 82.5 80% 98% 15 10 80% 
100
% 

2 0 85% 90% 5760 15 100% 10 

A2= 
Agency 2 

65 95 95% 95% 10 5 90% 98% 4 1 90% 80% 8840 22 98% 5 

A3= 
Agency 3 

40 80 80% 98% 5 15 95% 98% 0 3 85% 85% 5760 22 98% 8 

A4= De-
signer 1 

32 50 90% 85% 25 20 85% 85% 6 5 80% 75% 6150 25 95% 8 

A5= De-
signer 2 

75 55 85% 80% 20 25 90% 90% 8 8 75% 80% 13200 32 80% 6 

A6= De-
signer 3 

            6000 10 100% 0 

 

Observing Table 33 we see that some criteria include zero values (eg., lack 

of quality penalty) and this prevents normalizing with Sum and Logarithmic for-

mulations because of division by zero causes infinite and undefined results in the 

normalization process. So, we could immediately eliminate these two normaliza-

tion techniques from our comparative study, since they are not suitable for deci-

sion problems with criteria´s scores of zero. Illustrating, the calculations to show 

this characteristic, using Sum normalization technique for Agency 3, for Lack of 

quality penalty criteria are: 

𝑛𝐴𝑔𝑒𝑛𝑐𝑦3,𝑙𝑎𝑐𝑘 𝑜𝑓 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 (𝑝𝑎𝑠𝑡) =

1
0

(
1
2 +

1
4 + ⋯ +

1
8)

= 𝑁𝐴 

After eliminating the two mentioned normalization techniques (Sum and 

Logarithmic), we normalize the input values for the other three normalization 

techniques (Max, Max-Min, Vector) and add the already normalized values from 

the fuzzification technique (Arrais-Castro et al., 2015a).  Illustrating the calcula-

tion process for the three normalized techniques, for Agency 3, criterion “Quoted 

price” (present information), using the cost formula of the remaining three Nor-

malization techniques (see Table 8 N1, N2, and N4), we have: 

𝑀𝑎𝑥:        𝑛𝐴𝑔𝑒𝑛𝑐𝑦3,𝑄𝑢𝑜𝑡𝑒𝑑 𝑝𝑟𝑖𝑐𝑒 (𝑝𝑟𝑒𝑠𝑒𝑛𝑡) = 1 −
5760

13200
= 0.564 

𝑀𝑎𝑥 − 𝑀𝑖𝑛:        𝑛𝐴𝑔𝑒𝑛𝑐𝑦3,𝑄𝑢𝑜𝑡𝑒𝑑 𝑝𝑟𝑖𝑐𝑒 (𝑝𝑟𝑒𝑠𝑒𝑛𝑡) =
(13200 − 5760)

(13200 − 5760)
= 1 

𝑉𝑒𝑐𝑡𝑜𝑟:        𝑛𝐴𝑔𝑒𝑛𝑐𝑦3,𝑄𝑢𝑜𝑡𝑒𝑑 𝑝𝑟𝑖𝑐𝑒 (𝑝𝑟𝑒𝑠𝑒𝑛𝑡) = 1 − (
5760

√(57602) + (88402) + ⋯ + (60002)
) = 0.709 



96 

 

 

Table 34 depicts the normalized results for all alternatives. To facilitate vis-

ualization, we only show the normalized values for present information. Further, 

since normalization with the fuzzification technique was calculated in Arrais-

Castro et al. (2015a) it is not displayed in Table 34. 

Table 34: Normalized values for present information. 

 

After obtaining the normalized scores for each matrix, past, present, and 

future, we need to aggregate the values for rating each alternative. For this pro-

cess, we use as aggregation operator (i.e., fusion process) the SAW method with 

equal weights for all criteria for obtaining the final score (Alternatives' values) 

for all suppliers, as depicted in Table 35. 

Table 35: Alternatives' Values (AV) and Ranking (R) of suppliers using four normaliza-

tion techniques. 

 Max (N1) Max-Min (N2) Vector (N4) Fuzzification (N6)  
 AV R AV R AV R AV R 

A1 0.376 1 0.339 2 0.274 1 0.339 2 

A2 0.287 4 0.317 4 0.253 3 0.317 4 

A3 0.357 2 0.382 1 0.268 2 0.382 1 

A4 0.320 3 0.338 3 0.241 4 0.338 3 

A5 0.282 5 0.099 5 0.236 5 0.099 5 

 

Observing the rankings of alternatives/suppliers in Table 35, it is impossi-

ble to choose which normalization technique is more appropriate for this case 

study which uses dynamic methods (DMCDM) in collaborative networks. There-

fore, it is important to apply the four steps of our assessment framework (section 

 
Max Max-Min Vector 
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A1 0.5636 0.5313 1 1 1 0.7727 1 1 0.7093 0.7235 0.4278 0.5882 

A2 0.3303 0.3125 0.98 0.5 0.5860 0.4545 0.9 0.5 0.5538 0.5944 0.4193 0.2941 

A3 0.5636 0.3125 0.98 0.8 1 0.4545 0.9 0.8 0.7093 0.5944 0.4193 0.4706 

A4 0.5341 0.2188 0.95 0.8 0.9476 0.3182 0.75 0.8 0.6896 0.5391 0.4064 0.4706 

A5 0 0 0.8 0.6 0 0 0 0.6 0.3338 0.4100 0.3423 0.3529 
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03.2) to select the most suitable normalization technique. The implemented steps 

are explained as below:   

 

Step a: Determine the Ranking Consistency Index (RCI) 

As mentioned in Phase I, the RCI is calculated with the total number of 

similarity/dissimilarity that each normalization technique produces in 

comparison with the other normalization techniques. So, we start by defining the 

consistency weight (CW) for the four normalization techniques (Max, Max-Min, 

Vector, and Fuzzification), as follows:  

1- If one normalization technique ranking score is similar in the other 3 
normalization techniques, then CW=3/3=1. 

2- If one normalization technique ranking score is similar in the other 2 
normalization techniques, then CW=2/3. 

3- If one normalization technique ranking is only similar with another 
normalization technique, then CW=1/3. 

4- If one normalization technique ranking is not similar with any of the other 
3 normalization techniques, then CW=0/3=0. 

 
To illustrate, the calculation of RCI for N1 (Max) normalization technique is: 
 
RCI (N1) = [((T1234 * (CW=1))+ (T123 * (CW=2/3))+ (T124 * (CW=2/3))+ (T134* 

(CW=2/3))+ (T12 * (CW=1/3))+ (T13 * (CW=1/3))+ (T14 * (CW=1/3))+ (TD1234 * 

(CW=0)))/TS]. 

 
T1246 = Total number of times N1, N2, N4 and N6 produced the same ranking. 

T124 = Total number of times N1, N2 and N4 produced the same ranking. 

T126 = Total number of times N1, N2 and N6 produced the same ranking. 

T146 = Total number of times N1, N4 and N6 produced the same ranking. 

T12 = Total number of times N1 and N2 produced the same ranking. 

T14 = Total number of times N1 and N4 produced the same ranking. 

T16 = Total number of times N1 and N6 produced the same ranking. 

TD1246 = Total number of times N1, N2, N4 and N6 produced different rankings. 

TS = Total number of times the simulation was run (in this study TS=1). 

 
RCI (N1) = [((0 * 1) + (0 * 2/3) + … + (2 * 1/3) + (0 * 0))/1] = 4  
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Similar calculations are performed for the other three normalization tech-

niques (Max-Min, Vector, and Fuzzification) to obtain their respective RCI. The 

results of Step a) are depicted in Table 36. 

Table 36: Step a. RCI for the selected Normalization Techniques 
 

RCI Rank Step A 

Max (N1) 4 1 

Max-Min (N2) 4 1 

Vector (N4) 1.333 4 

Fuzzification (N6) 4 1 

 

Observing Table 36 we can see that there is a draw between the normaliza-

tion techniques Max (N1), Max-Min (N2), and Fuzzification (N6) – all ranked first 

– but we can discard Vector normalization technique (N4) as not appropriate for 

the case study. 

 

Step b: Calculate the Pearson correlation and determine the mean value (ks) 

In this step, we calculate the Pearson correlation (equation (3-1)) for each 

pair of normalization techniques and then their mean ks values (the average of 

correlation) for each technique using the rank of alternatives. Table 37 shows the 

results of Pearson correlation and mean ks values (Step b) using data from Table 

35. 

Table 37: Step b. Pearson correlation between alternatives' values and Mean ks values for each 

normalization technique 

 Max Max-Min Vector Fuzzification ks Rank  

Max (N1)   0.8857 0.9429 0.8857 0.9048 1 

Max-Min (N2) 0.8857   0.8286 1 0.9048 1 

Vector (N4) 0.9429 0.8286   0.8286 0.8667 4 

Fuzzification (N6) 0.8857 1 0.8286   0.9048 1 

 

The results of Step b), displayed in Table 37, are similar to the ones obtained 

in Step a) (Table 36), and still there is no discrimination between three normali-

zation techniques (Max (N1), Max-Min (N2), and Fuzzification (N6)), because 

they have the same mean ks values, i.e. neither Step a) nor Step b) can discrimi-

nate between N1, N2, and N6. 
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Step c: Calculate the Standard Deviation (STD) using alternatives' values 

In Phase 2 third step of the assessment framework, we calculate the stand-

ard deviation (STD) of alternatives’ values (using Table 35) for each normaliza-

tion technique. STD (equation(3-3)) provides a measure of the spread out of the 

dataset from its mean. Usually, a lower STD indicates that data are close to the 

mean value, while a higher STD shows that data are further away from the mean 

and spread out within the data range (Bland and Altman, 1996; Rumsey, 2009). 

However, a small STD value is not always favourable and its interpretation de-

pends on the case study and its properties (Investopedia, 2018; J. Rumsey, 2018). 

To clarify the interpretation of STD in our case study, we use partial data from 

Table 33, and calculate the STD for Max-Min normalization technique (C´7 and 

C´9), as shown in Table 38. 

Table 38: Step c and d for normalized values C´7 and C´9 using Max-Min normalization tech-

nique. 

 
Raw data 

Normalized values (using Max-
Min normalization technique) 

C7 C9 C´7 C´9 

A1 80% 2 0 0.75 

A2 90% 4 0.6667 0.5 

A3 95% 0 1 1 

A4 85% 6 0.3333 0.25 

A5 90% 8 0.6667 0 

Phase 2- Step c) STD 0.3801 0.3953 

 

Table 38 shows that C9 range is [0-8] while C7 values are concentrated on 

the interval [80%-90%]. The STD results (Step c) in Table 38) should be inter-

preted as the higher values are the better and vice versa the lower STD value are 

less desirable, i.e. worst choices. The reason for this interpretation is that we in-

tend to choose the best normalization technique which produces the discrimina-

tive normalized values to rank alternatives and avoid to produce the same rank 

for more than one alternative. This goal could be reached if normalized values 

are far enough from each other and respectively, the mean value for the normal-

ized values range [0-1] in decision problems should be far enough from each 

other. So, the higher STD in the limited range would guaranty more discrimina-

tive results to order/rank alternatives in decision problems. 
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The final results of Step c) for the four tested normalization techniques 

(Max, Max-Min, Vector, Fuzzification) are shown in Table 39. Observing these 

results, we can now say that Max-Min (N2) and Fuzzification (N6) are good nor-

malization techniques (based on their higher STD), while N1 and N6 (N6 was 

already discarded in Step c) are not good for the problem at hand.  

Table 39: Step c) STD for the selected Normalization Techniques 
 

STD Rank 

Max (N1) 0.0940 3 

Max-Min (N2) 0.1269 1 

Vector (N4) 0.0550 4 

Fuzzification (N6) 0.1269 1 

 

Step d: Calculate Minkowski distances (Guo, 2004; Hassan et al., 2014) 

In the last step of the on-going evaluation framework, we use Minkowski 

distances (equation (3-4)) to assess which normalization technique is better (Max, 

Max-Min, Vector, Fuzzification). We decided to use  three well-known types of 

Minkowski distances (Manhattan, Euclidean, and Chebyshev) (equations (3-5), 

(3-6), and (3-7)) and the same reasoning of Step c) to interpret distance values, i.e. 

the higher  distance value the better is the normalization technique. The results 

are depicted in Table 40. 

Table 40: Step d. Manhattan, Euclidean, and Chebyshev distances for selected normalization 

techniques. 

  Manhattan Euclidean Chebyshev 

 Dis-
tance 

Rank Distance Rank 
Dis-
tance 

Rank 

Max (N1) 1.633 3 0.515 3 0.264 4 

Max-Min (N2) 2.040 1 0.695 1 0.345 1 

Vector (N4) 0.865 4 0.301 4 0.150 3 

Fuzzification (N6) 2.040 1 0.695 1 0.345 1 

 

It should be noticed that step d) did not provide any distinction between 

Max-Min (N2) and Fuzzification (N6) (see Table 40) as the best normalization 

technique for the dynamic collaborative network case study. However, since Step 

c) and Step d) concur on the results, one may say that both normalization tech-

niques are suitable for usage in this problem. 
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Table 41 summarizes the obtained results of applying the evaluation frame-

work, for recommending which normalization technique is more appropriate for 

a case of dynamic collaborative networks for ranking suppliers/businesses. 

Through the comparison carried out with the case study it was possible to say 

that two of the four normalization techniques considered (Max-Min and Fuzzifi-

cation) are the best suited for ranking suppliers/businesses (see Table 41).  

Table 41: Summary of ranked for selected normalization techniques obtained from the four 

steps (a, b, c, and d) evaluation assessment. 

 Step a Step b Step c  Step d 

 
RCI Mean ks STD 

Minkowski distances 
 Manhattan Euclidean Chebyshev 

Max (N1) 1 1 3 3 3 4 
Max-Min (N2) 1 1 1 1 1 1 
Vector (N3) 4 4 4 4 4 3 
Fuzzification 
(N4) 

1 1 1 1 1 1 

 

The final ordering of the assessed normalization techniques (Table 41) is: 

first, both Max-Min and Fuzzification normalization techniques are appropriate 

for normalization of this case study; second best is Max normalization, and the 

worst is the Vector normalization technique. The other two initially chosen tech-

niques, Sum and logarithmic, are definitively not suitable for usage in this case 

study because of the infinite and undefined results obtained when any criterion 

includes a zero value. 

Concluding, normalization techniques influence the score and ranking of 

alternatives in any DMCDM model, in presence of collaborative networks and 

highlights the need for having a sound evaluation process/framework to recom-

mend the most suitable normalization technique for Dynamic Multiple Criteria 

Decision Making in collaborative networks. 

 

 TOPSIS Method  

In this section, we discuss the suitability of six normalization techniques 

from  Table 8 applied to the case study from section 3.1.1.1. In order to facilitate 

the understanding of the decision problem, we demonstrate the results after the 

aggregation process with the TOPSIS method for the six normalization tech-

niques (Table 11). 
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Table 11: Relative closeness (RC) values and Ranking of alternatives (R) (adapted from section 
3.1.1.1) 

 Max (N1) 
Max-Min 

(N2) 
Sum (N3) Vector (N4) 

Logarithmic 
(N5) 

Fuzzification 
(N6) 

 RC R RC R RC R RC R RC R RC R 

A1 0.2704 15 0.3901 15 0.2252 15 0.2772 15 0.5031 8 0.8345 8 

A2 0.9366 2 0.8196 2 0.9501 2 0.9380 2 0.4851 10 0.9820 2 

A3 0.9756 1 0.9101 1 0.9817 1 0.9772 1 0.4244 12 0.9908 1 

A4 0.4239 13 0.6030 8 0.3816 13 0.4325 13 0.3629 15 0.9131 5 

A5 0.8202 3 0.6323 6 0.8553 3 0.8189 3 0.6718 3 0.9626 3 

A6 0.7753 5 0.6508 4 0.8160 5 0.7703 5 0.5245 6 0.8577 6 

A7 0.7173 9 0.6454 5 0.7668 9 0.7096 9 0.3751 14 0.1786 12 

A8 0.7283 7 0.6927 3 0.7756 7 0.7204 7 0.2864 16 0.2715 10 

A9 0.8087 4 0.5775 10 0.8470 4 0.8089 4 0.7999 1 0.9540 4 

A10 0.7684 6 0.5944 9 0.8111 6 0.7645 6 0.6517 4 0.8557 7 

A11 0.7213 8 0.6031 7 0.7710 8 0.7145 8 0.5026 9 0.2695 11 

A12 0.2754 14 0.4305 12 0.2592 14 0.2806 14 0.3967 13 0.5888 9 

A13 0.6225 10 0.4284 13 0.6850 10 0.6147 10 0.6784 2 0.0777 13 

A14 0.5841 12 0.4255 14 0.6502 12 0.5749 12 0.5835 5 0.0745 15 

A15 0.5866 11 0.4531 11 0.6520 11 0.5770 11 0.5098 7 0.0758 14 

A16 0.2086 16 0.3253 16 0.2092 16 0.2120 16 0.4830 11 0.0259 16 

 

As discussed in Phase 1, it is difficult to assess which is the best normaliza-

tion technique just by looking at the results obtained in step a), therefore, we will 

apply steps c) and d) of phase 2 from the assessment framework for selecting the 

best normalization technique (Table 42).  

Table 42:  Step c & d: STD, Manhattan, Euclidean, and Chebyshev distances for selected 

normalization techniques. 

 STD Manhattan Euclidean Chebyshev 

 Dis-
tance 

Rank Dis-
tance 

Rank 
Dis-
tance 

Rank 
Dis-
tance 

Rank 

Max (N1) 0.2346 3 32.1911 3 3.6340 3 0.7670 3 

Max-Min 
(N2) 

0.1588 5 21.7828 5 2.4594 5 0.5848 5 

Sum (N3) 0.2551 2 33.9894 2 3.9515 2 0.7725 2 

Vector (N4) 0.2321 4 32.0058 4 3.5958 4 0.7652 4 

Logarithmic 
(N5) 

0.1355 6 18.7598 6 2.0990 6 0.5135 6 

Fuzzification 
(N6) 

0.3966 1 53.9947 1 6.1436 1 0.9650 1 

 

The above results plus the results of RCI (Table 12) and mean ks values (Ta-

ble 13) from section 3.1.1.1 are summarized in Table 43. 
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Table 43: Summary of ranked for selected normalization techniques obtained from the 

four steps (a, b, c, and d) assessment of phase 2. 

 Step a Step b Step c Step d 

 
RCI Mean ks SDT 

Minkowski distances 
 Manhattan Euclidean Chebyshev 

Max (N1) 2 1 3 3 3 3 
Max-Min (N2) 4 5 5 5 5 5 
Sum (N3) 3 1 2 2 2 2 
Vector (N4) 1 1 4 4 4 4 
Logarithmic 
(N5) 

6 6 6 6 6 6 

Fuzzification 
(N6) 

5 4 1 1 1 1 

 

As Table 43 shows, there is still no consensus from the four steps of Phase 

2.  So, clearly, there is a need for adding more metrics to ensure that the evalua-

tion framework is robust for selecting the most appropriate technique. In Phase 

3 we will describe the proposed additions to the framework. 

 

 AHP Method 

In this section, we discuss the suitability of the four tested normalization 

techniques (see Table 8) applied to the case study from section 3.1.1.2. In order to 

facilitate the understanding of the decision problem, we demonstrate the results 

after the aggregation process with AHP method (Table 24). 

Table 24: Global weight (G) and Ranking (R) of alternatives for the smart parking example 
(adapted from section 3.1.1.2) 

 Max (N1) 
Max-Min 

(N2) 
Sum (N3) Vector (N4) 

 G R G R G R G R 

A1 0.1972 2 0.1925 2 0.1505 4 0.1693 2 
A2 0.0681 6 0.0634 6 0.0762 6 0.1165 6 
A3 0.1143 5 0.1161 5 0.0993 5 0.1297 5 
A4 0.2469 1 0.2658 1 0.2876 1 0.1755 1 
A5 0.0460 7 0.0291 7 0.0749 7 0.1101 7 
A6 0.1765 3 0.1869 3 0.1598 2 0.1450 4 
A7 0.1509 4 0.1462 4 0.1517 3 0.1538 3 

 

Again, since it is difficult to assess which is the best normalization technique 

just by looking at the results obtained, we now apply steps c) and d) of phase 2 

and borrow results of step a) and b) from section 3.1.1.2. for selecting the best 

normalization technique. Table 44 shows the results obtained with these steps.  
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Table 44: Steps c & d-phase2: STD, Manhattan, Euclidean, and Chebyshev distances for tested 

normalization techniques. 

 
Mean ks val-

ues 
STD 

Manhattan Euclidean Chebyshev 

 Value Rank 
Dis-
tance 

Rank 
Dis-
tance 

Rank 
Dis-
tance 

Rank 
Dis-
tance 

Rank 

Max (N1) 0.9606 1 0.0716 3 1.7155 3 0.4642 3 0.2010 3 

Max-Min 
(N2) 

0.9564 2 0.0811 1 2.0783 1 0.5258 1 0.2367 1 

Sum (N3) 0.9029 4 0.0734 2 1.8468 2 0.4758 2 0.2127 2 

Vector 
(N4) 

0.9263 3 0.0253 4 0.6520 4 0.1638 4 0.0655 4 

 

The above results plus the results of mean ks values (Table 25) from section 

3.1.1.2 are depicted in Table 45. 

Table 45: Summary of ranked normalization techniques obtained from Phase 2 steps (a, 

b, c, and d). 

 Step a Step b Step c Step d 

 
RCI Mean ks  STD 

Minkowski distances 

 Manhattan Euclidean Chebyshev 

Max (N1) 1 1 3 3 3 3 
Max-Min (N2) 1 2 1 1 1 1 
Sum (N3) 4 4 2 2 2 2 
Vector (N4) 3 3 4 4 4 4 

 

Anyway, as Table 45 shows, still there is no consensus between the results 

using the four proposed steps. Definitively, there is a need for adding other met-

rics to the framework, to provide more robust and effective recommendations 

when selecting the most proper technique. 

 

 ELECTRE Method  

In this section, we discuss the suitability of six normalization techniques 

(see Table 8, N1, N2, N3, N4, N5, and N6 except N7) applied to the case study 

of section 3.1.1.3. In order to facilitate the decision problem understanding, we 

discuss the results after the aggregation process with ELECTRE method (Table 

27). 
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Table 27: Ranking (R) of alternatives using ELECTRE method. 

 Max (N1) 
Max-

Min (N2) 
Sum 
(N3) 

Vector 
(N4) 

Logarith-
mic (N5) 

Fuzzifica-
tion (N6) 

A1 3 2 3 3 4 1 

A2 1 2 1 1 6 1 

A3 1 2 1 1 6 1 

A4 3 2 3 3 4 1 

A5 3 2 5 3 1 1 

A6 3 1 5 3 3 1 

A7 7 7 5 7 1 1 

 

In this example, as well as in the previous 2 examples, it is difficult to assess 
which is the best normalization technique just by looking at the results obtained 
with the aggregation process, therefore we again applied steps c) and d) of phase 
2 and borrow the results of step a) and b) from Table 30 of section 3.1.1.2. Table 

46 shows the results of these steps. 

Table 46: Steps c& d: STD, Manhattan, Euclidean, and Chebyshev distances for selected nor-

malization techniques. 

 STD Manhattan Euclidean Chebyshev 

 Dis-
tance 

Rank 
Distance Rank Distance Rank Distance Rank 

Max (N1)  2 2 44 2 12.9615 2 6 1 

Max-Min 
(N2) 

1.9881 4 36 5 12.8841 4 6 1 

Sum (N3) 1.7995 5 44 2 11.6619 5 4 5 

Vector (N4) 2 2 44 2 12.9615 2 6 1 

Logarithmic 
(N5) 

2.0702 1 52 1 13.4164 1 5 4 

Fuzzification 
(N6) 

0 6 0 6 0 6 0 6 

 
The complete results from Phase 2, joining Table 46 ranking plus the results 

obtained from step a) and b) ( RCI and mean ks values - Pearson correlation (Ta-
ble 30)  section 3.1.1.3 ) ) are shown in Table 47. 

Table 47: Summary of ranked normalization techniques obtained with Phase 2 steps (a, b, 

c, and d). 

 Step a Step b Step c Step d 

 
RCI Mean ks  STD 

Minkowski distances 

 Manhattan Euclidean Chebyshev 

Max (N1) 1 1 2 2 2 1 

Max-Min (N2) 6 3 4 5 4 1 

Sum (N3) 3 4 5 2 5 5 
Vector (N4) 1 2 2 2 2 1 
Logarithmic (N5) 5 6 1 1 1 4 
Fuzzification (N6) 4 5 6 6 6 6 

 

As Table 47 shows, still there is no consensus using framework Phase 2 - 

four steps. Hence, we may conclude that the metrics used in this Phase are clearly 
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not enough to discriminate which is the best normalization technique. However, 

from this experience we observe that what we need to improve is a process to 

aggregate the rankings into a single value, from where the highest will be the 

best. To this aim we propose the plurality voting method ((d’Angelo et al., 1998; 

Vafaei et al., 2022)), which is described in the next phase 3.   
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3.3 Phase 3 of Framework evolution  

For phase 3 of the assessment framework development, we decided to build 

a conceptual model (Figure 8) to support decision makers using the framework 

in a user-friendly way. The proposed conceptual model includes four numerical 

steps, but instead of just referring to different metrics they describe a complete 

process to recommend the best normalization technique for MCDM methods. 

Please notice that Step 3 includes most metrics tested in Phase 1 and 2, but orga-

nized in a taxonomy of types of metrics, to demonstrate the wide coverage of our 

chosen evaluation metrics. Besides the proposed metrics, the conceptual model 

includes determining the types of data (Step 1) and then choosing the types of 

normalization techniques to be evaluated (Step 2). Finally, we added a voting 

process step (step 4), which combines the ranking of normalization techniques, 

obtained when using the metrics. With these four steps, we believe that our pro-

posed framework is now more complete, clearer, and helpful for decision makers 

to make informed decisions about choosing normalization techniques for MCDM 

methods. Figure 8 depicts the conceptual model of the developed assessment 

framework.  
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Step 1: Data types   

Determine the type of criteria values: 

• Benefit or cost criteria 

• Ordinal number 

• Natural number 

• Skewed data with outlier 

• Real number 
o Float numbers in the unit interval [0-1] 

 

Step 2:  Selection of Normalization Techniques 

Candidate well-known normalization techniques: 

• Linear: Max; Max-Min; Sum 

• Semi-Linear: Vector; Target-based 

• Non-Linear: Logarithmic, Fuzzification 
 
Data preparation: 
(1) Sum is not applicable if there is any zero in criteria values (using cost formula) 
(2) Logarithmic is not applicable when there are  zeros in any criterion 

 

Step 3:  Evaluation of Techniques 

Chosen metrics: 
a) Outlier detection: Line chart/ Histogram/Scatter/ Box plot 
b) Measures of location: Maximum, Minimum 
c) Measures of data dispersion: STD, ANOVA / Regression analysis 

(P-value, Standard error, T-stat) 
d) Measures of proximity: Minkowski distances (Manhattan, Euclid-

ean, Chebyshev) 
e) Comparison metrics: Mean Ks values (from Spearman/ Pearson 

Correlation); Ranking Consistency Index (RCI); Mean squared error 
(MSE) 

 

Step 4: Selection of the Best Technique 

Selection of the best technique with: 

• Plurality voting: Selection of best normalization technique with the 
large number of first order/rank, in the different used metrics 

 Figure 8: Phase 3- Conceptual model of the evaluation framework 

 

In the following, we provide details for each step, particularly for the new 

step included in this final conceptual model: 

Step 1: In this first step, we explore the type of input data. Further, we iden-

tify the benefit and cost criteria, and then we determine the criteria's type of val-

ues, such as: Ordinal numbers, Real numbers, Natural numbers, etc. For instance, 

as mentioned in section 3.2.1.1, some criteria might include zero values and this 
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prevents normalizing with Sum (using cost formula) and Logarithmic formula-

tions because of division by zero causes infinite and undefined results in the nor-

malization process (Vafaei et al., 2019). This step helps to estimate these critical 

situations and detect inappropriate  techniques before starting the normalization 

process. 

Step 2: In the second step we chose the seven normalization techniques, 

defined in Table 8, i.e. we included target normalization (N7) to ensure testing at 

least two techniques from each class: linear, semi-linear, non-linear.  

However, target-based technique requires human intervention to define the 

target value Tj (Table 8). We tried to counteract this shortcoming by using as tar-

get value (Tj) both: i) average, and ii) median of criterion; and we called them 

Target-Avg and Target-Med.  

In step 2, we also eliminate normalization techniques which are not suitable 

for the input data set due to some shortcoming. For instance, Sum normalization 

is not appropriate (in presence of cost criterion and using cost formula) when 

there is any zero in the input data set because it will produce an infinite output – 

division by zero  (section 3.2.1.1) (Vafaei et al., 2019). Also, the Logarithmic nor-

malization technique produces undefined and negative outputs when input data 

includes zero and decimal numbers (section 3.2.1.1) (Vafaei et al., 2019).  

Step 3: In the third step, we introduce a taxonomy for the framework met-

rics to compare and differentiate normalization techniques' results.  The pro-

posed taxonomy includes some metrics from Phase 1 and Phase 2 (Note: in each 

phase they were denoted as steps) plus new ones.  We classified the metrics into 

different categories based on their usage and characteristics (Filliben and 

Heckert, 2012; Han et al., 2012) , such as:   

a) Outlier detection - The first category of metrics proposes tools for data set 

visualization to allow finding any outlier which may influence the aggre-

gation process. The most common graphics for outlier detection are Line 

chart or Histogram or scatter or Box plot (Filliben and Heckert, 2012; Han 

et al., 2012). Notice that the existence of outliers in the classic MCDM prob-
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lems (such as site selection, partner selection, etc.) is very rare but to en-

sure full coverage of metrics we added this step to the assessment frame-

work. 

b) Measures of Location -This category of metrics measures the central ten-

dency of input data as Maximum and Minimum. Then, by defining the 

maximum and minimum of normalized values we checked the role of nor-

malization techniques in keeping the dominance of alternatives (Filliben 

and Heckert, 2012; Han et al., 2012). For instance, if A1 is the maximum 

value of both input data and normalized values using N1 as a normaliza-

tion technique, it means that normalization technique N1 keeps its domi-

nancy on all alternatives.  

Other Location metrics such as Average/Mean, Median, Mode are elimi-

nated from the assessment framework. Mean is a good metric but it is very 

sensitive to the presence of high and low extreme values (outliers). Hence, 

we avoided using Mean in this class but considered a similar metric in the 

class of comparison measurements, with correlation (Mean ks value). Me-

dian is the middle of the data set that deals with two situations: (i) if the 

data set number is odd, the median is its middle value (ii) if the data set 

number is even, the median is the average of its two middlemost values 

(Han et al., 2012). Further, the median in decision matrixes with an even 

number of alternatives is the average of the two middle alternatives, and 

this is not meaningful in MCDM. A number that appears most often in a 

data set is the mode. To calculate the mode, or modal value, we order the 

numbers and then count how many of each exists. It is possible to have 

more than one number with the same count which is called multimodal. 

In a data set without value's repetition (i.e. they occur just once), the data 

set does not have mode (Han et al., 2012). Therefore, the two last metrics 

(Median and Mode) do not seem useful for comparison of normalization 

techniques in MCDM. So, Maximum and Minimum are used as measure 

of location category in step 3- Phase 3 (Figure 8). 

c) Measures of data dispersion – This category includes metrics to measure 

the dispersion of input data and normalized values. These measurements 

are related to statistical metrics such as STD and Regression analysis/ 
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ANOVA (Analysis of Variance). The STD is used to measure the data 

spreading out using alternatives' values, as explained in sections 0 and 

3.2.1.1. Furthermore, we include other well-known statistical metrics, such 

as: P-value, T-stat, and Standard Error (Cameron, 2009; Filliben and 

Heckert, 2012; Stephanie, 2014a) to measure the normalized values disper-

sion. The T-statistic and P-value are for the null hypothesis versus the al-

ternate hypothesis (Filliben and Heckert, 2012; Stephanie, 2013b). The P-

value is the probability that the sample data results occur by chance 

(Filliben and Heckert, 2012; Stephanie, 2014b). A small P-value, is stronger 

evidence that the sample data occur by chance and the null hypothesis 

should be rejected (Filliben and Heckert, 2012; Stephanie, 2014b). The P-

value is the evidence against a null hypothesis (Filliben and Heckert, 2012; 

Stephanie, 2014b). Also, T-statistic is used in the T-test (Student's T-test) 

to support/reject the null hypothesis. Calculating T-statistic and P-value 

(probability value) provide evidence of significant differences between the 

results of sample data average and input data average (Filliben and 

Heckert, 2012; Stephanie, 2013b). The higher T is,  more evidence that nor-

malized values are significantly different from the mean (Stephanie, 

2013b).  A higher T-statistic is more desirable to ensure discriminative re-

sults between different normalization techniques (see section 0). There-

fore,  a high T-statistic value with a P-value less than 0.05, is a more reliable 

result with fewer odds due to chance (Filliben and Heckert, 2012; 

Stephanie, 2013b). Another chosen metric from this category is Standard 

Error which enables us to measure the deviation of the actual mean from 

sample/predicted mean of data sets. A lower Standard Error is a good 

measure to ensure choosing a normalization technique with minimum er-

ror (Filliben and Heckert, 2012; Stephanie, 2013c). Thus, STD and Regres-

sion analysis (P-value, Standard error, T-stat) are used from measure of 

data dispersion category in step 3- Phase 3 (Figure 8). 

d) Measures of proximity- This category includes metrics to compute the 

proximity between two objectives (see sections 3.2 and 3.2.1.1 ). The most 

well-known  metrics are Manhattan, Euclidean, and Chebyshev (equa-

tions (3-5),(3-6), and (3-7)), which belong to the general distance metric 
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called Minkowski (equation (3-4)) (Guo, 2004; Hassan et al., 2014; Shih et 

al., 2007).  

e) Comparison metrics. This category includes metrics such as: Mean ks (av-

erage of Pearson correlation), RCI, and Mean Squared Error (MSE). For 

calculating Mean ks values, after measuring Pearson/Spearman correla-

tion, we calculate the correlation average for each normalization technique 

and then rank them (Chatterjee and Chakraborty, 2014). The higher value 

of the Mean ks values are the better (Chatterjee and Chakraborty, 2014) 

(see sections 3.1 and 3.1.1.1). Moreover, the RCI is computed by using the 

total number of times that these normalizations have similarity or dissim-

ilarity in the ranking of alternatives in decision problems (Chakraborty 

and Yeh, 2009) (see sections 3.1 and 3.1.1.1). Also, MSE is an estimator to 

measure the average squared difference between the actual and estimated 

values (Filliben and Heckert, 2012; Stephanie, 2013a). In other words, MSE 

shows how close the regression line is to the data set , hence smaller the 

better (Filliben and Heckert, 2012; Stephanie, 2013a). Summarizing, the in-

terpretations of the above metrics are as (a) for P-value, Standard Error, 

and Mean squared Error (MSE), lower values are better because we want 

to minimize the error as much as possible; (b) for T-stat, Minkowski dis-

tances (Manhattan, Euclidean, and Chebyshev), Mean ks, RCI, and STD, 

higher values are better. Comparison metrics which are described above 

namely Mean Ks values, RCI, and MSE are implemented in Step 3- Phase 

3 (Figure 8).   

Step 4: In this new step we propose to apply Plurality Voting (PV), from 

social choice methods (d’Angelo et al., 1998) to recommend the most appropriate 

normalization technique i.e. the one with the largest number of first order/rank.  

Plurality Voting (PV) is defined mathematically by (d’Angelo et al., 1998) 

by the equations:  

𝑓(𝑎𝑖𝑗) = {
1, if 𝑎𝑖𝑗 = 1

0, otherwise
 (3-8) 

for all i and j in the decision matrix and for each alternative j, let define Aj 

using formulated as follows: 
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𝐴𝑗 = ∑ 𝑓(𝑎𝑖𝑗)

𝑚

𝑖=1

 (3-9) 

The obtained Aj from equation (3-9) represents the total number of times 

alternatives j has been selected as the first rank/order. Then social choice using 

plurality voting (PV) is defined with the following formula:  

PV = max
𝑗

{𝐴𝑗} (3-10) 

As equation (3-10) shows, PV determines the alternative with the highest Aj 

value. 

The numerical example from section 3.1.1.3 will clarify the usage of PV in 

this thesis work. Below, we repeat Table 27 from example to facilitate readability.  

Table 27: Ranking (R) of alternatives using ELECTRE method. 

 Max (N1) 
Max-

Min (N2) 
Sum 
(N3) 

Vector 
(N4) 

Logarith-
mic (N5) 

Fuzzifica-
tion (N6) 

A1 3 2 3 3 4 1 

A2 1 2 1 1 6 1 

A3 1 2 1 1 6 1 

A4 3 2 3 3 4 1 

A5 3 2 5 3 1 1 

A6 3 1 5 3 3 1 

A7 7 7 5 7 1 1 

 

Based on equation (3-8), f(aij) is calculated as (for all i and j): 

A1: f(a11) =0; f(a12)=0; f(a13)=0; f(a14)=0; f(a15)=0; f(a16)=1 

A2: f(a21) =1, f(a22)=0; f(a23)=1; f(a24)=1; f(a25)=0; f(a26)=1 

Similarly, f(aij) for A3, A4, …, and A7 is calculated. Then Aj is determined 

using equation (3-9) for each alternative: 

A1=1+0+0+0+0+1=2 

A2=1+0+1+1+0+1=4 

And A3, A4, …, and A7 are, also, calculated: 

A3=4; A4=1; A5=2; A6=2; A7=2 

 

Now, using Plurality voting (PV) we can select the alternative with the larg-

est number of times being the first order/rank (equation (3-10)): 
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PV=max {A1, A2, A3, A4, A5, A6, A7} = max {2,4,4,1,2,2,2}={4}= A2 and A3 

As PV calculation shows, A2 and A3 are both selected as the social choice 

because of having the largest number of first ranking.   

 

3.3.1 Test case studies for phase 3  

In this section, we test the applicability of Phase3 steps of the evaluation 

framework to ensure the framework is now a good tool to recommend normali-

zation techniques in MCDM. Likewise in all above phases' case studies, equal 

weights for criteria are used.   

 

 SAW Method [adapted from (Vafaei et al., 2022)] 

For the Simple Additive Weighted (SAW) MCDM method, we use a numer-

ical example with benefit criteria that contains outliers, to compare the effects of 

six normalization techniques (Max, Max-Min, Sum, Vector, Target-Based (both 

for Target-Avg and Target-Med) , Fuzzification). 

The reason for using this numerical example with outliers is that in recent 

years, with the advent of data science and data analysing contexts (Chen et al., 

2012), many datasets with outliers emerged (i.e. criterion values skewness), 

which may greatly influence the aggregation/ranking process. Barnett and Lewis 

(Barnett and Lewis, 1974) defined outlier as “an observation (or subset of observa-

tions) which appears to be inconsistent with the remainder of the data set”. Kennedy et 

al. (Kennedy et al., 1992) stated that “an outlier is not an “incorrect” observation but 

is a realization from a distribution that is in general highly skewed…. One reason for 

these extreme observations is that some popular variables, such as size, have skewed dis-

tributions.” Therefore, we discuss the effect of outliers in criteria values and rec-

ommended the most suitable normalization technique for MCDM problems (us-

ing SAW method) that contain skewed criteria values. 

The numerical example includes 2 criteria (C1 and C2) and 5 alternatives 

(A1, A2, …, A5). C1 and C2 input values include ordinal and large numbers and 

have as outliers small decimal numbers (0.01 and 0.3), as shown in Table 48. 
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Table 48: Input data and related parameters for implementing the initial eight normaliza-

tion techniques. 

Alternatives C1 C2 

A1 30 0.3 
A2 50 3000 
A3 70 6000 
A4 80 8000 
A5 0.01 9000 

Parameters C1 C2 

Maximum 80 9000 

Minimum 0.01 03 
Average 46.002 6000 
Median 50 5200.06 
Fuzzification [a b c 
d] 

[0 30 70 80] [0.3 7500 9000 9000] 

 

Phase3, Step 1 - Determine the type of input data.  In Table 48 we see that 

criteria values are real numbers which contain two small outliers, the decimal 

numbers C1-0.01 and C2- 0.3.  

Phase3, Step 2- Choosing the normalization techniques. The normalization 

techniques evaluated in this example are: Max (N1), Max-Min (N2), Sum (N3), 

Vector (N4), Fuzzification (N6), Target-AVG (N7a), and Target-Med (N7b) 

(please see Table 8). The related parameters for implementing the selected nor-

malization techniques are shown in the bottom part of  Table 48. 

Since C1 and C2 include small decimal numbers (Table 48), the logarithmic 

normalization technique (N5) is not appropriate because it produces negative 

values (Vafaei et al., 2019). Therefore, we eliminated the logarithmic technique 

from our comparative study, but still evaluated seven normalization techniques 

because we use two versions for Target-based technique, the average and me-

dian. 

The criteria data sets and their respective normalized values are shown in 

Table 49.  
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Table 49: Normalized values using seven selected normalization techniques. 

 C1 C2 

 Input 
Data 

M
ax 

Max-
Min 

Vec-
tor 

Sum 

Tar-
get-
Avg 

Tar-
get-
Med 

Fuzz-
ifica-
tion 

In-
put 

Data 

Max 
Max-
Min 

Vec-
tor 

Sum 

Tar-
get-
Avg 

Tar-
get-
Med 

Fuzz
ifica-
tion 

A1 30 
0.3
75 

0.374
92 

0.255
10 

0.130
43 

0.799
95 

0.749
97 

0.5 0.3 
3.333
33E-
05 

0 
2.176
43E-
05 

1.153
83E-
05 

0.422
23 

0.333
31 

0 

A2 50 
0.6
25 

0.624
95 

0.425
17 

0.217
38 

0.950
02 

1 0.833 3000 
0.333

33 
0.333

31 
0.217

64 
0.115

38 
0.755

54 
0.333

35 
0.4 

A3 70 
0.8
75 

0.874
98 

0.595
23 

0.304
33 

0.699
99 

0.749
97 

1 6000 
0.666

67 
0.666

66 
0.435

29 
0.230

77 
0.911

11 
0.333

39 
0.8 

A4 80 1 1 
0.680

27 
0.347

81 
0.574

97 
0.624

95 
1 8000 

0.888
89 

0.888
89 

0.580
38 

0.307
69 

0.688
89 

0.333
41 

1 

A5 0.01 

0.0
00
12
5 

0 
8.503
33E-
05 

4.347
64E-
05 

0.425
03 

0.375
05 

0.000
2 

9000 1 1 
0.652

93 
0.346

15 
0.577

77 
0.333

42 
1 

 

Phase 3, Step 3- for single criterion example– a) measures of location: 

Figure 9a) and Figure 10a) show the input data for C1 and C2 with their 

decimal outliers for A5 (0.01) and A1 (0.3) respectively. Figure 9b) and Figure 

10b) show the normalized values where Max and Max-Min produced almost 

identical normalized results (i.e., they are on top of each other in the figures) for 

both criteria. Target-Avg and Target-Med produced quite different normalized 

values from the input values of C1 and C2. For instance, A4 is classified as the 

best alternative for C1 with Max, Max-Min, Vector, Sum, and Fuzzification while 

Target-Avg and Target-Med show A2 as the best. So far, it is not possible to rec-

ommend the best normalization technique, then we proceed to step 3, assessing 

each data set individually and then we assess their aggregated value for the SAW 

MCDM method. 

 

 

 

a) Input data of C1 b) Normalized values of C1 

Figure 9: Visual behavior of C1: input data and its normalized values 
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a) Input data of C2 b) Normalized values of C2 

Figure 10: Visual behavior of C2: input data and its normalized values. 

 

For measures of location, we use Maximum and Minimum and Table 50 shows the 

maximum of C1 using Max, Max-Min, Vector, and Sum is A4, while Target-Avg, Target-

Med, and Fuzzification have different Maximum(s). As Table 51 represents Max, Max-

Min, Vector, Sum, and Target-Med the best alternative for C2 is A5. Target-Avg chooses 

A3 as the best alternative and Fuzzification considers both A4 and A5 as the best alter-

natives (Table 51). For the worst alternatives, the results are similar for each normaliza-

tion technique (Table 50 and Table 51). 

 

Table 50: Measures of location with Maximum and Minimum for C1 

 Input 

Data 
Max 

Max-

Min 
Sum Vector 

Fuzzifi-

cation 

Target-

Avg 

Target-

Med 

Maximum 80 1 1 0.34781 0.68027 1 0.95002 1 

Related Al-

ternatives 
A4 A4 A4 A4 A4 A3,A4 A2 A2 

Minimum 0.01 0.000125 0 4.34764E-05 
8.50333E-

05 
0.0002 0.42503 0.37505 

Related Al-

ternatives 
A5 A5 A5 A5 A5 A5 A5 A5 
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Table 51: Measures of location with Maximum and Minimum for C2 

 Input 

Data 
Max 

Max-

Min 
Sum Vector 

Fuzzifi-

cation 

Target-

Avg 

Target-Me-

dian 

Maximum 9000 1 1 0.65293 0.34615 1 0.91111 0.33342 

Related Al-

ternatives 
A5 A5 A5 A5 A5 A4,A5 A3 A5 

Minimum 0.3 
3.33333E-

05 
0 

2.17643E-

05 

1.15383E-

05 
0 0.42223 0.33331 

Related Al-

ternatives 
A1 A1 A1 A1 A1 A1 A1 A1 

 

Regarding measures of data dispersion of assessment framework (Figure 8), we 

calculated the STD, as well as P-value, Standard error, T-stat from the regression analysis. 

For measures of proximity, we calculate Minkowski distances (Manhattan, Euclidean, 

and Chebyshev). Also, we determine Mean Ks values (from Pearson Correlation) and 

Mean squared error (MSE) for comparison metrics. Notice that, we start by evaluating 

just C1 criterion, hence RCI could not be calculated. Table 52 and Table 53 depict the 

results. 

Table 52: Phase 3, Step 3 evaluation for C1 

 Regression Analysis Minkowski distances 
Pearson 

correlation 

Standard 

deviation 

 P-values  
Standard 

Error  
T-stat  MSE  Manhattan  Euclidean  Chebyshev  Mean ks  STD 

Max 1.628E-48 7.2316E-15 
1.10626E+1

6 
2866.959 4.9995 1.7939 0.9999 0.7931 0.4011 

Max-Min 1.124E-47 
1.37668E-

14 

5.81034E+1

5 
2866.961 5.0001 1.7941 1 0.7931 0.4012 

Sum 8.048E-49 
1.64373E-

14 

1.39932E+1

6 
2914.491 1.7389 0.6239 0.3478 0.7931 0.1395 

Vector 6.438E-48 
1.68084E-

14 

6.99658E+1

5 
2890.213 3.4010 1.2203 0.6802 0.7931 0.2729 

Fuzzification 0.0040 9.1448 8.0768 2857.928 4.9992 1.8998 0.9998 0.8406 0.4248 

Target-Avg 0.6231 87.4693 0.5460 2873.908 2.5499 0.9034 0.5250 0.4436 0.2020 

Target-Med 0.4131 71.5776 0.9480 2870.532 2.7498 1.0154 0.6250 0.5903 0.2271 

 

Table 53: Phase 3, Step 3 evaluation for C2 

 Regression Analysis Minkowski distances 
Pearson 

correlation 

Standard 

deviation 

 P-values  
Standard 

Error  
T-stat  MSE  Manhattan  Euclidean  Chebyshev  Mean ks  STD 

Max 
1.10007E-

48 

7.13771E-

13 

1.26091E+1

6 

37991556.0

4 
5.1110 1.8392 0.9999 0.8926 0.4112 

Max-Min 
1.10007E-

48 

7.13748E-

13 

1.26091E+1

6 

37991556.1

1 
5.1111 1.8392 1 0.8926 0.4113 

Sum 
2.22639E-

48 

2.60828E-

12 

9.96835E+1

5 

37997077.0

3 
1.7692 0.6366 0.3461 0.8926 0.1424 

Vector 
9.46879E-

48 

2.24036E-

12 
6.1526E+15 37994486.6 3.3371 1.2008 0.6529 0.8926 0.2685 

Fuzzification 0.00107 669.3540 12.6349 
37990800.5

8 
5.2 1.9391 1 0.9040 0.4336 

Target-Avg 0.5457 
10801.1872

9 
0.67914381 

37992622.7

1 
2.3111 0.8237 0.4889 0.3826 0.1842 

Target-Med 
5.21947E-

38 

2.32553E-

05 

3.48296E+1

2 

37996532.7

2 
0.0006 0.0002 0.0001 0.8926 0 
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Table 54 and Table 55 show the results obtained for the metrics used and their in-

terpretation is as follows: (a) since P-value, Standard Error, and Mean squared Error 

(MSE) present low values are the better (minimization); (b) for T-stat, Minkowski dis-

tances (Manhattan, Euclidean, and Chebyshev), Mean ks, and STD, since higher values 

are better. So, the used metrics represent the best normalization techniques for C1 as Sum 

is shown by P-value and T-test; Max is represented by Standard error; Max-Min is 

demonstrated by Manhattan and Chebyshev; Fuzzification is addressed by MSE, Euclid-

ean, Mean ks, and STD. Moreover, the best techniques for C2 are as Max is presented by 

P-value; Max-Min is addressed by P-value, Standard error, T-test, and Chebyshev; Fuzz-

ification is presented by MSE, Manhattan, Euclidean, Chebyshev, Mean ks, and STD. 

 From this Step 3 the assessment for C1 and C2, it is not possible to say which 

normalization technique is better for skewed data sets with outliers, because with some 

measures some techniques are better and with others they are worse. Therefore, we need 

to perform Step 4 of Phase 3, application of Plurality Voting (PV), to select the alternative 

which has the large number of the first order/rank (d’Angelo et al., 1998). 

Phase 3, Step 4- for single criterion example - Plurality Voting for single C1 

and C2 

Based on the results of applying plurality voting for the combined voting 

on C1 and C2, Fuzzification gets the highest score (Table 54 and Table 55) and 

should be recommended as the best normalization technique for both input data. 

The second best technique for the combined criteria is Max-Min. It should be 

noted that if we observe each criterion, individually, for C1 there is a draw be-

tween the second best techniques Max-Min, Vector and Sum, while for C2 Max-

Min is clearly the second best technique. Further, we can also conclude that Tar-

get-Avg and Target-Med are the worst techniques for dealing with outliers. To 

illustrate how we obtained the recommended normalization technique, fuzzifi-

cation for C1, we performed the following plurality voting calculation: 

For Max: f(aMax,1)=0, f(aMax,2)=1; f(aMax,3)=0; f(aMax,4)=0; f(aMax,5)=0; f(aMax,6)=0; 

f(aMax,7)=0; f(aMax,8)=0; f(aMax,9)=0 

For Fuzzification: f(aFuz,1)=0, f(aFuz,2)=0; f(aFuz,3)=0; f(aFuz,4)=1; f(aFuz,5)=0; 

f(aFuz,6)=1; f(aFuz,7)=0; f(aFuz,8)=1; f(aFuz,9)=1 
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Similarly, f(aij) for Max-Min, Vector, Sum, Target-AVG, and Target-Med are 

determined. Then Aj is determined using equation (3-9) for each normalization 

techniques: 

AMax=0+1+0+0+0+0+0+0+0=1 

AFuzz=0+0+0+1+0+1+0+1+1=4 

Similarly, Aj is calculated for Max-Min, Vector, Sum, Target-AVG, and Tar-

get-Med: 

AMax-Min=2; AVector=2; ASum=2; ATar-AVG=0; ATar-Med=0 

Now, Plurality voting (PV) selects the normalization technique which has 

the largest number of times being the first order/rank respect to the applied met-

rics (using equation (3-10)): 

PV=max {AMax, AMax-Min, AVector, ASum, ATar-AVG, ATar-Med, AFuzz}= max 

{1,2,2,2,0,0,4}= AFuzz 

As PV calculation shows, AFuzz is selected as the social choice because of 

having the largest number of first ranking regarding the used metrics.   

Table 54: Phase 3, Step 4 - plurality voting for C1 

 P-
value

s ↓ 

Stand
ard 

Error ↓ 

T-stat 
↑ 

MSE ↓ 
Manh
attan ↑ 

Euclid
ean ↑ 

Cheby
shev ↑ 

Mean 
ks ↑ 

STD ↑ PV 

Max 2 1 2 2 2 3 2 2 3 1 

Max-Min 4 2 4 3 1 2 1 2 2 2 

Sum 1 3 1 7 7 7 7 2 7 2 

Vector 3 4 3 6 4 4 4 2 4 2 

Fuzzificatio
n 

5 5 5 1 3 1 3 1 1 4 

Target-Avg 7 7 7 5 6 6 6 7 6 0 

Target-Med 6 6 6 4 5 5 5 6 5 0 

 

Table 55: Phase 3, Step 4 - plurality voting for C2 

 P-
value

s ↓ 

Standa
rd 

Error ↓ 

T-stat 
↑ 

MSE ↓ 
Manh
attan ↑ 

Euclid
ean ↑ 

Cheby
shev ↑ 

Mean 
ks ↑ 

STD ↑ PV 

Max 1 2 2 2 3 3 3 5 3 1 

Max-Min 1 1 1 3 2 2 1 3 2 4 

Sum 3 4 3 7 6 6 6 3 6 0 

Vector 4 3 4 5 4 4 4 5 4 0 

Fuzzificatio
n 

6 6 6 1 1 1 1 1 1 6 

Target-Avg 7 7 7 4 5 5 5 7 5 0 

Target-Med 5 5 5 6 7 7 7 2 7 0 
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Summarizing, the Fuzzification normalization technique (N7) seems the 

best normalization technique for this illustrative example when assessing each 

criterion separately and using a plurality voting scoring (Table 54 and Table 55).  

So far, we only analysed each criterion normalization behaviour individu-

ally, but there is a need to consider their aggregation to obtain the best ranking 

for the SAW MCDM method.  The average aggregation scores and rankings of 

alternatives are shown in Table 56. 

Table 56: Final score and rank of alternatives using SAW with the seven normalization 

techniques 

 

Similarly, by just looking at the results in Table 56, it is impossible to select 

the best normalization technique. However, as mentioned above, some metrics 

are just usable per criterion at a time, for instance, regression analysis cannot be 

used for assessing aggregated data. Therefore, we did not apply all metrics from 

Step 3 of our framework to evaluate the aggregation/ranking process with 

MCDM (SAW method) and recommend the best normalization technique for the 

illustrative example.  

  It is noticeable that the calculation procedure for MSE of aggregated data 

is different from MSE for a single criterion. For a single criterion, we have the 

binary comparison between input data and normalized values, however, MSE 

for aggregated data set is the average of mean squared error for each normaliza-

tion technique with other normalization techniques using the ranking of alterna-

tives (Aires and Ferreira, 2019; Felinto de Farias Aires et al., 2018). The results of 

MSE are depicted in Table 57. 

 

 

 

 Max Max-Min Vector Sum Target-AVG Target-Med Fuzzy-Trap 

 Score Rank Score Rank Score Rank Score Rank Score Rank Score Rank Score Rank 

A1 0.1875 5 0.1875 5 0.1276 5 0.0652 5 0.6111 4 0.5416 3 0.25 5 

A2 0.4792 4 0.4791 4 0.3214 4 0.1664 4 0.8528 1 0.6667 1 0.6165 3 

A3 0.7708 2 0.7708 2 0.5153 2 0.2676 2 0.8056 2 0.5417 2 0.9 2 

A4 0.9444 1 0.9444 1 0.6303 1 0.3277 1 0.6319 3 0.4792 4 1 1 

A5 0.5001 3 0.5000 3 0.3265 3 0.1731 3 0.5014 5 0.3542 5 0.5001 4 
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Table 57: MSE for SAW aggregated data set 

 Max 
Max-
Min 

Vector Sum 
Tar-
get-

AVG 

Tar-
get-
Med 

Fuzzy-
Trap 

MSE Rank  

Max  0 0 0 3.6 5.2 0.4 1.5333 2 

Max-Min 0  0 0 3.6 5.2 0.4 1.5333 2 

Vector 0 0  0 3.6 5.2 0.4 1.5333 2 

Sum 0 0 0  3.6 5.2 0.4 1.5333 2 

Target-
AVG 

3.6 3.6 3.6 3.6  0.4 2 2.8 6 

Target-
Med 

5.2 5.2 5.2 5.2 0.4  3.6 4.1333 7 

Fuzzy-
Trap 

0.4 0.4 0.4 0.4 2 3.6  1.2 1 

 

The results from the usable Step 3 metrics with MCDM (SAW method) and 

recommend the best normalization technique for the illustrative example are 

shown in Table 58. 

Table 58: Phase 3, Step 3 - Results of applied metrics for SAW aggregation method 

 Manhat-
tan 

Euclid-
ean 

Cheby-
shev 

STD Mean Ks RCI MSE 

Max 3.6110 1.3034 0.7569 0.29154 0.6673 45.6667 1.5333 

Max-Min 3.6113 1.3035 0.7570 0.2915 0.6673 45.6667 1.5333 

Sum 1.2525 0.4522 0.2625 0.1011 0.6680 45.6667 1.5333 

Vector 2.3988 0.8686 0.5028 0.1942 0.6728 45.6667 1.5333 
Fuzzifica-
tion 

3.7998 1.3575 0.7500 0.3035 0.7181 41.6667 1.2 

Target-Avg 1.7944 0.6503 0.3514 0.1454 0.3283 31.3333 2.8 

Target-Med 1.3747 0.5076 0.3124 0.1135 0.0480 31.3333 4.1333 

 

Phase 3, Step 4 – Plurality Voting for SAW method example 

Table 59 shows the final ordering of the selected normalization techniques 

and using the plurality voting (PV) process. Table 59 reveals that Fuzzification is 

(again) the best technique for this example while Target-Avg and Target-Med are 

the worst techniques. These results show that both single criterion evaluation and 

the SAW evaluation agree on recommending the best and worst normalization 

techniques when in presence of skewness data with outliers. Also, Max-Min is 

the second best technique (Table 59). 
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Table 59: Phase 4, Step 4- Plurality voting for SAW aggregated data set 

 Manhattan 
↑ 

Euclid-
ean ↑ 

Cheby-
shev ↑ 

STD ↑ 
Mean 
Ks ↑ 

RCI ↑ MSE ↓ PV 

Max 3 3 2 3 5 1 2 1 

Max-Min 2 2 1 2 4 1 2 2 

Sum 7 7 7 7 3 1 2 1 

Vector 4 4 4 4 2 1 2 1 

Fuzzifica-
tion 

1 1 3 1 1 5 1 5 

Target-Avg 5 5 5 5 6 6 6 0 

Target-Med 6 6 6 6 7 6 7 0 

 

It should also be noticed that although Fuzzification is the recommend tech-

nique it has the drawback of requiring the definition of an appropriate member-

ship function by analysts or experts for each criterion (Ribeiro, 1996), which is a 

cumbersome manual process.  
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3.4 Phase 4 of Framework Evolution (Final Framework) 

Analysing the results of phase 3 made us think about simplifying the as-

sessment framework and make it more user-friendly for decision makers dealing 

with common decision problems such as supplier selection, partner selection, etc. 

For instance, the existence of outliers in those kinds of decision problems is very 

rare. So, we performed some improvements on Step 2 and Step 3, to achieve a 

final version of a useful tool to assist decision makers and recommend the best 

normalization technique for MCDM methods problems, such as:   

Phase 4, Step 2: We eliminated Target based normalization technique (N7) 

from our chosen normalization techniques (Table 8) because it needs human in-

terference for defining the target values. Further, as discussed in the SAW case 

study, the use of Average and Median as target values did not lead to accurate 

results. 

Phase 4, Step 3: 

a) Outlier detection: To the best of our knowledge from the literature the 

presence of outliers in common MCDM problems is very rare. Thus, to 

make the assessment framework simpler and more user-friendly for de-

cision makers, metrics related to the outlier detection are deleted.  

b) Measure of location: Calculation of the maximum and minimum of in-

put data and comparing them with the maximum and minimum of the 

normalized values proved not to have direct effects on the numerical 

results of the framework (like RCI, Mean Ks, etc.). They just analyse the 

effects of normalization techniques on the input data and just indicate 

us to predict the type of normalization techniques (linear or non-linear). 

As mentioned in section 3.3.1 the linear normalization techniques do not 

change the dominancy of alternatives with respect to each criterion 

while the non-linear techniques change the dominancy. So, these metrics 

are also eliminated from the final assessment framework to avoid pro-

ducing irrelevant information.  

c) Measures of data dispersion: We removed ANOVA/ Regression Anal-

ysis because related metrics such as P-value, T-stat, and Standard Error 

are ONLY usable for single data sets, i.e. single criterion, while the ob-

jective of this thesis is recommending the best normalization technique 



125 

 

for aggregated data sets, basis of any MCDM method. So, only STD is 

chosen for this category of metrics because it is usable for aggregated 

data sets.  

d) Measure of proximity: In this category of metrics, by observing the ob-

tained results from Table 41, Table 43, Table 45, Table 47, Table 55, and 

Table 59 the ordering of the normalization techniques using Euclidean 

and Manhattan are identical. Since there is no difference between using 

Euclidean and Manhattan and to avoid repetitive information, Euclid-

ean is selected to be used in the final framework. Also, comparing Che-

byshev with Euclidean, the results for  case studies (Table 43, Table 45, 

and Table 55) are identical and only tiny differences  were found for 

those cases (Table 41, Table 47, and Table 59). Since, differences between 

Euclidean and Chebyshev distances are very small in the ordering of 

normalization techniques, and identical to Manhatten and Euclidean we 

decided just to keep Euclidean distance. Further, Euclidean distance is 

more intuitive and well-known than Chebyshev and Manhattan for de-

cision makers and most of the programming tools (e.g. MATLAB) have 

codes for this metric which cause easy usage for the users. So, removing 

Manhattan and Chebyshev distances from the evaluation framework 

avoids repetitive results and makes it quicker and user friendly for de-

cision makers. 

 

Based on the above explanation, the final proposed assessment framework 

(Phase 4) is depicted in Figure 11.  
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Step 1: Data types   

Determine the type of criteria values: 

• Benefit or cost criteria  

• Ordinal number 

• Natural number 

• Skewed data with outlier 

• Real number 
o Float numbers in the unit interval [0-1] 

 

Step 2:  Selection of Normalization Techniques 

Candidate well-known normalization techniques: 

• Linear: Max; Max-Min; Sum 

• Semi Linear: Vector 

• Non Linear: Logarithmic, Fuzzification 
 
Data preparation: 
(1) Sum is not applicable if there is any zero in criteria values (using cost formula) 
(2) Logarithmic is not applicable when there are  zero in any criterion  

 

Step 3:  Evaluation of Techniques 

Chosen metrics: 

a) Measures of data dispersion: STD 

b) Measure of proximity: Minkowski distances (Euclidean) 
c) Comparison metrics: Mean Ks values (from Pearson Correlation); 

Ranking Consistency Index (RCI); Mean squared error (MSE) 

 

Step 4: Selection of the Best Technique 

Selection of the best technique with: 

• Plurality voting: Selection of best normalization technique with the 
large number of first order/rank, in the different used metrics 

Figure 11: Phase 4 conceptual model of the final assessment framework  

 

Next, we are going to test the applicability of the final evaluation frame-

work and try to find the probable faults and errors in case studies to develop the 

efficiency of the framework. Again, to focus on the effects of different normaliza-

tion techniques on MCDM methods we use equal weights for criteria in all eval-

uated case studies.   
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3.4.1 Test case studies for phase 4 

 

  SAW Method (adapted from section 3.2.1.1) 

The purpose of this test is to recommend the best normalization technique 

for SAW method among four normalization techniques (Max, Max-Min, Vector, 

and Fuzzification). This test uses the case study borrowed from 3.2.1.1.  Regard-

ing Step 1 & 2 (Phase 3) and observing Table 33, the results are identical for Step 

1 and 2 of Phase 4. After the aggregation process using the SAW method (Table 

35) we proceed with the evaluation framework applying metrics of the new Step 

3 (Phase 4). The results of RCI, Mean ks, STD, and Euclidean are borrowed from 

section 3.2.1.1. Also, mean squared error is calculated using the ranking of alter-

natives and the results of MSE are shown in Table 60. 

Table 60: MSE for each normalization technique using ranking of alternatives. 

 
Max Max-Min Vector 

Fuzzifica-
tion 

MSE Rank 

Max (N1)   0.666667 0.333333 0.666667 0.555556 1 

Max-Min 
(N2) 

0.666667   1 0 0.555556 1 

Vector (N4) 0.333333 1   1 0.777778 4 

Fuzzifica-
tion (N6) 

0.666667 0 1   0.555556 1 

 

Table 61 summarizes the ordering of applied metrics (MSE is calculated 

above from Table 60  and the rest of the metrics are borrowed from Table 41) for 

each normalization technique.  

Phase 4, Step 4- Plurality Voting for the SAW method 

Utilizing plurality voting (PV) for the final ordering of the assessed normal-

ization techniques to recommend the best technique for this case study produces 

the results shown in Table 61, which reveal that Max-Min and Fuzzification nor-

malization techniques are both the best (highest rank), while the worst is the Vec-

tor normalization technique.  
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Table 61: Phase 4, Step 4- Plurality Voting ranking for SAW method 

 RCI↑ Mean ks↑  STD↑ MSE↓ Euclidean↑ PV↑ 

Max (N1) 1 1 3 1 3 3 
Max-Min (N2) 1 1 1 1 1 4 
Vector (N4) 4 4 4 4 4 0 
Fuzzification 
(N6) 

1 1 1 1 1 4 

It should also be noticed that although Fuzzification is one of the recom-

mend techniques, it has the drawback of requiring definition of an appropriate 

membership function by analysts or experts for each criterion (Ribeiro, 1996), 

which is a cumbersome manual process. 

 

 TOPSIS Method (adapted from section 3.1.1.1) 

In this section, we discuss the suitability of six normalization techniques 

(see Table 8) with the TOPSIS method for the case study borrowed from section 

3.1.1.1.  

In this case study, we implemented the assessment framework of phase 4 

(Figure 11). The results of Step 3 for the related metrics (RCI, Mean ks, STD, and 

Euclidean) are borrowed from section 3.2.1.2 (Table 43). Also, MSE is calculated 

for this case study using the ranking of alternatives. The summary of Step 3 for 

the six chosen normalization techniques with respect to the applied metrics is 

shown in Table 62. After applying Step 4, plurality voting (PV), we see that Vec-

tor normalization is the best technique for TOPSIS in this case study (Table 62).  

Moreover, Max, Sum, and Fuzzification are the second best and Max-Min and 

Logarithmic are the worst techniques. 

Table 62:  Phase 4 (Steps 3 and 4) Summary of evaluation framework for TOPSIS method 

 RCI↑ Mean ks↑ STD↑ MSE↓ Euclidean↑ PV↑ 

Max (N1) 2 1 3 3 1 2 

Max-Min 
(N2) 

4 5 5 5 5 0 

Sum (N3) 3 1 2 2 1 2 

Vector (N4)  1 1 4 4 1 3 

Logarithmic 
(N5) 

6 6 6 6 6 0 

Fuzzification 
(N6) 

5 4 1 1 4 2 
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 AHP Method (adapted from (Vafaei et al., 2020) and (Vafaei et al., 2016a) 

and section 3.1.1.2) 

This case study is borrowed from section 3.1.1.2 and evaluates the suitabil-

ity of the chosen six normalization techniques (see Table 8) with the AHP 

method. Applying Steps 1 & 2 of Phase 4 and borrowing results from section 

3.1.1.2, we eliminate Logarithmic and Fuzzification from the candidate tech-

niques and continue the evaluation with only Max, Max-Min, Sum, and Vector 

normalization techniques. For step 3, we borrowed results from section 3.2.1.3 

(Table 45) related to the RCI, Mean ks, STD, and Euclidean, and also calculated 

MSE for this case study (Table 63). Finally, Step4-plurality voting (PV), is calcu-

lated to recommend the best technique. As Table 63 shows, Max-Min is the more 

suitable technique, Max normalization is the second best, while Sum and Vector 

are the worst techniques for the AHP method in this case study. Although Max-

Min is elected as the most suitable normalization technique, it requires an extra 

re-normalization because the sum of the normalized values has to be 1 in the 

AHP method (for more information about AHP method please see Section 2.1.4. 

Table 63: Phase 4. Step3 and 4 Summary of evaluation framework for AHP method 

 RCI↑ Mean ks↑ STD↑ MSE↓ Euclidean↑ PV↑ 

Max (N1) 1 1 3 1 3 3 

Max-Min 
(N2) 

1 2 1 1 1 4 

Sum (N3) 4 4 2 4 2 0 

Vector (N4) 3 3 4 3 4 0 

 
 

 ELECTRE Method (adapted from section 3.1.1.3) 

This numerical example is adapted from section 3.1.1.2 to find the best nor-

malization technique for the ELECTRE method using the assessment framework 

of phase 4 (Figure 11).  

The results of Step 3 for the related metrics (RCI, Mean ks, STD, and Euclid-

ean) are borrowed from section 3.2.1.2 (Table 47). Also, MSE is calculated for this 

case study using the ranking of alternatives. The results of Step 3 are summarized 

in Table 64. After utilizing plurality voting (PV), Step4, we observe that Max is 
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the best technique for the ELECTRE method in this case study (Table 64). More-

over, Vector and Logarithmic are the second best, while Max-Min, Sum, and 

Fuzzification are the worst techniques. 

Table 64:  Phase 4 Step 3 and 4. Summary of evaluation framework for ELECTRE method 

   RCI↑ Mean ks↑ STD↑ MSE↓ Euclidean↑ PV↑ 

Max  1 1 2 1 2 3 

Max-Min  6 3 4 3 4 0 

Sum 3 4 5 4 5 0 

Vector  1 2 2 1 2 2 

Logarithmic 5 6 1 6 1 2 

Fuzzification 4 5 6 5 6 0 

 
 

3.5 Implementation Design of Phase 4 Conceptual model  

This section discusses the implementation design of the conceptual model 

for the final assessment framework (Figure 11). This implementation process, 

presented as a flowchart (Figure 12) provides relevant information for decision 

makers to select the best normalization technique using different case studies. 

The purpose of designing this model is to introduce an automatic and applicable 

framework to decision makers and help them select the best normalization tech-

nique for decision problems, in a user-friendly manner. For simplicity purposes, 

those MCDM methods and normalization techniques which depend on hu-

man/expert intervention are not shown in this model. For instance, the AHP 

MCDM method is removed because it needs expert's intervention to determine 

comparison matrices and when there are more than 7-9 criteria and/or alterna-

tives it is too cumbersome to be used. From the normalization techniques, Fuzz-

ification has the drawback of requiring the definition of appropriate membership 

functions to represent the input criteria, by analysts or experts (Ribeiro, 1996), 

which is a cumbersome manual process. Therefore, to have a fully automatic 

evaluation process using the conceptual framework, the AHP method and Fuzz-

ification normalization technique are removed from the implemented model. 

Figure 12 depicts the decision-making process that the decision makers should 

follow. 
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Figure 12: Design model for phase 4 of assessment framework. 

Initially, the decision maker defines the decision matrix which contains the 

values of alternatives with respect to the desired criteria. For each criterion, 

he/she should assign weights and indicate cost (the lower values the better) or 

benefit (the higher values the better) criteria. Then it must be chosen which nor-

malization techniques could be used in the decision problem, paying attention to 

the existence of zero values in the decision matrix, which causes the elimination 

of the Logarithmic and Sum techniques. Also, the existence of decimal numbers 

causes the elimination of logarithmic technique if it produces negative normal-

ized values. Then decision maker selects which MCDM methods he/she wishes 

to use among TOPSIS, SAW, and ELECTRE methods for aggregation/ ranking 

alternatives. Finally, the design model proceeds to the metrics calculation of the 
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assessment framework: RCI, STD, MSE, Mean ks, and Euclidean. In the end, the 

process will recommend the best normalization technique to the decision maker 

using plurality voting for the related decision problem. 

MATLAB software is used for implementing this design model. The rea-

soning for selecting MATLAB was its ability for handling mathematical models 

using matrixes. The validation of the design model is discussed in the next chap-

ter.   

 

3.6 Summary 

This chapter focused on contributions and main findings for this thesis  

work. It is divided into four subsections about the framework development evo-

lution, phase 1, phase 2, phase 3 and phase 4 to select the best normalization tech-

nique in MCDM methods. Finally, another sub-section is added with the imple-

mentation design model of the framework 

In the first subsection, Phase 1 of the assessment framework three steps are 

proposed and explained: 

Phase1-Step a) Determining the Ranking Consistency Index (RCI) (from 

(Chakraborty and Yeh, 2009)): 

Phase1-Step b) Comparative study between ranking of alternative/alterna-

tives' values using Pearson and Spearman correlations to determine the mean ks 

value (Chatterjee and Chakraborty, 2014). 

Phase1-Step c) Analysis and evaluation of normalization techniques con-

sistency with three conditions (borrowed from (Celen, 2014)): 

Condition 1: Checking similarity of distributional properties such as means, 

standard deviations, minimum and maximum values.  

Condition 2: Checking normal distribution using Kolmogorov-Smirnov 

test.  

Condition 3: Checking the similarity ranking of alternatives by comparison 

of best and worst ranking of three results/alternatives.  
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The performance of the proposed framework for this Phase 1 is evaluated 

with three case studies. The contribution of this part is supported by the follow-

ing publications: Vafaei et al. (2016a, 2016b, 2018a, 2018b). 

Next, to improve the robustness of the assessment framework, the above 

steps (phase 1) were modified and some new steps were added. So, phase 2 of 

the evaluation framework includes the following four steps:  

Phase2-Step a) Determining the Ranking Consistency Index (RCI) 

(Chakraborty and Yeh, 2009). 

Phase2-Step b) Calculating Pearson/Spearman correlation and their mean 

ks values (Chatterjee and Chakraborty, 2014). 

Phase2-Step c) Calculating Standard Deviation (STD) to assess the spread-

ing out of the data set using alternatives' values (Bland and Altman, 1996; 

Rumsey, 2009; Yeh, 2003) 

Phase2-Step d) Calculating Minkowski distances (Guo, 2004; Han et al., 

2012; Hassan et al., 2014; Shih et al., 2007) for three well-known distances as Man-

hattan, Euclidean, and Chebyshev. 

The performance of Phase 2 evaluation framework is evaluated with three 

case studies. This contribution is supported by the following publications: Vafaei 

et al. (2016a, 2016b, 2018a, 2019). 

After, to enhance the robustness of the proposed framework, Phase 3 was 

developed (Figure 11). The evolution from Phase 2 to Phase 3 included defining 

a taxonomy of metrics using some from previous phases and new ones. Further, 

the steps were numbered (step 1 to 4) to facilitate readability. Also, a study about 

outliers in data sets is included to discuss this problematic in relation to normal-

ization techniques. A new step 4 added includes a plurality voting process to 

recommend the best technique. Figure 8 shows the different steps of the assess-

ment framework in phase 3. This contribution is supported by the following pub-

lication: Vafaei et al. (2022) 

Finally, to simplify the proposed framework, some improvements were 

performed and the final conceptual model (Figure 12)  is depicted in phase 4 (Fi-

nal phase). Considering that the existence of outliers in decision problems is very 
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rare, metrics related to outliers were removed. Also, we opted by choosing only 

to use the Euclidean distance because results are rather similar and have the same 

origin as Manhattan and Chebyshev. The performance of Phase 4 framework is 

evaluated with three case studies. This contribution is supported by the follow-

ing publications Vafaei et al. (2016a, 2016b, 2018a, 2019, 2020) Figure 13 summa-

rizes the evolution of the assessment framework that was carried out throughout 

this thesis research work. It is obvious that step 3 for both Phase 3 and 4 is the 

only step comparable with the previous versions of the framework, i.e. step1, 

step2 and step 4 were not addressed in Phase 1 and 2.  

 

Evolution phases 
of Assessment 

Framework

Phase 1:

a) Determining RCI

b) Comparison Mean ks value of 
Spearman and Pearson

c) Checking consistency with three 
conditions:

1-Checking similarity of 
distributional properties such as 
means, standard deviations, 
minimum and maximum values.
2-Checking normal distribution 
using Kolmogorov-Smirnov test
3-Checking the similarity ranking 
of alternatives by comparison of 
best and worst ranking of three 
results/alternatives

 

Phase 2:

a) Determining RCI

b) Comparison Mean ks value 
Pearson

c) Calculating Standard Deviation 
(STD)

d) Calculating Minkowski distances 
(Manhattan, Euclidean, and 
Chebyshev)
 

Phase 3-Step3:

a) Outlier detection: Line chart/ 
Histogram/Scatter/ Box plot

b) Measures of location: Maximum, 
Minimum

c) Measures of data dispersion: STD, 
ANOVA / Regression analysis (P-value, 
Standard error, T-stat)

d) Measures of proximity: Minkowski 
distances (Manhattan, Euclidean, 
Chebyshev)

e) Comparison metrics: Mean Ks 
values (from Spearman/ Pearson 
Correlation); Ranking Consistency 
Index (RCI); Mean squared error (MSE)

Phase 4-Step3:

a) Measures of data dispersion: STD

b) Measure of proximity: Minkowski 
distances (Euclidean)

c) Comparison metrics: Mean Ks 
values (from Spearman/ Pearson 
Correlation); Ranking Consistency 
Index (RCI); Mean squared error (MSE)

 

Figure 13: Evolution phases of the proposed assessment framework. 
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4 Evaluation and Validation 

This chapter discusses further tests and validations performed to assess the 

developed evaluation framework. We tested several illustrative and representa-

tive case studies, as well as examples from the literature. The results are evalu-

ated and validated by comparing our results with established results reported in 

the literature. 

 

4.1 Validation methodology 

This section presents the adopted validation process for the proposed 

framework to evaluate normalization techniques for usage in MCDM methods.  

Many times, the validation process of any research work consists of using 

different methods such as case studies, prototypes, simulation, benchmarking, 

etc. (Camarinha-Matos, 2015; Pedersen et al., 2000). Kasanen et al. (1993) 

proposed the Constructive Research method (CRm), which helps researchers to 

validate applied research, in the area of design science, by building one or more 

artefacts. The artefacts propose to solve a domain problem, obtaining infor-

mation/knowledge on how the problem can be solved and how proposed solu-

tions are new or better than previous ones.  

In this thesis, we use the above Constructive Research method with one ar-

tefact, which is our proposed "Assessment Framework" (Table 65). Since our 

work is spanned over different multi criteria decision models/methods, the eval-

4 
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uation process needs to assess different dimensions of the generated artefact, in-

cluding the applicability of the approach and its utility using case studies, bench-

marks, and testimonies. Furthermore, the artefact is evaluated by the research 

community to ensure the robustness of the validation process.  Table 65 shows 

the parameters and chosen items of the followed validation method, applied to 

our framework. 

Table 65: Validation with Constructive Research method for assessment framework 

Artefact 
(Who) 

Parameter 
(What) 

Mean 
(How) 

Based on Section 

Assessment 
Framework 

Applicability/Utility 
Case Studies 
Benchmarks 
Testimonies 

(Camarinha-Matos, 
2015) 

4.2 

Evaluation by 
the research 
community 

Publications 
Presentations 

Panels 
Evaluation by peers 4.3 

 

4.2 Applicability and Utility Evaluation of the Framework 

The parameter applicability and utility of the assessment framework is eval-

uated using several case studies and benchmarks from the literature. Moreover, 

we also collected testimonies about its usefulness from experts.  

The next sub-sections describe the validations performed using the above 

items. The main goal is to verify if the framework's functionalities fit the research 

work´ objectives in terms of applicability and utility for decision makers.  

 

4.2.1 Applicability with Case studies 

We tested the proposed assessment framework with well-known MCDM 

methods to assess the effect of different normalization techniques on several de-

cision problems and determine its applicability and utility. We illustrate its usa-

bility by using different scenarios that contain different input data sets. 

As mentioned in section 3.5, having an automatic assessment framework 

for selecting normalization techniques to use with MCDM methods is the goal of 

this thesis. To focus the testing and validation we chose three of the most well-
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known MCDM methods (SAW, TOPSIS, and ELECTRE) and Max, Max-Min, 

Sum, Vector, and Logarithmic techniques from normalization techniques.  

In the next subsections, the applicability of the proposed framework is 

tested using, first, 3 small scaling cases studies (Case 1, Case 2, Case 3) which 

have 4 criteria and 4 alternatives and, second, we performed tests on large scale 

decision problems using two illustrative examples: Case 4, which includes 20 al-

ternatives and 4 criteria, and Case 5 which includes 20 criteria and 10 alternatives. 

The details about these cases and discussion of results obtained are in the follow-

ing sub-sections.  

4.2.2 MCDM problems with small scaling decision matrices: Case 1, 2 and 3 

In this section, three case studies are tested. The first case (Case 1) is adapted 

from (Lakshmi and Venkatesan, 2014) and the other two cases (Case2 and Case3) 

are illustrative examples to test different types of criteria, from ordinal numbers 

to percentages, etc. We assessed the performance of five normalization tech-

niques (Max, Max-Min, Sum, Vector, and Logarithmic) with three MCDM meth-

ods: TOPSIS, SAW, and ELECTRE, using three case studies including four alter-

natives (A1, A2, A3, A4) and four criteria (C1, C2, C3, C4), where C3 and C4 are 

cost criteria and C1 and C2 are benefit ones.  To ensure fair comparison on the 

effects of different normalization techniques on MCDM methods we applied 

equal weights for criteria on these three case studies. 

 

 Case 1 

As mentioned above, the first case study (Case 1) is adapted from (Lakshmi 

and Venkatesan, 2014) but instead of using a Gaussian normalization technique 

(proposed by the authors) we use the logarithmic normalization technique (to 

maintain consistency on the chosen normalization techniques for this work) to-

gether with the four other normalization techniques: Max, Max-Min, Sum, and 

Vector. Table 66 shows the input data for case 1 decision matrix. 

Table 66: Decision matrix for case 1 [adapted from (Lakshmi and Venkatesan, 2014)]. 

 C1 C2 C3 C4 

A1 7 9 9 8 

A2 8 7 8 7 

A3 9 6 8 9 

A4 6 7 8 6 
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➢ TOPSIS method 

We implemented TOPSIS method to rank the alternatives with respect to 

the criteria of case 1 (Table 66). Table 67 depicts alternatives' values and ranking 

of alternatives using tested normalization techniques (Max, Max-Min, Sum, Vec-

tor, and Logarithmic).  

Table 67: Alternatives' rates and ranking for Case 1 using the TOPSIS 

 Max Rank 
Max-
Min 

Rank Sum Rank 
Vec-
tor 

Rank 
Loga-

rithmic 
Rank 

A1 0.7401 2 0.4458 4 0.5145 2 0.5342 2 0.6208 1 

A2 0.7807 1 0.6340 1 0.5294 1 0.5568 1 0.5429 2 

A3 0.6667 4 0.5000 3 0.4174 4 0.4209 4 0.4853 3 

A4 0.7140 3 0.5473 2 0.4780 3 0.4755 3 0.3006 4 

 

Table 67 reveals it is impossible to select the best technique just by looking 

at the results because each technique ranking is quite different from the other. 

Thus, there is a need for using the assessment framework to recommend the best 

normalization technique for TOPSIS.  

Table 68: Results from framework´ Step 3 & 4 for TOPSIS in Case 1   

 Euclid-
ean 

Rank↑ STD Rank↑ RCI Rank↑ MSE Rank↓ 
Mean 

ks 
Rank↑ PV 

Max 0.1655 5 0.0478 5 5.75 1 0.625 1 0.7130 1 3 

Max-Min 0.2763 2 0.0798 2 3 4 2 5 0.2366 5 0 

Sum 0.1727 4 0.0499 4 5.75 1 0.625 1 0.6708 3 2 

Vector 0.2118 3 0.0611 3 5.75 1 0.625 1 0.7017 2 2 

Logarith-
mic 

0.4722 1 0.1363 1 0.25 5 1.625 4 0.2480 4 2 

 

After using the framework step 3 metrics and plurality voting of step 4 we 

now can say (Table 73) that the best normalization technique for case 1 with 

TOPSIS method is the Max normalization technique, because it includes the 

higher counting of the first rank on the used metrics. 

➢ SAW method 

Another well-known MCDM method to validate the framework is SAW 

method. We implemented SAW for Case 1 (Table 66) and ranked alternatives. 

Table 69 shows the results. 
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Table 69: Alternatives' rates, and ranking for Case 1 using SAW 

 Max Rank 
Max-
Min 

Rank Sum Rank 
Vec-
tor 

Rank 
Loga-

rithmic 
Rank 

A1 0.4722 2 0.4167 4 0.2503 3 0.5008 2 0.2548 1 

A2 0.5000 1 0.6667 1 0.2568 1 0.5148 1 0.2535 2 

A3 0.4444 4 0.5000 3 0.2419 4 0.4813 4 0.2498 3 

A4 0.4722 2 0.5833 2 0.2510 2 0.4983 3 0.2460 4 

 

Likewise, for TOPSIS, Table 69 shows that using the assessment framework 

is not able to recommend the best normalization technique for the SAW method. 

So, applying the framework metrics of step 3 and plurality voting of step 4, the 

recommendation is that both Max and Max-Min normalization techniques are 

suitable for Case 1 with the SAW method (Table 70).  

Table 70: Results of Step 3 & 4 of the framework for SAW in Case 1 

 Eu-
clid-
ean 

Rank↑ STD Rank↑ RCI Rank↑ MSE Rank↓ 
Mean 

ks 
Rank↑ PV 

Max 0.0786 2 0.0227 2 5 1 0.875 2 0.7503 1 2 

Max-Min 0.3727 1 0.1076 1 4 3 1.4375 4 0.3832 4 2 

Sum 0.0212 4 0.0061 4 4.75 2 0.9375 3 0.7243 3 0 

Vector 0.0477 3 0.0138 3 4 3 0.5625 1 0.7441 2 1 

Logarith-
mic 

0.0137 5 0.0040 5 0.25 5 2.1875 5 0.2206 5 0 

 

➢ ELECTRE 

We implemented ELECTRE to rank the alternatives with respect to the cri-

teria for input data of case 1 (Table 66). Table 71 shows the results. 

Table 71: Ranking of alternatives for Case 1 using ELECTRE 

 Max Max-Min Sum Vector 
Logarith-

mic 

A1 2 4 2 2 1 

A2 1 1 1 1 2 

A3 4 3 4 4 3 

A4 3 2 3 3 4 

 

Table 71 shows that it is impossible to select the best technique just by look-

ing at the results because each technique ranking is quite different from the oth-

ers. Thus, we used the assessment framework to recommend the best normaliza-

tion technique for ELECTRE.  
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Table 72: Results of Step 3 & 4 of the framework for ELECTRE in Case 1 

 Eu-
clid-
ean 

Rank↑ STD Rank↑ RCI Rank↑ MSE Rank↓ 
Mean 

ks 
Rank↑ PV 

Max 5.1962 1 1.5 1 9.75 4 0.4375 3 0.8767 3 2 

Max-Min 4.4721 2 1.291 2 12 1 0.3125 1 0.9175 2 2 

Sum 4.3589 5 1.2583 5 11 3 0.5625 4 0.7997 4 0 

Vector 4.4721 2 1.291 2 12 1 0.3125 1 0.9175 1 3 

Logarith-
mic 

4.4721 2 1.291 2 4.25 5 0.75 5 0.7219 5 0 

 

After using framework step 3 metrics and plurality voting of step 4 we now 

can say (Table 72) that the best normalization technique for case 1 with ELECTRE 

method is the Vector normalization technique, because it includes the higher 

counting of the first rank on the used metrics. 

 

 Case 2 

The second case study is an adaptation of Case 1, where the input data of 

C1 are decimal numbers, to test the robustness of the proposed assessment when 

there are different types of criteria values. Input data for case 2 are shown in Ta-

ble 73.  

Table 73: Decision matrix Input data for case 2. 

 C1 C2 C3 C4 

A1 0.1 9 75 8 

A2 0.325 7 42 7 

A3 0.5 6 95 9 

A4 0.4 2 80 6 

➢ TOPSIS method 

We applied the TOPSIS method to rank the alternatives with respect to the 

criteria for case 2 (Table 73). Table 74 depicts alternatives' values and ranking 

using the same five normalization techniques (Max, Max-Min, Sum, Vector, and 

Logarithmic). 

Table 74: Alternatives' values, and ranking for Case 2 using TOPSIS 

 Max 
Ran

k 
Max-
Min 

Ran
k 

Sum 
Ran

k 
Vector 

Ran
k 

Loga-
rithmic 

Rank 

A1 0.2617 4 0.4527 3 0.4538 3 0.4781 3 0.9686 1 

A2 0.4646 1 0.7086 1 0.6850 1 0.6786 1 0.4675 2 

A3 0.2904 3 0.4380 4 0.5578 2 0.5764 2 0.3371 3 

A4 0.3329 2 0.5051 2 0.4136 4 0.4353 4 0.1123 4 
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Again Table 74 shows that it is impossible to select the best normalization 

technique just by looking at the results. So, we applied the assessment framework 

to recommend the most suitable normalization technique for Case 2. 

Table 75: Results of Step 3 & 4 of the framework for TOPSIS in Case2. 

 Eu-
clid-
ean 

Ran
k↑ 

STD Rank↑ RCI Rank↑ MSE Rank↓ 
Mean 

ks 
Rank↑ PV 

Max 0.3108 5 0.0897 5 3 4 1.75 2 0.5374 4 0 

Max-Min 0.4331 2 0.1250 2 4 3 1.75 2 0.5756 3 0 

Sum 0.4202 3 0.1213 3 4.75 1 1.25 1 0.6242 1 3 

Vector 0.3758 4 0.1085 4 4.75 1 1.25 1 0.6101 2 2 

Logarith-
mic 

1.2558 1 0.3625 1 0.75 5 2.25 3 -0.1081 5 2 

 

Table 75 depicts the results obtained with steps 3 & 4 of the framework 

and the recommendation is that the Sum normalization technique is the best re-

garding plurality voting. 

 

➢ SAW method 

We applied the SAW method to rank the alternatives with respect to the 

criteria for input data of Case 2 (Table 73) and Table 76 shows the results. 

Table 76: Alternatives' rates and ranking for Case 2 using SAW. 

 Max 
Ran

k 
Max-
Min 

Ran
k 

Sum 
Ran

k 
Vector 

Ran
k 

Loga-
rithmic 

Rank 

A1 0.3804 3 0.4277 3 0.2253 3 0.4510 3 0.3325 1 

A2 0.5520 1 0.7359 1 0.2986 1 0.5614 1 0.2680 2 

A3 0.4167 2 0.3929 4 0.2515 2 0.4819 2 0.2355 3 

A4 0.3784 4 0.5083 2 0.2246 4 0.4450 4 0.2080 4 

 

Again, Table 76 is inconclusive and we need to use Step 3 and 4 of the frame-

work to recommend the best normalization technique. Table 77 displays the re-

sults for Case 2 with the SAW method, from where it can be stated that Max is 

the best normalization technique for this method. 
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Table 77: Results of Step 3 & 4 of the framework for SAW in Case2. 

 Eu-
clid-
ean 

Rank↑ STD Rank↑ RCI Rank↑ MSE Rank↓ 
Mean 

ks 
Rank↑ PV 

Max 0.2840 2 0.0820 2 8.75 1 0.875 1 0.7223 1 3 

Max-
Min 

0.5343 1 0.1542 1 5 4 2.125 3 0.6138 4 2 

Sum 0.1204 5 0.0347 5 8.75 1 0.875 1 0.6914 3 2 

Vector 0.1855 4 0.0535 4 8.75 1 0.875 1 0.7139 2 2 

Loga-
rithmic 

0.1856 3 0.0536 3 2.75 5 1.75 2 -0.0016 5 0 

 

➢ ELECTRE  

We applied the ELECTRE method to rank the alternatives with respect to 

the criteria of case 2 (Table 73). Table 78 depicts alternatives' values and ranking 

of alternatives using the tested normalization techniques (Max, Max-Min, Sum, 

Vector, and Logarithmic). 

Table 78: Ranking of alternatives for Case 2 using ELECTRE 

 Max Max-Min Sum Vector 
Logarith-

mic 

A1 4 3 3 3 1 

A2 1 1 1 1 2 

A3 3 4 2 2 3 

A4 3 2 4 4 4 

 

Table 78 shows that it is impossible to select the best technique just by look-

ing at the results because each technique ranking is quite different from the oth-

ers. Thus, there is a need for the assessment framework to recommend the best 

normalization technique for ELECTRE.  

Table 79: Results of Step 3 & 4 of the framework for ELECTRE in Case 2 

 Euclid-
ean 

Rank↑ STD Rank↑ RCI Rank↑ MSE Rank↓ 
Mean 

ks 
Rank↑ PV 

Max 4.4721 1 1.2910 1 7.5 1 1.375 2 0.45 1 4 

Max-Min 4.4721 1 1.2910 1 7.5 1 1.25 1 0.45 1 5 

Sum 4.4721 1 1.2910 1 7.5 1 1.375 2 0.45 1 4 

Vector 4.4721 1 1.2910 1 5.5 4 1.375 2 0.4 4 2 

Logarith-
mic 

4.4721 1 1.2910 1 1 5 4.875 5 1 5 2 
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After using the framework step 3 metrics and plurality voting of step 4 we 

now can say (Table 79 ) that the best normalization technique for case 2 with the 

ELECTRE method is the Max-Min normalization technique, because it includes 

the higher counting of the first rank on the used metrics. 

 

 Case 3 

The third case study is an adaptation of Case 1 & 2, where all input data are 

decimal numbers, to test the robustness of the proposed assessment framework 

when there are decimal values for all criteria. Input data for case 3 are shown in 

Table 80. 

Table 80: Decision Matrix input data for case 3. 

 C1 C2 C3 C4 

A1 0.1 0.845 0.211 0.4 

A2 0.325 0.214 0.01 0.2 

A3 0.5 0.1 0.699 0.6 

A4 0.4 0.425 0.752 0.1 

 

➢ TOPSIS method 

We applied the TOPSIS method to rank the alternatives with respect to the 

criteria for input data of case 3 (Table 80). Table 81 depicts alternatives' values 

and ranking using the same five normalization techniques (Max, Max-Min, Sum, 

Vector, and Logarithmic). 

Table 81: Alternatives' values and ranking for Case 3 using TOPSIS. 

 Max 
Ran

k 
Max-
Min 

Ran
k 

Sum 
Ran

k 
Vector 

Ran
k 

Loga-
rithmic 

Rank 

A1 0.2930 3 0.5207 3 0.3181 3 0.5759 1 0.4477 3 

A2 0.4563 1 0.5909 1 0.6584 1 0.5731 2 0.4544 2 

A3 0.1326 4 0.3721 4 0.2125 4 0.3148 4 0.6067 1 

A4 0.4352 2 0.5298 2 0.3567 2 0.5027 3 0.3839 4 

 

Again, Table 81 shows that it is impossible to select the best normalization 

technique just by looking at the results. So, we applied the assessment framework 

to recommend a more suitable normalization technique for Case 3. 
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Table 82: Results of Step 3 & 4 of the framework for TOPSIS in Case3. 

 Euclid-
ean 

Rank↑ STD Rank↑ RCI Rank↑ MSE Rank↓ 
Mean 

ks 
Rank↑ PV 

Max 0.5190 2 0.1498 2 7.5 1 1.25 2 0.4094 3 1 

Max-Min 0.3219 5 0.0929 5 7.5 1 0.875 1 0.4698 1 3 

Sum 0.6625 1 0.1912 1 7.5 1 1.25 2 0.4635 2 3 

Vector 0.4250 3 0.1227 3 3.75 4 1.625 4 0.3939 4 0 

Logarith-
mic 

0.3275 4 0.0945 4 3 5 3.5 5 -0.7407 5 0 

 

Table 82 presents the results obtained with steps 3 & 4 of the framework 

and the recommendation is that Max-Min and Sum normalization techniques 

are the best regarding plurality voting. 

 

➢ SAW method 

We applied the SAW method to rank the alternatives with respect to the 

criteria for input data of Case 3 (Table 80) and Table 83 depicts the results. 

Table 83: Alternatives' values and ranking for Case 3 using SAW. 

 Max 
Ran

k 
Max-
Min 

Ran
k 

Sum 
Ran

k 
Vector 

Ran
k 

Loga-
rithmic 

Rank 

A1 0.5632 2 0.5323 3 0.1959 3 0.5684 2 0.2593 2 

A2 0.6392 1 0.6289 1 0.3929 1 0.5983 1 0.2255 3 

A3 0.2972 4 0.2679 4 0.1352 4 0.3327 4 0.3087 1 

A4 0.5341 3 0.5466 2 0.2761 2 0.5344 3 0.2244 4 

 

Again, Table 83 is inconclusive and we need to use Step 3 and 4 of the frame-

work to recommend the best normalization technique. Table 84 displays the re-

sults, from where it can be stated that Max is the best normalization technique 

for the SAW method in this case. 

Table 84: Results of Step 3 & 4 of the framework for SAW method in Case 3. 

 Euclid-
ean 

Rank↑ STD Rank↑ RCI Rank↑ MSE Rank↓ 
Mean 

ks 
Rank↑ PV 

Max 0.5113 2 0.1476 2 6.75 1 1.125 2 0.4782 1 2 

Max-Min 0.5424 1 0.1566 1 6 3 1.25 2 0.4712 2 2 

Sum 0.3858 4 0.1114 4 6 3 1.375 4 0.3931 4 0 

Vector 0.4159 3 0.1201 3 6.75 1 1 1 0.4632 3 2 

Logarith-
mic 

0.1372 5 0.0396 5 1 5 4 5 -0.8971 5 0 
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➢ ELECTRE 

The ELECTRE method is applied to rank the alternatives with respect to the 

criteria of case 3 (Table 80). Table 85 depicts alternatives' values and ranking of 

alternatives using tested normalization techniques (Max, Max-Min, Sum, Vector, 

and Logarithmic) for ELECTRE method. Table 85 shows the ranking of alterna-

tives. 

Table 85: Ranking of alternatives for Case 3 using ELECTRE 

 Max Max-Min Sum Vector 
Logarith-

mic 

A1 1 1 2 2 3 

A2 1 1 1 1 4 

A3 4 4 4 4 1 

A4 3 3 3 3 3 

 

Observing Table 85it is impossible to select the best technique just by look-

ing at the results because each technique ranking is quite different from the oth-

ers. Thus, there is a need for the assessment framework to recommend the best 

normalization technique for ELECTRE.  

Table 86: Results of Step 3 & 4 of the framework for ELECTRE in Case 3 

 Eu-
clid-
ean 

Rank↑ STD Rank↑ RCI Rank↑ MSE Rank↓ 
Mean 

ks 
Rank↑ PV 

Max 5.1962 1 1.5 1 12.75 1 1.5 3 0.5136 1 4 

Max-Min 5.1962 1 1.5 1 12.75 1 1.5 3 0.5136 1 4 

Sum 4.4721 3 1.291 3 12.75 1 1.3125 1 0.4925 4 2 

Vector 4.4721 3 1.291 3 12.75 1 1.3125 1 0.4925 3 2 

Logarith-
mic 

4.3589 5 1.2583 5 7 5 5.125 5 -0.8811 5 0 

 

After using the framework step 3 metrics and plurality voting of step 4 we 

now can say (Table 86) that the best normalization techniques for case 3 with 

ELECTRE method are Max and Max-Min normalization technique, because they 

include the higher counting of the first rank on the used metrics. 

4.2.3 MCDM problems with large scaling decision matrices: Case 4 and 5 

 In this section, we test and validate the framework with two illustrative 

examples (Case 4 and Case 5), which include large decision matrices, again using 

TOPSIS, SAW, and ELECTRE methods. The goal is to assess the behaviour of five 
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normalization techniques (Max, Max-Min, Sum, Vector, and Logarithmic) and 

recommend which is the best normalization techniques for large scale MCDM 

problems. 

Case 4 contains 20 alternatives (A1, A2, …, A20) and 4 criteria (C1, C2, C3, 

and C4), where C4 is a cost criterion while the others are benefit criteria. Case 5 

includes 10 alternatives (A1, A2, …, A10) and 20 criteria (C1, C2, …, C20), where 

C19 and C20 are cost criteria. To assess the behaviour of the five normalization 

techniques using TOPSIS, SAW, and ELECTRE, the proposed assessment frame-

work was applied.  

To ensure fair comparison on the effects of normalization techniques on 

MCDM methods we applied equal weights for criteria in those two case studies. 

 Case 4 

As mentioned above, the Case 4 example consists of 20 alternatives (A1, A2, 

…, A20) and 4 criteria (C1, C2, C3, and C4) in which C4 is the cost criteria. The 

input data for Case 4 are shown in Table 87. 

Table 87: Decision Matrix input data for Case 4 

 C1 C2 C3 C4 

A1 138.6090 0.3349 6.4543 9 

A2 154.7214 0.6395 23.4244 8 

A3 158.3081 0.3441 15.4244 7 

A4 157.3082 0.3487 6.8542 9 

A5 144.5976 0.9301 11.2616 9 

A6 138.5982 0.3346 12.2616 5 

A7 131.5989 0.2391 19.1988 9 

A8 132.5988 0.3437 14.1988 3 

A9 144.5976 0.7252 15.2616 7 

A10 138.5982 0.2297 11.2616 2 

A11 132.5988 0.5342 11.1988 2 

A12 135.9513 0.3387 6.8974 2 

A13 119.7141 0.8204 81.2616 1 

A14 112.7148 0.4248 11.1988 6 

A15 112.7148 0.1292 21.1988 9 

A16 128.9520 0.1337 6.8974 2 

A17 116.5321 0.3268 7.2695 7 

A18 114.1963 0.4259 10.2846 7 

A19 131.8605 0.3250 6.2997 5 

A20 129.5248 0.1241 10.3148 9 
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➢ TOPSIS method 

TOPSIS method was applied to rank the alternatives with respect to the cri-

teria of case 4 (Table 87). Table 88 depicts alternatives' values and ranking of al-

ternatives using the tested normalization techniques (Max, Max-Min, Sum, Vec-

tor, and Logarithmic).  

Table 88: Alternatives' values, and ranking for Case 4 using TOPSIS 

 Max Rank 
Max-
Min 

Rank Sum Rank 
Vec-
tor 

Rank 
Loga-
rith-
mic 

Rank 

A1 0.0884 19 0.0930 19 0.2340 13 0.0557 19 0.2817 15 

A2 0.2904 4 0.2964 4 0.3373 2 0.2571 2 0.3919 9 

A3 0.1674 13 0.1709 13 0.2655 7 0.1365 10 0.4103 7 

A4 0.0944 18 0.0996 18 0.2354 12 0.0598 18 0.2771 17 

A5 0.2921 3 0.3036 3 0.2787 6 0.2024 3 0.1670 20 

A6 0.2012 10 0.2062 10 0.2368 11 0.1192 13 0.3693 10 

A7 0.1546 16 0.1536 16 0.2936 4 0.1683 7 0.5309 3 

A8 0.2702 8 0.2761 8 0.2200 15 0.1576 8 0.3931 8 

A9 0.2709 6 0.2806 5 0.2810 5 0.1933 4 0.2696 18 

A10 0.2740 5 0.2796 6 0.1620 18 0.1403 9 0.4322 6 

A11 0.3100 2 0.3185 2 0.1780 17 0.1698 6 0.2467 19 

A12 0.2703 7 0.2770 7 0.1498 19 0.1306 11 0.2847 14 

A13 0.9525 1 0.9490 1 0.7686 1 0.9704 1 0.5632 2 

A14 0.1870 11 0.1930 11 0.2417 10 0.1147 14 0.2981 11 

A15 0.1664 14 0.1639 15 0.3065 3 0.1898 5 0.6411 1 

A16 0.2553 9 0.2606 9 0.1440 20 0.1195 12 0.4530 5 

A17 0.1212 17 0.1256 17 0.2295 14 0.0661 17 0.2974 12 

A18 0.1595 15 0.1654 14 0.2426 8 0.1014 15 0.2816 16 

A19 0.1802 12 0.1855 12 0.2154 16 0.0875 16 0.2868 13 

A20 0.0458 20 0.0454 20 0.2425 9 0.0515 20 0.5129 4 

 

Again, Table 88 reveals that it is impossible to select the best technique just 

by looking at the results and there is a need for using the assessment framework 

to recommend the best normalization technique for TOPSIS.  

Table 89: Results of Framework, Step 3 & 4, for TOPSIS in Case 4 

 Euclid-
ean 

Rank↑ STD Rank↑ RCI Rank↑ MSE Rank↓ Mean ks Rank↑ 
Plural-

ity 

Max 3.6063 2 0.1850 2 13.75 2 38.175 1 0.75266123 2 1 

Max-Min 3.5903 3 0.1842 3 14 1 51.225 3 0.745336228 3 1 

Sum 2.5209 4 0.1293 4 3.75 5 53.125 4 0.738764223 4 0 

Vector 3.8033 1 0.1951 1 10.75 3 42.075 2 0.809497074 1 3 

Logarith-
mic 

2.3912 5 0.1227 5 5.25 4 64.6 5 0.318998389 5 0 
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After using the framework step 3 metrics and plurality voting of step 4 we 

now can say (Table 89) that the best normalization technique for case 4 with the 

TOPSIS method is the Vector normalization technique, because it includes the 

highest counting of the first rank on the used metrics. 

 

➢ SAW method 

Another well-known MCDM method to validate the framework is the SAW 

method. We applied it to Case 4 (Table 87) and ranked alternatives. Table 90 

shows their results. 

Table 90: Alternatives' values, and ranking for Case 4 using SAW 

 Max Rank 
Max-
Min 

Rank Sum Rank Vector Rank 
Loga-

rithmic 
Rank 

A1 0.1339 19 0.0673 19 0.0261 20 0.2343 19 0.0435 19 

A2 0.3470 3 0.3070 3 0.0646 2 0.3676 2 0.0500 10 

A3 0.2466 12 0.1944 12 0.0431 11 0.2991 8 0.0525 7 

A4 0.1410 18 0.0778 18 0.0272 18 0.2382 18 0.0437 18 

A5 0.3152 8 0.2752 6 0.0516 5 0.3280 5 0.0381 20 

A6 0.2738 9 0.2232 9 0.0399 12 0.2966 9 0.0505 9 

A7 0.1920 15 0.1277 15 0.0450 9 0.2911 12 0.0587 4 

A8 0.3395 5 0.2959 5 0.0493 6 0.3236 6 0.0519 8 

A9 0.3407 4 0.3013 4 0.0539 4 0.3416 3 0.0441 16 

A10 0.3177 6 0.2721 8 0.0482 7 0.3029 7 0.0541 6 

A11 0.3936 2 0.3589 2 0.0570 3 0.3373 4 0.0447 14 

A12 0.3167 7 0.2726 7 0.0440 10 0.2921 11 0.0446 15 

A13 0.9446 1 0.9607 1 0.2068 1 0.7507 1 0.0611 2 

A14 0.2626 11 0.2081 11 0.0391 13 0.2930 10 0.0468 11 

A15 0.1762 17 0.1062 17 0.0452 8 0.2889 13 0.0666 1 

A16 0.2647 10 0.2117 10 0.0380 14 0.2685 15 0.0549 5 

A17 0.1871 16 0.1240 16 0.0286 17 0.2531 17 0.0451 13 

A18 0.2314 14 0.1735 14 0.0366 15 0.2804 14 0.0458 12 

A19 0.2324 13 0.1772 13 0.0294 16 0.2637 16 0.0438 17 

A20 0.1053 20 0.0315 20 0.0265 19 0.2306 20 0.0594 3 

 

Likewise, for TOPSIS, Table 90 shows that using the assessment framework 

is unavoidable to recommend the best normalization technique for the SAW 

method. So, applying the framework metrics of step 3 and plurality voting of step 

4 (Table 91), the recommendation is that Max-Min normalization techniques are 

suitable for Case 4 with SAW method.  
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Table 91: Results of Step 3 & 4 of the framework for SAW in Case 4 

 Euclid-
ean 

Rank↑ STD Rank↑ RCI Rank↑ MSE Rank↓ Mean ks Rank↑ 
Plural-

ity 

Max 3.3874 2 0.1738 2 19 2 20 3 0.7809 3 0 

Max-Min 3.7531 1 0.1925 1 19.5 1 21.4 4 0.7756 4 3 

Sum 0.7492 4 0.0384 4 11.25 4 18.45 1 0.8161 1 2 

Vector 2.1280 3 0.1092 3 16 3 19.4 2 0.8106 2 0 

Logarith-
mic 

0.1428 5 0.0073 5 11.25 4 61.35 5 0.2547 5 0 

 

➢ ELECTRE 

We applied ELECTRE to rank the alternatives with respect to the criteria for 

input data of case 4 (Table 87). Table 92 shows their results. 

Table 92:Ranking of alternatives for Case 4 using ELECTRE 

 Max Max-Min Sum Vector 
Logarith-

mic 

A1 20 20 20 20 19 

A2 2 2 2 1 10 

A3 8 8 6 7 5 

A4 18 18 18 18 20 

A5 6 6 6 6 18 

A6 9 9 10 8 8 

A7 12 12 9 10 2 

A8 5 5 5 5 6 

A9 2 4 3 3 12 

A10 7 7 8 9 4 

A11 2 3 4 4 13 

A12 11 9 13 13 15 

A13 1 1 1 1 3 

A14 10 11 12 10 11 

A15 14 14 11 12 1 

A16 15 15 15 15 9 

A17 17 17 16 16 14 

A18 13 13 14 14 16 

A19 16 16 17 17 17 

A20 19 19 19 19 7 

 

Table 92 reveals, again, that it is impossible to select the best technique just 

by looking at the results, thus, we used the assessment framework to recommend 

the best normalization technique for ELECTRE.  
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Table 93: Results of Step 3 & 4 of the framework for ELECTRE in Case 4 

 Euclid-
ean 

Rank↑ STD Rank↑ RCI Rank↑ MSE Rank↓ Mean ks Rank↑ 
Plural-

ity 

Max 119.2099 1 6.1153 1 22 1 12.75 4 0.8152 2 3 

Max-Min 115.4946 4 5.9247 4 22 1 12.5875 3 0.8131 3 1 

Sum 116.0129 3 5.9513 3 22 1 10.525 1 0.6208 4 2 

Vector 116.8589 2 5.9947 2 21.5 4 11.125 2 0.8369 1 1 

Logarith-
mic 

115.3256 5 5.9161 5 1.5 5 42.4375 5 0.1486 5 0 

 

After using the framework step 3 metrics and plurality voting of step 4, we 

now can say (Table 93) that the best normalization technique for case 4 with the 

ELECTRE method is the Max normalization technique, because it includes the 

highest counting of the first rank on the used metrics. 

 

 Case 5 

The fifth case study consists of 10 alternatives (A1, A2, …, A10) and 20 cri-

teria (C1, C2, …, C20), where C19 and C20 are cost criteria and all others are ben-

efit ones. The decision matrix input data for case 5 is shown in Table 94.  

Table 94: Decision matrix input data for case 5. 

 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 

C1 2 60 6.35 6.8 10 6.35 4.5 60 2.5 6.8 

C2 0.192 0.4 0.15 0.1 0.1 0.15 0.08 0.4 0.1 0.2 

C3 436 2540 1016 1727.2 1000 560 1016 2540 1016 1727 

C4 95 500 3000 1500 2000 500 350 1500 3000 500 

C5 102 990 1041 1676 965 915 1041 990 508 1676 

C6 72 65 40 32 75 64 25 64 10.35 10.8 

C7 82.5 95 80 50 55 36.25 77 75 64 25 

C8 7 8 9 6 4 7 1 9 5 7 

C9 9 7 6 7 2 1 9 8 6 7 

C10 138.609 154.7214 158.3081 157.3082 144.5976 124.5988 135.9513 129 154 207 

C11 0.3349 0.3395 0.3441 0.3487 0.3301 0.3279 0.3025 0.2925 0.2787 0.2649 

C12 6.4543 11.4244 11.4244 6.8542 11.2616 19.1988 14.7153 18.5122 20.2391 21.9659 

C13 5760 8840 5760 6150 13200 2529 5241 969 4948.5 8928 

C14 15 22 12 25 32 54 71 95 8 7 

C15 3.9516 5.5274 5.5274 3.9516 5.5274 2 12 7.13 2.249 3.463 

C16 4 8 7 9 5 6.5 4.76 2.565 5.001 2.617 

C17 7130 2249 3463 3694 5857 5149 7630 7985 8871.5 9758 

C18 3841 6088 1406 4502 7312 7720 10673 5684 7586 2772 

C19 6468 3338 2719 6159 5411 9631 1874 500 3000 1500 

C20 2565 5001 2617 2612 3106 8542 9125 7270 7691 7212 
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➢ TOPSIS method 

We applied the TOPSIS method to rank the alternatives with respect to in-

put data of case 5 (Table 94). Table 95 depicts alternatives' ratings and ranking 

using the same five normalization techniques (Max, Max-Min, Sum, Vector, and 

Logarithmic). 

Table 95: Alternatives' values, and ranking for Case 5 using TOPSIS 

 Max Rank 
Max-
Min 

Rank Sum Rank Vector Rank 
Loga-
rith-
mic 

Rank 

A1 0.2161 10 0.2363 10 0.2556 9 0.1701 10 0.1713 10 

A2 0.6461 2 0.6432 2 0.7243 1 0.6652 2 0.8265 2 

A3 0.3642 3 0.3674 3 0.3169 4 0.3244 3 0.3829 5 

A4 0.2824 7 0.2937 7 0.2988 7 0.2427 8 0.4062 4 

A5 0.3489 4 0.3566 4 0.3395 3 0.3129 4 0.4982 3 

A6 0.2409 9 0.2524 9 0.3046 5 0.2202 9 0.3782 6 

A7 0.3217 6 0.3318 5 0.2909 8 0.3081 5 0.3447 8 

A8 0.7659 1 0.7582 1 0.7190 2 0.7930 1 0.8705 1 

A9 0.3319 5 0.3318 6 0.3005 6 0.2971 6 0.2052 9 

A10 0.2762 8 0.2856 8 0.2348 10 0.2460 7 0.3673 7 

 

Once again, Table 95 shows it is impossible to select the best normalization 

technique just by looking at the results. So, we applied the assessment framework 

to recommend the more suitable normalization technique for Case 5. 

Table 96: Results of Step 3 & 4 of the framework for TOPSIS in Case 5. 

 Euclid-
ean 

Rank↑ STD Rank↑ RCI Rank↑ MSE Rank↓ Mean ks Rank↑ PV 

Max 1.7123 4 0.1805 4 13.25 1 2.0000 1 0.9715 3 2 

Max-
Min 

1.6451 5 0.1734 5 13.25 1 2.8000 2 0.9728 2 1 

Sum 1.7382 3 0.1832 3 2 5 3.4000 4 0.9601 4 0 

Vector 1.9317 2 0.2036 2 12.25 3 3.3429 3 0.9736 1 1 

Loga-
rithmic 

2.2084 1 0.2328 1 9.75 4 4.3429 5 0.9268 5 2 

 

Table 96 depicts the results obtained with steps 3 & 4 of the framework and 

the recommendation is that Max and Logarithmic normalization techniques are 

the best regarding plurality voting. 
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➢ SAW method 

Here we applied SAW method to rank the alternatives for input data of 

Case 5 (Table 94) and Table 97 shows the results. 

Table 97: Alternatives' values and ranking for Case 2 using SAW. 

 Max Rank 
Max-
Min 

Rank Sum Rank Vector Rank 
Loga-

rithmic 
Rank 

A1 0.3196 10 0.2677 9 0.0582 10 0.2094 10 0.0794 10 

A2 0.6684 2 0.6436 2 0.1593 2 0.4351 2 0.1206 2 

A3 0.4613 4 0.4150 4 0.0900 4 0.2951 4 0.0989 6 

A4 0.4097 6 0.3605 6 0.0812 6 0.2654 6 0.1012 4 

A5 0.4647 3 0.4182 3 0.0952 3 0.3023 3 0.1050 3 

A6 0.3235 9 0.2636 10 0.0701 9 0.2210 9 0.0943 7 

A7 0.4319 5 0.3825 5 0.0881 5 0.2897 5 0.0990 5 

A8 0.7802 1 0.7592 1 0.2097 1 0.5077 1 0.1261 1 

A9 0.3909 7 0.3335 8 0.0737 8 0.2563 7 0.0843 9 

A10 0.3866 8 0.3338 7 0.0745 7 0.2537 8 0.0912 8 

 

Again, Table 97 is inconclusive and we need to use Step 3 and 4 of the frame-

work to recommend the best normalization technique. Table 98 displays the re-

sults for Case 5 with the SAW method, from where it can be stated that Max-Min 

and Sum are the best normalization technique for SAW in this case. 

Table 98: Results of Step 3 & 4 of the framework for SAW in Case 5. 

 Euclid-
ean 

Rank↑ STD Rank↑ RCI Rank↑ MSE Rank↓ Mean ks Rank↑ PV 

Max 1.4059 2 0.1482 2 33.25 2 0.5500 3 0.9786 2 0 

Max-
Min 

1.5250 1 0.1607 1 30 4 0.7000 4 0.9784 3 2 

Sum 0.4491 4 0.0473 4 33.75 1 0.5000 1 0.9725 4 2 

Vector 0.9006 3 0.0949 3 33.25 2 0.5286 2 0.9800 1 0 

Loga-
rithmic 

0.1385 5 0.0146 5 26.75 5 1.6786 5 0.9271 5 0 

 

➢ ELECTRE 

Now, we applied ELECTRE method to rank the alternatives with respect to 

the criteria of case 5 (Table 94). Table 99 depicts alternatives' ratings and ranking 

of alternatives using the tested normalization techniques (Max, Max-Min, Sum, 

Vector, and Logarithmic).  
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Table 99: Ranking of alternatives for Case 5 using ELECTRE 

 Max Max-Min Sum Vector 
Logarith-

mic 

A1 10 10 10 10 10 

A2 1 2 2 2 2 

A3 4 4 3 3 5 

A4 5 4 5 5 3 

A5 1 2 3 3 3 

A6 8 9 8 9 8 

A7 6 6 6 5 6 

A8 1 1 1 1 1 

A9 8 8 8 8 9 

A10 7 7 7 7 7 

 

Similarly, to the above cases, Table 99 reveals it is impossible to select the 

best technique just by looking at the results because each technique ranking is 

quite different from the others. Thus, we used the assessment framework to rec-

ommend the best normalization technique for ELECTRE.  

Table 100: Results of Step 3 & 4 of the framework for ELECTRE in Case 2 

 Euclid-
ean 

Rank↑ STD Rank↑ RCI Rank↑ MSE Rank↓ 
Mean 

ks 
Rank↑ PV 

Max 31.1288 1 3.2813 1 27.75 5 0.7250 4 0.9652 4 2 

Max-Min 30.0167 2 3.1640 2 29.25 2 0.4250 1 0.9774 1 2 

Sum 28.3019 5 2.9833 5 31.5 1 0.5250 2 0.9717 2 1 

Vector 29.3428 4 3.0930 4 28.75 3 0.7071 3 0.9658 3 0 

Logarith-
mic 

29.3939 3 3.0984 3 28 4 0.9821 5 0.9507 5 0 

 

After using the framework step 3 metrics and plurality voting of step 4 we 

now can say (Table 100) that the best normalization techniques for case 5 with 

the ELECTRE method are Max, and Max-Min normalization techniques, because 

they include the highest counting of the first rank on the used metrics. 

 

 Final Comments on normalization techniques on scaling problems  

We observed some interesting results about the relation between the num-

ber of criteria and alternatives in decision problems using different normalization 

techniques in MCDM (TOPSIS, SAW, and ELECTRE) methods. We tested differ-
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ent number of alternatives when there are 20 criteria Table 101 shows the deci-

sion matrix which contains 20 criteria and 10 alternatives. C19 and C20 are cost 

criteria and the other criteria are benefit ones.  

Table 101: Illustrative example with 20 Criteria and 10 alternatives 

 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 

C1 2 60 6.35 6.8 10 6.35 4.5 60 2.5 6.8 

C2 0.192 0.4 0.15 0.1 0.1 0.15 0.08 0.4 0.1 0.2 

C3 436 2540 1016 1727.2 1000 560 1016 2540 1016 1727 

C4 95 500 3000 1500 2000 500 350 1500 3000 500 

C5 102 990 1041 1676 965 915 1041 990 508 1676 

C6 72 65 40 32 75 64 25 64 10.35 10.8 

C7 82.5 95 80 50 55 36.25 77 75 64 25 

C8 7 8 9 6 4 7 1 9 5 7 

C9 9 7 6 7 2 1 9 8 6 7 

C10 138.609 154.7214 158.3081 157.3082 144.5976 124.5988 135.9513 129 154 207 

C11 0.3349 0.3395 0.3441 0.3487 0.3301 0.3279 0.3025 0.292567 0.278767 0.264967 

C12 6.4543 11.4244 11.4244 6.8542 11.2616 19.1988 14.7153 18.51227 20.23912 21.96597 

C13 5760 8840 5760 6150 13200 2529 5241 969 4948.5 8928 

C14 15 22 12 25 32 54 71 95 8 7 

C15 3.9516 5.5274 5.5274 3.9516 5.5274 2 12 7.13 2.249 3.463 

C16 4 8 7 9 5 6.5 4.76 2.565 5.001 2.617 

C17 7130 2249 3463 3694 5857 5149 7630 7985 8871.5 9758 

C18 3841 6088 1406 4502 7312 7720 10673 5684 7586 2772 

C19 6468 3338 2719 6159 5411 9631 1874 500 3000 1500 

C20 2565 5001 2617 2612 3106 8542 9125 7270 7691 7212 

 

Using the data from Table 101 , first we analysed the behaviour of the cho-

sen normalization techniques with MCDM methods for the first 3 alternatives 

(A1, A2, and A3). Then, we analysed the results with 4 alternatives (A1, A2, …, 

A4) and then continued with 5, 7, 8, 9, and 10 alternatives, respectively. The rank-

ing of alternatives using five normalization techniques in TOPSIS, SAW, and 

ELECTRE methods for the cases with 3, 4, 5, and 10 alternatives are shown in 

Table 102, Table 103, Table 104, and Table 105. To avoid displaying too many 

results, the ranking of alternative for cases with 6, 7, 8, and 9 alternatives are not 

shown. 
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Table 102: Ranking for 3 alternatives with TOPSIS, SAW, and ELECTRE 

  Max Max-Min Sum Vector Logarithmic 

T
O

P
-

S
IS

 

A1 3 3 3 3 3 

A2 1 1 1 1 1 

A3 2 2 2 2 2 

S
A

W
 

A1 3 3 3 3 3 

A2 1 1 1 1 1 

A3 2 2 2 2 2 

E
L

E
C

-
T

R
E

 

A1 3 3 3 3 3 

A2 1 1 1 1 1 

A3 2 2 2 2 2 

 

Table 103: Ranking for 4 alternatives with TOPSIS, SAW, and ELECTRE 

  Max Max-Min Sum Vector 
Logarith-

mic 

T
O

P
S

IS
 

A1 4 4 4 4 4 

A2 1 1 1 1 1 

A3 2 2 2 2 2 

A4 3 3 3 3 3 

S
A

W
 

A1 4 4 4 4 4 

A2 1 1 1 1 1 

A3 2 2 2 2 2 

A4 3 3 3 3 3 

E
L

E
C

T
R

E
 

A1 4 4 4 4 4 

A2 1 1 1 1 1 

A3 3 3 3 3 3 

A4 2 2 2 2 2 

 

Table 104: Ranking for 5 alternatives with TOPSIS, SAW, and ELECTRE 

  Max Max-Min Sum Vector 
Logarith-

mic 

T
O

P
S

IS
 

A1 2 2 2 2 2 

A2 3 3 3 3 4 

A3 4 4 4 4 3 

A4 5 5 5 5 5 

A5 1 1 1 1 1 

S
A

W
 

A1 2 2 2 2 2 

A2 3 3 3 3 4 

A3 4 4 4 4 3 

A4 5 5 5 5 5 

A5 1 1 1 1 1 

E
L

E
C

T
R

E
 

A1 5 5 5 5 5 

A2 1 1 1 1 1 

A3 3 3 3 3 3 

A4 2 2 2 2 2 

A5 4 4 4 4 4 
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Table 105: Ranking for 10 alternatives with TOPSIS, SAW, and ELECTRE 

  Max Max-Min Sum Vector 
Logarith-

mic 

T
O

P
S

IS
 

A1 8 8 2 8 8 

A2 2 2 8 2 2 

A3 3 3 5 3 5 

A4 5 5 3 5 4 

A5 9 7 6 7 3 

A6 7 9 9 9 6 

A7 4 4 4 10 10 

A8 10 10 7 4 7 

A9 6 6 1 6 9 

A10 1 1 10 1 1 

S
A

W
 

A1 8 8 8 8 8 

A2 2 2 2 2 2 

A3 5 5 5 5 5 

A4 3 3 3 3 4 

A5 7 7 7 7 7 

A6 4 4 4 4 3 

A7 9 10 10 9 6 

A8 10 9 9 10 10 

A9 6 1 6 6 9 

A10 1 6 1 1 1 

E
L

E
C

T
R

E
 

A1 7 7 7 7 2 

A2 2 1 2 2 5 

A3 9 8 9 9 8 

A4 8 9 8 8 10 

A5 3 4 3 3 7 

A6 5 6 5 5 3 

A7 10 10 10 10 6 

A8 6 5 6 6 1 

A9 4 3 4 4 9 

A10 1 2 1 1 4 

 

Table 102, Table 103, and Table 104 show that the TOPSIS , SAW, and ELEC-

TRE methods produced the same ranking for alternatives using different normal-

ization techniques i.e., there were no differences in the ranking of alternatives 

using different normalization techniques when the number of alternatives is less 

than the number of criteria. Until 9 alternatives, the results are similar, i.e. the 

ranking remains the same for each normalization technique. However, when 

A≥10 alternatives the ranking changes and produces different results. This study 

led to a novel conclusion about the relation of ranking results in TOPSIS, SAW, 
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and ELECTRE methods, using different normalization techniques. It showed that 

to obtain consistent rankings for alternatives, the number of alternatives should 

be at least half the number of criteria in decision matrices, e.g. for decision prob-

lem with 20 criteria we need to have at least 10 alternatives to rank, when using 

TOPSIS, SAW, and ELECTRE methods. 

This test was done with several decision matrixes and different input data 

to ensure the achieved conclusion is valid, i.e. there are no consistent rankings in 

MCDM methods for comparing normalization methods when the number of al-

ternatives is half of the number of criteria. 

 

4.2.4 Benchmarking 

Within benchmarking we should compare the results of our proposed as-

sessment framework with results from the literature. However, since this is a 

novel topic of research, there are only few papers about selecting the best nor-

malization techniques using MCDM methods in the literature. So, we could only 

find four case studies for the SAW, TOPSIS, and WASPAS (Weighted Aggre-

gated Sum Product Assessment Method) methods (Celen, 2014; Chakraborty and 

Yeh, 2012; Lakshmi and Venkatesan, 2014; Mathew et al., 2017)  to validate the 

proposed framework. 

 

 Case 6 

This case study is borrowed from Celen (2014) who recommended normal-

ization techniques using the TOPSIS method for a deposit banks´ ranking deci-

sion problem. The case study consists of 29 sub-attributes under 6 main attributes 

(Table 106) and 13 alternatives (A1,…, A13) to assess the financial performances 

of 13 Turkish deposit banks and rank them. 

Table 106: Fuzzy pair-wise comparison matrix [adapted from (Celen, 2014)]. 

 C1 C2 C3 C4 C5 C6 

C1 (1, 1, 1) (7, 8.33, 9) (0.11, 2.7, 7) (0.11, 5.37, 9) (0.11, 2.41, 7) (7, 8.33, 9) 

C2 (0.11, 0.12, 0.14) (1, 1, 1) (0.11, 0.41, 1) (0.11, 0.41, 1) (0.11, 0.41,1) (0.11, 0.41, 1) 

C3 (0.14, 3.38, 9) (1, 6.33, 9) (1, 1, 1) (0.11, 4.7, 9) (0.11, 4.7, 9) (1, 5, 9) 

C4 (0.11, 3.08, 9) (1, 6.33, 9) (0.11, 3.1, 9) (1, 1, 1) (0.11, 3.37, 9) (0.11, 3.37, 9) 

C5 (0.14, 6.05, 9) (1, 6.33, 9) (0.11, 3.1, 9) (0.11, 3.37, 9) (1, 1, 1) (1, 6.33, 9) 

C6 (0.11, 0.12, 0.14) (1, 6.33, 9) (0.11, 0.44, 1) (0.11, 3.37, 9) (0.11, 0.41,1) (1, 1, 1) 
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The author first used Fuzzy Analytical Hierarchy Process (FAHP) to calcu-

late the weights using pairwise comparison matrices. Then the TOPSIS method 

was applied for ranking alternatives. Further, the author tested four different 

normalization techniques (Vector, Max-Min, Max, and Sum techniques) to pre-

pare dimensionless data from heterogeneous input data sets. The final rank and 

relative closeness of 13 alternatives are depicted in Table 107 (borrowed from 

Celen (2014)). 

Table 107: Relative closeness (RC) and Ranking of alternatives (R) using four different 

normalization techniques [borrowed from (Celen, 2014)] 

Banks 
Vector Max-Min Max Sum 

RC R RC R RC R RC R 

A1 0.682 2 0.63 3 0.732 4 0.446 9 

A2 0.492 5 0.476 7 0.595 8 0.696 3 

A3 0.458 7 0.409 8 0.669 5 0.379 11 

A4 0.796 1 0.805 1 0.786 2 0.545 8 

A5 0.312 12 0.302 12 0.506 9 0.681 4 

A6 0.442 8 0.397 9 0.603 7 0.417 10 

A7 0.644 3 0.692 2 0.825 1 0.572 6 

A8 0.64 4 0.555 4 0.75 3 0.257 12 

A9 0.423 10 0.394 10 0.618 6 0.632 5 

A10 0.427 9 0.357 11 0.23 12 0.065 13 

A11 0.459 6 0.539 5 0.363 10 0.858 1 

A12 0.417 11 0.496 6 0.275 11 0.776 2 

A13 0.212 13 0.218 13 0.149 13 0.547 7 

 

As Table 107 shows, ranking of alternatives varies using the four chosen 

normalization techniques. So, the author used four consistency conditions that 

analyzed the effects of normalization techniques on the mentioned case study 

and suggested that the Vector normalization is the best technique and Max and 

Max-Min are the second best normalization techniques (Celen, 2014).  

We applied our proposed assessment framework for this case study to val-

idate its accuracy when compared with Celen´s results. The obtained results of 

the framework (3.4) are depicted in Table 108.   

 



159 

 

Table 108: Results from framework, (Step 3 & 4) for TOPSIS case study (example from 

Celen (2014)). 

 Euclid-
ean 

Rank↑ STD Rank↑ RCI Rank↑ MSE Rank↓ 
Mean 

ks 
Rank↑ 

Plural-
ity 

Vector 1.9869 4 0.1591 4 3 1 14.2051 2 0.5168 2 1 

Max-Min 2.0305 3 0.1626 3 2.6667 2 12.4103 1 0.5721 1 2 

Max 2.8012 1 0.2243 1 1.6667 3 16.1538 3 0.4520 3 2 

Sum 1.9869 4 0.2169 2 0 4 32.2051 4 -0.0597 4 0 

 

As Table 108 shows, when using our framework: Max-Min and Max nor-

malization techniques are the best techniques, while the Vector normalization is 

the second best technique.  

The comparison between our assessment framework and Celen´s work 

(Celen, 2014) reveals that our results are more robust and accurate because we 

use several metrics, from different categories (STD from measures of data disper-

sion; Euclidean distance from the measure of proximity; Mean Ks, RCI, and MSE 

from comparison metrics), while the author (Celen, 2014) only used four con-

sistency conditions - requiring  decision maker's intervention - to determine the 

selection of the normalization technique. Further, (Celen, 2014) work does not 

provide a numerical ranking of the normalization techniques while our frame-

work provides numerical ranking with several known metrics.  

 

 Case 7 

The second case study used for benchmarking is borrowed from Mathew et 

al. (2017) for the selection of an industrial robot using Weighted Aggregated Sum 

Product Assessment Method (WASPAS).  

The authors analysed the effect of the six different normalization techniques 

in WASPAS method (Mathew et al., 2017). The case study consists of 5 criteria 

(C1,…, C5) and 7 alternatives (A1,…, A7) with the assigned weights (Table 109). 

In this case study, C2 is the cost criteria (the lower values the better) and the oth-

ers are benefit criteria (the higher values the better).  
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Table 109: Decision matrix input data and assigned weights for the case study borrowed from 

Mathew et al. (2017). 

 C1 C2 C3 C4 C5 

Weights 0.036 0.192 0.326 0.326 0.12 

A1 60 0.4 2540 500 990 

A2 6.35 0.15 1016 3000 1041 

A3 6.8 0.1 1727.2 1500 1676 

A4 10 0.2 1000 2000 965 

A5 2.5 0.1 560 500 915 

A6 4.5 0.08 1016 350 508 

A7 3 0.1 177 1000 920 

 

The authors selected six normalization techniques as Vector, Max, Max-

Min, Sum, Logarithmic, and Enhanced accuracy for the related case study 

(Mathew et al., 2017) to analyse the effect of the mentioned techniques on the 

ranking of alternatives.  

Hence the Enhanced accuracy normalization technique does not belong to 

our chosen set of normalization techniques, however, its formulas for cost and 

bene-fit criteria are shown in Table 3. This technique is classified as a linear tech-

nique and applicable to add to the selected normalization techniques in the as-

sessment framework. This status shows the user-friendly procedure of the pro-

posed assessment framework to add/remove normalization techniques in Step 

2.   

Table 110 shows the alternative values and ranking of alternatives for 

WASPAS method using five selected normalization techniques (Vector, Max, 

Max-Min, Sum, Logarithmic, and Enhanced accuracy). 

Table 110: Results with WASPAS method (adapted from Mathew et al. (2017)). 

 Vector Max Max-Min Sum Logarithmic 
Enhanced ac-

curacy 

 Alt. 
Value 

Ran
k 

Alt. 
Value 

Ran
k 

Alt. 
Value 

Ran
k 

Alt. 
Value 

Ran
k 

Alt. 
Value 

Ran
k 

Alt. 
Value 

Ran
k 

A1 0.3423 4 0.2436 7 0.2150 4 0.1426 4 0.1525 1 0.7924 7 

A2 0.4864 2 0.6226 2 0.6054 2 0.1830 2 0.1514 2 0.9021 2 

A3 0.4898 1 0.6341 1 0.6277 1 0.1885 1 0.1509 3 0.9194 1 

A4 0.4023 3 0.5067 3 0.4746 3 0.1470 3 0.1503 4 0.8570 3 

A5 0.2456 6 0.3023 5 0.1466 7 0.0863 6 0.1311 6 0.8331 6 

A6 0.2599 5 0.3198 4 0.1545 5 0.0970 5 0.1326 5 0.8401 4 

A7 0.2347 7 0.2875 6 0.1513 6 0.0825 7 0.1282 7 0.8335 5 
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As Table 110 shows different normalization techniques produced different 

rankings of alternatives. The authors used Spearman correlation and calculated 

Mean ks values for each normalization technique. In the end they recommend 

the Max-Min normalization technique because of having the highest Mean ks 

value among the selected techniques (Mathew et al., 2017). 

Table 111: Results of Mean ks for WASPAS method (borrowed from Mathew et al. (2017)). 

 Mean ks Rank↑ 

Max 0.7209 4 

Max-Min 0.8370 1 

Sum 0.8236 2 

Vector 0.8236 2 

Logarithmic 0.5424 6 

Enhanced accuracy 0.6808 5 

 

We now apply our assessment framework (Section 3.4) to this case study 

and the obtained results are depicted in Table 112. 

Table 112: Framework (Step 3 & 4) results for case study 7 (borrowed from Mathew et al. 

(2017)). 

 Euclid-
ean 

Rank↑ STD Rank↑ RCI Rank↑ MSE Rank↓ 
Mean 

ks 
Rank↑ 

Plural-
ity 

Vector 0.7160 3 0.1105 3 33.8 1 1.2000 1 0.9013 2 2 

Max 1.0809 2 0.1668 2 28.4 5 2.4000 4 0.8534 4 0 

Max-Min 1.4355 1 0.2215 1 29.6 4 1.3143 3 0.9014 1 3 

Sum 0.2885 4 0.0445 4 33.2 2 1.2000 1 0.8723 3 1 

Logarith-
mic 

0.0720 6 0.0111 6 20 6 3.8286 6 0.7033 6 0 

Enhanced 
accuracy  

0.2831 5 0.0437 5 30.8 3 2.5143 5 0.7244 5 0 

 

Observing results from Table 112, we conclude that our framework also se-

lects the Max-Min normalization as the best technique because it has the highest 

PV. However, our framework provides more confidence and consistency because 

it uses metrics from different categories (STD from measures of data dispersion; 

Euclidean distance from the measure of proximity; Mean Ks, RCI, and MSE from 

comparison metrics) and could guarantee the robustness of the comparison be-

tween different normalization techniques. On the other hand, implementing PV 

worked as an aggregation process which enabled us obtain a single result from 

different used metrics. Concluding, results from our framework Table 112 prove, 

with more certainty and consistency, the results from Mathew et al. (2014), where 
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they just applied Spearman correlation and calculated Mean ks values for the six 

chosen normalization techniques.   

 

 Case 8 

This case study is borrowed from Lakshmi and Venkatesan (2014) that 

analyzed and recommended normalization techniques for the TOPSIS 

method in a car selection problem. The case study consists of 4 alternatives 

(A1, …, A4) regarding different car brands (Civic Coupe, Saturn Coupe, Ford 

Escort, and Mazda Miata) and 4 criteria (C1, …, C4) related to the car charac-

teristics (style, reliability, fuel-eco, and cost). The decision matrix with the in-

put data is depicted in Table 113.  

Table 113: Decision matrix input data [borrowed from (Lakshmi and Venkatesan, 2014)]. 

 C1 C2 C3 C4 

A1 7 9 9 8 

A2 8 7 8 7 

A3 9 6 8 9 

A4 6 7 8 6 

 

The authors used five normalization techniques (Max, Max-Min, Sum, Vec-

tor, and Fuzzification (using Gaussian membership function)) to analyze the ef-

fects of using different normalization techniques on the TOPSIS method. They 

calculated the relative closeness and ranking of alternatives, with TOPSIS 

method, using five selected normalization techniques for this case study (Table 

114). 

Table 114: Relative closeness (RC) and Ranking of alternatives (R) for Case Study 8 from 

Lakshmi and Venkatesan (2014). 
 

Vector Max-Min Sum Max Fuzzification 
(Gaussian)  

RC R RC R RC R RC R RC R 

A1 0.74 1 0.88 1 0.38 1 0.26 4 0.75 1 
A2 0.41 3 0.28 4 0.26 3 0.31 1 0.45 3 
A3 0.17 4 0.31 3 0.009 4 0.29 3 0.02 4 
A4 0.44 2 0.45 2 0.32 2 0.30 2 0.62 2 

 

As Table 114 depicts that there is no consensus between the five selected 

normalization techniques for ranking alternatives. The authors (Lakshmi and 
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Venkatesan, 2014) calculated time complexity and space complexity for each nor-

malization technique with the help of MATLAB and recommend the Sum nor-

malization technique as the best technique for the case study, using the TOPSIS 

method. 

Also, we applied metrics from Step 3 and 4 of the proposed assessment 

framework (Section 3.4.) and the results are presented in Table 115. 

Table 115: Framework (Step 3 & 4)  results  for Case Study 8 using TOPSIS (adapted from Lak-

shmi and Venkatesan (2014)). 

 Eu-
clid-
ean 

Rank↑ STD Rank↑ RCI Rank↑ MSE Rank↓ 
Mean 

ks 
Rank↑ PV 

Max 0.8094 3 0.2337 3 10.75 1 1 2 0.5211 3 1 

Max-Min 0.9587 2 0.2768 2 9 4 0.5 1 0.3364 4 1 

Sum 0.5648 4 0.1630 4 10.75 1 1 2 0.5690 2 1 

Vector 0.0748 5 0.0216 5 6.25 5 2.75 5 
-

0.5452 
5 0 

Fuzzifica-
tion 
(Gaussian) 

1.1016 1 0.3180 1 10.75 1 1 2 0.5694 1 4 

 

From the obtained results (Table 115) using the proposed assessment frame-

work, Fuzzification (Gaussian) normalization technique is the best technique, 

while  the approach by (Lakshmi and Venkatesan (2014)), recommended the Sum 

normalization technique.  

Comparing both approaches results, we believe that our framework pro-

vides more robust and reliable results than the ones obtained by the authors 

(Lakshmi and Venkatesan, 2014), because we cover a wide range of metrics from 

different categories (STD from measures of data dispersion; Euclidean distance 

from the measure of proximity; Mean Ks, RCI, and MSE from comparison met-

rics).In Case 8, the authors (Lakshmi and Venkatesan, 2014) just calculated time 

and space complexity with MATLAB, and these results are highly dependent on 

the style of MATLAB users/programmers. For instance, someone can code the 

Sum normalization technique in a manner that obtains time and space complex-

ity twice higher than someone else. Therefore, our proposed framework ensures 

more accurate and reliable results to support decision makers.  
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 Case 9 

This case study is borrowed from Chakraborty and Yeh (2012) and they 

compared the results of using different normalization techniques for SAW and 

TOPSIS methods and compared the their results with Weighted Product (WP) 

method's results and find more proper normalization technique. They imple-

mented WP method without using normalization techniques and produced com-

parable data by multiplying the weight to the input data of each criterion, then 

compared its results with the SAW and TOPISIS method while using different 

normalization techniques in these two MCDM methods. Here we do not consider 

the WP method because it does not belong to our chosen MCDM methods. 

The case study includes 5 criteria (C1, …, C5) and 6 alternatives (A1, …, 

A6). The decision matrix with the input data is depicted in Table 116. 

Table 116: Decision matrix input data and assigned weights for the case study 9 (borrowed 

from Chakraborty and Yeh (2012) 

 C1 C2 C3 C4 C5 

Weights 0.03 0.1 0.3 0.15 0.15 

A1 690 3.1 9 7 4 

A2 590 3.9 7 6 10 

A3 600 3.6 8 8 7 

A4 620 3.8 7 10 6 

A5 700 2.8 10 4 6 

A6 650 4 6 9 8 

 

The authors (Chakraborty and Yeh, 2012) compared 4 normalization tech-

niques namely Max, Max-Min, Sum, and Vector for the SAW and TOPSIS meth-

ods to analyze the effect of the mentioned techniques on the ranking of alterna-

tives. Table 117 shows the alternatives´ rates and rankings. 
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Table 117: Results with SAW and TOPSIS method (borrowed from Chakraborty and Yeh (2012)). 

  Max Max-Min Sum Vector 

 Alt. 
Value 

Rank 
Alt. 

Value 
Rank 

Alt. 
Value 

Rank 
Alt. Value Rank 

S
A

W
 

A1 0.5421 5 0.3527 2 0.1159 6 0.3987 6 

A2 0.5404 6 0.2664 6 0.1179 5 0.4041 5 

A3 0.5541 3 0.3000 5 0.1209 2 0.4190 1 

A4 0.5528 4 0.3082 4 0.1195 4 0.4070 4 

A5 0.5682 1 0.4050 1 0.1202 3 0.4106 3 

A6 0.5575 2 0.3523 3 0.1232 1 0.4137 2 

T
O

P
S

IS
 

A1 0.4896 3 0.5651 2 0.4645 5 0.4994 4 

A2 0.4789 5 0.3450 6 0.5035 3 0.5183 3 

A3 0.5337 2 0.4137 4 0.5437 1 0.5320 2 

A4 0.4790 4 0.4148 5 0.4843 4 0.4817 5 

A5 0.5428 1 0.6290 1 0.5138 2 0.5485 1 

A6 0.4353 6 0.5244 3 0.4562 6 0.4566 6 

 

As Table 117 shows, different normalization techniques produced different 

rankings of alternatives. The authors used Spearman correlation and calculated 

Mean ks values for each normalization techniques for both SAW and TOPSIS 

methods. Table 118 depicts Mean ks values for each normalization technique for 

the related case study.  

Table 118: Results of Mean ks for SAW and TOPSIS method (borrowed from Chakraborty and 

Yeh (2012)). 

 SAW TOPSIS 
 Mean ks Rank↑ Mean ks Rank↑ 

Max 0.464 1 0.336 1 

Max-Min 0.15 4 0.264 2 

Sum 0.321 3 0.25 4 

Vector 0.393 2 0.264 2 

 

In the end  (Chakraborty and Yeh, 2012)  recommended tMax normalization 

technique for both SAW and TOPSIS methods because of having the highest 

Mean ks values among the selected techniques. Also, they conclude that to reach 

more accurate results using MCDM methods several details such as selecting 

normalization techniques and aggregation method have to be considered by de-

cision makers.  
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We now apply our assessment framework (Section 3.4) to this case study 

and the obtained results are depicted in Table 119: Framework (Step 3 & 4) results 

for case study 9 (example from Chakraborty and Yeh (2012)).Table 119. 

Table 119: Framework (Step 3 & 4) results for case study 9 (example from Chakraborty and Yeh 

(2012)). 

  Eu-
clid-
ean 

Rank↑ STD Rank↑ RCI Rank↑ MSE Rank↓ 
Mean 

ks 
Rank↑ PV 

S
A

W
 

Max 0.2172 2 0.0397 2 3 3 1.7778 1 0.4640 1 2 

Max-
Min 

0.5912 1 0.1079 1 2.6667 4 4.7778 4 0.1500 4 2 

Sum 0.1790 4 0.0327 4 4 1 2.4444 2 0.3210 3 1 

Vec-
tor 

0.1850 3 0.0338 3 3.6667 2 2.7778 3 0.393 2 0 

T
O

P
S

IS
 

Max 0.2172 2 0.0397 2 4.3333 1 1.7778 1 0.3360 1 3 

Max-
Min 

0.5912 1 0.1079 1 2.6667 4 4.4444 4 0.2640 2 2 

Sum 0.1790 4 0.0327 4 3 3 2.8889 3 0.2500 4 0 

Vec-
tor 

0.1850 3 0.0338 3 3.3333 2 2.0000 2 0.264 2 0 

 

From the obtained results (Table 119) using the proposed assessment frame-

work, for SAW method, the Max normalization technique is the best technique 

and for TOPSIS, both Max and Max-Min techniques are best techniques (highest 

PV), while  the approach by Chakraborty and Yeh (2012), recommended the Max 

normalization technique for both SAW and TOPSIS.  

As mentioned before, we believe our framework is more consistent and ro-

bust regarding recommendations because it uses metrics from different catego-

ries (STD from measures of data dispersion; Euclidean distance from the measure 

of proximity; Mean Ks, RCI, and MSE from comparison metrics) and could guar-

antee the robustness of the comparison between different normalization tech-

niques. Further, using PV (step 4) worked as a good aggregation process to sum-

marize results from different metrics. Concluding, results from our framework ( 

Table 119 ) prove with more certainty the accuracy of results from Chakraborty 

and Yeh (2012), where they just applied Spearman correlation and calculated 

Mean ks values.   
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4.2.5 Testimonies 

Another validation performed for this research work was to collect testimo-

nies from experts about the proposed assessment framework, regarding its nov-

elty and utility in recommending the best normalization techniques for MCDM 

methods. These testimonies represent an important peer support that this re-

search topic is of importance for the advancement of science, regarding normali-

zation techniques applied to MCDM methods.  Below, we present a selection of 

testimonies, provided by unknown reviewing peers about articles published dur-

ing this PhD work: 

✓ Expert 1 (Vafaei et al., 2022):   

" The introduction is a really important section of the article, where the 

researchers have the opportunity to show the research gap who are acting and 

the contribution of the paper. Therefore, the authors may present a clearer jus-

tification based on points such as research importance, originality, and viabil-

ity. Literature review provides an excellent overview of normalization tech-

niques and assessment framework, which demonstrates that researchers have 

done a good literature review on the topic." 

✓ Expert 2 (Vafaei et al., 2022): 

" This paper faces the normalization of data including outliners in 

multi-criteria decision making issues. The authors compare seven normaliza-

tion techniques. The topic of the paper is very interesting, and the paper is 

well written and well structured." 

✓ Expert 3 (Vafaei et al., 2020):  

" Very interesting and very well organized paper. The research question 

presented is very well formulated: it is clear and objective. " 

✓ Expert 4 (Vafaei et al., 2020): 

" Interesting work, well-structured and written. Clear comparisons are 

made. State-of-the-art is well done. " 

✓ Expert 5 (Vafaei et al., 2019): 

" This paper tackles a generally important problem and fits the confer-

ence." 

✓ Expert 6 (Vafaei et al., 2019): 
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" This papers presents a recommendation framework for supporting users to 
select data normalization techniques that better fit the requirements in dif-
ferent application scenarios, based on multi-criteria decision methods. This is 
a well-written paper and the developed framework will be of value for deci-
sion makers." 

✓ Expert 7 (Vafaei et al., 2018b): 

" The paper re-analyses normalization techniques within MCDM prob-

lems. The interesting part is the relation that the normalizations technique 

may have with the decision problem. Therefore, it may condition the final de-

cision." 

✓ Expert 8 (Vafaei et al., 2018c): 

" The paper deals with a relevant problem in our research field (DSS), 

from a practical point of view. In my opinion, there are three main ideas in the 

paper: (i) the normalizations techniques considered in the study and their ex-

pressions; (ii) the incorporation of the dynamic character and, (iii) the selec-

tion of the most suitable normalizations technique." 

✓ Expert 9 (Vafaei et al., 2018c): 

" The paper is about a very interesting topic in the MCDM domain. 

Indeed, the normalization technique choice can greatly affect the final out-

come. In future versions it would be interesting to see these methods applied 

in TOPSIS or VIKOR, MCDM methods which are versatile and allow much 

experimentation. The comparison of the results could be of value." 

 

4.3 Evaluation in the Research Community 

The author of this thesis became a member of the EURO Working Group on 

Decision Support Systems (EWG-DSS) [https://www.euro-online.org/web-

sites/dss/] in 2015. This society provided a vast networking and interaction with 

various experts/members regarding research on related topics. This continuous 

interaction contributed to improvements on this PhD research work from their 

positive feedback and encouragement about contributions of the normalization 

process on decision problems and methods. 

Furthermore, new contributions and results of this thesis were published in 

several international peer-reviewed conference proceedings, scientific journals, 

and book chapters.  
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Figure 14 depicts the published work, by type of publication, relation with 

thesis, and if it won prizes. The complete published research along the PhD in-

cluded: six publications in international journals; five publications in proceed-

ings of international conferences with peer reviewing (book chapter); five publi-

cations in abstract proceeding of international conferences with peer review; and 

one work still in progress (aiming a journal publication). Furthermore, other ac-

ademic contributions include: book editor, poster, and panel participation, and 

awards as shown in Figure 15. 
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4.4  Summary 

This chapter presented and discussed the validation of the proposed assess-

ment framework, using a Constructive Research method. We performed valida-

tions with case studies and illustrative examples, as well as benchmarks and tes-

timonies, to show the framework usefulness in recommending normalization 

techniques for MCDM methods. Due to the lack of research work and papers in 

the literature, we could only find three case studies related with our work to per-

form the benchmarking. The performed validations with case studies, bench-

marks as well as testimonies and published papers, demonstrate the effectiveness 

and applicability of the developed assessment framework. Moreover, the testi-

monies from experts reveal the novelty of the topic and also the importance and 

utility of the proposed framework in decision problems and MCDM methods. 

Furthermore, the published papers also acted as another validation method and 

showed the strong acceptance of the assessment framework, in the research com-

munity, and its positive impact on academic activities.    
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5  Conclusion and Future Works 

This chapter summarizes the main findings and new contributions of this 

research work. Finally, it discusses limitations through different perspectives and 

lists open issues for future research. 

 

5.1 Summary of the Work  

This thesis research work addressed the main research question " What are 

the characteristics and different steps of an evaluation framework to assess and 

recommend the more appropriate normalization techniques to use with well-

known MCDM methods (SAW, TOPSIS, AHP, ELECTRE)?". The related hypoth-

esis was developed as " If we build a strong assessment framework to identify 

the best normalization technique for decision problems using well-known 

MCDM methods then we can ensure more robust results for ranking alternatives 

in the related decision problems. In other words, this assessment framework 

should support decision makers by recommending which normalization tech-

nique is more appropriate to solve their decision problems".  

To answer the above research question and considering the formulated hy-

pothesis, a new assessment framework was developed. This innovative assess-

ment framework evolved during four phases by modifying and refining steps 

and adding more evaluation metrics. In the final phase of evolution (Phase 4), the 

following four steps were defined for the proposed framework (Figure 11):   

5 
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 Step 1: Data types: Determine the types of data in the decision problem: 

• Benefit or cost criteria 

• Criteria values are:  

o Ordinal number 

o Natural number 

o Real number 

o Float numbers in the unit Interval [0-1] 

Step 2: Selection of normalization techniques: Choose candidates from the 
three main categories (linear, semi-linear, non-linear): 

• Linear: Max; Max-Min; Sum 

• Semi Linear: Vector 

• Non Linear: Logarithmic, Fuzzification 

Step 3: Evaluation of the techniques: In this step, candidate normalization 
techniques are assessed with the following chosen metrics: 

a) Measures of data dispersion: STD 

b) Measure of proximity: Minkowski distances (Euclidean) 

c) Comparison metrics: Mean Ks values (from Pearson Correlation); 

Ranking Consistency Index (RCI); Mean squared error (MSE) 

Step 4: Selection of the best techniques: Selection and recommendation of the 
best technique is done with plurality voting: 

• Plurality voting: Selection of the best normalization technique with 

the large number of first order/rank, in the different used metrics. 

 

The proposed framework helps decision makers to select the best normali-

zation techniques for the decision problem at hand. This framework is flexible 

enough to add any other normalization techniques and MCDM methods. Fur-

thermore, to develop an automatic decision process with less human interven-

tion, the conceptual model (Figure 12) for the related assessment framework is 

designed.  

To summarize, this thesis was divided into 5 chapters. In the first chapter, 

the problem statements and motivations for this research and the research ques-

tion and hypothesis were defined. In the second chapter, the literature back-

ground about MCDM methods, normalization techniques and taxonomy for 
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both were presented. also, some insights about dynamic systems and collabora-

tive networks were introduced. The third chapter discussed the proposed frame-

work and used case studies and illustrative examples to explain the well-known 

assessment tools and metrics. Moreover, the framework's conceptual model for 

recommending the best normalization technique in MCDM methods and its re-

spective automatic decision process are addressed. The fourth chapter discussed 

the validation and testing process of the proposed assessment framework to rec-

ommend the best normalization technique in MCDM method using case studies, 

benchmarking, and expert testimonies; as well as accepted research work by the 

research community. The fifth chapter focused on the main findings and analysis 

of the obtained results using the proposed assessment framework and mentioned 

open issues for future research. 

 
 

5.2 Evaluation 

To validate the proposed framework, four different aspects were consid-

ered  (Camarinha-Matos, 2015):  

✓ Case studies: 

Five different case studies were implemented, three of them with small 

scales (4 criteria and 4 alternatives) and two of them with larger scales 

(one of them 4 criteria with 20 alternatives and the other one 20 criteria 

with 10 alternatives). From this validation it was demonstrated that the 

developed assessment framework is applicable for both small and 

large scales and reaches its mission of recommending the best normal-

ization technique for well-known MCDM methods. Meanwhile, there 

was an interesting issue about ranking alternatives. using different 

normalization techniques regarding the number of criteria and alter-

native in the MCDM decision problems. The preliminary results show 

that when the numbers of alternatives are less than half of the numbers 

of criteria, different normalization techniques produce the same rank 

for final ordering/ranking of alternatives. This is an open issue for fur-

ther research work and will be listed in the last part of the thesis as 

future work.  
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✓ Benchmarking: 

Due to the existence of only a few research papers about the related 

topic of this thesis research, three case studies that are more similar to 

our work were selected for benchmarking. The obtained results 

showed up the consistency and robustness of our assessment frame-

work because it concurs with most other author´ results while being 

tested and validated with several metrics for assessing normalization 

techniques and providing a final ranking based on a plurality voting 

model. Furthermore, by using different metrics from different catego-

ries ensured more accurate results when compared with results from 

the literature.  

 

✓ Testimonies: 

We presented interesting testimonies from 9 experts, that revised pub-

lished papers during this thesis research work, about the applicability 

and utility of the proposed assessment framework.  

 

✓ Peers' evaluation: 

The dissemination of the various stages of this research about the top-

ics of this thesis was done through publications in peer-review as con-

ference proceedings, book chapters, journals, and posters' presenta-

tion, and panel participation. 

 

5.3 Novel Contributions 

This thesis gathered novel contributions from different points of view. First, 

an assessment framework was developed during the thesis work with usage of 

several metrics, collected from a broad variety of categories. Also, in this evolu-

tionary research, a new classification for normalization techniques is introduced: 

linear, semi-linear, and non-linear, which improves the classification of Jahan 

and Edwards (2015) by adding the semi-linear class , like Target-based and Vec-

tor which neither belong to the linear nor non-linear classes. Moreover, it was 
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successfully proposed using plurality voting for recommending the best normal-

ization technique. This is a novel usage of this social sciences method and made 

the developed framework more robust.  

Second, designing a conceptual framework enables decision makers to rank 

alternatives besides recommending the best normalization technique with an au-

tomatic decision process with minimum human intervention. All these new con-

tributions from the developed framework will provide more accurate results for 

decision problems.   

Figure 16 represents the arisen novel contributions regarding the per-

formed research works in this thesis.  

Assessment Framework:
✓ Implementing several metrics
✓ Using PV
✓ New classification for normalization techniques

Conceptual Model

Automatic Decision Process

 

Figure 16: Novel contributions 

 

5.4 Future Works 

In this thesis, the evaluation of normalization techniques was done with 

differenced decision problems and there was no time for generalizing and rec-

ommending always the same normalization technique for each MCDM method 

(SAW, TOPSIS, etc.). The specific characteristics of MCDM methods imposed 

some limitations for the generalization of the results of this research work. For 

example, some elements should be changed for simulation (which is one the gen-

eralization methods) (i) adding/removing alternatives which may cause rank re-

versal and led to changes on the study concept; (ii) changing values of criteria/al-

ternatives can cause changes on the decision matrix of the case study, which is 



178 

 

not considered in the MCDM methods; (iii) changing weights of criteria may in-

fluence effects on ranking alternatives, here we simplified to equal weights for 

all criteria.  All these limitations are interesting topics requiring future research. 

Checking for normal distributions in section 3.1.1.1 was another limitation 

of this thesis work. For confirming normal distribution, using Kolmogorov-

Smirnov test, the result of statistical test should be less than 1 and the result of 

significant level test (Sig) should be more than 0.05 (sig > 0.05) (Field, 2000; 

Trochim and Donnelly, 2006). In the applied case study for TOPSIS (section 

3.1.1.1), we were faced with a normalization technique with statistic<1 and 

Sig<0.05. In this kind of cases, we cannot judge the normal distributions of nor-

malized values. In addition, it remained some doubts about the requirement for 

normal distribution in the normalized values, which will be addressed in future 

work. 

Furthermore, there were some challenges in using some statistical analysis, 

namely ANOVA and Regression analysis (P-value, T-stat, and Standard Error), 

on aggregation of data sets for comparing them with statistical analysis of input 

data sets. In other words, this comparison (between two data sets) would be 

available if these statistical analytics were applied for a single criterion of both 

data set. Hence, the final focus of this thesis was to recommend the best normal-

ization technique for aggregated data sets (alternatives rating), therefore, using 

more research on this topic will be needed.  

In addition, considering the limitations and challenges from different as-

pects of this thesis, some open issues for new research and future works are listed 

below: 

➢ Add more metrics to the proposed assessment framework to improve 

the consistency of results. Namely, metrics from statistics that could be 

useful for input data and aggregated data sets using MCDM methods. 

➢ Apply the proposed assessment framework to other relatively known 

MCDM methods such as COPRAS, MOORA, PROMETHEE, etc. besides 

SAW, TOPSIS, ELECTRE, and AHP. 

➢ Analyze the effects of other normalization techniques (ex. z-transfor-

mation, etc.) on MCDM methods. 
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➢ Classify other normalization techniques in the new categories proposed 

by the authors (Linear, Semi-linear, and Non-linear). 

➢ Explore a suitable model to generalize results for each MCDM method. 

➢ Extend the application of the proposed assessment framework for the 

real projects, especially with the presence of big data, and analyze the 

results.  

➢ Study different data distributions for input data and normalized values 

in MCDM decision models. 

➢ Analyze and assess the effects of different input data (e.g. decimal num-

bers, zero, complex numbers, outlier, etc.) on normalization techniques 

and determine limitations for each normalization technique considering 

the input data. 

➢  Explore a suitable model to generalize results for each MCDM method 

➢ Implement automatic calculations for the whole assessment framework 

(e.g. for RCI index) to make it more user-friendly.  

➢ Explore the relation between the number of alternatives and criteria on 

the ranking/ordering of alternatives using different normalization tech-

niques. 

Also, extending the application of the assessment framework to real projects, espe-

cially with big data could improve the validation of this research work. Finally, tool im-

plementation (software) for the proposed framework will bring the opportunity of easy 

usage by all users from different disciplines.  
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