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Abstract

Machine Learning (ML) has been increasingly used to aid humans making high-stakes

decisions in a wide range of areas, from public policy to criminal justice, education,

healthcare, or financial services. However, it is very hard for humans to grasp the ra-

tionale behind every ML model’s prediction, hindering trust in the system. The field

of Explainable Artificial Intelligence (XAI) emerged to tackle this problem, aiming to

research and develop methods to make those “black-boxes” more interpretable, but there

is still no major breakthrough. Additionally, the most popular explanation methods —

LIME and SHAP — produce very low-level feature attribution explanations, being of

limited usefulness to personas without any ML knowledge.

This work was developed at Feedzai, a fintech company that uses ML to prevent fi-

nancial crime. One of the main Feedzai products is a case management application used

by fraud analysts to review suspicious financial transactions flagged by the ML models.

Fraud analysts are domain experts trained to look for suspicious evidence in transactions

but they do not have ML knowledge, and consequently, current XAI methods do not

suit their information needs. To address this, we present JOEL, a neural network-based

framework to jointly learn a decision-making task and associated domain knowledge

explanations. JOEL is tailored to human-in-the-loop domain experts that lack deep tech-

nical ML knowledge, providing high-level insights about the model’s predictions that

very much resemble the experts’ own reasoning. Moreover, by collecting the domain

feedback from a pool of certified experts (human teaching), we promote seamless and

better quality explanations. Lastly, we resort to semantic mappings between legacy expert

systems and domain taxonomies to automatically annotate a bootstrap training set, over-

coming the absence of concept-based human annotations. We validate JOEL empirically

on a real-world fraud detection dataset, at Feedzai. We show that JOEL can generalize

the explanations from the bootstrap dataset. Furthermore, obtained results indicate that

human teaching is able to further improve the explanations prediction quality.

Keywords: Machine Learning, Explainable AI, Domain Knowledge Explanations, Self-

Explainable Methods, Human-AI Cooperative systems
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Resumo

A Aprendizagem de Máquina (AM) tem sido cada vez mais utilizada para ajudar os

humanos a tomar decisões de alto risco numa vasta gama de áreas, desde política até à

justiça criminal, educação, saúde e serviços financeiros. Porém, é muito difícil para os

humanos perceber a razão da decisão do modelo de AM, prejudicando assim a confiança

no sistema. O campo da Inteligência Artificial Explicável (IAE) surgiu para enfrentar

este problema, visando desenvolver métodos para tornar as “caixas-pretas” mais inter-

pretáveis, embora ainda sem grande avanço. Além disso, os métodos de explicação mais

populares — LIME and SHAP — produzem explicações de muito baixo nível, sendo de

utilidade limitada para pessoas sem conhecimento de AM.

Este trabalho foi desenvolvido na Feedzai, a fintech que usa a AM para prevenir crimes

financeiros. Um dos produtos da Feedzai é uma aplicação de gestão de casos, usada por

analistas de fraude. Estes são especialistas no domínio treinados para procurar evidên-

cias suspeitas em transações financeiras, contudo não tendo o conhecimento em AM, os

métodos de IAE atuais não satisfazem as suas necessidades de informação. Para resolver

isso, apresentamos JOEL, a framework baseada em rede neuronal para aprender conjun-

tamente a tarefa de tomada de decisão e as explicações associadas. A JOEL é orientada

a especialistas de domínio que não têm conhecimento técnico profundo de AM, forne-

cendo informações de alto nível sobre as previsões do modelo, que muito se assemelham

ao raciocínio dos próprios especialistas. Ademais, ao recolher o feedback de especialistas

certificados (ensino humano), promovemos explicações contínuas e de melhor qualidade.

Por último, recorremos a mapeamentos semânticos entre sistemas legados e taxonomias

de domínio para anotar automaticamente um conjunto de dados, superando a ausência

de anotações humanas baseadas em conceitos. Validamos a JOEL empiricamente em um

conjunto de dados de detecção de fraude do mundo real, na Feedzai. Mostramos que a

JOEL pode generalizar as explicações aprendidas no conjunto de dados inicial e que o

ensino humano é capaz de melhorar a qualidade da previsão das explicações.

Palavras-chave: Aprendizagem de Máquina, IA Explicável, Explicações de conhecimento

de domínio, Métodos Auto-Explicáveis, Sistemas Humano-IA Cooperativos
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1
Introduction

1.1 Motivation

The use of ML to inform high-stakes decision-making is becoming standard in many

different sensitive domains, such as healthcare [17], financial services [23], or criminal

justice [15]. At the same time, the continuously growing availability of data, paired with

the commoditization of cloud computing, enabled training larger, highly complex ML

models. Hence, state-of-the-art ML models are perceived as “black-boxes” due to their

opaqueness to human stakeholders. This paradigm contributes to a mistrust in Artificial

Intelligence (AI) and reduces the human capacity of detecting both technical and ethical

risks in these systems (e.g., [75, 28, 4]).

As a consequence, the field of XAI is becoming very popular in the ML research

community. It stands for techniques that try to improve the interpretability of complex

models to mitigate the issues stated above [36]. However, there is still a lack of consensus

on definitions, evaluations, and taxonomies [53]. Moreover, most proposed methods are

tailored for data scientists [75, 55, 67, 76, 98], producing low-level explanations (e.g.
feature-attribution explainers 1) that are very difficult to grasp to the humans-in-the-loop

[28, 46, 58]. Usually, these humans are domain experts, responsible of making decisions

based on the model’s predictions, but do not have any ML skills.

1.2 Problem Statement

This work was developed at Feedzai, a fintech company that uses ML to prevent finan-

cial crime. Feedzai’s clients, such as banks or payment processors, have their own risk

1These build explanations as lists of input features and associated feature scores, i.e., feature’s contribu-
tion to a given ML prediction
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CHAPTER 1. INTRODUCTION

management teams (mostly fraud analysts) that are responsible for declining or accepting

suspicious transactions. The ML models score every transaction, and the system forwards

all transactions flagged as high risk to the case management User Interface (UI), to be re-

viewed by the fraud analysts. When declining or accepting suspicious transactions, fraud

analysts need to provide a justification. Figure 1.1 describes the general flow, starting

with the transaction that arrives at the Feedzai platform.

Figure 1.1: Case management flow of payment transactions through Feedzai’s platform.

Besides the transaction fraud score, the analysts have access to contextual information,

such as previous transactions for each linked entity (e.g., credit card), and often they have

limited time to make a decision. In practice, the model score alone is not sufficient to

aid the analyst in her review nor to debug the model itself, hindering trust, analysts’

efficiency and, ultimately, the system robustness. Although being domain experts, fraud

analysts do not have data science skills, and current state-of-the-art in XAI does not suit

their information needs. They would have to understand the explanation very quickly,

and feature-importance or case-based explanations (i.e., similar transactions with similar

scores) are hard to digest in a short period of time.

Figure 1.2: Example of LIME explanations in a Credit Risk problem [91].

Figure 1.2 shows the output of the current state-of-the-art explanation method LIME

2



1.3. OBJECTIVES

[75]. The explanations comprise feature names along with its value and contribution to

the final prediction. For Data Scientists, this may make sense since they are the ones

who build the model and understand how the features are being generated. For Fraud

Analysts, it is too low-level, technical, and may confuse them.

1.3 Objectives

The main goal of this work is to develop a self-explainable fraud detection ML model

that, despite being opaque, provides high-level explanations using fraud domain knowl-

edge. We aim to leverage a fraud taxonomy to create explanations using fraud concepts,

and therefore, easily understandable by fraud analysts. The concepts represent a more

abstract and generic idea of a given phenomena, unlike the ML model features that are

usually used as explanations. An example of an ideal explanation in this setting would

be the following:

"There are multiple shipping addresses associated with this credit card in the last hour,

so it seems a reshipping pattern. It must be fraud!"

We also want to leverage the human-in-the-loop feedback to continuously improving

the predictive performance and also the explainability of the self-explainable NN. Ulti-

mately, we aim to create a Human-AI cooperative learning framework in which the AI

helps the human expert to improve her efficiency through concept-based explanations,

while the expert helps the AI to get better at predicting and explaining itself through her

decisions and justifications.

1.4 Contributions and Foundations

In this dissertation we developed a XAI framework, dubbed Jointly-learned cOncept-based
ExpLanations (JOEL), a self-explainable NN that jointly learns semantic concepts and a

decision associated with a predictive task. We opt for encoding this ML interpretability

in the architecture of a NN model. This gives us the flexibility to incorporate domain

knowledge and associate semantic concepts to the decision-making task [46, 28, 58, 64].

Moreover, these high-level concepts may encode external information that, while not

present in the data itself, may be very useful.

Our framework is particularly tailored for humans-in-the-loop that are extremely

skilful in a specific domain but lack deep technical ML knowledge. The human-AI close

proximity facilitates human teaching, where the model learns how to improve itself based

on the teacher’s (expert’s) feedback.

Finally, the creation of explanation methods based on domain knowledge poses dif-

ficulties, especially, in the data collection [58]. This reflects in the low availability of

3



CHAPTER 1. INTRODUCTION

datasets. To address the impracticalities of human-labeling2, we use a semi-supervised ap-

proach based on mappings between existing legacy rules system and domain taxonomies.

Thus, the main contributions of this work are the following:

• We create a self-explainable neural network framework called JOEL to jointly learn

decision (class) labels and associated domain concepts.

• We propose a human teaching process that uses the human experts in the loop to

teach the explanation model how to improve explanations.

• We use a semi-supervised approach leveraging legacy expert rule systems to boot-

strap the training of the self-explainable NN.

• We create a real-world Fraud Taxonomy of concepts, together with fraud experts,

that categorizes suspicious behaviors associated with fraud detection in payment

transactions.

• We create a real-world manually concept-annotated dataset consisting of approxi-

mately 1500 data points. The annotations include both fraud label and semantic

fraud domain concepts provided by domain experts.

Part of the material of this thesis was accepted at the NeurIPS 2020 workshop HAM-

LETS (Human And Machine in-the-Loop Evaluation and Learning Strategies)3 in the

following paper:

• V. Balayan, P.Saleiro, C. Belém, L. Krippahl, P.Bizarro, “Teaching the Machine to

Explain Itself using Domain Knowledge”(2020).

1.5 Outline

The structure of this work is the following. In Chapter, 2 we review the literature, showing

the main concepts and definitions of XAI. We detail the explanation requirements for

different personas, and provide insights about the explanation methods that produce

different types of explanations, outlining their problems. In the same chapter, we review

the multi-label learning methods to serve as the inspiration for the proposed explanation

method. Finally, we summarize the main takeaways of the literature review.

In Chapter 3, we describe in detail our proposed solution, reviewing the rational of the

decisions that were taken. In Chapter 4, we detail the experimental setup of performed

experiments in real-world fraud detection setting. In Chapter 5 we present, analyse, and

discuss the obtained results. Finally, in Chapter 6, we summarize our work, drawing the

main conclusions and outlining the future work.

2Manually creating these datasets carries abnormal costs and time efforts.
3HAMLETS official page: https://hamlets-workshop.github.io/

4
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2
State of the Art

This chapter consists in two distinct parts. In the first part, we present the current state-

of-the art in the XAI field. The second part elaborates on Multi-Label methods used in

the literature.

2.1 Explainable AI

In this section we explore the literature about XAI. We begin by defining interpretabil-

ity and outlining the different requirements for good explanations. Based on these re-

quirements, we describe the different taxonomies. We finalize by surveying the current

state-of-the-art explanation methods and techniques, discussing their limitations.

2.1.1 Definitions, Requirements and Taxonomies

When considering the literature in XAI field, the terms that are usually confused or

used ambiguously in literature are: interpretability, explainability, and transparency [53,

7]. Also, it is common to see the term black-box that refers to a complex ML model which

predictions and the internal structure are not understandable by humans. On the other

hand, a White-Box, Glass-Box or Transparent model is usually referring to a model that

outcome is comprehensible by the individual [7].

Most authors consider that interpretability is the ability to explain or present the out-

come of the ML Model in understandable terms to a human [29, 25, 75, 76, 49]. It is a

common claim that transparent models, such as Linear models, decision trees, or rule-

based methods are always interpretable (e.g. [79]). For instance, having a very deep tree,

the overall decision process is not easy to grasp, meaning that although it is a transparent

model, it still not interpretable [46]. Also, interpretability was defined as the ability of

describing the internals of the ML model to a person in a suitable way [29].

5



CHAPTER 2. STATE OF THE ART

Similarly, explainability is related to the explanations and the processes to produce

them in understandable way to humans, with the intent to clarify or detail the reasoning

behind the decision [7, 29]. Moreover, it can be considered as the interface between the

ML model and the end-user [34]. That means that the explainability is “closely related

to the concept of interpretability: systems are interpretable if their operations can be

understood by a human, either through introspection or through a produced explanation”

[13].

In this work, we will assume that interpretability and explainability refer to the same

underlying concept - explaining the ML model decisions. Also, we argue that inter-

pretability must be always considered regarding the end-user. We will discuss different

end-users requirements in section 2.1.1.1.

2.1.1.1 Explanation Requirements

The choice of a “good” explanation and its quality evaluation must be user-centered [48].

Some authors [60] categorize the end-users into three general groups, defined as ML
experts, who design ML algorithms, data experts, who use ML for analysis or decision

making but are not considered ML experts, and AI novices who use AI without technical

knowledge of ML. Then, the authors identify which kind of explanation is needed for

each group.

In other work [86], the authors go deeper in the categorization of the end-users, defin-

ing several roles for different users according to their interaction with the ML system,

claiming that a given user can take different roles. Table 2.1 summarizes the proposal of

classification of the agents that interacts with ML system.

Table 2.1: Different roles, description and the goals of interpretability in ML ecosystem
proposed in [86]

Role Role Description Interpretability Goal
Creators create the ML system improve the system under-

standing
Operators interact directly with the

ML system and report re-
sults to Creators

provide useful and trust-
worthy information

Executors make decisios make better decisions
Decision-subjects those who are affected by

the decisions made
understand why a certain
decision was made

Data-subjects training-data providers know how their data is
used

Examiners auditors audit ease

From this categorization, it is possible to identify different interpretability needs

for each role and end-goal. Recent work [77, 61] summarizes the different explanation

requirements that aim to satisfy such concerns in four pillars:

6
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• Fidelity: how well the explanation approximate the prediction of black-box box

[75].

• Stability: how similar the explanations for identical instances are, when fixing the

ML model [77].

• Comprehensibility or Human-Interpretability: how understandable the explana-

tion is to the humans [43].

• Diversity: how diverse the explanations are, i.e., whether its components are not

redundant (e.g. if the explanation present three features which are correlated or

mean the same, it’s not a diverse explanation) [44]

• Usefulness: how much the explanation helps to optimize the goal of the end-user

(e.g. Data Scientists want the explanations to help them to debug better the models).

We decided to add the Usefulness to the list of requirements because the explanation

may be stable, diverse, and human-interpretable but still does not optimize the end-user

goals.

Therefore, due to a large number of explanation requirements, the evaluation and

assessment of the quality of the explanations is not a trivial task. Thus, the definition of

the target persona and its requirements must be considered as the one of the first and

most important steps to develop a explanation method.

In a credit card fraud detection setting, there are at least three different personas:

data scientist, executors (or fraud analysts), and decision subjects. In the case of an

executor, one of the main requirements is Human-Interpretability because explanations

must be easy to understand by non-technical personas. Moreover, Usefulness must also

be considered, since the explanations aim to optimize the overall performance of the

executor and useless explanations are less likely to do so.

2.1.1.2 A Taxonomy of Explanations

Research works on XAI propose different categorization of the explanations and the

techniques that are used to produce them. In this section, we summarize and describe

the taxonomy proposed by different authors and also to discuss different criteria for

taxonmies that are relevant to our work.

Interpretability Building Criteria According to author [45], interpretability can be

built in different stages: before, during, or after the ML model. Table 2.2 summarizes the

proposed classification.

Pre-Model methods can show insightful information even before training any model

(e.g. for a given sample, show the features that are more correlated with a label of interest).

In-Model methods are frequently called intrinsically interpretable or transparent, i.e.,

the domain knowledge constraints are applied to those methods with the goal to reach

7



CHAPTER 2. STATE OF THE ART

Table 2.2: Interpretable methods classification according to [45].

Stage Methods problems exam-
ples

Method example

Pre-Model or Model-free
(before)

data issues (e.g. skewness) Exploratory data analysis
[51] techniques

In-Model (during) the complexity of
tree/rules

Linear Models, Decision
Trees, Rule-based Learners
[7]

Post-Model (after) faithfulness to original
model/perturbation prob-
lems

LIME [75], Integrated Gra-
dients [85]

interpretability [53, 79, 61]. However, in the recent work, the authors argue that black-

boxes also fit in this category, defining them as “self-explainable” (or “self-explaining”)

methods, i.e., a method that despite being a black-box, it is able to provide the explana-

tions for its decisions, i.e., it incorporates the interpretability architecturally (imposed

through regularization [58] or by jointly learn the explanations [40, 71]) [26]. Finally, the

Post-Model methods or Post-hoc explainable methods are applied to an already trained

ML model. These can be further separated in Model-Specific or Model-Agnostic meth-

ods. The former is specific to certain ML model types. The Model-Specific methods limit

the user to use only a certain class of ML models. On the other hand, Model-agnostic

methods treat any model as black-box, ignoring its internal structure. This is a key ad-

vantage of such methods. However, the explanations produced by those methods could

give a misleading perception of the ML model by providing inaccurate explanations or

insufficient information to understand the decision [61, 79, 7].

It is noticeable that most of the recent work in XAI focus mostly on Post-hoc methods

(e.g. [75, 55, 67, 76, 98]). However, as it will be analysed in section 2.1.2, these methods

suffer from a few problems, including inconsistency on the explanation generation pro-

cess [3, 50, 83]. In this work, our focus will be In-Model interpretability, more precisely

on self-explainable methods, since there is more control on how we can introduce the

interpretability. Also, we believe that by jointly learning the decision task and associated

explanations leads to more robust, authentic (or faithful, meaning that the explanation is

the “true” reason for the prediction [58]) 1 explanations, and more stable [58, 26].

Interpretability Scope Another criterion that can be used to classify different explana-

tion methods is by its scope. The explanation methods with Global scope try to explain

the aggregated knowledge of the model, by focusing at the global patterns learned from

training data. On the other hand, to understand the prediction for some specific instance,

the Local behavior of the ML model is explored, trying to find the reason behind the

decision [61].

1In this context, we refer to authenticity as being a true reason for a given ML outcome.

8
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Our focus is on local explanations, since the Fraud Analysts, which are our target

personas, will analyse several events individually and decide if they are fraudulent or

legitimate, meaning that the explanations must justify the model’s decision for the exact

instance they are reviewing.

2.1.1.3 Data Type

Explanation algorithms use different techniques to generate explanations. Some of them

are designed to work with specific data types (e.g. image data, or tabular). Table 2.3

summarizes the ideas.

Table 2.3: Classification of the explanation methods by the type of the data used.

Category Data type Example
Data agnostic Any [75, 55, 81, 67, 98]

Data specific
Image [28, 100]
Text [6, 68, 37]

Tabular [17]

Eexplanation methods that work for any type of data are considered Data agnostic.

On the other hand, methods that use techniques that require specific data types are called

Data Specific. For instance, methods that visualize features learned by hidden units in

Convolutional Neural Networks (CNN) are tailored for images.

This work is developed on fraud detection domain, where tabular data is predominant.

No other data type will be used.

Explanation Output Recent work in XAI proposes several taxonomies for the explana-

tion methods’ outputs [8, 7, 61]. Since they are not standardized, we propose alternative

taxonomy that takes the main ideas from other works, summarizing this categorization

in table 2.4.

Even though Molnar [61] proposes to further separate feature-based category in smaller

ones (e.g., feature contribution, feature visualization, etc...), we decided to group them in

a single category. In general, Feature contribution explanations presents a feature and its

contribution to the outcome of the model. The difference between Feature contribution

and Feature visualization is the presentation of the explanation, i.e. although methods

such as Partial-Dependency Plot use the feature as explanations, it only makes sense if

visualized. Finally, a feature combination in “if-then” conditions is defined as a Rule

type, expressing the conditions that lead to the model’s decision. Features used on the

explanations are usually low-level and are difficult to grasp, even for a technical persona,

such as Data Scientist [46], since the feature names or its values could be meaningless.

The example of feature contribution explanation is shown in figure 2.1.

An Example-based output provides examples of instances as an explanation, like

similar training examples that explain the instance of interest. Besides that, we group a
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Table 2.4: Classification of the explanation methods by its output type.

Output Type Output Sub-type Example

Feature-based
Feature contribution Permutation Feature

Importance [61],
LIME [75], SHAP [55]

Feature visualization Partial Dependency
Plot (e.g. pdp package
for R language [32])

Rule Anchors [76]

Example-based
Counterfactual
(or Contrastive)

Foil trees [92], CEM [24]

Similar example MAPLE [67],
LEAFAGE [1]

Model internals - Variable-wise Hid-
den States [37]

Concept-based
Internal semantics ACE [28]
External semantics TCAV [46]

Figure 2.1: Example of feature contribution explanation. In this example, an algorithm
LIME [75] produces explanations for Credit Risk [91].

Contrastive and Counterfactual sub-types since they show the example that is similar to

instance of the interest but has another label. It basically answers the question “What are

the minimal changes in the instance to change its class?”. Figure 2.2 shows an example

of such type of explanations.

Model internals reveal some internal components of the ML model in a human-

understandable way, giving insights about how the decision was made. For instance,

in use-cases with images, it is possible to visualize what the hidden units learned in the

CNNs architecture do, hence revealing the internal component of the model’s structure

[11].

Finally, the Concept-based output can be divided in Internal and External Seman-

tics. This concept-based output takes the advantage of target user’s domain knowledge

10
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Figure 2.2: Example-based explanation produced by LEAFAGE [1] for house price predic-
tion. It shows similar and counterfactual examples as the explanations.

and uses that information to provide more high-level explanations, matching the user’s

mental representation. The concepts can be extracted directly from the input data, which

we define as Internal Semantics or by linking the domain knowledge information from

the external origin, defined as External Semantics. The main difference between those is

that for the latter, domain experts must be involved in the process of information source

creation. Then, the concept-based explanation method will use this pre-defined source

of information to enforce the explanations. Alternatively, for the internal semantics, the

methods automatically extract the concepts (e.g. the authors in [28] use image segmenta-

tion algorithm to extract parts of the image and use them as concepts in the explanation).

Figure 2.3 shows some examples of this type of explanation output.

Figure 2.3: An example of high-level concept-based explanations for class “Police Van”
(left) and “Basketball” (right) produced by ACE [28].

To best to our knowledge, there is no much work in concept-based explanation meth-

ods. We believe that the main reason for that is the complexity of creation concept-based

annotated dataset. Also the definition of the external semantics is not straightforward,

implying existence of the domain expertise to be able to define a taxonomy of concepts.

In this work, we will focus on the concept-based explanations, since our target per-

sonas are Fraud Analysts that, despite being non-technical, are the domain experts. By
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enriching the explanations with domain fraud concepts, Analysts could match their men-

tal representation of fraud patterns with the explanations, making the model’s output

more interpretable for them and in turn enhance their performance on daily tasks.

2.1.2 Methods and Techniques

Different explanation methods were proposed in recent years. Those methods can be

divided into different categories, depending on the used technique. For instance, the

technique called Model Simplification stands for building new simpler, and intrinsically

interpretable models. These simpler models attempt to map the relationship between

the predictions of the other more complex ML model and the inputs [75, 35, 92]. The

resulting simpler models are usually called Surrogate models. The most well know 2

surrogate-based model simplification techniques is LIME, which stands for Local Inter-

pretable Model-agnostic Explanations. LIME builds a linear model to locally approximate

the more complex ML model, based on the perturbed samples around the point of inter-

est [75]. LIME’s output is feature-based, since each feature is assigned a coefficient (or

contribution) of a linear model. Also, this method is local, Post-hoc, and both Model- and

Data-agnostic. In short, LIME produces explanations by creating the perturbed dataset

around the point of interest. It uses the complex model (i.e., black-box) to obtain the

scores for the perturbations. Then, it weights each perturbation by computing a distance

metric (e.g., euclidean distance) to the point of interest. Afterwards, LIME applies a fea-

ture selection algorithm to discern the most important ones. Finally, it trains a weighted

linear model using the perturbed dataset with the predicted scores, and it returns the

coefficients of the linear model as the final explanations. The coefficients (or “explana-

tions” as authors refer) may be negative or positive. For instance, in Fraud Detection

classification problems, the event is fraudulent (class 1) or legitimate (class 0). Thus, the

negative coefficient in this case means that the feature decreases the prediction score, i.e.,

pulls the score towards negative class (legitimate). Otherwise, the features with positive

coefficient increase the score towards positive (fraud). Figure 2.1 shows an example of

negative contributions in Credit Risk use-case.

Although LIME is considered state-of-the-art of explainable methods, it has some

problems when applied to tabular data, namely the perturbation process that is not

straight-forward. For instance, for categorical features, a random value is chosen from

all possible categories. This process presumes that features are independent and ignore

the possibility of a correlation between them. The perturbed data can be unrealistic (e.g.,

feature age=7 and civil-status=married) or as the final result it can produce redundant

explanations, i.e., return correlated features which are related to the same phenomena.

Also, the stability of LIME explanations is often discussed in the research community,

2Over 2000 citations in Google Scholar (https://scholar.google.com/scholar?cluster=
16724302923321127943&hl=en&as_sdt=0,5)
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showing that similar inputs, with minimal modification, can lead to completely different

results [3, 2].

Different variants of the LIME were proposed in recent years, such as Deterministic

LIME (DLIME) [98] that instead of using the perturbed sample, the authors propose to

apply the hierarchical clustering to the training set and then, when the instance to explain

comes, the label of its cluster is predicted by k-Nearest Neighbours (k-NN) algorithm. The

problem with this approach is finding the optimal k (number of neighbors to consider)

parameter for the k-NN. Another example of a LIME variant is k-LIME [38], where k-

Means clustering algorithm is applied to create k groups and then for each cluster, a local

Generalized Linear Model (GLM) is trained. Many other variants have been proposed to

tackle the sampling issues associated with LIME. Note that all LIME-based implementa-

tions resort to low-level explanations based on feature contributions and are, therefore,

difficult to grasp.

Still, considering the feature-based output methods, LIME authors present a rule-

based explanation algorithm called Anchors [76]. This algorithm produce rule-based

explanations and also introduce the notion of coverage of the anchor, claiming that the

produced rule also applies to some portion of the unseen instances, besides the instance

of the interest. Like LIME, Anchors also resorts to perturbations around the instance.

However, it uses them to produce the candidate set of explanations rules from which

it selects the ones with higher coverage. In other words, Anchors selects the rules that

explain the largest number of neighbours. Even though the explanations produced by

Anchors are more human-understandable (because they are in the form of rules), the

produced predicates 3 can still be difficult to grasp for a non-technical persona. Another

drawback of this approach is the poor validation of the hyper-parameters used to produce

the explanations. Moreover, similarly to other perturbation-based explanation methods,

Anchors can produce meaningless perturbation instances that can lead to unreliable

explanations.

Another variant of the Model Simplification is called Knowledge Distillation [54].

The idea behind this technique was introduced by [16] for model compression. The end

goal is to approximate the functionality of the complex model by building a much simpler

and faster model with similar performance. This is, data is passed through a complex

model to get the scores probabilities for those and use it for training smaller models.

Then, the authors [9] introduce the “matching logits 4” method that uses the scores

produced by the model before the softmax activation (usually used in NN to normalize

the scores between 0 and 1) instead of training with probabilities, claiming that this

method improves the training of the smaller model. In the XAI field, the authors in [54]

use the Knowledge Distillation to improve the interpretability of the complex ML models

by using the black-box to produce logits and then use them for training a decision tree

that is self-interpretable. While the Knowledge distillation technique does not exhibit

3terms that forms the rule
4logarithm of predicted probabilities
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the limitations associated to perturbation-based methods, it still presents a few problems.

Firstly, its outputs are feature-based. This means that even though the model is simpler,

it is still based on the same non-interpretable features of the more complex model and,

therefore, explanations are still difficult to grasp and interpret by non-technical personas.

Also, even after distilling the complex model, the resulted simpler one may have a lot of

parameters [52] to reach approximately the same performance as the complex model.

Another technique used by post-hoc explanation methods is Backpropagation pass

that uses the backpropagation algorithm to find the importance of the input features

passing the signal from an output through the ML model [81]. One of the most promising

methods on this group is DeepLIFT [81] that compares the activation of a neuron to the

reference activation (some representative example) and assigns the score according to

the difference. The authors claim that this method overcomes the problem of the previ-

ously proposed methods on this category, such as Layerwise Relevance Propagation [14],

Integrated Gradients [69], Grad-CAM [80] and other variants that suffer from gradient

saturation [39]. One of the main limitations of this group of explanation methods is being

Model-Specific since they are only applicable to black-boxes that use the backpropaga-

tion algorithm. Also, some explanations methods in the backpropagation pass category

can be data-specific. In [82], the authors resort to saliency maps to provide more visual

explanations for the learned features of the CNN.

Moreover, some methods use Architecture Modification that stands for modification

of the design of the ML model to improve the interpretability. One example of a mod-

ification can be adding new components or simplifying existing ones. For instance, an

attention mechanism was used to improve the interpretability of the NN, highlighting

the most relevant parts of the ML model, for instance, Recurrent NN hidden state [70,

20]. Note, however, that attention mechanisms have been shown to identify irrelevant

parts [96] to use in the explanations. This technique is widely used in image and text

domains [10, 56, 19], due to its visualization and validation ease. However, the same

does not verify for tabular data, where the output of such methods becomes much more

challenging.

None of the previous explanation methods uses external or internal semantics. In-

stead, they merely resort to the input features and, therefore, present low-level expla-

nations. The usage of semantic in XAI is becoming more popular in recent years 5. In

[46], the authors propose a global concept-based explanation method that uses external

semantics. This method is called “Testing with Concept Activation Vectors” (TCAV) and

it quantifies the degree to which a user-defined concept is important to a classification

result (for example, how sensitive a prediction of “bird” is to the presence of concepts

“feathers”). As the input, the user defines a set of different high-level concepts of interest

along with random concepts and the image to test how sensitive it is to the concept. Then,

the linear classifier is trained on some activation layer’s output, given the random and

5In 2019, there was the first workshop dedicated to the Semantic Explainability (http://www.semantic-
explainability.com/)
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user-defined concepts. Finally, the Concept Activation Vector is defined as an orthogonal

vector to the decision boundary produced by the linear classifier that gives how the input

image is sensitive to the given concept. One of the main limitations of this explanation

method is being Model-specific, i.e., its purpose is to explain the ML models that use the

activation functions to represent the data in high-dimensional space such as NN. Also,

although this method was first proposed for the image domain [46, 22] and text-domain

[41], we did not find any application of this method to the tabular data domain, which is

the use-case for this work. Finally, the way that this explanation algorithm was designed

forces the end-user to define the concepts to be tested. This method does not reveal the

concepts that are important to the system but more to validate if the concepts that user

want to test are present [28].

Another example of a concept-based explanation method is called “Automated Concept-

Based Explanation” (ACE) [28]. This method uses internal semantics, meaning that it

extracts the concepts from the input data without any external source. Since ACE is a

global explanation method, it explains an entire class instead of a specific instance. So,

firstly ACE segments all the provided images, passes each segment through the black-box

to get the final layer’s activations (the logits) and apply a clustering algorithm (the authors

used the euclidean distance as a similarity measure) to form the concept examples for

the given class. Also, the outlier segments are removed. Finally, by using the TCAV [46],

previously presented, most relevant concepts are returned, i.e., the ones with the highest

importance. Basically, ACE extends the TCAV method, providing the way to extract the

concepts instead of forcing the user to define them a priori. Although this explanation

algorithm overcomes some of the TCAV’s problems, it is still Model-specific and data

dependent. The authors present an algorithm specifically oriented to the image domain

since the main component of the concept creation is oriented to the image segmentation

methods. Also, this method assumes that all the concepts can be extracted by segmenting

the image.

In another perspective, authors in [58] include the interpretability straight into the

ML model architecture. They use autoencoders to generate the basis concepts rather than

using low-level features.

In another vein, authors in [64] propose the use of domain knowledge to produce more

comprehensive explanations in medical diagnosis tasks. Authors use ideas from LIME

[75], this is, learn a local interpretable classifier that mimics the “black-box” model’s

output (also known as surrogate model), perturbing the data around the instance to

explain. Unlike the LIME’s random perturbation process, the authors of Doctor XAI
propose the usage of domain ontology to generate more meaningful perturbations. In

medical domain, which is the case studied in this work, each data point can be associated

with one or mode clinical codes. Thus, authors decided to use multi-label approach,

exploring the multi-label decision tree [65]. The output from proposed method is a

rule-based explanation that contains codes from medical ontology.

All in all, most concept-based methods in the literature are specific to computer
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vision. Indeed, to the best of our knowledge, there is currently no research work in what

it comes to high-level concept-based explanations for decision-making tasks in tabular

domain, i.e., there is no explanation method that satisfy our target persona (Fraud Analyst)

requirements: being local, concept-based and could be applied for tabular domain.

2.2 Multi-label Approaches

Multi-label learning concerns the problems where a single instance is assigned multiple

labels simultaneously. This opposes multi-class and binary classification settings where

each instance is assigned a single class at a time. Figure 2.4 shows the visual distinction

between these three types of classification formulations.

Figure 2.4: Difference between types of classification problems. Xi stands for the feature
vectors, ci represent different classes which are also represented by different colors. Each
colored circle represents the instance that belong to some class ci

Represented in figure 2.5, a multi-label setting consists of two main components: the

data and the algorithm. There are two main approaches related to that components. The

first one is the Problem Transformation that transforms the multi-label problem into one

or more binary classification, regression, or ranking problems [18]. After transforming

the multi-label into single-label data, use single-label ML algorithms to address the sim-

plified problem. Unlike the previous approach, Algorithm Adaptation methods affect

the algorithm itself extending them to handle multiple labels (e.g., extending k-nearest

neighbors to predict multiple labels [105]).

Figure 2.5: Multi-label System main components.

Given that the work developed concerns binary classification tasks , the literature

review will merely focus on this setting.
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2.2.1 Problem Transformation

As previously stated, the main idea of Problem Transformation is to transform the multi-

label data in such way that traditional ML algorithms could handle it, without any modi-

fication.

One of the simplest group of techniques is called Simple Transformations [84]. These

methods concern the application of transformations to the data, like selecting, copying, or

ignoring specific instances. One example of such transformation is the select, where for

each multi-labelled instance it will pick a single label according to the desired criterion,

e.g., select-max picks the label with highest frequency, select-min picks the one with low-

est frequency, and select-random picks randomly. Other possible simple transformation

is copy, where each multi-label set is transformed in single-label instance, creating one

instance per label, treating the result as multi-class classification. The variant where each

created single-label instance has weight term ( 1
|Y | , where |Y| is the length of the label set

of a specific instance) is called copy-weight. Finally, the ignore transformation discards

all the multi-labelled instances and keeps the single ones. Although the idea behind these

methods is simple, the loss of the information is a big issue. As an example, consider

the credit card fraud setting discussed earlier, where each transaction is associated with

multiple fraudulent patterns. Applying the ignore transformation to this dataset implies

that we are only keeping the instances for which there is only a single fraudulent pattern

associated. Naturally, this violates our problem statement and, as far as we know, there is

no evidence that these methods have good performance in multi-label learning problems.

Other and most common method in the Problem Transformation is called Binary Rel-

evance, where one independent binary classifier (C) is trained for each label. Figure 2.6

(left) shows one example of such method. While predicting, each instance can be assigned

to multiple labels. One of the main issues with this approach is that it ignores labels cor-

relations [103]. To tackle this problem, binary classifiers may use a chaining structure,

where each consecutive model uses a previously predicted label along with the original

input [74]. Figure 2.6 (middle) illustrates this type of structure. However, the order by

which each label is predicted might lead to significantly different results, since each label

influences the prediction of the proceeding label. To address this, the same authors pro-

pose an ensemble of classifier chains, where instead of only one chain, several are trained,

using voting procedure to select the predicted labels [74]. Still, this method presents a

few limitations related to the poor performance of the first classifiers of each chain, i.e.,

the errors of each previous classifier will be propagated for the consecutive ones [103]. In

contrast, instead of having a chain structure, [31] propose to use a stacking structure, as

showed in figure 2.6 (right). In this approach, some base-level binary classifiers provide

the predictions to the next layer of classifiers, called meta-level classifiers. The figure 2.6

summarizes the main Binary-relevance-based techniques. Other approaches that tries

to solve the labels correlation problem are based on Bayesian network structures that

explores the correlation through the directed acyclic graph (DAG) structures [104, 5],

17



CHAPTER 2. STATE OF THE ART

instead of stacking or chaining the labels.

Other technique is Label Powerset that transforms multi-label problem in multi-class

approach, treating each unique combinaton of labels as a new class [87, 89]. The main

drawback of this method is the computational complexity, since the number of classes

could be very high with only few examples for each unique class. Also, it may have

poor generalization, considering that only combinations that appear in training set can

be predicted [102]. Several improvements to the Label Powerset method were proposed.

One such example is the Pruned Label Powerset [73] the reduces the label combinations

cardinality or Random k-Labelsets (RAkEL) [88] that creates an ensemble of multi-class

learners trained on k label sets randomly selected, reducing the computational complex-

ity.

Figure 2.6: Binary Relevance variants: Naive Binary Relevance: train independent clas-
sifier (C) for each label, where N is the total number of labels. Classifier Structure:
methods that make chain of classifiers (C), where each consequent classifier’s feature
space is expanded with the predictions of the previous classifier in the chain. Stacking
Structure: Each meta-level classifier (MC) receives all the predictions from base-level
classifiers (BC) along with the original features.

2.2.2 Algorithm Adaptation

Unlike the previous approach, Algorithm Adaptation methods affect the algorithm itself

extending them to handle multiple labels (e.g., extending k-nearest neighbors to predict

multiple labels [105]). This methods may have better performance than Problem Transfor-

mation since their internal structure is specially adapted to handle multi-label [27]. There

are different base models that were extended to the multi-label task, such as tree-based

models [21], where the Entropy function is modified to handle the multi-output. Also, a

NN is widely used in multi-label classification problems [106, 94, 72, 63, 97, 93], where
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the authors use a standard BCE function to model multi-label output, or more complex

loss functions (e.g. ranking functions) [106].

In this work we will be focused in Algorithm Adaptation approach, focused on NN.

Such type of models support out-of-the-box multi-label problems, offering flexibility

regarding the loss functions or different types of architectures to use.

2.3 Remarks

The XAI field is incipient. There is still no consensus in interpretability definition, what

is a “good” explanation and also in the evaluation process. As a consequence, the need

for a definition of the requirements for different persona has emerged, since divergent

end-users require different type of explanations.

Besides that, some explanation algorithms present issues related to the process of the

perturbation (e.g., ignoring the possible feature correlation). Additionally, the current

state-of-the-art methods produce low-level explanations that are difficult to grasp for non-

technical persona. Thus, decision makes for instance, despite having domain knowledge,

can not match their mental representation with the presented explanations. Some recent

work shows the examples of the explanation algorithms that produce concept-based ex-

planations that tries to mitigate the existed domain knowledge gap. However, this type

of algorithms are focused on the image and NLP domains. Also, another challenge is the

lack of concept-based annotated datasets. This raises the need for manual labeling that

involves the domain experts, which is infeasible due to associated high costs.

In this work, we developed a local self-explainable model that produce fraud score

and also associated fraud concepts. Moreover, each transaction can be associated with

more that one concept (e.g., transaction could have suspicious items and also suspicious
email)). Thus, it can be formulated as a multi-label problem, where each input can be

classified with more than one class label. We decided to use the NNs models due their

flexibility. We provide the motivation and details this in the following chapter 3.
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3
A Framework for Human-Interpretable

Explanations

In this chapter, we describe our solution: a NN framework to jointly learn a decision

task and concept-based explanations using domain knowledge, and consequently, easy to

understand for the human-experts in the loop — the fraud analysts.

3.1 Problem scope and target persona

We consider the fraud analyst as the target persona. As fraud domain experts, their task

is to review many transactions, classifying them as fraudulent/legitimate, as fast and

accurate as possible. To assist in this endeavor, fraud analysts have access not only to

historical transactions, optionally grouped by linked entities (e.g., credit card, billing

address) but also to the score returned by an ML model.

Given the larger generalization capability of most ML models, one would expect these

human-AI cooperative systems to actually promote more efficient and effective decisions.

However, that is not always the case. In the absence of information about the model’s

rationale, the human either regards the model as untrustworthy and completely ignore

its output, or alternatively, wastes additional time looking for clues in the available data

to support its decision logic. However, in a high-stakes AI system like fraud detection,

such hesitation and distrust in the ML model may translate in worse accuracy and slower

decision time, thus impacting many peoples’ lives. To overcome this problem and gain

the trust of the fraud analyst on the model, a possible solution is to provide explanations

for the model prediction.

Despite the wide availability of explanation methods, the most popular methods are

feature attributions, such as SHAP[55] or LIME[75], which are too low-level and difficult

to understand by non-technical personas, as fraud analysts (see Chapter 2). To better
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understand their explanation needs, consider the following reasoning of a fraud analyst

reviewing process:

"This customer has several transactions within last 10 minutes with suspicious e-mail.

It seems high speed ordering pattern. It is fraud!"

While fraud analysts lack technical background on data science and ML, they are

extremely skilful at identifying fraud patterns and distinguishing fraudulent from le-

gitimate behavior. Given their expertise and reasoning process, a more suitable expla-

nation would be to highlight the suspicious or legitimate behaviors associated with a

given model’s decision. That is, it would identify the reasons or concepts for the model’s

prediction. This type of explanation would allow fraud analysts to quickly validate the

necessary information to corroborate (or contradict) the identified concepts. Thus, in-

stead of having to analyse all the available information or the low-level explanations (e.g.,

feature contributions), they can focus their attention on a specific piece of information

and, consequently, improve the overall performance of the human + AI system.

Given the characteristics of our target persona and the pressing needs for (1) quicker

and better reviews and (2) human-interpretable and diverse explanations (summarized in

figure 3.1), we propose a self-explainable model that, in addition to discerning fraudulent

from non-fraudulent transactions, also provides insights about the concepts associated

with that decision.

Figure 3.1: Description of the target persona, the fraud analyst, and her goals and inter-
pretability requirements.

To this end, we leverage the domain expertise of fraud analysts to create more se-

mantically meaningful explanations by collecting the focal domain concepts. Then, we

use them to create a self-explainable model that produces both a fraud prediction and

an explanation. Since fraudulent behaviors are akin to evolve over time, it is necessary

to guarantee that our method is able to continuously learn and adapt to possible new

fraudulent behaviors and/or to possible changes in the reviewing process by the analysts.

In order to make the system adaptive to these behavior drift, we propose a cooperative

system, where the self-explainable model is continuously learning from the human expert
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(in this case, the fraud analyst), thus guaranteeing continuous predictive accuracy and

interpretability improvements.

3.2 Jointly-learned Concept-based Explanations

In this section, we describe our framework for jointly learning a decision task and associ-

ated domain knowledge explanations. We assume the semantic concepts (used as expla-

nations) will help the domain experts (end-users) reasoning throughout their decision-

making process. We coin this framework JOEL, Jointly-learned Concept-based Explana-

tions.

3.2.0.1 Neural Networks as Self-explainable Models

We decided to use an NN-based self-explainable model due to their flexibility and gen-

eralization capability. Firstly, simple Feed Foward Neural Network (FFNN) enable the

combination of several neurons in innumerous ways, which allow us to adapt its gener-

alization capabilities to the task at hands. Secondly, these models are easily adapted to

the multi-label setting by simply changing the number of outputs neurons. Indeed, the

concepts collected in the previous stage are trivially modeled as different classes and,

since each transaction is simultaneously associated with multiple concepts, adding more

neurons to the output layer allow us to effortlessly provide concept-based explanations.

Thirdly, NNs support different loss functions, including functions that account for the

label dependency, i.e., ranking higher the correct set of labels and penalize the incorrect

labels, instead of treating each label independently. In addition, these algorithms can be

used to pre-train a base model and then use it for another task (e.g., transfer learning), or

for instance train model in large set of data and then adapt the NN weights for smaller

set. This property is particularly useful in our use-case, since we can train the model with

large dataset with labels crafted with Distant Supervision approach and then fine-tune

the model using much smaller dataset with manually labeled dataset (for instance, asking

real fraud analysts to manually provide the concepts for each transaction). Finally, NNs

in general are considered stream-based algorithms, allowing continuous learning, i.e.,
we can use back-propagation algorithm 1 to update the NN weights when a new batch

of data arrives. Thus, it is possible to repeatedly update the NN for each new batch of

transactions that arrives to the system, collecting the Human Expert feedback.

However, NNs are complex algorithms with high number of parameters, meaning that

it may take much time to optimize those algorithms for a given task. Moreover, this type

of algorithms tend to overfit more easily, i.e., inability to generalize to new cases. Also, a

large amount of data is needed to achieve a good predictive performance. But this lack

1The back-propagation algorithm makes use of local derivatives and of the chain rule (derivatives) to
propagate the impact on the loss Lwith respect to each parameter involved in the computation.
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of the available data may be solved by using a semi-supervised approach. We discuss our

solution to this in section 3.3.1.

Given the described advantages of the NNs, we decided to test different architectures

and validate them. The following sections will provide the details of the architectures

used in our solution.

3.2.1 General formalization

We frame the problem of learning both semantic concepts and decision task (e.g. fraud

detection) as one of finding an hypothesis, h ∈H, that maps a vector of inputs (features),

x ∈ X, to a vector of semantic concepts, s ∈ S, and to a vector of decisions (or classes),

y ∈ Y. In this formulation, the learning task becomes obtaining a mapping h : X→ (Y,S).

Alternatively, we can pose our initially defined learning task as finding an hypothesis
(learner), h, such that, for the same inputs, x ∈ X, h is able to simultaneously satisfy

h : X→ Y and h : X→ S. For simplicity, we will henceforth refer to them as decision
mapping (h : X→ Y) and semantic mapping (h : X→ S).

3.2.2 Architecture

JOEL is based on three building blocks: (1) NN, (2) semantic layer, and (3) decision

layer. Due the NNs flexibility, we can arrange these components in multiple ways. In

this work, we chained these blocks sequentially, creating a hierarchical structure. Figure

3.2(b) illustrates a JOEL’s architecture. We first feed the input vectors (green), x ∈X into

a simple FFNN composed of L hidden layers (grey). The outputs of the FFNN, δL, are

fed as inputs to the semantic layer (orange). Given that, the semantic layer outputs the

domain concepts associated with a given input vector and which then serve as domain

explanations. At the same time, the semantic layer’s outputs, δS , are also used to impact

the decision layer (blue). By chaining the semantic and decision layers, we are able to

encode external information about the domain which is not available in the feature data.

This can be particularly meaningful in cases where the taxonomy is intimately related to

the decision task (e.g. a fraud taxonomy of fraud concepts is deeply correlated with the

fraud detection task). Therefore, learning to accurately predict the domain concepts is

likely to also lead to better decisions when it comes to the end-task (for instance, fraud

detection).

Similarly to other NN architectures, our method learns through backward propagation

of errors (backprop) and some variant of the gradient descent method. Unlike other NN

models, the joint learning approach in JOEL’s framework attempts to minimize both

a decision loss, LD , and a semantic loss, LS . Mathematically, given model’s parameters,

Θ = [θ1,θ2, ...,θL,θS ,θD ], the outputs of the decision layer, δD(x,Θ), and the outputs of

semantic layer, δS(x,Θ), the gradient with respect to the loss, L at the semantic layer is

24



3.2. JOINTLY-LEARNED CONCEPT-BASED EXPLANATIONS

(a) Vanilla NN. (b) JOEL’s architecture

Figure 3.2: Comparison between vanilla NN and JOEL’s architecture example. Colors
indicate layer type: input vector (green); hidden layer (grey); semantic layer (orange);
decision layer (blue).

given by equation 3.1.

∇δSL(x,y, s) = ∇δSLD(δD(x,Θ), y) +∇δSLS(δS(x,Θ), s) (3.1)

where:

∇δSLD(δD(x,Θ), y) =
∂δD(x,Θ)
∂δS

.∇δDLD(δD(x,Θ), y)) (3.2)

The decision of which loss functions to use within each task depends on the nature

of the task. As the semantic layer corresponds to a multi-labeling task, we opt to use the

sigmoid function and apply it to each individual entry of the output, before using it in the

loss function. To find the mapping that simultaneously satisfies h : X→ Yand h : X→ S

for a given input vector, x ∈X, we mutually minimize the (categorical) cross-entropy for

both predictive tasks. For an input vector, x ∈ X, a set of domain concepts, s ∈ S, and

decision classes, y ∈ Y, we have that:
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LD(x,y) = −
|Y|∑
i=1

yi log[softmax(δD(x,Θ)i)] (3.3)

LS(x,s) = −
|S|∑
i=1

si log[sigmoid(δS(x,Θ)i)] (3.4)

Additionally, we can try different loss functions for the semantic layer. One of the

possibilities is the loss function proposed in BPMLL [106] that is frequently used in the

multi-label problems [107, 62, 33]. The main idea is to rank the correct labels higher than

those that do not belong to the instance. We decided to apply this loss function to the

Multi-label Task, i.e., concept-based explanations prediction task. Equation 3.5 describes

BPMLL loss function.

E =
m∑
i=1

1

|Si ||Si |

∑
(k,l)∈SixSi

exp(−(cik − c
i
l )) (3.5)

where

• Si is the set of correct concepts and |Si | is its cardinality.

• Si is the set of incorrect concepts and |Si | is its cardinality.

• cik is the output of the NN on concept belonging to instance.

• cil is the output of the NN on incorrect concept.

• k ∈ Yi and l ∈ Yi .

This loss function should output larger values for the correct concepts and smaller for

the concepts that not belong to the classified instance, and it is achieved by passing the

negative of the difference between cik and cil to exponential function.

3.2.3 Baseline Architecture

Given the formulation in section 3.2.1, the learning task in vanilla multi-label NN be-

comes obtaining a mapping h : X→ (Y,S).

Figure 3.3 shows a Multi-label NN. This vanilla Multi-label NN shares the same basic

structure as the previously presented JOEL’s architecture (see 3.2.2), i.e., it receive an

input (green) that is processed by a simple FFNN with L hidden layers (grey). The last

layer L produces the δQ, where Q = Y∪S. That means that both decision classes and

concepts will be arranged in the same layer, minimizing the total loss, LT . For each q ∈Q
we apply the sigmoid activation function and again, we use the (categorical) cross-entropy.
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Given input vector x ∈Xand joined set of decision classes and concepts, q ∈Q we defined

the :

LT (x,q) = −
|Q|∑
i=1

si log
[
sigmoid(δQ(x,Θ)i)

]
(3.6)

Figure 3.3: Vanilla Multi-label NN where set of concepts, s ∈ S, and decision classes,
y ∈ Y, are placed on the same level.

We define the Multi-label NN to compare its results to our JOEL NN-based framework.

This is, we will use the vanilla Multi-label NN as the baseline in this work.

3.3 Implementation

Training NNs requires large amounts of data in order to attain reasonably good perfor-

mance [78]. Specially in the case of our JOEL framework we need a large training set

comprising not only fraud annotations, but more importantly, multi-label concept-based

annotations. On top of that, difficulties associated with the collection and creation of

concept-annotated datasets make NN-based explanation methods that use semantic con-

cepts infeasible in many practical settings. Moreover, the classical AI-based decision

making systems include a human-in-the-loop, whose feedback is poorly explored.

To overcome the previously mentioned limitations, we leverage the components of

the classical AI-based decision making system (legacy rule-based system, training ML

pipeline, and human-in-the-loop feedback) to assemble a Continuous Cooperative Human-

AI system consisting of three main stages:
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1. Semi-supervised learning stage: focus on the creation of a multi-labeled dataset

containing concept-based annotations, using semi-supervised learning techniques,

since the manual labeling is costly.

2. Model training and selection stage: concerns the training and evaluation of differ-

ent architectures and hyperparameter configurations for the self-explainable model.

The model with highest predictive accuracy on the target label on the test set is

selected.

3. Human Teaching stage: responsible for ensuring the model continuously learns

from the feedback given by the human-in-the-loop.

Figure 3.4 illustrates a execution flow of the system with self-explainable NN model.

This system starts by building and preparing the necessary data (stage 1, explained in

section 3.3.1), which is then used for training different NNs (stage 2, explained in sec-

tion 3.3.2). The best performing model according to some criteria (in our use-case it is

fraud prediction) is then selected for deployment, that is, for integrating the human-AI

cooperative system and aid in the analysts’ decision making process. Upon the arrival of

a transaction, the model provides a fraud score as well as the concepts associated with

its decision. Using this information fraud analysts (domain experts) are able to quickly

look for the necessary information to corroborate (or contradict) the provided concepts.

Finally, when reporting their decision, the analysts are able to provide their own feedback

about the concepts they identified in the transaction. This mechanism is crucial to mit-

igate feedback loops, as well as to guarantee the model continuously improves from its

mistakes and adapts to the analysts’ mental process (stage 3, explained in section 3.3.3).

Figure 3.4: Overview of the proposed system. Stages represented by numbered circles:
data preparation (stage 1), model training and selection (stage 2), and human teaching
(stage 3).
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The following sections describe the implementation details of each stage. In partic-

ular, in section 3.3.1, we detail how we leverage the fraud domain concepts to create a

dataset for training the self-explainable neural network (i.e., a concept-based annotation

dataset). Furthermore, we discuss how we create the dataset without the need for manual

labeling intervention. In section 3.3.2, we explain the model selection pipeline. Then, in

section 3.3.3, we describe the techniques used to update the model, i.e., the mechanisms

used to guarantee that the self-explainable model is able to continuously improve its

predictive and explainability capabilities. Specifically, upon receiving the human-in-the-

loop feedback. Finally, we will describe the main part of the algorithm, referring to how

the described steps are interconnected and interacts with each other.

3.3.1 Stage 1: Semi-Supervised Learning

To train a self-explainable NN presented in section 3.2, it is not enough to consider the

original dataset, i.e., dataset containing fraud annotations. Instead, it is necessary to pop-

ulate with domain information that reflects the reasoning process of the fraud analysts,

like fraud concepts presented above. Thus, in addition to the fraud/non-fraud annota-

tions commonly used in fraud domains, this custom annotated dataset must also comprise

fraud domain concepts associated with each legitimate (or illegitimate) behavior.

Since to the best of our knowledge, there is no publicly available dataset with similar

properties (fraud domain concept annotations). At the same time, the manual labeling is

costly and time-consuming, making the process of the dataset creation very arduous.

Algorithm 1 Pseudo-code for semi-supervised learning stage
Input: D is the original dataset;

mappingDict is a dictionary that associates each rule with one or more domain con-
cepts;

1: function semiSupervisedLearning(D, mappingDict)
2: DML← empty
3: for event ∈ D do . apply Distant Supervision technique
4: triggeredRules← getTriggeredRules(event)
5: for triggeredRule ∈ triggeredRules do
6: mappedConcepts←mappingDict.get(triggeredRule)
7: event.addLabels(mappedConcepts)
8: DML.append(event)
9: end for

10: end for
11: return DML
12: end function
13:

To circumvent these limitations, we make use of a semi-supervised learning approach

to create the concept-based annotated dataset. We decided to use Distant Supervision ap-

proach for automatically labeling of data that premise that two entities can be associated
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in someway [59, 30, 101]. In fraud detection, the system matches the arrived financial

transaction against a set of rules to determine a risk score (e.g., when the transaction

matches some suspicious behavior). Normally, the rules in the fraud detection context

are pre-defined together with fraud specialist and are dependant on the specific use-case.

Thus, we can adapt the Distant Supervision approach, exploiting the mapping between

concepts from a pre-defined Fraud Taxonomy and a set of fraud domain rules. For this

approach, the definition of concept taxonomy is a requirement, since it is based on the

mapping between entities from the taxonomy and rules in the existed legacy system. The

pseudo-code presented in algorithm 1 shows each step taken to produce the concept-

based annotation dataset which labels were created by Distant Supervision. For each

event (line 3) we get the set of the triggered rules (line 4). Then, for each triggered rule

(line 5) we get associated concepts from fraud taxonomy (line 6), using them as the “noisy

labels” for the event (line 8). Like this, we create a concept-based annotation dataset,

taking the advantage of a legacy rule-based system in AI-based decision-making system.

Table 3.1: Example of Rules-Concepts mapping in a fraud detection setting.

Canonical rule name Description Mapped concepts
risky_product_styles Order contains risky prod-

uct styles.
Suspicious Items

cards_used User tried N different cards
last week.

Suspicious Customer, Sus-
picious Payment

Table 3.1 shows three examples of possible mappings between rules and concepts in

the fraud domain. Given the strong similarity between them, it becomes possible to apply

the Distant Supervision technique to create the concept-annotated dataset by creating the

association between each triggered rule (per transaction of the training set) to the most

similar concept (dubbed “noisy label”).

Unfortunately, one of the possible issues regarding this semi-supervised method is

the reduced number of mapped rules. This is, a concept with low number of matched

rules may be poorly represented, hindering the self-explainable model’s learning process.

In section 4.3, we further discuss the application of the Distant Supervision in real-world

setting and how these limitations can impact real-world systems.

3.3.2 Stage 2: Model training and evaluation

We decided to use Neural Networks as self-explainable model, since it support multi-label

classification out-of-the-box and are very flexible, allowing to test different architectures

and techniques (like transfer learning [108]). We provide more details on this in section

3.2.0.1.

After creating the concept-based annotated dataset, we train different combinations

of NNs architectures and hyperparameters. Figure 3.5 illustrates the model selection

pipeline for determining the final self-explainable model: each network is trained on the
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Algorithm 2 Pseudo-code for training and selecting the model algorithm
Input: DML is a dataset containing concpt-based annotations;

paramsGrid is a set of hyperparameters to find the best model;

1: function trainAndSelectModel(DML, paramsGrid )
2: DMLprocessed ← preProcess(DML)
3: trainSet, validSet, testSet, prodSet← datasetSplitter(DMLprocessed)
4: modelsGrid← modelTraining(trainSet, validSet, paramsGrid)
5: selectedModel← selectBestModel(modelsGrid, targetLabel, testSet)
6: return selectedModel
7: end function

previously collected dataset and evaluated on the test set. Then, the best performing

model according to some criteria is selected and used in an improved human-AI decision

making system. In our use-case we chose the model that better discerns fraudulent from

non-fraudulent behaviors.

Figure 3.5: ML pipeline for selecting the concept-based self-explainable model.

We describe each step of this stage in the algorithm 2. Before training the models,

it is necessary to pre-process the data (line 2). This includes standard procedures such

as duplicates removal, missing values imputation, categorical features processing, and

numerical data normalization. To guarantee the correctness of this procedure, we divide

the dataset in a three-way split, consisting of training, validation, test sets, and production

set (line 3). We use a training set to train the model and validation set to trigger the early

stopping criteria (denoting the end of the training loop). The test set will be used to select

the best model, at pre-defined fixed FPR (explained in section 4.6). Also, since we are

working in real-world setting, we decided to use a production dataset that will provide

an estimation of how could the model behave if used in production (i.e., if it could be

deployed in real-world application). We provide more details on the dataset division and

how they are used in section 4.2. Furthermore, we rely on hyperparameter optimization

search to iterate over a grid of hyperparameters and NN architectures (line 4). With this

procedure, we expect the best model to be selected according to some criterion (line 5). In

our use-case, the chosen model will be deployed in a high-stake real-world environment,

where the prediction accuracy on fraud is crucial due restricted requirements (the model

must detect fraudulent events to prevent the client’s losses). Additionally, we believe that

the model with high fraud predictive accuracy will be also capable to learn associated

fraud concepts.
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3.3.3 Stage 3: Human Teaching

The final stage of the proposed Continuous Cooperative Human-AI method is Human

teaching (or Human tuning). This process, illustrated in figure 3.6, feeds on the continu-

ous feedback provided by the target persona (see section 3.1). Since we have the access to

real expets’ feedback, the “true” labels used in this stage are provided by a real human

experts.

Figure 3.6: Human teaching overview.

In high level, the arrived transaction is processed by JOEL that outputs the fraud score

(decision task) and also associated fraud concepts (domain concepts). This information

together with transaction details is shown to the fraud analyst (human expert). The

expert’s feedback is collected and used to correct the self-explainable model’s weights,

improving the quality of the explanations.

Algorithm 3 Pseudo-code for Human Teaching stage
Input: selectedModel is a selected model with best predictive accuracy on target label;

E is the set of Human Experts;
event is an entity to be processed by a system;
tuningP arams is a set of hyperparameters for model tuning;

1: function humanTeaching(selectedModel, E, event, tuningP arams)
2: predictedTargetScore, predictedConceptsScore← selectedModel.predict(event)
3: expertFeedback← eventReview(event, E, predictedTargetScore, predictedCon-

ceptsScore)
4: feedbackDB← saveFeedback(expertFeedback)
5: if feedbackDB.eventsCount() == tuningP arams.get(batchSize) then
6: updatedModel← updateModel(event, expertFeedback, tuningP arams)
7: else
8: updatedModel← selectedModel
9: end if

10: return updatedModel
11: end function
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The pseudo-code presented in algorithm 3 describes the Human Teaching stage. When

new event arrives to the system, the self-explainable method produce the target label

score, which is fraud label in our use-case, and also associated fraud concepts (line

2). When reviewing a transaction, the fraud analyst will receive, in addition to the

transaction-related data, the fraud score and the fraud concepts associated with that

score. With this information, the analyst is able to quickly navigate the reviewing in-

terface in order to make a decision (whether to accept or reject the transaction). Fraud

analysts are also required to provide the concepts that better describe their motivation,

i.e., their mental process for making a decision (line 3). Then, we collect the feedback

and save it in database (line 4). If the database has enough events (line 5), it is used to

fine-tune the self-explainable model using the backpropagation algorithm (line 6), thus

ensuring its constant learning and adaptability to the analysts’ mental models changes

with repercussions on its predictive accuracy and explainability.

The flexibility of the Neural Networks allows to fine-tune the already trained model.

Thus, we can define new hyperparameters for the tuning process, freeze and unfreeze

the weights of the pre-trained NN, or even append or disable some model’s component.

This tuning phase may be performed as the normal hyperparameter searching, i.e., we

can define a parameter grid and run it in order to find the best tuning parameters. For

this, we may adapt a stream-based evaluation that organizes the collected feedback in

ordered by timestamp batches and then, use each batch to evaluate and then perform a

backpropagation pass to update the model’s weights, repeating this process until end of

the batches. We describe this procedure more deeply in the section 4.6.

Ideally, including the human experts in the loop will help the AI to get better at

explaining itself and at the same time, self-explainable model will improve the efficiency

of the experts.

3.4 Framework Overview

The algorithm 4 provides a pseudo-code description of the generic workflow of our frame-

work, where we show how each stage described in previous sections interconnects and

interacts with each other.

The workflow starts by verifying the existence of an already prepared concept-based

annotated dataset (line 1). If no such dataset exists, it first creates a mapping (line 2), with

help of the human expect (E), between set of fraud domain rules and concepts from a

pre-defined fraud taxonomy. Then, by using semi-supervised learning technique, that is

Distant Supervision in our use-case, we create a concept-based annotation dataset (line 3).

After creating dataset, we train, evaluate and select the self-explainable NN that predicts

the outcome and also the associated concepts (line 4). The selected self-explainable model

is deployed and a new stream starts (line 5). When a event arrives (line 6), it is passed

through “Human Teaching” method, returning the new updated model (if there there is

enough collected data for the tuning) (line 7). Finally, an updated version of the model
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Algorithm 4 Pseudo-code for the workflow of our framework for human-interpretable
explanations.
Input: E is the set of Human Experts;

D is the original dataset;
R is a set of domain rules;
Ctax is a taxonomy of the Domain concepts;
paramsGrid is a set of hyperparameters to find the best model;
tuningP arams is a set of hyperparameters for model tuning;

1: if conceptBasedAnnotations is_not_prepared then . Check if the concept-based
annotation dataset already exist

2: mappingDict← createMapping(E, Ctax, R)
3: DML← semiSupervisedLearning(D, mappingDict, Ctax)
4: end if
5: selectedModel← trainAndSelectModel(DML, paramsGrid )
6: stream← newStream()
7: while stream.notClosed() do
8: event← stream.getNextEvent()
9: updatedModel← humanTeaching(selectedModel, E, event, tuningP arams)

10: selectedModel← updatedModel
11: end while

is used and the looping is continue until the end of the stream, i.e., when the system’s

end-user decides to stop this continuous learning process.

In this section we presented our framework to jointly learn a decision task and asso-

ciated concept-based explanations using domain knowledge. Our framework produce

human-interpretable explanations that fit the information needs of the decision makers,

which are fraud analysts in our use-case. Our solution is flexible, since each part can be

modeled differently. Throughout this section we show some possible instances of this

framework like JOEL architecture where we can vary the loss functions, or even the struc-

ture and type of the NNs. Moreover, the data preparation stage is also modular, where

different semi-supervised approaches can be used. In our use-case we used a Distant

Supervision, leveraging already existed legacy rule-based system and creating a fraud

taxonomy of concepts. Finally, we take the advantage of the human-in-the-loop, which

are fraud analyst in our use-case, to collect the feedback and use it to improve the self-

explainable method. In this stage, our solution also offer the flexibility to define different

methods of incorporating human feedback.
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4
Experimental setup

We validate our solution in a real-world fraud domain Human-AI system. Thus, this

chapter describes the experimental setup through which we conducted such validation

experiment. We also detail some of the design decisions involved and emphasize the

task specific ones, including a few practicalities when collecting the data, the evaluated

hyperparameter grids, evaluation metrics, among others.

4.1 Raw Dataset

We use a real-world transaction monitoring dataset in E-commerce owned by Feedzai.

Each instance represents a transaction (or event) and associated metadata, such as

items in the basket payment details, as well as, client’s history with the merchant. In

total, the raw dataset totals approximately 600 features, from which only 111 are used by

the model as features.

The raw dataset consist of approximately 9.3 millions of financial transactions, dated

from January 2019 to 20 of November 2019. It is highly imbalanced, since only 2% of all

the transactions are fraudulent. As illustrated in figure 4.1, we divide the raw dataset in

4 sequential sets: train, validation, test, and production.

For training, we consider 4 months and 20 days of data (from January to May), contain-

ing in total 4.4 million transactions. The fraud prevalence in training is approximately

2.5%. We use the validation set for determining the early stopping criteria (further ex-

plained in section 4.2). Its total size is 1.5 million transactions (from May 21 to Jun 29)

and its fraud prevalence is 1.7%. Then, the test set includes 800k transactions (from June

30 until July 20). Its main purpose is to perform proper model selection in a holdout set

and, consequently, obtain a robust estimate of the models’ generalization performance.

In this set, the fraud rate is 1.5%. Lastly, since we are working in real-world settings,

35



CHAPTER 4. EXPERIMENTAL SETUP

Figure 4.1: Dataset splits and dates.

we also include a production dataset with a 2 months time-shift (from September 26 to

November 20), containing 2.6 million transactions of which only 1.5% are fraudulent.

The 2 months gap simulates the time necessary to deploy a model in a real-world setting.

For this reason, we argue that such setting will provide a more realistic perception of the

self-explainable model performance in production.

4.2 Train-test stages

Frequently, ML practitioners divide the training set into mini-batches to speed up the con-

vergence of NNs during training. Accordingly, an iteration consists of one forward pass

followed by a backward pass, whereas an epoch accounts for passing all mini-batches. To

address the severe dataset unbalancing (only 2.5% of the total transactions are fraudu-

lent), we implement a mini-batch sampling mechanism to avoid having batches with 0%

fraud prevalence. Instead, we force each batch to have a pre-defined fraud prevalence (i.e.,
each batch has at least 1 fraudulent transaction), thus ensuring the NN is able to learn

both fraudulent behaviors. In the case, no strict requirement is set on the minimum base

rate at each mini-batch, it could happen that several batches would have 0% fraudulent

transactions. Consequently, in some iterations the learning would be focused on learn-

ing legitimate behaviors and the weights would be updated regardless of the previously

learned fraud patterns, thus undoing (and damaging) the learning process convergence.

The NN training loop stops whenever it completes the last epoch (it is a hyperparam-

eter fixed by user), or when it triggers early stopping. The first criteria is fulfilled when

the training loop went iterate over all defined epochs. The latter is triggered when the

model is not improving after N number of epochs, where N is a defined hyperparameter,

know as patience. Hence, the validation is used to measure the performance of the model

after each epoch. In this work, we use a validation loss as the stopping criteria, i.e., if

the model is not improving the validation loss during N consecutive epochs, the early

stopping is triggered and the training loop is finished.

We use the trained model to score the test set and calculate the evaluation metrics
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with fixed threshold at pre-defined False Positive Rate (FPR). In this stage, we select

the model that has a better performance for fraud label, since we want a model that can

successfully detect fraud that is defined by business logic. Finally, after selecting the best

model, we use the production dataset to evaluate its generalization capacity in a holdout

dataset in a more realistic scenario.

4.3 Distant Supervision

As described in section 3.3.1, we use a Distant Supervision approach to craft a Multi-label

dataset from original single-label dataset. The first step is to define the mapping between

each possible domain rule in legacy rule-based system and one or more concepts from

fraud taxonomy. Together with fraud expert we define a Rule-Concept mapping that is

applied to data source that contains transactions with triggered rules and results in “noisy

labels” that are mapped concepts. The transaction monitoring use case that we consider

in this work contains around 300 rules that were manually analysed and associated with

fraud concepts. Table 4.1 shows the number of rules mapped to each concept.

Thus, after applying the Distant Supervision, we ended up with Multi-label dataset,

where each transaction’s triggered rules were mapped to fraud concepts, creating “noisy

labels”. As the example, consider the event X for which rule A and rule B trigger. The

performed mapping defines that rule A is mapped to Suspicious Email and Suspicious IP.

Additionally, a rule B is associated with Suspicious Customer, Payment and Items. Thus,

by applying the Distant Supervision, we end up with event X labeled with Suspicious

Email, IP, Customer, Payment, and Items.

However, this method has limitations. Analysing the table 4.1 we find that Distant

Supervision approach poorly covers the legitimate concepts, since the majority of the

mapped rules are related to negative behaviour. Also, this semi-supervised approach is

a weak signal for the real labels, since we are using triggered rules as a proxy for the

concepts. For that reason we call the result of the Distant Supervision as “noisy labels”.
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Table 4.1: Number of mapped rules for each concept.

Concept Rules mapped

Suspicious billing shipping 86
Suspicious Customer 58
Suspicious Payment 53
Suspicious Items 48
High speed ordering 31
Suspicious Email 27
Suspicious IP 24
Suspicious Device 22
Nothing suspicious 19
Good customer history 11
Suspicious Delivery 5
All details match 3

4.4 Manually Labeled Dataset

To validate our solution, we decided to simulate a real-world scenario where the self-

explainable model will continuously receive the feedback from Human Experts. For this

reason, we decided to create a small manual multi-label dataset that will contain the real

feedback from the fraud analysts.

One of the main Feedzai’s product is a case management application that is used by

fraud experts to review suspicious transactions. This application interface displays the

transaction’s information, triggered rules (if any), and also the ML model score. The

analyst has to approve or decline the analysed transaction, and in the end of the review,

the user is asked to provide additional feedback such as comments about the transaction,

or reasons for taken decision. We took the advantage of this and created a program

routine that allow us to inject any list of pre-defined items and display it in the end of

the review process. Also, we develop a program procedure that collects and saves all the

feedback provided by the fraud analysts.

We had an opportunity to run an annotation campaign with three fraud experts, where

we simulate the real review process. First, we inject the set of the pre-defined concepts in

the application UI and then collect the concepts that analysts’ associate with the reviewed

even.

We ended up with the total of 1561 manual labeled transactions. Figure 4.3 shows the

prevalence of each label. The review set used in the annotation campaign contains one

month of data, starting from October to November. Figure 4.2 shows the overall dataset

timeline, now including the manually labeled dataset.

Having this manual labeled dataset, we can evaluate the model that was trained with

Distant Supervision approach and also validate the Human teaching stage, described in

section 3.6.
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Figure 4.2: Updated dataset splits and dates, now including the review set.

Figure 4.3: Label prevalence in manually labeled dataset.

4.5 Hyperparameters

NNs have several hyperparameters. In this work, we limit the number of hyperparameters

to vary, ended up changing the following:

• Batch size

• Learning rate

• Number of hidden layers

• Dimensions of the hidden layers

• Batch Normalization (use or don’t use)

39



CHAPTER 4. EXPERIMENTAL SETUP

• Number of Dropouts and its probabilities

We decided to fix the random seed and the total number of the epochs to 100, with

patience of 5. Also the batch size is fixed to 4096. Regarding the optimization algorithm

we chose the Adam [47], varying only the learning rate.

We focused on the number of FFNN layers and their dimensions. We vary between

three and maximum eight hidden layers. Regarding the dimensions of each layer, defining

the range between 128 to 16 neurons. We also vary the dropout probabilities per layer,

defining the range between 0.6 to 0.1. We also decided to vary the Batch Normalization

[42] since it is widely used in the state-of-the-art Deep Learning models.

In the Human teaching stage (described in section 3.3.3), we also define a parameter

grid, but now we only vary the optimization algorithm1, learning rate, number of epochs,

and also the batch size.

4.6 Evaluation Metrics

In real-world fraud detection setting, the class ratio is frequently extremely imbalanced,

i.e., the fraction of fraudulent events (also known as fraud rate) is hugely small. For

instance, in our training set described in section 4.1, the fraud rate is only 2.5%. Thus,

by using accuracy as the main metric, a trivial classifier could achieve around 97.5% of

accuracy classifying all the instances as legitimate. On the other hand, the same classifier

would achieve 0% of recall. However, the main task is to catch fraudulent events, meaning

that we need to pay special attention to the performance of the ML model on positive

examples.

Therefore, as the main metric for the decision task (fraud detection) we use the True

Positive Rate (TPR) (also know as Sensitivity or Recall) at 3% FPR. In real-world set-

ting, FPR is frequently fixed at some pre-defined value, typically depend on business

constrains. By fixing the FPR, we ensure that the system will reduce the probability of

negatively affect legitimate users, since throwing false positive alerts for legitimate clients

could harm the relationship.

For the explainability task, the predictions for each concept, that will be served as

explanations, are evaluated using AUC. We do this because JOEL provides the score for

each concept, and we are not making binary decision, i.e., we will show the model’s score

for each concept. Thus, we choose AUC metric since it is a threshold agnostic metric. The

evaluation results (after training and validation) require an aggregate measure of model’s

generalization at the multi-label task in holdout datasets. We use the mean AUC over

all labels (predicted concepts). We decided to exclude the concepts “Other Fraud” and

“Other Legit” from the averaging, since they are reserved for unknown cases. Using AUC

as the performance metric, we do not need to define a threshold.

1We used all the available optimization algorithms in PyTorch framework here: https://pytorch.org/
docs/stable/optim.html
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Human teaching evaluation: Additionally, to validate the performance of the self-

explainable model in real world setting, we used the manually labeled dataset, described

in section 4.4. We split this dataset into training, validation, and test sets. After defining

the tuning hyperparameter grid, we run it on the first 800 transactions. Then, we select

the model with the highest mean AUC across the concepts (excluding “Others”) on 200

transactions (validation set). After selecting the best hyperparameters, we re-train the

Distant Supervision model (best Distant Supervision model trained on “noise labels”)

using both the training and validation sets. We estimate its generalization performance

in an holdout test set composed of 561 transactions.

4.7 Implementation Details

We choose Python programming language (Python 3) for the practical implementation of

the solution. Due the millions of processed transactions in such systems, we had access

to huge amount of data. To process this data, we used the leading engine for big data

processing called Apache Spark [99], more specifically PySpark, a Python API for Spark.

The development of the NN architectures (see section 3.2), we used PyTorch [66] that is

a very flexible open source ML framework. For instance, this framework offer a scalable

distributed training, easy and intuitive way to implement different NN architectures,

among others.

In addition, we decided to reuse some of the tools developed internally. We imple-

mented the mechanism to inject a set of pre-defined concepts in the application’s UI used

by fraud analysts to review transactions. The collected feedback is stored in the Post-

greSQL database, allowing the execution of SQL queries to aggregate the feedback. Also,

we extended the base code of internal tool to develop NN models, which was focused on

sequential models (e.g. RNNs), to support Multi-label FFNN and our hierarchical archite-

cuture (see 3.2.2). This internal tool works with a simple parameterization by YAML files

(A human friendly data serialization object often used for configuration settings [12]).

All the steps related to initialization, training and evaluation of the architectures were

configurable from this file, including: paths for used datasets, paths were trained models

and their configuration will be stored, dataset fields to ignore, or use as features, and

hyperparameters configuration for both model selection and human tuning (e.g. number

of hidden layers, its dimensions, learning rate, among others). Finally, to support the

result analysis we used Pandas [57], SciPy [90], and Seaborn [95].
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5
Results and Discussion

In this chapter, we present, analyse, and discuss the results. In section 5.1, we show

the trained models performance and discuss the limitations of the Distant Supervision

approach. In section 5.1.1, we compare and discuss the results from the architectures

presented in section 3.2. Finally, we evaluate the models’ performance on production

dataset in section 5.1.2 and analyse the impact of the human feedback (Human teaching)

on the already trained model with Distant Supervision in section 5.2.

5.1 Distant Supervision and Model selection

We trained a total of 273 models using Distant Supervision approach (stage 2 explained in

section 3.3.2). Among them, we varied hyperparameter configurations and architectures.

From initial 273 models, we explored 130 vanilla multi-label FFNNs (or a baseline) and

143 hierarchical FFNNs (it will be referred as JOEL). As we mentioned in section 4.6, the

main metrics that we measure in test and production sets are fraud Recall at 3% of FPR

(for decision task, i.e., fraud detection in our use-case) and mean AUC across all concepts

(excluding “Others”).

For this setup, we fixed the FPR at 3% (explained in 4.6) and we show the associated

Recall distribution across (computed across all 273 models) in figure 5.1. Most models

have recall values below 20% of recall, having a few models (around 15 in total) that

pass that value. We believe that one of the possible reasons for this results is the fact that

we consider a large temporal period for training set. Fraud evolves over time, revealing

new patterns. By considering old historical transactions, we may introduce some kind of

“noise” to the learning process, hurting the generalization capacity of the model to new

fraud patterns.
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Figure 5.1: Recall distribution across all 273 trained models at fixed 3% FPR on Testset.

Figure 5.2: Decision task (Fraud recall at 3% FPR) and Explainability task (mean AUC)
trade-off on Testset. We highlight two models, the best performing on fraud label (green)
and the one that offer best trade-off (orange).

We want to examine the trade-off between decision task (fraud label recall) and ex-

plainability task performances (mean AUC). Figure 5.2 shows this trade-off. Overall, the

majority of the trained models attain mean AUC values between [0.57,0.92] and recall

values between [0,0.24]. We can observe that the models with the highest fraud recall

are not the same as the ones that achieve the highest mean AUC. This trade-off difficult

the model selection: choose the model that performs better on predicting fraud or the

one that is best on generating explanations (i.e., we are assuming that the quality of the
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explanations is related with the number of correctly classified concepts). Working in

fraud detection domain, one of the main requirements for the model selection is being

able to effectively catch fraudulent events. In other words, the model with highest recall

on fraud label at 3% FPR (explained in section 4.6).

We decided to choose two models for further analysis. The first one (highlighted with

green circle in figure 5.2) is the best performing on fraud label, having 0.2391 of recall

at 3% FPR, but only achieving 0.7678 of mean AUC. Additionally, we selected the model

that provides a good balance between fraud recall and mean AUC (orange circle in figure

5.2). This model achieves 0.2256 of fraud recall and 0.8933 of mean AUC. Note that those

metrics were measured on testset.

5.1.1 Baseline vs JOEL architecture

As discussed in section 3.2, we develop two different NN-based architectures as the self-

explainable model. Figure 5.3 shows the trade-off between fraud recall and mean AUC for

those architectures. Overall, the JOEL architecture (represented by green dots in figure

5.3) outperforms the vanilla Multi-label NN (our baseline) (represented by brown dots in

figure 5.3) in fraud detection task. It is visible considering the interval of [0.2,0.24] (blue

bordered square) in x-axis (fraud recall) that only contains green points, i.e., models that

have hierarchical architecture.

Figure 5.3: Decision task and Explainability task trade-off discriminated by architectures
on Testset. The green points stand for JOEL architecture, while brown represent a baseline
architecture.

Although JOEL models achieve high values of mean AUC, the baseline architec-

tures are predominant when consider the best mean AUC performing models (interval

[0.88,0.9105] on y-axis). In fact, the baseline architectures are more consistent on mean
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AUC metric. In other words, the range of mean AUC values for this type of models is

much narrower than JOEL’s ([0.76,0.9105] and [0.57,0.9] respectively). However, those

models offer very bad balance scarifying the fraud recall for achieving better mean AUC

values.

In addition to testing different architectures, we vary the JOEL’s loss function used

in explanation generation task. As explained section 3.2.2, we tested BCE and BPMLL

losses applied to Multi-label task (or explanation generation task). We show the impact

of these losses in figure 5.4.

Figure 5.4: Decision task and Explainability task trade-off on Testset, varying the loss
functions: BPMLL (blue) and BCE(orange).

Analysing the figure 5.4 we can conclude that there is a clear difference on the mean

AUC performance between tested losses. All the JOEL models trained with BPMLL loss

(blue dots) failed to exceed the value 0.8 of mean AUC. Also, only these models achieves

the minimum range of values for mean AUC ([0.55,0.65]). Additionally, JOEL models

trained with BPMLL are more inconsistent on fraud recall, i.e., there is a big dispersion on

this metric. Oppositely, models trained with BCE shows more consistent results, without

big dispersion. Moreover, these models show better results for fraud recall in general,

despite the best performing model on fraud recall was trained with BPMLL loss.

We use the mean AUC as one of the main metrics. To study the performance of the

models on the concepts prediction task in more detail, we decided to inspect the standard

deviation of the AUCs for each concept. To this end, we sort the models according to

mean AUC (i.e., top models with highest mean AUC) within each architecture and variant

(baseline (vanilla MultI-label NN), JOEL with BCE, and JOEL with BPMLL loss). Hence,

we analyse the AUC values for each concept (legitimate and fraudulent) across 45 models

(15 models for each type) with highest mean AUC.
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Figure 5.5: AUC standard deviation across fraudulent labels for top 15 best performing
models on fraud label on Testset. Blue color represent a baseline (vanilla Multi-label NN),
orange stands for JOEL architecture with BCE as loss function, and green for JOEL with
BPMLL loss.

We can observe in figure 5.5 that in general, the trained models are consistent on

learning different fraudulent concepts. However, the JOEL architecture models trained

with BPMLL loss function show a high AUC standard deviation for “Suspicious Delivery”,

“Suspicious Device”, and “Suspicious Items”. Also, all the models have poor performance

on “Suspicious Delivery” concept. We will provide more insights about the possible

reasons for that. We can conclude that in general, both a baseline (blue) and JOEL with

BCE loss (orange) have similar learning consistency, showing better stability than JOEL

models trained with BPMLL loss.

Regarding legitimate concepts, presented in figure 5.6, we confirm that JOEL models

trained with BPMLL are less stable that other types. Additionally, it have poor perfor-

mance both on “All details match” and “Good customer history” concepts when compar-

ing to other architectures.

Finally we ordered all the 273 models by their fraud recall performance at 3% of FPR.

47



CHAPTER 5. RESULTS AND DISCUSSION

Figure 5.6: AUC standard deviation across legitimate labels for top 15 best performing
models on fraud label on Testset. Blue color represent a baseline architecture, orange
stands for JOEL architecture with BCE as loss function, and green for JOEL with BPMLL
loss.

Table 5.1 shows the top 10 models. Analysing the table, we validate the fact the JOEL

architecture provides better results on predicting fraud, since the baseline architecture

only appears in rank 17, with 0.1995 of fraud recall. At the same time, JOEL architecture

provides a good trade-off between fraud recall and mean AUC. Also, the JOEL models

trained with BCE shows a good stability on predicting concepts.

We believe that the better performance of JOEL architecture when compared to base-

line is due its hierarchical structure that comprises more information for fraud classifi-

cation since its loss will be computed considering the error for the concepts’ predictions

(detailed in section 3.2. Regarding the loss functions used in JOEL architecture to con-

cepts’ prediction task, we validate empirically that BPMLL, despite taking into account

the possible correlation between the concepts, have some convergence problems, i.e., the

NN fails to capture the patterns necessary to effectively distinguish the concepts during

the learning process. This results were also confirmed in another work [63] where the

authors prove that BCE loss can be more effective that ranking losses in multi-label tasks.

Altough JOEL model trained with BPMLL was the best performing model on fraud label,
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Table 5.1: Top 15 models sorted by fraud recall @ 3% of FPR in Testset. We selected two
models: the best performing on fraud label (*) and the most balanced model that offer a
good trade-off between fraud recall and mean AUC (+).

Model Fraud recall @ 3% FPR Mean AUC Architecture Type Loss function

1∗ 0.2391 0.7678 JOEL BPMLL
2 0.2281 0.8461 JOEL BCE

3+ 0.2256 0.8933 JOEL BCE
4 0.2200 0.7488 JOEL BPMLL
5 0.2187 0.6080 JOEL BPMLL
6 0.2173 0.8723 JOEL BCE
7 0.2163 0.8722 JOEL BCE
8 0.2142 0.8576 JOEL BCE
9 0.2138 0.8620 JOEL BCE

10 0.2075 0.8711 JOEL BCE

it has low mean AUC, as the other models within same type. However, we still pick this

model for further analysis (maked with * in table 5.1) because we want to evaluate the

impact of human teaching (process where human provides feedback about the concept-

based explanations to improve the self-explainable model) on this pre-trained model with

Distant Supervision. We show the results of human teaching in section 5.2. Also, we pick

the model that offers the best trade-off between fraud recall and mean AUC (highlighted

with + in table 5.1) to analyse it performance on production dataset and also the impact

of human teaching in balanced pre-trained with Distant Supervision model.

5.1.2 Selected Models’ Performance on Production dataset

Having selected the models, we estimated their generalization to unseen instances in a

new holdout set, the production set (see section 4.1). This dataset has a shift of 4 months

from training set, simulating the real world setting where model takes some time to be

deployed.

The table 5.2 shows the BCE for each predicted concept of the JOEL model trained

with BPMLL loss, which was the best performing on fraud label. In production dataset,

this selected model achieved 0.1371 of recall at 3% FPR. It is a huge drop, since this

model had 0.2391 of recall on test. The mean BCE also dropped from 0.7678 to 0.7597.

We hypothesize this is due to model overfitting, this is, the model lack on generalization

capacity to the new unseen instances. Also, the fact that we used a time shifted dataset

could be a reason for performance drop. Additionally, as we saw before, this type of

models more unstable on learning different patterns.

Since we are using Distant Supervision for creating the “noise labels”, the performance

may depend on the quality of the mapped rules for each concept, i.e., if the number of

mapped rules is low, or the rules are too specific (e.g. specific transaction item) will lead

to low prevalence. Thus, for instance, the concept “Good customer history” has only 11
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Table 5.2: Performance on production dataset of the selected model (JOEL with BPMLL
loss) based on fraud label highest recall.

Label AUC Prevalence

All details match 0.5415 0.0016
Nothing suspicious 0.6947 0.1498
Good customer history 0.2662 0.0024
Suspicious Delivery 0.6588 0.1189
Suspicious Customer 0.9262 0.4565
High speed ordering 0.9472 0.4210
Suspicious IP 0.9347 0.2173
Suspicious billing shipping 0.9093 0.3101
Suspicious Items 0.5099 0.0316
Suspicious Email 0.9362 0.2845
Suspicious Device 0.8664 0.0857
Suspicious Payment 0.9254 0.2515
Mean 0.7597 ± 0.2244 -

mapped rules, but all are very specific, meaning that the model will struggle to catch

these label patterns (the prevalence of this concept is only 0.0016). In fact, this lack of

representation is reflected in the results, since this model only achieved 0.2662 of AUC

for this concept. In general, we expect worse performance on legitimate concepts, since

the rule-based systems in Fraud Domain are more oriented to catch fraudulent patterns.

In other words, there are few rules that are associated with legitimate patterns, being

normally very specific. For the fraudulent concepts, the model presents better results.

However, this model have a poor performance on “Suspicious Items” concepts for the

same reasons referred before (poor representation). The same applies to “Suspicious

Delivery” that despite having a reasonable prevalence (0.1189), is badly represented by

mapped rules.

We also present the results of the second selected model, which offers a good trade-off
between fraud recall, in table 5.3. Overall, this model (JOEL architecture trained with

BCE loss) shows better and also more stable results, only dropping 0.37% (from 0.8933

to 0.8875 in mean AUC), meaning that its generalization capacity on concepts is better

that the previous one (JOEL trained with BPMLL). However, this model had a big drop

from 0.2256 to 0.1121 on fraud recall.

Although this model have a overall good performance, we observe that there is con-

cepts like “Suspicious Items” and “Suspicious Delivery” for which it perform slightly

worse. Note that the previously analysed model also had poor performance on those

concepts. Again, we believe that this results are the consequence of the worse mapping

quality offered by Distant Supervision.

We conclude that despite the Distant Supervision may lead to poor representation of

the concepts, in general, the models are able to learn and generalize to unseen instances.
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Table 5.3: Performance on production dataset of the selected model (JOEL with BCE loss)
based on better trade-off between fraud recall and mean AUC.

Label AUC Prevalence

All details match 0.9126 0.0016
Nothing suspicious 0.7267 0.1498
Good customer history 0.8837 0.0024
Suspicious Delivery 0.7369 0.1189
Suspicious Customer 0.9502 0.4565
High speed ordering 0.9477 0.4210
Suspicious IP 0.9399 0.2173
Suspicious billing shipping 0.8933 0.3101
Suspicious Items 0.8640 0.0316
Suspicious Email 0.9421 0.2845
Suspicious Device 0.9344 0.0857
Suspicious Payment 0.9189 0.2515
Mean 0.8875 ± 0.0776

We validate the Distant Supervision training in real world setting, simulating a real sce-

nario when the model could be deployed and used in production dataset. We found that

the success of the Distant Supervision approach depends on the rules-concepts mapping

quality, since we are using the rules as a proxy for concepts, those could be badly covered,

having a low number of mapped rules or being very specific.

5.2 Human Teaching Results

Until this stage we used “noise labels” crafted using Distant Supervision approach (ex-

plained in section 4.3) in the evaluation. That gave us an overview of the generalization

capacity of learning mapped concepts. We want to validate the models’ performance on

the manual labeled dataset that was created with help of real human experts on fraud do-

main (described on 4.4). Also, since we want to leverage the human-in-the-loop feedback

to improve the explanations provided by self-explainable model, we analysed the impact

of the human feedback on pre-trained models with Distant Supervision. The evaluation

process for this stage is described in 4.6.

We started by evaluating the selected models from previous stages (section 5.1) on

manually labeled test set, containing 561 instances, without tweaking any hyperparame-

ter or its structure. We will refer to this step as No Tuning.

Given the high flexibility of the NN, we are able to fine tune the already trained model

in order to update its weights (we provide more details on this in section 3.2.0.1). Thus,

we use the selected model, but applying the Human teaching, i.e., we use the real human

experts feedback to update the model’s parameters. For the model fine-tuning, we de-

cided to run a parameter grid to find an optimal hyperparamters for Human tuning stage.

For this, we used a training set with 800 instances. From all trained models, we select
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the hyperparameters that provide the hieghest mean AUC on validation set containing

200 instances. Finally, we train the selected model using best tuning hyperparameters on

1000 instances (now considering training and the validation set together) and evaluate

this Human tuned model in 561 test instances.

Table 5.5 shows the results for the pre-trained with Distant Supervision JOEL with

BPMLL loss. We were expected this huge drop on mean AUC, since the model was

pre-trained with Distant Supervision that creates “noise labels”, and now we are using

the real human feedback as true labels. The column No tuning shows the results of

the model without any parameter tuning. We observe that this model is specially bad

on “Suspicious Delivery” and “Suspicious Items” concepts. We saw the same behavior

when analysed this model’s performance on production dataset (table 5.2). It means that

the model have not learned correctly this concepts. However, by analysing the column

Human Teaching, we observe that by applying the Human tuning to this already trained

model, the performance is improved significantly (at least for “Suspicious Delivery”).

The same applies to “All details match” that also had a huge improvement with human

feedback. In general, we observe a significant improvement of mean AUC that increases

from 0.5262 (model without tuning) to 0.6329 (human tuned model). Nonetheless, we

note that for concept “Suspicious Payment”, Human tuning worsened the performance.

We hypothesize this to be due the quality of the provided feedback. If the analysts’

mental model is not aligned, i.e., each one have a different mental representation of

concept “Suspicious Payment”, the collected feedback will reflect this inconsistency by

introducing noise in learning process.

Table 5.4: Impact of Human teaching on JOEL model trained with BPMLL.

Label No tuning AUC Human Teaching AUC Prevalence

All details match 0.3902 0.6624 0.1266
Nothing suspicious 0.4289 0.5812 0.2852
Good customer history 0.4796 0.6503 0.1907
Suspicious Delivery 0.4760 0.7181 0.0285
Suspicious Customer 0.4551 0.6653 0.0695
High speed ordering 0.4800 0.6891 0.0784
Suspicious IP 0.5124 0.6086 0.0196
Suspicious billing shipping 0.5855 0.6577 0.1034
Suspicious Items 0.3936 0.4268 0.0196
Suspicious Email 0.5734 0.5857 0.1693
Suspicious Device 0.7320 0.7330 0.0232
Suspicious Payment 0.6522 0.6300 0.0321
Mean 0.5132 ± 0.1043 0.634 ± 0.0805

We also analysed the JOEL model trained with BCE loss. Note that this model had

the best balance in fraud recall and mean AUC (discussed in section 5.1). We present the

results for this model in table 5.5. Firstly, as expected, this model have better performance

on manual labeled dataset than the previously discussed (JOEL with BPMLL). We noticed
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that the model performs poorly on “Nothing suspicious” concept both in production

dataset (when using Distant Supervision labels) and also in manually labeled dataset.

However, the Human teaching improves significantly its performance. We observed that

in general there is an improvement on overall performance of explanation generation, i.e.,
mean AUC increases from 0.5904 to 0.6467). This performance boost is not as remarkable

as the previous one, but we believe that it is due this model’s better stability and balance,

since it offer a good trade-off between fraud recall and mean AUC.

Table 5.5: Impact of Human teaching on JOEL model trained with BCE.

Label No tuning AUC Human Teaching AUC Prevalence

All details match 0.4321 0.5644 0.1266
Nothing suspicious 0.4308 0.6052 0.2852
Good customer history 0.5568 0.6663 0.1907
Suspicious Delivery 0.6295 0.7068 0.0285
Suspicious Customer 0.5157 0.5512 0.0695
High speed ordering 0.6212 0.6350 0.0784
Suspicious IP 0.5073 0.6458 0.0196
Suspicious billing shipping 0.5443 0.7066 0.1034
Suspicious Items 0.8902 0.6172 0.0196
Suspicious Email 0.5208 0.5860 0.1693
Suspicious Device 0.6926 0.7190 0.0232
Suspicious Payment 0.6815 0.7092 0.0321
Mean 0.5852 ± 0.1286 0.6427 ± 0.0594

After analysing these results, we can conclude that (1) we can train the NN-based

self-explainable model that is able to produce decision label and also associated domain

concept explanations using Distant Supervision approach; (2) we can explore the fraud

recall and mean AUC trade-off to select the model with good generalization capacities;

and (3) we can leverage the human experts’ feedback to improve the overall performance

of self-explainable model, refining the quality of the explanations.
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6
Conclusion and Future Work

ML has been increasingly used in many high stakes domains in which incorrect model’s

predictions can have a great impact on the subjects lives. Simultaneously, the increas-

ing availability of data, coupled with the commoditization of cloud computing, lead to

increased complexity of ML models (e.g. Deep Neural Networkss (DNNs)), creating a

“black-box” paradigm. It is crucial to understand the logic behind the models’ decision

process to enhance trust in these pervasive automated decision-making systems. There-

fore, the field of XAI emerged to tackle the lack of interpretability in ML. However, XAI

is still very incipient. The current state-of-the-art explainable methods produce low level

feature attribution explanations that are oriented for technical personas and do not suit

the information needs of the humans-in-the-loop. Finally, most of current research is

focused on post-hoc methods that rely on surrogate models of questionable reliability,

instead of trying to develop ML models that provides insights about their own predictive

reasoning.

This work was developed with a very specific application in mind: Fraud Detection.

We consider the human-expert-in-the-loop, i.e., the Fraud Analyst, as our XAI target per-

sona. Usually, the fraud analyst needs to make a decision in extremely short time (in a few

seconds for some real world use-cases). Thus, by understanding the ML model predic-

tions, the fraud analysts will develop trust, enhancing their efficiency. They are domain

experts whose mental model in financial transaction analysis comprises fraud domain

concepts. Hence, providing concept-based explanations, representing fraud patterns that

resemble their own reasoning, could boost the ML model + fraud analysts performance.

In this thesis, we propose JOEL, an NN-based framework for jointly learning a decision

task and associated domain knowledge explanations. Simultaneously, our framework is

able to incorporate the fraud analysts feedback about which fraud patterns are depicted
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on each financial transaction, and consequently, it is continuously improving both predic-

tive accuracy and explainability. However, training multi-label neural networks requires

large training sets (with annotations for both the decision task and the semantic concepts)

that are very hard to get. To tackle this issue, we applied a semi-supervised approach

(Distant Supervision) to automatically create concept-annotations.

Our solution offer a high flexibility, since each part of the framework can be modeled

differently. In this work we showed some possible instances of the framework, like Distant

Supervision as a semi-supervised approach, or an example of NN architecture and loss

functions to jointly learn decision and explainability tasks.

We validate our proposed solution, in a real world E-commerce transaction moni-

toring use-case. In total, we trained 273 models, varying its hyperparameters and also

architectures of self-explainable NN. We conclude that (1) NN-based self-explainable

model is able to jointly learn a decision class and also associated domain concept explana-

tions using Distant Supervision approach; (2) we can explore decision and explainability

tasks’ trade-off to pick the model with good generalization capacities in both tasks; and

(3) we can improve the quality of the explanations produced by pre-trained model on

Distant Supervision by using the human experts’ feedback.

We summarize the contributions of our work as:

• We develop a NN-based framework, dubbed JOEL, to jointly learn decision-making

task and associated domain knowledge explanations.

• We leverage a human-expert-in-the-loop feedback to improve the explanations pro-

duced by self-explainable model.

• We bootstrap a concept-annotated dataset using a semi-supervised approach (Dis-

tant Supervision), leveraging a legacy rule-based system to train a self-explainable

NNs.

• We comprised a real-world suspicious behaviors associated with fraud detection in

Fraud Taxonomy of concepts, using them as the concept-based explanations.

• We ran an annotation campaign where a real domain experts provided fraud de-

cision label and associated semantic fraud domain concepts. We collect approxi-

mately 1500 manually concept-annotated financial transactions.

6.1 Future Work

For the future work, we aim to evaluate the usefulness of the concept-based explanations

with fraud analysts. We want to study calibration methods for concepts’ thresholds, since

the self-explainable model produces individual score for each concept. Also, we want

to explore the impact of the human teaching in different NNs architectures. Moreover,

we want to explore different methods to incorporate the human feedback and its quality.
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Additionally, we want to explore the possibility of learning new concepts that could arise

with the evolution of the fraud domain. We plan to run another annotation campaign to

increase the manual labeled dataset, improving the quality of the evaluation.
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