
Miguel de Lemos Dias Rosa Anciães

Bachelor of Computer Science and Engineering

A Trusted and Privacy-Enhanced In-Memory Data
Store

Dissertation submitted in partial fulfillment
of the requirements for the degree of

Master of Science in
Computer Science and Engineering

Adviser: Dr. Henrique João Lopes Domingos,
DI-FCT-UNL, NOVA LINCS

Examination Committee

Chair: Dr. João Carlos Gomes Moura Pires
Rapporteur: Dr. Pedro Morais Ricardo Inácio

Member: Dr. Henrique João Lopes Domingos

March, 2021

A Trusted and Privacy-Enhanced In-Memory Data Store

Copyright © Miguel de Lemos Dias Rosa Anciães, Faculty of Sciences and Technology,

NOVA University Lisbon.

The Faculty of Sciences and Technology and the NOVA University Lisbon have the right,

perpetual and without geographical boundaries, to file and publish this dissertation

through printed copies reproduced on paper or on digital form, or by any other means

known or that may be invented, and to disseminate through scientific repositories and

admit its copying and distribution for non-commercial, educational or research purposes,

as long as credit is given to the author and editor.

This document was created using the (pdf)LATEX processor, based on the “novathesis” template[1], developed at the Dep. Informática of FCT-NOVA [2].
[1] https://github.com/joaomlourenco/novathesis [2] http://www.di.fct.unl.pt

https://github.com/joaomlourenco/novathesis
http://www.di.fct.unl.pt

To everyone who stood with me during my student years, to all
my family and friends

Acknowledgements

I would like to thank the Faculty of Sciences and Technology of NOVA University Lisbon

and all its faculty, especially professor Henrique João Lopes Domingos who supported

me all throughout this dissertation and always took the time to help and motivate me.

I would also take this opportunity to thank my family, as they have supported me

unconditionally not only during the college years but all my life. I thank Sofia Miranda

who tolerated my mood swings and my stress during this period, calmed me down and

has listen to my outbursts and thesis talk even though computer science is not her area.

I would like to thank the whole WATERDOG team. They took me in since my gradua-

tion and helped me start my adult career making me feel like one of their own since the

beginning and with a special thank you to Bruno Félix and Pedro Coutinho, who picked

up the slack of the days I’ve missed work to have time for this dissertation. They are

extraordinary and amazing work colleagues.

Lastly, I want to thank my friends who went through the dissertation at the same time,

especially João Reis, Tiago Sousa and Ricardo Amaral. We "suffered" together but now it

is done. Also to my friends who already overcame this objective or are still to do it. You

know who you are.

Thanks to all, could not have done it without you...

vii

There is no cloud, it’s just someone else’s computer

Abstract

The recent advent of hardware-based trusted execution environments provides isolated

execution, protected from untrusted operating systems, allowing for the establishment

of hardware-shielded trust computing base components. As the processor provides such

a “shielded” trusted execution environment (TEE), their use will allow users to run appli-

cations securely, for example on the remote cloud servers, whose operating systems and

hardware are exposed to potentially malicious remote attackers, non-controlled system

administrators and staff from the cloud providers. On the other hand, Linux containers

managed by Docker or Kubernetes are interesting solutions to provide lower resource

footprints, faster and flexible startup times, and higher I/O performance, compared with

virtual machines (VM) enabled by hypervisors. However, these solutions suffer from soft-

ware kernel mechanisms, easier to be compromised in confidentiality and integrity as-

sumptions of supported application data. In this dissertation we designed, implemented

and evaluated a Trusted and Privacy-Enhanced In-Memory Data Store, making use of a

hardware-shielded containerised OS-library to support its trust-ability assumptions. To

support large datasets, requiring data to be mapped outside those hardware-enabled con-

tainers, our solution uses partial homomorphic encryption, allowing trusted operations

executed in the protected execution environment to manage in-memory always-encrypted

data, that can be or not mapped inside the TEE.

Keywords: Hardware Security; Privacy-Enhanced Data Store; Homomorphic Encryption;

Isolated Environments; Trusted Computing; Cloud Computing; Virtualisation; Container-

isation; Availability; Reliability.

xi

Resumo

Os recentes avanços de ambientes de execução confiáveis baseados em hardware forne-

cem execução isolada, protegida contra sistemas operativos não confiáveis, permitindo o

estabelecimento de componentes base de computação de confiança protegidos por hard-

ware. Como o processador fornece esses ambientes de execução confiável e "protegida"

(TEE), o seu uso permitirá que os utilizadores executem aplicações com segurança, por

exemplo em servidores cloud remotos, cujos sistemas operativos e hardware estão expos-

tos a atacantes potencialmente maliciosos assim como administradores de sistema não

controlados e membros empregados dos sistemas de cloud. Por outro lado, os containers
Linux geridos por sistemas Docker ou Kubernetes são soluções interessantes para poupar

recursos físicos, obter tempos de inicialização mais rápidos e flexíveis e maior desempe-

nho de I/O (interfaces de entrada e saída), em comparação com as tradicionais máquinas

virtuais (VM) activadas pelos hipervisores. No entanto, essas soluções sofrem com soft-

ware e mecanismos de kernel mais fáceis de comprometerem os dados das aplicações na

sua integridade e privacidade.

Nesta dissertação projectamos, implementamos e avaliamos um Sistema de Arma-

zenamento de Dados em Memória Confiável e Focado na Privacidade, utilizando uma

biblioteca conteinerizada e protegida por hardware para suportar as suas suposições de

capacidade de confiança. Para oferecer suporte para grandes conjuntos de dados, exi-

gindo assim que os dados sejam mapeados fora dos containers seguros pelo hardware,

a solução utiliza encriptação homomórfica parcial, permitindo que operações executa-

das no ambiente de execução protegido façam gestão de dados na memória que estão

permanentemente cifrados, estando eles mapeados dentro ou fora dos containers seguros.

Palavras-chave: Segurança de Hardware; Armazenamento de Estrutura de Dados em Me-

mória Confiável e Focado na Privacidade; Encriptação Homomórfica, Ambientes Isolados;

Computação Segura; Computação em Cloud; Virtualização, Containerização; Disponibili-

dade; Confiabilidade.

xiii

Contents

1 Introduction 1

1.1 Context and Motivation . 1

1.2 Problem Statement . 3

1.3 Objectives and Planned Contributions . 3

1.4 Report Organisation . 4

2 Related Work 5

2.1 Key-Value Stores . 6

2.1.1 Memcached . 7

2.1.2 Redis . 7

2.1.3 Amazon Dynamo DB . 8

2.1.4 Microsoft Azure Cosmos DB . 9

2.1.5 Microsoft Azure Cache for Redis 9

2.1.6 Aerospike . 9

2.1.7 Discussion . 10

2.2 Trusted Computing Environments . 11

2.2.1 TPM – Trusted Platform Modules 12

2.2.2 TPM - Enabled Software Attestation 13

2.2.3 HSM – Hardware Security Modules 14

2.2.4 Trusted Execution Environments 14

2.2.5 Intel SGX . 15

2.2.6 Sanctum . 17

2.2.7 ARM Trust Zone . 18

2.2.8 Discussion . 18

2.3 TEE/SGX Enabled Key Value Stores . 19

2.3.1 Trusted Execution with Intel SGX 19

2.3.2 Circumvention of SGX Limitations 20

2.3.3 SGX-Enabled Secure Databases . 22

2.3.4 Discussion . 25

2.4 SGX Virtualisation Frameworks . 25

2.4.1 KVM-SGX . 26

2.4.2 Graphene-SGX . 26

xv

CONTENTS

2.4.3 SCONE . 27

2.4.4 Asylo . 27

2.4.5 Discussion . 28

2.5 Related Work Balance and Critical Analysis 28

3 System Model and Design Options 29

3.1 Refinement of Objectives and Contributions 30

3.1.1 SGX Limitations Refinement . 30

3.2 Threat Model and Security Properties . 30

3.2.1 Adversarial Model Definition . 31

3.2.2 System Assumptions . 31

3.2.3 Countermeasures for Privacy-Preservation 32

3.3 System Model . 33

3.3.1 Key-Value Storage Server . 34

3.3.2 Proxy Server . 35

3.3.3 Authentication Server . 35

3.3.4 Client . 36

3.4 System Architecture . 36

3.5 Supported Operations . 36

3.5.1 Role-Based Authorisation . 37

3.5.2 Key-Value Storage Operations . 37

3.5.3 Proxy Enabled Operations . 38

3.5.4 Attestation . 38

3.6 Operation Flow . 39

3.7 Summary . 40

4 Prototype Implementation 41

4.1 Architecture and Implementation Options 41

4.1.1 Secure Redis . 42

4.1.2 Proxy Server . 43

4.1.3 Client-based Benchmarks . 44

4.1.4 Authentication Server . 45

4.1.5 Attestation . 45

4.2 Additional Details . 47

4.2.1 Protected Memory Check . 47

4.2.2 Protected Heap and Stack Memory 48

4.2.3 TLS, HTTPS and Certificate Chain 48

4.2.4 Logging and Auditing . 48

4.3 Tradeoffs on the Implementation Options 49

4.4 Summary . 49

5 Validation and Experimental Evaluation 51

xvi

CONTENTS

5.1 Testbench Environments . 51

5.2 Relevant Evaluation Criteria . 52

5.3 Performance Evaluation for Redis-Benchmark tool 52

5.4 Performance Evaluation for Standalone Redis 53

5.5 Performance Evaluation for Cluster Redis 54

5.6 Performance Evaluation for Homomorphic Operations 56

5.7 Evaluation of the Attestation Protocol . 57

5.8 Complementary Measurements . 58

5.8.1 Memory and CPU Measurements 58

5.8.2 Exhausting Protected Memory . 60

5.8.3 Performance and Payload Size . 61

5.9 Summary and Findings . 62

6 Conclusions 63

6.1 Main Conclusions . 63

6.2 Open Issues and Limitations . 64

6.3 Future Work Directions . 65

Bibliography 67

Annexes 75

I Technologies and Versions 75

II SGX Local Attestation 77

III Software Stack Attestation 79

xvii

List of Figures

2.1 Azure Environment Integration . 10

2.2 TPM Components . 12

2.3 Remote Attestation Procedure . 13

2.4 SGX Memory Architecture [46] . 15

2.5 SGX Access Control [46] . 16

2.6 Arm TrustZone Stack [13] . 18

2.7 Server-side components of EnclaveDB . 22

2.8 Overview of ShieldStore . 24

3.1 System Model Overview . 33

3.2 Storage Server Model . 34

3.3 System Architecture Stack . 36

3.4 Attestation Model . 38

3.5 Operation Flow . 39

4.1 Attestation Flow . 46

5.1 Redis Benchmark External Client Metrics . 53

5.2 Redis Benchmark Internal Client Metrics . 53

5.3 Standalone Throughput Results . 54

5.4 Cluster Throughput Results . 55

5.5 Homomorphic Encryption Throughput Results 56

5.6 Average CPU Load . 58

5.7 Plain/Encrypted Redis Memory Usage . 59

5.8 SGX Redis Memory Usage . 59

5.9 Latency per Data Size . 61

II.1 SGX Local Attestation . 77

xix

List of Tables

5.1 Proxy Redis Standalone Results . 54

5.2 Proxy Redis Cluster Results . 55

5.3 Sum Latency Results . 57

5.4 SGX Hardware Attestation Results . 57

5.5 Custom Attestation Results . 58

5.6 Cluster Instances Dataset Memory Usage (MB) 60

I.1 Versions of Used Technologies . 75

xxi

Listings

2.1 Redis Set & Get . 6

2.2 How Fast is Redis . 7

4.1 Machine Specifications . 42

III.1 Software Attestation Response Example 79

xxiii

Acronyms

ACL Access Control List

AES Advanced Encryption Standard

AIK Attestation Identity Key

API Application Programming Interface

AWS Amazon Web Services

CA Certification Authority

CAS Configuration and Attestation Service

CPU Central Processing Unit

CSV Comma Separated Values

DBMS Database Management System

DDoS Distributed Denial of Service

DoS Denial of Service

Ecall Enclave call

ECB Electronic Code Book

EK Endorsement Key

EPC Enclave Page Cache

EPCM Enclave Page Cache Mapping

EPID Enhanced Privacy ID

GB Gigabyte

HSM Hardware Security Module

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

I/O Input/Output

xxv

ACRONYMS

IaaS Infrastructure as a Service

IoT Internet of Things

IP Internet Protocol

JVM Java Virtual Machine

JWT Json Web Token

KVM Kernel Virtual Machine

KVS Key-Value Store

LAS Local Attestation Service

LRU Least Recently Used

LSM Log-Structured Merge Tree

MB Megabyte

MIM Man-in-the-middle

Ocall Out call

OOM Out Of Memory

OS Operating System

OTP One-Time Password

P2P Peer to Peer

PCR Platform Configuration Register

PRM Processor’s Reserved Memory

RAM Random Access Memory

REST Representational State Transfer

RSA Rivest–Shamir–Adleman

RSS Resident Set Size

SaaS Software as a Service

SASL Simple Authentication and Security Layer

SDK Software Development Kit

SGX Software Guard Extensions

SQL Structured Query Language

SSL Secure Sockets Layer

xxvi

ACRONYMS

syscall System call

TB Terabyte

TCB Trusted Computing Base

TCE Trusted Computing Environments

TCG Trusted Computing Group

TEE Trusted execution environment

TLS Transport Layer Security

TPM Trusted Platform Module

USB Universal Serial Bus

VM Virtual Machine

*

xxvii

C
h
a
p
t
e
r

1
Introduction

In this chapter, it is presented the context and motivation for this thesis, the main problem

statement followed by the goals and objectives and all the planned contributions. In the

end, it is presented the structure used in the following chapters of the document.

1.1 Context and Motivation

Cloud computing has gone through many steps, that include grid and utility computing,

application service provision and software as a service before reaching the level we know

these days. The concept of delivering continuous resources through a global network

is rooted in the 1960s. Some experts credit the professor and computer scientist John

McCarthy [77] with proposing the concept of computation being delivered as a public

utility.

Then, around the 1970s the concept of the virtual machine (VM) started to gain

popularity as it permitted multiple distinct computing environments to reside on one

physical machine.

One of the first major cloud computing moments was the arrival of salesforce.com that

pioneered the concept of delivering enterprise applications via a simple website. Later,

around the 2000s, current big names like Oracle, SAP, Google, Amazon and Microsoft

joined the trend and made the cloud world as it is today [2, 3].

Over the past decade, cloud computing has evolved from something service providers

told companies they probably should adopt, all the way up to becoming the technol-

ogy heart of not only major companies but medium-sized enterprises, small start-ups,

personal projects and pretty much anyone who works in the computer science world.

Recent studies are foreseeing that 80% of enterprise IT will move to the cloud by

2025 [1]. The array of services provided now are endless and the costs are attractive to

1

CHAPTER 1. INTRODUCTION

businesses. These services allow developers to only pay for resource usage, and to take

advantage of all the power of very large companies. Scalability at request, reliability with

daily backups and seamless integration with a lot of other services are some advantages

of moving to the cloud. And all of these functionalities without having to manage big

infrastructures and several virtual and physical resources like servers, networks, disks,

among others [95].

All of this data and processing happening in someone else’s machine started to raise

privacy and security concerns. It has become a very attractive target for malicious hackers

to attack cloud providers due to the amount of data they process and hold on their services.

The best security researchers are always working with the providers to try and mitigate

all bugs and vulnerabilities on their very large platforms which have become also a big

attack vector. It has been reported by Microsoft, that "There was a 300 per cent increase in
Microsoft cloud-based user accounts attacked year-over-year (Q1-2016 to Q1-2017)." and also

"The number of account sign-ins attempted from malicious IP addresses has increased by 44
per cent year over year in Q1-2017." [72]. Another example published on the Washington

Post describes a sophisticated Man-in-the-Middle (MIM) cyber-attack that has targeted

Apple’s iCloud service in China, in an apparent attempt to collect user names, passwords

and other private information [10]. Additionally, Amazon Web Services has been in 2019

hit by a massive DDoS (Distributed Denial of Service) attack that kept the system down

for about eight hours straight, which can mean thousands of dollars lost by clients [21].

The use of virtual machines to lodge different computing environments on the same

physical machine can also raise problems, as explained by the publication "Seriously, get
off my cloud! (...)" where the researches were able to exploit and obtain RSA (encryption)

keys from other VMs deployed in the same physical machine of Amazon EC2 service.

This work affirms the need for stronger isolation techniques in public clouds [49].

Docker containers and Kubernetes clusters, used instead and/or alongside traditional

VMs, are two of the most popular technologies among cloud providers and cloud server

environments these days, and if not managed correctly can become attack vectors. They

are already being exploited, most known by the report of Tesla Motors [94], suffering a

breach because of an exposed Kubernetes instance [29, 30].

The well known Cambridge Analytica scandal [96] gave the world another perspective

about the security guaranteed by the cloud providers, social media and every platform

that keeps user’s data in a non-secure manner. It shows how it can be exploited, sold and

manipulated without the owner’s consent.

As for Redis as a storage solution, and explained in depth in section 2.1.2, "Redis
should not be publicly exposed as it has no default authentication and all the data is stored in
clear text" and so, according to some studies, there are around seventy-two thousand Redis

servers available online today, and over 75% of them were compromised and infected with

some kind of malware [15, 31, 74].

It is certain that as the cloud environment grows, the motivation for malicious hackers

to attack and try to steal information will grow with it, and with all these security breaches

2

1.2. PROBLEM STATEMENT

increasing year after year, a previously mentioned study also reflects that "66% of IT
professionals say security is their greatest concern in adopting an enterprise cloud computing
strategy" [1].

1.2 Problem Statement

The problem behind the goals and objectives of this dissertation can be summarised in

designing a system, answering the following questions:

Is it feasible to implement a solution for a remote trusted and privacy-enhanced cloud-
based key-value store system providing strong security and privacy features in a trustworthy
solution? Can we design and implement those features with a good trade-off with operational
and performance criteria under scalability and reliability guarantees? Can we address the
trust-ability by minimising the trust-computing base using protected components running as
isolated trusted bases in hardware-shielded trust execution environments? Is it possible to
remove the threat of administrators of a cloud platform breaking data privacy? Can we combine
the security guarantees with privacy-enhanced in-memory operations supporting big data sets
and grained data-structures?

1.3 Objectives and Planned Contributions

The main goal of this dissertation is to design, implement and evaluate a privacy-enhanced

in-memory key-value store to be used as a trusted cloud service with hardware-based

security features running in a trusted execution environment supported by Intel’s SGX

technology. To overcome the protected memory limitations and coarse-grained paging as

supported in SGX memory-management facilities, our solution must support flexible big

data sets in a hybrid approach using SGX-mapped protected memory and unprotected

memory. Data in unprotected memory will be encrypted and operated in the encrypted

form, using partial homomorphic encryption techniques. For implementation purposes,

we will address our solution to be leveraged from the REDIS technology, enhanced in

an architecture using isolated and containerised services running in isolated Intel-SGX

trusted-execution-enclaves but supporting all the variations of REDIS-based architectural

deployments, e.g.: as a single REDIS server instance, or using replicated instances (with

master-slave and master-slave tree-chains, as well as, clustered instances). We will anal-

yse and compare the designed solution in terms of the introduced security benefits and

measuring the overheads introduced by the additional security, privacy and trust-ability

guarantees.

In this thesis we plan to achieve the following contributions:

• Design and implementation of the cloud-enabled privacy-enhanced solution,

with all-in-the-box planned features as described above, and able to be used as

a “cloud-platform as a service” solution, providing:

3

CHAPTER 1. INTRODUCTION

– Trust-ability, security and privacy properties with the following guarantees:

high availability, built-in replication, LRU (Least Recently Used) eviction model,

in-memory operations on encrypted big data sets and complementary options

for protected on-disk persistence;

– Software attestation guarantees provided to clients (users) to validate the

correctness and integrity of the remote software stack providing the solution;

• Multiple Replication Mechanisms based on the same secure solution to analyse

how these types of replication (centralised solution, a Master-Slave architecture and

a clustering solution) will be impacted by the additional security features;

• Drastically reduce TCB in the remote cloud provider by removing the millions and

millions of lines of code implementing the hypervisors and operating systems used

in their infrastructures thus creating a truly isolated system by leveraging Intel’s

SGX technology to create a shielded and trusted execution environment in a remote

cloud provider;

• Complete analysis report of the different solutions of replication and security lev-

els, comparing a normal non-secure solution with the privacy-enhanced imple-

mentation along with an evaluation of overheads and trade-offs introduced by the

additional security mechanisms.

1.4 Report Organisation

The remaining of the report is organised as follows:

Chapter 2 presents the topic background, related work and initial research performed

for this thesis, including relevant contributions and similar solutions existing in current

days.

Chapter 3 discusses the elaboration phase by describing the implemented system

model and architecture. It provides an in-depth explanation of how the proposed system

achieves the goals and objectives of this dissertation.

Chapter 4 details the implementation of the previously presented system model. It

shows how the system was implemented, the details of the design and important system

features and how they were implemented. It also references all technologies used and

their versions.

Chapter 5 explains how the system was tested, and the relevant metrics and infor-

mation in order to calculate the performance and system resource usage of the system,

always providing a comparison between the implemented the system and a normal im-

plementation.

Chapter 6 summarises and concludes the dissertation by referring the achieved con-

tributions, system limitations and future work directions.

4

C
h
a
p
t
e
r

2
Related Work

This chapter presents and briefly discusses the related work and the study performed

beforehand in order to guide and give some context to the reader. It will present work

that was used as the basis of this dissertation, existent technologies and their relation

with this project, and some comparisons between those existing technologies, the problem

addressed in this dissertation and the solutions proposed to solve, or better address, those

very same problems.

First, in section 2.1 we explain and discuss for the first time the definition of a Key-

Value Store. We present some use cases, current technology available, their differences

and most importantly their security models and concerns. Having discussed the software,

section 2.2 will then address the environment on where that software will run - hard-

ware. It explains and presents the different ways to secure and authenticate the hardware,

prevent hardware-based attacks and discuss some of the current products available and

how they will be used across this thesis. Section 2.3 will then make the bridge between

software and hardware. It explains how Key-Value stores are currently being run on

secure environments. It discusses how software and hardware work together to achieve

a secure environment for an application to run. Section 2.4 will discuss how virtualisa-

tion can allow for faster deployments and easier implementation of secure code for the

complicated frameworks of secure hardware such as Intel’s SGX processors. To conclude

the chapter, section 2.5 will combine the information of every sub-chapter and analyse it

with a bigger perspective and better knowledge of the theme.

Section 2.3 is considered to be the main core investigation and directly related to the

work planned for this thesis. As for the other sections, they provide a piece of background

knowledge necessary for the understanding of the core of this dissertation.

Along the next chapter, we summarise the main relevant ideas that can be retained

from each section for our objectives and expected goals.

5

CHAPTER 2. RELATED WORK

2.1 Key-Value Stores

Key-value stores are the simplest form of what computer scientists call a database. The

simplicity lies on associating a value to a certain key and storing that pair, as well as

retrieving the values of known keys. [54]

Listing 2.1: Redis Set & Get

1 redis> SET mykey "Hello"

2 "OK"

3 redis> GET mykey

4 "Hello"

Is this simplicity that makes this technology very attractive to developers. The ease

of use, their high performance and speed are key aspects in favour of these technolo-

gies. However, simply working with keys and values might not be enough to more com-

plex applications, and that is why Key-Value store product developers are introducing

new features to make them appealing to a broader mass of users, always keeping them

lightweight and fast.

For that lightweight and fast attributes, most of the key-value stores work in computer

memory. This allows fast read and write operations as opposed to persistent disk storage.

Although they work mainly in memory, most of the solutions offer some persistent mech-

anism so we can make use of its performance but still persist data in case of a disaster,

server failure or any crash.

KVSs have been evolving for years and some are now more than a single key-value

store module. A lot of them are now supporting a multi-model storage. Meaning that a

value can be more than a single integer or a string. For example, Redis [78] as a multi-

model store is not only a key-value store, but also [80]:

• Document Store - "nonrelational database that is designed to store and query data as
JSON-like documents" [36]

• Graph DBMS - "Graph databases are purpose-built to store and navigate relationships.
Use nodes to store data entities, and edges to store relationships between entities" [42]

• Search Engine - "nonrelational database that is dedicated to the search of data content.
Use indexes to categorize the similar characteristics among data" [85]

• Time Series DBMS - "Provides optimum support for working with time-dependent
data. Each entry has a timestamp, the data arrives in time order and time represents a
primary axis for the information" [97].

So, the KVS world is becoming more and more versatile as the years pass.

In the next subsections, its discussed and presented the overview of the current KVS

technology. We picked some top KVSs technologies nowadays according to db-engines

[55] website.

6

2.1. KEY-VALUE STORES

2.1.1 Memcached

Memcached [67] is a free and open-source key-value store released in 2003. It is described

as a high performance distributed memory object caching system.

It is designed to hold small chunks of data (strings and objects) to work as a cache for

results of database calls, API calls, or page rendering. Its biggest use case is for use in

speeding up dynamic web applications by alleviating database load.

This system lies on the simpler key-value store spectrum. It takes advantages of the

simplicity of a key-value store to edge ease of development and solving many problems

facing large data caches. Its API is available for most popular languages. It has a LRU

eviction technique which means that items will expire after a specified amount of time if

not used.

When it comes to system replication, availability and reliability, Memcached has an

interesting approach. To keep it blazing fast, there is no communication between server

instances in a cluster. Memcached servers are unaware of each other. There is no crosstalk,

no synchronisation, no broadcasting, no replication. Adding servers will only increase

the available memory.

As for its security context, Memcached spends very little, if any, effort in securing

the systems for random internet connections. The servers only have support for SASL

[83] authentication mechanism. This method of authentication is not implemented as

end-to-end encryption, it only provides restriction access to the daemon, but it does not

hide communications over the network. That means it is not meant to be exposed to the

internet or any untrusted users [68].

2.1.2 Redis

Redis [78] is an in-memory data structure store that can be used as a database, cache and

also a message broker. Redis focuses on performance, so most of its decisions prioritise

high performance and very low latency.

It has been benchmarked as the world’s fastest database [81] and together with their

multi-model and its rich set of operations that can be performed over data it has been the

leading key-value store according to use and popularity for a multiple set of years [55].

Listing 2.2: How Fast is Redis

1 $ redis-benchmark -t set -r 100000 -n 1000000

2 ====== SET ======

3 1000000 requests completed in 8.78 seconds

4 50 parallel clients

5 3 bytes payload

6 keep alive: 1

7

8 99.59% <= 1 milliseconds

9 99.98% <= 2 milliseconds

10 100.00% <= 2 milliseconds

7

CHAPTER 2. RELATED WORK

11 113934.14 requests per second

As said before, Redis is now not a simple KVS. It supports data structures such as

strings, hashes, lists, sets, sorted sets with range queries, bitmaps, hyperloglogs, geospa-

tial indexes with radius queries and streams. It also has built-in replication, server-side

scripting, LRU eviction, the concept of transactions and different levels of persistence. It

provides high availability and automatic partitioning as well.

Redis provides two modes of replication/availability. The master-slave form of replica-

tion works with a single node (master node) where all writes occurring will be replicated

to the other Redis instances (slave nodes). Writes on nodes other than the master will not

be replicated. Redis provides a read-only setting that can be applied to slave nodes to

prevent state differences between instances. The cluster mode of replication consists of

partitioning the data between multiple master nodes. This mechanism does not provide

replication as each data object is stored on a single master node but will allow for lower

dataset sizes on each node and therefore faster response times. This method is usually

mixed with the first one to provide both performance and replication features, by adding

slave nodes to each of the masters.

Security is not Redis’ primarily concern (just like others). "In general, Redis is not
optimised for maximum security but for maximum performance and simplicity" [82]. It is

designed to be accessed by trusted clients inside trusted networks. This means that

it is not supposed to be publicly exposed. Redis (in its latest release 6.0.6 [79]) now

implements an ACL policy that allow the configuration of multiple users with different

permissions over the dataset. It also added support for SSL network communication

security.

There are a few other security concerns that Redis addresses, but as we can now start

to see, in these types of stores, security falls behind performance and usability.

2.1.3 Amazon Dynamo DB

Amazon Dynamo DB [6] is a fully managed NoSQL database service. It is a key-value

store and a document store that is built based on the dynamo paper [32]. This paper

describes a P2P (peer-to-peer) network with high availability, eventual consistency and

very easily scalable. It also successful handles server and data centre failures and network

partitions.

Amazon builds on this paper and offers DynamoDB as a service in its platform. It is

a hosted system in the Amazon Web Services [8] infrastructure and it is fully managed.

That means no need for low-level server configurations or maintenance. It is all managed

by the AWS team and offered to the user with a nice configuration interface. It also means

that it has built-in security, backup and restore and in-memory caching for internet-scale

applications. Also, it offers seamless scalability by increasing the number of nodes/servers

according to current traffic received by the application on any given time.

8

2.1. KEY-VALUE STORES

This technology focuses more on high availability but also achieves very high perfor-

mances and very low latency and being fully managed it also takes advantages of the AWS

infrastructure full power. It currently sits second on the db-engines [55] most popular

ranking.

2.1.4 Microsoft Azure Cosmos DB

Microsoft Azure Cosmos DB [70] is a fully managed database service provided by Mi-

crosoft Azure [71]. This service provides a globally distributed, horizontally scalable,

multi-model database. Its multi-model architecture can work as a key-value store, a

Document Store, a graph DBMS and a wide column store.

It is very proud and excels in the ease of global scale with the system call Turnkey global
distribution, providing transparent multi-master replication and a set of user-configurable

consistency options. It also strongly advertises a Multi-Model Multi-Api feature where

you can use multiple data types on this single database service. Cosmos DB automatically

indexes all data and allows the user to use various NoSQL APIs to query the data.

As a fully managed service, Cosmos DB makes use, in the background, of the large

infrastructure with almost unlimited resources and capabilities provided by Microsoft,

which means it also has built-in security, fail-over mechanisms for disaster recovery, and

high performance with single-digit read and write latencies.

2.1.5 Microsoft Azure Cache for Redis

Microsoft Azure Cache for Redis [69] is a service provided by Microsoft Azure that joins

the open-source world of Redis with the commercial side of a fully managed and hosted

platform.

It uses at its core the Redis server technology and provides ease of deployment and

management, built-in global replication, Azures’ infrastructure security and flexible scal-

ing and Redis superior throughput and low latency performance.

Being in the Azure ecosystem provides nice integration with all Azures’ services as

shown in figure 2.1.

2.1.6 Aerospike

Aerospike [4] is an enterprise-grade, high-performance Key-Value Store. It is another

KVS technology currently available today. It promises a philosophy of "no data loss"
through Strong Consistency. Normal systems trade requiring this type of consistency

usually trade performance for data integrity but Aerospike allows it with minimal per-

formance loss. That means it can be used for example in banking payments, retail and

telecommunications use cases.

It also provides dynamic cluster management and unique flexible storage. That en-

ables very easy deployments and particularly very easy scalability, so it is able to meet

9

CHAPTER 2. RELATED WORK

Figure 2.1: Azure Environment Integration

any data volume needs and still maintaining low latencies across that wide range of data

volumes, from low volumes until hundreds TB of data.

As for security, it includes (the enterprise version) a database access management and

audit trail logs. It also includes transport-level encryption for client-server traffic and

cross-data center traffic [5].

2.1.7 Discussion

In this chapter, we gathered information about the overview of the current Key-Value

Store state of the art. It can be concluded that the most important feature of this technol-

ogy is the performance and all of the above products mentioned do focus on that charac-

teristic. Some of them even compromise in other features to achieve the best performance

possible. Security is not the main concern and the most used security implementations

in the current technologies are at the network and transport level by using TLS and also

full disk encryption.

Network and transport layer security is a must when implementing any system, and

this dissertation will also use those standards.

As for full disk encryption on the server, it opens up some attack vectors. Full disk

encryption means that random users will not be able to query the data but credentialed

users can. Although, anyone with full access to the database, for example, database oper-

ators or/and administrators, can decrypt and access all information. This creates a risk

of privacy breaking due to hackers wielding stolen credentials, rogue insiders who have

been granted more access than they need or the well known honest-but-curious adversary

10

2.2. TRUSTED COMPUTING ENVIRONMENTS

model, where an administrator with full credentials does not have bad intentions, but,

driven by curiosity, access information, therefore, breaking data privacy. In cloud-based

KVS services like the ones talked above, this type of vulnerabilities can be a major con-

cern for a use case with very sensitive data since the server would be off premises, there

is no control over it when it comes to the privacy of data.

This thesis implemented a system based on Redis, the most popular and used Key-

Value Store currently used and will try to solve some of the problems with security de-

scribed above. It will compare the principal feature of a KVS, the performance, of a

simple and normal Redis server and a privacy-enhanced Redis solution so the user can

calculate the trade-off between performance and security and apply the correspondent

solution to their own use case.

2.2 Trusted Computing Environments

Modern data processing services hosted in the cloud are under constant attack from

malicious system administrators, server administrators and hackers who exploit bugs on

applications, operating systems or even the hypervisor. However, current days shows a

massive trend of business moving to the cloud infrastructure looking for easy deployment,

managed services with built-in replication and fault tolerance, fast and trivial scaling and

predicted costs.

With more and more data exposed in the cloud, hackers have a bigger desire to exploit

and look for vulnerabilities. This results in frequent data breaches that reduce trust in

online services. The need for cloud providers to ensure a level of security and trust to

make the user comfortable of moving its data to the cloud has never been bigger, and

with that need, some solutions in the form of Trusted Computing Environments (TCE)

appeared.

Trusted Computing is a concept that strives to provide strong confidentiality and

integrity guarantees for applications running on untrusted platforms. It forces a certain

machine to behave an expected way even if running on a remote or machine that is out

of our control.

TCE will also provide a decrease of the Trusted Computing Base (TCB) - the number

of components that the application needs to trust in order to run smoothly. By isolat-

ing the service running on this trusted environments (limiting the set of instructions

available and encrypting data), it prevents the operating system, the hypervisor and even

malicious system administrators (three components normally on the TCB) to break data

confidentiality and integrity within this environments.

There are a few hardware/software-based solutions to achieve a trusted computing

environment, and they will be explained in the next sections.

11

CHAPTER 2. RELATED WORK

2.2.1 TPM – Trusted Platform Modules

A Trusted Platform Module, also known as a TPM, is a technology proposed by the Trusted

Computing Group (TCG) designed to provide hardware-based security-related functions.

It’s a chip embedded into the motherboard and includes multiple security mechanisms to

make it tamper-resistant to physical harm and malicious software is unable to mess with

its security features [98]. Some key advantages of using TPMs are:

• Generate, store, and limit the use of cryptographic keys;

• Platform identity by using the TPM’s unique RSA key, which is burned into itself

also known as Endorsement Key (EK) and never leaves the TPM;

• Help ensure platform integrity by taking and storing security measurements.

Figure 2.2 shows the mains components and services provided by a TPM module. As

shown in the figure, all of them only have one access point I/O which is protected and

safely managed by the TPM execution engine.

Figure 2.2: TPM Components

With all the components described by figure 2.2, TPMs provide there main TPM

features: Encryption, Authenticated Boot and Attestation.

The first feature is used for every security and confidentiality aspects, mainly gen-

erating cryptographic keys, encrypting, signing and hashing data with secure standard

algorithms melted in the module.

Authenticated Boot is the ability to boot the OS in stages, assuring that each portion

of OS, as it is loaded, is a version trusted and approved for use, detecting hardware and

software changes on every stage to verify if the code loaded can be trusted. This boot

12

2.2. TRUSTED COMPUTING ENVIRONMENTS

sequence happens with the help Platform Configuration Registers (PCR) that store the

trusted software hashes.

The attestation feature is a way for a client to remotely check the state of a machine

and will be further explained in the next subsection.

2.2.2 TPM - Enabled Software Attestation

The remote attestation feature of a TPM is the ability of a program to authenticate itself

against external verifiers. Is a mechanism that allows a remote party to verify the internal

state of the OS or another software and decided whether or not that piece of software is

intact and trustworthy. The verifier can trust that the attestation data is accurate and not

tampered with because it is signed by the internal key of the TPM, a special key known

as the Attestation Identity Key, known from now on as AIK [20].

A remote attestation procedure is described in image 2.3 [19]:

Figure 2.3: Remote Attestation Procedure

1. The application “A” generates a public/private key pair PKA & SKA and asks the

TPM to certify it.

2. The TPM computes a hash value #A of the executable code of program “A”.

3. The TPM creates a certification including PKA and #A and signs it with the attesta-

tion identity key SKAIK.

4. When application “A” wishes to authenticate itself to a remote party, it sends the

certificate of its public key and hash value #A along with a certificate issued to the

TPM by a trusted certification authority (CA).

5. The remote party verifies the certificate chain.

6. The remote party looks #A up in a database which maps hash values to trust levels.

7. If application “A” is deemed trustworthy, we continue the communication, probably

by using PKA to establish a session key.

13

CHAPTER 2. RELATED WORK

2.2.3 HSM – Hardware Security Modules

An (HSM) hardware security module is normally an external module that can be added

to a system, in form of a USB device or a component living in a secure network as a

trusted server, instead of being embedded into the motherboard like a TPM. It provides a

dedicated system of hardware enable accelerated cryptographic functions like encryption,

decryption, key generation and signing capabilities [47]

What makes these devices so secure, like the TPM, is it can’t be interfered with by

external code, and it provides an array of protective mechanisms to detect and prevent

external physical tampering like drill protection foil, resin-embedded chips as well as

temperature and voltage sensors. Any detection of tampering will result in an alarm as

well as countermeasures by the applications installed inside. [25].

HSM can have various applications and can be used in simple forms, for example,

a specific bank dongle that generates OTP (one-time password) for accessing your ac-

count or be a big corporation and enterprise appliance in various industries, e-health,

automotive and IoT systems.

2.2.4 Trusted Execution Environments

A Trusted Execution Environment (TEE) is an abstraction that describes a machine capa-

ble of executing a given program P in isolation, i.e. whose output is determined by the

initial state of P and a set of defined inputs given into the TEE (Barbosa et al., 2016).

It is a secure area of the main processor that ensures sensitive data and code loaded

inside is stored, processed and protected in an isolated and trusted environment. As such,

it offers protection from software attacks even the ones generated in the operating system.

A TEE guarantees that:

• The code loaded in the environment is authentic and was not tampered by an at-

tacker.

• All system state is correct (CPU registers, memory and sensitive I/O).

• The code, all data generated and runtime state is confidential and stored persis-

tently.

The threat model of a TEE should include all software attacks and the physical attacks

performed on the main memory and its non-volatile memory.

"There are many interpretations of what is meant by Trust. In the TEE it is used to

imply that you may have a higher level of trust in validity, isolation and access control

in items (assets) stored in this space, when compared to more general-purpose software

environments"[102].

14

2.2. TRUSTED COMPUTING ENVIRONMENTS

2.2.5 Intel SGX

"Intel® Software Guard Extensions (Intel® SGX) is a set of instructions that increases the

security of application code and data, giving them more protection from disclosure or

modification."[50].

This set of instructions are one of the latest iterations of trusted computing solutions

and designs that tries to tackle the problem of securing remote computations by leverag-

ing secure hardware on the remote host machine. The SGX processor enables a secure

container called enclave which protects the confidentiality and integrity of the execution,

such as code and data while relying on software attestation mechanisms.

An SGX can be though as a reverse sandbox. With a sandbox, you are trying to protect

the system from your application, but with SGX you are trying to do the opposite and

protect the application from the system. The system can be the OS, the hypervisor, the

BIOS, the firmware or even the drivers [90].

A SGX enabled application is broken into two parts, the untrusted and trusted parts.

The trusted part of the application is all the processing that deals with any sensitive

data the application is handling. This part will be run inside enclaves and be stored in

protected memory. The rest will live in normal memory and not be protected.

It provides this kind of security from the hardware by isolating all the private data

from the outside, placing it into a restricted area of the memory called the PRM more

specifically in the EPC (Enclave Page Cache) as shown on figure 2.4. The PRM is a zone

of the RAM with guaranteed access management by the CPU where it will deny every

external access and only allow access through the associated enclave. This region of

the memory is also known as the private/protected memory or the trusted part of the

application. The data managed in EPCs is decrypted and verified when loaded to CPU

caches and handled on plaintext while is present there but is encrypted and integrity-

protected when it leaves the CPU cache and is mapped in the external memory.

Figure 2.4: SGX Memory Architecture [46]

15

CHAPTER 2. RELATED WORK

Because the SGX enclaves execute within the virtual address space of a process, the

translation of enclave addresses must be trusted. However, since it is the OS that manages

the translation between physical and virtual addresses (and the OS cannot be trusted),

SGX maintains an internal data structure called the EPCM (Enclave Page Cache Mapping)

which tracks the referred mapping as well as the information described on figure 2.4 [73].

With all this information about enclave pages, the processor can now perform and

control access management to the enclave page cache described in figure 2.5, where it

will deny access not only from outside the enclave but as well as from enclaves that do

not own the page of memory request creating then, an isolated memory region.

Figure 2.5: SGX Access Control [46]

The SGX will create an enclave when sensitive code needs to run by a specific SGX

CPU instruction (ECREATE) and will create a unique instance of an enclave, establishing

the linear address range and load the sensitive code into an EPC inside the protected

memory. Once all pages are loaded into the EPC, and the loading is complete, an authen-

tication hash is computed and is available for remote attestation so a user can verify that

the code running in the enclave has not been tampered with.

An enclave must expose an API for the application to call in and advertise what ser-

vices provided by the untrusted domain are needed. This is the definition of an interface

boundary between the untrusted part of the code and the enclave and it is how they com-

municate. An Ecall is a function that the untrusted part application can call to execute

some code inside the enclave and since it exposes a sensitive interface, to reduce the

enclave attack surface, the number of Ecalls should be limited. On the other hand, the

Ocall is a function that an enclave can call to reach a service/interface outside the enclave,

on the untrusted OS. Again, calling some service out of the enclave can carry additional

security risks and should be as minimal as possible [52].

When running, the execution always happens in protected mode, and to prevent data

16

2.2. TRUSTED COMPUTING ENVIRONMENTS

leaking, the CPU will not directly address an interrupt, fault or VM exit, but will instead

emit another specific instruction (EEXIT) to properly exit the enclave, save CPU state into

the enclave and only then will service the fault.

With all these properties, Intel® through SGX set of instructions and implementa-

tion tries to achieve a secure and trusted environment with guarantees of code and data

isolation, confidentiality and integrity from attackers such as the OS, hypervisor, any

hardware and even physical attacks [27].

2.2.6 Sanctum

Sanctum [28] is an open-source project that shares the same as goal as Intel SGX, provid-

ing strong provable software isolation to protected the data from external hardware and

software, but claims to be simpler and protect against indirect attacks called side-channel

attacks [59] such as cache timing attacks [24] that have been known to exist in SGX [41,

84]. These are additional software attacks that can infer private information by analysing

a program’s memory access patterns.

Following the minimal and simple concepts, it uses minimal invasive hardware and

it does not require any modifications to the CPU major blocks, but only adds hardware

to the interfaces between blocks. This allows for a respectable overhead by maintaining

normal clock speeds as it does not modify the CPU core critical execution path.

Sanctum project builds on the SGX programming model and implements an archi-

tecture that deviates as little as possible from the one built by Intel. Although it differs

from SGX by implementing the enclaves via a small combination of hardware extensions

to RISC-V (an open-source set of CPU instructions [101]) and a trusted piece of software

called the security model, as SGX implements them via hardware microcode and presents

a set of CPU instructions to manage the enclaves.

This security monitor is the core of the project and configures the hardware to enforce

low-level rules that control the enclaves’ access policies. As explained in the Sanctum

paper, "the security monitor checks the system software’s allocation decisions for correctness
and commits them into the hardware’s configuration registers". One of the examples and the

main points of an upgrade compared to SGX is that Sanctum keeps the enclave page tables

inside enclaves memory, protecting the system against the timing attacks referred above

by keeping the page table dirty and accessed bits private. Their hardware extensions

make sure that enclaves page tables only point to enclave memory and untrusted OS

tables only point to OS memory regions and never to enclave private memory.

Sanctum is also open to the public which makes easier for security researchers to

audit and find vulnerabilities and to further encourage the analysis of the code, Sanctum

security monitor is written in portable C++ code and can be used across different CPU

implementations.

17

CHAPTER 2. RELATED WORK

2.2.7 ARM Trust Zone

ARM Trust Zone [12] is a technology that offers a system-wide approach to security based

on hardware-enforced isolation built into the CPU [11]. The principle of the technology

is to separate the trusted and untrusted by two virtual processors backed by hardware

access control. The two states are referred as worlds, where the first is called the secure

world (SW) and the other is the normal world (NW) like figure 2.6 shows.

Figure 2.6: Arm TrustZone Stack [13]

The non-secure world (or normal world) is where the OS and most of the software and

applications will be running, as for the secure world is where more secure and sensitive

software will run and will ensure that vital information is not intercepted by a third

party. The security is enforced because each of the worlds acts isolated from the other

as a runtime environment with separated resources such as memory, processor, cache,

controllers, interrupts. The ARM hardware has separate copies of the registers for each

world and cross-world register access is blocked. However, the Secure Monitor shown in

figure 2.6 can access non-secure registers while running in the secure world. This means

that the monitor can then implement context switching between both worlds.

When in Normal World, the application calls a specific ARM instruction call SMC

(Secure Monitor Call) to call back inside the secure world and securely execute the code.

By keeping the worlds separated from each other, the ARM TrustZone can keep appli-

cations running in secure mode isolated from the normal world applications such as the

OS and thus achieving another implementation of a TEE.

2.2.8 Discussion

The TCB (Trusted Computing Base) is the set computer components (hardware), software

and data that we need to trust and deem as not malicious in order to use a system. It’s a

group of various elements that are critical to a systems security in a way that any bug or

vulnerability occurring from inside the TCB components might compromise the security

18

2.3. TEE/SGX ENABLED KEY VALUE STORES

and privacy of the entire system. On the other hand, security flaws and bugs from outside

of the TCB should not become a security issue.

Hardware security like TPMs and TEE technologies have the goal to drastically reduce

the TCB of a system, for example, remove the OS from the trusted base to make sure that

a remote compromised machine vulnerability does not affect the security and privacy of

an application or system.

By isolating the program from outside and uncontrollable sources like cloud infras-

tructures OSs, hypervisors and hardware we can more safely deploy sensitive applications

to those cloud providers. That is the goal of all different implementations of trusted exe-

cution environments like the Intel SGX and the ARM TrustZone.

Although not free of some problems, SGX implementation of a TEE seems to be the

most accepted technology, with serious and skilled developers and security researches

always working to mitigate any vulnerability in order to create a truly trusted and isolated

environment.

2.3 TEE/SGX Enabled Key Value Stores

There has been an increasing trend from developers to move their applications to the

cloud. It provides dynamically and almost seamlessly scaling with predict cost. Although

it also means that users need to rely on the cloud providers for securing and maintaining

the integrity of their applications. That means the user must trust not only the provider’s

staff but also its globally distributed software and hardware not to expose their private

data. Today’s cloud providers only aim to protect their privileged code from the untrusted

code (the user’s code) and do not provide any guarantees about the opposite scenario.

To mitigate this use case, and after studying and discussing the Key-Value store tech-

nologies and also the trusted platform modules as well as the trusted execution environ-

ments, in this chapter, it will be presented how are this two topics being combined and

used together.

It will be more focused on the Intel SGX platform as it is the one that will be used

throughout this thesis. Currently, several databases that leverage this technology to

provide a more secure environment and service. In this chapter, it’s presented how they

work and operate, discussed the differences between them and also the how the work

planned to be performed on this thesis will solve some of the problems and caveats.

2.3.1 Trusted Execution with Intel SGX

As explained before, Intel SGX provides a trusted execution environment by running

code inside the enclaves. It creates an isolated environment where we can run some

instructions as securely as possible, without OS intervention.

Key-Value Stores and other database type systems can leverage this secure and isolated

19

CHAPTER 2. RELATED WORK

environment to perform queries on very sensitive data that would otherwise be vulner-

able to some attacks. There are a few techniques currently implemented to use isolated

environments. Maintaining an encrypted database and using enclaves cryptographic ca-

pabilities to decrypt data and perform queries on plain text with the assurance of no data

leaking is a possible use case. Also, maintaining a database fully on enclave memory,

where it cannot be accessed by anyone other than the CPU is another way to keep the data

secure by leveraging isolated and trusted execution environments. Different techniques

will be furthermore discussed below.

As we can see, isolated and trusted execution environments are an important feature

when it comes to protecting the data from the OS and Key-Values Store systems do benefit

from them.

2.3.2 Circumvention of SGX Limitations

There are a few limitations and challenges of the SGX platform that we address when

programming for such technology.

It starts with a big challenge of choosing and defining what parts of the program

can benefit from the SGX security. As it is known, it works with two major application

components, the trusted and untrusted modules of or program. The limitations have to

be thoroughly analysed so we can make that definition.

The main limitations are:

• Performance

• Memory

• I/O

• syscalls

In the KVS world, as we extensively covered, performance is the major concern and

there is no real way around this limitation. Using secure enclaves will decrease the

supposed blazing fast performance. Although, with an intelligent partition between

the untrusted code, which will be fast, and the trusted instructions, which can introduce

overhead, we can limit the performance decrease. By separating and clearly defining both

modules of the application, we can decrease the code that needs to run securely and find

a fine compromise between security and performance. Homomorphic encryption is also a

mechanism to to increase security and perhaps even speed up performance by executing

queries directly over encrypted memory. Although fully homomorphic encryption is not

a possibility yet, so, by compromising some set of operations that are not possible, partial

homomorphic encryption will speed up the performance.

With the SGX base support the access to EPC from the owner enclave is efficiently

processed by hardware en/decryption logics at cache-line granularity. This means that

20

2.3. TEE/SGX ENABLED KEY VALUE STORES

when the cache-line is brought from EPC to the processor, it is decrypted. The hard-

ware logic calculates the keyed hash value of the cache-line and verifies it against the

stored hash value of the address. Internally the integrity hash values are organised in

data-structures similar to Merkle Trees, to allow sub-trees to be evicted from the on-chip

storage securely [45]. Due to space and time overhead of storing and processing security

metadata at fine-grained cache-line granularity for EPC, the EPC capacity is unlikely to

increase significantly. For example, a huge Merkle tree for tens gigabytes of main mem-

ory at cache-line granularity will necessarily increase the integrity verification latency

intolerably, as an inefficient solution that will sacrifice throughput and latency [93].

Memory sizing is also a limitation when using enclaves in SGX technology. The

amount of private secure data that can be maintained by the enclave is limited to the size

of the enclave cache, which is around 128 MB, being that only about 94 MB are available

to the application, with the rest reserved to metadata. However, for some operation

systems, mainly Linux because of paging swap support, it can be increased up to all the

memory available in the system [89] by swapping pages from the EPC to main untrusted

memory, with guarantee of confidentiality, integrity and data freshness. When evicting

pages from the EPC, it is assigned a unique version number which is recorded in a new

type of EPC page and the contents of the page, metadata, and EPCM information are

encrypted and written out to system memory and to prevent address transaction attacks,

the eviction protocol interrupts all enclave threads and requires a flush to the translation

lookaside buffer (TLB) 1 [14]. When reloading a page back into EPC the page is decrypted

and has its version and integrity checked to make sure it was not tampered with.

Although, page eviction to main untrusted memory introduces a big overhead because

of encryption and decryption and integrity checks (2x - 2000x) [14]. Clever partitioning

of the application into the untrusted and trusted modules will reduce the enclave memory

necessary, reduce the number of system calls and page evictions and help to overcome

this limitation, as described in the next sections. Another issue is EPC fault handling

because EPC limit requires exiting the enclave improving more the cost of paging.

I/O and syscalls are limited by default on the enclave for security purposes, so it can’t

affect or be affected by the OS. There is a way to perform and access I/O and syscalls

through the aforementioned Ecalls and Ocalls (section 2.2.5 of this thesis), but they have

to be accounted for when implementing the application. To address the problem, recently

proposed solutions try to reduce the frequencies of enclave exits for system calls by

running threads in untrusted execution for the interaction with the operating system,

communicating with the enclave thread by sharing memory. Also, Ecalls and Ocalls

require exiting and entering the enclave and that caries a big performance overhead, as

encryption and decryption cycles must be done to maintain security guarantees, as well

as integrity checks.

1"A TLB is part of the chip’s memory-management unit (MMU), and is simply a hardware cache of popu-
lar virtual-to-physical address translations; thus, a better name would be an address-translation cache"[16]

21

CHAPTER 2. RELATED WORK

2.3.3 SGX-Enabled Secure Databases

Database management service developers are now implementing secure databases ready

to take advantage of Intel SGX hardware. It differs from normal databases because it runs

on top of protected and encrypted memory so it can work with minimal TCB.

Next subsections present and discuss the overview of the current technology that

leverages SGX to provide a secure database.

2.3.3.1 EnclaveDB

EnclaveDB [76] is a privacy-enhanced and secure database that works alongside with

Intel SGX and provides a Structured Query Language (SQL). It uses its technology to

maintain all sensitive information inside SGX enclaves in order to keep them secure

from a threat model of strong adversaries that can control the entire software stack on the

database server. It resists attack from the administrator server, the database administrator

and attacker who may compromise the operating system, the hypervisor or the database

server.

Following Intel’s application guidelines, EnclaveDB has a two-part architecture: trusted

(running on the enclave) and untrusted modules. The enclave hosts a query processing

engine, natively compiled stored procedures and a trusted kernel which provides API’s

for sealing and remote attestation. The untrusted host process runs all other components

of the database server. Figure 2.7 shows the architecture of the enclaveDB server-side.

Figure 2.7: Server-side components of EnclaveDB

Leveraging TEE, EnclaveDB then provides a database with a SQL interface and guar-

antees confidentiality and integrity with low overhead. With its design, it also reduces

the TCB to a smaller set than any other "normal"database.

2.3.3.2 Pesos DB

Pesos [62] is a secure implementation of object storage services like Amazon S3 [7], Azure

Blob Storage [22], Google Cloud Storage [40] among others. In these current large-scale

services, due to their complexity, the risk of confidentiality and integrity violations in-

crease significantly. These storage systems are characterised by multiple layers of software

22

2.3. TEE/SGX ENABLED KEY VALUE STORES

and hardware stacked together which means the access policies for ensuring confiden-

tiality and integrity are scattered across different code paths and configurations, thus

exposing the data to more security vulnerabilities. Furthermore, untrusted third-party

cloud platforms expose an additional risk of unauthorised data access by a malicious

administrator.

Pesos allows clients to specify per-object security policies concisely and separately

from the remaining storage stack. It also provides cryptographic attestation for the stored

objects and their associated policies to verify policy enforcement mechanisms.

It enforces these policies by leveraging the Intel SGX for trusted execution environ-

ments and Kinetic Object Storage [61] for trusted storage (secure persistent storage - not

the focus of this thesis). It structures a policy-compiler, its binary-format interpreter,

per-object policy metadata, and the enforcement logic into a single layer of the storage

stack. With this unification, it drastically reduces the TCB when compared to the order

cloud services. Then it uses the trusted execution environment provided by SGX to con-

nect directly Kinetic disk through an encrypted Ethernet connection allowing for object

transfer and policy enforcement securely without any intermediate layers in the storage

stack.

2.3.3.3 Speicher

Speicher [23] is a secure LSM-based (Log-Structured Merge Tree) Key-Value store that uses

Intel SGX and it ensures not only strong confidentiality and integrity properties, but also

data freshness to protect against rollback/forking attacks. It leverages SGX technology to

achieve those security characteristics focusing on providing a persistent service, tolerant

to system faults and securely recovering from crashes. It also tackles in interesting ways,

two of the major limitations of SGX: Memory Limits and Performance.

Implementing a Key-Value Store has a major requirement - High performance and

low latency queries for big data structures. As already discussed, SGX has some memory

limits. The enclave memory is located in the Enclave Page Cache (EPC) which is limited

to 128 MB with about 94 MB available for application use (the rest being reserved for

metadata). To allow the creation of enclaves with bigger size than EPC, the OS can use

secure paging mechanism where it evicts pages to untrusted memory. Although with page

encryption, decryption and integrity checks, this solution introduces high overheads (2×

- 2000×) [14].

To address this performance and memory problems, the developers of Speicher im-

plemented the following custom features (from Speicher public paper):

• "I/O library for shielded execution: Direct I/O library for shielded execution. The I/O
library performs the I/O operations without exiting the secure enclave; thus it avoids
expensive system calls on the data path."

23

CHAPTER 2. RELATED WORK

• "Asynchronous trusted monotonic counter: Trusted counters to ensure data freshness.
The counters leverage the lag in the sync operations in modern KVS to asynchronously
update the counters. Thus, they overcome the limitations of the native SGX counters."

• "Secure LSM data structure: Secure LSM data structure that resides outside of the
enclave memory while ensuring the integrity, confidentiality and freshness of the data.
Thus, the LSM data structure overcomes the memory and I/O limitations of Intel SGX."

The technology leverages SGX with a clever partition between trusted and untrusted

modules of the application. By maintaining the encrypted data on untrusted memory

hardware it addresses the memory and persistent limitations, and by keeping some infor-

mation in secure enclave memory and with a good I/O library it overcomes (to an extent)

the performance issues.

2.3.3.4 ShieldStore

ShieldStore [60] is a "(...) shielded in-memory Key-Value Storage with SGX". It aims to

provide very fast and low latency queries over very large data trying to overcome the SGX

memory limitation. It accomplice’s it by maintaining the majority of the data structures in

the non-enclave memory region, addressing as well the performance issue by not relying

on the page-oriented enclave memory extension provided by SGX.

ShieldStore runs server-side in the enclave to protect encryption keys and for remote

attestation and it is used to perform all the KVS logic. It uses a hashed index structured

but places it in the unprotected memory region instead of the enclave EPC. As the main

data structure is not protected by the SGX hardware, each data entry must be encrypted

by ShieldStore in the enclave and written to the main hash table.

The main flow and architecture are as described in figure 2.8.

Figure 2.8: Overview of ShieldStore

First, the client remote attests the server-side (1) verifying SGX support of the proces-

sor, the code, and other critical memory states of an enclave. In a second step, the client

and the server exchange sessions keys (2) in order to establish a secure connection, using

Intel SGX libraries to do so. Using this newly generated session key, the client sends a

24

2.4. SGX VIRTUALISATION FRAMEWORKS

request for an operation (3). The server deciphers and verifies the request and accesses

the Key-Value Store (4). Clients do not access the server-side ciphertexts neither need to

know the encryption key used by the server to encrypt the values. The server will then

decrypt the data from the storage, encrypted it again with the session key and reply to

the client (5). All accesses to the KVS have integrity checks.

2.3.4 Discussion

Concluding, EnclaveDB (section 2.3.3.1) and Pesos (section 2.3.3.2) presents secure databases

and objects storage systems respectively, using SGX, but EnclaveDB assumes that SGX

supports large enclaves whose size is an order of several hundred GBs and Pesos restricts

the size of data structure to the size of EPC. On the other hand, Speicher (section 2.3.3.3)

and ShieldStore (section 2.3.3.4) proposes a store that alleviates the memory limitation of

Intel SGX by storing encrypted data on untrusted memory regions. Speicher and Shield-

Store have similar architectures, but the former is primarily designed for persistence

storage and the latter is focused on a fast in-memory key-value store.

We can now conclude that the clever partitioning of the application into trusted and

untrusted parts is really important when programming with Intel SGX. It directly affects

syscalls and I/O, performance and memory of the service.

The long-term goal of this thesis is to implement a system with characteristics from the

databases present above. In terms of performance, we implemented partial homomorphic

encryption, so it allows to perform operations directly over in-memory encrypted data.

This will be a challenge, as fully homomorphic encryption is not yet practical [39], so

adaptations must be made, but performance increases are expected over the databases

presented above, by not needing to decrypt the data in secure execution. Persistence will

also be a requirement just like some of the databases presented.

For trusted execution with SGX, extensive research is needed to partition the applica-

tion in the two necessary modes to circumvent persistence, performance and memory SGX

limitations. It will also be researched and tested the ability to provide built-in replication

and availability with SGX.

2.4 SGX Virtualisation Frameworks

Virtualisation is the mechanism that relies on software to simulate hardware components

and with the objective of creating a simulated ("virtual") computer system. It means that

multiple virtual machines can run inside the same physical machine, and although shar-

ing psychical resources between them - CPU, memory, disks, run completely separated

from one another.

With the broader adoption of virtualisation and SGX over the years, developers are

working on ways to leverage virtualisation with these secure enclave technologies.

25

CHAPTER 2. RELATED WORK

Also, container-based virtualisation has become very popular in the last few years.

Containers can use the capabilities of a secure and trusted environment to achieve a

fast, highly portable, faster to deploy, and small SGX environment that can run mainly

unmodified applications without a big performance overhead.

2.4.1 KVM-SGX

"KVM (for Kernel-based Virtual Machine) is a full virtualisation solution for Linux on x86
hardware containing virtualisation extensions (Intel VT or AMD-V). It consists of a loadable
kernel module, kvm.ko, that provides the core virtualisation infrastructure and a processor
specific module, kvm-intel.ko or kvm-amd.ko" [57].

The KVM framework allows the running of multiple virtual machines with unmod-

ified Linux or Windows images. Each VM will be assigned their own virtual private

resources like the network cards, disks graphic adapters, etc...

The KVM-SGX project is a module KVM/Linux module to support SGX virtualisation

on KVM. It exposes a private virtual SGX that can be used by the guest OS. To fully

virtualise SGX, EPC must be assigned to the guest OS. Although, since the EPC is a

system resource, the management of this physical EPC - that backs the virtual EPC, its

owned by the kernel. The kernel exposes a device /dev/sgx/virt_epc that allows the guest

VM to make a system call that creates and assigns its own virtual EPC section.

To recap, the guest VM does not have to deal with PRM or even EPCM because those

resources are sitting below it on the hardware. The guest has a virtual Enclave Page Cache

managed by the hardware that it can use at will to store secure code and data.

The Linux SGX KVM module is still in its development phase but can already be used

to virtualise SGX platforms onto virtual machines [26, 51, 91].

2.4.2 Graphene-SGX

Graphene [43, 99, 100] is a guest OS design to run a single unmodified application with

minimal host requirements. It bridges the gap of portability by abstracting the OS making

it easier to port applications to different OSs. Like a VM, Graphene provides an isolated

environment for the application to run in, and, by not running a complete operating

system it has a much lighter footprint, and generally low memory requirements and per-

formance overheads. Also, developers are working to supply graphene as a containerised

application [44].

As an extension, Graphene is working to provide integration with Intel’s SGX proces-

sors where applications could run unmodified with the additional security guarantees of

the secure enclave technology [99].

Since it is a library OS, Graphene takes advantage of its lightweight form factor to

serve as a compatibility layer between the hardware and the application where normally,

they do not work out of the box, with small performance overheads high portability and

minimal or even no code modifications.

26

2.4. SGX VIRTUALISATION FRAMEWORKS

2.4.3 SCONE

The SCONE [14] (Secure CONtainer Environment) platform facilitates always encrypted

execution using Intel’s SGX secure enclaves to run encrypted code not even accessible to

system administrators or root users. It supports this kind of execution running inside

Docker containers and even managed Kubernetes clusters.

Although containers can have a big TCB and weaker isolation, the design of SCONE

leads to a small TCB by exposing a small C standard library that allows for system call

to execute outside the enclave but maintaining security guarantees by seamlessly and

transparently encrypting/decrypting application data. Files stored outside of the enclave

are therefore encrypted, and network communication is protected by TLS. SCONE also

implements a user-level threading that maximises the time that the thread spends inside

the enclave. Combined with the asynchronous system where OS threads outside the

enclave execute system calls, it minimises a big enclave overhead - enclave entry/exit.

It also provides seamless and transparent attestation of enclaves, to make sure ap-

plications run inside secure enclaves and also, that the process running is secure and

correct. Combined with the attestation feature, it also provides a secret management API

that can store or even generate secrets (encryption keys, TLS certificates, passwords and

others) keeping them secure, also stored inside enclaves, and invisible to any human, and

guarantees that only the correct enclave can access them.

SCONE also ensures better compatibility with Linux than library OSs and is hardware

independent meaning that their implementation can easily be portable to another TEE

without any user application code changes.

SCONE is a tool that helps to run unmodified applications by abstracting the TEE

technology behind and helps to better integrate a user’s custom application to a secure

environment without application changes, guaranteeing an extra layer of security with a

small performance overhead.

2.4.4 Asylo

Asylo [17] is an open and flexible framework for developing enclave secured applications.

Developed by Google, Asylo provides [18]:

• The ability to execute trusted workloads in an untrusted environment, inheriting

the confidentiality and integrity guarantees from the security backend, i.e., the

underlying enclave technology.

• Ready-to-use containers, an open-source API, libraries, and tools so you can develop

and run applications that use one or more enclaves.

• A choice of security backends.

• Portability of your application’s source code across security backends

27

CHAPTER 2. RELATED WORK

Asylo does not lock their technology with Intel’s SGX but instead leaves it open to

multiple secure enclave frameworks. In Asylo, the majority of user-developed logic lives

inside the enclave. However, due to security and portability reasons, this framework does

not support direct interactions between the enclave and the OS. All of the enclave-to-OS

interactions must be mediated through code that runs on the outside of the enclave but

Asylo provides most of the code for creating, exiting and interacting with the enclave and

the OS.

2.4.5 Discussion

Virtualisation was a game-changing technology when it was first created and, to this day,

it is still evolving and it has become the core of cloud computing. With each iteration,

more and more components can be virtualised and simulated to be used freely by their

guest OSs and virtualised SGX’s processors are starting to appear. The KVM SGX module

and Graphene are more low-level types of virtualisation that can use SGX to provide an

even more isolated an secure environment for the application to run. However, with its

fast shipping and deployment and highly portable applications, containerisation follows

the same path, as it becomes more and more popular to developers, and SCONE and the

Asylo frameworks work beautifully to combine the power of a secure enclave with the

characteristics of a container-based application.

In this thesis, we will use SCONE technology to run an unmodified Redis system

secured with Intel’s latest Software Guard Extensions (SGX) to expose a seamless secure

application to the client with fast deployment speeds and high portability and scalability.

2.5 Related Work Balance and Critical Analysis

In the current days, computer scientists are always looking for a secure, fast and cheap

environment to develop applications. As we know, it is not feasible to have all three of

these elements working flawlessly without any compromises. However, by combining

in-memory key-value stores, trusted remote execution environments and cloud providers,

developers can now have a practical example of what would be to develop for a privacy-

enhanced secure system with reduced costs by using cloud providers and with better

reassurances that the hardware and software that it’s out of the control of the user will

have a minimal impact on sensitive data and code of an application. By adding the

performance benefits of an in-memory key-value store and all of its technology, like built-

in security, built-in replication and persistence we can in the best of our abilities today,

combine the best of the three worlds without compromising too much on any of them.

In this thesis, we will compare different kinds of approaches to implement a fast

system with the assurance of a secure data flow that can easily be deployed into the cloud

without fear of any components out of our control.

28

C
h
a
p
t
e
r

3
System Model and Design Options

In this chapter, we provide an overview of the system model and implemented architec-

ture along with all of its components. It is explained how all components interact with

each other and each component purpose and how they work.

It is also explained how the different security features are implemented into the system

in order to provide a secure overall system and achieve the contributions planned for this

thesis.

Section 3.1 provides a small recap and refinement of the objectives and contributions

of this thesis and the used TEE technology.

In section 3.2 we describe the basic security assumptions and the needs for our sys-

tem to work securely. The threat model is a very important part of any security-related

project as it provides a clear overview of what attacks the system is able to protect against,

presents the trustability chain and TCB as well as what components and security proper-

ties are out of scoped and not addressed in the project. Sections 3.3 and 3.4 presents an

high level view of the system model and implemented architecture of the system. Then,

in section 3.5 and 3.6 we expose the application-specific operations supported both key-

value store specific operations and custom operations implemented by the proxy and also

an interaction flow that represents a user interaction with the system.

Finally, section 3.7 we summarise all the findings and provide a clear transition into

chapter 4, which will present all implementation-specific details performed to achieve

the described system.

29

CHAPTER 3. SYSTEM MODEL AND DESIGN OPTIONS

3.1 Refinement of Objectives and Contributions

The goal of this dissertation as explained on chapter 1, is the design, development and

validation with experimental evaluation of a secure in-memory storage (based on a "key-

value"model), supported by a hardware-enabled trust computing base.

Regarding the security assumptions, the solution will provide: (i) hardware-isolated

in-memory processing engine, designed as a hardware-isolated container facility, en-

claved within the Intel-SGX protection guarantees; (ii) hardware-isolated communication

endpoints for client access, providing TLS tunnelling with strong TLS 1.3 endpoint en-

cryption parameterisations and support for mutual client/server authentication, and (iii)

privacy-enhanced operations to be directly processed on encrypted data sets in memory.

The former facility is particularly interesting to combine the possibility to manage pro-

tected memory for small data sets and also searchable encrypted data sets that are far

larger than the protected memory limits imposed by the SGX memory mapping facility.

Furthermore, the solution will target main data structures commonly use fine-grained

data items that can include pointers, complex composite types and keys, which do not

match well with the coarse-grained paging of the SGX memory extension technique.

In the next subsections, we will align the implementation ideas starting by refining

the circumvention of limitations in SGX and the threat model assumptions to address our

solution.

3.1.1 SGX Limitations Refinement

Section 2.3.2 describes in detail the limitations of SGX. In our approach we will intend

to design a solution that can be leveraged from conventional reference KVS technology,

giving the possibility to manage small datasets but also larger datasets (directly mapped

in non-protected memory). To circumvent the problem our solution must combine the

possibility to use the internal capabilities native to SGX with the possibility of support-

ing operations managing datasets encrypted in memory, with such operations executed

directly over encrypted data. This facility will be provided by the use of partial homo-

morphic encryption constructions, with data initially encrypted and submitted to the

key-value-store solution with cryptographic keys only managed in the client-side. Our

solution will be designed in order to be possible the support for fine-grained key-value en-

cryption, driven from the application requirements. Our target is the support of a variety

of operations provided in a typical KVS API, taking REDIS as the reference solution and

to support a considerable number of queries currently used by many REDIS-supported

applications.

3.2 Threat Model and Security Properties

The threat model and security properties definition describe the conditions of how we

define a secure system. However, to ensure a basic secure system, we must achieve a few

30

3.2. THREAT MODEL AND SECURITY PROPERTIES

key goals and objectives:

Data Privacy - Data must remain private to its owner;

Data Integrity - Data must not be compromised, modified or corrupted;

Authenticity - Data and system interactions should be authentic and not spoofed by

unauthorised users.

Subsections 3.2.1, 3.2.2 and 3.2.3 explain under which conditions and assumptions

the system will achieve these three main parameters and implement a secure system.

3.2.1 Adversarial Model Definition

As the baseline, our threat model will lie on the protection overview stated in SGX’s

paper [66]: SGX prevents all other software from accessing the code and data located inside
an enclave including system software and access from other enclaves. Attempts to modify an
enclave’s contents are detected and either prevented or execution is aborted, which falls in the

following adversary model:

Isolation by trusted containerisation from malicious code: The system performs

and protects its data from an attacker capable of compromising the system through

another application installed on the same system or malicious code existent or injected

in the OS or OS hypervisor layers;

Privacy protection against insider "Honest but Curious"System Administrators:

The system must be able to protect from an attacker with root access to the machine, with

permissions to access and monitor memory-mapped data. This is relevant because we

will target our solution as a candidate solution to protect data privacy in a cloud-based

key-value store solution as a service, preventing data-leakage vulnerabilities exploitable

by insider incorrect users or system-administrators;

Network Attacks: All communication to and from the system (supporting client-

service operations) should be secure, using proper strong cryptographic parameterisa-

tions for TLS 1.3, mutually authenticated handshakes and TLS endpoint executions iso-

lated in SGX-enabled TLS tunnels in communication containers, avoiding attacks against

the authentication of the service endpoints, as well as, attacks against the integrity and

confidentiality of data flows supporting REST/HTTPS operations;

File system and memory access attacks: All sensitive data residing outside protected

memory should be encrypted and operated in the encrypted form. An attacker can access

the physical disks and hardware without the sensitive data being exposed.

3.2.2 System Assumptions

With the above security baseline considered for the threat model assumptions, the solu-

tion must be resilient to malicious privileged attacks and certain physical attacks. With

a controlled and reduced hardware-shielded trust computing base, we want to design

a solution that does not rely on the security of the operating system managed by cloud

31

CHAPTER 3. SYSTEM MODEL AND DESIGN OPTIONS

providers. Furthermore, our solution must be also resilient to direct conventional physi-

cal attacks, such as cold boot attacks, which attempt to retain the DRAM data by freezing

the memory chip or even bus probing to sense and to read exposed memory channel be-

tween the processor and memory chips. The only weaknesses not covered in our concerns

with the SGX platform is the lack of protection for side-channel attacks.

The system planned has certain assumptions and aspects that are considered to be

out of scope for this dissertation:

• Trusted Client - The client side is assumed to be completely trusted and correct;

• DoS and DDoS attacks are out of scope;

• Side Channel Attacks - It is out of scope any side channel attacks or any related

attack not present in SGX’s threat model;

• Physical and Hardware attacks exploring the SGX processing model and its isola-

tion guarantees are out of scope, namely those presented above initially addressed

in chapter; 2, section 2.2.

3.2.3 Countermeasures for Privacy-Preservation

Under the described threat model and system assumptions, the system has implemented

and deployed several measures to achieve the desired security and trustability level.

All instances of the datastore are running in a containerised solution which means

that each container is not only isolated from the host but they are also isolated from each

other. Data is kept in memory at all times unless persistent disk storage is turned on.

Data in main memory is secure when running both in protected and unprotected mode.

Privacy, integrity and authenticity when running in protected mode are always en-

sured by the SGX’s technology under their threat model and assumptions, but when the

storage server is running in unprotected memory, outside the trusted execution environ-

ment, the system will always keep data encrypted with strong and standard state of the

art cryptography algorithms, therefore preserving the privacy of data.

Although data might be private, the preservation of the integrity of that data is also

very important and to assure data integrity, all values are appended with standard check-

sums calculations and integrity check algorithms. Authenticity is preserved by perform-

ing strong and standard cryptographic digital signature algorithms.

When it comes to the overall security of the exposed application, the system provides

an API that only allows authenticated requests and it contains a role-based segmentation

authorisation with secure and strong passwords and cryptographic keys. This system also

applies the principle of least privilege [65] to all actions, where users never have more

privileges than they require.

32

3.3. SYSTEM MODEL

The same security principals must also be guaranteed on an in-transit level and so, all

communications are secured with the use of the strongest transport layer security algo-

rithms currently available and established trust between all components with a trusted

certificate chain.

Security by Design means that security is the foundation of a project, and its tactics

and patterns should be used as guideline principles for developers, baked into the project

initial state, and enforced by the architecture design.

The measures adopted to achieve data privacy, integrity and authenticity are a stan-

dard that the whole project followed since the beginning of the implementation, meaning

that the security by design principle was adopted, and the whole architecture was shaped

around security in order to achieve a secure and correct system.

3.3 System Model

The main goal of this project is to implement a system that follows the model presented

in figure3.1. As shown, the system can be divided in four main components - the client,

the proxy server, the key-value storage server and the authentication server.

Figure 3.1: System Model Overview

The system complies with the adversary and threat model explained in section 3.2.1.

The user is not aware of any implementation details and has seamless interaction with the

system despite the architecture and implementation provided by the backend, meaning

that all solution exposes the same API and support an interface as equal as possible to

the unprotected version of the key-value store.

All of the four main components will be explained in the subsections that follow.

33

CHAPTER 3. SYSTEM MODEL AND DESIGN OPTIONS

3.3.1 Key-Value Storage Server

The storage server is a key-value store meant to hold data required by the user. This data

is kept in memory so it allows fast read, writes, updates and deletes.

To circumvent the SGX memory limitation, the dataset will be split into two different

configurations. The secured and unsecure and the system model of the storage server

is shown in figure 3.2. This nomenclature does not reflect the privacy, integrity and

authenticity security properties as they are preserved on both components, but it reflects

the environment which they will run on.

Figure 3.2: Storage Server Model

The secure storage runs on a trusted execution environment (trusted hardware) pro-

tected by a secure physical processor present on the host machine. This processor provides

the security features that allow for memory to be operated in plain text without breaking

privacy or data security as explained in section 2.2.

As for the unsecure storage, it describes a storage service that runs on unprotected

memory regions and untrusted hardware. This means that data must be actively secured

by encryption, integrity checks and authentication features in order to provide and pre-

serve privacy.

We must mention that the above system model addresses the replication facilities as

leveraged from the Redis solution and tries to offer the same availability conditions as

the original Redis service. Both secure and unsecure configurations will provide avail-

ability by running replicated Redis instances in a cluster. This availability provided by

the replication of Redis instances that can run as cloud service instances (that can be

distributed among different cloud providers and geo-replicated data centers) only offers

consistency guarantees under a fail-stop model (not extended to byzantine fault toler-

ance or byzantine intrusion tolerance, that are conditions out of the scope of our planned

dissertation).

Every Redis instance running on a secure configuration will also provide an API for

remote attestation, going forward known as the attestation service, so their hardware

34

3.3. SYSTEM MODEL

stack and software can be attested by remote parties, to provide trust to the users.

3.3.2 Proxy Server

The proxy server serves as a gateway to the storage instances. It is a single point of entry to

the system which has some advantages. Not only it provides an abstraction to a backend

which can be replicated across multiple instances across multiple geo-locations, but it

also can add additional features to the system.

With a centralised gateway, we have centralised access management with authentica-

tion and authorisation features. Not only that, but the connection to multiple instances

of secure data storages with different authentication mechanisms and secrets can also be

centralised in one place, which allows the user to have just a single username/password

pair to connect to all the storage instances.

The proxy server manages security properties when connecting to instances on an

unsecured storage configuration. It is the proxy that handles security features like en-

cryption and decryption, integrity and authentication checks, and provides a completely

encrypted and private storage service. Trying to soften the performance overhead of en-

cryption and decryption, the proxy enables operations directly into encrypted data, using

homomorphic ciphers.

It also exports a REST API which can be used by multiple clients with different im-

plementations and also offers custom features that the standard data storage system does

not. Custom operations will be explained below, on section 3.5.

The proxy server serves as a single point of access for the multiple storage instances

remote attestation features. It attests every instance and feedbacks the user on the hard-

ware stack and software state of each instance. Furthermore, the proxy server itself runs

on a trusted execution environment leveraging secure trusted hardware and can also be

attested by the clients.

3.3.3 Authentication Server

An external authentication server is required to centralised user management. It is respon-

sible for user authentication and verification. A user authenticates against the authentica-

tion server receiving an access token, that it provides to the proxy on every request. The

proxy can verify the token and check if it is valid and what permissions this user has, and

can authorise or reject the access to a particular endpoint or system functionality.

An external authentication server relieves the proxy of user authentication and user

management and outsources it to a standardised open-source system that implements

security standards of identity and access management. This is also important so that the

proxy server can, if needed, be replicated.

35

CHAPTER 3. SYSTEM MODEL AND DESIGN OPTIONS

3.3.4 Client

The client, or user, is the one that will consume the exposed APIs by the proxy server.

In the case of this project, the client will be a representative benchmark tester that will

use the exposed endpoints to record benchmark times and various relevant evaluation

criteria so all storage configurations and replication mechanism can be compared.

Although just a simulated client/tester, the APIs are consumed the same way a real

user would consume them, so, benchmarks are a representation of real system usage.

3.4 System Architecture

Figure 3.3 describes the hardware and software representative stack of the infrastructure
1. Figure 3.3a shows how the storage service is deployed onto the cloud provider’s ma-

chines. On the machine’s hardware, it is provided a very specific and physical processor

that implements a trusted execution environment. Running on the operating system, a

containerisation solution runs the TEE virtualisation framework in order for the container

running both the key-value stores and the attestation services being able to access the

TEE. On the right-hand side of this figure, we can see a storage service that runs with no

TEE virtualisation system, and that is the deployment of an unprotected key-value store

configuration.

On figure 3.3b the stack provided describes a system also running in the confinements

of a trusted execution environment and therefore, also providing an attestation service.

(a) Storage Stack (b) Proxy Stack

Figure 3.3: System Architecture Stack

3.5 Supported Operations

The exposed API can perform some operations over the storage system. Some operations

are out of the box key-value stores operations, and some were implemented in the proxy

1The described stack is a representative stack of the machine layers and it does not represent a true
overhead ladder

36

3.5. SUPPORTED OPERATIONS

so to give a customised and more complex operations.

The next subsections will iterate and explain the supported operations, and we need

to indicate that all operations listed can work on both main data storage configurations

(protected and unprotected), where operations are performed whether data is maintained

on clear text, securely inside a trusted execution environment or maintained encrypted

in unprotected memory regions.

3.5.1 Role-Based Authorisation

The system by default rejects all unauthenticated requests, which means, users need to

be registered and have credentials to access the system.

As explained before, user management is performed by the external authentication

server, and each user has a role assigned. Different roles can do different actions on the

system and role-based authorisation can be completely customised.

In this thesis, we operate with the principle of least privileges and came up with two

different roles: a BasicUser which can only perform read operations and cannot alter the

system state (basically a read-only user) and an Administrator which can perform all

actions on the system. These roles are just a representation of the role-based authorisation

that the system performs before accepting a request into the server and can be further

configured (or new roles added) for a finer-grained authorisation mechanism.

3.5.2 Key-Value Storage Operations

The system is ready to perform a set of operations from the key-value storage of choosing,

without modification. However, this is not a full-fledge solution, and accommodations

had to be made for the two main configurations of the storage system: protected and

unprotected.

The supported operations are as follow:

• Set - Stores a value into the database associated with a key;

• Get - Retrieves a value associated with the provided key;

• Set on List - Creates a list of values associated with a key;

• Get List - Retrieves all values associated with the given key;

• Set on List with Score - Creates a list of values associated with a key. Each value

has associated a score (integer);

• Get on List between Score - Retrieves all values associated with the given key with

scores between provided scores.

37

CHAPTER 3. SYSTEM MODEL AND DESIGN OPTIONS

3.5.3 Proxy Enabled Operations

The proxy server implementation allows for the implementation of another set of opera-

tions not supported out of the box from the key-value store:

Sum, given a key and a number, the server can fetch the value associated with a given

key and add it to the number provided.

Subtraction, given a key and a number, the server can fetch the value associated with

given key and subtract it to the number provided.

Multiplication, given a key and a number, the server can fetch the value associated

with given key and multiply it to the number provided.

Search on List, where the server takes a search term, match it against each value of a

provided key of a list and return only the matching values.

3.5.4 Attestation

Attestation is the method provided by the processor implementing a trusted execution

environment to establish trustability assumptions to a remote challenger. It proves to

a third party that the system is running the correct application with the correct system

configurations in the expected physical hardware. This thesis implements two different

kinds of attestation: An hardware and TEE attestation and an on-demand software and

system stack attestation.

Figure 3.4: Attestation Model

Figure 3.4 describes the TEE hardware attestation infrastructure. It happens at appli-

cation startup and is the attestation that relies on the secure processor and it requires an

external Configuration and Attestation Server (CAS) that holds some kind of secret neces-

sary for the application startup. However, the CAS will only allow and provide the secret

if the application enclave can prove itself to be correct, i.e is running the correct source

code in the correct system. The application contacts a Local Attestation Server (LAS) to

38

3.6. OPERATION FLOW

obtain a proof of their correctness and then try to fetch their secrets in the configuration

server. If the application is deemed correct, it can access those secrets and can start.

On the other hand, users can also request the remote attestation (although not the

attestation specifically provided by the TEE) of the complete system software stack and

hardware information at any point on the user’s lifecycle. The proxy server is responsible

to contact each storage server’s attestation service and request attestation quotes. Each

quote is then gathered in the proxy, which attests itself and returned to the client.

The correctness of the system is then determined by the client which analyses the

quotes provided by each system and decides whether or not the system is correct and

protected and can continue normal use.

3.6 Operation Flow

Figure 3.5 shows an example of a flow that can occur between all system components.

Figure 3.5: Operation Flow

Following the flow, we can see that the first interaction is with the external authenti-

cation server by providing the user credentials (1) and (if login is successful) receiving an

access token in return (2).

Then, the user uses the access token to attest the system and make sure that hardware

and software stacks are working as expected. It requests an attestation to the proxy (3)

39

CHAPTER 3. SYSTEM MODEL AND DESIGN OPTIONS

with the access token retrieved on login. The proxy checks the access token with the

authentication server (4) and verifies if it is correct and has the necessary roles to access

the attestation endpoint. If the verification fails, a proxy returns an authentication/au-

thorisation fail-back to the client (5).

If it succeeds, the attestation can proceed and the proxy server contacts all storage

server attestation services and gathers all quotes (6), and while it’s doing that, also starts

a self-attestation process (7) and returns all quotes to the client.

Now, the client must analyse the quotes from the attestation and decide whether or

not it trusts the system to continue (8). If it deems the system incorrect, it fails but if the

client trusts the system, it can carry on with normal operations to the proxy and to the

storage server (9).

3.7 Summary

To achieve the objectives and contributions of this thesis, the system should rely on a

physical hardware processor that can implement an isolated execution environment, to

protect the system against insider threats, operating system and hypervisors vulnerabili-

ties, and several other attacks already explained in the adversary and threat model of this

project. That processor, as shown on system architecture section is present in the used

machines, and to allow for a lightweight, easily portable and deployable system, a TEE

virtualisation technology was used alongside a containerised application that can take

advantage of the physical processor.

However this technology still has some limitations, and to address the memory limi-

tations, the system also allows for a storage system to be placed in unprotected memory

and still maintain security, privacy and integrity properties.

This way, we can maintain a system, running an unmodified key-value storage appli-

cation and deploy it safely on the cloud, or any other machine provider and be sure that

data is as protected as it can be.

Not only that, but all the hardware stack and software can be attested so that, on

an unlikely event of an attack, data corruption or leaked vulnerability occurs, the user

can always, to a high percentage of trust, define whether or not the underlying system is

correct and can be trusted.

40

C
h
a
p
t
e
r

4
Prototype Implementation

This chapter presents a detailed explanation of the implementation of the prototype - A

Trusted and Privacy-Enhanced In-Memory Data Store, and all the implementation details

that helped the system to achieve a secure state according to the adversary model.

Section 4.1 explains the system model presented on figure 3.1 from a developer view,

and presents all used technologies, programming languages and implementation details

used to achieve the desired system.

Section 4.2 presents some general additional security and implementation features

also worth mentioning and in section 4.3 it is explained some tradeoffs decided in the

implementation of the prototype, and why were they made.

To finalise, there is a general summary of the chapter in section 4.4 that gathers all

the important implementation features from all components.

The implemented prototype source code is available publicly on GitHub, secure data-

store [87], the proxy [88] and the client/tester [86] and a list of all technologies and

corresponding versions are present in annex I.

4.1 Architecture and Implementation Options

To achieve the goal of deploying the system in a cloud, we had to find a provider that has

and provides host machines with the pretended TEE technology - Intel’s Software Guard

Extensions (SGXv1) version 2.5.0. Although not globally available, some cloud providers

are starting to make them available and for this thesis, the cloud provider used is OVH

Cloud [75].

For this thesis, OVH provided an IaaS stack machine running Ubuntu Server version

18.04 with kernel 4.15.0-101-generic, which means that we have control over all host’s

stack but the hardware, from the operating system, networks, runtime and applications.

41

CHAPTER 4. PROTOTYPE IMPLEMENTATION

The used machine configurations are listed on listing 4.1.

Listing 4.1: Machine Specifications

Dedicated Server Node

Processor: Intel 2x Xeon Silver 4214 - 24c/48t - 2.2GHz/3.2Ghz

Memory: 128 GB

Hard Drive: NVMe, SATA available

Public Network: Beginning at 1 Gbps

Private Network: Beginning at 2 Gbps

CloudLinux (Ubuntu 18.04 LTS Server 64 bits)

This particular Intel processor offers SGX with an 128MB of enclave page cache (EPC)

with about 94MB being available for application use like explained in section 2.3.2 and

all SGX linux drivers and SDKs were installed [53, 63].

All components of the application will be deployed using Docker v19.03.6 [33] and

the Docker Compose tool v1.17.1 [34]. To integrate and run unmodified applications

with SGX, the SCONE v4.2.1 [14] technology was used and will wrap all components that

need to run within a secure and isolated environment.

4.1.1 Secure Redis

Redis [78] is the key-value storage server used by this thesis. Redis instances will run in

two different modes, as explained in section 3.3.1. Unsecure Redis configuration will run

on unprotected memory on a docker image based on the official Redis Docker repository

[35]. For the secure configuration, SCONE framework already provides a curated image

from their repository which contains a Redis server version 6.0.8 ready to run on an

isolated environment, in this case, Intel’s SGX. The SCONE version used is the SCONE

4.2.1 to match across all the SCONE components.

Although all Redis servers run behind a proxy all the necessary security features pro-

vided natively by the server are used. Only communications incoming from the proxy

server are allowed and all are encrypted with strong TLS 1.3 1 protocols with enclave

termination. The non-encrypted communication port is disabled, and mutual TLS au-

thentication is turned on, which means that all clients are required to provide a certificate

signed by the thesis CA in order to establish a connection.

Access Control is also enabled through an explicit ACL 2. Following the principle

of least privilege, users are defined via a username and a strong password and have

permissions to access only the operations that they require to function.

When running in a replicated environment, master-slave or cluster, the same princi-

ples apply. Communication between replicas is also always through mutual TLS authen-

tication, even in cluster mode where an event bus is necessary for replica synchronisation.

Replicas are read-only and since they can connect to the master instance, they use a

1TLS is a new feature released in Redis v6.0
2Redis ACL is a new feature released in Redis v6.0

42

4.1. ARCHITECTURE AND IMPLEMENTATION OPTIONS

specific user with permissions to perform just the operations that the replica needs to

synchronise, and cannot alter the state of the master instance. On a cluster environment,

data is sharded between masters which means that data is partitioned between hosts. Each

key is hashed, and the hosts are responsible to handle keys for a given hash range. On an

event of a crash or terminal fault, a slave instance can be promoted to master and auto-

matically take over the failed master’s hash range. The synchronisation between replicas

and masters, and communication between masters are performed over an event bus, and

also always through encrypted TLS/SSL strong secure channels.

4.1.2 Proxy Server

The proxy server is the component that abstracts the Redis configurations in the backend.

Proxy is a spring boot starter, version 2.3.0.RELEASE, web server application written in

Kotlin v1.4.10, a language that runs on the JVM with Java OpenJDK version 1.8.0_222.

This component serves as a single point of entry to the system, and clients connect to

it via an exposed HTTP API via a SSL/TLS encrypted channel (HTTPS). This connection

only authenticates the server, but users need to provide an authorisation header to access

the server. The bearer token, on the format of a JWT (Json Web Token), must be provided

by the external authentication server as the proxy will check with it to validate the request.

Not all users can access all endpoints, and the proxy decides the access control based on

the role presented in the token.

Using an external configuration file, the proxy is able to communicate with multi-

ple configurations of Redis instances. Communication with the instance is performed

via Jedis v3.3.0 [56], a simple and lightweight java Redis client. When connecting to a

protected Redis instance, an instance secured by SGX processor and running inside an

enclave, the proxy passes through the keys and values to the instance without any modifi-

cation, meaning that values are secured inside the enclave even though they are handled

in plaintext. However, all data residing on unprotected memory should be encrypted

and by enabling a flag in the configuration file, the proxy will encrypt, sign and perform

integrity checks on all keys and values. The homomorphic encryption is performed with

the help of the Hlib v1.2r2 [92], an homomorphic encryption library implemented by the

NOVA LINCS developers.

Keys for all value formats (simple, lists, etc..) are always encrypted with the Homo-

morphic Deterministic (HomoDet) cipher, that guarantees the same encrypted string for

the same clear text value. This allows for Redis to match a given key with one present in

the storage without revealing the actual value of the key.

The value from the key-value pair is encrypted in a more complex way than the keys,

and their format is detailed in 4.1, 4.2 and 4.3.

43

CHAPTER 4. PROTOTYPE IMPLEMENTATION

EncryptedV alue = [value] Ks (4.1)

CompositeV alue = [value] Ks | [EncryptedV alue] Ksignature (4.2)

[value] Ks | [EncryptedV alue] Ksignature | [CompositeV alue] KHmac (4.3)

The value is encrypted in one of two ways - refering to 4.1:

• If the value is a string, it is encrypted with a strong AES cipher working on a ECB

(Electronic Code Book) mode with a PKCS5 Padding (AES/ECB/PKCS5Padding) from

SunJCE provider, with a 256 bit key.

• If the value is an integer/long/double, the value is encrypted with the Homomor-

phic Addition (HomoAdd) cipher from the Hlib library with a Paillier Key.

Strings are encrypted with the strongest cipher because no operation will be per-

formed over the encrypted value, but for arithmetic values, the HomoAdd cipher is used,

to allow for the addition, subtraction and multiplication operations over the encrypted

value.

Regardless of the encryption cipher, the encrypted value is signed with a standard

SHA512 with RSA signature algorithm from the SunRsaSign provider - 4.2. The signature

is performed over the encrypted value so it allows for the results of the homomorphic op-

eration being sign without having to decrypt the value. The signature is then appended to

the encrypted value and the result is hashed with an HMacSHA256 algorithm to provide

a rapid integrity check. The result of all security operations, encryption, signature and

hashing is appended into one string and set into the Redis database as a single value.

When setting a value in a list with a score, the keys and values are secured like

explained above, but the scores can also be classified as sensitive data and so, are also

encrypted. However, to provide the capabilities of fetching values between scores, a score

is encrypted with the HomoOpeInt cipher from Hlib, an order-preserving cipher. This

cipher keeps the scores confidential but still preserves order and can be searchable on

an inequality operation, for example, x < score < y, that fetches all values with scores

between an x and a y number.

For demonstration purposes, when adding a value to a set, on the respective end-

point, the value is encrypted with the HomoSearch cipher from Hlib. This cipher allows

searching an encrypted value for a specific substring provided by the client.

The API, endpoints and parameters, are completely documented and available on an

OpenAPI v3.0.0 yml format.

4.1.3 Client-based Benchmarks

As explained before, the client is going to be emulated by a tester. Benchmarks were

performed in two different ways: directly against the Redis instances, using the redis-

benchmark [48] tool, and through the proxy API.

44

4.1. ARCHITECTURE AND IMPLEMENTATION OPTIONS

This proxy API tester is implemented using the Gatling v3.2.1 [38] framework. Gatling

is a load and performance testing tool that is configurable as code. The configuration

of the tool is written in Scala v2.12.3 and provides a very configurable API. It has the

ability to generate fields, that will be used to populate the database, and perform as many

requests as needed or perform request during a certain amount of time. This framework

also allows performing the necessary login request to the external authentication server

in order to provide the access token to the proxy API.

For performance and load testing, we can also make various simultaneous users per-

form actions at the same time and set up ramp-up periods of higher load.

The benchmarks are doing requests to every endpoint available and will be compared

against other proxy and database configurations and Gatling provides a detailed report for

each one, exposing different metrics that will be presented further down this document

in chapter 5.

Also, the same tests were configured on the Apache Jmeter v5.3[9] load testing plat-

form to corroborate some results.

To record memory and CPU statistics, a script, written in bash, was implemented that

makes use of the Docker command docker-stats, the ps and top Linux commands and also

the Redis Info available from the server, to record the statistics in real-time and write it

to disk in a CSV format. Scripts and tests are present on GitHub [86].

4.1.4 Authentication Server

The external authentication server is Keycloak v10.0.2 [58], an open-source identity and

access management system from Red Hat. This service implements the current standards

of Single Sing-On (SSO), guaranteeing a secure authentication and authorisation flow.

Communication is performed over encrypted HTTPS channels, and the client logins

directly against this server to obtain the access token necessary to access the proxy.

User and roles management is done via the Keycloak user console and the platform

allows for the configuration of different access token signing keys, their expiration date

and supports token revocation and key rotation.

4.1.5 Attestation

Attestation is the mechanism responsible to provide the user with a trusted indication of

the complete system state and is performed with two different methods, in two different

scenarios. The hardware and SGX attestation and an on-demand software and system

stack attestation

SGX attestation is performed at startup and its transparent and automatic using phys-

ical SGX EPID-based attestation between the application, a locally deployed attestation

service (SCONE LAS) and the remote SCONE CAS.

The SCONE Configuration and Attestation Service (CAS) is a part of the system’s

infrastructure and it is meant to hold application secrets and injected into authenticated

45

CHAPTER 4. PROTOTYPE IMPLEMENTATION

and attested enclaves. This service is also running inside an enclave so, any secrets stored

in the server are also isolated and protected from outsiders. Each secret has a strong

access policy attached and guarantees that only the right enclave, running the correct

code in the correct system can access them. On application start-up, the created enclave

communicates with the CAS to fetch the necessary secrets for the application to start.

This is the first step of the application process and it is described in figure 4.1.

Figure 4.1: Attestation Flow

Having established a connection with CAS (1), the application now contacts the

SCONE Local Attestation 3 Service in order to receive a signed quote from the trusted

LAS (2, 3, 4) that then sends to the CAS (5). This quote contains information about the ap-

plication enclave signed by the trusted LAS, including and most importantly, the enclave

hash, an hash determined by the content of the pages of the enclave. CAS can now verify

the quote provided (6) and return a success message (7) if the quote is deem correct and

signed by LAS. Then, the application requests the secrets from CAS (8) and if the request

passes all access policies (9), the secret is then returned (10) and injected into the enclave.

These secrets can be injected as an environment variable or a file in a provided path, but

whatever the format, they always stay inside the enclave protected memory, which means

that no human or process, regardless of their roles in the system will be able to access

3Check local attestation process on annex II

46

4.2. ADDITIONAL DETAILS

them. On enclave destruction, the secrets are also destroyed and never written to disk or

persisted anywhere.

In case of the Redis storage server, the TLS private keys and certificates are stored

in CAS and not in the container. This guarantees that, if it is able to provide the right

certificates on a HTTPS connection, the enclave was attested and it is correct. For the

Redis custom attestation service, the secrets hidden in CAS are the quote signing keys

and for the proxy server, the TLS and the attestation signing keys as well, and the same

trustability principles apply.

The application software and stack attestation relies on the first type attestation in

order to access the keys necessary to operate, and it is performed at user request. This

attestation is meant to attest binaries, config files, hardware and OS information to the

client by providing signed hashes of those resources. The client then decides if they match

and pass the expected integrity checks, and if it is signed with a key provided by the CAS.

This attestation service was implemented in C++14 for the Redis instances, compiled

using Linux Musl g++ GNU Compiler Collection (GCC) version 10.2.0 using the Linux

Chilkat C/C++ Library v9.5.0.84 statically linked to the code in order to run totally inside

the enclave, and Kotlin for the proxy server. An example of the attestation response is

presented in annex III.

4.2 Additional Details

4.2.1 Protected Memory Check

SCONE framework says that it is running the applications inside secure enclaves and

application memory are protected and there are two ways to verify it. By running an

application with secrets in the SCONE configuration and attestation server (CAS), we can

be sure that the program is running inside an enclave since CAS requires a specific SGX

attestation mechanism.

On a lower architecture level, we can actually inspect the memory being used by the

application. To test this, we can write a simple C program that runs on an enclave and

holds a secret on an array in memory and then inspect the program’s memory by dumping

it via the /proc filesystem. The /proc/<pid>/map shows the different memory regions of

the process and /proc/<pid>/mem holds the memory. By dumping all the memory of the

process externally to the enclave, and analysing this file, we can check that the secret

is not present in the dumped memory since, externally to the enclave, we do not have

access to that memory. On the other hand, running the same program on unprotected

memory, by again dumping the process memory to a file, we can examine it and find

the on-memory secret, since its memory is not protected by the enclaves and the secure

processor [37].

47

CHAPTER 4. PROTOTYPE IMPLEMENTATION

4.2.2 Protected Heap and Stack Memory

The application stack and heap memories are a core feature of any program. The stack

is a memory region that stores temporary variables and data for a single computing task

or function. In this memory space, variables are declared, stored and initialised during

runtime and are automatically erased after the code block is complete. The heap, on the

other hand, is a bigger region of memory, mostly allocated at startup and it stores long-

livedglobal variables, class references and other data necessary for the complete lifecycle

of the program.

Running on an enclave, all of this memory must be protected and isolated from the all

the other system software, hardware and even users with privileged accounts, by being

placed inside the EPC. Since we are running Intel’s SGX version 1 processor, all protected

memory must be allocated at enclave startup. SCONE provides environment variables

that can be set when running an application to adjust the size of the heap and stack

memory regions, the SCONE_HEAP and SCONE_STACK variables.

Version 1 of SGX technology means that no on-demand dynamic scaling or paging

is available on the enclave allocated memory (which will be fixed by SGXv2) and that

SCONE cannot estimate how much memory the application will need. However, swap-

ping enclave pages to main unprotected memory is still available, meaning that we can

allocate more memory than the psychical EPC limit of 128MB, but also means that all

memory must be allocated at enclave startup which can generate a higher startup time,

and some OOM (Out Of Memory) errors if the application reaches Stack or Heap allocated

memory limits.

4.2.3 TLS, HTTPS and Certificate Chain

All communications in the system, both from outside or inside the system are performed

over HTTPS, TLS v1.2 or v1.3, with custom and different certificates for each component.

Moreover, we can also establish a chain of trust by signing all certificates with a root

custom certificate authority (CA). A custom CA was created, and signed all certificates

and keys and marked as a trusted certificate authority for the entire system.

4.2.4 Logging and Auditing

All operations in the system, being logins, proxy standard operations or even attestation

requests are logged. A log line contains a timestamp, remote IPv4 address, request

information such as path, method, and response status, and the request owner, the user.

However, to protect preserve privacy, the username is hashed. A system administrator

can access the logs in order to audit the system.

48

4.3. TRADEOFFS ON THE IMPLEMENTATION OPTIONS

4.3 Tradeoffs on the Implementation Options

Tradeoff is the loss a system property in exchange for another. When implementing

additional security properties in a system, there will always be a performance impact.

It is then up to testing and use-case evaluation to decide whether or not the security

increase compensates the performance decrease.

When it comes to replication, there is also a decision to make referring to a consistency-

performance tradeoff. Being a key-value store, Redis is always focused on performance

and that is why, it follows an eventual consistency model on replication, meaning that a

Redis master node will propagate changes to their slave nodes but will not wait for slave

acknowledge to respond to the client.

SGX technology also makes several tradeoffs between performance and security, al-

though it defaults to the latter. Protected memory size is a big issue to an SGX enabled

application, because, as explained in section 2.3.2, the protected memory is limited, and

when it is exceeded, protected memory is swapped to main memory. With additional en-

cryption and decryption cycles as well as integrity checks, that as a penalty performance

that can reach over 2000x.

To explain this problem, we can use the OpenSSL library as an example: dynamically

linking a library to an enclave will incur a security level penalty because, not only the

library cannot be trusted as it is part of the operating system and can be compromised,

but also TLS termination and decryption would be performed, outside the enclave. On

the other hand, statically linking the OpenSSL libraries (option taken on this project)

means that the enclave has the necessary libraries to perform TLS termination inside the

enclave. However, it will increase the size of the application, reducing the amount of

memory that can be present inside the enclave and having to be being swapped into main

memory.

Another implementation detail on the performance-security tradeoff topic is the ho-

momorphic ciphers that the proxy implements on an unprotected Redis instance. Homo-

morphically encrypted values do leak some minor information to an attacker, although

it is a good trade-off between security and performance. For example, order-preserving

ciphers although they do not leak specific values, they do leak the decrypted value order.

The security-performance tradeoff is not a static line, and it moves depending on the

use case. For some applications, data must be extremely secure and performance can take

a hit to maintain a strong privacy-preserving system. This thesis implemented various

security properties and all are evaluated in chapter 5 to provide enough information for

a user to decide whether or not it is a right solution to its own use case.

4.4 Summary

To recap, Redis will serve as a storage server and runs on an isolated environment using

Intel’s SGX secure processor and also runs on normal unprotected memory. However,

49

CHAPTER 4. PROTOTYPE IMPLEMENTATION

both solutions preserve privacy and integrity, either by SGX’s guarantees or by proxy

enabled encryption and security properties. The proxy enables some Redis out-of-the-box

operations, but also some additional operations. When Redis is running in unprotected

mode, the proxy enables the performance of operations over encrypted memory, sparing

encryption and decryption cycles.

Both Redis and the Proxy Server are attested at start-up, by requesting application

secrets held by a third party server that implements strong access policies to make sure

each secret is injected to the correct enclave.

Users can also request attestation of the system on-demand, by requesting it to the

Proxy server. The Proxy contacts all Redis instance’s attestation services, which are de-

ployed alongside Redis, and returns binary, config files and system information that the

user can analyse and have the guarantee that it is communicating with a correct system.

In regards to communication, all channels between all components are secure with

the standard string TLS encryption with a system-wide CA signature.

These security properties come with some tradeoffs but they all address a necessary

privacy property, and the next chapter will evaluate them and determine if there is a

bearable overhead in order to implement a secure correct and trustable system.

50

C
h
a
p
t
e
r

5
Validation and Experimental Evaluation

This chapter presents, analyses and discusses the work performed to obtain relevant

evaluation criteria measured from the complete system deployed on a cloud environment,

in order to validate the implemented prototype.

Section 5.1 details how the system is deployed, explains the different configurations

that that system adopts in order to present relevant data to compare.

In section 5.2 explains which metrics will be evaluated for each different testbench

scenario. Sections 5.3 through 5.8 presents the actual metrics taken from the performance

and load testing tools and compares the different system configurations with secure and

vulnerable storage instances.

The last section, section 5.9 contains a summary of all the finding and some consider-

ations that can be taken from the presented metrics.

5.1 Testbench Environments

The prototype was evaluated in multiple different system configurations to achieve com-

plete coverage of all the proposed solutions and all the relevant metrics.

The first test is a representative test of the overhead introduced not only of additional

security features like TLS and authentication but also the SGX hardware isolation. It will

run the redis-benchmark tool both externally to the server and internally directly against a

single standalone Redis instance bypassing the proxy server. Secondly, and closer to real-

life, tests are run against the proxy exposed API and a single standalone Redis instance

composes the storage server. Then, the same tests were run in the same environment but

with a cluster of Redis instances composing the backend storage. The fourth testbench

measures the performance of homomorphic operations on a standalone Redis instance

running on unprotected memory, and finally, it is presented some metrics for the two

51

CHAPTER 5. VALIDATION AND EXPERIMENTAL EVALUATION

different attestation operations on Redis instances deployed on protected memory and

isolated through SGX.

All tests performed on the prototype were performed on a MacBook Pro 2018 2,3 GHz

Quad-Core Intel Core i5 and an Internet connection averaging the 500Mb/s download

and 100Mb/s upload and an effort was made to maintain the same conditions on every

tests. Additionally, all tests were measured several times, averaged and compared with

a standard Redis deployment so the overhead of extra security can be evaluated and

analysed.

5.2 Relevant Evaluation Criteria

The tests measure several different relevant metrics that can be compared with each other:

• Latency - Measured in milliseconds (ms) and evaluate the round trip response times

between the client and the server;

• Throughput - Measured in operations per seconds (ops/s) indicates the number of

operations the client performed in one second;

• Startup Times - Measured in seconds (s) is particularly important to analyse the

SGX attestation that happens at startup;

• Memory Consumption - Extracted in megabytes (MB) or a percentage, and mea-

sured alongside the tests;

• CPU Consumption - Extracted in megabytes in a percentage, and also measured

alongside the tests.

5.3 Performance Evaluation for Redis-Benchmark tool

The first testbench is performed directly against the Redis server bypassing the proxy.

This test was performed with the redis-benchmark 1 tool and evaluates the latency and

throughput of a basic set of operations - ping, set, and get. It compares three different

deployed Redis configurations, where the first one is completely default and open, the

second one implements the built-in security features of Redis such as TLS and authenti-

cation and the third one, not only using the built-in features but also running isolated

inside an SGX enclave.

Figure 5.1 presents the latency and throughput results over one hundred thousand

requests with 50 multiple concurrent clients and a 3-byte payload. This test is meant as

a first reference test, to understand the sole Redis instance capacity without any gateway

or proxy overhead and so, the payload size is not relevant.
1Since Redis TLS is fairly new, the latest official Redis-benchmark release does not support TLS test. The

Redis benchmark used comes from the Redis unstable branch (commit a0576bd), but after some analyses, it
appears to be a final version of the tool. All benchmarks tests used the same version.

52

5.4. PERFORMANCE EVALUATION FOR STANDALONE REDIS

(a) Redis-Benchmark Latency (b) Redis-Benchmark Throughput

Figure 5.1: Redis Benchmark External Client Metrics

The results show a performance drop for each additional security layers added to

the instance deployment. The SGX deployed instance showed the biggest overhead on

performance, around 8%-10%, both latency and throughput, however, due to the added

security, this is an expected result.

Figure 5.2 shows the results of the same tests but instead of running the benchmark

tool on a separate machine, it runs it on the same host where the server is deployed,

therefore eliminating the network overhead.

(a) Redis-Benchmark Latency (b) Redis-Benchmark Throughput

Figure 5.2: Redis Benchmark Internal Client Metrics

The results corroborate the initial tests but the differences between security levels are

much more visible. The main objective of this comparison is to point out that the network

jitter and latency overhead will affect the performance of the results. However, since the

realistic use case relies with a client running on a different machine than the backend, all

the next tests made on the system are performed with an external client to make them

more realistic and close to the normal use case meant for the system.

5.4 Performance Evaluation for Standalone Redis

This testbench configuration tests a standalone architecture with a single proxy instance

and a single Redis instance. Both the proxy and the Redis components will be tested in

different deployment configurations, running inside and outside SGX enclaves. When

53

CHAPTER 5. VALIDATION AND EXPERIMENTAL EVALUATION

Redis is running outside the isolated environment, it will run both in a vulnerable con-

figuration, without any security properties and in its encrypted format, where the proxy

server enabled encrypted values.

The tests will run one single thread, making as many gets and sets requests as possible

during 10 minutes with a 20-byte key and a 100-byte value. Figure 5.3 presents the

throughput obtained from the tests for the different configurations.

(a) Get throughput (b) Set throughput

Figure 5.3: Standalone Throughput Results

The throughputs measured from the different system configurations show a higher

count of operations per second on the normal and vulnerable Proxy & Redis configuration.

When running the components on an SGX enclave, the performance takes a 20%-25%

hit. Keeping the proxy running inside enclaves, but extracting the Redis to unprotected

memory sees 18%-22% loss in performance. Even though the storage service is running

faster outside enclaves, the proxy needs to perform extra work in order to maintain data

privacy and integrity.

The latency results summarised on table 5.1 support the throughput measurements.

Table 5.1: Proxy Redis Standalone Results

Test ###Request Avg Latency σσσ 95%%% DB Size

Proxy & Redis 14038 42ms 15ms 42ms 2,03MB
Proxy SGX & Redis SGX 12013 49,67ms 19,66ms 58ms 2,00MB
Proxy SGX & Redis Encrypted 12773 48,67ms 20,12ms 55ms 6,49MB

5.5 Performance Evaluation for Cluster Redis

Clustering on Redis is distributed out of the box on the latest Redis versions. It com-

bines the Master-Slave model and an event bus to provide replication and sharding and

coordination between the nodes. This test uses a configuration with one proxy server,

54

5.5. PERFORMANCE EVALUATION FOR CLUSTER REDIS

and six Redis nodes, with three masters and three slaves. The tests run were the same

of the standalone system configuration presented on section 5.4 to maintain consistency

between tests, and it runs a single thread, making as many requests as possible during 10

minutes, using random 20-byte keys with a 100-byte random value. Figure 5.4 shows the

throughput results on the sets and get operations.

(a) Get throughput (b) Set throughput

Figure 5.4: Cluster Throughput Results

Again, as expected, the vulnerable Redis configuration is the fastest since it doesn’t

need to maintain any security or privacy properties. Running the Proxy and Redis server

on an isolated environment incurs in a performance penalty of 18%-25%. However,

running the Redis in unprotected memory but on an encrypted format seems to have a

bit of an edge in performance over the SGX isolated server.

Table 5.2: Proxy Redis Cluster Results

Test ###Request Avg Latency σσσ 95%%%

Proxy & Redis 14219 41ms 13ms 41ms
Proxy SGX & Redis SGX 12229 49ms 21ms 53ms
Proxy SGX & Redis Encrypted 13131 46ms 16ms 46ms

Table 5.2 shows the latency results of the same tests, and it shows a correlation with

the tests and the evaluation made above.

By observing both throughputs and latencies of the standalone and the cluster config-

urations we can compare them and observe similarities. Both tests seem to have a similar

result on all system configurations and that might be due to the consistency guarantee of

the cluster. Although a Redis cluster does provide replication, automatically split data

among multiple nodes and some availability during network partitions, it is not able to

guarantee strong consistency. This means that under some specific conditions the Redis

cluster can lose writes that were acknowledged to the user by the system. This happens

because Redis uses asynchronous replication, where it responds to the client before repli-

cating the results to the replica instances. This configuration explains the similarity in

55

CHAPTER 5. VALIDATION AND EXPERIMENTAL EVALUATION

performance since the proxy will only communicate with one instance at a time and that

instance will respond before replicating the given command, just like a standalone node.

5.6 Performance Evaluation for Homomorphic Operations

The implementation of homomorphic encryption is a way to speed up performance by

performing arithmetic operations over encrypted data. This test runs a proxy server inside

an SGX enclave and a single Redis instance running on unprotected memory. To maintain

data privacy and integrity on an unprotected Redis instance, the proxy enables encryption

and only stores encrypted data on Redis. This test compares latency and throughputs

of the Sum and Search operations of the system. There are three configurations to test,

one where the proxy does not encrypted data (the plain Redis), a second where the proxy

enables encryption with homomorphic ciphers, and the last one, where proxy encrypts

data with standard AES encryption. With homomorphic encryption, the operations are

performed over the encrypted value, meaning that, unlike standard encryption, it does

not need to decrypt the current value for the Sum operation to succeed.

The Sum tests were run over a dataset of 5000 key-pairs and over 5 minutes making

as many requests as possible and the Search test run over a dataset with 1 list with 1000

values with about 140 bytes per line. The tests were run multiple times with multiple

payload sizes and the average throughputs and latencies are presented in figure 5.5 and

table 5.3.

(a) Sum Throughput (b) Search Throughput

Figure 5.5: Homomorphic Encryption Throughput Results

As expected, a non-encrypted Redis is the fastest configuration, however, the results

on the encrypted configurations of the Sum operation were not as anticipated. We were

not able to achieve better performance by performing Sum operations over encrypted

data. This result may be due to the size of the Sum operation values, since we are working

within the range of integers, standard AES encryption is very fast. As we can see on

the Search operations since values are strings, they are much bigger than a single integer

and the encryption and decryption cycles are much more costly, making its performance

about 35% worst than the homomorphic encryption Search operation.

56

5.7. EVALUATION OF THE ATTESTATION PROTOCOL

Table 5.3: Sum Latency Results

Test ###Request Avg Latency σσσ 99%%% DB Size

Sum - Plain Redis 6512 46ms 17ms 48ms 1.13MB
Sum - Homo Encrypted Redis 4853 62ms 23ms 69ms 10.578MB
Sum - Standard Encrypted Redis 6001 52ms 19ms 54ms 3.85MB
Search - Plain Redis 5718 52ms 20ms 68ms 0.21MB
Search - Homo Encrypted Redis 4238 70ms 25ms 117ms 0.49MB
Search - Standard Encrypted Redis 3016 99ms 30ms 150ms 0.27MB

On the other hand, homomorphic encryption can enable operations that are not possi-

ble with the standard encryption like maintaining encrypted data in order and searching

through finding values between certain boundaries. Another very important feature that

is enabled by homomorphic encryption is that the plain text value is never present in

memory, since the operations do not need to decrypt the value in order to proceed.

5.7 Evaluation of the Attestation Protocol

The two different attestation types are evaluated in two different ways. Since SGX hard-

ware attestation is a SCONE feature and it happens automatically on startup, there is no

accurate way to measure the attestation time, so it is extrapolated from the startup times

of different components configurations.

Table 5.4 shows the comparison between startup times of the Redis instance and Proxy

instance, using a component that does not run on an enclave, the component running

on enclave but not performing attestation, and one running within enclaves with startup

SGX hardware attestation.

Table 5.4: SGX Hardware Attestation Results

Component No SGX SGX w/o Attestation SGX w/ Attestation ≈≈≈ Attestation Time

Redis Instance 0,009s 0,2854s 1,604s 1,2916s
Proxy Instance 3,108s 66,1174s 69,146s 3,0294s

The Redis and the Proxy instances have very big startup differences and there is a

reason for that. SCONE provides default Heap and Stack limits for each curated images

they provide. When running Redis, SCONE provided about 64MB to the Redis enclave

and to run a java program it requests about 4GB or heap memory. Since memory must be

allocated at startup, there is a big gap in size between the heap memory that is requested

by the different processes and it explains the startup time and attestation time differences.

On the other attestation type, the proxy will contact the Redis instance and get a

signed quote of important aspects of the system such as the binary and configuration file,

OS kernel information and CPU core count and processor type. It also attests itself and

returns the quotes to the client. This process was also measured by requesting as much

57

CHAPTER 5. VALIDATION AND EXPERIMENTAL EVALUATION

attestation quotes in 10 minutes and collected throughputs and latency values described

on table 5.5.

Table 5.5: Custom Attestation Results

Run Number ###Request Avg Latency σσσ 99%%% Req/s

1st Run 1491 402ms 188 ms 549ms 2,481 ops/s
2nd Run 1494 401ms 179 ms 550ms 2,483 ops/s
3rd Run 1494 401ms 164ms 546ms 2,486 ops/s

5.8 Complementary Measurements

5.8.1 Memory and CPU Measurements

During the standalone tests, CPU and memory values of the containers and processes

were measured and recorder for further evaluation. Figure 5.6 shows the average CPU

loads of each system configuration during the 10 minute test performance test detailed

in section 5.4 of the standalone test.

Figure 5.6: Average CPU Load

By cross-referencing the tests made directly into Redis with the help of the Redis-

Benchmark tool and the ones performed through the proxy that regardless of the config-

uration, the network and the proxy impose a significant overhead that allows the Redis

server to never really reaching a problematic CPU load. However, running the proxy

inside a secure enclave also incurs an increase of CPU load during testing. Also, running

alongside the protected Redis is a small attestation service that measures at about 2%-

2.5% of the total 8% measured. When it comes to the Proxy server, the same conclusions

were reached, where a service running protected by a secure enclave seams to run a higher

CPU load during performance testing.

Higher CPU loads can be explained with encryption and decryption of data in order to

maintain it secure, as well as stronger access control checks, and protected memory page

swapping that requires more encryption, decryption and integrity checks and system

calls that slow down the system and required exiting and entering the enclaves.

58

5.8. COMPLEMENTARY MEASUREMENTS

Graphs 5.7a, 5.7b and 5.8 show the memory evolution during the same tests. The

metrics recorded were the Redis total memory usage, the Redis dataset memory size

and the RSS (Resident Set Size) memory of the Redis process. Figure 5.7 shows the

memory from both Redis configurations that do not run on a secure enclave, where figure

5.7a represents to the memory statistics of an normal Redis deployment and the 5.7b

corresponds to an homomorphic encrypted Redis configuration.

(a) Plain Redis Memory Usage (b) Encrypted Redis Memory Usage

Figure 5.7: Plain/Encrypted Redis Memory Usage

The charts show a normal progression, with a clear distinction between the sets and

gets operations on the test. All metrics climb steadily while data is being inserted into

Redis, and maintain their value when the test changes to the get operation portion of

the test. With the additional information that is stored with the value on an encrypted

configuration, such as digital signatures and integrity check hashes, the memory used

was expected to be higher, and the tests confirmed that expectation with a 35% to 40%

memory usage increase.

Figure 5.8: SGX Redis Memory Usage

Chart 5.8 shows the memory evaluation of the Redis instance running on an Intel’s

59

CHAPTER 5. VALIDATION AND EXPERIMENTAL EVALUATION

secure enclave, and although the total Redis memory and dataset size follow the same

lines as the previous configurations, the RSS memory starts very high and maintains

that value all throughout the test. This can be explained by the lack of ability that an

application running inside of Intel’s SGXv1 secure enclave to dynamically resize allocated

memory. Nevertheless, used memory and dataset memory of the Redis seems to be about

the same of an unprotected Redis running on standard RAM.

When running Redis instances in a cluster configuration, the total dataset memory

usage by each node is somewhat different and the results are presented in table 5.6.

Table 5.6: Cluster Instances Dataset Memory Usage (MB)

Cluster Node Proxy & Redis Proxy SGX & Redis SGX Proxy SGX & Redis Encrypted

Master-1 1,00 0,92 2,7
Master-2 1,02 0,94 2,6
Master-3 1,01 0,93 2,6
Slave-1 1,01 0,94 2,6
Slave-2 1,02 0,93 2,7
Slave-3 1,00 0,92 2,6

Total Masters 3,05 MB 2,80 MB 8,04 MB
Standalone 2,03 MB 2,00 MB 6,49 MB

The hash of the inserted key is the metric that determines the node where the key-pair

is stored, and with randomly generated keys used by the tests, we can see a very equal

distribution of key-pairs among the available masters. When a key-pair is written on a

master, the operation is forwarded to the corresponding slave, and, by analysing the table,

we can even determine which slave replicates each master since slaves are a complete

replica of the master node, they hold the same data.

It was also determined that, although each node contains a portion of the data of the

complete dataset, the sum of all the dataset memory of each node adds up to bigger in

size than the same dataset 2 on a standalone configuration. This can be traced to the

default metadata that each Redis node contains at startup so it can function correctly but

also metadata about each node currently on the cluster, synchronisation properties and

key mapping data structure. Each Redis cluster instance holds an internal data structure

that maps each key in the cluster to its designated slot. This carries a memory penalty for

each node and the more keys the cluster holds, the bigger the overhead.

5.8.2 Exhausting Protected Memory

The performance of a process that runs inside an isolated enclave is directly dependent

on the locality of memory access. When the process necessary memory does not fit in

the EPC, the process will suffer page faults. When a page fault occurs, the SGX driver

2Datasets might not be exactly the same, because keys are generated randomly through the tests, but the
key-pair size is maintained

60

5.8. COMPLEMENTARY MEASUREMENTS

selects a page from the EPC, re-encrypts it for freshness and stores it in main unprotected

memory. The page swap process takes some time, and the overhead of the application

grows with the page fault rate. With the increasing size of an application, the page fault

rate also increases, and the performance overhead will also increase correspondingly.

Also, as previously mentioned on section 4.2.2, the lack of ability of dynamically

resizing and allocating memory when running on a secure enclave is an SGX1 problem,

but, a second generation of the processor, the SGX2, with the objective to overcome this

problem, is already a work-in-progress [103].

This means that application heap and stack memory parameters should be tuned at

enclave startup and are fixed and not resizable at runtime. When running any datastore

application, these parameters are very important because, depending on the use case, the

size which the database size will rise is not very predictable and reaching the heap or stack
limits will kill the process with a OOM (Out of Memory) error.

Through testing, we were able to confirm this limitation, by inserting data continu-

ously until reaching the default SCONE Heap limit of 64MB, the container where Redis

was running gets killed by a OOM error. By tuning the SCONE Heap parameter through

the provided environment variable, Redis was able to surpass the 64MB limit and also

the 128MB physical limit of the EPC.

5.8.3 Performance and Payload Size

All tests were made with a small key-value pair with about 20 bytes for the key and 100

bytes for the value. However, it is important to know how the system would handle

requests with the different payload sizes, and a standalone system running the three

systems configurations tested in this chapter were tested with payloads of 100 bytes, 1KB,

100KB, 500KB and 1MB and the results are presented in graph 5.9.

Figure 5.9: Latency per Data Size

The graph shows the average response times in running the different configurations

with the variable payload size over a 5000 request test bench. As expected, a plain Redis

61

CHAPTER 5. VALIDATION AND EXPERIMENTAL EVALUATION

running on unprotected memory scaled the best, followed by the enclave and encrypted

configurations that run closely throughout the tests ending up with a 25% to 35% decrease

in performance.

5.9 Summary and Findings

A plain and normal configuration, an SGX enabled architecture and an hybrid system are

the three most prominent configurations available and all were tested on the same test

benches and on the same conditions to provide a clear conclusion of the work performed

in order to achieve and reach the expected goals and contributions of this thesis, but also

for those who are able to choose a system architecture based on security, can make an

informed decision and tailored to their use case.

The test revealed that, as expected, additional security measures incur on a perfor-

mance overhead to the system but risk managing is an important part of any project

planning and the performance drawback can be worth it for some use cases.

Referencing the SGX secure enclaves, we saw a performance drop of about 18% to

approximately 25%, because the performance of an application running on an enclave

depends on these three main points:

Memory Access Local: If the application exceeds the EPC size limit, memory is

swapped to main memory and that requires additional encryption and decryption cy-

cles.

System Calls: System calls require enclave exiting and entering which is a slow pro-

cess. However, SCONE uses an asynchronous system call interface that ensures that

threads do not need to exit the enclave to perform a system call.

Threading: SCONE uses asynchronous application threading in order to allow switch-

ing to another application thread if another one is waiting for some system event, without

exiting the enclave, which can speed up the performance.

We also found out that the bigger the application enclave is, the more page swapping

it has to perform and also, with SGX1, the lack of dynamically resizing enclaves makes

a great case for an hybrid approach, where the storage server lives on unprotected mem-

ory but is secured by encryption mechanism enabled by the proxy, which can itself run

inside an enclave, making sure that the encryption and decryption cycles are hardware

protected.

62

C
h
a
p
t
e
r

6
Conclusions

This chapter resumes and summarises all the work performed on this thesis and presents

final thoughts that were concluded from the related work, system model and architec-

ture, implementation and design options and the evaluations taken from all the tests

performed.

Section 6.1 recaptures the objectives and contributions and matches them against

the results obtained from the system implementation. Section 6.2 details the issues and

limitations of the system that were discovered during the study of the system and corre-

sponding implementation, and section 6.3 discusses future work that can be performed

in order to improve the system and continue the work presented in this thesis, as well as

fixing and completing open issues and limitations presented before.

6.1 Main Conclusions

Cloud computing adoptions keeps growing with every year that passes and companies

and enterprises are finding more and more attractive some of the features the cloud

providers offer such as, easy deployment, automatic and seamless scalability as well as

replication and pay-as-you-use payment structures and business model. However, data

privacy is another trend that has arisen in the past few years, and people, now more than

ever, want to hold control of their own data, keep it private and secure, and need more

assurances from cloud providers that all measures are being implemented to guarantee

just that.

The implementation of this dissertation had multiple objectives and contributions that

were explained in chapter 1 and the main solution proposed was the design and imple-

mentation of a cloud-enabled privacy-enhanced solution, with all-in-the-box planned

features, and able to be used as a “cloud-platform as a service” solution, providing:

63

CHAPTER 6. CONCLUSIONS

• Trust-ability, security and privacy;

• Software attestation;

• Replication Mechanism;

• Drastically reduced TCB;

• Complete analysis report.

Given the objectives and contributions proposed, we were able to successfully design

and implement a system, leveraging Intel’s SGX trusted environment execution processor,

and provide a trusted and privacy-enhanced in-memory data store, using container tech-

nology for the deployment and easy portability, providing remote attestation in order to

guarantee software and hardware correctness, drastically reducing the TCB, maintaining

data secure and private while operating on a remote machine.

Limitations of the secure enclave technology were considered, and the use of a dataset

operating in unprotected memory but maintaining data private with the help of par-

tial homomorphic encryption with operations performed over encrypted data, can be

used to overcome some of those limitations. Also, the implemented secure system can

be replicated over multiple instances and the data sharding and splitting can remove

stress from each node of the replicated cluster, improving availability, reliability and also

performance.

The SCONE framework helped to run an unmodified version of Redis and with com-

bination of a trusted execution environment for code and data security and isolation,

the implemented system is viable and offers a balanced and moderate trade-off between

security and performance.

6.2 Open Issues and Limitations

During the design and implementation of the system, some issues and limitations ap-

peared. The SGX performance and memory limitations are still an issue and, to some

use cases where performance is the main factor and cannot be diminished by adding

additional security guarantees, this solution might not be the best suitable to adopt. Also,

the work with homomorphic encryption is still an ongoing study case, and it means that

this is not a full-fledge solution, and may not support all operations over an encrypted

dataset.

As any work implemented for a specific platform, this solution will only be effective

on Intel machines with a processor that supports the latest software guard extensions

technology and although the code is easily deployable using containers, the processor is

yet not available massively and globally across multiple cloud providers or even personal

machines thus, reducing the portability factor.

64

6.3. FUTURE WORK DIRECTIONS

One important issue that was found in the implementation of the system is that

Redis storage data persistency mechanism, is exposing data in plain text when trying

to persist itself and backing up data into the unprotected persistent disk storage even

though running on an isolated secure enclave that should not ever expose data. This is

a big vulnerability, that was patched temporarily by disabling data persistency on disk,

however, data backups are an important feature, and the SCONE technology may have

a way to resolve the issue with their encrypted file system support, but the problem did

not have further investigation on this dissertation.

6.3 Future Work Directions

After all the work performed and some limitations and issues catalogued the following is

future work that can be performed to improve a trusted and privacy-enhanced in-memory

datastore:

The use of the still in progress but already available second version of the secure

processor, the SGX2 will help to overcome some memory limitations and problems by

providing dynamic memory swapping and allocation and dynamic enclave resizing at

runtime, something that was not possible to test in this dissertation, but will improve not

only in enclave memory but also startup times and the whole system resources consump-

tions.

The proxy server is identified as a single point of failure, and although it was not

tested in the current project, the replication of the proxy server can help not only with

performance but also with system availability.

Also, although the proxy and the system can support multiple users with multiple

roles, it does not offer multi-tenant support, meaning that all data is secured with the

same encryption and decryption keys. The usage of different keys per user/tenant, proxy

generated or user-supplied keys and also a key rotation system can help privacy and

improve the overall security of the system.

The implemented system allows for the user to request software and hardware stack

information on demand, but the trusted SGX attestation procedure only happens at en-

clave startup. Some investigation is necessary but, the implementation of an on-demand

SGX enabled attestation mechanism is very interesting and an important asset to the

system.

Mentioning the limitations described in section 6.2, fixing the backup issue would

be a really important improvement for the system, to allow for data backup and system

recovery in the event of a crash of terminal failure.

Finally, the system was implemented with the help of the SCONE framework, but it

would be very important and informative to try and test the same system on another SGX

or enclave enabled platform and compare the performances, security and resource usage

between the different frameworks.

65

CHAPTER 6. CONCLUSIONS

There are always ways to generally improve performance and resource consumption

of the infrastructure, and the improvement of a secure and trusted system is a plus for

all users that wish to hold control of their data, keep it private and authentic and never

relinquish control to anyone, regardless of the environment on which their software runs

on.

66

Bibliography

[1] 80% Of Enterprise IT Will Move To The Cloud By 2025. Accessed: 2020-08-12. url:

https://www.forbes.com/sites/oracle/2019/02/07/prediction-80-of-

enterprise-it-will-move-to-the-cloud-by-2025/.

[2] A brief history of cloud computing. Accessed: 2020-01-11. url: https://www.

ibm.com/blogs/cloud-computing/2014/03/18/a-brief-history-of-cloud-

computing-3/.

[3] A history of cloud computing. Accessed: 2020-01-11. url: https://www.computerweekly.

com/feature/A-history-of-cloud-computing.

[4] Aerospike. Accessed: 2019-06-16. url: https://www.aerospike.com.

[5] Aerospike. Accessed: 2019-06-16. url: https://www.aerospike.com/docs/

guide/security/index.html.

[6] Amazon Dynamo DB. Accessed: 2019-06-16. url: aws.amazon.com/dynamodb.

[7] Amazon S3 - Cloud Storage. Accessed: 2019-07-09. url: https://aws.amazon.

com/s3/.

[8] Amazon Web Services. Accessed: 2019-06-16. url: https://aws.amazon.com.

[9] Apache JMeter™. url: https://jmeter.apache.org.

[10] Apple’s iCloud service suffers cyber-attack in China, putting passwords in peril. Ac-

cessed: 2020-01-11. url: https : / / www . washingtonpost . com / news / the -

switch/wp/2014/10/21/apples-icloud-service-suffers-cyber-attack-in-

china-putting-passwords-in-peril/.

[11] ARM TrustZone. Accessed: 2020-01-08. url: https://developer.arm.com/ip-

products/security-ip/trustzone.

[12] ARM TrustZone Security Whitepaper. Tech. rep. PRD29-GENC-009492C. ARM

Limited, Dec. 2008. url: http://infocenter.arm.com/help/topic/com.

arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_

whitepaper.pdf.

[13] ARM TrustZone Stack Image. Accessed: 2020-01-08. url: https://malware.

news/t/introduction-to-trusted-execution-environment-arms-trustzone/

20823.

67

https://www.forbes.com/sites/oracle/2019/02/07/prediction-80-of-enterprise-it-will-move-to-the-cloud-by-2025/
https://www.forbes.com/sites/oracle/2019/02/07/prediction-80-of-enterprise-it-will-move-to-the-cloud-by-2025/
https://www.ibm.com/blogs/cloud-computing/2014/03/18/a-brief-history-of-cloud-computing-3/
https://www.ibm.com/blogs/cloud-computing/2014/03/18/a-brief-history-of-cloud-computing-3/
https://www.ibm.com/blogs/cloud-computing/2014/03/18/a-brief-history-of-cloud-computing-3/
https://www.computerweekly.com/feature/A-history-of-cloud-computing
https://www.computerweekly.com/feature/A-history-of-cloud-computing
https://www.aerospike.com
https://www.aerospike.com/docs/guide/security/index.html
https://www.aerospike.com/docs/guide/security/index.html
aws.amazon.com/dynamodb
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://aws.amazon.com
https://jmeter.apache.org
https://www.washingtonpost.com/news/the-switch/wp/2014/10/21/apples-icloud-service-suffers-cyber-attack-in-china-putting-passwords-in-peril/
https://www.washingtonpost.com/news/the-switch/wp/2014/10/21/apples-icloud-service-suffers-cyber-attack-in-china-putting-passwords-in-peril/
https://www.washingtonpost.com/news/the-switch/wp/2014/10/21/apples-icloud-service-suffers-cyber-attack-in-china-putting-passwords-in-peril/
https://developer.arm.com/ip-products/security-ip/trustzone
https://developer.arm.com/ip-products/security-ip/trustzone
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
https://malware.news/t/introduction-to-trusted-execution-environment-arms-trustzone/20823
https://malware.news/t/introduction-to-trusted-execution-environment-arms-trustzone/20823
https://malware.news/t/introduction-to-trusted-execution-environment-arms-trustzone/20823

BIBLIOGRAPHY

[14] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe, J. Lind, D.

Muthukumaran, D. O’Keeffe, M. L. Stillwell, D. Goltzsche, D. Eyers, R. Kapitza,

P. Pietzuch, and C. Fetzer. “SCONE: Secure Linux Containers with Intel SGX.”

In: 12th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 16). Savannah, GA: USENIX Association, 2016, pp. 689–703. isbn: 978-1-

931971-33-1. url: https://www.usenix.org/conference/osdi16/technical-

sessions/presentation/arnautov.

[15] Around 75% of Open Redis Servers Are Infected With Malware. Accessed: 2020-02-

18. url: https://www.bleepingcomputer.com/news/security/around-75-

percent-of-open-redis-servers-are-infected-with-malware/.

[16] R. H. Arpaci-Dusseau and A. C. Arpaci-Dusseau. Operating Systems: Three Easy
Pieces. 1.00. Arpaci-Dusseau Books, 2018.

[17] asylo. Accessed: 2020-09-20. url: https://asylo.dev.

[18] asylo. Accessed: 2020-09-20. url: https://github.com/google/asylo.

[19] Attestation and Trusted Computing - CSEP 590: Practical Aspects of Modern Cryp-
tography. Accessed: 2019-11-26. url: https://courses.cs.washington.edu/

courses/csep590/06wi/finalprojects/bare.pdf.

[20] Attestation Identity Key (AIK) Certificate Enrollment Specification. Accessed: 2019-

11-26. url: https://www.trustedcomputinggroup.org/wp-content/uploads/

IWG-AIK-CMC-enrollment-FAQ.pdf.

[21] AWS hit by major DDoS attack. Accessed: 2020-01-11. url: https : / / www .

techradar.com/news/aws-hit-by-major-ddos-attack.

[22] Azure Blob Storage. Accessed: 2019-07-09. url: https://azure.microsoft.com/

en-us/services/storage/blobs/.

[23] M. Bailleu, J. Thalheim, P. Bhatotia, C. Fetzer, M. Honda, and K. Vaswani. “SPE-

ICHER: Securing LSM-based Key-Value Stores using Shielded Execution.” In:

17th USENIX Conference on File and Storage Technologies (FAST 19). Boston, MA:

USENIX Association, 2019, pp. 173–190. isbn: 978-1-931971-48-5. url: https:

//www.usenix.org/conference/fast19/presentation/bailleu.

[24] S. Banescu. Cache Timing Attacks. July 2011. url: https://www.academia.edu/

3224323/Cache_Timing_Attacks.

[25] Benefits of Hardware Trusted Modules. Accessed: 2019-11-30. url: https://www.

hardware-security-module.com/benefits/.

[26] S. Christopherson. Intel SGX Virtualization - KVM Forum 2018. Intel Open Source

Technology Center | 01.org Accessed: 2020-10-16. url: https://www.linux-

kvm.org/images/e/e8/KVM_Forum_2018_-_Intel_SGX.pdf.

[27] V. Costan and S. Devadas. Intel SGX Explained. Cryptology ePrint Archive, Report

2016/086. ’https://eprint.iacr.org/2016/086’. 2016.

68

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/arnautov
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/arnautov
https://www.bleepingcomputer.com/news/security/around-75-percent-of-open-redis-servers-are-infected-with-malware/
https://www.bleepingcomputer.com/news/security/around-75-percent-of-open-redis-servers-are-infected-with-malware/
https://asylo.dev
https://github.com/google/asylo
https://courses.cs.washington.edu/courses/csep590/06wi/finalprojects/bare.pdf
https://courses.cs.washington.edu/courses/csep590/06wi/finalprojects/bare.pdf
https://www.trustedcomputinggroup.org/wp-content/uploads/IWG-AIK-CMC-enrollment-FAQ.pdf
https://www.trustedcomputinggroup.org/wp-content/uploads/IWG-AIK-CMC-enrollment-FAQ.pdf
https://www.techradar.com/news/aws-hit-by-major-ddos-attack
https://www.techradar.com/news/aws-hit-by-major-ddos-attack
https://azure.microsoft.com/en-us/services/storage/blobs/
https://azure.microsoft.com/en-us/services/storage/blobs/
https://www.usenix.org/conference/fast19/presentation/bailleu
https://www.usenix.org/conference/fast19/presentation/bailleu
https://www.academia.edu/3224323/Cache_Timing_Attacks
https://www.academia.edu/3224323/Cache_Timing_Attacks
https://www.hardware-security-module.com/benefits/
https://www.hardware-security-module.com/benefits/
https://www.linux-kvm.org/images/e/e8/KVM_Forum_2018_-_Intel_SGX.pdf
https://www.linux-kvm.org/images/e/e8/KVM_Forum_2018_-_Intel_SGX.pdf
'

BIBLIOGRAPHY

[28] V. Costan, I. Lebedev, and S. Devadas. Sanctum: Minimal Hardware Extensions for
Strong Software Isolation. Cryptology ePrint Archive, Report 2015/564. ’https://eprint.iacr.org/2015/564’.

2015.

[29] Data leaks: The most common sources. Accessed: 2020-02-18. url: https://www.

zdnet.com/pictures/data-leaks-the-most-common-sources/13/.

[30] Data leaks: The most common sources. Accessed: 2020-02-18. url: https://www.

zdnet.com/pictures/data-leaks-the-most-common-sources/12/.

[31] Data leaks: The most common sources. Accessed: 2020-02-18. url: https://www.

zdnet.com/pictures/data-leaks-the-most-common-sources/14/.

[32] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin,

S. Sivasubramanian, P. Vosshall, and W. Vogels. “Dynamo: Amazon’s Highly

Available Key-value Store.” In: Proceedings of Twenty-first ACM SIGOPS Symposium
on Operating Systems Principles. SOSP ’07. Stevenson, Washington, USA: ACM,

2007, pp. 205–220. isbn: 978-1-59593-591-5. doi: 10.1145/1294261.1294281.

url: http://doi.acm.org/10.1145/1294261.1294281.

[33] Docker. Accessed: 2020-02-18. url: https://www.docker.com.

[34] Docker Compose. Accessed: 2020-02-18. url: https://docs.docker.com/

compose/.

[35] Docker Hub Redis Official Repository. Accessed: 2020-08-15. url: https://hub.

docker.com/_/redis/.

[36] Document Store. Accessed: 2019-06-16. url: https://aws.amazon.com/nosql/

document/.

[37] FINDING SECRETS... url: https://sconedocs.github.io/memory_dump/.

[38] Gatling - Load test as code. url: https://gatling.io.

[39] C. Gentry, S. Halevi, and N. P. Smart. “Homomorphic Evaluation of the AES

Circuit.” In: Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2012,

pp. 850–867. doi: 10.1007/978-3-642-32009-5_49. url: https://doi.org/

10.1007/978-3-642-32009-5_49.

[40] Google Cloud Storage. Accessed: 2019-07-09. url: https://cloud.google.com/

storage/.

[41] J. Götzfried, M. Eckert, S. Schinzel, and T. Müller. “Cache Attacks on Intel ’SGX’.”

In: Proceedings of the 10th European Workshop on Systems Security - ’EuroSec’ ’17.

’ACM’ Press, 2017. doi: 10.1145/3065913.3065915. url: https://doi.org/10.

1145/3065913.3065915.

[42] Graph DBMS. Accessed: 2019-06-16. url: https://aws.amazon.com/nosql/

graph/.

69

'
https://www.zdnet.com/pictures/data-leaks-the-most-common-sources/13/
https://www.zdnet.com/pictures/data-leaks-the-most-common-sources/13/
https://www.zdnet.com/pictures/data-leaks-the-most-common-sources/12/
https://www.zdnet.com/pictures/data-leaks-the-most-common-sources/12/
https://www.zdnet.com/pictures/data-leaks-the-most-common-sources/14/
https://www.zdnet.com/pictures/data-leaks-the-most-common-sources/14/
https://doi.org/10.1145/1294261.1294281
http://doi.acm.org/10.1145/1294261.1294281
https://www.docker.com
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://hub.docker.com/_/redis/
https://hub.docker.com/_/redis/
https://aws.amazon.com/nosql/document/
https://aws.amazon.com/nosql/document/
https://sconedocs.github.io/memory_dump/
https://gatling.io
https://doi.org/10.1007/978-3-642-32009-5_49
https://doi.org/10.1007/978-3-642-32009-5_49
https://doi.org/10.1007/978-3-642-32009-5_49
https://cloud.google.com/storage/
https://cloud.google.com/storage/
https://doi.org/10.1145/3065913.3065915
https://doi.org/10.1145/3065913.3065915
https://doi.org/10.1145/3065913.3065915
https://aws.amazon.com/nosql/graph/
https://aws.amazon.com/nosql/graph/

BIBLIOGRAPHY

[43] Graphene Library OS with Intel SGX Support. Accessed: 2020-02-16. url: https:

//github.com/oscarlab/graphene.

[44] Graphene-SGX Secure Container (GSC): Automatic Protection of Containerized Ap-
plications with Intel SGX. Accessed: 2020-02-18. url: https://github.com/

rainfld/gsc.

[45] S. Gueron. A Memory Encryption Engine Suitable for General Purpose Processors.
Cryptology ePrint Archive, Report 2016/204. 2016. url: https://eprint.iacr.

org/2016/204.

[46] S. K. Haider, H. Omar, M. Ahmad, C. Jin, and M. van Dijk. Intel’s SGX In-depth
Architecture. url: https://scl.engr.uconn.edu/courses/ece6095/lectures/

sgx_architecture.pdf.

[47] Hardware Trusted Modules. Accessed: 2019-11-30. url: https://resources.

infosecinstitute.com/tpms- or- hsms- and- their- role- in- full- disk-

encryption-fde/.

[48] How fast is Redis? Accessed: 2020-02-16. url: https://redis.io/topics/

benchmarks.

[49] M. S. Inci, B. Gulmezoglu, G. Irazoqui, T. Eisenbarth, and B. Sunar. Seriously, get
off my cloud! Cross-VM RSA Key Recovery in a Public Cloud. Cryptology ePrint

Archive, Report 2015/898. 2015. url: https://eprint.iacr.org/2015/898.

[50] Intel SGX. Accessed: 2020-01-04. url: https://software.intel.com/en-

us/sgx.

[51] intel/kvm-sgx. Accessed: 2020-10-16. url: https://github.com/intel/kvm-

sgx.

[52] Intel® Software Guard Extensions (Intel® SGX) - Developer Guide. Accessed: 2020-

01-25. url: https://download.01.org/intel-sgx/linux-2.2/docs/Intel_

SGX_Developer_Guide.pdf.

[53] Intel® Software Guard Extensions SDK for Linux. Accessed: 2020-02-18. url:

https://01.org/intel-softwareguard-extensions.

[54] S. IT. Key-Value Stores. Accessed: 2019-06-16. url: https://db-engines.com/

en/article/Key-value+Stores.

[55] S. IT. Key-Value Stores Ranking. Accessed: 2019-06-16. url: https : / / db -

engines.com/en/ranking/key-value+store.

[56] Jedis - A blazingly small and sane redis java client. url: https://github.com/

redis/jedis.

[57] Kernel Virtual Machine. Accessed: 2020-09-20. url: https://www.linux-kvm.

org/page/Main_Page.

70

https://github.com/oscarlab/graphene
https://github.com/oscarlab/graphene
https://github.com/rainfld/gsc
https://github.com/rainfld/gsc
https://eprint.iacr.org/2016/204
https://eprint.iacr.org/2016/204
https://scl.engr.uconn.edu/courses/ece6095/lectures/sgx_architecture.pdf
https://scl.engr.uconn.edu/courses/ece6095/lectures/sgx_architecture.pdf
https://resources.infosecinstitute.com/tpms-or-hsms-and-their-role-in-full-disk-encryption-fde/
https://resources.infosecinstitute.com/tpms-or-hsms-and-their-role-in-full-disk-encryption-fde/
https://resources.infosecinstitute.com/tpms-or-hsms-and-their-role-in-full-disk-encryption-fde/
https://redis.io/topics/benchmarks
https://redis.io/topics/benchmarks
https://eprint.iacr.org/2015/898
https://software.intel.com/en-us/sgx
https://software.intel.com/en-us/sgx
https://github.com/intel/kvm-sgx
https://github.com/intel/kvm-sgx
https://download.01.org/intel-sgx/linux-2.2/docs/Intel_SGX_Developer_Guide.pdf
https://download.01.org/intel-sgx/linux-2.2/docs/Intel_SGX_Developer_Guide.pdf
https://01.org/intel-softwareguard-extensions
https://db-engines.com/en/article/Key-value+Stores
https://db-engines.com/en/article/Key-value+Stores
https://db-engines.com/en/ranking/key-value+store
https://db-engines.com/en/ranking/key-value+store
https://github.com/redis/jedis
https://github.com/redis/jedis
https://www.linux-kvm.org/page/Main_Page
https://www.linux-kvm.org/page/Main_Page

BIBLIOGRAPHY

[58] Keycloak - Open Source Identity and Access Management. url: https : / / www .

keycloak.org.

[59] A. K. Khan and H. J. Mahanta. “Side channel attacks and their mitigation tech-

niques.” In: 2014 First International Conference on Automation, Control, Energy and
Systems (’ACES’). IEEE, Feb. 2014. doi: 10.1109/aces.2014.6807983. url:

https://doi.org/10.1109/aces.2014.6807983.

[60] T. Kim, J. Park, J. Woo, S. Jeon, and J. Huh. “ShieldStore: Shielded In-memory

Key-value Storage with SGX.” In: Proceedings of the Fourteenth EuroSys Conference
2019. EuroSys ’19. Dresden, Germany: ACM, 2019, 14:1–14:15. isbn: 978-1-

4503-6281-8. doi: 10.1145/3302424.3303951. url: http://doi.acm.org/10.

1145/3302424.3303951.

[61] Kinetic Object Storage. Accessed: 2019-07-09. url: https://storageioblog.

com/seagate-kinetic-cloud-object-storage-io-platform/.

[62] R. Krahn, B. Trach, A. Vahldiek-Oberwagner, T. Knauth, P. Bhatotia, and C. Fetzer.

“Pesos.” In: Proceedings of the Thirteenth EuroSys Conference on - EuroSys 18. ACM

Press, 2018. doi: 10.1145/3190508.3190518. url: https://doi.org/10.1145/

3190508.3190518.

[63] linux-sgx-driver. Accessed: 2020-02-18. url: https://github.com/intel/

linux-sgx-driver.

[64] Local Attestation. url: http://www.sgx101.com/portfolio/local_attestation/.

[65] N. Lord. What is the Principle of Least Privilege (POLP)? A Best Practice for Informa-
tion Security and Compliance. Accessed: 2020-10-24. url: https://digitalguardian.

com/blog/what-principle-least-privilege-polp-best-practice-information-

security-and-compliance.

[66] F. McKeen, I. Alexandrovich, A. Berenzon, C. Rozas, H. Shafi, V. Shanbhogue,

and U. Savagaonkar. Innovative Instructions and Software Model for Isolated Ex-
ecution. Tech. rep. Intel Corporation, Aug. 2013. url: https://software.

intel.com/sites/default/files/article/413936/hasp-2013-innovative-

instructions-and-software-model-for-isolated-execution.pdf.

[67] Memcached. Accessed: 2019-06-16. url: http://www.memcached.org.

[68] Memcached Github. Accessed: 2019-06-16. url: https://github.com/memcached/

memcached/wiki/Overview.

[69] Microsoft Azure Cache For Redis. Accessed: 2019-06-16. url: https://azure.

microsoft.com/en-us/services/cache/.

[70] Microsoft Azure Cosmos DB. Accessed: 2019-06-16. url: https://azure.microsoft.

com/en-us/services/cosmos-db/.

[71] Microsoft Azure Services. Accessed: 2019-06-16. url: https://azure.microsoft.

com/en-us.

71

https://www.keycloak.org
https://www.keycloak.org
https://doi.org/10.1109/aces.2014.6807983
https://doi.org/10.1109/aces.2014.6807983
https://doi.org/10.1145/3302424.3303951
http://doi.acm.org/10.1145/3302424.3303951
http://doi.acm.org/10.1145/3302424.3303951
https://storageioblog.com/seagate-kinetic-cloud-object-storage-io-platform/
https://storageioblog.com/seagate-kinetic-cloud-object-storage-io-platform/
https://doi.org/10.1145/3190508.3190518
https://doi.org/10.1145/3190508.3190518
https://doi.org/10.1145/3190508.3190518
https://github.com/intel/linux-sgx-driver
https://github.com/intel/linux-sgx-driver
http://www.sgx101.com/portfolio/local_attestation/
https://digitalguardian.com/blog/what-principle-least-privilege-polp-best-practice-information-security-and-compliance
https://digitalguardian.com/blog/what-principle-least-privilege-polp-best-practice-information-security-and-compliance
https://digitalguardian.com/blog/what-principle-least-privilege-polp-best-practice-information-security-and-compliance
https://software.intel.com/sites/default/files/article/413936/hasp-2013-innovative-instructions-and-software-model-for-isolated-execution.pdf
https://software.intel.com/sites/default/files/article/413936/hasp-2013-innovative-instructions-and-software-model-for-isolated-execution.pdf
https://software.intel.com/sites/default/files/article/413936/hasp-2013-innovative-instructions-and-software-model-for-isolated-execution.pdf
http://www.memcached.org
https://github.com/memcached/memcached/wiki/Overview
https://github.com/memcached/memcached/wiki/Overview
https://azure.microsoft.com/en-us/services/cache/
https://azure.microsoft.com/en-us/services/cache/
https://azure.microsoft.com/en-us/services/cosmos-db/
https://azure.microsoft.com/en-us/services/cosmos-db/
https://azure.microsoft.com/en-us
https://azure.microsoft.com/en-us

BIBLIOGRAPHY

[72] Microsoft Security Intelligence Report Volume 22. Accessed: 2020-01-11. url:

https : / / www . microsoft . com / security / blog / 2017 / 08 / 17 / microsoft -

security-intelligence-report-volume-22-is-now-available/.

[73] M. Minkin. “Improving Performance and Security of Intel SGX.” Master’s thesis.

Israel Institute of Technology, Dec. 2018.

[74] Open Redis Servers Infected with Malware. Accessed: 2020-02-18. url: https:

//www.infosecurity-magazine.com/news/open-redis-servers-infected-

with/.

[75] OVHcloud - Intel Software Guard Extensions (SGX). Accessed: 2020-02-16. url:

https://www.ovh.ie/dedicated_servers/software-guard-extensions/.

[76] C. Priebe, K. Vaswani, and M. Costa. “EnclaveDB – A Secure Database using SGX.”

In: To appear in the Proceedings of the IEEE Symposium on Security & Privacy, May
2018. IEEE, May 2018. url: https://www.microsoft.com/en-us/research/

publication/enclavedb-a-secure-database-using-sgx/.

[77] Professor John McCarthy. Accessed: 2020-01-11. url: https://cs.stanford.

edu/memoriam/professor-john-mccarthy.

[78] Redis. Accessed: 2019-06-16. url: https://redis.io.

[79] Redis 6.0.06. Accessed: 2020-08-15. url: https://raw.githubusercontent.

com/redis/redis/6.0/00-RELEASENOTES.

[80] Redis Multi Model Store. Accessed: 2019-06-16. url: https://db-engines.com/

en/system/Redis.

[81] Redis Performance Benchmark. Accessed: 2019-06-16. url: https://redislabs.

com/docs/nosql-performance-benchmark/.

[82] Redis Security. Accessed: 2019-06-16. url: https : / / redis . io / topics /

security.

[83] SASL Rfc. Accessed: 2019-06-16. url: https://tools.ietf.org/html/rfc2222.

[84] M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and S. Mangard. “Malware Guard Ex-

tension: Using SGX to Conceal Cache Attacks.” In: arXiv e-prints, arXiv:1702.08719

(Feb. 2017), arXiv:1702.08719. arXiv: 1702.08719 [cs.CR].

[85] Search Engine Database. Accessed: 2019-06-16. url: https://aws.amazon.com/

nosql/search/.

[86] secure-redis-client. url: https://github.com/aanciaes/secure-redis-client.

[87] secure-redis-container. url: https://github.com/aanciaes/secure-redis-

container.

[88] secure-redis-proxy. url: https://github.com/aanciaes/secure-redis-proxy.

72

https://www.microsoft.com/security/blog/2017/08/17/microsoft-security-intelligence-report-volume-22-is-now-available/
https://www.microsoft.com/security/blog/2017/08/17/microsoft-security-intelligence-report-volume-22-is-now-available/
https://www.infosecurity-magazine.com/news/open-redis-servers-infected-with/
https://www.infosecurity-magazine.com/news/open-redis-servers-infected-with/
https://www.infosecurity-magazine.com/news/open-redis-servers-infected-with/
https://www.ovh.ie/dedicated_servers/software-guard-extensions/
https://www.microsoft.com/en-us/research/publication/enclavedb-a-secure-database-using-sgx/
https://www.microsoft.com/en-us/research/publication/enclavedb-a-secure-database-using-sgx/
https://cs.stanford.edu/memoriam/professor-john-mccarthy
https://cs.stanford.edu/memoriam/professor-john-mccarthy
https://redis.io
https://raw.githubusercontent.com/redis/redis/6.0/00-RELEASENOTES
https://raw.githubusercontent.com/redis/redis/6.0/00-RELEASENOTES
https://db-engines.com/en/system/Redis
https://db-engines.com/en/system/Redis
https://redislabs.com/docs/nosql-performance-benchmark/
https://redislabs.com/docs/nosql-performance-benchmark/
https://redis.io/topics/security
https://redis.io/topics/security
https://tools.ietf.org/html/rfc2222
https://arxiv.org/abs/1702.08719
https://aws.amazon.com/nosql/search/
https://aws.amazon.com/nosql/search/
https://github.com/aanciaes/secure-redis-client
https://github.com/aanciaes/secure-redis-container
https://github.com/aanciaes/secure-redis-container
https://github.com/aanciaes/secure-redis-proxy

BIBLIOGRAPHY

[89] Sgx Memory Limits. Accessed: 2019-06-16. url: https://software.intel.

com/en-us/forums/intel-software-guard-extensions-intel-sgx/topic/

670322.

[90] SGX Secure Enclaves in Practice: Security and Crypto Review. Black Hat USA 2016

Security Conference. url: https://www.youtube.com/watch?v=0ZVFy4Qsryc.

[91] SGX Virtualization. Accessed: 2020-10-16. url: https : / / 01 . org / intel -

software-guard-extensions/sgx-virtualization.

[92] SJHOMOLIB. Accessed: 2020-02-18. url: http://nova-lincs.di.fct.unl.pt/

prototype/233.

[93] M. Taassori, A. Shafiee, and R. Balasubramonian. “VAULT: Reducing Paging

Overheads in SGX with Efficient Integrity Verification Structures.” In: ASPLOS
’18. 2018.

[94] Tesla cloud systems exploited by hackers to mine cryptocurrency. Accessed: 2020-

02-18. url: https://www.zdnet.com/article/tesla- systems- used- by-

hackers-to-mine-cryptocurrency/.

[95] The Benefits Of Moving To The Cloud. Accessed: 2020-01-11. url: https://

www.forbes.com/sites/forbestechcouncil/2017/05/19/the-benefits-of-

moving-to-the-cloud.

[96] The Cambridge Analytica scandal changed the world – but it didn’t change Facebook.

Accessed: 2020-02-18. url: https://www.theguardian.com/technology/

2019/mar/17/the-cambridge-analytica-scandal-changed-the-world-but-

it-didnt-change-facebook.

[97] Time Series Databases. Accessed: 2019-06-16. url: https://www.forbes.com/

sites/metabrown/2018/03/31/get-the-basics-on-nosql-databases-time-

series-databases/.

[98] Trusted Platform Modules. Accessed: 2019-07-09. url: https://docs.microsoft.

com / en - us / windows / security / information - protection / tpm / trusted -

platform-module-overview.

[99] C.-c. Tsai, D. Porter, and M. Vij. “Graphene-SGX: A Practical Library OS for

Unmodified Applications on SGX.” In: 2017 USENIX Annual Technical Conference
(USENIX ATC 17). url: https://www.usenix.org/system/files/conference/

atc17/atc17-tsai.pdf.

[100] C.-C. Tsai, D. E. Porter, K. S. Arora, N. Bandi, B. Jain, W. Jannen, J. John, H. A.

Kalodner, V. Kulkarni, and D. Oliveira. “Cooperation and security isolation of

library OSes for multi-process applications.” In: Proceedings of the Ninth European
Conference on Computer Systems - EuroSys '14. ACM Press, 2014. doi: 10.1145/

2592798.2592812. url: https://doi.org/10.1145/2592798.2592812.

73

https://software.intel.com/en-us/forums/intel-software-guard-extensions-intel-sgx/topic/670322
https://software.intel.com/en-us/forums/intel-software-guard-extensions-intel-sgx/topic/670322
https://software.intel.com/en-us/forums/intel-software-guard-extensions-intel-sgx/topic/670322
https://www.youtube.com/watch?v=0ZVFy4Qsryc
https://01.org/intel-software-guard-extensions/sgx-virtualization
https://01.org/intel-software-guard-extensions/sgx-virtualization
http://nova-lincs.di.fct.unl.pt/prototype/233
http://nova-lincs.di.fct.unl.pt/prototype/233
https://www.zdnet.com/article/tesla-systems-used-by-hackers-to-mine-cryptocurrency/
https://www.zdnet.com/article/tesla-systems-used-by-hackers-to-mine-cryptocurrency/
https://www.forbes.com/sites/forbestechcouncil/2017/05/19/the-benefits-of-moving-to-the-cloud
https://www.forbes.com/sites/forbestechcouncil/2017/05/19/the-benefits-of-moving-to-the-cloud
https://www.forbes.com/sites/forbestechcouncil/2017/05/19/the-benefits-of-moving-to-the-cloud
https://www.theguardian.com/technology/2019/mar/17/the-cambridge-analytica-scandal-changed-the-world-but-it-didnt-change-facebook
https://www.theguardian.com/technology/2019/mar/17/the-cambridge-analytica-scandal-changed-the-world-but-it-didnt-change-facebook
https://www.theguardian.com/technology/2019/mar/17/the-cambridge-analytica-scandal-changed-the-world-but-it-didnt-change-facebook
https://www.forbes.com/sites/metabrown/2018/03/31/get-the-basics-on-nosql-databases-time-series-databases/
https://www.forbes.com/sites/metabrown/2018/03/31/get-the-basics-on-nosql-databases-time-series-databases/
https://www.forbes.com/sites/metabrown/2018/03/31/get-the-basics-on-nosql-databases-time-series-databases/
https://docs.microsoft.com/en-us/windows/security/information-protection/tpm/trusted-platform-module-overview
https://docs.microsoft.com/en-us/windows/security/information-protection/tpm/trusted-platform-module-overview
https://docs.microsoft.com/en-us/windows/security/information-protection/tpm/trusted-platform-module-overview
https://www.usenix.org/system/files/conference/atc17/atc17-tsai.pdf
https://www.usenix.org/system/files/conference/atc17/atc17-tsai.pdf
https://doi.org/10.1145/2592798.2592812
https://doi.org/10.1145/2592798.2592812
https://doi.org/10.1145/2592798.2592812

BIBLIOGRAPHY

[101] A. Waterman, Y. Lee, D. A. Patterson, K. Asanovic, V. I. U. level Isa, A. Waterman,

Y. Lee, and D. Patterson. The RISC-V Instruction Set Manual. 2014.

[102] What is a Trusted Execution Environment (TEE)? Accessed: 2019-12-03. url: https:

//www.trustonic.com/news/technology/what-is-a-trusted-execution-

environment-tee/.

[103] B. C. Xing, M. Shanahan, and R. Leslie-Hurd. “Intel® Software Guard Exten-

sions (Intel® SGX) Software Support for Dynamic Memory Allocation inside an

Enclave.” In: Proceedings of the Hardware and Architectural Support for Security and
Privacy 2016 on - HASP 2016. ACM Press, 2016. doi: 10.1145/2948618.2954330.

url: https://doi.org/10.1145/2948618.2954330.

74

https://www.trustonic.com/news/technology/what-is-a-trusted-execution-environment-tee/
https://www.trustonic.com/news/technology/what-is-a-trusted-execution-environment-tee/
https://www.trustonic.com/news/technology/what-is-a-trusted-execution-environment-tee/
https://doi.org/10.1145/2948618.2954330
https://doi.org/10.1145/2948618.2954330

A
n
n
e
x

I
Technologies and Versions

Table I.1 lists and summarises the version of all technologies used in this thesis.

Table I.1: Versions of Used Technologies

Technology Version

CloudLinux (OVH Cloud OS) Ubuntu 18.04 LTS Server 64 bits
Linux Kernel 4.15.0-101-generic
Intel SGX Linux Linux 2.11 Open Source Gold Release
Intel SGX Linux Driver 2.11
Docker 19.03.6
Docker Compose 1.17.1
Redis 6.0.8
SCONE 4.2.1
Java OpenJDK 64-Bit 1.8.0_222
Kotlin 1.4.10
Jedis 3.3.0
HLib 1.2r2
C++ C++14
Linux Musl g++ (GCC) 10.2.0
Spring Boot Starter Web 2.3.0.RELEASE
OpenSSL 1.1.1h
OpenAPI 3.0.0
Keycloak 10.0.2
Scala 2.12.3
Gatling 3.2.1
Jmeter 5.3

Secure-Redis-Container (this) 1.1.5
Secure-Redis-Proxy (this) 1.3.1
Secure-Redis-Client (this) 1.0.0

75

A
n
n
e
x

II
SGX Local Attestation

This annex contains the information that describes the Intel’s SGX local attestation pro-

cess and the text was directly taken from sgx101.com [64].

Before multiple enclaves collaborate with each other on the same platform, one en-

clave will have to authenticate the other locally using Intel SGX Report mechanism to

verify that the counterpart is running on the same TCB platform by applying the REPORT

based Diffie-Hellman Key Exchange. This procedure is referred as local attestation by

Intel. The successful result of local attestation will offer a protected channel between two

local enclaves with guarantee of confidentiality, integrity and replay protection.

Figure II.1: SGX Local Attestation

There are two enclaves on the same platform, referred to as Enclave A and Enclave

B. We assume they have established a communication path between each other, and the

path doesn’t need to be trusted. W.l.o.g we assume B is asking A to prove it’s running on

the same platform as B.

1. First, B retrieves its MRENCLAVE value and sends it to A via the untrusted channel.

2. A uses EREPORT instruction to produce a report for B using B’s MRENCLAVE.

77

ANNEX II. SGX LOCAL ATTESTATION

Then A sends this report back to B. A can also include Diffie-Hellman Key Exchange

data in the REPORT as user data for trusted channel creation in the future.

3. After B receives the REPORT from A, B calls EGETKEY instruction to get REPORT

KEY to verify the REPORT. If the REPORT can be verified with the REPORT KEY,

then B assures that A is on the same platform as B because the REPORT KEY is

specific to the platform.

4. Then B use the MRENCLAVE received from A’s REPORT to create another REPORT

for A and sends the REPORT to A.

5. A then also can do the same as step 4 to verity B is on the same platform as A.

6. By utilising the user data field of the REPORT, A and B can create a secure channel

using Diffie-Hellman Key Exchange. Information exchange can be encrypted by the

shared symmetric key.

78

A
n
n
e
x

III
Software Stack Attestation

Listing III.1 presents an example of a software and stack attestation response where

various measurements about binaries, configuration files and hardware information are

provided along side a signature that can be verified for each component instance.

Listing III.1: Software Attestation Response Example

{

"redis": [

{

"node": "ns31249243.ip-51-210-0.eu:8541",

"quote": {

"challenges": [

{

"filename": "/usr/local/bin/redis-server",

"hash": "b6a07d069d17a2ab5b36869271e266e9ee94823908c9cd9747c33b293207196a"

},

{

"filename": "/usr/local/etc/redis/redis.conf",

"hash": "65bf49826aca20825206aa3679201eb08516604977efce699d42fca2c8712a03"

},

{

"filename": "/home/redis/mrenclave",

"hash": "792233b7ef44a0e7a985f561f596a1ce449bf9150e4863e2cc29dc0653829450"

},

{

"filename": "/home/attestation_server/attestation-server",

"hash": "caab16d965d8c4924a7d8a59558e5d761c8986901a3762cde93ea30c9b30701a"

},

{

"filename": "/home/attestation_server/mrenclave",

"hash": "b75392ab9d7dad6f42dbd0be0d0584951e8c95dad6ae9af60ef4ae921c712c23"

}

79

ANNEX III . SOFTWARE STACK ATTESTATION

],

"nonce": 2,

"system": {

"processorCount": 16,

"processorModel": "Intel(R) Xeon(R) E-2288G CPU @ 3.70GHz",

"operaringSystem": "Alpine Linux v3.8"

},

"quoteSignature": "Dr5afOli3vCI/vvtU5aEol2VdjVc4wW(...)"

}

}

],

"proxy": {

"quote": {

"challenges": [

{

"filename": "/home/secure-proxy-redis/secure-redis-proxy-1.3.0.jar",

"hash": "6f9731f7bc6a325caa314c724d4d9beea8621dac139c7ecc7deae1ce5368b65f"

},

{

"filename": "/home/secure-proxy-redis/mrenclave",

"hash": "ed5ae8a95e54392ff9e28f20bb7539c639b1a800fe6d75443330a33abc893896"

}

],

"nonce": 2,

"system": {

"processorCount": 4,

"processorModel": "Intel(R) Xeon(R) E-2288G CPU @ 3.70GHz",

"operaringSystem": "Alpine Linux v3.7"

},

"quoteSignature": "lz9bRJ75WT70Wabek02YWwummvqhE+8cD32AuhDxg4KP5u(...)"

}

}

}

80

	Introduction
	Context and Motivation
	Problem Statement
	Objectives and Planned Contributions
	Report Organisation

	Related Work
	Key-Value Stores
	Memcached
	Redis
	Amazon Dynamo DB
	Microsoft Azure Cosmos DB
	Microsoft Azure Cache for Redis
	Aerospike
	Discussion

	Trusted Computing Environments
	TPM – Trusted Platform Modules
	TPM - Enabled Software Attestation
	HSM – Hardware Security Modules
	Trusted Execution Environments
	Intel SGX
	Sanctum
	ARM Trust Zone
	Discussion

	TEE/SGX Enabled Key Value Stores
	Trusted Execution with Intel SGX
	Circumvention of SGX Limitations
	SGX-Enabled Secure Databases
	Discussion

	SGX Virtualisation Frameworks
	KVM-SGX
	Graphene-SGX
	SCONE
	Asylo
	Discussion

	Related Work Balance and Critical Analysis

	System Model and Design Options
	Refinement of Objectives and Contributions
	SGX Limitations Refinement

	Threat Model and Security Properties
	Adversarial Model Definition
	System Assumptions
	Countermeasures for Privacy-Preservation

	System Model
	Key-Value Storage Server
	Proxy Server
	Authentication Server
	Client

	System Architecture
	Supported Operations
	Role-Based Authorisation
	Key-Value Storage Operations
	Proxy Enabled Operations
	Attestation

	Operation Flow
	Summary

	Prototype Implementation
	Architecture and Implementation Options
	Secure Redis
	Proxy Server
	Client-based Benchmarks
	Authentication Server
	Attestation

	Additional Details
	Protected Memory Check
	Protected Heap and Stack Memory
	TLS, HTTPS and Certificate Chain
	Logging and Auditing

	Tradeoffs on the Implementation Options
	Summary

	Validation and Experimental Evaluation
	Testbench Environments
	Relevant Evaluation Criteria
	Performance Evaluation for Redis-Benchmark tool
	Performance Evaluation for Standalone Redis
	Performance Evaluation for Cluster Redis
	Performance Evaluation for Homomorphic Operations
	Evaluation of the Attestation Protocol
	Complementary Measurements
	Memory and CPU Measurements
	Exhausting Protected Memory
	Performance and Payload Size

	 Summary and Findings

	Conclusions
	Main Conclusions
	Open Issues and Limitations
	Future Work Directions

	Bibliography
	Annexes
	Technologies and Versions
	SGX Local Attestation
	Software Stack Attestation

