
i

FINE-TUNING A TRANSFORMERS-BASED MODEL

TO EXTRACT RELEVANT FIELDS FROM INVOICES

Rui Francisco Pereira Moital Loureiro da Cruz

Dissertation presented as partial requirement for obtaining

the Master’s degree in Advanced Analytics

ii

NOVA Information Management School

Instituto Superior de Estatística e Gestão de Informação

Universidade Nova de Lisboa

FINE-TUNING A TRANSFORMERS-BASED MODEL TO EXTRACT

RELEVANT FIELDS FROM INVOICES

by

Rui Francisco Pereira Moital Loureiro da Cruz

Dissertation presented as partial requirement for obtaining the Master’s degree in Advanced Analytics

Advisor: Prof. Mauro Castelli

 November 2021

iii

ACKNOWLEDGEMENTS

I must express my deepest acknowledgement to those who so largely contributed for the completion

of this work and all the fun I had doing it. To my supervisor, Prof. Mauro Castelli, I must thank all the

precious contributions and openness for discussion. Furthermore, for his motivation and financial

support on publishing my work. To António and Miguel, for letting me be part of Feels Like Home since

the beginning. This thesis would not be possible without their financial support and the freedom they

gave me to conjugate work and study.

To my mother and father, for being the best references I could have and their unconditional support.

A special thanks to my mother for photographing more than a thousand invoices with so much love

and care. To José Afonso and Manuel, life feels great with you next to me and coding feels special with

you on my lap. To Inês, who gave so much of her life to turn mine easier.

iv

ABSTRACT

Extraction of relevant fields from documents has been a relevant matter for decades. Although there

are well-established algorithms to perform this task since the late XX century, this field of study has

again gathered more attention with the fast growth of deep learning models and transfer learning.

One of these models is LayoutLM, which is a Transformer-based architecture pre-trained with

additional features that represent the 2D position of the words.

In this dissertation, LayoutLM is fine-tuned on a set of invoices to extract some of its relevant fields,

such as company name, address, document date, among others. Given the objective of deploying the

model in a company’s internal accountant software, an end-to-end machine learning pipeline is

presented. The training layer receives batches with images of documents and their corresponding

annotations and fine-tunes the model for a sequence labeling task. The production layer inputs images

and predicts the relevant fields.

The images are pre-processed extracting the whole document text and bounding boxes using OCR. To

automatically label the samples using Transformers-based input format, the text is labeled using an

algorithm that searches parts of the text equal or highly similar to the annotations.

Also, a new dataset to support this work is created and made publicly available. The dataset consists

of 813 pictures and the annotation text for every relevant field, which include company name,

company address, document date, document number, buyer tax number, seller tax number, total

amount and tax amount.

The models are fine-tuned and compared with two baseline models, showing a performance very close

to the presented by the model authors. A sensitivity analysis is made to understand the impact of two

datasets with different characteristics. In addition, the learning curves for different datasets define

empirically that 100 to 200 samples are enough to fine-tune the model and achieve top performance.

Based on the results, a strategy for model deployment is defined. Empirical results show that the

already fine-tuned model is enough to guarantee top performance in production without the need of

using online learning algorithms.

KEYWORDS

Document data extraction; Deep Learning; Transformers; Invoice dataset

v

INDEX

1. Introduction .. 1

1.1. Extract relevant fields from documents using Natural Language Processing 1

1.2. Research motivation .. 1

1.3. Research objectives ... 2

1.4. Thesis structure ... 3

2. Literature review .. 4

2.1. Introduction ... 4

2.2. Early days of document information extraction technology 4

2.3. Deep learning .. 5

2.3.1. Scene or document text extraction .. 7

2.3.2. Document segmentation .. 8

2.3.3. Document text labeling .. 10

3. Created dataset .. 14

3.1. Introduction ... 14

3.2. Value of the Data ... 14

3.3. Data Description .. 14

3.4. Data details and distributions ... 15

3.5. Experimental Design and Methods ... 17

4. Model fundamentals .. 19

4.1. Transformers ... 19

4.2. BERT ... 21

4.3. LayoutLM Architecture .. 22

4.4. LayoutLM pre-training ... 23

4.5. LayoutLM fine-tuning .. 23

5. Methodology .. 24

5.1. Pipeline .. 24

5.2. Pre-processing ... 25

5.3. Model and run configurations ... 28

5.4. Datasets ... 29

5.5. Typless training and prediction ... 29

5.6. Evaluation and metrics .. 30

6. Results... 31

6.1. Baseline comparisons .. 31

vi

6.2. Application on FLH and SROIE dataset .. 32

6.3. Effect of predicting on a different dataset .. 33

6.4. Effect of mixing datasets ... 33

6.5. Effect of dataset size ... 34

6.6. Discussion and considerations for production environment 35

7. Conclusions and future work .. 39

Bibliography... 43

vii

LIST OF FIGURES

Figure 2.1 – Tree representation of a document (Tsujimoto & Asada, 1990). a) Document

divided into blocks. b) Geometric structure. c) Logical structure 5

Figure 2.2 – INFORMys (Cesarini et al., 1998). a) Basic structure of the software. b) Example

of a graph representation of a document .. 6

Figure 2.3 – Two-step model architecture of Rosetta (Borisyuk et al., 2018) 7

Figure 2.4 – Example of a procedure of the proposed method (Zhang et al., 2016) 7

Figure 2.5 – Example of the output of the system (W. Liu et al., 2020) 8

Figure 2.6 – Example of the output with colored regions (Stahl et al., 2018) 8

Figure 2.7 – Example of DeepDeSRT table detection results (Schreiber et al., 2017). a) Table

detection. b) Table structure – rows and columns - detection.. 9

Figure 2.8 –A CNN extracts class-specific saliency maps which are enhanced by CRF models

(Kavasidis et al., 2019) .. 10

Figure 2.9 – Implementation architecture, including training and testing phases (Enendu et al.,

2019) ... 10

Figure 2.10 – Model architecture presented by Holecek et al. (2019) 11

Figure 2.11 – Illustration of pre-training strategy and for LayoutLMv2 12

Figure 3.1 – Count of documents for values of variable: a) total (€) (not showing outliers).

b) company (top 10). c) date (year issued). d) nif_buyer .. 16

Figure 3.2 – Box plots representing for each field the distribution of: a) number of characters.

b) number of words .. 17

Figure 3.3 – Location of every address annotated in the dataset ... 17

Figure 3.4 – Examples of limitations in images. a) Digitalized document with part of the text

covered. b) Green rectangle highlighting the table of VAT values detailed by VAT rank. No

total VAT value is presented in the document... 18

Figure 4.1 – Transformer model architecture (Vaswani et al., 2017) 19

Figure 4.2 – BERT input representation (Devlin et al., 2019) ... 21

Figure 4.3 – LayoutLM input and downstream representation (Yiheng Xu et al., 2020) 22

Figure 5.1 – Simplified schema of the implemented pipeline ... 24

Figure 5.2 – Image of a document in the dataset and annotation of its relevant fields in JSON

format ... 24

Figure 5.3 – Simplified schema of the pre-processing stage ... 25

Figure 5.4 – Example of a document with poor quality. a) Image of the document. b) Part of

the text obtained by OCR with highlighted errors. c) Annotated fields, which do not match

exactly the content of the OCR text ... 26

viii

Figure 5.5 – Example of steps of the algorithm that labels numeric fields 26

Figure 5.6 – Example of steps of the algorithm that labels string fields 27

Figure 6.1 – Learning curves of model fine-tuned for different datasets. a) FLH dataset. b)

SROIE dataset. c) Mix of FLH and SROIE datasets. d) Detail of three previous combinations

for first 300 samples ... 34

Figure 6.2 – Learning curve for the model trained and evaluated for FLH dataset and previously

fine-tuned for SROIE dataset .. 35

ix

LIST OF TABLES

Table 3.1 – Description of each annotated field .. 15

Table 3.2 – Number of non-empty values for each field ... 15

Table 5.1 – Results of labeling algorithm for FLH and SROIE datasets 28

Table 5.2 – LayoutLM parameters ... 29

Table 6.1 – Comparison between BERT baseline model and LayoutLM 31

Table 6.2 – Comparison between BERT baseline model and LayoutLM. Performance for each

class .. 31

Table 6.3 – Comparison between Typless baseline model and LayoutLM 32

Table 6.4 – Modeling on FLH and SROIE dataset separately ... 32

Table 6.5 – Modeling and evaluating on different datasets .. 33

Table 6.6 – Using mixed FLH and SROIE samples for training .. 33

Table 6.7 – Advantages and drawbacks of each modeling scenario 37

Table 6.8 – Advantages and drawbacks of each learning scenario ... 38

x

LIST OF ABBREVIATIONS AND ACRONYMS

BERT Bidirectional Encoder Representations from Transformers

CER Character Error Rate

CNN Convolutional Neural Network

CV Computer Vision

DL Deep Learning

FLH Feels Like Home

MDC Multi-label Document Classification

MVLM Masked Visual-Language Model

NLP Natural Language Processing

OCR Optical Character Recognition

R-CNN Recurrent Convolutional Neural Network

RNN Recurrent Neural Network

SROIE Scanned Receipts OCR and Information Extraction

WER Word Error Rate

1

1. INTRODUCTION

1.1. EXTRACT RELEVANT FIELDS FROM DOCUMENTS USING NATURAL LANGUAGE PROCESSING

Processing and storing receipt and invoice data are common tasks in every business or organization.

Both financial balance and tax credits request strongly rely on processing such documents. Also, saving

digitalized document data can serve many applications and services, such as efficient archiving, fast

indexing, and document analytics.

Generally, invoices or receipts do not have standard layout rules. As it is not straightforward to

automatize the process, many organizations base their document data extraction tasks on human

effort. Nevertheless, developments were made since the 1980s to implement algorithms for such

tasks, not only in commercial software but also in academia.

The literature published in the past decades about this subject reveals two periods with different

perspectives on solving the problem. First, following the development of Optical Character Recognition

(OCR) techniques, in the late decades of the XX century, most of the algorithms extract data based on

layouts previously defined by users. Such a need to pre-define layouts highlights the lack of flexibility

of those algorithms.

The second period occurs from the last ten years until today, with the resurgence of deep learning

techniques, which dramatically improve the learning of tasks in the domains of CV and NLP. Also,

models with complex architectures pre-trained for millions of samples are made available and the

concept of transfer learning is generalized. More focus should be given to the last few years, in which

the advances in NLP model architectures, such as Transformers, allow interpretation of language

models with a strong context relationship between words.

Considering the need for a tool with the flexibility to extract data from documents with different

layouts, Deep Learning appears as the best option for the task. Interpreting and extracting data from

a document can be either a problem of CV or NLP. On the one hand, it requires analysis of images in

which relevant fields may be differentiated by visual features (ex: total amount has usually a bigger

font size). Likewise, the position of relevant fields has a spatial context within the document (ex: the

total amount of an invoice is usually printed on the right side in the bottom half of the document). It

may also be stated that the text present in invoices and receipts has a completely different, or almost

none, grammatical structure when compared to more generalist texts.

On the other hand, despite having a different grammatical structure, there are still patterns in the

structure of the text (ex: the word “Total” is usually followed by a number which represents the total

amount). This leads to the idea, together with recent bibliography on the subject, that NLP models are

suitable for the task. Chosen out of NLP models, LayoutLM is a Transformers-based model which

distinguishes from other models on document understanding tasks because it uses not only textual

context but also the spatial position of the text within the document.

1.2. RESEARCH MOTIVATION

Feels Like Home, Mediação Imobiliária (FLH) is a Portuguese company in the tourism industry that

manages apartments for short renting. The accountability in the company requires that every expense

2

associated with an invoice is registered and communicated to tax authorities. Also, such expenses are

an essential part of the company’s financial balance. Nowadays, the task of registering invoice data is

performed manually. The operational teams responsible for purchases keep the paper tickets and

deliver them to the accountant team in batches. The documents are then processed one by one by

registering in the company’s accountant software the image of the document and some relevant fields,

such as seller tax number, buyer tax number, invoice date, invoice number, total and tax amount.

As the volume of documents can easily reach a few thousand in certain months, this intensive task

requires human effort, which naturally increases company costs and demotivates workers. FLH is

constantly open to investing in process optimization, so this work focuses on filling in the

automatization gap in this subject by creating an end-to-end pipeline that receives images and returns

strings with relevant fields.

Another motivation exists, which is the interest in developing knowledge on the whole process of

deploying a machine learning model, from the creation of a dataset and pre-processing, training of a

model, analysis of results, and definition of a strategy for production. On the modeling level, there is

also a very specific interest in working with state-of-the-art NLP models and transfer learning. Once

gaining a more consolidated knowledge on these subjects, there is a considerable number of processes

that can be optimized in FLH, such as automatic extraction of data from identification documents or

customer email reply suggestions.

To accomplish such optimization, a group of questions and problems arise:

▪ The usage of transfer learning requires data and annotations for fine-tuning.

▪ The input of the pipeline is an image, while NLP models require specific input formats.

▪ LayoutLM is a recent model with few application examples published. It is not

guaranteed that it will have good performance with FLH data.

▪ Documents used in production may have different characteristics from training ones.

1.3. RESEARCH OBJECTIVES

Based on the existing literature, the current situation at FLH, and the presented motivations, this thesis

has four main objectives.

Firstly, to create an FLH invoices and receipts dataset with images and annotations. It should have

enough samples to build a model with good performance.

Secondly, to create a proof of concept of a production pipeline. This must include:

▪ Pre-processing stage, with image treatment and OCR, matching between OCR text and

annotation, and output in model format.

▪ Modeling stage, including fine-tuning and prediction methods.

▪ Post-processing stage with model scoring, including different types of metrics.

The third goal is to work with a state-of-the-art NLP model, perform a sensitivity analysis to test its

suitability, not only for the created dataset but also for another already existing dataset.

Finally, the fourth goal consists in defining a strategy for model deployment.

3

1.4. THESIS STRUCTURE

This thesis is organized into seven sections. The first section introduces the research, its motivations,

and objectives. The second section presents the most relevant research works that give support to this

work, namely legacy document field extraction algorithms and deep learning techniques used for such

a task.

The third section presents the created dataset, its characteristics, and the methodology of annotation.

This section is structured to be submitted as a data paper in an academic journal.

Section four gives insights into the fundamentals of the model used in this work. Both Transformers

and BERT models’ architectures are analyzed. Following, a more detailed description is made on

LayoutLM specificities.

The fifth section describes the methodology used to develop and implement the pipeline, as well as

details on the modeling and evaluation phases.

Section six shows the results of the fine-tuning tasks for various situations. It compares the tuned

model with two baseline algorithms: BERT and a commercial software. Following, it presents the

results of fine-tuning for each of the used datasets, as well as for mixed datasets. Finally, it analyses

the impact of dataset size on model performance and discusses the best strategy for production based

on the obtained results.

In the last section, the main conclusions are summarized. Proposals to further improve the

implemented pipeline are also presented and discussed.

4

2. LITERATURE REVIEW

2.1. INTRODUCTION

Although this thesis is focused on recent techniques, it was considered essential to do an overview of

legacy systems. Consequently, the first subsection of this literature review presents a brief description

of those systems and algorithms used on document information extraction. For a deeper study of such

algorithms, which were developed mostly until the early 2000’s, a very complete literature review may

be found on Nagy (2000) and Mao et al. (2003).

Considering that this research is centered on using deep learning techniques, the second sub-section

is dedicated to such methods. While the model used in this thesis does not focus on text extraction or

document segmentation, the review of such techniques was part of the roadmap to define the model

that would fit better in this kind of analysis. Therefore, the second sub-section is separated into three

parts. The first contains a brief review of scene text recognition. A richer review about scene text

recognition using deep learning techniques may be read in Liu et al. (X. Liu et al., 2019). The second

part describes works focused on segmenting regions of documents. Finally, the third part focuses on

techniques to label the text of documents. Out of every model and technique reviewed, LayoutLM is

part of the third group and was chosen as the most suitable for the task.

2.2. EARLY DAYS OF DOCUMENT INFORMATION EXTRACTION TECHNOLOGY

Document information extraction from scanned files is a subset of the Document Image Analysis field.

Research and commercial projects on this subject date back from the early 1980s (Wahl et al., 1982),

following the development of Optical Character Recognition algorithms in the 1960s and 1970s.

Nagy (2000) reviewed 99 articles published over 20 years in the journal IEEE Transactions on Pattern

Analysis and Machine Intelligence. The author states that some of the main advances in the 1980s and

1990s resulted in fiable and robust solutions in areas related to scanning quality, character recognition

(OCR), and image pre-processing – including binarization, skew estimation, and text location. Also,

many document-based models were developed in the same period.

Mao et al. (2003) highlight that applications are mostly based on algorithms that interpret both the

physical layout and the logical structure of the document. The authors state that layouts and structures

vary greatly in complexity (thus reducing the possibility of using formal models) being usually

represented by trees that are derived from a set of rules, such as in the example of Figure 2.1.

One example of such algorithms is INFORMys (Cesarini et al., 1998), which is based on graphs. Nodes

describe objects or parts of objects, such as lines, instructions, information fields, or logos. Arcs

describe mutual relationships between nodes by means of numerical attributes, like the mutual

position of the items in nodes, distances, or vectors which connect the center of objects. Figure 2.2

illustrates how the software works. It is noticeable in Figure 2.2a that the user must define the forms

models. The algorithm checks if pre-existing graphs, such as the one presented in Figure 2.2b, fit into

the invoice.

5

a)

b) c)

Figure 2.1 – Tree representation of a document (Tsujimoto & Asada, 1990). a) Document divided into
blocks. b) Geometric structure. c) Logical structure

This kind of algorithms shows a limitation by resorting to document deterministic models, leading to

failure in the presence of noise in the image, which is frequent in scanned documents. Also, the models

are too specific for the use cases they are created for, which means that new document models must

be input by users.

2.3. DEEP LEARNING

Deep learning (DL) allows computational models that are composed of multiple processing layers to

learn representations of data with multiple levels of abstraction. These methods have dramatically

improved the state-of-the-art in speech recognition, visual object recognition, object detection and

many other domains (Lecun et al., 2015). As scene or document text extraction may be considered a

task that mixes both Natural Language Processing (NLP) and Computer Vision (CV), it has obviously

benefited from the advances that occurred in DL in the past few years.

Much of the recent development on DL is related to the transfer learning concept. Given the

improvements in computer process capabilities and the availability of very large volumes of data, some

research groups invested effort on intensively training models that could be used for downstream

tasks.

6

a)

b)

Figure 2.2 – INFORMys (Cesarini et al., 1998). a) Basic structure of the software. b) Example of a
graph representation of a document

Transfer learning was also made possible using self-supervised learning (Collobert et al., 2011; Vincent

et al., 2008), which drastically reduces the need for annotation. Within self-supervised strategy, the

training task is based on unannotated data, and the training is done by removing random known parts

of that data and feeding it as a solution to the problem. Self-supervised tasks are not only more

scalable, only depending on unlabeled data, but they are designed to force the model to predict parts

of the inputs, making them richer and potentially more useful than models trained on a more limited

label space (Bommasani et al., 2021).

Transformers architecture founded largely used models, such as BERT (Devlin et al., 2019), GPT-2

(Radford et al., n.d.), RoBERTa (Y. Liu et al., 2019), T5 (Raffel et al., 2019) and BART (Lewis et al., 2019).

Firstly used for NLP tasks, Transformers architecture has been showing impressive generalization

capabilities, having recent application in images, speech, tabular data, protein sequences, organic

7

molecules and reinforcement learning. These examples point to a possible future where a unified set

of tools may be used in a wide range of modalities (Bommasani et al., 2021). A detailed explanation on

Transformers architecture is given in Section 4.

2.3.1. Scene or document text extraction

Despite all achievements in OCR technology during the 20th century, new challenges arose in the past

few decades. One of the primary ways through which people share and consume information on social

networks is through visual media such as photos and videos. In the last several years, the volume of

photos being uploaded to social media platforms has grown exponentially to the order of hundreds of

millions everyday presenting technological challenges for the retrieval of textual information from

such media (Borisyuk et al., 2018).

Rosetta (Borisyuk et al., 2018) is a large-scale system used by Facebook for text detection and

recognition in images. Such a system stores in a database the text from images, allowing users to

search that text. The algorithm splits the text extraction into two tasks: detection and recognition, as

presented in Figure 2.3. The former uses a Faster-RCNN to identify regions of the image that contain

text and the latter a fully convolutional character-based recognition model which recognizes the text

contained in the regions.

Figure 2.3 – Two-step model architecture of Rosetta (Borisyuk et al., 2018)

Zhang et al. (2016) have presented an approach to detect text, which was very successful in important

computer vision competitions, such as ICDAR. It is able of detecting text in multiple orientations,

languages, and fonts. It uses firstly a fully Convolutional Neural Network (CNN) inherited from a VGG

16-layer model to predict a “salient map”, which is a detection of text blocks at a coarse level. Secondly,

text line hypotheses are estimated by combining the salient map and character components. Finally,

another fully CNN predicts the centroid of each character. Figure 2.4 presents an example of the whole

procedure of text localization.

Figure 2.4 – Example of a procedure of the proposed method (Zhang et al., 2016)

8

W. Liu et al. (2020) have developed an algorithm to extract text from invoices (see Figure 2.5), although

not labeling the relevant fields of the text. The authors used an SDD network to determine regions

followed by a cropping step of smaller sub-images. Finally, a Convolutional Neural Network – Gated

Recurrent Unit combined to extract the text.

Figure 2.5 – Example of the output of the system (W. Liu et al., 2020)

2.3.2. Document segmentation

Stahl et al. (2018) have presented a system that outputs different regions of text, as shown in Figure

2.6. The algorithm uses a model with a U-NET architecture to perform semantic segmentation, labeling

every pixel of the image. DeeDeSRT (Schreiber et al., 2017) is a system that not only locates tables

within images but also detects the structure, rows and columns, of the tables (see Figure 2.7). The

model for table detection consists of two parts. The first generates region proposals by a Region

Proposal Network, while the second uses a Faster R-CNN for region classification. The model for table

structure recognition was based on an FCN semantic segmentation model. The authors obtained state

of the art results in ICDAR 2013 competition.

Figure 2.6 – Example of the output with colored regions (Stahl et al., 2018)

9

a)

b)

Figure 2.7 – Example of DeepDeSRT table detection results (Schreiber et al., 2017). a) Table
detection. b) Table structure – rows and columns - detection

Kavasidis et al. (2019) also use semantic segmentation, aligning it with the concept of saliency – the

perceptual quality of certain objects that possess distinctive features with respect to the surroundings

– to detect tables and charts in image documents. A fully CNN is used to define and label the regions,

while a fully connected Conditional Random Field is applied for smoothing the segmentation maps,

reducing some of their noisy properties. Figure 2.8 shows the structure of the used algorithm.

Lee et al. (2019) segmented documents using CNN’s enhanced by trainable multiplication layers (TML).

Apart from common features in CNN, such as pixel-wise information, the algorithm considers features

related with the co-occurrence of objects with similar textures and periodicities. Enendu et al. (2019)

condense both OCR text and layout information into features, as seen in Figure 2.9. The former is

performed using Tesseract, while the latter is obtained by segmentation using Linear-Chain CRF. Then,

the different regions of the document are modeled as a sequence in a Recurrent Neural Network.

10

Figure 2.8 –A CNN extracts class-specific saliency maps which are enhanced by CRF models (Kavasidis
et al., 2019)

Figure 2.9 – Implementation architecture, including training and testing phases (Enendu et al., 2019)

2.3.3. Document text labeling

Holecek et al. (2019) admit that invoices should be treated as tables without outlines. The research

work uses words and their positions as basic units of information, defining 5 inputs for the model:

11

picture of the whole document, coordinates of each word bounding box, sequential position of each

word, one-hot chars (40 per word) and neighbor bounding boxes ids. As shown in Figure 2.10, each

type of feature has its own pre-processing stage, being concatenated before the final layers which

include a self-attention mechanism. The output is given by a sigmoidal layer that labels 35 classes. By

comparing with a baseline in which a logistic regression was used, the authors present F1-score results

usually over 90%. It should also be highlighted that the authors stated that a similar algorithm using a

YOLO architecture has failed to achieve positive results.

Figure 2.10 – Model architecture presented by Holecek et al. (2019)

Nguyen et al. (2021) presented two cases of applications used in Japanese companies to extract up to

24 types of entities from digital documents. Different combinations of models were experimented,

consisting mostly in the use of pre-trained transformers models, BERT and ALBERT, with additional

stacked layers that could be CNN, LSTM or BiLSTM, and finally a softmax or a CRF for output. The model

is trained as a question-and-answer task, by feeding tags (name of the relevant fields) and their

respective values. The results show that the combination BERT + CNN + softmax provides the best

results, indicating that CNNs are the best option to capture the specific distribution of the information

over the documents.

12

LayoutLM (Yiheng Xu et al., 2020) was developed based on the assumption that information extraction

from documents should be treated as an NLP task with additional information which is specific to form-

type or structured documents. That specific information is the bi-dimensional position (geometric

embeddings) and style (visual embeddings) of the document elements. The main contribution of this

work is the pre-trained model which is available for whoever wants to use it in the context of transfer

learning. As LayoutLM is the model used in this research, a more detailed description of the model may

be read in Section 4.

The second version of LayoutLM (Yang Xu et al., 2021) outperforms the first version due to the

consideration of the visual embeddings in the pre-trained phase, instead of the fine tuning phase.

Moreover, based on 1D sequential self-attention mechanism logic, a spatial aware self-attention

mechanism is incorporated in the Transformer architecture so that the model understands the relative

positional relationship between tokens.

Figure 2.11 – Illustration of pre-training strategy and for LayoutLMv2

13

As presented in Figure 2.11, LayoutLM2 also incorporates two new pre-training tasks:

▪ new text-image alignment: consists of hiding random lines from the image while

setting a classification for the tokens in those lines as “Covered”. Given a token and an image

where the token is covered, the pre-trained model must classify it as “Covered”.

▪ text-image matching: consists of creating samples in which the text and the image do

not match. Those samples are classified as negative, while regular samples (where text and

image match) are classified as positive.

Finally, LayoutXLM (Yiheng Xu et al., 2021) has a very similar architecture to the one presented in

LayoutLMv2. However, the authors pre-trained it in 30 million documents in 53 languages. A specific

multi-lingual dataset was also created, and it was shown that the model results after fine-tuning

outperform the state-of-the-art multi-lingual models.

14

3. CREATED DATASET

3.1. INTRODUCTION

Datasets with images of documents and text transcription are essential not only to benchmark

document processing algorithms but also to train supervised models that focus on sequence labelling

or named entity recognition tasks. This section presents a dataset comprising images of invoices and

receipts, as well as text files with the transcription of relevant fields. Also, a detail of the annotated

fields and a quantitative data analysis is provided.

3.2. VALUE OF THE DATA

▪ The presented dataset may be used for training models for document information

extraction

▪ The dataset may be used to evaluate performance of an OCR processing model

▪ The dataset contains pictures of invoices and receipts and corresponding annotated

relevant fields

▪ The documents are property of a private company. Such financial documents are

usually not made available by private entities

▪ Some documents have low reading quality, resembling realistic cases

3.3. DATA DESCRIPTION

The dataset presented in this section is composed of images and annotation files regarding invoices

and receipts. For each of the 813 documents, it contains one photography of the document and an

annotation file with the text transcription of specific relevant fields.

The presented dataset was created to be consumed by an end-to-end pipeline, which includes

converting the image into bounding boxes, text transcription using OCR, and the train of a transformer-

based deep learning model. The model can be subsequently used to predict relevant fields from new

invoices or receipts. Despite having been created to be used in a specific application and also the

existence of datasets of invoices (Goldmann, 2019; Harley et al., 2015; Holecek et al., 2019; ICDAR,

2019; Jaume et al., 2019; Park et al., 2019), this data is made available and may be extremely useful to

other researchers focused in similar tasks.

All the documents in the dataset belong to Feels Like Home, Mediação Imobiliária (FLH), a Portuguese

company in the tourism industry which manages apartments for short renting. Every document

represents a purchase made by FLH. There are two main groups of receipts and invoices in the

company database. One represents scheduled and frequent purchases, for which the invoices sent by

the provider are in a digital format (usually pdf files). The other group includes purchases made on

street shops on the day-by-day by maintenance or check in teams. This dataset focuses on the second

group, being characterized by invoices or receipts received in paper tickets. All the invoices were

printed in the period between 2017 and 2019 and their language is Portuguese.

It should be stated that a considerable number of pictures have not only a low quality but also noise,

blunts or are partially obstructed. Despite turning the document recognition more complex and less

15

accurate, this factor increases the level of reality of the dataset. Additionally, this factor gains more

importance as more reliable hardware such as scanners are having less usage, while being replaced by

smartphones, usually used in low light conditions.

3.4. DATA DETAILS AND DISTRIBUTIONS

The dataset is organized in two folders. Folder “1_Images” contains 813 image files in jpg format, with

all the images correctly oriented. The annotations folder “2_Annotations_Json” contains 813 json files

with names that match the same file names of the images folder. Each json object has the text of eight

relevant fields. The description for each field is detailed in Table 3.1.

Field Name Description

company Name of the provider/company that is selling the product

date Date the document was issued

address Address of the provider/company that is selling the product

total Total amount of the document

invoice_number Reference number of the invoice or receipt

NIF_buyer Tax identification number of the buyer

iva_amount VAT amount

NIF_seller Tax identification number of the selling provider/company

Table 3.1 – Description of each annotated field

Invoices or receipts usually follow specific rules, such as presenting a total value or an issue date.

However, it is expected that some fields do not exist in some documents. Also, as explained in the next

section, the annotated values are the ground truth of what is visible in the digital document. Thus,

there are some annotations whenever the value was not visible or blurred in the image. Table 3.2

presents the number of non-empty values for each annotated field. As expected, the total and date

fields are the most frequent.

Field Name Number of non-empty values

company 755

date 802

address 771

total 812

invoice_number 793

NIF_Buyer 696

iva_amount 703

NIF_seller 763

Table 3.2 – Number of non-empty values for each field

Figure 3.1a shows the histograms for variable total. The low amounts of this variable confirm that the

documents were related to small day-by-day maintenance or operation tasks. The variable company

16

has 235 unique values, indicating a high variety of document layouts in the dataset. Figure 3.1b shows

the number of documents for the top 10 companies. Such samples represent 37% of the whole dataset,

which denotes a high variation of layouts in the dataset. As seen in Figure 3.1c, all the documents were

issued between 2017 and 2019, being the majority from 2019. The tax identification number for the

buyer (nif_buyer) is highly concentrated in only two numbers, as seen in Figure 3.1d. This is explained

by the fact that all the documents were obtained from one single company (Feels Like Home).

a) b)

c) d)

Figure 3.1 – Count of documents for values of variable: a) total (€) (not showing outliers).
b) company (top 10). c) date (year issued). d) nif_buyer

Considering the number of characters – including white spaces – in each field, the box plots shown in

Figure 3.2a indicate that, as expected, the address is the field with longer strings and high variances.

As expected, the company name field has also a wide range of characters, as well as invoice_number.

The numerical variables, total and iva_amount, present a small string size with medians of five and

17

four characters, respectively. The length of the variables nif_buyer and nif_seller confirms that

Portuguese tax identification numbers have always nine digits or 11 digits (in the case the prefix “PT”

is added to the number). Focusing on the number of words, Figure 3.2b shows a similar wide

distribution for variable address, while the field company rarely exceeds six words.

a) b)

Figure 3.2 – Box plots representing for each field the distribution of: a) number of characters. b)
number of words

Finally, Figure 3.3 presents the location of the annotated addresses. There are documents issued

across the whole country, including the islands – Azores and Madeira.

Figure 3.3 – Location of every address annotated in the dataset

3.5. EXPERIMENTAL DESIGN AND METHODS

As previously stated, this dataset was created to train a model for an end-to-end application. One of

the preparation steps for the application is the transcription of text using OCR, so it was considered as

18

ground truth the text parts that could be read in the digitalized document and not the text that is typed

in the physical document.

Figure 3.4a illustrates one example of such difference between values in the digital and physical

document. In this example, while the ground truth for the company name (first line) is “Parque do

Chão do Loureiro”, the annotated text is “ao do Loureiro”. The reasoning behind this decision is that

the type of models that can be trained in the pipeline is based not only on text features but also on

the 2D position of the words and image features of each bounding box. Consequently, it would be

important to have the transcript text matching what is exactly in the digitalized image.

Finally, a specific limitation of the annotation should be highlighted. A few samples in the dataset do

not show the total VAT value (iva_amount), but a table detailing the value per VAT rank, which is

usually 0%, 6%, 13%, or 23%. In cases where VAT is detailed and the total value is not presented, the

value corresponding to the highest rank was annotated. Figure 3.4b shows an example of a case where

the total VAT value is not presented.

a) b)

Figure 3.4 – Examples of limitations in images. a) Digitalized document with part of the text covered.
b) Green rectangle highlighting the table of VAT values detailed by VAT rank. No total VAT value is

presented in the document

19

4. MODEL FUNDAMENTALS

4.1. TRANSFORMERS

Most of the state-of-the-art pre-trained models available currently use a Transformers architecture.

The fundamental difference of this architecture is that is based on the concept of self-attention, as

presented by Vaswani et al. (2017). This concept demonstrates the importance of capturing long-range

dependencies and pairwise or higher-order interactions between elements. It also enables shorter

computation paths and provides direct means to compare elements far across the input data (such as

a pronoun and its antecedent in a sentence, or two sentences that refer to the same topic) (Bommasani

et al., 2021).

The use of self-attention also reduces the total computational complexity per layer and increases the

amount of computation that can be parallelized. According to the original paper, when compared to

RNN’s the complexity per layer decreases from O (n.d2) to O (n2.d) n is the sequence length and d is

the representation dimension of embeddings. For tasks involving very long sequences, self-attention

can be restricted to a neighborhood of size r for the respective output position, decreasing the

complexity to O (r.n.d).

Figure 4.1 – Transformer model architecture (Vaswani et al., 2017)

Figure 4.1 shows the Transformer model architecture, which may be split into the parts described next.

Input

Words are transformed into tokens, which may be words, parts of words, or characters of the

vocabulary list. Such tokens are represented by id’s, which are then transformed in embedding

vectors of fixed size (768 in this work). Similarly to word2vec embeddings (Mikolov et al.,

2013), such vector represents a token regardless of its different meanings or senses.

20

Apart from general tokens, special tokens are defined for these models: [BOS] and [EOS] for

beginning and end of a sentence, respectively; [UNK] for out-of-vocabulary tokens; [PAD] when

a sequence size is extended to have general sequence size; [CLS] to initialize the sequence, and

[MASK] to mask tokens (for pre-training purposes).

Each token position in the text sequence, which is given by an integer, is also considered. The

position number is transformed into a vector following a sinusoidal function. Finally, both

vectors (token embedding and position embedding) are summed and feed the first encoder.

Encoders

In the original paper, the encoder stack is composed of six layers. Each encoder layer comprises

a multi-head attention layer and a feed-forward neural network.

Each head of the multi-head attention layer involves the computation of the so-called relations

between tokens. Each attention head’s output is given by Equation 4.1, where Q, K, and V are

the Query, Key, and Value matrices, respectively. Those are obtained by multiplying the

attention layer input with each of the Query, Key, and Value weight matrices. Such weight

matrices are initially set randomly and trained with the rest of the model. By multiplying a

softmax to matrix V, the layer guarantees that, for each token, the most important tokens are

kept relevant while the less important are drown-out. Finally, the results of each attention

head are concatenated and multiplied by another weights matrix. The output of the multi-

head attention will be an embedding for each token.

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
) . 𝑉 (Eq. 4.1)

The feed-forward neural network is applied to each position separately and identically, being

a good candidate for parallelization. It consists of two linear transformations with a ReLU

activation in between. It must be noted that both outputs of multi-head and feed-forward

layers are normalized before being passed to the next layer.

Decoders

The decoders behave similarly to the encoders, outputting the tokens by sequence considering

the previously predicted tokens. The main difference for encoders resides in the masking of

the tokens which come after the predicted token, so they do not affect the decoder output.

Consequently, each decoder includes a first layer that performs multi-head attention on the

already predicted output tokens and a second layer that performs multi-head attention both

on the previous layer and on the encoder output.

Linear layer and softmax

The output of the decoder layer is then passed in a feed-forward neural network adapted to

the type of problem being solved. By using the softmax function, the possible outputs are

scored and the output with higher probability is chosen.

21

4.2. BERT

BERT, which stands for Bidirectional Encoder Representations from Transformers, is conceptually

simple and empirically powerful obtaining state-of-the-art results in many NLP tasks (Devlin et al.,

2019). It was mainly created to overcome the limitation of existing Transformers models that were

only incorporating context from one direction of the text, being focused on a sequence-to-sequence

task, limiting the possibility of other fine-tuning jobs.

BERT’s architecture is similar to the one presented for Transformer models, while dropping the

decoding part. The specific implementations on each part of the model are described as follows.

Input

Like Transformers, words are tokenized and translated to ids. Then, it defines the embedding

vectors by means of WordPiece embeddings (Wu et al., 2016) with a vocabulary of

approximately 30 000 tokens. To account for non-single sentence tasks such as question-

answering, the segmentation embedding defines each sentence, separating the sentences

with a specific tag [SEP]. Then, token and segment embeddings are summed with position

embeddings, as seen in Figure 4.2.

Figure 4.2 – BERT input representation (Devlin et al., 2019)

Encoders

BERT encoding part is equal to Transformers one, where a stack of encoders with multi-head

attention, feed forward-network, and normalization is used. Nevertheless, two encoding stack

sizes are presented. The base model uses 12 encoding layers, representations with 768

dimensions, and 12 attention-heads, resulting in 110 million parameters. The large model uses

24 encoding layers, representations with 1024 dimensions, and 16 attention-heads, resulting

in 340 million parameters.

Output

When using BERT to apply fine-tuning, task-specific datasets are used to update all parameters

in an end-to-end way. Consequently, such as in Transformers’ architecture, another feed-

forward network with a softmax may be plugged in the output.

On the other hand, BERT may be also used for feature extraction, given that the embeddings

obtained by using the pre-trained parameters are already strongly influenced by the relation

between words. In this case, the embeddings are directly used as features for other models to

be trained for specific tasks.

22

4.3. LAYOUTLM ARCHITECTURE

LayoutLM uses BERT’s architecture as a backbone. Nevertheless, the authors have created it assuming

that when it comes to visually rich documents, there is much more information that can be encoded

into the pre-trained model. In addition to token, segment, and position embeddings, LayoutLM adds

two extra input embeddings described below.

2D position embedding

The spatial position within the document may be given by the coordinates of each token

bounding boxes. Using a coordinate system with the origin in the top-left corner of the image,

a bounding box can be defined by (x0, y0, x1, y1), where (x0, y0) corresponds to the position of

the upper left and (x1, y1) represents the position of the lower right.

The coordinates are normalized in both directions to fit in a [0, 1000] range and then

transformed into vectors, following a similar logic to the one used for sequential position

embeddings.

Image embedding

Using the coordinates of the bounding boxes, the image of the document is split into each

token’s image. Then, features for each token image are obtained by running a Faster R-CNN.

The features for the whole image are also obtained, so the embedding of the [CLS] tag is also

enriched.

Figure 4.3 – LayoutLM input and downstream representation (Yiheng Xu et al., 2020)

Figure 4.3 shows the input and a suggestion of downstream representation of the model. It should be

noted that the first version of LayoutLM (Yiheng Xu et al., 2020) does not include the image

embeddings in the pre-trained model. Such a feature was only considered in the second version of the

model (Yang Xu et al., 2021). Consequently, as this work was developed while only the first version

was available, the image embeddings were left out of scope.

23

4.4. LAYOUTLM PRE-TRAINING

The model is pre-trained on the IIT-CDIP test collection with 11 million scanned document images. The

training is based on two tasks presented next.

Masked Visual-Language Model (MVLM)

Self-supervised learning that consists in randomly choosing 15% of tokens and requesting the

model to predict them. Of this group of tokens, 80% are masked using a special tag [MASK],

10% are replaced by a random token and 10% are left unchanged. As the 2D position

embedding is used, the model learns not only the language context but also its relationship

with space context.

Multi-label Document Classification (MDC)

The documents provided in the pre-training dataset are labeled with multiple categories.

Therefore, such categories are used to pre-train the model to predict such tags and therefore

improve document-level representation.

Following the BERT backbone, LayoutLM also presents a base and a large model. Both models are

initialized for pre-training with the corresponding pre-trained BERT weights. Base and large model

take, respectively, 80h and 170h to pre-train.

It should also be noted that the first version of LayoutLM was pre-trained only in an English corpus. In

opposite, a multi-lingual model was released after the development of this work, being therefore out-

of-scope.

4.5. LAYOUTLM FINE-TUNING

Compared to pre-training, fine-tuning is a relatively inexpensive process (Devlin et al., 2019). Similar

to BERT, LayoutLM is fine-tuned by initializing with the pre-trained weights, plugging in a specific model

for the downstream task, and training the parameters end-to-end using labeled data. This way, weights

are obtained both from unlabeled and labeled data, in a semi-supervised (Dai & Le, 2015) manner.

The original paper (Yiheng Xu et al., 2020) presents three document image understanding for which

LayoutLM may be fine-tuned: form understanding, receipt understanding, and document image

classification. The first two tasks require the classification of every token, while the former classifies

the document based on the document-representative [CLS] token.

This work focuses on the receipt understanding task, which requires the training samples to provide

the label that matches each token. The number of possible labels is fixed, as they are defined with the

problem. The output of the encoder stack is down streamed to a linear layer which will result in a

vector with the number of possible labels of the problem. Following softmax, the label with the highest

probability is chosen to classify the corresponding token.

24

5. METHODOLOGY

5.1. PIPELINE

Having the objective of building an end-to-end system that fits either training or predicting purposes,

a flexible pipeline is implemented following the schema presented in Figure 5.1.

Figure 5.1 – Simplified schema of the implemented pipeline

On the training layer, the algorithm inputs images of documents and annotations of the relevant fields

(see examples in Figure 5.2). Then, it preprocesses the images, obtains the text fields, automatically

labels the text based on the annotations, and prepares both train and evaluation files in the format

expected by the model. Following, it trains the model with the provided samples and finally, evaluates

the model.

Figure 5.2 – Image of a document in the dataset and annotation of its relevant fields in JSON format

25

On the production layer, it inputs images, preprocesses, obtains text from images, and prepares files

for the model. In sequence, the pipeline predicts using the trained model and outputs the relevant

fields in the same format as the annotation example presented in Figure 5.2.

5.2. PRE-PROCESSING

The pre-processing, represented in Figure 5.3, consists of three stages, each of which uses a specific

python package. The first stage, PicImprover, consists in preparing and improving the image, having

the following features:

▪ Image rotation using the PIL package (Python-Pillow/Pillow: The Friendly PIL Fork

(Python Imaging Library), n.d.), as the OCR process needs to receive the image in the correct

orientation.

▪ Image cropping and skewness reduction, using OpenCV package (Opencv/Opencv-

Python: Automated CI Toolchain to Produce Precompiled Opencv-Python, Opencv-Python-

Headless, Opencv-Contrib-Python and Opencv-Contrib-Python-Headless Packages., n.d.) to

find the image contours and convert to a rectangular shape.

▪ Image adaptive thresholding, which increases contrast, using the Skimage package

(Van Der Walt et al., 2014).

In the second stage, PicOCR, both text and bounding boxes are extracted from the image using an OCR

processor. Two OCR tools are available in this stage: Tesseract, through a python package

(Hoffstaetter, n.d.), and Google Vision (GV), through an API request gateway. Although both tools show

a good performance, only GV is used in this work mostly because it requires less parametrization. A

drawback of GV is that it involves costs. Therefore, to avoid the repetition of OCR processing of images,

a cache feature is implemented.

Finally, the third stage of the pre-processing phase (PreModel) converts the received text and bounding

box data to the format accepted by the model. Moreover, it has an essential role when run in training

mode, as it is also responsible for labeling the text extracted with OCR based on the provided

annotations.

Figure 5.3 – Simplified schema of the pre-processing stage

The main difficulty of labeling the samples resides in the fact that the OCR processor efficiency depends

on image quality. For blurred, skewed, or noisy images, the text obtained by OCR may not match the

annotated text, as seen in the example of Figure 5.4.

26

b)

c)

a)

Figure 5.4 – Example of a document with poor quality. a) Image of the document. b) Part of the text
obtained by OCR with highlighted errors. c) Annotated fields, which do not match exactly the content

of the OCR text

Being impossible to label the text based on exact matches, an algorithm is implemented to search in

the OCR text for n-grams similar to the ones on the annotated fields. The way of measuring similarity

is based on the type of field.

For numeric fields – total amount and tax amount – it searches for n-grams that are convertible to a

number and then searches the annotated number, as seen in the example of Figure 5.5. If there is a

match between compared numbers, then the text is labeled.

Figure 5.5 – Example of steps of the algorithm that labels numeric fields

For the remaining fields, it searches for n-grams and compares them with the annotated text, based

on SequenceMatcher method of difflib python package (Difflib — Helpers for Computing Deltas —

27

Python 3.10.0 Documentation, n.d.). This method computes a similarity score between two strings

(Ratcliff & Metzener, 1988). One of its main advantages resides in outputting a score between 0 and

1. On the other hand, this is a computationally expensive algorithm, a factor that was not considered

problematic in this work, given that it only runs on the training layer.

Figure 5.6 shows an example of how the algorithm works. For an annotation n-gram with N words, it

searches all n-grams with size in the range [N/2, N*2], so it accounts for cases of having extra spaces

or concatenated words. For each n-gram found, it computes the similarity score and chooses the n-

gram with the highest score. To consider the n-gram with the best similar score as a match, the score

must be higher than a certain threshold, which is 0,75 in this work. As a match occurs, the sample is

labeled with the corresponding class.

Figure 5.6 – Example of steps of the algorithm that labels string fields

This labeling methodology is an essential feature of this work. Consequently, its advantages and

limitations demand some discussion, as it overcomes a big proportion of the errors on the OCR process

but not all. When a part of the text obtained by OCR is largely different from the real text, the algorithm

does not consider it as a match and therefore does not identify that class in the text. This would lead

to both training and validation samples missing some of their classes. Consequently, when running

validation tests, the results can be either overestimated, when the model does not predict a label that

the labeling algorithm missed, or underestimated when the model predicts a label correctly that the

algorithm missed.

Table 5.1 shows the performance of the labeling algorithm for the eight fields of the FLH dataset –

company name, company address, document date, total amount, seller tax number, buyer tax number,

document number, and vat amount – and for the FLH and SROIE datasets when labeling four fields –

company name, company address, document date and total amount. The first row of Table 5.1

indicates how many classes would be labeled by using an algorithm based solely on exact matches

(similarity score equal to 1). 1862 fields would not be labeled, representing 30,5% of the fields,

justifying the need to use a different approach.

The last three rows of Table 5.1 show the results of the labeling algorithm based on a similarity score.

For the FLH dataset with eight classes, the algorithm misses 5,6% of the classes, while for the cases

with four fields, it misses 3,6% and 2,2% for the FLH and SROIE datasets, respectively.

28

Dataset Num of
documents

Num of
classes
labeled

Num of
blank

classes

Num of
missing
classes

Num of
matching

classes

% missing
classes

(excluding
blank)

FLH (only exact
matching)

813 8 409 1862 4233 30,5%

FLH 813 8 409 339 5756 5,6%

FLH 813 4 112 114 3026 3,6%

SROIE 727 4 3 64 2841 2,2%

Table 5.1 – Results of labeling algorithm for FLH and SROIE datasets

One the one hand, the figures show that this is not an exact algorithm, leading to some error as parts

of the text are left unlabeled. On the other hand, some advantages of this algorithm must be

highlighted. First, it requires a much simpler annotation process, based only on annotating the text

that belongs to each field, eliminating the need to use graphical interfaces to annotate the bounding

boxes. Second, it is easily adaptable to most real cases in which there is already data available. If there

is the objective to fine-tune the model for a new company, it is much more probable that the company

has a database with images and the annotated text – in excel spreadsheets or accountant software –,

when compared with a dataset with images and their bounding boxes. Finally, the results of the

algorithm, like the ones presented in Table 5.1, may be indicative of the quality of the images, and

therefore, of the performance of the model to a specific dataset.

The samples are labeled using an IO tagging format. The choice of another format would require

further study. As stated in the literature, there is no optimal format beforehand; the applicability of

each format depends on factors such as language, type of text and frequency of labels (Alshammari &

Alanazi, 2021). Given that labels do not repeat frequently in each sample, an IO tagging format is

thought to be the best and simpler option.

5.3. MODEL AND RUN CONFIGURATIONS

The code to run the model and the pre-processing packages are available in GitHub repositories.

Consequently, both are easily cloned into a Google Colab notebook, which allows training using

graphical processing units (GPU). Although is not a user’s choice, in this work much of the processing-

intensive tasks are processed using a Tesla P100-PCIE-16GB.

To avoid heavier computations, the pre-trained model chosen is LayoutLM Base, with 110 million

parameters. The model hyper-parameters are mostly based on the ones presented in the LayoutLM

presentation article (Yiheng Xu et al., 2020). Also, the model training and evaluation resorts to a script

made available by the authors of LayoutLM in which PyTorch is used. After running a brief

parametrization, the original parameters are kept, except for the number of attention heads, which

was switched from 12 to 8. Table 5.2 shows the parameters used in every computation.

For consistency, all the tests are run using hold-out, splitting the datasets with 75% of training samples

and 25% of evaluation samples. The batch size is always 4, both for train and evaluation. Although

being a simple and fast strategy, hold-out is very dependent on the train/test split. Nevertheless, it is

admitted (and confirmed in the results section) that the dataset is big enough to reduce this effect.

29

Parameter Value

architecture LayoutlmForTok
enClassification

attention_probs_
dropout_prob

0,1

hidden_act gelu

hidden_dropout_
prob

0,1

hidden_size 768

type_vocab_size 2

initializer_range 0,02

intermediate_size 3072

layer_norm_eps 1e-12

Parameter Value

max_2d_position
_embeddings

1024

max_position_em
beddings

512

vocab_size 30522

model_type bert

num_attention_h
eads

8

num_hidden_laye
rs

12

output_past true

pad_token_id 0

Table 5.2 – LayoutLM parameters

5.4. DATASETS

Two datasets are used in this work. FLH is created specifically in the scope of this work and presented

on Section 3. SROIE (Scanned Receipts OCR and Information Extraction) dataset (ICDAR, 2019) 727 files

follow the same structure of FLH dataset, with image files and their corresponding annotation files.

The two main differences between datasets are: SROIE documents are mostly in English and SROIE

dataset only annotates four relevant fields – company name, company address, total amount and

invoice date.

5.5. TYPLESS TRAINING AND PREDICTION

The software Typless is used in this work to compare the models with a baseline commercial solution.

From other available commercial tools, the choice over this software resides in the fact that it offers a

trial with API access, which is essential to input hundreds of documents. There is no available content

about how Typless works, just that it is an “Easy-to-use invoice OCR REST API powered by AI”.

The software requires training of the models prior to any extraction tasks, which indicates that some

machine learning-based model is used. Three endpoints are used:

▪ add-document – to add a document image file and the relevant fields, feeding the

training dataset,

▪ start-training – to instruct the software to start training the model,

▪ extract-data – to predict relevant fields from new image documents.

Another endpoint – add-document-feedback – could also be used to improve model results, yet it is

ignored in this work.

30

5.6. EVALUATION AND METRICS

To be in line with the research results of LayoutLM (Yiheng Xu et al., 2020), this work uses mostly F1

score to evaluate results, resorting to the python package Seqeval (Nakayama, 2018) for the

computations. Considering there is no specific class with more importance than others, the option

“micro” is used to average the score over the classes, meaning that the evaluation is made at the word

level. F1 is computed for a multi-class problem, yet it excludes the correct predictions on the class

“other”.

To compute the F1 score, both ground-truth and predicted text must be available, which is true for all

the computations made with LayoutLM. Nevertheless, there are other algorithms from which only the

text value from each class is obtained, such as the commercial software Typless. To overcome the

impossibility of using F1 to compare the performance with Typless, Word Error Rate (WER) and

Character Error Rate (CER) are also used, by means of Jiwer package (Jitsi/Jiwer: Evaluate Your Speech-

to-Text System with Similarity Measures Such as Word Error Rate (WER), n.d.).

Both WER and CER derive from Levenshtein distance, so the lower the score, the better is the

prediction. The error rates are computed by summing the number of substitutions, deletions, and

insertions and dividing by the number of words or characters, depending on which – WER or CER – is

being computed. While WER is always a number between 0 and 1, CER may take values over 1 in cases

when a high number of insertions occur. Basically, it may be said that WER and CER indicate the

percentage of words or characters, respectively, that are incorrectly predicted.

31

6. RESULTS

6.1. BASELINE COMPARISONS

In order to evaluate the gains on using LayoutLM for predicting the relevant fields on invoices, two

baseline computations are made, using BERT architecture and a commercial software. Both

comparisons are made by training and testing on the FLH dataset (813 samples) and classifying 8 fields:

company name, company address, total amount, document date, seller’s NIF, buyer’s NIF, document

number, and tax amount.

The first baseline model uses a BERT architecture. This is an obvious choice for a baseline as LayoutLM

integrates extra features into the original BERT architecture. Table 6.1 shows the results obtained both

for the baseline and LayoutLM models. In accordance with the results presented by Yiheng Xu et al.

(2020), there is an improvement when using LayoutLM, from 82% to 90%. Given that both models use

similar architectures, it may be stated that the use of 2D features marks an expressive difference for

this kind of problem. It is also noticeable that most of the improvement is based on precision. This

means that while both models are quite effective in correctly predicting the real classes, BERT model

tends to wrongfully predict more labels than the real ones.

Model Precision Recall F1

LayoutLM 0,87 0,93 0,90

BERT 0,73 0,90 0,82

Table 6.1 – Comparison between BERT baseline model and LayoutLM

Table 6.2 shows the performance detailed by class. Predictions of address and company name achieve

a similar performance. On the other six classes, LayoutLM outperforms BERT, with larger differences

in the numerical values, total, and tax (iva) amount. Such differences in numeric categories may be

explained by the fact that LayoutLM takes advantage of the fact that both values usually appear on the

right side of the document.

Class F1 (LayoutLM) F1 (BERT)

address 0,95 0,93

company 0,82 0,83

date 0,85 0,77

iva_amount 0,81 0,61

nif_buyer 0,96 0,75

nif_seller 0,9 0,86

number 0,9 0,81

total 0,9 0,73

Table 6.2 – Comparison between BERT baseline model and LayoutLM. Performance for each class

The second baseline model is based on a commercial software, Typless. As explained in the previous

section, it is not possible to compute sequence evaluation metrics (precision, recall, F1) when using

32

the software. Consequently, the comparison is made through the average word error rate (WER) and

average character rate (CER) of the test samples. One unexpected behavior on Typless is that the

“Address “class was never predicted in the test samples. To have this issue into consideration, another

set of tests is made by considering every one of the eight classes, except the “Address”.

Table 6.3 shows that error rates are considerably lower when using LayoutLM. Even when removing

the “Address” class, the results with LayoutLM outperform the ones using Typless.

Model Avg CER Avg WER Notes

LayoutLM 0,25 0,45 Predicting 8 classes

Typless 0,58 0,53 Predicting 8 classes

LayoutLM 0,24 0,38 Predicting 7 classes
(removing Address class)

Typless 0,45 0,48 Predicting 7 classes
(removing Address class)

Table 6.3 – Comparison between Typless baseline model and LayoutLM

6.2. APPLICATION ON FLH AND SROIE DATASET

Taking advantage of having another dataset available (SROIE), computations are made to understand

how useful it is to use both datasets. However, it must be noted that SROIE is annotated only for four

fields: company name, company address, total amount, and document date. Consequently, every

model trained in this section is only trained for those four fields, ignoring other fields that are available

in the FLH dataset.

First, the modeling and evaluation are made separately for each dataset, as shown in Table 6.4. Both

models obtain results over 90% for F1, which would be considered as a state-of-the-art result. The

better result obtained with the SROIE dataset may be explained by two factors. First, the dataset

images have much better quality, showing almost no skewness, blurring, or elements such as staples.

This certainly improves OCR quality, resulting in predictions closer to ground truth. Second, the version

of the LayoutLM model used in this study was pre-trained only in an English corpus. As known,

documents of the FLH dataset are fully in Portuguese while documents of the SROIE dataset have most

of their text in English.

A model pre-trained in English being so effective on a Portuguese dataset may be explained by the

very specific structure of the text in an invoice, which is less dependent on the language when

compared to text written freely.

Job # Train Test Num samples Precision Recall F1

6 FLH FLH 813 0,87 0,93 0,91

7 SROIE SROIE 727 0,95 0,97 0,96

Table 6.4 – Modeling on FLH and SROIE dataset separately

33

6.3. EFFECT OF PREDICTING ON A DIFFERENT DATASET

To understand the impact of the data used for training, two additional tests are done. First, the model

is trained for every 813 FLH samples and evaluated on 626 SROIE samples. In opposition, the second

model is trained for SROIE samples and evaluated for the whole FLH dataset. The results presented in

Table 6.5 confirm the strong influence of the data used for fine-tuning. When the dataset used for

training has different characteristics of the dataset used for evaluation, the F1 scores drop to

unacceptable values near 60%. This is an issue that must not be ignored when deploying the model

into production, as predictions on data with different characteristics will be much less effective.

Job # Train Test Num samples Precision Recall F1

8 FLH SROIE 1540 0,88 0,50 0,64

9 SROIE FLH 1540 0,69 0,55 0,61

Table 6.5 – Modeling and evaluating on different datasets

6.4. EFFECT OF MIXING DATASETS

To simulate a situation in which both datasets would be available for training, three more jobs are

defined. The first (job 10) trains on whole SROIE dataset together with 75% of the FLH dataset and

evaluates on the remaining 25% of the FLH dataset. The second (job 11) trains on whole FLH dataset

together with 75% of the SROIE dataset and evaluates on the remaining 25% of the SROIE dataset. The

third job (job 12) trains on a batch that would include 75% of the SROIE dataset and 75% of the FLH

dataset, evaluating on a batch with 25% of both datasets. The results shown in Table 6.6 indicate that

no improvements are achieved when compared to training the datasets separately (see Table 6.4 –

jobs 6 and 7).

On job 10, in which the model is trained on whole SROIE dataset together with 75% of the FLH dataset,

representing 1235 training samples, the obtained F1 score on the evaluation of 305 FLH samples is

91%. This is the same value obtained when only the FLH dataset is used for the train (see Table 6.4 –

job 6). The same analogy is valid for job 11, as it presents similar results to job 7.

By mixing two datasets in the evaluation stage, as done in job 12, it is noticeable that the obtained

score is between the ones obtained in jobs 6 and 7 (see Table 6.4). This leads to the idea that the

models have reached their full capacity and consequently using data from another dataset is useless

or even has a negative impact.

Job # Train Test Num samples Precision Recall F1

10 FLH + SROIE FLH 1540 0,89 0,93 0,91

11 FLH + SROIE SROIE 1540 0,95 0,97 0,96

12 FLH + SROIE FLH + SROIE 1540 0,93 0,97 0,95

Table 6.6 – Using mixed FLH and SROIE samples for training

34

6.5. EFFECT OF DATASET SIZE

The following question arises from the previous sub-section: if there is a limit above which adding extra

data to train models turns into small or no gains, what is that limit? This question is especially useful

to have an estimation of how many samples need to be annotated when training the model for a new

dataset.

To focus on this question, additional jobs are defined to train and evaluate the models in batches. As

more data is available, the batch size increases as well as the F1 score for the evaluation dataset, a

relation which may be named as learning curve. In every case, the available batch was split into train

and evaluation set in a proportion of 75% to 25%.

a) b)

c) d)

Figure 6.1 – Learning curves of model fine-tuned for different datasets. a) FLH dataset. b) SROIE
dataset. c) Mix of FLH and SROIE datasets. d) Detail of three previous combinations for first 300

samples

Figure 6.1 shows the evolution of the F1 score with increasing batch sizes for different datasets. Figure

6.1a and Figure 6.1b show learning curves for the FLH and SROIE datasets, respectively, trained and

evaluated separately. Figure 6.1c plots the curve for a dataset that is a random mixture of both FLH

and SROIE datasets.

In all three cases, the learning curve may be split into three stages. The first occurs in cases with very

few data to train and evaluate, being represented by values of F1 near 0%. The second stage is

35

characterized by a high inclination in the evolution of the score with batch size. It is the phase in which

the available data has a strong impact on the model performance. Finally, the third stage represents a

near-plateau, in which extra data adds little or none to model performance.

As expected, the results obtained with the SROIE dataset reach a higher F1 value. It may also be

highlighted that a higher F1 score shows a relation with a steeper dataset size/score rate, meaning

that when a model learns faster it tends to reach higher scores. This could be indicative of the further

application of this model to different datasets. The third stage for each of the plots suggests that when

using LayoutLM, both FLH and SROIE datasets have more data available than needed to reach very

good scores.

Figure 6.2 – Learning curve for the model trained and evaluated for FLH dataset and previously fine-
tuned for SROIE dataset

A different scenario is illustrated in Figure 6.2. In this case, only the FLH dataset is considered for

training and evaluation, yet the model is previously fine-tuned with the SROIE dataset. Only with a few

FLH dataset samples, the model scores are much higher than 0%. However, based on the results

presented in Table 6.5, one dataset is not suitable to make prediction on another, so the model scores

are still far from the best performance, with values near 70%-75%. Notwithstanding, as the model is

also trained for an increasing FLH dataset size, the performance increases.

It should also be highlighted that the steepness on the relation between the size of dataset and

performance is much lower in this case when compared with Figure 6.1. This means that a previously

tuned model can predict on different datasets, yet it learns slower on the new data.

6.6. DISCUSSION AND CONSIDERATIONS FOR PRODUCTION ENVIRONMENT

The results presented above may bring to the discussion relevant aspects about deploying to

production the models trained in this work.

Undoubtfully it is worth it to use the LayoutLM model in production when compared to BERT models

or even commercial software. The extra features given by the bi-dimensional position of the bounding

boxes provide a relevant upgrade in performance. There is obviously some overhead in including extra

features, mostly related to pre-processing of the bounding boxes. Nevertheless, as most OCR tools

already provide the bounding boxes together with the text, the overhead is considered minimal. It is

proven that LayoutLM is also suitable for modeling documents in the Portuguese language, enabling

the next steps for implementation of the model on Feels Like Home (FLH) internal accountant software.

36

When in production, it must be considered that different clients will probably predict documents with

different characteristics. Table 6.5 presents results on predicting using a model trained with data that

had different characteristics, showing that a sudden drop in performance occurs. The usage of data

with different characteristics should be done carefully and user expectations on the prediction of the

first samples must be managed. Also, the results of this work leave the possibility of implementing two

scenarios on how models should be trained. The first scenario would assume a generalist model, which

is being trained with every data despite its origin. In the second scenario, each client has its own model,

that is trained with only its data. The advantages and drawbacks of each scenario in short- or long-

term performance are summarized in Table 6.7.

The evolution of the score with available data shown in Figure 6.1 and Figure 6.2 indicates that, when

in production, an online learning algorithm would need to be implemented for the model to reach

acceptable performance when data with different characteristics is used. Such an algorithm uses new

predicted samples together with user feedback to retrain the model.

However, the presented results show that an online algorithm only has a strong impact in the first

phase, showing almost no improvements after reaching a certain limit. Consequently, when deploying

this model into production, one should analyze the possibility of implementing an online algorithm

against an option without online learning but with an initial setup of the model that would include a

fine-tune with a certain amount of client data. Table 6.8 presents a brief description of the advantages

and drawbacks of both scenarios.

The presented results are essential to define a strategy to implement the model into production. This

will be done in a proof of concept that will be a plug-in of Feels Like Home internal accountant and

financial software. Regarding the scenarios presented in Table 6.7, the client-specific model approach

will be used, training only on the FLH dataset. This will allow the model to predict eight relevant fields,

instead of only the four fields that a model trained with both datasets could predict. As for the

scenarios described in Table 6.8, as there is already a model trained for FLH data, it is considered that

the initial setup is already complete. Consequently, an online learning algorithm is thought not to be

worth the costs of its implementation at the moment.

37

Advantages and drawbacks of each scenario Based on

Generalist model scenario

Advantages

Although far from top performance, prediction on the

first samples of a new dataset would return fair results.

See jobs 8 and 9 in Table 6.5 and Figure

6.2.

Deep learning models are known for their ability to model

data with different characteristics. Training a model with

data with different characteristics should make it more

robust.

Drawbacks

If a new dataset has good quality images, the top

performance of the model might be truncated because of

the worst quality samples used in training.

See job 7 on Table 6.4 and job 12 on

Table 6.6. Job 7 reaches the same score

with half the data.

The number of training samples needed for the model to

reach a good performance would not be smaller when

compared to a client-specific model scenario.

Figure 6.1a and Figure 6.2 show that in

both cases ~200 samples would be

needed to achieve a good score.

Model cannot be fine-tuned for specific fields that did not

exist in the previous training data

Client-specific model scenario

Advantages

Models adapt specifically predicting the fields that are

relevant for each client, which might improve the top

performance of specific clients

See job 7 in Table 6.4 and job 12 on

Table 6.6. Job 7 reaches the same score

with half the data.

Data is treated separately for each client. This may be

relevant in certain data compliant scenarios, when for

example data of clients must not be stored in different

countries or regions.

In the need to re-fine tune the model, less data is used,

requiring less computational power.

Drawbacks
The model is not fine-tuned previously, so performance

on predicting first samples might be zero

See Figure 6.1a and Figure 6.1b.

Table 6.7 – Advantages and drawbacks of each modeling scenario

38

Advantages and drawbacks of each scenario Based on

Implement an online learning algorithm

Advantages

The model would always be learning and adapting to new

characteristics.

See in Figure 6.1 and Figure 6.2 that the

model performance is always improved

as more data is provided.

Drawbacks
Ground-truth depends on user feedback. Depending on

the user, error on feedback may be high, reducing model

quality

For the first samples, the results may be poor or fair,

which can lead to user frustration.

See in Figure 6.1 and Figure 6.2 that a

few hundred of samples are needed to

reach top performance.

Costs of implementing and maintaining an extra

algorithm

After reaching a certain threshold, the model

performance gains are minimal with increasing training

data

See near-plateau reached in Figure 6.1

and Figure 6.2.

Initial setup without learning algorithm

Advantages
The model would be set up for the client’s specific data.

After this initial setup stage model would be near top

performance.

Setup requires new annotated samples. However, by

using the pipeline presented in this work, only pictures

and text of relevant fields would be required. In many

companies’ databases, this is data is already available.

Drawbacks

If the client starts using data with different
characteristics, a new setup must be done.

See in Figure 6.2 that even already

trained, the model needs a few hundred

samples to reach top performance on

new data.

Setup requires new annotated samples, which involve
costs in cases these do not exist yet.

Table 6.8 – Advantages and drawbacks of each learning scenario

39

7. CONCLUSIONS AND FUTURE WORK

This thesis presents a machine learning end-to-end pipeline for the extraction of relevant fields from

invoices and receipts. The pipeline comprehends two layers. The training layer receives batches with

images of documents and their corresponding annotations and fine-tunes a Transformers-based pre-

trained model – LayoutLM – for a sequence labeling task. The production layer inputs images and

predicts the relevant fields.

The images are pre-processed extracting the whole document text and bounding boxes using OCR.

Also, in the training layer, the OCR text is labeled using an algorithm that searches parts of the text

equal or highly similar to the annotations. Considering that LayoutLM is pre-trained both with

additional spatial features, the model is fine-tuned with text and its bi-dimensional position within the

document.

In addition, a dataset is made available to the community (FLH dataset). It comprehends 813 images

of invoices and receipts, as well as the annotated text with eight relevant fields – company name,

company address, document date, document number, buyer tax number, seller tax number, total

amount, and tax amount.

The model is compared with two baseline models, one BERT model and a commercial software. The

model is fine-tuned both with the created dataset and another available dataset, which allows

extracting valuable knowledge from the results and consequently defining a strategy for deploying the

pipeline into production.

The four objectives purposed for this work were successfully completed:

▪ A dataset is made available with data that largely overcomes the need for model fine-

tuning.

▪ Overall, the implemented pipeline is a functional proof of concept and after minor

engineering implementations (creating endpoints, testing, etc.) will be ready for production.

▪ An NLP Transformers-based model specifically pre-trained for document

comprehension tasks proves to perform accurately in the data provided.

▪ A strategy for model deployment is defined. The model will be fine-tuned based solely

on the FLH dataset and there is no need to implement an online learning algorithm.

During the development of each thesis’ section, many interesting conclusions were registered and may

be compiled in the following items.

Literature review

There are two periods of time in which developments were made in the field of extracting relevant

fields from documents. The first is related mostly to algorithms that rely on pre-defined layouts,

requiring user intervention and showing no flexibility to new layouts. The second, developed in the

past few years, is based on deep learning techniques, mostly by using NLP and CV techniques.

The very recent models that use an architecture based on Transformers achieve state-of-the-art results

on document comprehension tasks. LayoutLM, available in two versions, uses both spatial and image

40

features and is suitable to the objective of this thesis. A multi-language LayoutLM model is also

available.

Created dataset

By creating a dataset to be used in an end-to-end pipeline important questions arise. Which

information should be annotated, the whole document text, the relevant text, and bounding boxes,

only the relevant text? The option of annotating only relevant text became evident, not only by its

simplicity but also because that is the type of data that is most probable to obtain from further

companies if there is the need to train the model to new data. This approach has some limitations: as

the image is converted to text by using an OCR, there is a chance that the OCR text does not match the

annotated data, which can lead to errors in labeling the text to train the model.

The dataset includes 813 images of invoices and receipts. There is a high variability in the data

obtained, namely on the seller companies, having the top 10 companies representing only 37% of the

whole dataset. This indicates the high variation of layouts used. As expected, the buyer tax number

has a much lower variability – only two different tax numbers in the whole dataset – which is explained

by the fact that the whole dataset belongs to one company.

Methodology

From within different possibilities, the end-to-end pipeline is based on two main tasks – transcription

of text from an image using an OCR tool and training the model using a Transformers-based model.

Despite being essential for the task, the inner workings of the OCR are left out of the scope of the

thesis by using an external tool – Google Vision API or Pytesseract.

The pre-processing of the data is complex, including treatment of image, OCR, and transformation of

annotated data into text labels for training purposes. The labeling, based on the annotated fields, is

achieved using a search algorithm based on a similarity score. Such an algorithm proves to be very

effective in overcoming the differences in OCR text and annotations, by reducing the rate of non-

matched annotations from 30,5% to 5,6%. It is considered that the errors resulting from using it are

overcome by its practicality. This algorithm also shows a good application to measure both the quality

of the images and the OCR tool.

Results

The results of applying LayoutLM to the created dataset show unequivocally its high performance,

when compared to BERT and a commercial software. The use of LayoutLM both for FLH and SROIE

datasets have F1 scores higher than 90%. By analyzing the effect of mixing the datasets, it is noticeable

that the performance drops when predicting using a model trained with another dataset.

The learning curves suggest a relation between the steepness of the learning rate and the top

performance obtained in the dataset. Also, it is shown that for both datasets, their size largely

overcomes the number of samples needed to achieve the top performance of the model. A rule of

thumb may be defined, in which around 100-200 samples are enough to fine-tune this model for this

kind of data.

41

The results presented and a discussion is schematized in two tables, so a strategy is defined for

deployment in production as a plugin in FLH internal accountant software. Taking advantage of the

fact that specific client-relevant fields may be extracted and that the model is already fine-tuned with

high performance on predictions, a model fine-tuned only on FLH data will be used. Also, it is argued

that there is no need to use online learning tools for such cases.

Research limitations

The main limitations of this research are considered to be:

▪ The use of hold-out as a training and testing evaluation. As known, by using this

strategy, the results achieved depend more on the way the split is made. Given the dataset

size and the conclusions taken from the analysis of the learning curves, it is thought that hold-

out is enough to have confidence in the results. Nevertheless, this hypothesis was not

confirmed.

▪ The number of datasets. While it is considered very relevant to have two different

datasets for the evaluation of the model, the conclusions taken cannot be generalized to the

model.

▪ The capacity on predicting correctly is too dependent on OCR or image quality.

▪ Model parametrization was simplistic and might influence results.

Future work

There is an expectation of developing further work on this subject. From an academic perspective, this

thesis is expected to be reduced in size and transformed into a scientific paper to submit to a reference

journal. Also, a data paper will be submitted after minor adaption of Section “Created dataset”. From

a production perspective, the pipeline will be improved with engineering features, such as an API or

performance monitoring, and deployed in an FLH server to be plugged in the FLH internal software.

Further research would be very useful to improve understanding of different fields approached in this

thesis, such as data annotation, pre-processing, or model improvement. The most relevant

contributions would be:

▪ A detailed comparison between different annotation strategies to confirm that the

simplifications introduced in this study compensate for the increase in error when compared

to using the whole document text as ground truth. This study can be made with the SROIE

dataset, as the OCR ground truth, bounding boxes, and relevant fields are made available.

▪ Create more datasets including samples with different characteristics. Fine-tuning the

model for more datasets would allow generalizing the conclusions about the model. Such

datasets could even be created synthetically from the existing datasets by applying for

example exchange of words within the document or translation of documents.

▪ Perform the same calculations using cross-validation.

▪ Perform a deeper comparison and parametrization between OCR tools: Google Vision

API and Pytesseract.

42

▪ Incorporate in the pre-processing step an algorithm to estimate image or OCR quality.

This algorithm would allow defining confidence in the prediction.

▪ Perform the same calculations using the second version and the multi-lingual version

of LayoutLM.

43

BIBLIOGRAPHY

Alshammari, N., & Alanazi, S. (2021). The impact of using different annotation schemes on named
entity recognition. Egyptian Informatics Journal, 22(3), 295–302.
https://doi.org/10.1016/j.eij.2020.10.004

Bommasani, R., Hudson, D. A., Adeli, E., Altman, R., Arora, S., von Arx, S., Bernstein, M. S., Bohg, J.,
Bosselut, A., Brunskill, E., Brynjolfsson, E., Buch, S., Card, D., Castellon, R., Chatterji, N., Chen, A.,
Creel, K., Davis, J. Q., Demszky, D., … Liang, P. (2021). On the Opportunities and Risks of
Foundation Models. http://arxiv.org/abs/2108.07258

Borisyuk, F., Gordo, A., & Sivakumar, V. (2018). Rosetta: Large scale system for text detection and
recognition in images. Proceedings of the ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 71–79. https://doi.org/10.1145/3219819.3219861

Cesarini, F., Gori, M., Marinai, S., & Soda, G. (1998). Informys: A flexible invoice-like form-reader
system. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(7), 730–745.
https://doi.org/10.1109/34.689303

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., & Kuksa, P. (2011). Natural Language
Processing (almost) from Scratch. Journal of Machine Learning Research, 12, 2493–2537.
http://arxiv.org/abs/1103.0398

Dai, A. M., & Le, Q. V. (2015). Semi-supervised Sequence Learning. Advances in Neural Information
Processing Systems, 2015-January, 3079–3087. http://arxiv.org/abs/1511.01432

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of deep bidirectional
transformers for language understanding. NAACL HLT 2019 - 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language
Technologies - Proceedings of the Conference, 1, 4171–4186.
https://github.com/tensorflow/tensor2tensor

difflib — Helpers for computing deltas — Python 3.10.0 documentation. (n.d.). Retrieved October 26,
2021, from https://docs.python.org/3/library/difflib.html

Enendu, S., Zylab, J. S., Zylab, J. S., Hiemstra, D., & Theune, M. (2019). Predicting Semantic Labels of
Text Regions in Heterogeneous Document Images.
https://research.utwente.nl/en/publications/predicting-semantic-labels-of-text-regions-in-
heterogeneous-docum

Goldmann, L. (2019). Layout Analysis Groundtruth for the RVL-CDIP Dataset.
https://doi.org/10.5281/ZENODO.3257319

Harley, A. W., Ufkes, A., & Derpanis, K. G. (2015). Evaluation of Deep Convolutional Nets for Document
Image Classification and Retrieval. Proceedings of the International Conference on Document
Analysis and Recognition, ICDAR, 2015-November, 991–995. http://arxiv.org/abs/1502.07058

Hoffstaetter, S. (n.d.). madmaze/pytesseract: A Python wrapper for Google Tesseract. Retrieved
October 26, 2021, from https://github.com/madmaze/pytesseract

Holecek, M., Hoskovec, A., Baudis, P., & Klinger, P. (2019). Table Understanding in Structured
Documents. https://doi.org/10.1109/icdarw.2019.40098

ICDAR. (2019). ICDAR 2019 Robust Reading Challenge on Scanned Receipts OCR and Information

44

Extraction. International Conference on Document Analysis and Recognition.
https://rrc.cvc.uab.es/?ch=13

Jaume, G., Kemal Ekenel, H., & Thiran, J.-P. (2019). FUNSD: A Dataset for Form Understanding in Noisy
Scanned Documents. https://doi.org/10.1109/icdarw.2019.10029

jitsi/jiwer: Evaluate your speech-to-text system with similarity measures such as word error rate (WER).
(n.d.). Retrieved October 27, 2021, from https://github.com/jitsi/jiwer/

Kavasidis, I., Pino, C., Palazzo, S., Rundo, F., Giordano, D., Messina, P., & Spampinato, C. (2019). A
saliency-based convolutional neural network for table and chart detection in digitized
documents. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 11752 LNCS, 292–302.
https://doi.org/10.1007/978-3-030-30645-8_27

Lecun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. In Nature (Vol. 521, Issue 7553, pp. 436–444).
Nature Publishing Group. https://doi.org/10.1038/nature14539

Lee, J., Hayashi, H., Ohyama, W., & Uchida, S. (2019). Page segmentation using a convolutional neural
network with trainable co-occurrence features. Proceedings of the International Conference on
Document Analysis and Recognition, ICDAR, 1023–1028.
https://doi.org/10.1109/ICDAR.2019.00167

Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., Stoyanov, V., & Zettlemoyer, L.
(2019). BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation,
Translation, and Comprehension. 7871–7880. http://arxiv.org/abs/1910.13461

Liu, W., Yuan, X., Zhang, Y., Liu, M., Xiao, Z., & Wu, J. (2020). An End to End Method for Taxi Receipt
Automatic Recognition Based on Neural Network. Proceedings of 2020 IEEE 4th Information
Technology, Networking, Electronic and Automation Control Conference, ITNEC 2020, 314–318.
https://doi.org/10.1109/ITNEC48623.2020.9084712

Liu, X., Meng, G., & Pan, C. (2019). Scene text detection and recognition with advances in deep learning:
a survey. International Journal on Document Analysis and Recognition, 22(2), 143–162.
https://doi.org/10.1007/s10032-019-00320-5

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., & Stoyanov,
V. (2019). RoBERTa: A Robustly Optimized BERT Pretraining Approach.
http://arxiv.org/abs/1907.11692

Mao, S., Rosenfeld, A., & Kanungo, T. (2003). Document structure analysis algorithms: a literature
survey. In T. Kanungo, E. H. Barney Smith, J. Hu, & P. B. Kantor (Eds.), Document Recognition and
Retrieval X (Vol. 5010, pp. 197–207). SPIE. https://doi.org/10.1117/12.476326

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013, January 16). Efficient estimation of word
representations in vector space. 1st International Conference on Learning Representations, ICLR
2013 - Workshop Track Proceedings. http://ronan.collobert.com/senna/

Nagy, G. (2000). Twenty years of document image analysis in PAMI. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 22(1), 38–62. https://doi.org/10.1109/34.824820

Nakayama, H. (2018). chakki-works/seqeval: A Python framework for sequence labeling
evaluation(named-entity recognition, pos tagging, etc...). https://github.com/chakki-
works/seqeval

45

Nguyen, M. T., Le, D. T., & Le, L. (2021). Transformers-based information extraction with limited data
for domain-specific business documents. Engineering Applications of Artificial Intelligence, 97,
104100. https://doi.org/10.1016/j.engappai.2020.104100

opencv/opencv-python: Automated CI toolchain to produce precompiled opencv-python, opencv-
python-headless, opencv-contrib-python and opencv-contrib-python-headless packages. (n.d.).
Retrieved October 26, 2021, from https://github.com/opencv/opencv-python

Park, S., Shin, S., Lee, B., Lee, J., Surh, J., Seo, M., & Lee, H. (2019). CORD: A Consolidated Receipt
Dataset for Post-OCR Parsing.

python-pillow/Pillow: The friendly PIL fork (Python Imaging Library). (n.d.). Retrieved October 26, 2021,
from https://github.com/python-pillow/Pillow

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (n.d.). Language Models are
Unsupervised Multitask Learners. https://github.com/codelucas/newspaper

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., & Liu, P. J. (2019).
Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer. Journal of
Machine Learning Research, 21, 1–67. http://arxiv.org/abs/1910.10683

Ratcliff, J. W., & Metzener, D. E. (1988). Pattern Matching: The Gestalt Approach. Dr. Dobb’s Journal,
46.

Schreiber, S., Agne, S., Wolf, I., Dengel, A., & Ahmed, S. (2017). DeepDeSRT: Deep Learning for
Detection and Structure Recognition of Tables in Document Images. Proceedings of the
International Conference on Document Analysis and Recognition, ICDAR, 1, 1162–1167.
https://doi.org/10.1109/ICDAR.2017.192

Stahl, C. G., Young, S. R., Herrmannova, D., Patton, R. M., & Wells, J. C. (2018). DeepPDF: A Deep
Learning Approach to Extracting Text from PDFs (Conference) | OSTI.GOV.
https://www.osti.gov/biblio/1460210-deeppdf-deep-learning-approach-extracting-text-from-
pdfs

Tsujimoto, S., & Asada, H. (1990). Understanding multi-articled documents. Proceedings - International
Conference on Pattern Recognition, 1, 551–556. https://doi.org/10.1109/icpr.1990.118163

Van Der Walt, S., Schönberger, J. L., Nunez-Iglesias, J., Boulogne, F., Warner, J. D., Yager, N., Gouillart,
E., & Yu, T. (2014). Scikit-image: Image processing in python. PeerJ, 2014(1).
https://doi.org/10.7717/peerj.453

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I.
(2017). Attention is all you need. Advances in Neural Information Processing Systems, 2017-
December, 5999–6009. https://arxiv.org/abs/1706.03762v5

Vincent, P., Larochelle, H., Bengio, Y., & Manzagol, P. A. (2008). Extracting and composing robust
features with denoising autoencoders. Proceedings of the 25th International Conference on
Machine Learning, 1096–1103. https://doi.org/10.1145/1390156.1390294

Wahl, F. M., Wong, K. Y., & Casey, R. G. (1982). Block segmentation and text extraction in mixed
text/image documents. Computer Graphics and Image Processing, 20(4), 375–390.
https://doi.org/10.1016/0146-664X(82)90059-4

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., Krikun, M., Cao, Y., Gao, Q.,
Macherey, K., Klingner, J., Shah, A., Johnson, M., Liu, X., Kaiser, Ł., Gouws, S., Kato, Y., Kudo, T.,

46

Kazawa, H., … Dean, J. (2016). Google’s Neural Machine Translation System: Bridging the Gap
between Human and Machine Translation. http://arxiv.org/abs/1609.08144

Xu, Yang, Xu, Y., Lv, T., Cui, L., Wei, F., Wang, G., Lu, Y., Florencio, D., Zhang, C., Che, W., Zhang, M., &
Zhou, L. (2021). LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document
Understanding. Proceedings of the 59th Annual Meeting of the Association for Computational
Linguistics (ACL) 2021, 2579–2591. http://arxiv.org/abs/2012.14740

Xu, Yiheng, Li, M., Cui, L., Huang, S., Wei, F., & Zhou, M. (2020). LayoutLM: Pre-training of Text and
Layout for Document Image Understanding. Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, 20, 2020.
https://doi.org/10.1145/3394486.3403172

Xu, Yiheng, Lv, T., Cui, L., Wang, G., Lu, Y., Florencio, D., Zhang, C., & Wei, F. (2021). LayoutXLM:
Multimodal Pre-training for Multilingual Visually-rich Document Understanding.
http://arxiv.org/abs/2104.08836

Zhang, Z., Zhang, C., Shen, W., Yao, C., Liu, W., & Bai, X. (2016). Multi-oriented Text Detection with
Fully Convolutional Networks. Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, 2016-December, 4159–4167.
https://doi.org/10.1109/CVPR.2016.451

Page | i

