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ABSTRACT This work compares two innovative methodologies to predict the future locations of moving
vehicles when their current and previous locations are known. The two methodologies are based on: (a) a
Bayesian network model used to infer the statistics of prior vehicles, trajectory data that is further adopted in
the estimation process; (b) a deep learning approach based on recurrent neural networks (RNNs). We present
experimental results obtained with both prediction methodologies. The results indicate that the prediction
accuracy is improved in both methods as more information about prior vehicle mobility is available. The
Bayesian network-based method is advantageous because the statistical inference can be updated in real-time
as more trajectory data is known. On the contrary, the RNN-based method requires a time-consuming learning
task every time new data is added to the inference dataset. However, the RNN achieves a higher prediction
accuracy performance (3% to 5% higher). Additionally, we show that the computational cost to predict the
next position a vehicle will move to can be substantially reduced when the Bayesian network is adopted, a
scenario where the RNN method requires more computational time. But when the quantity of prior data used
in the prediction increases, the computational time required by the RNN-based method can be two orders of
magnitude lower, showing that the RNN method is advantageous in both accuracy and computational time.
Both methods achieve a next position successful prediction rate higher than 90%, confirming the applicability
and validity of the proposed methods.

INDEX TERMS Bayesian networks, deep learning, machine learning, performance evaluation, trajectory
prediction.

I. INTRODUCTION
The massive adoption of mobile devices are supporting a
plethora of location-based services, which have allowed the
generation of a very high volume of spatio-temporal data
and motivated the design of many location-based services,
ranging from data traffic offloading [1] and data delivery [2],
urban planning [3], transportation optimization [4], the rec-
ommendation of points of interest [5], and analytical facts
about the distribution of the population in a specific area [6].
Several works have studied human mobility [7] and mobility
of vehicular networks [8], [9]. Mobility is useful in several
applications, such as the prediction of public transportation

passengers’ flow [10], the increase of vehicular safety protec-
tion [11], and to estimate the spread of contagious diseases
such as COVID-19 [12], [13]. Most of geolocated datasets
available in the community are based on GPS traces sampled
over time [14].

The prediction of vehicular trajectories is usually based on
prior vehicular data, particularly the latest visited positions,
as considered in [1], [15]–[19]. The prediction is useful for
several purposes, ranging from the computation of the es-
timated travel time of a given route, the support for route
planning or the computation of vehicular staying time at par-
ticular locations [20], [21]. The use of prior vehicular data was
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also considered in [16] to forecast the most likely potential
passenger for taxi drivers.

In the literature we find several probabilistic-based methods
to represent and predict vehicular mobility [4], [5], [22]–[25].
Regarding the forecast of mobility aspects, the models can
be categorized into two main categories: short-term and long-
term trajectory estimation models. The short-term forecasting
models are usually based on prior information [26], consisting
of one or two previous locations visited by the vehicle plus
the current location [27]. Regarding the long-term trajectory
models, they predict the trajectory positions at a longer time
horizon [28]. The majority of the works published so far are
focused on short-term forecasting of vehicular trajectories in
urban areas, where the vehicular motion is constrained by
traffic lights, complex roads with segments, pedestrians, inter-
sections, and traffic density. Due to the random nature of the
vehicles’ location over time, long-term prediction models are
more difficult to achieve higher prediction accuracy for urban
vehicles’ mobility [29]. More regular motion patterns lead to
more accurate predictions [30], as is the case of deterministic
journeys such as the ones traveled by buses. However, in some
mobility scenarios regular motion can not be assumed, as is
the case for taxis’ trajectories, because the passengers’ pick
up, drop off, and journeys exhibit a higher level of random-
ness. In these cases, the forecast of future locations is more
challenging due to the higher level of uncertainty.

A. MOTIVATION
This work is motivated by the lack of performance compar-
ative results of different vehicular trajectory prediction tech-
niques. More specifically, we aim at answering the following
research questions:
� How Bayesian-based and neural network-based predic-

tion schemes behave in terms of prediction performance
and computational cost?

� What is the influence of the quantity of prior data used
in the trajectory prediction?

� How different is the prediction accuracy and the compu-
tational performance for short-term and long-term esti-
mates?

We start with a detailed description of two different prediction
methodologies compared throughout the paper, based on a
Bayesian network model and a LSTM neural network. In a
first step, we compare the performance of the two proposed
methods for short-term predictions, considering the forecast
of the next location. Then, we compare both methods for long-
term predictions by analyzing the prediction performance of
the next five future locations assuming periodic sampling.
An additional goal is to decrease the computation time by
decreasing the observation state space’s size through a prepro-
cessing algorithm that divides the travel region into multiple
cells. The cells are used to define the vehicle’s trajectory rep-
resented by a set of sub-trajectories (sequences) composed of
the consecutive traveled cells. Regarding the Bayesian-based
method, we adopt a Hidden Markov inference model to cap-
ture the taxis’ mobility’s statistical properties. The prediction

approach is based on an improved version of the Viterbi
algorithm that computes the most likely sequence of future
locations given a sequence of prior locations. Regarding the
neural network-based approach, we propose a LSTM neural
network where the initial locations of the sub-trajectories are
used in the network learning process to estimate the latest
positions of the sequence.

B. NOVELTY AND CONTRIBUTIONS
The main novelty of this work is the comparison of two tech-
niques for vehicle mobility prediction, so we can answer the
research questions that have motivated the paper. The com-
parative analysis is carried out for short-term and long-term
predictions and characterizes the influence of the number of
prior locations in the prediction performance (longer/shorter
length sequences). The contributions of this work are listed as
follows:
� The trajectories represented by sampled GPS coordi-

nates are converted into geographic cells so that the
spatial data can be downsampled for increased perfor-
mance. For a fairer comparison, the same downsampled
data is adopted in the performance evaluation of both
techniques;

� The first technique relies on an innovative Bayesian net-
work represented by a Hidden Markov model (HMM),
where the hidden states represent a single sequence of
locations, thus embodying the Markov relation between
prior visited locations to capture the sequential relation
of each trajectory. The prediction relies on an improved
version of the Viterbi algorithm, OPTVIT, that achieves a
lower computational time while maintaining the optimal
prediction performance;

� The second technique compared in this work is based on
recurrent neural networks, more precisely a LSTM net-
work, to attenuate the gradient problem that can have a
significant impact on long-term prediction of sequential
data;

� The prediction techniques are assessed using a dataset
of real traces, comparing the OPTVIT algorithm and
the LSTM approach for a variable quantity of prior data
used in the prediction, as well as for short and long-term
predictions. The computation times and prediction per-
formance are reported based on the experimental results;

� A final contribution has to do with the experimental
results. They show that: (i) a higher quantity of prior
data always improves the prediction accuracy of both
techniques; (ii) the Bayesian approach can achieve a
lower computational cost for short-term prediction and
a similar prediction performance; (iii) For the long-term
horizon the prediction accuracy decreases linearly with
time; (iv) for long-term predictions, the proposed neural-
network is effectively a better solution, as it jointly
achieves higher prediction accuracy and lower compu-
tational time.
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C. PAPER STRUCTURE
Regarding the paper’s organization, Section II presents an
overview of selected works in the field. Section III introduces
the definitions adopted in the prediction techniques, states the
problem to solve, and describes the adopted spatio-temporal
model and its analytics. Section IV presents the Bayesian-
based technique to model and predict the locations of the
trajectory. Section V presents the deep learning approach and
the details of the LSTM neural network. Section VI describes
the comparison of the performance achieved by the different
techniques, and Section VI concludes the paper.

II. RELATED WORK
Several works have been proposed to address the problem of
mobility prediction, and particularly vehicular mobility esti-
mation [31]. Multiple methodologies were proposed so far,
including but not limited to fundamental concepts of Infor-
mation Theory [20], [32] and traditional Markovian-based
predictors [15]. The categorization of the existing mobility
prediction approaches was addressed in [33]. The major-
ity of the works proposing mobility prediction schemes can
be divided into Bayesian Network-Based Methods, Neural
Network-Based Methods, and Markov-Based Methods.

The Markov-Based methods are based on the Markov prop-
erty, which states that the probability of traveling to a future
position depends only on the current one. The majority of ve-
hicular prediction schemes are based on Markov-based meth-
ods [2], [4], [5], [15], [22]–[24]. The work in [4] adopts the
Markov property in a hidden Markov model to characterize
the prediction performance of a fixed number of trajectory
segments. More recently, the problem of sparse trajectory
data was addressed in [24], which has proposed a prediction
scheme that makes use of group mobility statistics to increase
the prediction accuracy. The sequences of the different tra-
jectory locations are used in [24] to run spatial clustering
algorithms capable of classifying them in different groups,
which are employed in a variable-order Markov model that
estimates the trajectory. However, the use of group trajec-
tory data can lead to bad results because it effectively relies
on crowd behavior only. The crowd mobility was also used
in [23] to improve individual trajectory estimation by dividing
the spatial region into a set of points of interest. Other works
have considered Markov-based models with data enrichment,
as in [5] where the travelers living habits are taken into ac-
count in the prediction process.

Contrarily to the Markov-based methods, the Bayesian
Network-Based methods are not only based on the current
position but also on the sequence of positions that have pre-
ceded it. Bayesian inference is employed to characterize the
likelihood of a given vehicle trajectory given prior observed
location or locations, thus using the statistics of the historical
trajectory data. The adoption of a Bayesian inference model
is described in [34] for location prediction, which takes into
account multiple predictive factors to enhance the prediction
performance, such as road topology information and motion

FIGURE 1. Grid map representation with N = 16 cells.

information. The work in [35] identifies the patterns contain-
ing regions frequently visited to build a Bayesian network
to estimate future locations. Differently, [36] proposed a dy-
namic Bayesian scheme that represents the consecutive occur-
rence of observable random variables to estimate the future
user’s location. Although Bayesian network-based methods
are easily implemented, the sparsity of trajectories represents
an additional challenge that usually results in high compu-
tational costs. Consequently, the methods based on Bayesian
inference are most of the time improved with the adoption of
other techniques for enhanced performance [27].

Deep learning has also been used to predict vehicular tra-
jectories. Although neural networks need a long time to learn
from data, the inference model to predict the mobility ben-
efits from its low computational complexity and is run in
deterministic time. Neural networks are gaining popularity
in mobility prediction when mobility data is available in a
centralized way [17]. Neural networks were adopted in [37] to
predict vehicular trajectories using a Multi-Layer Perceptron.
The work in [38] tackled the estimation of taxi trajectory des-
tinations based on convolutional neural networks. Innovative
neural network models have been developed in the last years
and have already been used for mobility prediction, including
long short-term memory (LSTM) recurrent networks and gen-
erative adversarial networks (GAN). LSTMs were proposed
in [39] to predict the vehicular trajectories in highways. GANs
were used in [19] to predict vehicular trajectory position and
speed in urban scenarios. The adoption of different neural
network models combined in a single architecture has also
been used to address mobility prediction, as in [16], where a
LSTM model is combined with a convolutional one to forecast
the most likely potential passenger for taxi drivers.

III. PROBLEM DEFINITION AND DATA MODEL
A. PROBLEM DEFINITION
The work considers multiple vehicles moving on a spatial
region, delimited by a grid map. Fig. 1 illustrates a grid map
with 16 cells. The grid map is divided into two-dimensional
geographical sub-regions designated as cells, denoted by cη.
The location of a vehicle is sampled periodically and linked
to a cell. Spatio-temporal trajectories are generated when the
vehicles move from the starting point to the endpoint of a jour-
ney. Considering that each journey has a variable duration, the
trajectories are represented by fixed-length sequences of cells
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TABLE I. Table of Notations

to guarantee a coherent granular temporal basis. The notation
and a few definitions adopted in this work are next introduced
to provide practical insights into the proposed approach.

Definition 1: A cell represented by cη, with η ∈ {1, . . ., N},
indicates each two-dimensional region of the grid map rep-
resenting the area where a vehicle travels. The maximum
number of cells is denoted by N .

Definition 2: The set of multiple cells, Tj =
{c1

η, c2
η, . . ., c

� j
η }, represents a trajectory. The trajectory

is an ordered set of � cells where the vehicle travels through.
In the trajectory, ck

η denotes its k-th cell. Finally, we highlight
that a trajectory is formed by a non-constant number of � j

cells, � j > 1.
While a trajectory represents the total number of locations

traveled by a vehicle, in this work we introduce a subset of
trajectory locations denoted as a sequence. The sequences are
the subsets adopted in the prediction algorithms by partition-
ing the trajectory in multiple sequences.

Definition 3: The ordered set Sκ = {c1
η, c2

η, . . ., c�
η } repre-

sents a sequence formed by a set of � visited cells, � ≤
� j . The number of cells (�) integrating the sequence κ ∈
{1, . . ., �} remains constant for all � sequences that constitute
a trajectory.

Definition 4: The set of sequences � = {S1, S2, . . ., S�} is
formed by all � sequences that result from the preprocessing
of vehicles’ trajectories. The set � will have a significant
number of identical sequences. The symbol � represents the
number of unique sequences found in �.

Definition 5: The prediction problem uses the knowledge
of the � − β cells observed so far (cells of a given sequence
Sκ ) to predict the next β cells of the sequence.

The symbols previously defined and adopted in this work
are represented in Table I.

B. MOBILITY DATASET PREPROCESSING
This subsection describes the method to convert the GPS raw
data representing a trajectory into sequences. The sequences
are characterized in Section III-C.

FIGURE 2. Region of Porto city, Portugal, considered in this work.

We use a dataset containing the real traces of trajectories
completed by 442 taxis servicing in Porto, Portugal, from the
beginning of July 2013 to the end of June 2014. The dataset
is available at the UCI Machine Learning Repository and
reported in [40]. Each entry of the dataset corresponds to a
taxi’s completed trip, describing are the trip’s identifier, the
timestamp, and a polyline with the GPS coordinates gathered
during the taxi’s travel. The polyline is formed by a sequence
of GPS coordinates that are sampled every 15 seconds.

Fig. 2 illustrates the Porto city region considered in the
paper. The lower-left corner of the map is represented by the
GPS coordinates [41.1 391 696, −8.6 341 313]. The grip map
represented by the blue lines positioned over the region has a
height of 2953 m and a width of 3921 m. Additionally, each
of the N=16 cells has area 0.724 km2.

The offline preprocessing of raw trajectory data plays an
essential role in prediction performance. The data preprocess-
ing algorithm that transforms the data is next introduced. Its
primary purpose is to define the set of sequences (�).

We consider that the trajectories are no longer defined by
a set of GPS coordinates but as a set of cells, simplifying
the process of describing trajectories. Since each cell contains
several GPS locations this assumption can be seen as a down-
sampling of the spatial positions. Each pair of GPS coordi-
nates is mapped into a cell of the map, cη, i.e., 1 ≤ η ≤ 16

cells depicted in Fig. 2. Each trajectory Tj = {c1
η, c2

η, . . ., c
� j
η }

has a variable number of locations represented by � j cells.
Each trajectory is divided in one or more sequences. A se-
quence Sκ = {c1

η, c2
η, . . ., c�

η } represents a set of consecutive
� cells. The number of cells (�) of each sequence κ ∈
{1, . . ., �} is maintained fixed for all � sequences in the
dataset.

After representing each trajectory into a set of cells, the
Algorithm 1 is run to define the set of sequences from raw
data. In line 2 it is evaluated if the number of cells forming
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TABLE II. Number of All Sequences (�) and Number of Unique Sequences
(�) for Different Sequence Lengths (�)

the sequence Sκ is greater than 1. In line 7, the algorithm
identifies the � j cells that form each trajectory, which are
added in line 8 to each sequence Sκ until reaching the number
of sequence cells (�). The sequence Sκ is then copied to the
set of sequences (line 11). The procedure is then repeated for
all Tj trajectories.

C. CHARACTERIZATION OF THE MOBILITY DATA
This subsection assesses the set of sequences, �, computed
in Algorithm 1 for the mobility dataset. Table II indicates
the amount of unique sequences (�) and non-unique se-
quences (�) considering various sequence lengths, i.e., � =
{4, 8, 12, 16, 20}. As indicated in Table II, the number of
sequences (�) increases for shorter sequences (when � de-
creases). Additionally, it is observed that the number of unique
sequences (�) increases for longer sequences.

To characterize the occurrence of each unique sequence Sκ

in the dataset, we plot the cumulative distribution function
(CDF) of the unique sequences in Fig. 3. In the figure, the
most likely sequences are ordered in descending order in the
x-axis. The y-axis represents the cumulative probability of
each sequence (Sκ ). As illustrated in Fig. 3, different CDFs
are achieved for the different lengths of the sequences (�),
confirming that lower sequence occurrence probabilities are

FIGURE 3. Cumulative distribution function of the unique sequences for
different sequence lengths (�).

observed for longer sequences. The increase of � is benefi-
cial for the prediction because the vehicles’ trajectories are
described by sequences with lower occurrence probabilities,
increasing the diversity of unique sequences.

IV. BAYESIAN NETWORK MODEL
This section describes the Bayesian network model. The
model contains two different stages: 1) the statistical infer-
ence; and 2) the mobility prediction. The inference stage is
supported by an HMM model, and it is detailed in Section
IV-A. Taking into account the inferred information, Section
IV-B presents the mobility prediction algorithm OPTVIT.

A. INFERENCE STAGE
Each trajectory is modeled through a Markov chain that de-
scribes the transition between states. The set of states is rep-
resented by �, and each hidden state is assigned to a unique
sequence Sκ . The transition probability between two adjacent
hidden states represents the probability of traveling from Sκ to
Sκ+1 and is defined as follows

aκ,κ+1 = #(Sκ , Sκ+1)

#(Sκ )
, (1)

where #(Sκ , Sκ+1) represents the total number of transitions
between two adjacent sequences {Sκ , Sκ+1} that occur in all
trajectories and #(Sκ ) is the number of times that Sκ occurs in
all trajectories. The result of the transition probability aκ,κ+1

is stored in matrix A. The transition probability matrix A is an
� × � matrix.

The HMM describes the relation between hidden events
represented by different random variables and the conditional
relation of all observable variables with each hidden event. In
real-time, the sequences are not fully observed, but only the
current cell where a vehicle is located. Thus, the visited cells
represent the observed events, while the possible sequences
that characterize the vehicles’ mobility represent the hidden
events. In this section, the cells already visited by a vehicle are

144 VOLUME 2, 2021



considered observable variables (prior information) to predict
a sequence of locations represented by a hidden event.

The hidden states, q(t ), and the observable states, o(t ),
describe the HMM model at discrete time t . Addition-
ally, the unique sequences, summing up �, represent the
set of hidden states of the HMM, represented by Q =
{q1, q2, . . ., q�}. The N cells of the grid map are the
information sampled over time, thus they represent the
HMM’s observation set, denoted by O = {o1, o2, . . ., oN }.
The HMM’s transition probability matrix is denoted
by A = {a1,1, a1,2, . . ., a�,�}, where each matrix element
is represented by ai, j = P(q(t + 1) = Si|q(t ) = S j ), i, j ∈
{1, 2, . . ., �}. The HMM’s emission matrix is represented
by B = {b1(o1), . . ., b1(oN ), . . ., b� (o1), . . ., b� (oN )}, where
bκ (on) = P(on|qκ ). Finally, � = {π1, π2, . . ., π�} represents
the HMM’s initial distribution, with πi = P(q(0) = Si ).

Defining #(qκ , on) as the number occurrences of the state
on at the hidden state qκ , the computation of each element of
B is as follows

bκ (on) = #(qκ , on)

�
. (2)

The HMM’s initial distribution is denoted by �, an 1 × �

vector where each element is computed through

πi = #(qi )

�
. (3)

After the inference stage, we estimate the most likely hid-
den state through the proposed prediction algorithm described
in the next section.

B. PREDICTION STAGE
In the prediction stage, we identify the most probable se-
quence of hidden states given a set of consecutive observa-
tions. The prediction can be seen as a decoding problem as
follows,

P(O|λ) = max
q1≤qk≤q�

{P(O|qk, λ)P(qk |λ)}, (4)

and the solution relies on the identification of the hidden states
that maximize the probability P(O|λ). An optimal solution
for the decoding problem is the traditional Viterbi algorithm
(TDVIT). The algorithm can be divided into three main phases
described as follows:

1) First, the initial probability πi is multiplied by the emis-
sion probability elements. Thus, the Viterbi variable δ1(i) is
initialized with respect to the hidden state qi, i.e., δ1(i) =
πi bi(o1), 1 ≤ i ≤ �;

2) The forward variable δ2:�( j) is obtained recursively
with respect to each hidden state q j through δ2:�( j) =
maxq1≤qi≤q�

{δ1:�−1(i) ai, j b j (o2:�)}, which considers the
transition probability from qi to state q j and the emission
probabilities of state q j .

3) Lastly, for all δT (i) Viterbi variables, the algorithm finds
the Viterbi path with the maximum transition probability, i.e.,
P∗ = maxq1≤qi≤q�

{δT (i)}.

The algorithm TDVIT, denoted as Viterbi(O, λ), predicts
the last β cells (c�−β+1

η , . . . , c�
η }) of a sequence Stest =

{c1
η, c2

η, . . . , c�
η }, given that � − β visited cells are already

known. Its computational complexity is O(�2 �). The com-
putational performance of the TDVIT is enhanced in Algo-
rithm 2, referred as OPTVIT.

The rationale behind Algorithm 2 is the computation of
only the first � − β cells, i.e., (δ1:(�−β )( j)), for the first
sequence S j stored in ζ . First, the algorithm copies to Stest

the {� − β} cells (line 1). Then, it is copied to ζ the unique
sequences in T test beginning with the sequence in χ (line 2).
Thus, ζ contains all sequences in which the latest β cells are
hypothetical candidates for the prediction. Each S j ∈ ζ (line
3) is checked (line 6) to verify if the variables δ1:(�−β )( j) were
already computed.

Because all S j ∈ ζ share the first � − β observable states,
i.e., {o1, o2, . . . , o�−β}, δ1:(�−β )( j) are only computed for S1

(line 7). For S j>1 only the Viterbi variable (δ�( j)) is com-
puted (line 10). In lines 11 and 12 the pair [P∗, S j] is stored
in ϒ and R. R is used to store all probabilities P∗ associated
with the different sequences, so we can avoid computing them
again. The probabilities already computed in P∗ are used in
line 14. Finally, in line 16 the algorithm identifies the pair
[P∗, S j] exhibiting the highest P∗ value, which corresponds to
the most likely sequence Spred .

V. DEEP LEARNING APPROACH
This section describes the structure of the LSTM neural net-
work and specifies the enhancements involved in the training
phase to obtain accurate vehicle trajectory predictions.

VOLUME 2, 2021 145



IRIO AND OLIVEIRA: COMPARATIVE EVALUATION OF PROBABILISTIC AND DEEP LEARNING

FIGURE 4. LSTM structure.

A. LSTM STRUCTURE
We use an LSTM recurrent neural network to solve the van-
ishing gradient problem that can have a significant impact
on dealing with long-term sequential data [41]. The LSTM
is well-known for sharing the cell states across each forward
step, making the architecture ideal to deal with trajectories,
where it is possible to reinforce important patterns or discard
the redundant ones.

In Fig. 4, we show the structure of the adopted LSTM
neural network. As can be seen, the LSTM layer is composed
by � − β discrete time steps and admit an input vector Xi

(i ∈ {1, . . ., � − β}) for each step, containing the information
of the visited cell. We use one-hot encoding to generate Xi.
Thus, Xi is a 1 × N one-hot vector with the value 1 assigned to
the index η, used to identify the cell of the grid map, and zeros
in the remaining vector positions. Given an input sequence
represented as {X1, ..., X�−β}, the proposed LSTM network
computes the output Y(�−β+1):�. The output is an one-hot
encoding matrix (β × N) where each row j ∈ {1, . . ., β} con-
tains the information of each of the β predicted cells. The
index η of each row that contains the single 1 will correspond
to the predicted cell c(�−β+1):�, or the labeled output during
the learning stage. In the LSTM layer, we adopt 16 LSTM
units for each step. Since the structure of the LSTM unit
may adopt different models, we follow the one proposed by
Hochreiter & Schmidhuber [41]. The structure of the unit is
composed of the operations involving the input, output, and
forget gates.

To finalize the LSTM structure, we adopt a Sigmoid func-
tion in the Dense Layer. The Sigmoid activation function is
a logistic function that is useful in the prediction of one-hot
vectors [41], as is the case of the desired output Y(�−β+1):�.

B. LSTM TRAINING
To learn the vehicles’ mobility patterns, during the training
process we use the dataset � containing the sequences de-
scribed in Section III-A. We selected 70% of the dataset for

TABLE III. LSTM Model Configuration

the training phase, 20% for the validation, and 10% for testing.
To optimize the training phase, we adopt the Adam optimizer
and the categorical cross-entropy as the loss function. We start
the training phase with a learning rate of 0.00 001, and a
fixed number of 100 epochs. Furthermore, we added an early
stoppage algorithm where we selected two levels of patience,
i.e., the training phase stops when two negative oscillations
in the loss function occur. We decided to add the stoppage
algorithm to avoid over-fitting in the model.

In Table III we present the LSTM structure and model
configurations.

VI. PERFORMANCE COMPARISON
This section evaluates the performance of the prediction algo-
rithms proposed in Sections IV and V. The evaluation method-
ology is presented in Section VI-A and the accuracy of the
estimation process is discussed in Section VI-B and VI-C.

A. EVALUATION METHODOLOGY
The evaluation is based on the dataset described in Section
III-B. We choose a grid map representation with N = 16 cells
(Fig. 2), where each cell has a lateral size of 738 m and a longi-
tudinal size of 980 m. Then, the raw data is filtered to take into
account the trajectories starting and ending within the defined
area of the grid map. Each trajectory is then characterized as
a list of cells, and the set of sequences � is computed to be
used as input of the Bayesian network model and the LSTM
network.

The method used to evaluate the prediction process is based
on the outputs of Algorithm 2 and the LSTM recurrent neural
network. The prediction performance is evaluated by compar-
ing each predicted cell ci

pred (i ∈ {� − β + 1, . . ., �}), with

the cell ci
test of the trajectory sequence in test, Stest .

The prediction performance is defined taking into account
the cells correctly predicted, ci

pred , as follows

PP = 1

|T test |
|T test |∑

j=1

�(ci
pred j

, ci
corr j

), (5)

where �(ci
pred j

, ci
corr j

) holds 1 when the cell ci
pred j

is correctly

predicted, i.e., is equal to ci
corr j

, and holds 0 otherwise. |T test |
denotes the number of sequences in the set T test .

The estimation assessment is performed for five values of
� (� = {4, 8, 12, 16, 20}) and two values of β (β = {1, 5}).
The prediction performance was characterized for a dataset
(T test ) formed by 105 sequences randomly selected from the
dataset of unique sequences (�). The cumulative computation
time was obtained for a smaller dataset also formed by 103
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FIGURE 5. Prediction performance for a single predicted cell (β = 1).

sequences randomly selected from the dataset of unique se-
quences (�).

The experiments were deployed using the NumPy package
in Python. Regarding the setup, we have run the prediction
approaches in an Intel 8-core i7-9800X @ 3.8 GHz computer
with 128 GB of memory.

B. SHORT-TERM PERFORMANCE
First, we evaluate the prediction performance for a single pre-
dicted cell (β = 1), meaning a prediction for a 15-second time
horizon. Fig. 5 represents the prediction performance obtained
with OPTVIT, and LSTM approaches for different � values,
confirming that the increase of the sequence length (�) im-
proves the prediction results. The prediction process achieves
higher short-term prediction performance as the amount of
prior mobility information (cells) increases, and this is ob-
served for both OPTVIT and LSTM approaches.

From Fig. 3, considering � = 4, we know that the 8 most
probable sequences in the dataset of unique sequences repre-
sent more than 60% of the occurrence probability. This fact
partially justifies the high prediction performance values in
Fig. 5 even for shorter sequences. The increase of � from 4
to 20 increases the prediction performance even more. This
is because the number of unique sequences increases with �

(see Table II) and less dominant sequences (in terms of proba-
bility) are obtained for higher � values (Fig. 5). Consequently,
the diversity of unique sequences increases with �, and the
mobility is more accurately described because the probability
of occurrence of the sequences is not so dissimilar. Finally,
the proposed methods (OPTVIT and LSTM) achieve approx-
imately the same prediction performance of the next cell.
Although the prediction performance of the TDVIT method
is not represented in Fig. 5, its performance is equal to the
OPTVIT approach.

As mentioned before, TDVIT, OPTVIT, and LSTM ap-
proaches achieve almost the same prediction performance for
β = 1. However, we observe a significant difference in terms
of the computation time performance of three methods, as

FIGURE 6. Cumulative computation time for a single predicted cell (β = 1).

TABLE IV. Average Prediction Time Per Sequence

shown in Fig. 6, where the prediction time (τ ) is evaluated
for each sequence, considering a test set with 1000 sequences
randomly observed in �. The computation time plotted in
the figure is the cumulative time to predict the number of se-
quences indicated in the x-axis. The average of the prediction
time for the 1000 sequences is represented in Table IV.

The results in Table IV and Fig. 6 show that the compu-
tation time achieves the lowest values for the OPTVIT algo-
rithm. Moreover, the computation time and prediction time
increase with �, which is explained by the increasing number
of cells that compose the observable state set. i.e., a higher
amount of prior data is used in the prediction. In Fig. 6 we also
plot the computation time for the Viterbi algorithm (TDVIT)
without the enhancements proposed in OPTVIT. The results
for TDVIT are only plotted for � = 4 because the other com-
putation times for � = {8, 12, 16, 20} are significantly higher
and are not comparable with the other two prediction methods.

Regarding the LSTM approach, since the duration of each
computation of the neural network outputs is constant, the
total computation time increases linearly with the number
of sequences as shown in Fig. 6. However, the OPTVIT ap-
proach achieves lower computational times because it grows
sub-linearly with the number of sequences. This is mainly due
to the reuse of prior computations in the OPTVIT algorithm,
which effectively leads to higher computational times for the
first sequences but can be used afterward to avoid unnecessary
computations associated with similar sequences.
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FIGURE 7. Prediction performance for the next five predicted cells (β = 5),
when � = 8 is considered.

FIGURE 8. Prediction performance for the next five predicted cells (β = 5),
when � = 20 is considered.

C. LONG-TERM PERFORMANCE
Instead of predicting only the next cell, we analyze the pre-
diction performance of OPTVIT and LSTM methods for the
next five predicted cells. In the time domain, the prediction
of a single cell occurs every 15 seconds. Consequently, the
prediction of the next five cells is a prediction for the next
75 seconds. The results in Figs. 7 and 8 indicate the predic-
tion performance for long-term predictions, considering the
next five predicted cells (β = 5). Because different sequence
lengths (�) were adopted, for � = 8 in Fig. 7 the predicted
sequence cells are c4, c5, c6, c7, c8. For � = 20 in Fig. 8 the
predicted sequence cells are c16, c17, c18, c19, c20. We recall
that more prior information (15 cells) is used in the prediction
of the scenario considered in Fig. 8, which compares with only
3 cells in the scenario considered in Fig. 7.

The results in Figs. 7 and 8 show that the prediction perfor-
mance decreases for a longer time horizon. In Fig. 7 we ob-
serve that 87.04% of successful prediction rate is achieved for

FIGURE 9. Cumulative computation time for the next five predicted cells
(β = 5).

TABLE V. Average Prediction Time Per Sequence

the next cell (estimated for a 15-second time horizon) adopt-
ing the OPTVIT algorithm. However, the prediction probabil-
ity decreases to 54.88% for the fifth cell, i.e., for a 75-second
time horizon. The decrease of the prediction performance with
the increase of the time horizon is due to the increase of
uncertainty associated with the long-term time duration.

By comparing the results in Figs. 7 and 8, we conclude
that the LSTM method’s performance is improved with the
increase of �, whereas for the OPTVIT method this trand
only occurs from the 3rd predicted cell (c6 and c18 in Figs. 7
and 8, respectively). Contrarily to the results achieved for
β = 1, in which both methods present similar performances,
for long-term predictions (β = 5) the LSTM method presents
higher performance performance.

Additionally, we analyze the time performance of the pro-
posed prediction methods for long-term predictions (β = 5).
The cumulative computation times for the 1000 unique se-
quences are plotted in Fig. 9 and the average of the sequences’
computation times are given in Table V.

The results in Fig. 9 and Table V show that the cumula-
tive computation time and the average prediction time favors
the LSTM approach. Regarding the OPTVIT approach, the
curves in Fig. 9 indicate a higher computation time for the
first predicted cells (estimated for the first 100 sequences) and
a decrease of the computation time for the remaining ones.
This is due to the high computation efforts related to the com-
putation of the Viterbi variables, which are computed once
and its posterior computation is avoided by the enhancements
proposed in OPTVIT. The cumulative computation time of
the predictions obtained with the LSTM approach has a linear
trend since no advantage is taken from sequences computed so
far. For long-term prediction, the average computation times
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presented in Table V indicate that LSTM achieves an order
of magnitude speedup for the adopted � and β values. Con-
sequently, the results show that both prediction performance
and computation times benefit from the adoption of the LSTM
approach for long-term vehicular trajectory prediction.

VII. CONCLUSION
This paper has proposed two efficient methodologies to
predict vehicles’ future locations: (a) a Bayesian network
model that models the interaction between sequences (sub-
trajectory) and between the cells and the sequences; (b) a
LSTM RNN that is adequate to deal with sequential data. We
have compared the performance of both prediction method-
ologies for short-term and long-term predictions. The exper-
imental results indicate that the prediction accuracy is im-
proved in both methods as more observations as more prior
information is used in the prediction process. The two pro-
posed methods have achieved almost the same performance
for short-term predictions. However, we have shown that the
LSTM RNN is more suitable for long-term predictions. Ad-
ditionally, we have compared the two proposed prediction
methods’ time performance, showing that the computation
time of (a) is shorter for short-term predictions while (b) is
shorter for long-term predictions.

Although the methodology (a) can predict the next location
in a shorter time (as shown in Fig. 6) and does not require a
time-consuming learning task every time new data is added to
the inference dataset, the results reported in this work show
that it is not recommended to predict more than a single
location because the computation time can be several orders
of magnitude higher than the methodology b). Regarding b),
the main limitation is the learning task, which hampers the
adoption of fresh prior data into the prediction stage.

As future work, it would be interesting to evaluate the
computation performance and accuracy for different spatial
sampling strategies and using other deep learning techniques
with the main purpose of achieving a lower computation time
without compromising the mobility prediction accuracy.
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