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ABSTRACT

Bacteria with multiple resistance entail a global threat. In recent years, phage
therapy has been widely reconsidered as an alternative to antibiotics. In
particular, lytic phages have been shown to have great potential for treating

infections with multi-resistant bacteria.

In this thesis, we present the utility and study of lysogenic phages in clinical
strains of multi-resistant bacteria. Concerning the potential of lysogenic phages
in phage therapy, we have developed the strategy of transforming a lysogenic
phage into a lytic one, Ab105-2¢ACI, and characterized its microbial activity.
We also have purified and assayed the antimicrobial activity of two endolysins
ElyAl and ElyA2, from two prophages of a clinical strain of A. baumannii. Both

alternatives have been shown to be effective in combination with antibiotics.

In relation to the study of lysogenic phages in clinical strains, we pointed out the
problem of the possible appearance of bacterial resistance against phages and
the importance of searching and characterizing these resistance systems by
searching in silico for phage resistance mechanisms in clinical strains of A.
baumannii. We also identified 4 complete prophages in clinical strains of P.
aeruginosa, 2 of them were newly identified: a Siphovirus phage, AUS531phi,
and a filamentous Inovirus phage, pf8. Furthermore, we characterized a gene
that increases the ability of one of them, the bci gene in AUS531phi, to infect

the bacteria by the regulation of the Quorum system.

19



20



RESUMO

As bacterias con multiples resistencias supofien unha ameaza a nivel global.
Nos ultimos anos, a terapia de fagos reconsiderouse amplamente como unha
alternativa aos antibioticos. Especialmente, demostrouse que os fagos liticos

tefien un gran potencial para tratar infeccidns con bacterias multirresistentes.

Nesta tese presentamos a utilidade e o estudo dos fagos lisoxénicos en cepas
clinicas de bacterias con multiple resistencia aos antibioticos. En relacion ao
potencial dos fagos lisoxénicos en terapia de fagos, desenvolvemos a
estratexia de converter un fago lisoxénico nun litico, Abl105-2¢ACI, e
caracterizar a sUa actividade microbiana. Tamén purificamos e caracterizamos
a actividade microbiana de duas endolisinas, ElyAl e ElyA2 de dous profagos
dunha cepa clinica de A. baumannii. Ambas alternativas demostraron ser

efectivas en combinacion con antibiéticos.

En relacion ao estudo dos fagos lisoxénicos en cepas clinicas, sinalamos a
problemética da posible aparicion de resistencia contra fagos e a importancia
de buscalas e caracterizalas buscando in silico mecanismos de resistencia
contra fagos en cepas clinicas de A. baumannii. Tamén localizamos 4 profagos
completos en cepas clinicas de P. aeruginosa, 2 deles foron novamente
identificados: un fago do tipo Siphovirus, AUS531phi, e outro filamentoso do
tipo Inovirus, pf8. Ademais, caracterizamos un Xxene que incrementa a
habilidade dun deles, o xene bci en AUS531phi, para infectar a bacteria

mediante a regulacion do Quorum Sensing.
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RESUMEN

Las bacterias con multiples resistencias suponen una amenaza a nivel global.
En los ultimos afos, la terapia de fagos se ha reconsiderado ampliamente
como una alternativa a los antibiéticos. Especialmente, se ha demostrado que
los fagos liticos poseen un gran potencial para tratar infecciones con bacterias

multirresistentes.

En esta tesis presentamos la utilidad y estudio de los fagos lisogénicos en
cepas clinicas de bacterias multirresistentes. En relacion al potencial de los
fagos lisogénicos en terapia de fagos hemos desarrollado la estrategia de
convertir un fago lisogénico en uno litico, Ab105-2¢ACI, y caracterizar su
actividad microbiana. También purificamos y caracterizamos la actividad
microbiana de dos endolisinas, ElyAl y ElyA2, de dos profagos de una cepa
clinica de A. baumannii. Ambas alternativas han demostrado ser efectivas en

combinacién con antibioticos.

En relacion al estudio de fagos lisogénicos en cepas clinicas, hemos sefialado
la problematica de la posible aparicion de resistencia contra fagos y la
importancia de buscarlas y caracterizarlas buscando in silico mecanismos de
resistencia contra fagos en cepas clinicas de A. baumannii. También
localizamos 4 profagos completos en cepas clinicas de P. aeruginosa, 2 de
ellos fueron nuevamente identificados: un fago del tipo Siphovirus, AUS531phi,
y otro filamentoso del tipo Inovirus, pf8. Ademas, también caracterizamos un
gen que incrementa la habilidad de uno de ellos, el gen bci en AUS531phi, para

infectar a la bacteria mediante la regulacion del Quorum Sensing.
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INTRODUCTION



1. ESKAPE pathogens

Nosocomial infections are those infections originated in the hospital
environmental by different organisms as bacteria, fungi, virus, parasites and

other agents (1).

The nosocomial infections are increasing by the emergence and a growing
number of multidrug-resistant bacteria (MDR). Multi-drug resistant, extensively
drug-resistant (XDR) and pan-drug resistant (PDR) bacteria are a result of the
sum of the acquisition of different gene transfer agents, such as plasmids and
bacteriophages containing these genes, or by chromosomic spontaneous
mutations (2, 3). Infections caused by MDR, XDR and PDR have been
associated with increased length of hospital stay, multiple morbidities, increased
cost of hospitalization and high mortality rates (4, 5) The Infection Diseases
Society of America have classified a group of nosocomial pathogens as
“‘ESKAPE”, which is an acronym of the species included in the group:
Enterococcus faecium; Staphylococcus aureus; Klebsiella pneumoniae;
Acinetobacter baumannii; Pseudomonas aeruginosa and Enterobacter species
(1). In 2017 the World Health Organization (WHO) published a list of antibiotic-
resistant “priority pathogens”, which includes 12 families of bacteria that
constitute a threat to human health. This list classifies these pathogens
according to the urgency of needs for new antibiotics as critical, high and
medium priority. Into the critical wfamily groups are included carbapenem-
resistant Acinetobacter, Pseudomonas, and various Enterobacteriaceae, all of
them characterized by being a threat in hospitals and nursing houses, and

potentially causing severe and often deadly infections.

1. a. Acinetobacter baumannii

Acinetobacter baumannii belongs to the genus Acinetobacter, which comprises
a heterogeneous group of immobile, large bacillus or coccobacillus, strictly
aerobic, non-fermentative glucose, catalase-positive, oxidase-positive and has
a guanine and cytosine content between 39% and 47% (6). Species within this
genus can be found in a wide variety of environments such as water, air and

human skin (7). The most clinically relevant species within this genus are A.
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baumannii, Acinetobacter pittii sp nov. and Acinetobacter nosocomialis sp. nov.
Together with Acinetobacter calcoaceticus form a common group called A.

calcoaceticus-A. baumannii complex (8, 9).

On the contrary to other species of the genus Acinetobacter, that are frequently
isolated from soil, water and animals, A. baumannii is almost exclusively
isolated from hospital environments, particularly in Intensive Care Units (ICUs)
(10). In the last 30 years, A. baumannii has reached a wide distribution among
the developed countries in the hospital environment and is considered one of

the most important MDR bacteria causing nosocomial infections (6).

The success of A. baumannii in a hospital environment is due to various causes
such as persistence for long periods (resistance to desiccation), resistance to
antimicrobials and disinfectants or biocides and virulence factors (such as
biofilm formation, adhesion mechanisms and iron acquisition). The resistance
and virulence genes are mainly acquired via mobile elements as plasmids,
bacteriophages and transposons (11-14). All these causes contribute to the
nosocomial outbreaks caused by A. baumannii being very difficult to control (15,
16). As a result of the Il Spanish Multicentric Study (GEIH-REIPI Acinetobacter
baumannii 2000-2010), 654 clinical isolates were obtained from 42 participant
hospitals and it was established that the resistance to carbapenems (82-86% vs
43-48%), ceftazidime (99% vs 83%), sulbactam (65% vs 53%) and colistin (3%
vs 0%) has grown significantly from 2000 to 2010 (17). A. baumannii causes
serious infections such as bacteremia, meningitis and pneumonia in

immunocompromised patients in ICU units (18).

1. b. Pseudomonas aeruginosa

Members of the genus Pseudomonas are rod-shaped bacillus, gram-negative,
with one or more flagellums that provide motility, generally aerobic, non-spore-
forming, catalase-positive and oxidase-positive (19). Its genome has a size
between 5-7 Mbp. P. aeruginosa is present in diverse environments and is
capable of tolerating a great variety of physical conditions. In hospital
environments, P. aeruginosa, can be isolated from a variety of sources like

respiratory therapy equipment, antiseptics, soap, sinks, etc. and in community
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populations, it can be found in swimming pools, whirlpools, contact lens

solutions, etc. (20).

Horizontal gene acquisition confers opportunistic pathogen P. aeruginosa
strains the ability to acquire foreign genetic material, such as plasmids. For
example, this process grants the bacteria with antibiotic-resistant genes
encoding B-lactamases (bla), such as extended-spectrum B-lactamases (ESBL)
(21). Furthermore, the highest ubiquity, prevalence and persistence of P.
aeruginosa in clinical environments are due to its exceptional capability of
survival and adaptation by obtaining a wide number of regulatory and controlling
factors (22) as quorum sensing (QS), a communication system that allows
bacterial populations to control widespread processes crucial for bacterial
adaptation and survival, such as the regulation and control of cellular secretion
systems (23, 24). QS system controls the pathogenesis of many organisms
through regulating gene expression of several virulence factors, including
motility, biofilm formation or pyocyanin secretion in P. aeruginosa (25). The
knowledge that these virulence factors are under the control of the QS system
leads researchers to search for anti-QS compounds in biofilm-associated

chronic infections (26).

P. aeruginosa is the second leading cause of nosocomial pneumonia (and the
leading cause of pneumonia among pediatric patients in the ICUs), the third
most common cause of urinary tract infections, the fourth-most frequently
isolated pathogen in surgical site infections and the seventh leading contributor
to bloodstream infections (27-29). It is also the main cause of morbidity and
mortality in patients suffering from cystic fibrosis (30-32). Infections caused by
P. aeruginosa can be classified as: 1) acute superficial infections in
immunocompetent patients, 2) acute invasive infections in patients with

significant comorbidities or immunodepression and 3) chronic infections (33).

Cystic fibrosis (CF) is a life-threatening, autosomal recessive disease that
causes persistent lung infections and increasingly limits the ability to breathe
Patients with CF experience multiple bacterial infections during their lives.
There is a strong antibody response in the lungs, although for the immune

system remains difficult to eliminate bacterial infections (34). A patient with CF
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will have up to 10 times more inflammation when a pathogen enters the lung,
especially in neutrophil recruitment (35). Infections caused by P. aeruginosa are
the most prominent in CF adult patients due to the multiple virulence factors that
enable evasion of the host response, for example, pyocyanin production, biofilm
production or flagellum, all of them regulated by QS system (36).

2. Bacteriophages and Phage Therapy

2. a. Phage therapy history

Bacteriophages (phages), viruses that infect bacteria, are the most ubiquitous
organisms on Earth, playing the main role in preserving the microbial
equilibrium on this planet (37). Phages have an obligate requirement for a host
and have diverse life cycles. Felix d’Hérelle in 1917 was a pioneer using the
bacterial killing ability of phages as a therapeutic strategy against bacterial
infection (38). As D’Hérelle is considered the discoverer of phage therapy,
Frederick Twort described the bacteriophages for the first time in 1915 in a
bacterial culture (39).

The application of phages has been proposed as a therapy to treat acute and
chronic infections because of the specificity of bacterial target hosts. The
interest in phage therapy as a treatment for bacterial diseases in the pre-
antibiotic era was enormously high. In fact, the only therapy available in the
1920s and almost in the 1930s for some bacteria such as pneumococci and
diphtheria was the use of antibodies through serum therapy and all-new
alternatives were well appreciated (40, 41). However, the therapeutic use of
phages to treat bacterial infection was highly controversial from the very
beginning and not generally accepted by the public or the healthcare
community. Thus, The Council on Pharmacy and Chemistry of the American
Medical Association, concluded in 1934 that due to the lack of appropriate
controls, inconsistent results and the deficiency of reproducibility by the early
studies the evidence for the therapeutic value of the phages was unconvincing
(42). The emergence of antibiotic chemotherapy in the 1930s and later penicillin
in the 1940s decreased the enthusiasm for phage research and it was demoted
to eastern countries, where research and development remained active (40).

The increased availability of antimicrobial drugs after the Second World War

29



further contributed to the low appreciation of the bacteriophages and the

establishment of antibiotics as the regular treatment for bacterial infections.

The majority of the knowledge about phage therapy comes from eastern
Europe. The Eastern Bloc (Poland, the URSS and Georgia) were the historical
continuators of phage therapy during the XX century. The Eliava Institute of
Bacteriophages (Thilisi, Georgia), which was the key reference in the history of
phage therapy, is one of the major sources of information about bacteriophages
with the Hirszfeld Institute (Wroclaw, Poland) (43, 44). Phage therapy persists in
the whole URSS because of their early scientific interest in the 1920s, the
treatment of dysentery, wound infections and cholera in World War 1l and the
synergy between the establishment of the phage therapy during the Cold War

and the basic research in diverse countries of URSS like Georgia (43, 45).

Actually, due to the emergence of the MDR microorganisms, the search for new
antimicrobial agents has developed a renewed interest in phage therapy, which
includes the use of phages alone or in combination as phage cocktails, or the
use of products derived from phages as are the endolysins, enzymes that

targets and degrades the bacterial peptidoglycan cell wall layer.

2. b. Bacteriophage life cycle

The infection by bacteriophages starts with the attachment to a specific receptor
in the bacterial surface and the sequent injection of the genetic material into the

cell. The lytic cycle follows a process with 5 steps (Figure 1):

1. Attachment: After recognizing, tail proteins bind to a specific receptor,
through electrostatic interactions, on the bacteria surface.
Bacteriophages target a range of host cell wall molecules or protruding
structures, such as membrane proteins or pili.

2. Penetration: The phage injects its genetic material through the cell
membrane into the host cell. This process is coordinated with the
attachment by the baseplate of the phage (46).

3. Phage replication: Once inside the cell, when a lytic cycle occurs, phage
produces endonucleases and exonucleases necessary to degrade the

host genome. The host cell provides the necessary machinery to
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replicate the phage genetic material and produce the phage proteins
(47).

4. Assembly: The phage proteins are organized to form the phage structure
and to pack the genetic content of the progeny.

5. Lysis: Once the progeny phages are assembled, the endolysins and
holins produced by the phage, lyse the host cell peptidoglycan releasing
the phage progeny and killing the host cell. Afterwards, the phage can
infect and reproduce the same life cycle in neighbour bacteria. This
huge progeny production is an advantage for phage therapy, as the

number of phages is increased in the infection site (48).

Phages that can undergo a lysogenic cycle (Figure 1) are known as temperate
or lysogenic phages. In the lysogenic cycle, temperate phages insert their DNA
into the host chromosome at specific sites with the help of phage-encoded
integrases (49). Once integrated into the host genome, the bacteriophage,
known as prophage in this state, can remain integrated for generations, but they
can be switched at any time to the lytic cycle by a process known as induction
(50). The lysogenic cycle can last indefinitely until the bacteria are exposed to
unfavourable stress conditions, such as antibiotic treatment, oxidative stress or
DNA damage (51), or it can occur spontaneously at a low frequency (52).
Furthermore, prophages can influence the induction of other phages (53, 54).
After the induction, prophages can replicate episomally or by transposition.
Later, the virion particles are assembled and packaged with the phage DNA,
beginning the lytic cycle by breaking the cell wall and being released to the

environment.
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Figure 1. Bacteriophage life lytic and lysogenic cycles.

One model of the lysogenic cycle is the life cycle of the A phage (Figure 2) (55).
It was the best model to understand the gene regulatory mechanisms that give
place to the transition from lysogeny to lytic development (56). The Cro-ClI
system, which regulates this transition, is known since the 1960s in A phage.
The feedback between cl and cro genes switches the lytic-lysogenic life cycle of
the bacteriophage. When a bacterial host suffers any damage provoked by a
stress situation, Cro protein accumulates and activates promoters for the DNA
phage replication and consequent bacterial cell lysis. In a normal “healthy”
environment, Cro synthesis is low, so Cl protein accumulates and activates
promoters for phage integration into the host chromosome, starting a lysogenic
cycle (57-60).
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model.

Nevertheless, the mechanism of induction is not perfect and prophages can
sometimes leave behind parts of their DNA or take portions of host DNA with
them when they re-circularize, transporting bacterial genes (such as antibiotic
resistance genes, toxin/antitoxin and other virulence-related genes) from one
strain to another by transduction (61). Recently, a study in phages that infect
Bacillus species has demonstrated that the transition between Iytic and
lysogenic infection is dependent on small peptides produced by phage in a

similar process to quorum sensing (62).

An example of lysogenic phages is filamentous bacteriophages. Recent studies
have been conducted on the presence of lysogenic filamentous phage from the
Inoviridae family in many bacterial species. This type of phages undergoes a
non-lytic lifecycle in which they episomally replicate producing large numbers of
progeny phage, not killing bacteria, but keep releasing viral particles. Many
have been revealed to affect the host’s behaviour, resulting in favourable
consequences on the host and, consequently, on the phage (63). Some of
these host-phage relationships are the increase in biofilm formation, cell
motility, the expression of toxins or even conferring advantages to the bacteria
in non-favourable conditions (64-66). In P. aeruginosa, they are recognised as

Pf phages and are distributed among clinical strains, especially in infected
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cystic fibrosis patients, conferring these strains evolutionary advantages such

as biofilm formation, antibiotic resistance and motility (67).

3. Phage therapy

Theoretically, there are no bacteria that cannot be lysed by at least one
bacteriophage (68). The main advantage that antibiotics have against
bacteriophages is their large spectrum of activity. But bacteriophages have
several advantages over antibiotics, as they have a narrow spectrum of activity,
protecting the normal microbiota, they can multiply in the infection site, are
abundant in nature and have a low-cost production (69). Bacteriophages are
significantly safer, well-tolerated and their administration is easier because and
they can remain in the human body for relatively prolonged periods (68).
Furthermore, bacteriophages can be engineered to overcome some limitations
of the antibiotic treatment, taking advantage of the new cost-effective and large-

scale DNA sequencing and DNA synthesis technologies (70).

It has been developed several techniques to detect and characterize phages
with therapeutic potential. Methods like spot testing, plaque testing, culture lysis
and routine test dilution are used to determine the different properties of the
bacteriophage infection for developing the desired phage therapy (71):

e Phage virulence: the ability to completely lyse a bacterial culture, taking
into account the productivity of the phages to kill bacteria faster than their
growth and the appearance of bacterial-resistance mutants.

e An obligated lytic growth or the search for genes adequate for therapies
like endolysins.

e Host range: number of target pathogen species that a single
bacteriophage has.

e Other properties not intrinsically essential for phage therapy but
necessary for phage characterization:

» The efficiency of plating (EOP). A titer of the phage on a given
bacterial cell line compared to the maximum titer observed.

= Morphology of the phage determined by electron microscopy.
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= Whole-genome sequence (WGS) provides a wide range of
information: lack or presence of toxin genes, the ability to form a
lysogen, phylogenetic characterization, etc.

= Adsorption curve, for measuring the adsorption rate at which each
virion in the environment is attached to the bacteria.

= One-step growth curve, for calculating the burst size, which is the
number of virions released per bacterium.

» Pulse-field gel electrophoresis (PFGE) to measure the size of a
phage genome.

Phage therapy could be performed as a single phage application or with a
phage cocktail formed by a mixture of phages (72). Monophage therapy is
usually proved for implementing a general phage therapy with other
antimicrobial agents, but in some circumstances, they have a sufficiently wide
host range to being applied alone. The main advantages of this type of therapy
are the simplification of the treatment due to the isolation and purification of a
single phage, and the reduced possibility of subject phage immunological
response. Monophage therapy has been used in pneumonia infections by A.
baumannii carbapenem-resistant and in mice models to treat imipenem-
resistant P. aeruginosa bacteriemia (73-75). However, the use of monophage
therapy in clinical practice may be disturbed due to the quick appearance of
phage-resistant bacterial. Evolution shows that phage is able to overcome
bacterial resistance, although this may not be effective enough to apply
monophage therapy in clinical usage. An additional disadvantage of using a
single phage is the accurate match that should have the pathogen and the
phage (76).

To sort out the monophage therapy disadvantages, especially to avoid the
appearance of phage-resistant bacteria, “polyphage” therapy or cocktail phage
therapy has been developed and more used in clinical trials rather than the
single phage treatment (77). The design of phage cocktails required more
complex preparation and purification processes, resulting in a higher cost of
time and money and unpredictability of pharmacokinetic and pharmacodynamic
properties (72). Despite this outcome, this design could be focused on targeting

a single bacterial strain, multiple strains or even multiple species. Furthermore,
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to limit the previously commented outcomes, individual phages of a cocktail can
be tested to check their activity (78).

Phage cocktails have been used in western countries as commercial
preparations. For example, Pyophage (PYO) is a commercially available phage
preparation by related to Eliava Institute company Eliava Biopreparations
(http://phage.ge/products/pyo-bacteriophage/). It is composed of a cocktail of

phages that target S. aureus, Streptococcus spp., Escherichia coli, P.

aeruginosa and Proteus species.

In 2019, a 15-year-old patient with CF, comorbidities and failure for lung
transplant received for first-time treatment with genetically engineered phages,

against a Mycobacterium abscessus infection (79).

But as phages have many advantages, they also have a disadvantage similar to
antibiotics, as the emergence of phage resistant bacteria, which can be solved
through different ways as with the use of phage cocktails because of the
recognition of different bacterial receptors for the attachment, the use of
enzymes derived from phages as endolysins and the use of a combination of
phages and antibiotics with a synergic effect (80, 81). One of the disadvantages
of phage therapy is the bacterial development of phage resistant mechanisms
(68). Bacteria can turn resistant to phages through chromosomic mutations and
specific resistant mechanisms (82). In recent years, many phage resistance
mechanisms have been discovered and characterized to help the bacteria to
survive phage infection. The emergence of phage-resistant bacteria is
associated with spontaneous mutations and adaptation, especially modifications
in the receptors which phages use to adhere to the bacterial membrane (82).
The principal mechanisms are related to different phases of the infection, for
example, the blockage of the DNA injection through outer membrane vesicles or
the action of superinfection exclusion systems promoted by the genes encoded

in the prophages presents in the bacterial genome (83,84).

3. a. Endolysins

Phage endolysins are cell wall hydrolytic enzymes used to break the
peptidoglycan of phage-infected bacteria and release the phage progeny
assembled in the cytoplasm (85). In a first approach, endolysins are more
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effective against gram-positive bacteria than in gram-negative bacteria, where
the cell wall is surrounded by the outer membrane, which acts as a barrier to
the endolysins preventing its access to the peptidoglycan layer (86), and for this
reason, endolysin research has mostly focused on gram-positive bacteria.
There have been reported several endolysins that kill gram-positive bacteria,

mainly on Streptococcus sp., S. aureus and Bacillus anthracis (87-90).

However, endolysins have been turned into a potential treatment for gram-
negative bacteria under certain conditions (91). In the gram-negative phages,
endolysins are part of a host lysis process of three steps, corresponding to the
destabilization of each of three layers of the cell envelope: inner membrane
(IM), peptidoglycan (PG) and outer membrane (OM) (92) (Figure 3, A). The
model is described using the phage lambda system (93, 94).

The phage exit from the cell implies the activity of three proteins, holins, spanins
and endolysins. In the first step of the cell lysis, holins accumulate in the host
cell cytoplasmic membrane forming oligomeric states. At a specific time, the
lysis process starts and the holin forms non-specific channels resulting in
membrane depolarization and allowing the endolysin to break the peptidoglycan
(Figure 3, B) (95-98). Finally, the spanins fuse removes the OM by fusing it with
the IM (Figure 3, D) (99).

Endolysins come into play in the third step, reaching the peptidoglycan and
degrading it through muralytic activity (Figure 3, C). There are two functional
types of endolysins depending on the absence or presence of a signal

sequence: canonical endolysins and signal-anchor-release endolysins (SAR).
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Figure 3. Phage lysis and exit process

The first endolysins were described in the literature in the 1960s-70s in T-
phages infecting E. coli (100, 101). They were named ‘lysozymes’ due to their
similarity catalytic specificity to the human lysozyme, although today this name
is reserved for its originally described activity (102, 103). Because of the
variation in cell wall composition between gram-negative and gram-positive,
endolysins against each group of bacteria show differences in their architecture
(86, 104, 105). Despite having a conserved biological function, endolysins are
very diverse in structure: they can have a globular (with a single enzymatically
active domain) or a modular structure (at least two modules, most of them with
a cell wall binding domain) (106). There are different catalytic specificities found
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in endolysins apart from lysozyme, such as transglycosylase, glucosaminidase,

amidase or endopeptidase activity (107).

Regarding safety and future approaches of endolysins, their specificity is
considered beneficial as it does not harm the normal microflora of the host in
comparison with antibiotics. A 2018 preclinical study did not show changes in
microarray and gene profile of human cell lines exposed to endolysins Cpl-1
and Pal-1 for six hours (108). One of the most profitable advantages of
endolysins is that bacterial endolysin resistance development is very low or
inexistent. This should be because of the historical coevolution between
bacteria and phage: the development of endolysin resistance must be linked to
the modification of the cell wall highly conserved structures and their
modification is assumed to be detrimental to the host organism (105, 109).
Moreover, acting on the cell wall without entering the bacterial cell, endolysins
avoid the typical resistance mechanisms to antibiotics (e.g., decreased
permeability, efflux pumps) (110). In addition, the capacity to hydrolyse different
bonds in the peptidoglycan layer of some endolysins, is due to the presence of
two catalytic domains, thus reducing the possibility of the bacteria developing
endolysin resistance (111, 112).

Until present days, a wide variety of assays have shown the therapeutic ability
of endolysins in the battle against infections of multidrug-resistance
microorganisms. Nevertheless, certain endolysins present some drawbacks,
such as limited in vivo half-life, inflammatory cytokine development and
antibodies neutralization (113, 114). Most of the efforts have been focused on
the combined use of the endolysins with permeabilizing substances to pass the
outer membrane in gram negatives, although some endolysins have the intrinsic
capacity to pass this membrane (115). Data from clinical trials on potential
endolysins can also provide a different opportunity for professionals to combat
multidrug-resistant bacteria, which are often difficult for conventional antibiotics
to eliminate (116). Although a narrow number of endolysins have entered into
clinical trials, there are some of them commercially available (117). Moreover, it
has been proved that genetic engineered endolysins display similar Iytic effects
to their native counterparts when they are applied exogenously to susceptible
bacteria (104, 118).
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The vast majority of the studies about endolysins have been developed in gram-
positive bacteria such as Streptococcus pneumoniae and S. aureus, most of
them with in vitro biofilm models and in vivo sepsis models (119-126). In A.
baumannii there have been discovered several endolysins. The first discovered
was LysAB2 endolysin, which has a broad activity range against gram-positive
and gram-negative bacteria (127). LysSS is a recombinant endolysin that shows
activity mainly against A. baumannii and P. aeruginosa, but also against E. coli,
K. pneumoniae, Salmonella and S. aureus (128). PlyF307 is the first gram-
negative endolysin to show in vivo effectivity in a murine bacteremia model
(129). PlyAB1 and Ply6A3 endolysin have displayed a highly specific lytic effect
against clinical multidrug-resistant A. baumannii isolates (130, 131). Whole-
genome sequencing is a key tool for the discovery of potential endolysins, such
as LysAB3 and LysAB4 (132, 133). LysAB3 endolysin has been tested to
degrade A. baumannii biofilms in vitro (134). Combination with antibiotics like
colistin has resulted in a successful synergistic effect of the LysABP-01
endolysin (135). In 2021, two novel endolysins from A. baumannii has been
discovered: LysAB54 which also shows bactericidal effect against P.
aeruginosa, K. pneumoniae and E. coli, even though in absence of outer
membrane permeabilizers (136); and Abtn-4, effective against S. aureus, P.
aeruginosa, K. pneumoniae, Enterococcus and Salmonella. In P. aeruginosa,
the application of endolysins such as EL188, KZ144 or OBPgp279 has been
reported (106, 137, 138). LysSAP26 is a recent genetically engineered
endolysin with a wide broad spectrum that has been shown effective against
carbapenem-resistant A. baumannii, E. coli, K. pneumoniae and P. aeruginosa,
as well as to oxacillin-resistant S. aureus and vancomycin-resistant E. faecium,
with promising results targeting both gram-negative and gram-positive bacteria
(139).

3. b. Phage therapy in combination with antibiotic therapy

To avoid the limitations of phage therapy, the combination of phages with
antibiotics shows a promising synergistic effect to act more effectively (140-
142). Several studies have proved the beneficial results of the combination of
phages and antibiotics, called phage-antibiotic synergy or PAS. Also, a

combined treatment can lead to the restoration of antibiotic sensitivity, for
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example when the bacteriophage receptor is in the bacterial drug efflux systems
(143). Tail proteins of phages recognise, in a specific way, bacterial receptors,
which usually are membrane proteins or LPS that at the same time are the
target for several antibiotics (144). For example, bacteriophage OMKO1 is able
to recognise the outer membrane porin M (OprM) and increase the bacterial
sensitivity to several antibiotics due to the changes in the efflux pump
mechanism of the OprM in P. aeruginosa. It was also reported the reduction in
the formation of bacterial biofilms by the synergistic effect of these combinations
(145, 146). Due to the wide diversity of phages, there are a great variety of
combinations. For example, an outstanding alternative to personalize therapies
for individuals is to combine a phage cocktail therapy with different antibiotics
(147).

The combination of phages and antibiotics has the advantage of exerting two
different selective pressures that are likely to be more effective than only one
alone (80). Phage-antibiotic combinations tend to be especially relevant where
there are limited antibiotic alternatives due to multidrug resistance or whether
there is restricted dissemination of antibiotics in the infected area of interest. An
advantage of this combination is the selective pressure that phages enforce on
certain strains of bacteria. It has been proved that this evolutionary selection
may cause a cost in the fithess of bacteria, retrieving them a sensitivity to
antibiotics (143). One example of the fitness trade-off for phage resistance is
the spontaneous mutations in Epa exopolysaccharide biosynthesis genes in E.
faecalis give resistance to lytic phage infection but increases sensitivity to cell
membrane-targeting antibiotics (148, 149). Another example is the development
of sensitivity to polymyxin B in addition to a reduction in virulence in Y. pestis in
phage-resistant bacterial strains due to the truncation of the LPS lengths (150).
Furthermore, phages use multidrug efflux pumps as receptors. It has been
proved that mutations in these molecules in P. aeruginosa produced by phage
selective pressure alter the pump mechanism, leading to re-sensitization of
antibiotics in which resistance depends on these pumps (143). In A. baumannii,
the emergence of phage resistance mechanisms has been proved to be related

to the increment of colistin sensitivity (151).
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Phage-antibiotic combination is also effective against biofilms: phage produces
enzymes, such as depolymerases and endolysins, which can break the
extracellular matrices of biofilms thus facilitating the antibiotic action (152). For
example, Chaundry et al. demonstrate that PAS activity was noted after a
biofilm growth when a combination of phages and antibiotics was present in P.

aeruginosa, unlike either agent was used alone (146).

Endolysins hold promise as individually applied antibacterials, but they also
have been revealed to act synergistically in combination with other antimicrobial
agents. The effectiveness of antibiotics can be restored by using a combination
of endolysins and antibiotics. For example, Daniel et al., demonstrated in an S.
aureus MRSA-infected mice model, a duplication of the survivor number when
the endolysin ClyS was combined with oxacillin, even reducing the ClyS

endolysin dose (153).

There are many studies in vitro, in vivo and case studies with phages and
antibiotics whose synergy was enough to demonstrate an effect in the bacterial
infection (Table 1). A large number of the synergistic combination of phage with
antibiotics were focused on P. aeruginosa because of its clinical impact involved

in cystic fibrosis, hospital-acquired pneumonia or urinary tract infections (154).

Pathogen Model Phage+antibiotic Reference
in vitro LysABP-01*+colistin Jansen et al. 2018 (135)
. ) ) Thummeepak et al. 2016
Case study @IV cocktail + minocycline
(155)
o vB_AbaM-KARL-
in vitro ) ) o Schooley et al. 2017 (156)
. 1+meropenem/ciprofloxacin/colistin
Acinetobacter
. cocktail (pAbKT21phi3, ¢KpKT21phi1) + .
baumannii Case study o Nir-Paz et al. 2019 (157)
colistin/meropenem
Aba-1, Aba-2, Aba-3, Aba-4, Aba-6) +
o ciprofloxacin, levofloxacin, )
in vitro . . Grygorcewicz et al. 2020 (158)
trimethoprim/sulfamethoxazole,
gentamicin, netilmicin
Pf1, Pf3 +
in vitro and in vivo (mice) carbenicillin/gentamicin/tetracyclin- Chan et al. 2018 (159)
chloramphenicol
Cocktail of 6 pyophages +
Pseudomonas Case study o Chaudhry et al. 2017 (160)
meropenem/colistin
aeruginosa — . _
in vitro o-1 + ceftriaxone Lin et al. 2018 (161)
o o vB_PsaP PAT14 + Imipenem- .
in vitro and in vivo (rats) . . o Uchiyama et al. 2018 (162)
cilastatin/amikacin
in vitro LUZ7 + streptomycin Hagens et al. 2006 (163)
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NP1, NP3 +

in vitro ceftazidime/ciprofloxacin/colistin/gentamic Knezevic et al. 2013 (146)
in-tobramycin
OMKO1 +
o o ) ) ) Torres-Barcel et al. 2014
in vitro Ceftazidime/ciprofloxacin/tetracycline-

erythromycin

(143)

in vitro and in vivo (rats)

PP1131 + ciprofloxacin

Chan et al. 2016 (164)

Case study

OMKOL1 + Ceftazidime

Yilmaz et al. 2013 (165)

in vitro

PEV20 +
ciprofloxacin/amikacin/aztreonam/colistin-

tobramycin

Oechslin et al. 2017 (166)

in vitro

KPP21 + cefoperazone, chloramphenicol,
fosfomycin, moxalactam, meropenem.

KP22 + amikacin, aztreonam, cefepime,

cefoperazone, cefoperazone/sulbactam,
cefozopran, ceftazidime, cefotaxime,
gentamicin, meropenem, moxalactam,

piperacillin, tobramycin. KP23 +

cefoperazone/sulbactam, fosfomycin,

tobramycin

Torres-Barcel6 et al. 2018
(167)

in vitro

LKD16, LUZ7, 14/1, EL +

Ceftazidime/ciprofloxacin

Akturk et al. 2019 (168)

in vitro

EPAL + gentamycin/ciprofloxacin

Khawaldeh et al. 2011 (169)

in vitro

vB_PaeP_4024 ($24), vB_PaeP_4054
(¢54) + ciprofloxacin

Luscher et al. 2020 (170)

in vitro and in vivo

PAM2H cocktail + ceftazidime,

Engeman et al. 2021 (171)

(mouse) ciprofloxacin, gentamicin, meropenem

in vitro vB_PaeAM.P2 (AMP2) + ciprofloxacin Menon et al. 2021 (172)

o E79, phiKZ + AzLys (antibiotic aztreonam )

in vitro ) Davis et al. 2021 (173)

lysine)

in vitro B5055 phages + amoxicilin Bedi et al. (2009) (174)

Klebsiella in vitro KPO1K2+ciprofloxacin Verma et al. 2010 (175)
pneumoniae GAbKT21phi3/¢KpKT21phi1 + .
Case study Nir-Paz et al. 2019 (157)

meropenem/colistin

Escherichia coli

in vivo (chicks)

SPRO02/DAF6 + enrofloxacin

Comeau et al. 2007 (176)

OMFP+cefotaxime-aztreonam-cefixime-
ceftriaxone-

ceftazidime/gentamicin/tetracyclin; RB32-

in vitro 33, T3, T7 + cefotaxime; T4 + cefotaxime- Ryan etal. 2012 (177)
piperacillin-ampicillin-ticarcillin/nalidixic
acid/mitomycin
in vitro T4+cefotaxime Coulter et al. 2014 (178)
in vitro T4+tobramycin Valério et al. 2017 (179)
in vitro ECA2+ciprofloxacin Huff et al. 2004 (180)
in vitro gTOE.co-MGY2 + ampicillin Moradpour et al. 2020 (181)

in vitro and in vivo
(Zebrafish and mice)

®EcSw + kanamycin, chloramphenicol,

ampicillin

Easwaran et al. 2020 (182)

in vitro

@SZUT, @SZIP1, SZIP2 + amoxicillin,

ampicillin, cefadroxil, ciprofloxacin,

Igbal et al. 2020 (183)
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chloramphenicol, cefixime, tetracycline

®HP3 + trimethoprim, ciprofloxacin,

in vitro colistin, ceftazidime, kanamycin, Liu et al. 2020 (184)
chloramphenicol
in vitro HK97 + ciprofloxacin Al-Anany et al. 2021 (185)
Enterococcus o . .
) in vitro EFDG1, EFLK1 +ampicillin Khalifa et al. 2018 (186)
faecalis
Enterococcus o 113 (ATCC 19950-B1) + daptomycina, )
. in vitro o ; Morrisette et al. 2020 (187)
faecium ampicilina, ertapenem, ceftaroline
. o o KS12, KS14 +
Burkholderia in vitro and in vivo . . .
) . ceftazidime/meropenem/ciprofloxacin/lev Kamal et al. 2015 (188)
cepacia (Galleria mellonella) ) ) ) )
ofloxacin/tetracycline/minocycline
SAP-26 +
in vitro L o ) ) Rahman et al. 2011 (189)
vancomicin/rifampicin/azithromycin
in vitro SA5 + gentamicin Kirby 2012 (190)
in vitro and in vivo Sb-1 + teicoplanin Yilmaz et al. 2013 (162)
in vitro and in vivo MR-10 + linezolid Chhibber et al. 2013 (191)
in vitro and in vivo . . .
) SAL200+nafcillinf/vancomycin Kim et al. 2018 (192)
(Galleria mellonella)
in vitro CHAP-amidase* + vancomycin Kashani et al. 2017 (124)
Sb-1 + vancomycin, daptomycin,
Staphylococcus
in vitro fosfomycin, gentamicin, flucloxacillin, Wang et al. 2020 (193)
aureus
cefazolin, rifampin
@SZUT, @SZIP1, @SZIP2 + amoxicillin,
in vitro ampicillin, cefadroxil, ciprofloxacin, Igbal et al. 2020 (183)
chloramphenicol, cefixime, tetracycline
in vitro Sb-1 + daptomycin, vancomycin Kebriaei et al. 2020 (194)
o o J-Sa36, Sa83, Sa87 + clindamycin, .
in vitro and in vivo (rats) ) ) ) Liu et al. 2021 (195)
azithromycin, erythromycin
o Henu2 + tetracycline, cefotaxime, .
in vitro . . . o . Li et al. 2021 (196)
linezolid, clarithromycin, ciprofloxacin
Streptococcus in vitro and in vivo ) o
. Cpl-711* + cefotaxime/amoxicillin Letrado et al. 2018 (120)
pneumoniae (mouse)
Mycobacterium
. o D29/TM4/DS6A, D29/TM4/Che7,
smegmatis, M. in vitro . . Kalapala et al. 2020 (197)
) PDRPV/PDRxv) + rifampicin, isoniazid
tuberculosis
@®SZUT, @SZIP1, SZIP2 + amoxicillin,
Salmonella spp. in vitro ampicillin, cefadroxil, ciprofloxacin, Igbal et al. 2020 (183)

chloramphenicol, cefixime, tetracycline

Table 1. Studies with combined phage and antibiotic therapies. Marks (*)

references endolysin-related studies.

There have been some clinical experiences using phage therapy and phage

therapy combined with antibiotics. In 2011, a 67-year-old woman with failures in

urinary tract infection by P. aeruginosa treatments with gentamicin, ceftazidime,
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meropenem and ciprofloxacin (relapses occurred after 7 days of stopping the
treatment) was treated with a personalized pyophage cocktail of six phages with
a combination with colistin and meropenem (160). The success of the treatment
resulted in sterile urine for 6 months after bacterial treatment. In 2017, a 68-
year-old diabetic man developed a disseminated infection from pancreatitis
provoked by MDR A. baumannii and after 4 months of multiple antibiotic
treatments, he was treated with phage cocktails at different periods and
minocycline managed to the elimination of A. baumannii infection and clinical
improvement, including the return of normal life of the patient after a year (155).
In 2018, another case of P. aeruginosa of a 76-year-old patient with aortic graft
infection and without any possibility of surgical intervention was treated with a
mixture of phage OMKO1 and ceftazidime (165).4 weeks after the first
administration, the infection completely disappeared and he did not have any

recurrent infection.

The lung infection, surgical wounds and skin lesions improved with phage
therapy and M. abscessus was finally not isolated in the patient. Besides in
2019, there have been at least 3 more cases of phage therapy with positive
outcomes with phage-antibiotic combinations in CF, lung transplant and
osteomyelitis (157, 198, 199). More randomized controlled clinical trials of
comparisons between standard antibiotic therapies against phage-antibiotic

combination therapies are urgently needed (141).

4. Bacterial-phage interactions

The constant coevolution between bacteria and phage causes counter-
adaptation between the interacting species populations, as they are highly
dynamic over time (200). The type of interaction depends upon multiple
variables, such as the genomic content of the phage, if the infection follows a
lytic or lysogenic cycle or even the bacterial supply resources (200, 201). This
results in negative effects in the bacteria, such as the development of phage-
resistance mechanisms, which has fitness costs for the bacteria and/or higher
susceptibility to other phage infections (202, 203); or beneficial effects, such as

some prophages conferring a large and diverse number of new functions to the
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bacteria (50). For example, they can help the host's genome to regulate gene
expression, introduce new functions (e.g. related to virulence, metabolism,

antibiotic resistance) or lyse competing bacterial communities (204-207).

4. a. Phage-resistance mechanisms

The global growth of antibiotic resistance has renewed interest in phage therapy
where phage cocktails, as well as the combination of phages and antibiotics,
have been successful in treating infections by MDR bacteria. To optimize phage
therapy, we need to understand how bacteria evolve against phage attack. The
appearance of bacterial variants with phage resistance is one of the main
problems when is carried the search for the “perfect” phage treatment. One of
the alternatives to overcome this problem is to synergistically combine a
treatment based on phage with an antibiotic dose. However, when selecting the
appropriate phage for therapy, the capacity to develop resistance to this phage
must be taken into account. The use of genomics to track antimicrobial
resistance is increasingly developed and used in clinical laboratories (208). For
that reason, it is important to consider, in an emerging future with phage

therapy, to detect and avoid phage resistant strains.

Besides, out of the clinical environment, an effort has been made in the industry
to design biotechnologically bacteria, which are continuously exposed to phage
attack and considerably harms industrial production, with defence mechanisms
against this attack. Understanding which type of mechanisms and how their
function works is mandatory to know the best mechanism for a certain type of

bacteria.

Due to the coexistence with phages, bacteria have developed various phage
defence mechanisms. Bacterial phage resistance emerges through
chromosomal mutations, developing a wide range of antiviral mechanisms
targeting any phase of the phage life cycle (82). The development of bacterial
phage resistance was first described almost a century ago by Luria and
Delbrick, who observed that the initial phase of lysis of phage was followed by
bacterial regrowth due to the selection of phage resistant subpopulations in a
process of coevolution: a process of reciprocal adaptation in which two or more

species evolve through selective pressure on one another (209). Later, other
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studies demonstrated this coevolution between host bacteria and phages, such
as in E. coli O157: H7 and phage PPO01, where Mizoguchi et al. showed that the
bacteria which survived in a culture with phages had alterations in the
lipopolysaccharide (LPS) or the inactivated surface protein OmpC (210) In the
last years, new bacterial mechanisms to generate or modify phage resistance
have been discovered and characterized. Although a large part of defence
systems against phages already existed in bacteria, the appearance of phage-
resistant organisms is associated with spontaneous mutations and adaptation,
especially with modifications in the receptors that phages use to adhere to the
cell (82). The main phage resistance mechanisms are related to the inhibition of
phage adsorption, blocking of the phage DNA injection, cutting of injected DNA,
inhibition of the phage DNA replication, interference in phage assembly, and
bacterial suicide (83, 84) (Figure 4):

W e = 3
Dffp W5

Figure 4. Representation of the main mechanisms of bacterial resistance
against phage infection. This figure is also part of the pre-print version of the
article in the third chapter of this thesis.

e Inhibition of the adsorption can be developed through different
mechanisms, such as the Outer Membrane Vesicles (OMV), which are

structures composed of a lipid membrane used as a natural decoy to
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defend bacteria against harmful substances (211-213); such as the
alteration or blockage of the phage receptor in the bacterial membrane
(214, 215); or producing a higher level of extracellular matrix (216).
Blocking of the DNA injection due to the Superinfection Exclusion (Sie)
systems. Sie proteins are mainly found in prophages. They are coded to
block the entry of other bacteriophages in the cell by masking the host
factors required for DNA phage infection or interacting with a structural
element of the phage (217-220).

DNA cleavage. Once the DNA entry in the host, bacteria have enough
defence mechanisms, both innate and adaptative. R-M (restriction-
modification) or the R-M-like system DISARM systems are examples of
innate immunity to phages (221-223). When unmethylated phage DNA
enters bacteria with an R-M system it will be cleaved by the restriction
enzyme. The DISARM (Defence Island System Associated with
Restriction-Modification) consists of five-gene cassettes which proteins
like helicases or methyltransferases. Its mechanism remains to be
elucidated. CRISPR-Cas system forms part of the adaptative defence of
the bacteria (224, 225). Bacteria with this system integrates small
fragments of foreign DNA (spacers) into the CRISPR loci. This spacer
sequence leads the Cas nuclease protein to cleave the complementary
nucleic acids that enter the cell.

Replication inhibition through the less unknown BREX (BacteRiophage
EXclusion) system, which is known to allow the adsorption but not the
replication of the phage (226, 227). BREX is a recently discovered
mechanism similar to the R-M systems preventing the phage replication
but differs as DNA cleavage was undetectable. However, the mechanism
by which BREX prevents infection is yet to discover.

Assembly interference. PICI (Phage-Inducible Chromosomal Island) can
excise from the bacterial DNA and assembly itself to produce phage
particles with its own PICI-DNA (228). PICIs are a newly discovered and
ubiquitous type of mobile genetic element with a wide range of effects on
bacterial pathogenicity. In E. coli, PICIs are able to interact with the

terminase small subunit of the phages, forming a heterocomplex unable



to recognize the phage DNA thereby blocking the phage packaging but
promoting the packaging of the PICI elements (229).

e Bacterial suicide. The last bacterial defence mechanism results in
bacterial death. Abortive infection or Abi systems can interrupt the
bacterial development in any phase after the DNA entrance (replication,
transcription or translation) resulting in less phage liberation and thus
protecting the population against a general infection. They are common
in mobile genetic elements such as plasmids or prophages (230, 231).
One of the most extended Abi systems is the Toxin-Antitoxin (TA) system
(232, 233).

4. b. CRISPR-Cas system in bacteria
CRISPR-Cas systems (clustered, regularly interspaced short palindromic

repeats-CRISPR-associated proteins) are RNA-guided adaptative immunity
systems that exist in bacteria (~40%) and archaea (~90%). They prevent the
host to be infected by phages, viruses and from being harmed by other foreign
genetic elements (234, 235). The first observations of the CRISPR repeats were
made by Ishino et al. in 1987 (236), but without developing any biological
explanation about these sequences. Not until 1993 a Spanish microbiologist,

Francisco Mojica, gave these sequences the name CRISPR (237).

The CRISPR loci consist of several direct repeats separated by variable
sequences. These variable sequences are called spacers and they correspond
to captured viral and plasmid DNA sequences. This loci is often adjacent to the
CRISPR-associated proteins or cas: a large and heterogeneous group of
proteins with functional domains such as nucleases, helicases, polymerases
and/or DNA/RNA-binding proteins (238).

4. c. Relationship between phages and guorum sensing

Quorum Sensing (QS) was first described in 1970 by Nealson et al. in Vibrio
fischeri (239). However, the concept “quorum sensing” was first quoted in 1994
by Fugua et al. about a mechanism by which bacteria have cooperative patterns
to explain certain behaviours (240). QS is a regulatory mechanism of the
genetic expression in bacteria in response to cellular density (241). It has been

identified and characterized in gram-positive and gram-negative bacteria. In
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gram-positive bacteria, the autoinducer signal is an oligopeptide that is detected
by two different mechanisms (242). In gram-negative bacteria, the autoinducers
are acyl-homoserine lactones (AHLs) and quinolones, which bounds to specific
receptors in the inner membrane or the cytoplasm and then these receptors
modify a wide variety of genes in various biological processes. The activation of
QS also stimulates the synthesis of an autoinducer in the bacteria establishing

feedback in the bacterial population (243).

QS have been proved to be a therapeutic target of interest in multidrug-resistant
microorganisms. For example, QS has a crucial role in the formation of biofilm
(244). The blockage of specific QS signals could prevent biofilm formation in
many pathogens, thus increasing the sensitivity of pathogens to antimicrobial
agents and improving the effectiveness of antibiotics (245). Furthermore, QS
has been proved to regulate virulence factors crucial for the pathogenesis of
infections, which can evade the immune response of the host and cause
pathological damage (246). In P. aeruginosa, QS is able to control pyocyanin
production, elastase, lectin, exotoxin A and other virulence factors (247). The
inhibition of the QS, also called Quorum Quenching (QQ), is considered a
potential therapeutic alternative (248). The autoinducer compounds can be
enzymatically degraded through the QQ mechanism, blocking its production
and its reception through inhibition (249). The QQ enzymes are being studied
as potential quenchers of QS to prevent microbial infection (250), for example,
the characterization of the expression network in A. baumannii clinical strains
due to the regulation of the AidA protein (251).

The relation between QS and the bacteriophage infection has been analysed by
several authors, thus, the phage ¢pa3 has been proved to transduce mutations
in QS genes in P. aeruginosa PAO1 (252). Also, it was demonstrated that QS
systems can reduce the phage receptor numbers at the stationary phase, acting
as a defence mechanism in bacteriophage infection in E. coli (253), and vary
the expression of the receptor OmpK for Vibrio anguillarum to control the
infection of the phage KVP40, reducing receptor expression under conditions of
high infection risk (254). In V. cholerae, QS protects against attack by lytic
bacteriophages such as JSF35 (255). Also, in V. cholerae, QS was

demonstrated to control the change from a lysogenic cycle to a lytic one in the
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vibrio phage VP882 by QS-related genes encoded by the bacteriophage itself
(256). Finally, bacteriophages have been found to select bacterial cells with
functional QS systems in isolates of P. aeruginosa (257) as well as in clinical
strains of A. baumannii prophages AbAb105-1¢ and Ab105-2¢ select this QS
functional strains (14). The recent increase in the sequencing of whole bacterial
genomes has shown a large number of combined prophage and pathogenic
strains seem to have a high proportion of phage-related genes than non-

pathogenic strains (258-260).
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The multi-drug resistant (MDR) pathogens are responsible for most nosocomial
infections. Phage therapy is a promising strategy against MDR bacteria. The
actual next-generation sequence techniques are employed to identify new
prophages and their undesirable genes, like toxins or virulence genes, and
those useful genes in antimicrobial therapy, as endolysins. These techniques
combined with the DNA recombinant techniques can provide novel resources in
phage therapy, as the mutant lytic phages derived from lysogenic phages and
the endolysins identified and purified from these lysogenic phages. The
combination of phage therapy with antibiotic therapy may improve the
effectiveness of phage therapies. Furthermore, it is important to reveal the role

and functions in which lysogenic phages participate and vice versa, such as

QsS.
The objectives of this doctoral research are:
Chapter |

Transform the lysogenic phage Ab105-2phi from A. baumannii into a lytic one
with potential use in phage therapy.

Reduce the phage resistance emergence by combining the mutant lytic phage
with carbapenem antibiotics as a potential treatment against A. baumannii

clinical strains.

Chapter Il

To identify and characterize new potential endolysins, from A. baumannii
prophages, with antimicrobial activity against gram-negative members of the
ESKAPE group.

To combine the endolysins obtained with colistin, to increase the access of the
endolysin to the peptidoglycan and increase the antimicrobial activity.

Chapter 1l

To show in silico the phage resistance genes presence and CRISPR arrays
present in 18 genomes of A. baumannii clinical strains from the 2000 and 2010

years and its evolution through the years.

Chapter IV
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To elucidate the relationship of the prophages and clinical strains of P.
aeruginosa from CF patients.

To discover phages potentially involved in mechanisms such as virulence,
resistance or QS in CF clinical isolates of P. aeruginosa.
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Chapter I. Combined Use of the Ab105-2¢ACI Lytic Mutant Phage and
Different Antibiotics in Clinical Isolates of Multi-Resistant Acinetobacter
baumannii

The need for the development of new treatments against MDR has led to a
renewed interest in bacteriophage therapy, abandoned in the western world
when antibiotics emerged in the 1920 decade but maintained in eastern
countries such as USSR and Poland (44).

Bacteriophages are good candidates as antimicrobial agents, as they have a
narrow spectrum of activity protecting the normal microbiota, they multiply in the
infection site, are abundant in nature and easily isolated and their production
has low costs. The combination of phages with antibiotics has been
demonstrated to be synergic in several studies, and also can reduce the

emergence of antibiotic and/or phage resistance (142, 261).

In this chapter, we have developed a strategy that can expand the availability of
phages useful in phage therapy, by obtaining a lytic mutant phage from a
lysogenic one. Moreover, its antimicrobial activity was characterized alone and

in combination with antibiotics.

The lysogenic phage Ab105-2phi (Gb: KT5880759), identified in the genome of
the A. baumannii clinical strain Ab105_GEIH-2010 (14), was transformed into a
therapy secure lytic phage, by deleting the CI repressor gene, which regulates

the maintenance of the lysogenic state of the phages (56)

The resultant bacteriophage, Ab105-2phiACI, was isolated and observed by
Transmission Electron Microscopy (TEM) showing the same Siphoviridae
structure as the wild type phage. The host range covered 25% of the strains
tested and the Efficiency of Plating (EOP) was the highest in the strain
Ab177_ GEIH-2000. For this reason and for not having complete prophages
(14), this strain was selected for the following assays. The adsorption time was
12 minutes and the one-step growth curve revealed a latent period of 30 min
and a burst size of around 32 + 2 PFU per infected cell. The antimicrobial
activity against biofilm of the phage against biofilm showed a significant

reduction in biofilm biomass.
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The infection curves obtained with the original lysogenic phage, Ab105-2phi and
with the mutant lytic phage Abl05-2phiACI confirmed the lytic nature of the
mutated phage, as the growth of the infected culture decreased drastically but
regrowth was observed at 5 hours due to the emergence of phage resistant

mutants.

The rate of phage resistant mutants was established, and a reduction of almost
1 log in the CFU counts of the host strain, was observed when the infection was
done with the mutant lytic phage Ab105-2phiACI in combination with the
antibiotics meropenem, imipenem and doxycycline, instead of when the mutant

lytic phage was alone.

We developed a bacterial killing assay in presence of a combination of the lytic
mutant phage Ab105-2phiACI at three different Multiplicity of Infection (MOls:
0.1, 1 and 10) and three antibiotics (doxycycline, meropenem and imipenem) at
two different Minimum Inhibitory Concentrations (MICs: 1/4 and 1/8). No
synergistic effects were observed with doxycycline, except for a slight decrease
when the combinations include phage concentration at MOI 10. In an opposite
way, a reduction in the number of CFUs was detected after 6 h for all
combinations of meropenem and imipenem with the phage (between 4 and 8
log of difference of CFU/mL), demonstrating a synergistic effect. This
synergistic outcome was held after 24 h when the concentration of
carbapenemic antibiotics was at 1/4 MIC in the combination of a MOI 10 of
phage in the case of meropenem and MOI 1 and MOI 10 in the case of

imipenem, with a reduction of around 6 log CFU/mL per each case.

Finally, in the Galleria mellonella survival assay the survival rate was higher
when the larvae infected with the Ab177_GEIH-2000 strain was treated with the
combination of meropenem and imipenem plus the mutant lytic phage Abl105-
2phiACI, but being only statistically significant (p < 0.05) with the imipenem

combination.

The corresponding paper at MDPI Microorganisms journal is attached:
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Abstract: Phage therapy is an abandoned antimicrobial therapy that has been resumed in recent
years. In this study, we mutated a lysogenic phage from Acinetobacter baumannii into a lytic
phage (Ab105-2phiACI) that displayed antimicrobial activity against A. baumannii clinical strain
Ab177_GEIH-2000 (isolated in the GEIH-REIPI Spanish Multicenter A. baumannii Study II 2000/2010,
Umbrella Genbank Bioproject PRINA422585, and for which meropenem and imipenem MICs
of respectively, 32 ug/mL, and 16 pug/mL were obtained). We observed an in vitro synergistic
antimicrobial effect (reduction of 4 log-7 log CFU/mL) between meropenem and the lytic phage in all
combinations analyzed (Ab105-2phiACI mutant at 0.1, 1 and 10 MOI and meropenem at 1/4 and 1/8
MIC). Moreover, bacterial growth was reduced by 8 log CFU/mL for the combination of imipenem
at 1/4 MIC plus lytic phage (Ab105-2phiACI mutant) and by 4 log CFU/mL for the combination of
imipenem at 1/8 MIC plus lytic phage (Ab105-2phiACI mutant) at both MOI 1 and 10. These results
were confirmed in an in vivo model (G. mellonella), and the combination of imipenem and mutant
Ab105-2phiACI was most effective (p < 0.05). This approach could help to reduce the emergence of
phage resistant bacteria and restore sensitivity to antibiotics used to combat multi-resistant strains of
Acinetobacter baumannii.

Microorganisms 2019, 7, 556; doi:10.3390/microorganisms7110556 www.mdpi.com/journal/microorganisms
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1. Introduction

Multi-drug resistant (MDR) bacteria, such as A. baumannii are considered to be a major concern by
the World Health Organization (WHO), because of their ability to acquire antimicrobial resistance via
intrinsic characteristics and mechanisms (e.g., presence of the outer membrane) or via mechanisms
acquired by horizontal genetic transfer [1,2]. This situation has led to an urgent need to develop new
antimicrobial agents and to a renewed interest in phage therapy. Phage therapy was first developed in
the 1920s but was abandoned in the Western world after the discovery of antibiotics. However, the use
of phage therapy continued in Eastern countries, such as Poland and USSR, where bacteriophages
are used for the prophylaxis and treatment of infections, such as dysentery, ulcers, and methicillin
resistant Staphylococcus aureus (MRSA) infections [3,4].

Phage therapy is now considered a real option for treating MDR bacteria, and there are some
examples of its use in treating human patients [5]. Phages are bacterial viruses, and like other
viruses, they are obligate parasites that enter host cells through mechanisms that are based on receptor
recognition. Genetic material is then injected into the bacteria and use the bacterial machinery to
produce phage proteins [6,7]. Phages generally undergo a lytic (virulent) or lysogenic (temperate)
life cycle. Lytic phages infect, and rapidly lyse and kill host cells, releasing phage progeny into the
surrounding medium. Lysogenic phages infect the host cell and integrate their nucleic acid into
the host genome, or exist as plasmids in the host cells, remaining in a stable prophage state for
generations. Prophages can be “induced” to exit the cell as lytic phages under some conditions, such as
the presence of antibiotics [8,9]. The lysogenic/lytic cycle of temperate bacteriophages is controlled by
Cro, CI, and CII proteins; the Cro protein induces the lytic state and the CI repressor protein inhibits
the Cro protein, thereby inducing the lysogenic state [10].

Only lytic phages are used in phage therapy as lysogenic phages can transfer resistance genes or
virulence factors to the host [11].

The combined use of antibiotics and phages has been tested in several studies, demonstrating strong
control of the bacteria, and a reduction in the development of phage and/or antibiotic resistance [12,13].
Phages are good candidates for use in combination with antibiotics for various reasons, including
that they have a different mechanism of action from antibiotics; hold a narrow spectrum of activity,
which protects the normal microbiota; they can multiply at the infection site; they are abundant in
nature and can be easily isolated; and production costs are low [14-16].

In this study, we produced a mutant lytic phage from a lysogenic phage, that is incorporated in the
genome of a clinical strain of A. baumannii by deleting the CI repressor gene, and thus, preventing the
entry of the phage into the lysogenic cycle [10,17]. We then tested the antimicrobial activity of the
novel lytic phage, Ab105-2phiACI, in combination with carbapenem antibiotics (meropenem and
imipenem) against a carbapenem-resistant strain of A. baumannii. The combined therapy enhanced
the antimicrobial activity of both, the phage and the antibiotic; the bacterium became sensitive to the
antibiotics and the emergence rate of phage resistant bacteria was reduced.

2. Material and Methods

2.1. Bacterial Strains

In this study, we used 20 clinical strains isolated from Spanish hospitals during the GEIH-REIPI
Spanish Multicenter Acinetobacter baumannii Study II 2000-2010, GenBank Umbrella project
PRJNA422585 (https://www.ncbi.nlm.nih.gov/bioproject) (Table 1).
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Table 1. Bacterial strains used in this study. Phage host range determined by spot test and efficiency of

plating (EOP).

Strain ST Spot EOP Spanish Hospital Where the Strain Was Isolated
Ab105_GEIH-2010 2 +/- 1 Hospital Universitario Virgen del Rocio (Seville, Spain)
Ab192_GEIH-2000 2 +/— 0.22 Hospital Universitario Virgen del Rocio (Seville, Spain)
Ab404_GEIH-2010 80 + 0.0002 Hospital Dr. Molines (Valencia, Spain)
Ab166_GEIH-2000 2 +/— - Hospital Universitario Virgen del Rocio (Seville, Spain)
Ab177_GEIH-2000 2 i 1.55 Hospital Universitario Virgen del Rocio (Seville, Spain)

Hospital Santiago de Compostela

Ab13_GEIH-2010 79 ) ) (Santiago de Compostela, Spain)

Hospital Santiago de Compostela

Ab09_GEIH-2010 297 ) . (Santiago de Compostela, Spain)

Ab160_GEIH-2000 2 - - Hospital Universitario Virgen del Rocio (Seville, Spain)
Ab155_GEIH-2000 2 - = Hospital Universitario Virgen del Rocio (Seville, Spain)
Ab05_GEIH-2010 186 - - Hospital A Coruna (A Corufa, Spain)
Ab22_GEIH-2010 52 - = Hospital Pontevedra (Pontevedra, Spain)
Ab421_GEIH-2010 2 - = Hospital Insular (Gran Canaria, Spain)
Ab77_GEIH-2000 2 - - Hospital Universitario Ramon y Cajal (Madrid, Spain)
Ab141_GEIH-2000 179 - - Complejo Hospitalario Toledo (Toledo, Spain)
Ab217_GEIH-2010 2 - = Hospital Reina Sofia (Cordoba, Spain)
Ab235_GEIH-2010 2 - - Hospital Marqués de Valdecilla (Santander, Spain
Ab37_GEIH-2010 2 - - Hospital Virgen del Rocio (Seville, Spain)
Ab222_GEIH-2000 181 - - Hospital Bellvitge (Barcelona)
Ab461_GEIH-2010 2 - - Hospital del Mar (Barcelona, Spain)
Ab173_GEIH-2010 88 - - Hospital San Agustin (Avilés, Spain)

ST: Sequence Type. Spot test: (+) clear spot; (+/-) turbid spot; (-) no spot.

2.2. Obtaining the Lytic Phage Mutant

The bacteriophage sequence Ab105-2phi (Genbank: KT5880759) detected in clinical strain
A. baumannii Ab105GEIH_2010 was analyzed and the CI gene identified as ORF 17. The CI gene was
deleted by double homologous recombination with the suicide vector pMo130TelR [18,19]. The primers
were first designed for the amplification of the flanking regions (1000 bp) of the CI gene. These regions
were amplified by PCR and ligated and cloned into the pMo130telR vector (Table 2). This construction
was transformed in Escherichia coli DH5x to produce large numbers of the plasmid with the gene
flanking regions. The plasmid was purified and transformed in the A. baumannii Ab105 clinical
strain by electroporation, and incubated for two hours at 37 °C without antibiotic, thereby producing
a recombinant wild type with the mutated gene integrated in its genome. Finally, the mutants were
selected in the presence of kanamycin (50 ug/mL). In order to isolate only those mutants with the CI
gene deletion in the chromosome, the plasmid loss was induced in the absence of kanamycin, and the
recombinant clones were selected in the presence of 15% sucrose. In order to isolate the mutant phage
Ab105-2phiACI from the bacterial clones by which the CI gene was deleted, a selected clone was
incubated in LB broth, which is supplemented with mitomycin (10 ug/mL) to induce release of the
phages. The supernatant was collected, treated with chloroform, and filtered (20 um). The filtered
supernatant was used to infect the clone without the phage, and plaques were obtained by the agar
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overlay method [20]. A clear plaque was isolated by PCR and sequencing was conducted to confirm
the correct deletion of the CI gene.

Table 2. Primers used to delete the CI gene.

Primer Sequence Strain/Plasmid

UPCI [NotI]Fw GGGGCGGCCGCTGAAGAATTCATCACTTG Ab105_GEIH-2010
UPCI[BamHI]Rev GGGGGATCCCGTTACTTCTATCGGAAT Ab105_GEIH-2010
DWCI[BamHI]Fw GGGGGATCCATTAAGGTTTTAGGTGAT Ab105_GEIH-2010
DWCI[SphI]Rev GGGGCATGCTAAATCATCCAAATCGAC Ab105_GEIH-2010
CIFw ATGGACAAATTTATGGCTAC Ab105_GEIH-2010
CIRev TAACTTTTTCTAACACGCT Ab105_GEIH-2010
IntCIFw AAAGCGCTGCCAACTTTT Ab105_GEIH-2010
IntCIRev CAACAGATTCATCCTCAT Ab105_GEIH-2010

pMo130TelRFw ATTCATGACCGTGCTGAC pMo130TelR

pMo130TelRRev CTTGTCTGTAAGCGGATG pMo130TelR

Plasmid Description Origin

pMo130TelR Suicide plasmid, xylE*, sacB*, kmR, TelR [19]

Restriction enzyme sites are shown in italics.

A clone of strain Ab105GEIH_2010, induced with mitomycin, was isolated and excision of the
phage was confirmed by PCR of the CI gene and the flanking regions (1000 pb each region) of the gene.

2.3. Host Range and Efficiency of Plating Analysis

The host range of the lytic mutant phage Ab105-2phiACI was established by applying the spot
test [21] to the 20 clinical strains of A. baumannii under study. Efficiency of Plating (EOP) was established
as the ratio between the test strain titre and the host strain titre [22].

2.4. Transmission Electron Mmicroscopy (TEM) and Live-Cell Imaging

A broth culture of strain Ab177_GEIH-2000 was infected with the lytic mutant phage
Ab105-2phiACI. The lysates were centrifuged at 3400x g for 10 min and the supernatant was filtered
through a 0.22 pm filter (Merck Millipore, Ltd. Tullagreen, Carrigtwahill, Co Cork, Ireland). NaCl was
added to a final concentration of 0.5M, and the suspensions were mixed thoroughly and left on ice
for 1h. The suspensions were centrifuged at 3400x g for 40 min at 4 °C, and the supernatants were
transferred to sterile tubes. PEG 6000 (10% w/v) was added, dissolved, and incubated overnight at 4 °C.
Bacteriophages were then precipitated at 3400 g for 40 min at 4 °C and resuspended in SM buffer (0.1
M NaCl, 1 mM MgS04, 0.2 M Tris-HCl, pH 7.5) [23]. The samples were negatively stained with 1%
aqueous uranyl acetate before examination by electron microscopy:.

Live-cell imaging was carried out by time-lapse microscopy after initial adsorption of the mutant
lytic phage Ab105-2phiACI to the clinical strain Ab177_GEIH-2000 at 37 °C in agar slices, which were
placed directly between stainless steel O-rings. The use of extracellular DNA markers enabled the lysis
of more than 300 bacteria to be monitored in real time.

2.5. Adsorption Curve, One Step Growth Curve, and Infection Curve

An overnight culture of A. baumannii clinical strain Ab177_GEIH-2000 was diluted 1:100 in LB
broth, and incubated at 37 °C at 180 rpm, until an early logarithmic phase, i.e., at an optical density of
0.2 (OD 600nm). At this point the culture was infected with the lytic mutant phage Ab105-2phiACI at
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a multiplicity of infection (MOI) of 0.1. The adsorption curve and the one step growth curve were
determined after growing the phage in LB, supplemented with CaCly, as previously described [20,24].
In the one step growth curve, the latent period was defined as the interval between adsorption of
the phages to the bacterial cells and the release of phage progeny. The burst size of the phage was
determined as the ratio of the final number of free phage particles to the number of infected bacterial
cells during the latent period [22].

An early exponential culture of the strain Ab177_GEIH-2000 in LB, supplemented with CaCly,
was infected with the lysogenic phage Ab105phi2 and the mutant lytic phage Ab105phi2ACI at different
MOIs (0.1, 1 and 10), and the corresponding infection curves were constructed. The phage cultures
were maintained at room temperature during the adsorption period and then incubated at 37 °C and
180 rpm for 6 h. The optical density was measured at intervals of one hour during this period.

2.6. Frequency of Occurrence of Phage Resistant Bacteria

Phage resistant mutants were produced as previously described [25]. To determine the emergence
of phage resistant mutants, an overnight culture of strain Ab177_GEIH-2000 was diluted 1:100 in LB
and grown to an OD600nm of 0.6-0.7. An aliquot of 100 L of the culture containing 10% colony forming
units (CFU)/mL was serially diluted, and each dilution mixed with 100 uL of 10° plaque forming units
(PFU)/mL, and plated by the agar overlay method [20]. The plates were incubated at 37 °C for 18h and
the number of CFUs was counted. The same procedure was used to produce phage resistant mutants
in the presence of the antibiotics doxycycline, meropenem, or imipenem, which were added to the
plates, each at 25% of the minimum inhibitory concentration (MIC). The frequency of occurrence of
phage resistant mutants and phage-antibiotic resistant mutants was calculated by dividing the number
of resistant bacteria by the total number of sensitive bacteria.

2.7. Antimicrobial Activity of the Mutant Lytic Phage Ab105-2phiACI in Biofilm

An overnight culture of the A. baumannii clinical strain Ab177_GEIH-2000 was diluted 1:100 and
used to inoculate 100 puL of LB in some wells of a 96 multi-well plate. The plate was maintained
at 37 °C in static conditions for 4 h. The medium was then discarded and the wells were washed
twice with PBS before 100 uL of fresh LB was added. After 24 h at 37 °C, the medium was again
discarded and the wells were washed with PBS, and filled with 90 uL of SM buffer, then 10 uL of phage
Ab105-2phiACI (107 PFU/mL) was added. SM buffer (100 uL) was added to control wells. The plates
were then incubated at 37 °C for 24 h. Finally, the supernatant was discarded and the wells were
washed with PBS. Half of the wells were used to quantify the CFUs and the other half were used to
quantify the biofilm. PBS (100 nuL) was added to the wells used to quantify the CFUs and the plates
were agitated for 5 min and sonicated for another 5 min. The suspension was serially diluted and
plated on LB plates. For quantification of the biofilm, 100 pL of methanol was added to each well and
discarded after 10 min. Once the methanol had completely evaporated, 100 uL of crystal violet (0.1%)
was added and discarded after 15 min. Finally, the wells were washed with PBS before the addition of
150 pL of acetic acid (30%), and the absorbance was measured at OD 595 nm.

2.8. Antimicrobial Activity in Combination with Antibiotics

A bacterial killing assay was constructed to determine the synergy of phage Ab105-2phiACI
in combination with meropenem, imipenem and doxycycline at 1/8 and 1/4 of the respective MICs
(meropenem 32 pg/mL, imipenem 16 pg/mL and doxycycline 64 ug/mL). An overnight culture of the
tested strain was diluted at 1:100 in LB broth supplemented with 10uM CaCl; and incubated at 37 °C
and 180 rpm until the culture reached an early exponential phase at 0.2 OD (600nm). At this point,
antibiotic and the Ab105-2phiACI phage were added to the culture. The flasks were maintained at
room temperature during the adsorption period before being incubated at 37 °C and 180 rpm for
24 h. Aliquots were removed after 6 h and 24 h and were serially diluted and plated in LB plates for
subsequent counting of CFU.
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2.9. Galleria mellonella Survival Assay

The Galleria mellonella model used was an adapted version of a previously developed model
also used to study bacteriophage therapy [26,27]. The procedure was as follows: twelve G. mellonella
larvae, acquired from TruLarvTM (Biosystems Technology, Exeter, Devon, UK), were each injected
in the left proleg with 10 uL of a suspension of A. baumannii Ab177_GEIH-2000, diluted in sterile
phosphate buffer saline (PBS) containing 1 x 10° CFU (+ 0. 5 log). The injection was performed with
a Hamilton syringe (volume 100 uL) (Hamilton, Shanghai, China). One hour after infection, the larvae
were injected in the right proleg with 10 uL of the lytic mutant phage Ab105-2phiACI, at MOI 10,
in combination with meropenem at 1/4 MIC and imipenem at 3 MIC. The controls included 10 uL of
the lytic mutant phage Ab105-2phiACI at MOI 10, or meropenem at 1/4 MIC and imipenem at 1/4 MIC.
The injected larvae were placed in Petri dishes and incubated in darkness at 37 °C. The number of dead
larvae was recorded after 72 h. The larvae were considered dead when they showed no movement in
response to touch [26].

The survival curves for the in vivo G. mellonella infection model were constructed using GraphPad
Prism v.6 (San Diego, CA, USA), where the data were analyzed using the Log-Rank (Mantel-Cox,
City, State if USA, Country) test. The data were expressed as mean values, and the differences were
considered statistically significant at p < 0.05.

3. Results

3.1. Obtaining the Lytic Mutant of the Phage Ab105phi-2ACI

After deleting the CI gene from the temperate phage Ab105-phi2, as previously reported in
Salmonella [17], we obtained a lytic mutant, designated Ab105-phi2ACI, which produced characteristic
clear lytic plaques. This is in contrast with the turbid plaques produced by the temperate Ab105-phi2
phage (Figure 1A1). PCR of the DNA, isolated from the Ab105-2phiACI phage, confirmed the deletion
of the CI gene. PCRs were conducted with the CI genes and combinations of these primers with
those of the flanking regions, confirming that no amplification was obtained. PCRs with the primers
(UPCI[NotI]JFw/DWCI[SphI]Rev) of the flanking regions of the gene CI were also conducted, and the
expected region of 2000 pb was obtained (size without the CI gene). Finally, this amplicon was
sequenced and the CI gene deletion was confirmed. Excision of the phage was also confirmed in
a clone induced with mitomycin, as no positive PCR were obtained with the CI primers or with the
flanking region primers.

Infection curves for the temperate phage Ab105-2phi and the lytic mutant phage Ab105-2phiACI
were constructed and compared, showing that the lytic mutant killed the culture at all MOl levels tested,
as reflected by a large decrease in the optical density. Although, a reduction in growth was observed
when the culture was infected with the lysogenic phage Ab105-2phi, the decrease was less than with
the lytic mutant. In both cases, the reduction in growth was first observed at MOI 10, but regrowth
was also first observed at this MOI, probably due to the emergence of resistance (Figure 1B).
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Figure 1. Graphical representation of the Ab105-2phiACI phage. The ORF and direction of transcription
are indicated by arrows. (A1) The protein functions are indicated in different colours, and the GC content
and GC skew are shown as pink and green circles respectively. (A2) TEM image of the mutant lytic
phage Ab105-phi2ACI and mutant lytic phage Ab105-phi2ACI attached to the cell surface. (B1) Infection
curves for the lysogenic phage Ab105-2phi and (B2) the mutant lytic phage Ab105-2phiACI. (C) One step
growth curve of the mutant lytic phage Ab105-phi2ACI (L: Latent period; B: burst size). Mutant lytic
phage Ab105-phi2ACI antibiofilm activity on the biofilm produced by the clinical strain of A. baumannii
Ab177_GEIH-2000. (D1) Reduction in the biofilm and reduction in the number of CFUs present in the
biofilm after treatment with the mutant lytic phage Ab105-phi2ACI (D2). Figures B, C and D show the
mean values +/— SD from three independent assays. Statistically significant differences (p < 0.05) were

determined by t-Student test (GraphPad Prism v.6).
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3.2. Morphology and Host Range of the Lytic Mutant Phage Ab105-phi2ACI

The lytic mutant Ab105-2phiACI was isolated and the virion morphology was observed by
TEM, revealing that this phage has the typical structure of the Siphoviridae as the wild type phage
Ab105-phi2 [28]. All plaques were transparent and about Imm in diameter (Figure 1A2).

The lytic spectrum of activity of the mutant phage Ab105-2phiACI covered 25% of the clinical
strains of A. baumannii tested. The strain Ab177_GEIH-2000 yielded the highest EOP (1.55) (Table 1).
This strain was thus selected for further assays.

3.3. Adsorption and One Step Growth Curve

Both, the adsorption and the one step growth curve were established using host strain
Ab177_GEIH-2000, as the EOP of this strain was the most appropriate and also because this strain
does not have complete prophages, as previously determined [28]. The adsorption time (12 min) was
determined in order to establish the one step growth curve, which revealed a latent period of 30 min
and a burst size of approximately 32 + 2 PFU per infected cell (Figure 1C).

3.4. Antimicrobial Activity of the Mutant Lytic Phage Ab105-2phiACI on Biofilm

Biofilm was produced with the clinical strain of A. baumannii Ab177_GEIH-2000 susceptible to the
mutant lytic phage Ab105-phi2ACL The treatment of the biofilm with 107 PFU of this lytic mutant
phage caused a statistically significant reduction in the biofilm biomass. The antimicrobial activity
against the biofilm forming bacteria was confirmed by a decrease in the CFU, quantified in the presence
of the mutant lytic phage (Figure 1D).

Finally, the lytic activity of the mutant phage can be observed in Video 1 (Supplementary Materials).

3.5. Determination of the Emergence Rate of Phage Resistant Mutants

Strain Ab177_GEIH-2000 was resistant to meropenem, imipenem and doxycycline (MICs:
Meropenem 32 ug/mL, imipenem 16 pg/mL, and doxycycline 64 pg/mL). In all cases the combination
of the phage and antibiotic reduced the rate of emergence of phage-resistant mutants, relative to the
rate of resistant mutants in the presence of the phage alone (Table 3).

Table 3. Frequency of phage resistant mutants. Phage resistant mutant frequency in the presence of the
combination of doxycycline, meropenem and imipenem at ‘1; MIC in combination with lytic mutant
phage Ab105-2phiACI (MOI 10) was calculated.

Sample Frequency of Phage Resistant Mutants
Ab105-2phiACI 1.70 x 106
Ab105-2phiACI + Doxycycline 1.31 x 1077
Ab105-2phiACI + Meropenem 2.10 x 1077
Ab105-2phiACI + Imipenem 1.90 x 1077

3.6. Effect of the Combination of Phage and Antibiotic on the Bacterial Killing Assays

Bacterial killing assays were constructed for A. baumannii clinical strain Ab177_GEIH-2000 in the
presence of a combination of the lytic mutant phage Ab105-2phiACI at different MOIs (0.1, 1, and 10)
and three antibiotics (at 1/4 and 1/8 MIC) to which Ab177_GEIH-2000 is resistant: Meropenem,
imipenem, and doxycycline (Figure 2).
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Figure 2. Bacterial killing assays for A. baumannii clinical strain Ab177_GEIH-2000 determined using
the mutant lytic phage Ab105-2phiACI at MOI 1 and MOI10 in combination with meropenem at (A1)
1/8 MIC and (A2) 1/4 MIC;(B1) imipenem at 1/8 MIC and (B2)1/4 MIC, and (C1) doxycycline at 1/8 MIC
and (C2)1/4 MIC. Values shown in the graphs are the means +/— SD from three independent assays.

A reduction in the number of CFU was observed with the phage at both MOI 1 (4 log) and MOI
10 (1 log) after 6 h, but no differences from the control were observed after 24 h. The reduction was
even greater when the phage was combined with meropenem or imipenem (both carbapenems).

For meropenem plus phage, a synergistic effect was observed after 6 h for all combinations
(from 4 log to 7 log CFU/mL). The growth of the A. baumanni strain was similar to control levels
after 24 h for all concentrations of meropenem plus phage at MOI 1. The synergistic effect was
only maintained with the combination of meropenem at 1/4 MIC and phage Ab105-2phiACI at
MOI10, yielding a difference in bacterial growth of 6 log CFU/mL, relative to that corresponding to the
meropenem control (Figure 2A1,2A2).

As with meropenem, the combination of different concentrations of imipenem and the lytic mutant
phage had a synergistic effect after 6 h in all cases, with a reduction in bacterial growth of 8 log CFU/mL
for the combination of imipenem at 1/4 MIC, plus phage, and 4 log CFU/mL for the combination of
imipenem at 1/8 MIC plus phage. The synergistic effect was maintained for 24 h in the combinations of
imipenen at 1/4 MIC, with phage at MOI1 and MOI10, but not in the combinations of imipenem at
1/8 MIC and both phage concentrations (Figure 2B1,2B2).

No synergistic effects were observed with doxycycline, and the combination had no more effect
than the phage alone at MOI 1. However, when the combinations included the phage at MOI 10,

71



72

Microorganisms 2019, 7, 556 10 of 14

a slight decrease in the CFU count was observed (less than 1 log CFU/mL), independently of the
antibiotic concentration (Figure 2C1,2C2).

The curves obtained for the lytic mutant phage controls showed that Ab177_GEIH-2000 grew at
control rates after 24h, due to the acquisition of phage resistance. However, the growth was higher
at MOI 10, than at MOI 1 after 6 h, probably because resistance emerges faster at this MOI than at
lower MOL

3.7. Galleria mellonella Survival Assays in the Presence of Meropenem and Imipenem in Combination with the
Lytic Mutant Phage Ab105-phi2ACI

The combinations of antibiotic and the phage Ab105-2phiACI, that resulted in the reduction of the
CFU of Ab177_GEIH-2000 at 24h in vitro were assayed in a G. mellonella (wax moth) larvae survival
model (Figure 3). When the infected larvae were treated with imipenem and mutant lytic phage
Ab105-2phiACI, the survival rate was found to be statistically significantly higher than the larvae
treated with the antibiotic or the phage alone and of untreated larvae (p < 0.05). Similar results were
obtained for meropenem but in this case. Although, larval survival was higher after the combinatory
treatment than after phage only or no treatment, the difference relative to meropenem alone was not
statistically significant (p = 0.2183). This was probably due to the higher MIC of meropenem than
of imipenem (32 pg/mL versus 16 pg/mL) for the Ab177_GEIH-2000 strain, indicating the need to
administer greater amounts of mutant lytic phage Ab105-2phiACI.

2
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Figure 3. G. mellonella survival 96 h after an infection with Ab177_GEIH-2000 (1 x 105 CFU) treatment
with mutant lytic phage Ab105-2phiACI (1 x 10° PFU) and the antibiotics meropenem at (A) 1/4 MIC
and imipenem at (B) 1/4 MIC. The Log-Rank (Mantel-Cox) test, */* (p < 0.05) was used to compare the
combination of imipenem and meropenem plus phage (line green) with each antibiotic alone (*) or the
phage alone (¥); *(p < 0.05) for comparison of the combination of the phage (line green) and antibiotics
(imipenem or meropenem) and untreated infection (*).

4. Discussion

Lytic phages are widely used in phage therapy, but temperate or lysogenic phages have not
generally been considered suitable for the purpose, because they can enhance host competence
and survival. However, temperate phages are present in almost half of bacteria that have been
sequenced. Phages that are specific to pathogens causing infections can be easily identified. In addition,
the problems caused by horizontal genetic transfer can now be avoided due to next generation
sequencing, which enables phages to be selected, that do not pose a risk of transferring undesirable
genes, such as endotoxins [15]. Temperate phages can also be easily engineered in their lysogenic state
for use in phage therapy, by different means: By modifying the genes of interest as phage receptors
to extend the host range; by inhibiting the lytic ability of phages without the release of endotoxins;
modifying genes to enhance the killing effect of bacteriophages; increasing the life time of phages in the
circulatory system of mammalians, and; transforming lysogenic phages into lytic phages [17,29-33].

In this study, we selected a temperate phage, Ab105-2phi, which did not have any toxic or
virulence genes in its genome (Figure 1A1). This phage was selected with the objective of converting
it into a lytic phage with potential use in phage therapy. The technique was previously described
in Salmonella enterica bacteriophage SPN9CC and in the mycobacteriophage BPs33AHTH_HRM10,
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recently used in a phage cocktail to treat a patient with a disseminated drug-resistant Mycobacterium
abscessus [17,34]. The technique is based on the deletion of the CI repressor gene, which encodes the CI
protein and binds to two operators, thereby repressing the Cro gene required for lytic development.
Deleting the CI gene thus maintains the phage in a lysogenic state [10,17].

Conversion of the lysogenic into a lytic phage was confirmed, first by PCR and sequencing.
Then, by the presence of clear plaques and by the infection curves for both phages: Lysogenic
Ab105-phi2 and the lytic mutant Ab105-phi2ACI. The differences in optical density in both cases
confirmed the production of a lytic mutant, and the emergence of phage resistant mutants for both
phages. At MOI 10, the inhibition of growth was greater and occurred earlier than at other MOI, but
resistant bacteria emerged earlier than at lower MO], as also observed by other authors [35]. In addition,
this effect was observed in the bacterial killing assays, where the growth at 6 h was greater at MOI10
than at MOI1. The mutant lytic phage also presented a latent period of 30 min, and a moderate burst
size of 32 + 2 PFU per cell was obtained with the mutant lytic phage, values in the range of those
obtained in several studies for different lytic phages, including phages from A. baumannii [5,36-39].
The burst size is inversely related to the risk of emergence of phage resistant bacteria [40], which
is one of the main objectives of phage therapy research, commonly addressed by the use of phage
cocktails [41].

Although the antimicrobial activity of this mutant lytic phage was established by its ability to
reduce the absorbance in a bacterial culture and also to reduce the biofilm biomass, any reduction in the
development of phage resistance would increase its potential use as a therapeutic phage. In this case,
the strategy we combined the phage with antibiotics [13] to enhance the potential of the Ab105-2phiACI
phage as a therapeutic phage, and observed an almost 1 log reduction in the emergence of phage
resistant mutants in the presence of the antibiotics assayed. The synergistic effect (almost 2 log decrease
between the combined therapy and the compounds alone) resulted from the combination of the lytic
mutant phage Ab105-2phiACI, and meropenem or imipenem enhanced the bactericidal effect of both the
antibiotic and the phage. A strong antimicrobial effect was obtained by combining the phage at a high
MOI and the antibiotic at concentrations much lower than the MIC, thereby restoring the sensitivity
of the strain to imipenem and meropenem. As the host strain does not possess beta-lactamases,
the resistance is probably due to the action of a Resistance-Nodulation-Division (RND) efflux pump,
containing proteins that can act as phage receptor proteins. Therefore, the phage blocks the efflux
pump and the antibiotic sensitivity of the strain would thus be increased [42]. The activity of the efflux
pump explains the differences between antibiotics, as the efflux pumps that expulse carbapenems can
act on doxycycline, when present at low levels [43].

The increase in the antimicrobial activity when the carbapenem antibiotics and the mutant lytic
phage were used together was also confirmed in the survival assays with G. mellonella, as survival was
higher in larvae that received the combined treatments. However, when the combination included
meropenem (MIC, 32 pg/mL), survival was not statistically significantly higher, indicating that
administration of a larger number of mutant lytic phage Ab105-2phiACI would be necessary (in vivo).

In conclusion, this is the first in vitro and in vivo study by which a mutant lytic phage has been
used in combination with carbapenem antibiotics (imipenem and meropenem). This reduces the
emergence of resistance to the phages and restores the sensitivity to antibiotics, thereby increasing
the therapeutic potential of the phage. The conversion of temperate phages (with a known genomic
profile) into lytic phages may provide a new source of phages for use in phage therapy.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/2076-2607/7/11/556/s1.
Video 1. Initial adsorption of phages to bacteria at 37 °C in agar slices placed directly between stainless steel
O-rings for live-cell imaging. Use of extracellular DNA markers enabled lysis of more than 300 bacteria to be
followed in real time.
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Chapter Il. In vitro and in vivo efficacy of the combination of colistin and

endolysins against clinical strains of Multi-Drug Resistant (MDR)
pathogens

The phage therapy can be done by the use of bacteriophages or by the use of

its derived enzymes. Endolysins are highly evolved enzymes, produced by
bacteriophages to digest the bacterial cell wall, that have great potential as
antimicrobial agents (107).

In this chapter, we identified and characterize the two endolysins, ElyAl and
ElyA2. Besides, we determine the antimicrobial activity of ElyAl in combination

with colistin.

Two endolysins, ElyAl and ElyA2, were identified from the genomic sequence
of the A. baumannii temperate bacteriophages Ab1051® and Ab10529,
respectively. Those prophages are present in the genome of the A. baumannii
clinical strain Abl105 isolated during the Il Spanish Multicentre Study
GEIH/REIPI-A.  baumannii 2000-2010 (GenBank Umbrella Bioproject
PRJINA422585).

Both endolysins were classified as lysozymes (N-acetylmuramidase) with a C-
terminal domain corresponding with the Glycoside hydrolase 108 superfamily
and also a Peptidoglycan Binding domain PG3 at the N-terminal end.

Once the endolysins were cloned and purified its muralytic activity was
characterized, showing that in the case of ElyAl the destabilization of the outer
membrane with an external agent as EDTA, is necessary to the access of the
enzyme to its target in the peptidoglycan agent. The high muralytic activity f this
enzyme was established at pH 8.5 and 37°C of temperature. In the case of
ElyA2, no activity was seen, as an aggregative effect over the cells was
observed (also in a low-level ElyAl), probably a result of a cell stress

mechanism.

The antibacterial activity assays in presence of ElyAl showed a broad spectrum
of activity of this enzyme, with a high activity over all the 25 clinical strains of A.
baumannii assayed, a more variable activity against all the 25 clinical strains of

P. aeruginosa and a low activity over 13 of 17 clinical strains of K. pneumoniae.
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As the endolysin ElyAl was unable to overcome the outer membrane, its
antimicrobial activity was assayed in combination with colistin, which is an
antibiotic polypeptide that disturbs the outer membrane. The antimicrobial
activity of colistin in combination with endolysin ElyAl was first performed by
microdilution checkerboard test to determine the minimum inhibitory
concentrations (MICs) in those strains with the higher and the lower
susceptibility to endolysin. Secondly, a time-kill curve assay was done in those
strains whose MICs of colistin suffered at least a fourfold reduction in the
previous microdilution assays. The addition of the ElyAl resulted in a fourfold
reduction in the colistin MICs in 4 of the 6 strains tested (both strains of A.
baumannii and one each P. aeruginosa and K. pneumoniae). However, in the
other strain of P. aeruginosa, a twofold reduction in the colistin MIC was
observed and we did not detect any decrease in the other strain of K.
pneumoniae. These results indicate a synergistic reaction between colistin and
endolysin ElyAl in all the sensitive strains to colistin. No activity was observed
in those strains resistant to colistin due to the maintenance of the outer

membrane.

The antimicrobial activity of the combination of ElyAl and colistin was assayed
in vivo in Galleria mellonella larvae and murine skin infection and lung infection
models. The results in vivo confirmed the results obtained in vitro, thus the
survival of G. mellonella was higher when they were treated with a combination
of colistin and ElyAl. In the case of mice, the counts of bacteria were
significantly reduced in those animals treated with the combination of ElyAl and

colistin in both models.

The corresponding paper at Scientific Reports journal is attached:
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The emergence of multidrug resistant (MDR) pathogenic bacteria is jeopardizing the value of
antimicrobials, which had previously changed the course of medical science. In this study, we
identified endolysins ElyAl and ElyA2 (GH108-PG3 family), present in the genome of bacteriophages
Ab1051®P and Ab1052P, respectively. The muralytic activity of these endolysins against MDR clinical
isolates (Acinetobacter baumannii, Pseudomonas aeruginosa and Klebsiella pneumoniae) was tested
using the turbidity reduction assay. Minimal inhibitory concentrations (MICs) of endolysin, colistin
and a combination of endolysin and colistin were determined, and the antimicrobial activity of each
treatment was confirmed by time kill curves. Endolysin ElyAl displayed activity against all 25 strains
of A. baumannii and P. aeruginosa tested and against 13 out of 17 strains of K. pneumoniae. Endolysin
ElyA2 did not display any such activity. The combined antimicrobial activity of colistin and ElyA1
yielded areduction in the colistin MIC for all strains studied, except K. pneumoniae. These results
were confirmed in vivo in G. mellonella survival assays and in murine skin and lung infection models.
In conclusion, combining colistin (1/4 MIC) with the new endolysin ElyAl (350 ug) enhanced the
bactericidal activity of colistin in both in vitro and in vivo studies. This will potentially enable reduction
of the dose of colistin used in clinical practice.

IMicrobiology Department-Research Institute Biomedical A Corufia (INIBIC), Hospital A Coruiia (CHUAC),
University of A Coruia (UDC), A Coruiia, Spain. 2Unit of Microbiology, University Hospital Reina Sofia, Department
of Microbiology, University of Cordoba, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba,
Spain. 3Clinical Unit for Infectious Diseases, Microbiology and Preventive Medicine, Hospital Universitario Virgen
Macarena [ Department of Microbiology and Medicine, University of Seville/ Biomedicine Institute of Seville (IBIS),
Seville, Spain. “Reference and Research Laboratory for Antibiotic Resistance and Health Care Infections, National
Centre for Microbiology, Institute of Health Carlos Ill, Majadahonda, Madrid, Spain. *Microbiology Department-
Research Institute Biomedical Islas Baleares (IdISBa), Hospital Son Espases, Palma de Mallorca, Spain. *Microbiology
Department-Research Institute Biomedical Ramdn and Cajal (IRYCIS), Hospital Ramén and Cajal, Madrid, Spain.
’School of Chemistry and Molecular Biosciences and Child Health Research Centre, The University of Queensland,
Brisbane, QLD, Australia. ®Microbiology Department-Sant Pau Hospital, Barcelona, Spain. *Study Group on
Mechanisms of Action and Resistance to Antimicrobials (GEMARA) of the Spanish Society of Infectious Diseases and
Clinical Microbiology (SEIMC), Madrid, Spain. 1°Spanish Network for Research in Infectious Diseases (REIPI), Seville,
Spain. " These authors contributed equally: Lucia Blasco, Anton Ambroa, Luis Martinez-Martinez and Maria Tomas.
*e-mail: MA.del.Mar.Tomas.Carmona@sergas.es

SCIENTIFICREPORTS|  (2020) 10:7163 | https://doi.org/10.1038/s41598-020-64145-7

79



www.nature.com/scientificreports/

The worldwide emergence of multidrug resistant (MDR) microorganisms that are refractory to treatment with
current therapeutic agents has highlighted the urgent need for new classes of antimicrobial agents'. The World
Health Organization (WHO) has recently published a list of “priority pathogens” which includes those micro-
organisms that are considered a serious threat to human health and for which new anti-infective treatments are
urgently needed. The list includes carbapenem-resistant A. baumannii, P. aeruginosa and K. pneumoniae clinical
isolates?.

One consequence of the emergence of the MDR bacteria is a return to the use of previously abandoned antimi-
crobials. This is the case with colistin (polymyxin E), a cationic peptide which disturbs the stability and increases
the permeability of the outer membrane via electrostatic interactions and cationic displacement of the lipopoly-
saccharide. Although colistin exerts antimicrobial effects, it also has nephrotoxic effects and has gradually been
abandoned and substituted by other, better-tolerated antibiotics**. Combining new antimicrobial agents with old
antibiotics such as colistin is a new strategy in the development of novel treatments against MDR microorganisms.

In recent years, a novel drug discovery approach has explored endolysin enzymes (also referred to as enzybi-
otics), which are encoded by bacteriophages (viruses which infect bacteria) (5). Endolysins are actively produced
during the lytic cycle and exert antibacterial activity by degrading peptidoglycan in the bacterial cell wall>®.

Endolysins are highly evolved enzymes produced by bacteriophages to digest the bacterial cell wall at the end
of their replication cycle and release the phage progeny. Endolysins target the integrity of the cell wall and attack
one of the major bonds in the peptidoglycan layer. They can be classified into five groups according to the cleav-
age site: N-acetyl-3-D-muramidase (lysozymes); N-acetyl-3-D-glucosaminidases (glycosidases); Iytic transglyco-
sylase; N-acetylmuramoyl-L-alanine amidases and L-alanoyl-D-glutamate endopeptidases’*.

Endolysins are good candidates as new antimicrobial agents against Gram-positive bacteria, in which the
peptidoglycan layer of the cell wall is exposed to the medium. Several studies have evaluated the potential use of
endolysins against Gram-positive bacteria such as Staphylococcus aureus, Streptococcus agalactiae, Streptococcus
pneumoniae and Streptococcus pyogenes in animal models of human infections and diseases’'®. In Gram-negative
bacteria, the outer membrane acts as a barrier to many endolysins, and very few endolysins with exogenous activ-
ity against Gram-negative bacteria have been described (many are biotechnologically engineered)'”-*. Endolysins
can attack Gram-negative bacteria when the outer membrane is previously permeabilized with agents such as
EDTA, which destabilizes the lipopolysaccharides of the outer membrane; however, the combination of endolysin
and EDTA is limited to topical treatment of localized infections*'*. In the search for alternative methods of kill-
ing MDR bacteria such as A. baumannii, P. aeruginosa and K. pneumoniae, various researchers have considered
increasing the muralytic activity of endolysins by combining them with different antibiotics to take advantage of
synergistic responses®?.

In this study, we identified and characterized an endolysin, named ElyAl, isolated from the A. baumannii
Ab105 (ROC0034a) bacteriophage Ab1051®. The endolysin displayed muralytic activity against a broad spec-
trum of MDR organisms. In addition, combining endolysin ElyA1 with colistin (polymyxin E) enhanced the
susceptibility of the tested strains by at least four times (relative to the susceptibility to colistin alone), thus high-
lighting the potential of endolysin ElyA1l as a candidate antibacterial agent. This effect was confirmed by an in
vivo test, in which the survival of the G. mellonella larvae increased when colistin (% MIC) was supplemented
with endolysin ElyAl. Another endolysin from the same family, named ElyA2, was identified in the A. baumannii
Ab105 bacteriophage Ab1052®, but did not display muralytic activity.

Results

Identification of endolysins ElyAl and ElyA2. The 546bp gene coding for endolysin ElyA1 was iden-
tified as an ORF (Open Reading Frame) encoding a protein of 181 aa (GenBank: ALJ99090.1) and molecular
weight, 20.22kDa (Fig. 1). The protein sequence was analysed with InterProScan and classified as a lysozyme
(N-acetylmuramidase) with a C-terminal domain corresponding to the glycoside hydrolase superfamily 108 and
also a peptidoglycan binding domain PG3 at the N-terminal end.

Protein homology analysis revealed a high level of homology (>80%) with a group of 9 endolysins from A.
baumannii bacteriophages belonging to the same protein family as ElyA1*.

The 543 bp gene coding for endolysin ElyA2 was identified as an ORF encoding a protein of 180 aa (GenBank:
ALJ99174.1) and molecular weight 20.19kDa (Fig. 1). The sequence analysis revealed that the ElyA2 protein
is also a lysozyme (N-acetylmuramidase), with a C-terminal domain corresponding to the glycoside hydrolase
superfamily 108, and also a peptidoglycan binding domain PG3 at the N-terminal end.

Like the ElyAl protein, this enzyme displays a high degree of homology (>80%) with the same group of 9
endolysins and also 90% homology with the ElyA1 protein®.

Characterization of endolysin muralytic activity. In the initial screening of the muralytic activity of
the purified endolysin ElyA1 in the overlay plates with Gram-negative bacteria, a halo appeared around the lysis
zones for both strains of A. baumannii tested (Fig. 2a).

The muralytic activity of this enzyme was characterized using the Gram-negative bacteria A. baumannii
Ab105 as substrate, as this is the host strain for the phage Ab105®1. The enzymatic activity was measured after
incubation at different temperatures and pH. The maximum activity was obtained after incubation for 10 min at
pH8.5 and 37°C (Fig. 2b,c). In addition, the muralytic activity on the Ab105 cells was assayed directly or after
treatment of the cells with EDTA to permeabilize the outer membrane. However, no activity was detected when
the enzyme was added directly to the cells whose outer membrane had not been permeabilized with EDTA, and
in this case the cells also tended to aggregate (data not shown).

The antibacterial assays showed a broad lytic spectrum of activity against the strains of the three species tested
(Fig. 3). As expected because of the origin of the A. baumannii endolysin, the activity was highest among the 25 A.
baumannii strains tested. Although the activity was more variable in P. aeruginosa, muralytic activity against all of
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Figure 1. Genome of the bacteriophages Ab105®1 (GenBank: KT588074.1) and Ab105®2 (GenBank:
KT588075.2) by figure modified with PHAST software (http://phast.wishartlab.com) (60). SDS-PAGE
purification of the endolysins ElyA1 and ElyA2 (chromatographic study).

the strains was detected. Finally, endolysin ElyA1 was active against 13 of the 17 K. pneumoniae strains, although

at lower levels than in A. baumannii and P. aeruginosa. The strains of the three species tested belonged to different
strain types (STs), but the susceptibility to endolysin ElyA1 was not correlated with the ST.

Tests of the muralytic activity of endolysin ElyA2 did not detect any activity under any the conditions assayed.

On the contrary, this enzyme induced aggregation of the cells at all the enzyme concentrations tested, both in the
cells treated previously with EDTA and in those with an intact outer membrane.

Combined activity of endolysin ElyAl and colistin in in vitro assays. AsElyAl is only active when
the outer membrane of the target bacterial cell is solubilized, the MIC of the endolysin could not be determined
using the microdilution checkerboard test. We therefore aimed to detect any decrease in the colistin MICs when
used in combination with endolysin ElyA1l. The addition of endolysin ElyA1 yielded a fourfold reduction in the
colistin MICs in four of the six strains tested (A. baumannii GMA001 and PON001, P. aeruginosa AUS531 and
K. pneumoniae KP17) (Fig. 4). By contrast, only a twofold reduction in the colistin MIC was observed with P.
aeruginosa AUS601 and no decrease with K. pneumoniae KP16. The latter was consistent with the lack of enzy-

matic activity observed in the antibacterial assays (Fig. 4). Finally, no antimicrobial activity was detected when
the combination was tested in the colistin resistant isolates (data not shown).

SCIENTIFICREPORTS |

(2020) 10:7163 | https://doi.org/10.1038/s41598-020-64145-7

81




www.nature.com/scientificreports/

a)
MAROO1 PAU002 Buffer control
b) <)

09 _o08
T 08 E
! 0.5 | ! 06
a go0s
g s o4
Z 04 - P
g >
£ 03 £ 93
< 024 <02
& &
S 01 g 01
a o
w 0+ % o4

20 30 37 I 65 7 75 8 85 9
Temperature pH

Figure 2. Characterization of enzymatic activity: (a) Muralytic activity of ElyA1 was determined by spotting
ElyA1 and endolysin buffer as a negative control in an overlay of two Gram-negative Acinetobacter baumannii
clinical isolates, MAR001 and PAU002; (b) pH range and (c) temperature range were determined by the specific
activity, measured as the difference in optical density of the culture per pg of enzyme and minute.

The results of the time kill curve assay confirmed the results of the microdilution checkerboard test (Fig. 4).
A 2log reduction in growth of both of the A. baumannii strains and P. aeruginosa AUS531 after 6 hours in the
culture with 1/4 of colistin and endolysin ElyA1 was observed, indicating a synergetic reaction between colistin
and endolysin ElyA1. By contrast, there was no reduction in growth in the K. pneumoniae KP17 culture.
Activity of endolysin/colistin combinations in in vivo assays:

(a) Mortality in the in vivo Galleria mellonella model (Fig. 5a)
Larvae of the wax moth were infected with clinical strain A. baumannii GMA001. Survival of infected
larvae treated with colistin (% MIC) in combination with the ElyA1 (25 pg/ml) was significantly higher
(p <0.05) that that of larvae treated with colistin only (% MIC). Treatment with the combination of colistin
(%4 MIC) and ElyA2 (25 pug/ml) did not yield significant differences (p > 0.05) relative to treatment with the
colistin treatment, as ElyA2 did not display muralytic activity.

(b) Efficacy of ElyA 1 in the murine skin model (Fig. 5b)
Mice superficial skin wounds were infected twice (on two consecutive days) with clinical strain A. bauman-
nii GMAO0O1. The wounds were treated with colistin in combination with different doses of ElyA1 (50 pg
and 350g), a colistin control or a buffer control. The effectiveness of the treatments was established by
counting the total number of CFUs in the skin wound. The cell counts were significantly lower (p < 0.05;
Student’s t-test) in the colistin combination treatments (with both doses of ElyA1) than in the buffer
control. The cell counts in the 350 pug ElyA1 plus colistin treatment were also significantly lower (p <0.05;
Student’s t-test) than in the colistin control.

(c) Efficacy of ElyAl in treatment of lung infection (Fig. 5¢)

Infected mouse lungs were only treated with the combination of colistin and 350 pg ElyA1, as colistin plus the
lower dose of endolysin (50 ug) did not display any activity in the skin infection model.

Lung CFU counts were significantly lower (p < 0.05; Student’s t-test) in the mice treated with the combination
of colistin and ElyA1 than in the mice treated with buffer or with colistin. There were no significant differences in
the CFU counts between the buffer control group and the colistin control group.

Discussion
The discovery and development of novel antimicrobial agents to treat infections caused by the “priority” group of
pathogens is a challenge facing the medical and research community®.

Enzybiotics have become the focus of attention of many research groups worldwide. Endolysins (one type of
enzybiotics) are species or genus-specific enzymes that act by hydrolysing the peptidoglycan layer of the bacterial
cell wall. There are no reports of bacteria developing resistance to endolysins, which is a problem in both antibi-
otic therapy and phage therapy'. Moreover, endolysins have been recognized in the US “National Action Plan for
Combating Antibiotic-resistant Bacteria”*, which identified the use of “phage-derived lysins to kill specific bacte-
ria while preserving the microbiota” as a key strategy to reduce the development of antimicrobial resistance due to

SCIENTIFICREPORTS|

82

(2020) 10:7163 | https://doi.org/10.1038/s41598-020-64145-7



www.nature.com/scientificreports/

AL RS LEEL EEEEFEIIL
©°
»\«&’&&\ \‘9@\ 5% '»\@,(’@,\th"»\é"

S ¥ S ES®
CF N & F T T EP <

A. baumannii

o o o ol
® =N B O ®

Specific Activity (AOD pg* min?)
o o o
N & O

=}

N D AN AR LD A LD O AN D S O O AR O AR LD LD D LD LD LN O\
0 ‘\o(_, \9‘7 \‘O,\'\b({.\“ ,\v; 1\3: 4% ‘94\,\" AR \;Q 0@ eo{1 4 Qc,: ,i\b-/(ﬁb- &“‘\’{‘\h({’\:’({'\b"\’ﬂi@@
S S S F S5
'\‘*®\50$’°¢$" &S c? oo"é’&»"'
PIPETLSY g «soo» T TP
&E & LEFE & & &
P. aeruginosa

18 4
T 16
.; 14
8 12 4
S 1
Z 4
Zos
Zos
£ 04
o
202
v

0 mw

N S D A S D D O ’Dﬁ\\,\%%\b\
5 03

PSPPSR PRPOP ‘_;\"' & ’\"?t’ & L LD S S
N RN R A R \":h@&,\t’%@

*3*'*‘43*'*3«3*'13*3”*3*_«-*3*_*3”*3”

K. pneumoniae

Figure 3. Specific activity of endolysin ElyA1 tested in clinical isolates from different mutlilocus sequence
types (STs) of three Gram-negative members of the ESKAPE group: Acinetobacter baumannii, Pseudomonas
aeruginosa and Klebsiella pneumoniae.

the absence of toxicity in human cells?*?. Moreover, some endolysins have been found to display activity against
sub-populations of microbes?”** extracted from biofilm**-*! and to be useful in other innovative treatments.

The outer membrane of Gram-negative bacteria acts as a barrier preventing access of many endolysins to their
natural target, the peptidoglycan layer. Different strategies have been used to address this problem, including sol-
ubilization of the outer membrane with EDTA, modification of the endolysin PGs by deletion or substitution, and
the development of fusion proteins such as Artilysin-175 (Art-175). This protein is made by fusing the endolysin
with a peptide, successfully enabling the enzyme to pass through the outer membrane'®*>%, Art-175 constituted
by fusing antimicrobial peptide (AMP) sheep myeloid 29-amino acid peptide (SMAP-29) with endolysin KZ144
displayed muralytic activity in a P. aeruginosa isolate, and continuous exposure to Art-175 did not lead to the
development of resistance'®. By itself, SMAP-29 is cytotoxic to mammalian cells**; however, Art-175 exhibited
little toxicity in L-292 mouse connective tissue.
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Figure 4. In vitro bactericidal activity of colistin in combination with endolysin ElyA1 measured by MIC and
time kill curves in Acinetobacter baumannii strains GMA001 (a) and PON001 (b); Pseudomonas aeruginosa
strains AUS531 (c) and AUS601 (d); Klebsiella pneumoniae strains KP17 (e) and KP16 (f). The time kill curves
were only constructed for strains in which there was a fourfold reduction in colistin MICs (red square) when
used in combination with endolysin ElyA1 (yellow square).

As a new strategy, we combined the membrane-destabilizing effect of colistin, a cationic peptide used as an
active outer membrane agent (but only as a “last-line” treatment due to concerns about its nephrotoxicity and
neurotoxicity®), and two endolysins identified by our research group and belonging to a lysozyme-like family
(GH108-PG3) never before used as antimicrobial treatment.
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Figure 5. In vivo bactericidal activity of colistin in combination with endolysins ElyA1 and ElyA2. (a) Survival
curves for G. mellonella larvae infected with A. baumannii clinical strain GMA001 and treated with colistin
(1/4 MIC) and with colistin (1/4 MIC) combined with endolysin ElyA1 (25 pg/ml). Survival curves for G.
mellonella larvae infected with A. baumannii clinical strain GMA001 and treated with colistin (1/4 MIC) or
with colistin (1/4 MIC) combined with endolysin ElyA2 (251g/ml). This experiment was carried out with

an appropriate survival control. *Statistically significant differences (p < 0.05) were determined by Graham-
Breslow-Wilcoxon test (GraphPad Prism v.6); (b) Antimicrobial activity of endolysin ElyA1 in a murine skin
model. CFU quantification in homogenized mouse skin after infection with A. baumannii GMA001 and
treatment with colistin (1/4 MIC) in combination with different doses of endolysin ElyA1 (50 ug and 350 ug)

or with buffer or colistin (controls). (¢) Antimicrobial activity of ElyA1 in a murine lung infection model. CFU
quantification in lungs after infection with A. baumannii GMA001 and treatment post-infection with colistin in
combination with350 ug of ElyA1. * Statistically significant differences (p < 0.05) were determined by t-Student
test (GraphPad Prism v.6).

In this study, we identified two endolysins, ElyA1 and ElyA2, obtained from A. baumannii bacteriophage
Ab1051® and Ab105P2, available in a collection of clinical strains of A. baumannii isolated during the II Spanish
Multicentre Study GEIH/REIPI-A.baumannii 2000-2010 (Accession number PRJNA422585, Genbank Umbrella
Bioproject)**7.

Endolysins ElyA1 and ElyA2 are lysozyme-like proteins with a catalytic domain and a cell wall binding
domain (CBD), responsible for recognition of the cell surface ligands and affinity for the bacterial substrate®**.
This structure is most commonly found in endolysins from bacteriophages that target Gram-positive bacteria.
However, the PG_3 domain present in endolysins ElyAl and ElyA2 has been identified in some Gram-negative
bacteria and in a group of nine endolysins isolated from bacteriophages of A. baumannii; the domain shows high
homology with ElyA1 and belongs to the same family (Fig. 1)**%*. The present findings regarding the molecular
characteristics and comparative genomes in bacteriophage endolysins confirm previously reported findings*’.

The bacteriophages from which these endolysins were isolated, Ab1051® and Ab105®2, occur in a large num-
ber of clinical isolates of A. baummanii*. The cell wall binding domain has been shown to be responsible for the
specificity and affinity of the endolysins for its substrate’”. However, endolysin ElyA1l displayed a broader spec-
trum of activity against strains of A. baumannii and many strains of P. aeruginosa belonging to the same order
(Pseudomonadales), and to lesser extent against some strains of K. pneumoniae from another gammaproteobac-
terial order, Enterobacterales. In this case, the target of endolysin ElyA1, identified in peptidoglycan (PG) binding
domains asa D-Asn", is probably conserved among the Pseudomonadales, thus explaining the broad spectrum of
action of this enzyme. Interestingly, we were not able to detect muralytic activity in endolysin ElyA2, because this
enzyme induces aggregation of the cells in vitro. An aggregative effect was previously described in the endolysin
phil2 isolated from a S. aureus bacteriophage, although the cause of the effect was unknown*'. Autoaggregation
has been suggested to occur in environmental stress caused by toxins, antibiotics, predation or low nutrients*>.

In the present study, we used the cationic polymyxin antibiotic colistin to overcome the impenetrability of
the outer membrane to endolysin ElyAl. Colistin disturbs the outer membrane via an electrostatic interaction
with lipopolysaccharides and phospholipids present in the outer membrane®. The synergistic effect of colistin
and endolysin LysABP-01 (a lysozyme-like protein from the GH19 family) on A. baumannii has previously been
described®. Although the endolysin ElyA1 does not display exogenous activity, because of its inability to cross
the outer membrane, this problem was largely overcome when the enzyme was used in combination with colistin.
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Strain

I Ih— 25 clinica! .isolates (22 STs) fron} the II Spanish Multicentre Study (GEIH-REIPI Acinetobacter 27
baumannii 2000-2010) (Accession number Genbank PRJNA422585)

Pseudomonas aeruginosa | 25 clinical isolates (ST274 [n=15]; ST1089 [n =3]; ST not known [n=7]) 28

Klebsiella pneumoniae 17 clinical isolates belonging to 16 different STs 29

Escherichia coli DH5a Strain using for cloning Novagen

Escherichia coli Rosetta . . .

pLys-S Strain for protein expression Novagen

Plasmid

pET-28a Km®", T7lac, His-Tag, T7-Tag, thrombine protease site Novagen

Primers

Forward 5-AGTTCTGTTCCAGGGGCCCCATATGAACATTGAACAATATCTTGATGAA-3 This study

Reverse 5-AGTGGTGGTGGTGGTGGTGCTCGAGTCACATTGATACTCGATTAGCAAT-3' This study

Table 1. Description of the bacterial strains, plasmids and primers used in this study. Abbreviations: ST;
multilocus sequence type.

The antimicrobial activity of the combined therapy was higher than for both substances used alone, for all of the
strains tested, except the K. pneumoniae strains. A reduction in the colistin MIC of at least fourfold was observed
for all of the A. baumannii strains tested and for P. aeruginosa strain AUS531, and a corresponding twofold
reduction was observed for P. aeruginosa strain AUS601. A reduction in the colistin MIC was also obtained for
K. pneumoniae strain KP17, the strain most susceptible to endolysin ElyA1. The increased antimicrobial activity
with endolysin ElyA1 and colistin was confirmed with an almost 3 log reduction in growth after 6h in all strains
tested, except K. pneumoniae KP17. Growth of the culture reached the same level as in the control after 24 h,
probably due to degradation of the enzyme and colistin, as previously reported®?. In all of the strains tested, the
reduction in the colistin MIC was consistent with the muralytic activity of endolysin ElyA1 observed with those
strains. No antimicrobial activity was observed when this assay was conducted with colistin-resistant strains,
probably because of the inability of the enzyme to access the peptidoglycan layer, as the necessary destabilization
of the outer membrane by the colistin was not produced in these isolates. However, several mechanisms of resist-
ance to colistin have been described. In some mechanisms, the lipopolysaccharide is modified or is not produced,
preventing binding of the colistin to the outer membrane. Other mechanisms include efflux pumps described in
A. baumannii and inhibition of respiratory enzymes such as NADH oxidase in Gram-positive bacteria such as
Bacillus spp. and NADH quinone oxidoreductase in E. coli. The activity of the enzyme is likely to be higher in the
bacteria with colistin resistance mechanisms different from those involving modification of the lipopolysaccha-
rides***. In Europe, the incidence of colistin resistant A. baumannii in intensive care units reached over 23% due
to different mechanisms of resistance such as alterations in the lipopolysaccharide (LPS) as well as acquistion of
mcr genes™. Because of the possible inability of these combinations to inhibit colistin resistant strains, further
studies must be conducted with a range of different bacteria with different mechanisms of resistance to colistin
with the aim of reducing the colistin MIC in combination with endolysin ElyAl.

The results obtained in vitro were confirmed with those of in vivo assays, as the survival of the infected G. mel-
lonella larvae was higher when the worms were treated with a combination of a reduced (fourfold) MIC of colistin
and endolysin ElyA1 than with colistin alone. As a control, the same assay was performed with endolysin ElyA2,
in which no muralytic activity was detected, and there were no differences relative to treatment with colistin. As
in G. mellonella, the antimicrobial activity of ElyA1 was confirmed in vivo. A combination of colistin and 350 ug
of ElyA1 was used to treat the skin infection and lung infection in mice, yielding a significant reduction in the
number of bacteria relative to treatment with colistin alone.

In conclusion, this is the first in vitro and in vivo study in which colistin has been combined with endolysin
ElyA1 (glycosyde hydrolase superfamily 108) to treat infections caused by clinical MDR pathogens. This type
of treatment may enable a reduction in the concentration of colistin used in antimicrobial treatments, thus also
reducing the toxic side effects of the antibiotic. The broad spectrum of action of endolysin ElyA1 would enable the
inclusion of more MDR Gram-negative bacteria as targets for the combined antimicrobial treatment.

Materials and Methods
Strains and culture conditions. The bacterial strains and plasmids used in this study included 25 A. bau-
mannii MDR strains belonging to 22 different sequence types (STs) (Table 1). The strains were isolated from colo-
nized or infected patients within the framework of the II Spanish Multicentre Study, in which 45 Spanish hospitals
participated (GEIH-REIPI Acinetobacter baumannii 2000-2010, Genbank Umbrella Bioproject accession number
PRJNA422585)%%%7. The strains included 25 MDR clinical strains of P. aeruginosa (many included in CC274), all
of which were isolated from cystic fibrosis patients, and 17 carbapenemase-producing strains of K. pneumoniae,
which were isolated in 20 Spanish hospitals during the EuSCAPE project"*2. Moreover, Escherichia coli DH5«
and Rosetta strains were used in cloning assays (Table 1).

All strains were cultured in LB (Luria-Bertani) broth at 180rpm and 37 °C. For solid medium, 2% of agar was
added to LB broth. In the transformation assays, the medium was supplemented with 50 png/ml of ampicillin.
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Identification and purification of endolysins ElyAl and ElyA2. Endolysin gene prediction, from
the genome of the bacteriophage Ab105®1 (GenBank: KT588074.1) and Ab105®2 (GenBank: KT588075.2)*
(Fig. 1), was performed with the bioinformatic tools PHASTER (Phage Search Tool Enhanced Release) and
RAST (Rapid Annotation Using Subsystem). Protein homology analysis was performed by BLAST (Basic Local
Alignment Search Tool), Clustal Omega and MView. Protein families were assigned using InterProScan, and the
domain graphic was assigned with PROSITE MyDomains.

The endolysin genes were amplified by PCR from the genomic DNA of A. baumannii Ab105 (which contains
the DNA of the prophages Ab105®1 and Ab10592) and cloned into the expression vector pET-28a (Novagen).
The recombinant plasmids were transformed into competent E. coli DH5« cells (Novagen) for DNA production
and purification, and the integrity of both constructs was verified by sequencing. All of the primers used are listed
in Table 1. Finally, the plasmids were transformed into Escherichia coli Rosetta pLys-S cells (Novagen) to express
the protein.

After induction with 1 mM IPTG, the culture (11) was grown at 30 °C for 5 h. The bacterial cells were recovered
by centrifugation (in a JLA 81000 rotor, Beckman-Coulter, at 6 Krpm for 15min) and disrupted by sonication
(VibraCell 75042 sonicator, Bioblock Scientific, tip model CV33). The sample was centrifuged in a JA 25-50 rotor
(Beckman-Coulter), at 20 Krpm for 30 min. The supernatant was filtered using 0.45 um syringe-driven filters (Jet
Biofil) and loaded in a His-Trap column (GE Healthcare) equilibrated with 350 mM NaCl, 50 mM Tris pH 7.5,
1 mM TCEP and 10 mM Imidazole. The proteins were eluted with 350 mM NaCl, 50 mM Tris pH 7.5, 1 mM TCEP
and 150 mM Imidazole. After concentration in an Amicon Ultracel 10,000 MCWO concentrator (Millipore), the
sample was loaded into a Superdex 75 16/60 column (GE Healthcare), equilibrated with 150 mM NaCl, 20 mM
Tris pH 7.5 and 1 mM TCEP. The protein was eluted in a single peak. Finally, the pooled peak fractions were con-
centrated to 40 mg/ml, as previously described. The purification process was carried out at 4 °C, and the purity
was determined by SDS-PAGE (Fig. 1).

Determination of the muralytic activity of endolysins ElyAl and ElyA2. Muralytic activity was
determined using the Gram-negative overlay method described by Schmitz et al.>*. Briefly, two clinical isolates
of A. baumannii, MAROO1 and PAU002, were grown to stationary phase (10° CFU/ml) in LB, pelleted and resus-
pended in PBS buffer pH 7.4. Agar was added directly to the bacterial suspension at a concentration of 0.8%, and
the mixture was autoclaved for 15min at 120 °C. The medium containing the disorganized cells and the exposed
peptidoglycan was solidified in Petri dishes, and aliquots (50 ug) of endolysin or the endolysin buffer (as a nega-
tive control) were spotted on the surface.

The muralytic activity was measured using as target a culture of A. baumannii Ab105 treated with EDTA in
order to permeabilize the outer membrane. An overnight culture of A. baumannii Ab105 was diluted 1:100 in LB
medium and grown to exponential phase (0.3-0.4 OD600nm). The culture was centrifuged (3000 g, 10 min), and
the resulting pellet was resuspended in 20 mM Tris-HCI buffer at pH 8.5 with 0.5 mM EDTA before being incu-
bated for 30 min at room temperature. The pellet was recovered by centrifugation and washed twice in Tris-HCI
buffer pH 8.5. Finally, the cells were resuspended in 20 mM Tris-HCI 150 mM NaCl pH8.5 and 25 pg/ml of endo-
lysin ElyA1. The activity was measured by the turbidity reduction assay, as a decrease in the optical density meas-
ured at a wavelength of 600 nm (ODy,) after incubation with shaking at 37°C"”. The ODy,, was measured at
intervals of 5 minutes for a period of 20 minutes and the time point of the highest activity was established. The
optimal pH and temperature for endolysin activity were determined in the turbidity reduction assay. The reaction
was carried out as previously described, with the Tris-HCl at different pH (range 6.5 to 9) and temperature (room
temperature, 30°C and 37°C).

Antibacterial assays. The antibacterial activity of the endolysin was assayed with all of the 67 clinical strains
of A. baumannii, P. aeruginosa and K. pneumoniae (Table 1). The activity was determined using the turbidity
reduction assay, as previously described, at pH 8.5 and 37°C. The incubation times in the presence of EDTA var-
ied according to the species assayed: 30 min for A. baumannii and K. pneumoniae and 15 min for P. pneumoniae.

Broth microdilution checkerboard assay and microdilution test to determine minimum inhib-
itory concentrations (MICs). This assay was conducted with the strains disaplying the highest and the
lowest susceptibility to endolysin. All the strains tested were susceptible to colistin (Table S1), except three strains,
which were colistin resistant: A. baumannii SOF004b, P. aeruginosa AUS034 and K. pneumoniae KP2. The effect
of the interaction between endolysin and colistin was determined by the microdilution checkerboard assay. Seven
serial double dilutions of endolysin and 6 of colistin were made with Mueller-Hinton Broth (MHB) in the wells of
a 96-well microtiter plate. The wells were then inoculated with the test culture to a final concentration of 10° col-
ony forming units (cfu/ml). The MICs of colistin (0 to 2 ugml ') and of the ElyA1 protein (3.125 to 200 ugml ')
were assayed independently in the same plate. The MIC was determined as the concentration of antimicrobial
agent in the well in which no visible growth of bacteria was observed after incubation for 24 h at 35°C.

Time kill curve assay.  Time kill curve assays were carried out with those strains in which the colistin MIC
in the colistin-ElyA1 combinations was decreased by at least fourfold in the checkerboard assays. The assay was
conducted according to previously described techniques®. Flasks of LB containing colistin and colistin plus endo-
lysin at the concentration indicated in the checkerboard assay were inoculated with a 1:100 dilution of an over-
night culture in stationary phase of the tested strain and incubated at 37°C and 180rpm in a shaking incubator.
Aliquots were removed after 0, 6 and 24 h and were serially diluted and plated to produce colony forming units
(cfu). Synergy was established when a <2 —log,, decrease in cells counts at 6 or 24 h in the antimicrobial combi-
nation relative to the most active single agent was observed. No effect was considered to have occurred when the
counts were <2—log ,, lower or higher relative to the culture with the single agent. Antagonism was defined when
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the counts in the culture with antimicrobial combination were >2—log , higher than in the culture with single
most active antimicrobial agent.

The reduction in the colistin MIC in combination with endolysins was also assayed by combining colistin with
another endolysin, ElyA2, isolated from bacteriophage Ab105®2. The curve was constructed for the same strains
and under the same conditions as for colistin + ElyAl.

Galleria mellonella infection model.  The Galleria mellonella model was an adapted version of that devel-
oped by Peleg et al.*® as well as in other studies with endolysins assays***. The procedure was as follows: twelve
G. mellonella larvae, acquired from TRULARYV (Biosystems Technology, Exeter, Devon, UK), were each injected
with 10l of a suspension of A. baumannii GMAO001, diluted in sterile phosphate buffer saline (PBS) containing
1 x 10° CFU (0. 5log). The injection was performed with a Hamilton syringe (volume 100 ul) (Hamilton,
Shanghai, China). One hour after infection, the larvae were injected with 10l of colistin (1/4 MIC) plus endo-
lysin ElyA1l (25 pg/ml), colistin (1/4 MIC) plus endolysin ELyA2 (25 ug/ml), and colistin alone (as controls), all
at the same concentrations used in the time kill curve. After being injected, the larvae were placed in Petri dishes
and incubated in darkness at 37 °C. The number of dead larvae was recorded during 5 days. The larvae were con-
sidered dead when they showed no movement in response to touch®.

The mortality curves corresponding to the in vivo Galleria mellonella infection model were constructed using
GraphPad Prism v.6, and the data were analysed using the Graham-Breslow-Wilcoxon test. In both cases, p-values
< 0.05 were considered statistically significant, and the data were expressed as mean values.

Mouse skin infection model. A superficial skin wound infection by tape stripping in mouse was done as
previously described*”®, with some modifications. Female BALB/c mice (6-8 weeks old) were anaesthetized with
an injection of ketamine (500 pg/mouse) and medetomidine (15 jig/mouse). Mice were shaved with an electric
razor, and an area of skin of 2 cm? was stripped with autoclave tape, until the skin was reddish and shiny. The
tape stripped areas were cleaned with ethanol and allowed to dry. The area was then treated with 10 ul of a culture
of A. baumannii GMAO001 (1 x 10 CFU/ml) or with PBS (in control mice). At 24h post infection, the area was
re-infected under the same conditions as before. The infection was established for another 24 h and the treatments
were applied to groups of mice (n=>5); 3 groups were treated with colistin (1/4 MIC) in combination with 20 pl of
endolysin ElyA1l (50 pug and 350 pg); a colistin control group was treated with 20 pl colistin alone (1/4 MIC); and
a control group was treated with 20 pl of endolysin buffer. Three hours post-treatment the mice were euthanized
with an overdose of thiopental sodium, and the skin in the wound area was excised and homogenized in sterile
0.9% NaCl, in a Retsch MM200 mixer mill. The homogenate was serially diluted and plated on agar MacConkey
supplemented with ampicillin (50 pg/ml), in order to eliminate the normal skin flora, and to calculate the A. bau-
mannii GMA001 CFUs in each skin sample.

Mouse lung infection model. A culture of A. baumannii GMA001 was grown from a 1:100 dilution of an
overnight culture to an ODg, of 0.7. The cultures were washed and suspended in PBS to obtain an inoculum of
4-6 x 107 CFU in 40 pl per mouse.

Male BALB/c mice, 9-11 weeks old were anaesthetized by inhalation of sevofluorane (Zoetis, Madrid, Spain)
and suspended by their incisors on a board in a semi-vertical position. The mice were infected by intratracheal
instillation with 40 pl of a bacterial suspension (4-6 x 107 CFUs). The mice were anaesthetized by inhalation of
sevofluorane (Zoetis, Madrid, Spain) and divided into three groups (n=10). At 3h post-infection, the control
group was treated by intranasal instillation of 30 ul endolysin buffer, the colistin control group was treated with
colistin (1/4 MIC), and the treatment group was treated with a combination of colistin (1/4 MIC) and endolysin
ElyA1 (350 ug). At this point, three mice were euthanized to determine the bacterial load in the lungs before
treatment. Finally, 20 h after treatment, mice were euthanized with an overdose of sodium thiopental (Sandoz,
Holzkirchen, Germany), and the lungs were extracted and homogenized in 1 ml of sterile 0.9% NaCl, in a Retsch
MM200 mixer mill. The homogenate was serially diluted and plated on agar MacConkey for determination of the
A. baumannii GMA001 CFUs in each lung sample.

All of the experiments with mice were conducted with the approval of and in accordance with the regulatory
guidelines and standards established by the Animal Ethics Committee (INIBIC-CHUAC, Spain, project code
2016/R06).
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Chapter Ill. Genomic Analysis of Molecular Bacterial Mechanisms of
Resistance to Phage Infection

The interest in phage therapy, as an alternative to treat MDR pathogens, has
led to improve the treatment in different ways to overcome its drawbacks. One
of the main disadvantages of phage therapy is the appearance of phage-
resistant strains, which could provoke failure in the therapy (262). In order to
have successful therapies, it is an essential objective, to previously know the
resistance mechanisms of the target strain, which can be overcome by the
analysis of metadata provided by WGS, which can help us to achieve in silico

this goal.

In this study, we searched the genes associated with the phage resistance
mainly focused on the CRISPR-Cas systems analysing the presence of
CRISPR arrays and putative Cas proteins in 18 A. baumannii clinical strains
from the collection of the “ll Spanish Study of A. baumannii GEIH-REIPI 2000-
2010” (Umbrella Bioproject PRJINA422585) belonging to the ST-2 clonal

complex.

In these genomes, we detected, in silico, the presence of genes putatively
associated with phage resistance associated to the abortive infection system,
restriction-modification, newly characterized system (yet to describe the function
in A. baumannii) and CRISPR-Cas system. We found a moderately higher
presence of these genes in the strains of 2010 in comparison to those of 2000.
Furthermore, we detect its presence in genomic islands (GI’s) at a higher rate in
the strains of 2010 compared to those of 2000.

We searched the CRISPR-Cas systems following the protocol made by
Shmakov et al (263) with some modifications, due to the lack of CRISPR
searching tools in metagenome data. We found 38 potential CRISPR arrays in
17 of 18 of the strains. Furthermore, we locate 705 proteins whose function
could be used by CRISPR-Cas systems.

This chapter is the result of an online stay in the University of Leicester with Dr
Andrew Millard learning deep analysis of sequenced metadata through a

significant number of bioinformatics programs and pipelines in Linux
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environments and the usage of Python language for the data processing. The

chapter also constitutes a manuscript sent to BMC Genomics.
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Abstract

Background

In order to optimize phage therapy, we need to understand how bacteria evolve against phage attack. One of
the main problems of the phage therapy is the appearance of bacterial resistance variants. The use of
genomics to track antimicrobial resistance is increasingly developed and used in clinical laboratories. For
that reason, it is important to consider, in an emerging future with phage therapy, to detect and avoid phage
resistant strains, that can be overcomed by the analysis of metadata provided by WGS. Here, we identified
genes associated with phage resistance in 18 Acinetobacter baumannii clinical strain belonging to the ST-2
clonal complex during a decade (Ab2000 vs 2010): 9 from 2000 and 9 from 2010.

Results

The presence of genes putatively associated to phage resistance were detected. Genes detected were
associated with an abortive infection system, restriction-modification system, genes predicted to be
associated with defence systems but with unknown function and CRISPR-Cas system. Between 118 and 171
genes were found in the 18 clinical strains. On average, 26% of these genes were detected inside genomic
islands (Gls) in the 2000 strains and 32% in 2010 strains. Furthermore, 38 potential CRISPR arrays in 17 of
18 of the strains were found, as well as 705 proteins associated with CRISPR-Cas systems.

Conclusions

A moderately higher presence of these genes in the strains of the 2010 in comparison to those of the 2000
were found, especially those related to the R-M system and CRISPR-Cas system. The presence of these
genes in Gls in a higher rate in the strains of the 2010 compared to those of the 2000 was also detected.
WGS and bioinformatics could be powerful tools to avoid drawbacks when a personalized therapy is
applied. In this study, it allows us to take care of the phage resistance in A. baumannii clinical strains to
prevent a failure in a possible phage therapy.

Background

As part of the ESKAPE pathogens, A. baumanniiis frequently isolated from infections in clinical
environments, and its resistance against multiple antibiotics is increasingly common (1). For this reason, it
is necessary to opt for alternative treatments, such as phage therapy. However, the ability of bacteria to
develop resistance mechanisms against phages is possible, even when there is no previous treatment with
phage therapy due to the constant coevolutionary interactions (2). The spread of phage resistance presents
a significant challenge to the efficacy of the therapy (3), (4).

It is important to know and characterize the phage resistance mechanisms of a certain species, clone or
strain, prior to phage treatment in order to minimise treatment failure. Whole-genome sequencing (WGS) has
been demonstrated to be a powerful tool in the detection of phage-resistance mechanisms, as well as the
evolution of CRISPR-Cas arrays in bacteria subjected to phage pressure (5, 6). WGS is increasingly becoming
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a cheaper and faster technology, thus it is implemented progressively in routine hospital diagnostics and
research (7).

Recently, new or modified phage resistance mechanisms have been discovered and characterized (8).
Although a large part of defence systems against phages are maintained over generations, there is a
continuous emergence of resistance mechanisms due to spontaneous mutations as a consequence of the
coexistence of phage and bacteria. Most of these mutations occur in the phage receptors proteins, employed
by the phages to adhere to the cell (8). In recent years, phage resistance mechanisms are attracting
increasing interest due to the rising knowledge in phage interactions with bacteria. This is leading to the
discovery and characterization of new phage resistance mechanisms such as Zorya, Druantia or Thoeris (9).
Phage resistance mechanisms are typically clustered in genomic “defence islands”: mobile genetic
evolutionary elements that contain genes associated with phage defence systems (9, 10).

The main resistance mechanisms are related to the inhibition of the phage adsorption, blocking of phage
DNA injection, cutting of the injected DNA, inhibition of the phage DNA replication, interference in the phage
assembly, and bacterial suicide (11). In Fig. T we summarized all the characterized phage resistance
mechanisms.

In this study, we focused in those which could be bioinformatically detected without any experimental
process:

i) Abortive Infection systems, characterized by the fact that the phage enters the cell, but its development is
interrupted in any phase (replication, transcription or translation). The mechanism of action is not entirely
clear, either because of their complexity or because they are widely varied from one species to another (12).

ii) Toxin/Antitoxin systems are a specific type of ABI system but they are well-characterized and widespread
through diverse species (13). In this system, a toxin is produced by the cell and is neutralized by an antitoxin.
The expression of these molecules is highly controlled and varies from one system to another. When the
balance between one molecule and the other is disturbed, the toxin is released and the bacteria die (14).
iii) Restriction-Modification systems consist of a restriction endonuclease and a This type of system
distinguishes the DNA of the host from foreign DNA to recognize and destroy phage DNA after its injection
into the When unmethylated phage DNA enters a bacteria which possesses the R-M system, it will be cleaved
by the restriction endonuclease or methylated by the methyltransferase to escape the restriction (15).
iv) CRISPR-Cas (clustered regularly interspaced short palindromic repeats — CRISPR-associated system is an
adaptative immune system that bacteria develop against phage DNA/RNA and other foreign DNA (16). The
typical structure of the CRISPR-Cas locus is a leader sequence, followed by the repeat-spacer array and the
cas genes operon (17). The adaptation of the CRISPR-Cas system is due to the acquisition of the spacer
sequences, which are small fragments of foreign nucleic acids, between the repeats of the CRISPR locus
(17). The functioning of the CRISPR-Cas system, usually divided into three steps (adaptation, processing
and guidance of the crRNA-CRISPR RNA- and targeting and interference of the foreign DNA/RNA) is carried
out by the Cas (CRISPR-associated) proteins (18). CRISPR-Cas systems are classified according their
conserved cas genes and the architecture of the cas operon (19). Until recently, little data existed about
CRISPR-Cas systems in A. baumannii. The pangenome analysis of A. baumanniihas shown CRISPR-Cas
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systems in the species (20). One of the most characterized systems in A. baumanniiis the CRISPR I-Fb
system (21). However, most of the Cas-related genes and CRISPR arrays are yet not identified and
characterized.

In this study, we searched for putative genes associated with phage resistance and we focused on CRISPR-
Cas systems by studying the CRISPR arrays and Cas protein presence through bioinformatic approach in 18
genomes of clinical strains of A. baumanniiisolated in the “Il Spanish Study of A. baumannii GEIH-REIPI
2000-2010".

Methodology
Genome database

18 clinical A. baumannii genomes previously sequenced and annotated (Il Spanish Multicenter Study, GEIH-
REIPI Acinetobacter baumannii 2000—2010; Umbrella Bioproject PRINA422585) (22), (23) have been
studied. Nine strains were from the 2000 and nine from 2010. All of the strains belong to the ST-2 clone (22).

Search for general genes associated to bacteriophage
resistance and their presence in genomic islands

In order to analyse the presence of genes putatively associated with phage resistance systems, a custom
database based on genes from the “PADS Arsenal database” (https://bigd.big.ac.cn/padsarsenal/) was
created (24). The genes were grouped in five systems: ABI systems related (not belonging to toxin/antitoxin
system), TA systems related, R-M system related, CRISPR-Cas associated proteins and newly (NEW)
characterized systems related genes. In this last category we included those genes which hit against known
phage resistance genes but were associated with genes predicted to be associated with phage resistance
functions and whose function in A. baumanniiis not clear yet, such as newly characterized systems (e.g.
Zorya, Druantia, Thoeris). A blast search of the complete genomes against this database and filtered out
those hits which e-value > 1E-04 was made. The percentage of the genes involved in resistance was
calculated by dividing the genes predicted to be associated with phage resistance by the total number of
genes in the bacteria genome.

To locate Genomic Islands (Gls) three different approaches were used: IslandViewer with default settings,
(25), blast search with default settings and cut-off of e-value< 1e-03 against a previously constructed
ICEberg database (26) and checking the Guanine-Cytosine (GC) content of the contigs of each genome (27).
The previously detected phage-resistance genes were localised in the Gls detected per genome and average
percentage of genes by collection was calculated.

Search and characterization of CRISPR arrays

In a first try, CRISPRCasFinder (28) was employed but no putative CRISPR-Cas system was found. For this
reason, CRISPR arrays were found using the CRISPR Recognition Tool (CRT) (29). The modification
proposed by Rho et al (29) for whole-metagenomic assembled genomes called metaCRT was used (30) with
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the following parameters: minimum number of repeats: 3, minimum repeat length: 12, maximum repeat
length: 70, minimum spacer length: 18, maximum spacer length: 80 and with a search window of: 6.

In order to filter and validate the CRISPR arrays, a similar procedure to the first step in the protocol developed
by Shmakov et al was followed (31) (Fig. 2). In the first step, CRISPR arrays separated by no more than 6
Open Reading Frames (ORF) to a putative Cas protein identified before, were considered to be part of a
putative CRISPR-Cas system. Those which not were part of a putative CRISPR-Cas system were considered
to be single possible CRISPR arrays. To validate these arrays, we made a short-blastn search of the spacers
of the possible CRISPR arrays against all phage genomes using the INPHARED database (32). Results that
were >95% in identity and those arrays whose query hit was larger than 20 were considered putative CRISPR
arrays.

Negative blast hits of the spacers of the CRISPR arrays against bacteriophage follow the procedure
described by Shmakov forisolated arrays: first, arrays > 400 bp and with an ORF coverage > 0.95 were
filtered out. Second, all arrays with < 850 bp that had domain in the Conserved Domain Database (CDD)
search were filtered out (33), (34). Then, pairwise distances between spacers of each array were calculated
(number of matches in the longest blastn hit between them, divided by the length of the smaller spacerin the
pair). The spacers of each array were clustered using single linkage clustering following the same procedure
as Shmakov et al. with a cut-off of 0.3. A spacer similarity index was calculated for each CRISPR array as
the number of clusters formed divided by the number of spacers in the array (1 means that all the spacers
are different). Those arrays whose spacer similarity index was < 0.85 were filtered out. The rest were
considered putative CRISPR arrays.

To complement the procedure made by Shmakov, a search about common special low-complexity
sequences that may be confused as CRISPR arrays was made, known as false-CRISPR elements (35). The
presence of Tandem repeats, potentially hypermutable regions which enable bacteria to adapt to evolving
environments without increasing their mutation rate, was checked with Tandem Repeat Finder (36-38). The
presence of short low-complexity repeats was also examined with RepeatMasker (39). To test the results
and to complete the search of low-complexity sequences a blast search against an existing false-CRISPR
elements database was obtained from the CRISPRone website (35).

The search for possible Cas-related proteins was made, based on the method of Zhang et al. (40), but
adding a search in “HMMCAS” website of all of their available HMM models, performed with a cut-off of
reported e-values of (41). The 18 genomes were examined using hmmscan with all of the pfam HMM
profiles based on NCBI entries of known Cas protein families searching in the pfam database 70 Cas-related
protein families and other CRISPR-associated proteins in the pfam database (e. g. DEAD/DEAH box
helicase), 93 families which were in the TIGRFAMS resource and the 24 newly characterized families (40,
42-44). For the TIGRFAMS database proteins it was necessary to build an HMM profile with hmmbuild with
default settings (42) making a previous alignment for each compound of proteins with Clustal Omega
version 1.2.4 (ClustalO) (45).

All of the input and output data for the searches (genes associated to phage resistance, genomic islands,
CRISPR arrays and Cas proteins) were processed with Python (www.python.org) and BioPython (19304878
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(46), (47).

In order to stablish the evolution and to compare the presence of the CRISPR arrays among the same clonal
complex of the 18 clinical strains of A. baumannii, a phylogenetic tree was made using the CRISPR spacers
detected. Trees were built using MEGA7 with CLUSTALW alignment (MEGA version 7.9.26) (48-50).

Results

Genes putatively associated with phage resistance in A.
baumannii clinical strains and their presence in Gls

Between 118 and 171 genes were detected per genome, those could be putatively associated with bacterial
defence against bacteriophages (Table 1, Additional file 1). The frequency (%) of each resistance system
was calculated with the number of genes of each group divided by the total genes per genome. It was
observed that the genes related to R-M and CRISPR-Cas systems showed a slightly higher prevalence in
2010 strains (Fig. 3, A). The frequency of the genes related to ABI, TA and new systems remained constant in
both collections. The presence of putative phage resistance genes in Gls was also predicted (Table 2,
Additional file 1), and it was found that in Gls represents in strains of the year 2010 approximately a 24% in
average and approximately a 19% in the strains of the year 2000 in average (Fig. 3, B). The observed
increase was produced specially in genes related to the RM system, to those related with new phage
resistance mechanisms and CRISPR-Cas system.

CRISPR arrays

180 putative predicted arrays were found (without filtering) using metaCRT in the 18 genomes of ST-2 A.
baumannii clinical strains (Table 3, Additional file 2) Post the complete process of filtering designed by
Shmakov et al. (31) and removing the low-complexity sequences (35), only 40 CRISPR arrays were selected
(Table 1): 18 CRISPR arrays were present in the 2000 strains and 22 in the 2010 strains. All the strains,
excepting in the Ab161_GEIH-2000 strain, presented at least 1 CRISPR array.
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Table 1
CRISPR arrays present in the genomes of of 18 A. baumannii clinical strains.

Strain
Ab33_GEIH-
2010

Ab33_GEIH-
2010

Ab49_GEIH-
2010

Ab49_GEIH-
2010

Ab49_GEIH-
2010

Ab54_GEIH-
2010

Ab54_GEIH-
2010

Ab54_GEIH-
2010

Ab76_GEIH-
2010

Ab76_GEIH-
2010

Ab76_GEIH-
2010

Ab103_GEIH-
2010

Ab103_GEIH-
2010

Ab103_GEIH-
2010

Ab103_GEIH-
2010

Ab104_GEIH-
2010

Ab104_GEIH-
2010

Ab104_GEIH-
2010

Contig

MSMK01000003

MSMK01000187

MSMMO01000317

MSMMO01000323

MSMMO01000347

MSML01000240

MSML01000469

MSMLO01000525

MSLY01000008

MSLY01000677

MSLY01000708

MSLX01000655

MSLX01000266

MSLX01000388

MSLX01000506

MSMAOQ01000019

MSMAQ1000107

MSMAQ1000246

Size

160

198

96

198

122

198

96

164

96

198

164

160

164

96

198

96

160

164

Start Stop
10462 10622
18280 18478
1114 1210
78 276
367 489
3914 4112
1108 1204
8017 8181
835 931
3369 3567
714 878
9148 9308
2680 2844
1108 1204
55 253
1450 1546
4402 4562
10815 10979
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Repeat

ATTTTGAATTTAAAA

ACAAAAGAAAAAT

TCATTTTGCTGTTGTT

ACAAAAGAAAAAT

TTTTAAATTCAAAA

AATTTTCTTTTCT

TCATTTTGCTGTTGTT

ATATATTTTTGA

TCATTTTGCTGTTGTT

AATTTTCTTTTCT

ATATATTTTTGA

ATTTTGAATTTAAAA

ATATATTTTTGA

TCATTTTGCTGTTGTT

ACAAAAGAAAAAT

TCATTTTGCTGTTGTT

TTTTAAATTCAAAAT

ATATATTTTTGA

N° of
spacers
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Strain
Ab105_GEIH-
2010

Ab105_GEIH-
2010

Ab121_GEIH-
2010

Ab122_GEIH-
2010

Ab155_GEIH-
2000

Ab155_GEIH-
2000

Ab158_GEIH-
2000

Ab158_GEIH-
2000

Ab166_GEIH-
2000

Ab166_GEIH-
2000

Ab166_GEIH-
2000

Ab166_GEIH-
2000

Ab169_GEIH-
2000

Ab169_GEIH-
2000

Ab175_GEIH-
2000

Ab175_GEIH-
2000

Ab177_GEIH-
2000

Ab183_GEIH-
2000

Ab183_GEIH-
2000

100

Contig

LJHB0O1000001

LJHB01000010

MSLZ01000141

MSMDO01000782

LJHA01000001

LJHA01000002

MSMC01000196

MSMC01000525

MSMG01000383

MSMGO01001001

MSMGO01000974

MSMG01001128

MSMF01000039

MSMF01000336

MSMI01000153

MSMI01000682

MSMEOQ1000459

MSMJ01000620

MSMJ01000380

Size

198

292

198

164

198

292

198

136

86

198

79

194

96

198

79

86

198

96

198

Start Stop
125508 125706
7321 7613
4992 5190
711 875
125512 125710
7323 7615
4027 4225
868 1004
859 945
293 491
1310 1389
304 498
797 893
152 350
8115 8194
2355 2441
215 413
1077 1173
78 276
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Repeat

ACAAAAGAAAAAT

TAAAATAATTTTAA

AATTTTCTTTTCT

ATATATTTTTGA

ACAAAAGAAAAAT

TAAAATAATTTTAA

AATTTTCTTTTCT

ATTTTTTAATATTTA

AAATAGCCTAAGC

ACAAAAGAAAAAT

TCTGCTGTCGGAAA

ACGACGTGGACGATCTTC

TCATTTTGCTGTTGTT

ACAAAAGAAAAAT

TTTCCGACAGCAGA

AAATAGCCTAAGC

ACAAAAGAAAAAT

TCATTTTGCTGTTGTT

ACAAAAGAAAAAT

N° of
spacers




Strain Contig Size Start Stop Repeat N° of
spacers

Ab192_GEIH- MSMH01000263 96 1139 1235 TCATTTTGCTGTTGTT 2

2000

Ab192_GEIH- MSMH01000273 157 0 157 TTGAATTTAAAA 4

2000

Ab192_GEIH- MSMHO01000395 198 21634 21832 ACAAAAGAAAAAT 4

2000

A phylogenetic tree of the complete CRISPR array sequences was constructed (Fig. 4), and showed an equal
distribution of the spacers between the strains of the two years. Some of the spacers were predicted to be
the same even in strains different year collections. Few of the arrays were unique respect to the other, such
as the present in the 2000 strains Ab158_GEIH-2000_MSMC01000525, Ab166_MSMG01000383,
Ab166_MSMGO01000974, Ab166_MSMGO01001128, Ab175_MSMI01000153 or Ab175_ MSMI01000682
However, there were 5 CRISPR arrays grouped that only were represented in the 2010 strains (Fig. 4).

Cas-related proteins

When HMM against Cas-known, Cas-related and CRISPR-associated protein families was employed, 705
Cas-related proteins were identified in the 18 genomes: 341 Cas-related proteins were detected in 2000
strains and 364 in 2010 strains (Table 4, Additional file 3). Most of them were identified as DEAD/DEAH box
helicase (207 of the total) and as Type Ill Restriction Unit Res Ill (195 of 705). The vast majority of them were
located next to proteins whose predicted function does not match with a Cas protein function or to proteins
whose function was unknown. Other Cas-related were close in the same contig thereby giving us a clue to
help identifying a functional Cas cluster. For example, in the contig MSLX01000260 from the Ab103_GEIH-
2010 strain a putative Helicase_C protein (OLV37994.1) and a Cas_St_Csn2 protein (OLV37998.1) were only
of 2 ORF distance between them. However, the function of the surrounding proteins was hypothetical, thus
hindering the identification process as a Cas cluster.

Discussion

In clinical laboratories, genomics is rapidly being developed and utilized to track antibiotic resistance. As a
result, it is critical to explore how to detect and avoid phage resistant strains, if a treatment based on phages
was going to be applied, by using WGS metadata analysis. In this study, we looked for genes linked to phage
resistance in 18 clinical strains of A. baumannii. We constructed a database with genes based in the public
PADS database, as it is the most complete database about prokaryotic antiviral defence systems so far, as
well as being collecting newly discovered types of defence systems to the BIG Data Center (24, 51). In this
case, the high number of genes made us establish groups in order to simplify the results of the blast hits. We
also tried to identify the presence of CRISPR-Cas systems by separating the search in CRISPR arrays and
Cas proteins.

A difference between the presence of phage resistance genes in 2010 strains and 2000 strains was
observed, with a higher presence of genes related to the RM system and CRISPR-Cas system and lower of
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TA-related genes. The natural reciprocal selection pressure between host bacteria and phage increases the
infectivity of the phage and the phage-resistance in the bacterium side (52). In fact, phage populations are
ubiquitous at body surfaces such as lungs, intestines or skin, and they outnumber bacteria at least by 10-
fold (53). In this study, the acquisition of phage resistance genes is correlated with a higher presence of
complete prophages in the strains of the 2010 in comparison with those of 2000 (54). This could be a result
of the development of phage resistance adaptative systems, that could promote the emergence of new
phages that can overcome them, such as could happen with Ab105-1¢ and Ab105-2¢, two prophages
present in the 2010 collection strains but not in the 2000 collection strains (54).

Defence systems are regularly obtained by bacteria and archaea through horizontal gene transfer (HGT)
owing to environmental adaptation of the bacterial communities (55, 56). We found a major average of
genes acquired by HGT in the 2010 strains rather than in the 2000 ones, especially those genes related to
RM system and CRISPR-Cas. It was demonstrated that only ~ 4% of RM systems are in the core genomes of
prokaryotic species, suggesting they are commonly transferred (57). CRISPR-Cas systems display weak
consistency within the core genome, demonstrating the prevalence of the HGT spreading this system (57,
58). The RM system and the CRISPR-Cas system commonly coexist with an elevated contribution to the
bacterial immunity and they rarely operate on their own (57, 59). However, they are far from being perfect in
the bacterial resistance, and phage can escape these systems by many different ways, for example the anti-
CRISPR proteins (8, 60). We also observed a decreasing number of TA-related genes through the years, even
their presence in Gls is higher in the 2000 strains than in the 2010’s. This could be because the
counteradaptation of the phage may be reached by developing antitoxin in the phage genome that inhibit
the cell death and thus promote the infection of the phage (61, 62) or because they could have evolved into
Cas proteins of the CRISPR-Cas system, as the TA proteins are considered as ancestors of Cas2 proteins
(63).

Furthermore, we found the CRISPR-Cas genes blast hit results incomplete due to the separation in contig
assembly of the genomes, which prevented us from identify proteins or arrays related to the CRISPR-Cas
proteins identified in small contigs (data not shown), and also due to the high diversity of the Cas proteins
and the little knowledge about these proteins in clinical strains of A. baumannii, which increases the
difficulty identifying these type of proteins (20, 64). As a consequence, we examined the presence of CRISPR
arrays and Cas proteins separately. We establish a methodology to discard false-CRISPR elements based on
the method of Shmakov et al. (65) and posteriorly completed with a full evaluation of the quality of the
CRISPR arrays filtered based on the search of tandem repeats, simple repeats and their presence on phage
genomes (35). Secondly, another reason of developing an alternative method is the nature of the multi-
resistant pathogens, their constant adaptation to different environments and thus the continuous
acquisition of different mobile elements, which provokes the appearance of new CRISPR-Cas yet to be
identified (66). This also fosters and extends the variability in the Cas proteins, complicating their
characterization.

40 CRISPR arrays were found in the 18 A. baumannii clinical strains from the ST-2 clone. All of the strains
presented at least one CRISPR array except one, Ab161_GEIH-2000. The vast majority of the arrays are
shared between the clone ST-2 in both collections, with some exceptions such as the five arrays only found
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in 2010 strains. It has been shown that the distribution of CRISPR-Cas system is MLST dependent and non-
random, and thought to be a better discriminating tool than classical MLST in discriminating different K.
pneumoniae (67, 68). On the other hand, the detection of different unique CRISPR arrays only in the 2000
strains demonstrates the dynamic interaction of these arrays throughout the years.

All of the CRISPR arrays in this study were without any Cas or putative Cas protein near to them. It was
described that these “orphan” arrays belong to unknown CRISPR-Cas systems due to be to an extremely
evolutionarily remote type of CRISPR-Cas (65). This existence of isolated CRISPR arrays could be explained
for four reasons. First, the contig format of the studied genomes could provoke that some arrays are
detected in small orincomplete contigs. Secondly, some Cas endonucleases such as Cas1 and/or Cas6 can
recognize remote CRISPR arrays (69, 70). Third, it may occur the possibility of some of the unique isolated
arrays form part of an undescribed CRISPR-Cas cluster extremely distant to the ones already characterized
(65). And fourth, the strains may have lost the cas genes thus leaving the isolated arrays (65). The Cas
distribution observed in this work would correspond and complete any of the hypothesis about the
explanation of “orphan” CRISPR arrays mentioned before as the putative Cas proteins hit through the HMM
search could form part of a complete Cas cluster. However, as it was said at the ending of the results
section, it was impossible to determine in silico if the putative Cas detected form part of a complete and
functional Cas loci.

The localization and characterization of defence systems against phages is a necessary step when
designing an effective phage therapy. The WGS combined with an effective bioinformatics strategy would
allow us to know what mechanisms the clinical strains have. This study shows the wide presence of genes
associated with resistance against phages and their acquisition by Gls for 10 years in clinical A. baumannii
strains from the same clonal complex ST-2 and the CRISPR arrays present on them.
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Figure 1

Representation of the main mechanisms of bacterial resistance against phage infection (from the left in a
clockwise sense). 1. a: The phage recognizes the bacterial membrane receptor and can carry out the
infection; b: Alterations in the receptors are produced by mutations and prevent the phage from recognizing
the receptor, so it Will not infect the bacteria; c: The bacteria can block recognition by producing inhibitors
that bind to receptors. 2. Production of exopolysaccharide or extracellular matrix. 3. OMVs are composed of
membrane lipids, membrane proteins and periplasmic components and they are as a decoy against phages
as a defence mechanism. 4. a. Bacteria block the injection of DNA from other phages, acquiring Sie systems
through prophages with this type of protein; b. Once the bacterium has the prophage in its genome with the
proteins that code for the Sie system, it will be able to block the entry of DNA from other phages. 5. a. The R-
M system distinguishes between methylated and unmethylated DNA. Restriction enzymes cannot cut
methylated DNA,; b: If the phage DNA is not methylated, this system can cut the injected DNA. 6. CRISPR-Cas
recognizing phage DNA sequences, incorporating them into the system and producing enzymes that are
capable of recognizing these sequences to cut them. 7. The PICI system is found in the bacterial genome
and induced by helper prophages to produce mature phage particles that assemble the PICI system itself to
kill the infected cell and spreading this system to adjacent cells. 8. a. The most characterized Abi system is
the toxin-antitoxin system. Under normal conditions, the bacterium expresses both proteins equally, so cell
death does not occur; b. When the organism is subjected to stress situations, such as phage infection, the
toxin is highly expressed in comparison with the antitoxin, causing cell death.
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Figure 2

Search procedure of CRISPR-Cas systems in 18 genomes of A. baumannii clinical strains. Orange rectangle
represents bioinformatic programmes used for that task. Green plus marks represent a positive result for
each operation. Red minus marks represent a negative result for each operation.
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Figure 3

A. Frequency (%, rounded to two decimal numbers) of each group of genes in each genome respect to the
total of genes: ABI (Abortive Infection System), TA (Toxin/Antitoxin system), RM (Restriction-Modification
system) and NEW (genes associated with newly phage resistance bacterial mechanisms, e. g., Zorya,
Hachiman, Druantia. B. Presence and non-presence of the putative phage resistance genes in Gls. The
presence (%, rounded without decimal numbers) section is divided into the different groups of genes.
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Phylogenetic classification of the CRISPR arrays detected in 18 genomes of A. baumannii ST-2 clinical
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Chapter IV. Temperate bacteriophages (prophages) in Pseudomonas
aeruginosa isolates belonging to the international Cystic Fibrosis clone

(CC274)

Pseudomonas aeruginosa is a common pathogen in patients with CF.

Quorum sensing (QS) systems and bacteriophages are associated with the
virulence and evolution of P. aeruginosa during both intermittent and chronic
lung infections in CF. Temperate phages have the ability to integrate into the
host genome as prophages. They can confer an increase in the colonization
success as they contribute to key factors like pathogenicity and biofilm
formation. Furthermore, their relationship with the QS system of the bacteria

may participate indirectly in this process thus favouring the phage infectivity.

In the fourth chapter, we analyse and characterize the prophages present in
the genome of 24 clinical strains of P. aeruginosa belonging to the cystic
fibrosis (CF) international clone ST274-CC274. We identified two new
prophages, one inovirus and one siphovirus, the last with a gene, named bci,
never previously described in phages that are related to the infection ability of
the phage. Also, its relation with the Quorum Sensing system was analysed.

The genomic analysis of the 24 clinical isolates of P. aeruginosa revealed the
presence of four complete prophages in three of the isolates. Three of them
belonged to the filamentous phage genus of Inovirus, a group of phages that
promote the formation of P. aeruginosa biofilm in CF lungs (264, 265). Two of
the Inovirus identified, were similar to P. aeruginosa pf4 and pf5 Inovirus
phages characteristics of P. aeruginosa, and the third one, present in the
AUSA411 isolate, was characterized as a new Inovirus-type phage. The fourth
complete prophage identified, was a Siphovirus prophage present in the P.

aeruginosa CF clinical strain AUS531.

The new Inovirus phage, identified in the isolate AUS411, was designated
pf8_ST274-AUS411 (also called pf8) (GenBank accession number
MN710383). The homology analysis showed a high protein homology with
the pf4 Inovirus, but two proteins were characteristics of this phage, a
putative toxin-antitoxin module and a methyltransferase. The Siphovirus
identified in the clinical strain AUS531 was designated AUS531phi
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(accession number MN585195), and the analysis of the sequence revealed
the presence of the Bci (Bacteriophage Control Infection) protein, which
possess a QS regulatory role. Both temperate phages, pf8 from the AUS411
strain and AUS531phi from the AUSS531 strain, were observed through
Transmission Electron Microscopy (TEM) confirming that the former was an
Inovirus, with its characteristic filament appearance, and the second a

siphovirus with a long non-contractile tail and an icosahedral capsid.

The role of the Bci protein in the interaction of the phage AUS531phi and the
bacteria was analysed. For this objective a deletion of the gene was done,
thus obtaining a mutant strain named AUS531Abci. This mutant strain was
cultured in presence of mitomycin and the prophage, without the bci gene,
was induced obtaining a mutant phage, AUS531phiAbci. The mutant strain
was infected with the wild type phage and with the mutant phage and its
effect was analysed in the expression of QS-related genes, the infection
curve, motility, biofilm and pyocyanin secretion. The results demonstrated
that bci gene increases the ability of the bacteriophage to infect P.
aeruginosa via the regulation of QS network, decreasing the expression of
the 4 genes selected (LasR, RhIR, QscR and PgsR) when the mutant strain
AUS531Abci was infected with the wild type phage AUS531phi. The capacity
of infection of the AUS531phi phage was compared in the infection curve,
being higher when the phage carries the bci gene. Infection by the phage
AUS531phi, containing the bci gene, demonstrates the relation of this phage
protein with the regulation of different virulence factors in the bacteria, as a
reduction in motility and an increase in biofilm production and pyocyanin

secretion.

Thus, it can be concluded that the bci gene present in the phage AUS531phi
plays a role in the infective ability of this phage regulating the host QS and
virulence factors (such as pyocyanin and motility). Further studies are
needed to elucidate the role of Inovirus type phage Pf8 and its putative

toxin/antitoxin system and methyltransferase.

The corresponding paper at Frontiers in Microbiology journal is attached:
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Bacteriophages are important in bacterial ecology and evolution. Pseudomonas
aeruginosa is the most prevalent bacterial pathogen in chronic bronchopulmonary
infection in cystic fibrosis (CF). In this study, we used bioinformatics, microbiological
and microscopy techniques to analyze the bacteriophages present in 24 P aeruginosa
isolates belonging to the international CF clone (ST274-CC274). Interestingly, we
detected the presence of five members of the Inoviridae family of prophages (Pf1,
Pf4, Pf5, Pf6, Pf7), which have previously been observed in P. aeruginosa. In addition,
we identified a new filamentous prophage, designated Pf8, in the P aeruginosa
AUS411.500 isolate belonging to the international CF clone. We detected only one
prophage, never previously described, from the family Siphoviridiae (with 66 proteins
and displaying homology with PHAGE_Pseudo_phi297_NC_016762). This prophage
was isolated from the P aeruginosa AUS531 isolate carrying a new gene which is
implicated in the phage infection ability, named Bacteriophage Control Infection (bci).
We characterized the role of the Bci protein in bacteriophage infection and in regulating
the host Quorum Sensing (QS) system, motility and biofilm and pyocyanin production in
the P, aeruginosa isogenic mutant AUS531Abci isolate. The findings may be relevant for
the identification of targets in the development of new strategies to control P. aeruginosa
infections, particularly in CF patients.

Keywords: prophages, inovirus, siphovirus, Pseudomonas, CC274 clone, cystic fibrosis
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INTRODUCTION

Pseudomonas aeruginosa is a ubiquitous Gram-negative
microorganism and a multidrug-resistant (MDR) pathogen. It is
the main pathogen that causes chronic respiratory infection in
cystic fibrosis (CF) and is associated with substantial morbidity
and mortality in CF patients.

Bacteriophages are bacterial viruses that infect bacteria.
Phages generally undergo a lytic (virulent) or lysogenic
(temperate) life cycle. Lytic phages enter host cells and
subsequently lyse and kill them, releasing phage progeny into the
surrounding medium. Temperate phages possess the ability to go
through a lysogenic cycle, entering the host cell and integrating
their nucleic acid in the host genome or residing in the host cells
as prophages, potentially existing in a stable state for generations
until induced to start a lytic cycle (Clokie et al., 2011).

Bacteriophages in the family Inoviridae (inoviruses) have been
described in P. aeruginosa biofilms and as promoters of biofilm
formation (Whiteley et al, 2001; Webb et al., 2004; Knezevic
et al.,, 2015; Secor et al.,, 2015). Numerous studies have shown
the relationship between CF clinical isolates and Pf filamentous
prophages (Finnan et al.,, 2004; Kirov et al., 2007; Manos et al.,
2008; Mathee et al., 2008; Winstanley et al., 2009; Fothergill
et al, 2012), which are long, narrow, tubular phages (about
2 pm in length and 6-7 nm in diameter) with positive-sense
single-stranded circular DNA (Secor et al., 2015). Pf phages are
inoviruses and usually become integrated in the chromosome of
P. aeruginosa, although there are some exceptions, such as Pfl,
which can replicate without being integrated in the host strain
(Secor et al., 2015).

The pathogenic potential of P. aeruginosa is probably due
to a combination of many different virulence factors. Several
studies suggest that these factors are regulated by Quorum
Sensing (QS) systems and/or bacteriophages (Lee and Zhang,
2015). The QS network in this pathogen consists of a series
of connected circuits, i.e., Lasl/LasR, RhII/RhIR, QscR and
PqsABCDEH/PqsR, which are regulated by molecules known as
acyl-homoserine lactones (Wilder et al., 2011; Lee and Zhang,
2015; Papenfort and Bassler, 2016). Detection of these molecules
indicates that P. aeruginosa is growing as a biofilm within the
lungs of CF patients (Bjarnsholt and Givskov, 2007; Wilder
et al., 2009; Winstanley and Fothergill, 2009). This bacterium
permanently colonizes the lungs of CF patients, despite antibiotic
treatment being administered. Microscope studies of sputum
samples from these patients show that P. aeruginosa frequently
resides within biofilms (Bjarnsholt and Givskov, 2007). Specific
detection of P. aeruginosa via QS signaling may help to identify
the agents involved in biofilm formation.

Quorum sensing systems and bacteriophages are associated
with virulence and evolution of bacteria during both intermittent
and chronic lung infections in CF. Some studies have shown
the existence of bacteriophages in the sputum of CF patients
(Ojeniyi et al., 1991; Fothergill et al., 2011), supporting the
hypothesis that the bacteriophages play a role in respiratory
infections in these patients. A strain of P. aeruginosa known
as the Liverpool epidemic strain (LES) shows greater resistance
to antibiotics than other strains isolated from CF patients.

Genomic analysis of isolate LESB58 has demonstrated the
presence of several prophages that increase the success of
colonization by this P. aeruginosa strain as they form part of the
accessory genome, the genes of which contribute to pathogenicity
(Winstanley et al., 2009).

Relationships between QS and bacteriophage infection have
been analyzed by several authors. Phage ¢pa3 has been proved to
transduce mutations in QS genes in P. aeruginosa PAO1 (Monson
et al, 2011). Moreover, it was demonstrated that QS systems may
protect bacteria from bacteriophage infection reducing the phage
receptor numbers at the stationary phase in Escherichia coli (Tan
et al., 2015). In Vibrio cholerae, QS was demonstrated to control
the change from a lysogenic cycle to alytic one in the vibrio phage
VP882 by QS-related genes encoded by the bacteriophage itself
30554875 (Silpe and Bassler, 2019).

In the present study, 24 sequences of P. aeruginosa isolates
belonging to the international CF clone (ST274-CC274) were
analyzed. A new filamentous prophage, designated Pf8, was
identified in isolate AUS411, and analysis of its genome revealed
a toxin/antitoxin system. Moreover, a new prophage from the
Siphoviridae family was identified in isolate AUS531, which
harbors a new gene that favors phage infectivity and bacterial QS
control, that was named Bacteriophage Control Infection (bci).

MATERIALS AND METHODS

CF Clinical Isolates

All isolates (9 from CF Australian patients and 15 from Spanish
patients from different clinical units), previously classified
as belonging to CC274, were respiratory tract isolates from
CF patients, except PAMBI148, which was a blood sample.
Isolates were recovered during an 18-year period (1995-2012)
and included sequential isolates from several patients (Lopez-
Causapé et al., 2017). The antibiotic susceptibility profile and
main antibiotic resistance-related mutations were previously
analyzed (Lopez-Causapé et al,, 2017).

Genome Sequencing and Analysis of the
Isolates Belonging to the ST274 Clonal
Complex (CC274)

Next Generation Sequencing (NGS) was performed in a previous
study, with the MiSeq sequencing system (Illumina platform)
(Lopez-Causapé et al.,, 2017). The sequences were assembled
using the Newbler Roche assembler and Velvet (Velvet v1.2.10").
Putative Open Reading Frames (ORFs) were predicted using the
GeneMarkS gene prediction program (Lukashin and Borodovsky,
1998). The Blast2Go and RAST servers (Conesa et al., 2005;
Aziz et al., 2008) were used for functional annotation of each
predicted protein. Reconstructed phage sequences were analyzed
using PHAST and PHASTER tools (Zhou et al, 2011; Arndt
etal, 2016). All phage proteins detected were manually annotated
using the Protein BLAST (Kent, 2002), HHpred tools (Soding
et al, 2005), and InterProScan tools (Zdobnov and Apweiler,

!https://www.ebi.ac.uk/~{}zerbino/velvet/
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2001) and were found to display >50% protein homology.
Genome sequences of the AUS531phi phage and Pf8_ST274-
AUS411 filamentous phage were constructed with the assistance
of CSAR-web (Chen and Lu, 2018) and RAST (Aziz et al., 2008).

The presence of the bci gene in prophages throughout the
NCBI Nucleotide sequence was checked using BLAST, and its
presence in a prophage was confirmed by PHASTER analysis
of the bacterial genome. Protein domains of the protein were
searched with CD-search in BLAST. Promoter regions were
predicted with BPROM tool of SoftBerry”.

Isolation of Clinical Temperate Phages
From the ST274 Clonal Complex (CC274)

An overnight culture of the clinical P. aeruginosa isolate AUS531
was diluted in Luria-Bertani (LB) medium and grown for
2.5 h until reaching an ODggg (optical density measured at
a wavelength of 600 nm) of 0.6, before being treated with
mitomycin C (MMC). MMC was added at a concentration of
10 pg/ml and the culture was incubated at 37°C and shaken at
180 rpm until the cells were lysed. The lysate was incubated in the
presence of chloroform for 20 min and centrifuged at 3400 x g for
10 min. Finally, the supernatant was filtered through a 0.45 nm
filter (Millipore).

Transmission Electron Microscopy (TEM)
Examination of Temperate Phages:

Inoviruses and Siphoviruses

Concentrated phage preparations were required for transmission
electron microscopy (TEM). Phage particles were precipitated
overnight at 4°C with polyethylene glycol (PEG6000) 3~5%
(w/v) and 0.5 M NaCl. The solution was centrifuged at 11000 x g
at 4°C for 15 min. The pellet was resuspended with SM buffer
(100 mM NaCl; 8 mM MgSO4 7H,0; 50 mM Tris-HCI pH
7.5) and stored at 4°C. Samples were negatively stained with
1% aqueous uranyl acetate before examination by electron
microscopy (Hargreaves et al., 2013).

Characterization of Siphovirus

Temperate Phage in Relation to Quorum
Sensing

bci Deleted Strain and Phage Isolation

To obtain a strain without the bci gene for experiments and to
subsequently obtain the AUS531phiAbci mutant phage, the bci
gene was amplified with 1 kb upstream and downstream regions
for deletion in the P. aeruginosa AUS531 isolate. The fragment
was cloned into the pEX18Gm vector (GenBank: AF047518.1)
(Hoang et al., 1998) using the UP_bci(Kpnl)/UP_Bci(Xhol)
combination of primers for the upstream region and the
DOWN_Bci(Xhol)/DOWN_Bci(BamHI) combination for the
downstream region (Table 1). Fragments were digested with
Kpnl and Xhol restriction enzymes (upstream fragment) and
Xhol and BamHI (downstream region). Products were ligated
into the pEX18Gm plasmid, and the recombinant plasmid was
transformed in E. coli TG1 by electroporation.

Zhttp://www.softberry.com

The resulting plasmid was used to transform the P. aeruginosa
AUS531 isolate by electroporation for genomic recombination
and resulting gene knockout. Recombinant colonies representing
the first crossover event were obtained by gentamicin-mediated
selection. Gentamicin-resistant colonies were grown overnight
in LB supplemented with 15% sucrose, and they were then
plated on the same medium. Secondary crossover events were
confirmed by PCR and by sequencing with the primers listed
in Table 1. The AUS531phiAbci phage was obtained from
the mutant AUS531Abci strain by induction with MMC, as
previously described.

Expression of the bci Gene in Relation to QS Genes
by RT-PCR

To establish the relationship between bci gene and QS, we
measured the bci gene expression in the AUS531 strain incubated
in the presence of QS signals. One colony of each of P. aeruginosa
isolates AUS531 and AUS531Abci was inoculated in LB broth
and incubated overnight at 37°C under stirring at 180 rpm.
The overnight culture was diluted (1:100) and allowed to grow
until reaching an ODggg of 0.3. Aliquots of 10 wL of QS-system
signals 3-Oxo0-C12-HSL (Stacy et al,, 2012; Lopez et al,, 2017)
and N-butanoyl-L-HSL (C4-HSL, which regulates through QS)
and the same volume of DMSO as used in controls were added.
The samples were incubated for 1 h (Karig and Weiss, 2005;
Dubeau et al,, 2009; Zhang et al., 2013). RNA was extracted using
the High Pure RNA Isolation kit (Roche, Germany), and the
extract was treated with DNAse (Roche, Germany). The extracted
RNA measured was in a NanoDrop ND-100 spectrophotometer
(NanoDrop Technologies). The concentration of the samples
was adjusted to 50 ng/pL to yield efficiencies of 90-110%
(Rumbo et al,, 2013). The expression studies were carried out
with Lightcycler 480 RNA Master Hydrolysis Probe (Roche,
Germany), under the following conditions: reverse transcription
at 63°C for 3 min, denaturation at 95°C for 30 s, followed by 45
cycles of 15 s at 95°C and 45 s at 60°C and, finally, cooling at 40°C
for 30 s. In all of the experiments, the final volume was 20 L
per well (18 pL of master mix and 2 pL of RNA at 50 ng/pL).
Primers and the respective Universal Probe Library (UPL) probes
are listed in Table 1. For each isolate, expression of all genes,
primers and probes was normalized relative to the reference or
housekeeping gene, proC (Savli et al., 2003). All of the samples
were analyzed in triplicate. Statistically significant differences
were determined by Student’s ¢-test (GraphPad Prism v.6).

In order to analyze the effect of the phage with and without
bci gene on QS, we analyzed the expression of QS genes (lasR,
rhiR, gscR, and pgsR) in AUS531Abci incubated for 30 min
with AUS531phi and AUS531phiAbci phages in an early step of
bacterial growth. An overnight culture was diluted (1:100) in LB
broth with 10 mM MgSO4 and 10 mM CaCl, and then grown
until reaching an ODgg of 0.2-0.4. Both wild type AUS531phi
and AUS531phiAbci phages were added at a multiplicity of
infection (MOI) of 10. All controls were prepared by adding the
same volume of phage buffer. RNA extraction and expression
studies were carried out in the same way as in the previous
step. All of the samples were analyzed in triplicate. Statistically
significant differences were determined by Student’s ¢-test.
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TABLE 1 | Primers and probes used in this study.

PCR P, aeruginosa AUS531 mutant (AUS531Abci)

Primer Sequence (5'-3') Restriction Site Reference
UP_Bci Fow GGGGGTACCGCACCGCAACCTCCCGATCA Kpnl This study
UP_Bci Rev GGGCTCGAGGGCGTAACTCCGTTCGAGGG Xhol This study
DOWN_Bci Fow GGGCTCGAGCGCCTGGCCTATTGCCGGGC Xhol This study
DOWN_Bci Rev GGGGGATCCGTCGTCGATGATTGAGCGAA BamHI This study
INT UP Fow ATTGTAGTCATACTCAAGAC = This study
INT DOWN Rev TGCACCGCCTTATGTGAAAG - This study
pEX18 Fow GGCTCGTATGTTGTGTGGAATTGTG s This study
pEX18 Rev GGATGTGCTGCAAGGCGATTAAG % This study
RT-qPCR P, aeruginosa AUS531 mutant (AUS531Abci)
Primer Sequence (5'-3') UPL probe? References
proC_149_Fw CTGTCCAGCGAGGTCGAG 149 Tan et al., 2015
proC_149_Rev CCTGCTCCACCAGTGCTT
LasR_139_Fw GATATCGGTTATCTGCAACTGCT 139 This study
LasR_139_Rev CCGCCGAATATTTCCCATA
RhIR_115_Fw TGCGTTGCATGATCGAGT 115 This study
RhIR_115_Rev CGGGTTGGACATCAGCAT
QscR_133_Fw GTTCCAGCGAGAGCATCG 133 This study
QscR_133_Rev TGGTGATCCAGAGCAGGAA
PgsR_151_Fw TCGACACCAAGGTGTATTGC 151 This study
PgsR_151_Rev TCGAGAAAGCGCAGGAAG

2Universal Probe Library (UPL) (Roche, Germany; https://lifescience.roche.com/en_es/brands/universal-probe-library.htmi).

Effect of the bci Gene Interaction Carried by
Bacteriophage on the QS: Infective Capacity, Biofilm
Production, Bacterial Motility and Pyocyanin
Secretion

To characterize the infection curve for the bacteriophages, an
overnight culture of P. aeruginosa AUS531Abci was diluted 1:100
in LB broth supplemented with MgSO4 and CaCl, (both at a
concentration of 10 mM). The mixture was incubated at 37°C at
180 rpm until reaching an ODggp nm 0f 0.1, before being infected
with the phage AUS531phi and with the phage AUS531phiAbci
at a MOI of 1 and 10. Measurements were made during 6 h at
1-h intervals. Statistically significant differences were determined
by Student’s t-test (GraphPad Prism v.6) by comparing the data
obtained every hour.

To study the effect on bacterial motility, an overnight culture
of P. aeruginosa AUS531Abci was diluted 1:100 in LB broth with
10 mM MgSO4 and 10 mM CaCl, until reaching an ODggp of
0.5~0.6. A spot of 1 pL of a mixture of AUS531 Abci culture and
each phage (wild type AUS531phi and mutant AUS531phiAbci
at a MOI of 1) was placed in plates containing LB medium and
0.3% agar supplemented with 10 mM MgSOy4 and 10 mM CaCl,
(Clemmer et al.,, 2011).

To study the effect on biofilm production, we used the
modified version of the biofilm formation assay (O’ Toole, 2011).
Briefly, an overnight culture of P. aeruginosa AUS531Abci was
adjusted to 107 CFU/mL in LB broth supplemented with 10 mM
MgSOy4, 10 mM CaCl; and 2% glucose, and 100 pL was
finally added to each well of a “U”-bottom 96-well microtiter

plate and incubated at 37°C for 24 h. Thirty wells were
infected at MOI 10 with AUS531phi wild temperate phage
and the other 30 with AUS531Abci mutant strain. Planktonic
cell growth was measured at ODgpy before being removed.
The cells were rinsed three times with distilled water and
then fixed at 60° for 1 h. Biofilms were stained with 125 pL
of 0.4% crystal violet (CV) for 15 min, washed four times
with distilled water, and the CV retained was solubilized with
125 nL of 30% acetic acid and measured at ODsgs. Biofilm
production was calculated by dividing the ODsgs of the CV-
stained culture by the ODggy of the growth for each well.
Statistical differences were determined with a Student’s t-test.
In order to confirm integration of the temperate phages, the
presence of the bci gene was checked by PCR in 10 isolated
colonies in each biofilm assay.

To analyze pyocyanin secretion, an overnight culture of
P. aeruginosa AUS531Abci was diluted 1:100 in 10 mL
of LB broth enriched with 10 mM MgSO4 and 10 mM
CaCly and then grown until an ODggp of 0.2 was reached.
The culture was then infected with phages AUS531phi and
AUS531phiAbci at 10 MOI and incubated for 6 h. The
pyocyanin was extracted by adding 6 mL of chloroform to
the culture and incubating the solution for 2 h at 37°C
under continuous stirring at 180 rpm. Two mL of 0.2 N HCI
was then added to yield a pink to deep red solution. The
absorbance of this solution was measured at an OD of 520 nm.
The concentrations, expressed as micrograms of pyocyanin
produced per milliliter of culture supernatant (jg/mL), were
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determined by multiplying the optical density at 520 nm by
17.072 (Essar et al.,, 1990; Clemmer et al.,, 2011). Statistically
significant differences were determined by Student’s t-test
(GraphPad Prism v.6).

RESULTS

Analysis of QS Network and Temperate
Phages in the Genome of P. aeruginosa
CF Clone (ST274-CC274) Isolates

We performed a genomic analysis of the 24 P. aeruginosa isolates
belonging to the ST274 clonal complex (CC274) obtained from
CF patients and of the reference P. aeruginosa PAO1 strain
genome (GenBank: AE004091.2) (Table 2). Complete prophage
sequences were present in three strains in the P. aeruginosa
sequences: AUS411, AUS531, and FQSE15-1110 (Table 2).
Three of these showed high similarity to the Pseudomonas
Pf inovirus, constituted by 9-15 proteins in isolates AUS411,
AUS531, and FQSE15-1110. The inoviruses present in isolates
AUS531 and FQSELS5 were similar to the Pseudomonas Pf4 and
Pf5 inoviruses, but the prophage detected in AUS411 was a new
phage, designated Pf8_ST274-AUS411 (hereinafter referred to
as Pf8) (Hay and Lithgow, 2019; Li et al., 2019). The genome of
the Pf8 filamentous phage is of size 10 Kb and has a total of 16
proteins and one tRNA coding region (Genbank:MN710383).
It has a GC content of 58.1%. Interestingly, Pf8 showed high
protein identity with the filamentous bacteriophages Pf4
(P. aeruginosa PAO1) and Pf5 (P. aeruginosa PA14) (Mooij et al,,
2007) (Figure 1A). However, new proteins involved in viral
defense were identified in the Pf8 bacteriophage, including a
putative toxin-antitoxin module (Genbank: QGZ15329.1 and
QGZ15330.1) and methyltransferase (Genbank: QGZ15339.1).
The prophage designated AUS531phi (accession number
MN585195), detected in isolate AUS531 was found to be
homologous with the Pseudomonas Phi297 bacteriophage.

The genome of the AUS531phi prophage is almost 50 Kb
in size and contains a total of 66 proteins, one tRNA coding
region and 63% GC content. The genome of the AUS531phi
(Figure 1B) carries prophage assembly proteins, such as tail shaft
proteins (GenBank: QGF21321.1, QGF21325.1, QGF21326.1,
QGF21327.1, QGF21328.1, QGF21330.1, QGF21331.1, and
QGF21373.1), coat-related proteins (GenBank: QGF21339.1,
QGF21337.1, and QGF21335.1), a portal protein (GenBank:
QGF21340.1), terminase proteins (GenBank: QGF21341.1
and QGF21342.1), lysis proteins (GenBank:QGF21343.1 and
QGF21344.1), an integrase (GenBank: QGF21379.1) and other
phage-related proteins. The genome harbors a carbon storage
regulator (Genbank: QGF21359.1) (QS regulator associated
with biofilm inhibition), called Bci protein (Figure 1B). The
bei gene has 372 bp and the Bci protein has 123 amino acids
(Supplementary Figures S1A,B, respectively) with a promoter
region in the upstream sequence between the nucleotides 30327
and 30372 (Figure S1C) (GenBank: MN585195). There is a
putative rhl-las box with a motif CT-(N13)-AG between the
nucleotides 30342 and 30358 (Figure SIC and Supplementary

TABLE 2 | Cystic Fibrosis clone isolates in the study (ST274-CC274) and their
complete prophage presence.

Isolate Location Year Prophage KB ORF Homology (PHASTER)

AUS034 Australia 2008 0 - -

AUS037 Australia 2008 0 - -

AUS410x Australia 2007 0 - -

AUS411 Australia 2007 1 55 9 PHAGE_Pseudo_Pf1_
NC_001331(9)

AUS531 Australia 2008 1 48 62 PHAGE_ Pseudo_phi297_
NC_016762(22)

2 4.7 10 PHAGE_Pseudo_Pf1_

NC_001331(9)

AUS588x Australia 2008 0 - -

AUSB01 Australia 2008 0 - -

AUSB03 Australia 2008 0 - -

AUSB90 Australia 2008 0 = =

FQRC10 Spain 1995 0 - -

FQRC15 Spain 1997 0 - -

FQRC26 Spain 1995 0 - -

FQSE03-1212 Spain 2012 0 - -

FQSE06-0403 Spain 2003 0 - -

FQSE06-0610 Spain 2010 0 - -

FQSE10-0110 Spain 2010 0 - -

FQSE10-0111  Spain 2011 0 - =

FQSE10-0503 Spain 2003 0 - -

FQSE15-0803 Spain 2003 0 - -

FQSE15-0906 Spain 2006 0 - =

FQSE15-1110 Spain 2010 1 7.9 15 PHAGE_Pseudo_Pf1_
NC_001331(9)

FQSE24-0304 Spain 2004 0 - -

FQSE24-1010 Spain 2010 0 - -

PAMB148 Spain 2010 0 - -

Material). Following a CD-search in BLAST, CsrA superfamily
domain is present between amino acids 1 and 51 with an
e-value of 2.77e-27. We analyzed the distribution of the bci
gene among the P. aeruginosa genomes deposited in the NCBI
database (Table 3). We found that this gene was present in 33
different P. aeruginosa strains, with high homology (>95% of
protein homology in most of these sequences). Furthermore, we
found (using the PHASTER search tool) that the bci gene was
only present in prophage sequences in these strains (Table 3).
Moreover, in 6 of the isolates, the DNA region in this gene showed
high homology (>95%) with repeat sequences of previously
characterized systems (Table 3), showing that the bci gene present
in phages as CRISPR sequences are constructed with previously
infected DNA bacteriophage fragments (Cady et al., 2011).

TEM Micrographs of Bacteriophages

We confirmed the presence of Inoviridae type phages by
TEM examination of extracts of overnight supernatant cultures
of P. aeruginosa isolate AUS411 (Figure 2A). Moreover,
we confirmed the presence of the Siphoviridae type phages
AUS531phi and AUS531phiAbci by TEM examination of the
preparations (Figure 2B). The morphology of the structures
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FIGURE 1 | (A) Schematic representation and comparison of filamentous phages Pf1, Pf4, Pf5, and Pf8. Genes are classified by function into assembly and
secretion, structural, and replication/integration genes. Dark gray regions represent >90% of nucleotide sequence identity between Pf genome regions.
(B) Schematic representation of the genome of siphovirus phage AUS531phi and position of the Bci protein (GenBank: MN585195.1).

seen in the pictures is clearly that of Siphoviridae type phages
(Alic et al., 2017).

Relationship Between the
Bacteriophages and the QS System

Gene Expression
We observed an increase in the expression of the bci
gene in the prophage region in the presence of two acyl-
homoserine lactone QS inducers: 3-oxo-C12-HSL and C4-
HSL (Figure 3), demonstrating that the bci gene is associated
with the QS system.

In addition, we studied the effect of infection by
bacteriophages AUS531phi and AUS531phiAbci in the
expression of the genes lasR, rhiR, gscR, and pgsR of the
QS in AUS531Abci bacterial strain to check the effect of the
gene in the first step of bacteriophage infection (Figure 4). The
graphic representation shows a fold change of around 5.0 for
lasR, IhIR, and gscR when isolate AUS531 Abci was infected with
the mutant phage AUS531phiAbci, while infection with the
wild phage AUS531phi yielded fold changes of around 1.0 in
these genes. The differences in the expression for infection with
a phage containing a bci gene and in the absence of this gene
suggest that these genes are involved in regulating the QS system
in order to overcome it and infect the bacteria. Interestingly,
there was a fold change of around 13.0 in the pgsR gene when
isolate AUS531Abci was infected with phage AUS531phiAbci,
in contrast to a fold change of around 1.5 when the isolate was
infected with the wild phage AUS531phi.

Infection Curve
The relationship between the bci gene and the ability of the

phage to infect the host was demonstrated in the infection

curves. The host isolate AUS531Abci grew less when infected
with the wild type phage AUS531phi than when it was infected
with the mutated phage, AUS531phi Abci at all the MOI assayed
(Figure 5). The infection curves for phage AUS531phi were
significantly different (p < 0.05) at MOI 0.1, 1 and also at MOI
10 (p < 0.0001). In addition, the infection curves for phage
AUS531phi were significantly different from the corresponding
control curves at MOI 1 and 10 (p < 0. 05), but not at MOI 0.1.
Comparison of the growth of the culture infected with the wild
type phage AUS531phi and the mutant phage AUS531phiAbci
revealed significant differences at MOI 0.1 and 1 (p < 0.05)
(Figures 5A,B) at all time points measured, and at MOI10 the
differences were significant (p < 0.0001) (Figure 5C) at 2, 3, and
4h. These results indicate that capacity of infection of AUS531phi
is higher than that of AUS531Abci, thus confirming that the bci
gene is related to the infection capacity of this phage.

Relationship Between the Phage Infection and
Virulence Factors: Motility, Biofilm and Pyocyanin
Production

In order to verify the relationship between the bci gene from
the bacteriophage and bacterial virulence, we performed motility,
biofilm and pyocyanin assays. When isolate AUS531Abci was
infected with the wild type phage AUS531phi, a reduction
in motility was observed. By contrast, when the same isolate
was infected with the bci gene deleted from prophage
AUS531phiAbci, there was no difference in motility relative
to the control (Figure 6A). When isolate AUS531Abci was
infected with the wild type phage AUS531phi, enhanced biofilm
production was observed relative to the infection of mutant
phage AUS531Abci (Figure 6B). The PCR of the biofilm
isolated colonies showed the presence of the bci gene in strain
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TABLE 3 | Genomes of the P aeruginosa isolates carrying bacteriophages with the bei gene and homologous CRISPR system in the bei gene.

Genome of Pseudomonas harboring Sequence ID BLAST Homology (%)  Homologous Phage identified by PHASTER tool
bacteriophage with bci gene
Pseudomonas aernuginosa strain Ocean-1175 CP022525 .1 99 PHAGE_Pseudo_phi297_NC_016762(25)
Pseudomonas sp. AKBU CP025229.1 98 PHAGE_Pseudo_phi297_NC_016762(39)
Pseudomonas aeruginosa strain Pa1242 CP022002.1 98 PHAGE_Pseudo_phi297_NC_016762(21)
Pseudomonas aeruginosa strain 6130952 CP020603.1 98 PHAGE_Pseudo_phi297_NC_016762(39)
Pseudomonas aeruginosa strain N17-1 CP014948.1 97 PHAGE_Pseudo_YMC11/07/P54_PAE_BP_NC_030909(12)
Pseudomonas aeruginosa strain 97 CP031449 1 97 PHAGE_Pseudo_YMC11/02/R656_NC_028657(24)
Pseudomonas aeruginosa M18 CP002496.1 97 PHAGE_Pseudo_phi297_NC_016762
Pseudomonas aeruginosa strain AR_458 CP030327 1 a7 PHAGE_Pseudo_phi287_NC_016762(23)

95 PHAGE_Pseudo_phi297_NC_016762(15)
Pseudomonas aeruginosa strain AR439 CP029097 .1 97 PHAGE_Gordon_Schwabeltier_NC_031255(62)
Pseudomonas aeruginosa strain M28A1 CP015649.1 97 PHAGE_Pseudo_YMC11/02/R656_NC_028657(20)
Pseudomonas aeruginosa strain F63912 CP008858.2 97 PHAGE_Pseudo_phi297_NC_016762(11)
Pseudomonas aeruginosa strain H5708 CP008859.2 97 PHAGE_Pseudo_YMC11/02/R656_NC_028657(26)
Pseudomonas aeruginosa RP73 CP006245.1 97 PHAGE_Pseudo_phi297_NC_016762(11)
Pseudomonas aeruginosa strain CCUG 70744 CP023255.1 96 PHAGE_Pseudo_phi287_NC_016762(29)
Pseudomonas aeruginosa strain PPF-1 CP023316.1 96 PHAGE_Gordon_Schwabeltier_NC_031255(65)
Pseudomonas aeruginosa strain F30658 CP008857 .1 96 PHAGE_Pseudo_YMC11/02/R656_NC_028657(23)
Pseudomonas aeruginosa strain PB368 CP025050.1 96 PHAGE_Pseudo_phi297_NC_016762(20)
Pseudomonas aeruginosa strain PB369 CP025049 1 96 PHAGE_Pseudo_phi287_NC_016762(20)
Pseudomonas aeruginosa strain PA_150577 CP017306.1 96 PHAGE_Pseudo_YMC11/02/R656_NC_028657(27)
Pseudomonas aeruginosa strain PA121617 CP016214.1 96 PHAGE_Pseudo_YMC11/02/R656_NC_028657(20)
Pseudomonas aeruginosa strain W16407 CP008869.2 95 PHAGE_Pseudo_phi297_NC_016762(43)
Pseudomonas aeruginosa strain AR442 CP029090.1 95 PHAGE_Pseudo_phi297_NC_016762(42)
Pseudomonas aeruginosa strain T63266 CP008868.1 95 PHAGE_Pseudo_phi287_NC_016762(16)
Pseudomonas aeruginosa strain ATCC 27853 CP0O15117.1 96 PHAGE_Pseudo_phi297_NC_016762(37)
Pseudomonas aeruginosa DNA, complete genome, strain: AP014839.2 96 PHAGE_Pseudo_phi287_NC_016762(44)
8380
Pseudomonas aeruginosa strain CCBH4851 CP021380.1 94 PHAGE_Pseudo_JBD44_NC_030929(31)
Pseudomonas aeruginosa strain PA7790 CP014999.1 94 PHAGE_Pseudo_phi297_NC_016762(22)
Pseudomonas aeruginosa strain PA8281 CP015002.1 94 PHAGE_Pseudo_phi287_NC_016762(22)
Pseudomonas aeruginosa strain AR_0446 CP029660.1 94 PHAGE_Pseudo_YMC11/07/P54_PAE_BP_NC_030909(25)
Pseudomonas aeruginosa PAT CP000744 1 93 PHAGE_Pseudo_phi287_NC_016762(24)
Pseudomonas aeruginosa strain PASGNDM699 CP020704.1 92 PHAGE_Pseudo_YMC11/02/R656_NC_028657(23)
Pseudomonas aeruginosa strain PASGNDM345 CP020703.1 92 PHAGE_Pseudo_YMC11/02/R656_NC_028657(23)
Pseudomonas aeruginosa strain BAMCPAQ7-48 CP015377 A 89 PHAGE_Pseudo_YMC11/02/R656_NC_028657(27)

Strains with homologous CRISPR system in the bci gene  Sequence ID  BLAST Homology (%)

Pseudomonas aeruginosa strain SMC4395 CRISPR repeat HQ326191.1 100
sequence

Pseudomonas aeruginosa strain SMC4498 CRISPR repeat HQ326189.1 97
sequence

Pseudomonas aeruginosa strain SMC4494 CRISPR repeat HQ326188.1 97
sequence

Pseudomonas aernuginosa strain SMC4489 CRISPR repeat HQ326187.1 97
sequence

Pseudomonas aeruginosa strain F63912 CP008858.2 97
Pseudomonas aeruginosa RP73 CP006245.1 97
(https://www.nchi.nlm.nih.gov/genome/browse/ #Yoverview/).

AUS531 Abci infected with the wild-type phage, thus confirming DISCUSSION

integration of this phage in the genome. Similarly, pyocyanin
secretion was higher with the AUS531phi bacteriophage than
with the AUS531phi Abci bacteriophage (Figure 6C) confirming
that the bci gene influences bacterial virulence.

Cystic fibrosis is the main life-limiting recessive genetic disorder
in the Caucasian population. It affects multiple organs, but
is particularly damaging to the lungs. Colonization of the
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FIGURE 2 | (A) TEM of the Inoviridae Pf8 bacteriophage of P aeruginosa clinical isolate AUS411 (Pf8_ST274-AUS411). (B) TEM of Siphoviridae bacteriophage of
P, aeruginosa clinical isolates AUS531 (AUS531phi*) and AUS531 Abei (AUS531 Abciphi*™).

respiratory tract by some pathogens such as P. aeruginosa
exacerbates the severity of the disease in CF patients
(Rey et al., 2018).
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FIGURE 3 | Relative expression of the bai gene in AUS531 isolate under the
quorum sensing inducers C4-HSL and 30XO-C12-HSL. Standard deviations
are indicated. (*) Statistically significant differences (p < 0.05) were
determined by Student’s t-test (GraphPad Prism v.6).

Temperate bacteriophages of P. aeruginosa are involved in
the horizontal transfer of DNA and show selective preference
for developing and accumulating in the specific conditions of
the lower lung (Tariq et al,, 2015). Although most phages are
pathogens that kill their bacterial hosts, filamentous phages live
together with their host (Mai-Prochnow etal., 2015). Filamentous
phages are widely distributed in Gram-negative bacteria and they
have a strong impact on the physiology, adaptation and virulence
of their host bacteria, with a high presence in P. aeruginosa
biofilms (Rice et al., 2009; Secor et al., 2015).

The high-risk clone P. aeruginosa ST274 is one of the most
prevalent clones in CF patients (Kidd et al, 2012). Genomic

@ Control
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3 AUS531phiAbei

Relative expression

FIGURE 4 | Relative expression of quorum sensing-related genes of the
AUS531Abci isolate infected with AUS531phi and AUS531phiAbci
bacteriophages. Standard deviations are indicated. (*) Statistically significant
differences (p < 0.05) were determined by Student's t-test (GraphPad Prism
v.6).
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FIGURE 5 | Infection curves for the lysogenic phages AUS53 1phi (A) and AUS531phiAbci at MOIs 0.1 (A), 1 (B), and 10 (C) during 6 h. Standard deviations are
indicated. Statistically significant differences were determined by Student’s t-test for each point on the curve (GraphPad Prism v.6). (*) indicates a strongly significant
difference (p < 0.0001).

analysis shows the presence of complete prophage regions this clone, two corresponding to previously described phages
in 3 of the 24 isolates of the P. aeruginosa CC274 clone. (Knezevicetal,2015), and one, the pf8 phage present in the
Inovirus-type phages are present in three different isolates of ~AUS411 isolate, which is a new type of Pf inovirus characterized
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FIGURE 6 | (A) Motility assay in AUS531 Abci under normal conditions (1), adding AUS531phi phage (2), and adding AUS531phiAbci phage (3). (B) Biofilm
production after 24 h of AUS531 wild type isolate, AUS531Abci under nomal conditions, AUS531 Abcei in response to addition of the wild type AUS531phi phage
and the mutant AUS531Abci phage. (*) Statistically significant differences were determined by Student's t-test (GraphPad Prism v.6). (C) Pyocyanin production of
controls AUS531 and AUS531 Abei and AUS531Abci in response to infection with the wild-type strain.
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by the presence of a putative toxin/antitoxin system and a
methyltransferase. However, only the AUS531 isolate contains a
complete siphovirus type phage, never previously described, the
AUS531phi phage.

The Pf8 phage carries a putative novel type of toxin/antitoxin
system (Mai-Prochnow et al, 2015), located between an
excisionase (acc. no. QGZ15328.1). The genes that encode toxin-
antitoxin systems are common in bacteria and are usually located
adjacent to genes related to plasmids and other mobile genetic
elements (DeShazer, 2004; Dziewit et al., 2007). In prophages
preserve their genomes in bacterial hosts via the toxin/antitoxin
system, giving them a selective advantage under different stress
conditions (Wen et al., 2017).

Temperate bacteriophages can also drive host genome
evolution through gene disruption, duplication, transduction
or by acting as anchor points for major chromosomal
rearrangements (Davies et al., 2016). Previous studies have

demonstrated a possible relationship between QS signaling and
regulation. The QS system is able to control anti-phage defense
mechanisms, leading to lower susceptibility to phage infection
in QS-proficient cells. In Vibrio anguillarum, QS downregulates
expression of the ompK gene, thus increasing the resistance
to phage KVP40 (Tan et al, 2015; Hoque et al, 2016). In
E. coli, LamB phage receptors can shield isolates from attack
by lytic bacteriophage » (Hoyland-Kroghsbo et al., 2013).
However, bacteriophages infect bacteria with a functional QS,
as in P. aeruginosa, because once the barrier to infection has
been overcome it is advantageous for the phage to remain
in the genome as a temperate phage improving cooperative
behavior by eliminating QS-deficient social cheaters, which
not have the phages, despite the fact that phage adsorption
is higher in those with QS-deficient strain (Saucedo-Mora
et al., 2017). In addition, molecular evolution of clinical strains
of Acinetobacter baumannii has been demonstrated to have
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occurred between 2000 and 2010, leading to possession of a
functional quorum network and the acquisition of bacteriophages
(Lopez et al., 2018).

The QS regulatory role of the bci in the prophage was
demonstrated by the increase in the expression of this gene in
presence of two acyl-homoserine lactone QS inducers, C4-HSL
and 3ox0-C12-HSL, which activate the receptors RhIR and LasR,
respectively and may induce the bei expression (Medina et al,,
2003). In the promoter region of the gene, there is a putative
rhl-las box (Subramoni et al., 2015), that have been predicted to
be upstream QS-controlled genes (Whiteley et al,, 1999). Also,
when an infection with the wild prophage AUS531phi and with
the mutant phage AUS531phiAbci were done, the bacterial QS
expression was regulated by the wild type phage, which suggest
that the bci gene has a role in the control of the bacterial
QS, favoring the infection by the temperate phages as was also
observed in the infection curves.

Virulence factors as pyocyanin production, biofilm and
motility are regulated by QS and also influenced by the phage
infections (Morkunas et al., 2012; Hosseinidoust et al., 2013;
Latino et al., 2014; Castanieda-Tamez et al.,, 2018; Tariq et al.,
2019). The infection with the wild type phage, AUS531phi,
carrying the bci gene, increased the production of virulence
factors, pyocyanin and biofilm, whose presence is characteristic
in the lung of CF patients (Castaneda-Tamez et al, 2018). The
increase in both biofilm and pyocyanin and a reduction in
the swarming motility, are a response to the phage infection
which is higher when the bci gene is present, but also due
to the integration of the temperate phage and the bci gene in
the bacterial genome, as was described previously. Pyocyanin
production has proven to be protective against oxidative stress
environments for P. aeruginosa (Vinckx et al., 2010). The higher
pyocyanin production may be due to a protective response to a
higher infectivity capacity of the phage AUS531phi. Temperate
phages could help P. aeruginosa select for bacterial characteristics
that favor persistence of bacteria in the lung (Latino et al., 2014;
Tariq et al., 2019). Thus, the bci gene may help clinical isolates
of P. aeruginosa to survive in lung infections, increasing their
chance of being infected by temperate phages.

In this research we identified two new prophages, Pf8 and
AUS531phi, present in clinical P. aeruginosa strains of the CC274
clone, which cause infections in CF patients. Further research
is required to determine the role of Pf8 inovirus bacteriophages
(filamentous prophages) and their putative toxin/antitoxin
system in chronic lung infections by P. aeruginosa. Also, we
describe a new gene, bci (present in prophage AUS531phi), which
is involved in regulating the bacterial QS system and favoring
the infective capacity of the strain and therefore favoring the
presence of this phage in the CF CC274 clone characterized by
a low presence of prophages.
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In the last decades, antimicrobial resistance has become a serious threat to
global public health through years of developing versatile defence
mechanisms against the most clinically relevant antibiotic agents
(https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance).

Discovering and developing novel antimicrobial agents as an alternative to
antibiotics are two relevant goals in microbiology research. The use of
bacteriophages has emerged as one of the most promising strategies to
combat multi-drug resistant microorganisms, either using them as lytic
phages, their lytic enzymes (endolysins) or antimicrobial peptides (266). Also,
the combination of these strategies with the use of antibiotics potentiates the
action of both antimicrobial agents through a synergistic effect; thus, phage
therapy can directly lyse bacterial host cells and those bacterial populations
which survive to the phage attack are re-sensitize to the antibiotic by

selective pressure (267).

Moreover, it is important to know the mechanisms by which bacteria and
phage interact to design an adequate therapy and also to anticipate the
potential benefits that some prophages could confer to clinical strains (268),
(269). It is known that temperate bacteriophages drive host genome evolution
through horizontal gene transfer transporting genes involved in stress
tolerance, antimicrobial resistance, metabolic pathways, biofilm formation,
tolerance and persistence mechanisms, virulence or quorum sensing (270-
274).

In the research developed in chapter I, in order to obtain a lytic phage with
therapeutic potential against the MDR bacteria A. baumannii, we selected the
lysogenic phage (Ab105-2phi), which has a wide distribution in a group of
clinical strains of A. baumannii belonging to the ST2 and isolated in 2010 as

our group determined in previous work (14).

The disadvantage of the use of lysogenic phages in therapy is that they can
act as carriers of genes related to resistance to antibiotics, virulence or toxins
is solved by the prophage genome analysis by WGS and bioinformatic tools,
enabling us to identify and characterize prophage regions and study them as

a potential phage therapy (275). The analysis of the genome of the prophage
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Ab105-2phi did not show any evidence of the presence of resistance,
virulence or toxic genes, so this lysogenic phage was mutated into the lytic
Ab105-2phiACI, a phage potential use in phage therapy. The transformation
of the lysogenic phage into a lytic one was based on the principle that the CI
gene represses the Cro gene needed for the development of the lytic cycle.
Therefore, the deletion of the CI gene implies that there is no inhibition of the
Cro gene, thus maintaining the cell in a permanent lytic state (56, 276). The
conversion of a lysogenic phage by deleting the CI repressor gene was
previously described in Salmonella enterica bacteriophage SPN9CC and in
the mycobacteriophage BPs33DHTH_HRM10, recently used in a phage
cocktail to treat a patient with a disseminated drug-resistant Mycobacterium
abscessus (79, 275, 277).

The deletion of the gene CI and the conversion of the lysogenic phage
Ab105-2phi into the mutant lytic phage Ab105-2phiACi were confirmed by
sequencing and by the behaviour of the infection curves done with each
phage. Also, the recovery of the bacterial culture growth after 5 hours of
infection indicates the emergence of phage resistant bacteria, which is a
common event in the infection with one phage, as a result of the adaptation
of the bacteria to the phages in the relationship of bacteria-phage in microbial

communities, both in the laboratory and natural populations (200).

The antimicrobial activity of the phage Abl05-2phiACI was demonstrated
with the infection curves and biofilm assay, but in order to reduce the
emergence of phage resistants and increase its potential to be used in phage
therapy, combination treatments of the phage with antibiotics were done.
Dickey et al. and Jo et al. (278, 279) demonstrated that PAS is an effective
method against the antibiotic and phage resistance in S. aureus. In fact, in P.
aeruginosa phage and antibiotics combinations have been proved to be more
successful than antibiotics alone in eliminating biofilm populations (146, 163).
This strategy has been proved to combat multi-drug resistant bacteria
because of its double action: the PAS effect is stronger in comparison with
both methods by separate (146) and the two different selective pressures
provided by both bacteria and phage restricts the emergence of resistance

on both sides (80, 280). The frequency of emergency phage resistant
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mutants was lower when the phage was combined with antibiotics, instead of
the frequency of resistant mutants in presence of the phage alone (almost 2
log decrease). A synergistic effect was detected when the mutant phage
Ab105-2phiACI was combined with meropenem and imipenem antibiotics,
restoring the antibiotic sensitivity when the combination was done at a high
phage MOI of 10 and a MIC of 1/4 antibiotic. As the host strain do not
possesses beta-lactamases, the restoration of the antibiotic sensitivity, must
be due because most phage receptors are membrane proteins of the
Resistance-Nodulation-Division (RND) efflux pump which confers resistance
to several antibiotic classes, so when the phage binds to its receptor protein
blocks the efflux pump (143, 144). Therefore, the elimination of the resistant
mutants turns the AUS105-2phiACI into potential usage as a therapeutic

phage in combination with antibiotics.

In the survival assays with G. mellonella, the antimicrobial activity of the
combination with carbapenem antibiotics and the mutant lytic phage was
confirmed by the increase of the survival of the G. mellonella in those larvae
treated with the combination, although the survival when the combination
included MIC 32 pg/mL of meropenem was not statistically significantly
higher. Consequently, the administration of a large number of Ab105-2phiACI

would be necessary (in vivo) due to the high MIC of meropenem.

Phage therapy includes the infection treatments with phages but also with
products derived from them, as are the lytic enzymes, named endolysins,
which are able to hydrolase the peptidoglycan layer of the bacterial cell wall.
The main advantage of the usage of endolysins against multi-drug
microorganisms is that bacteria have not been demonstrated to develop any
mechanism of resistance towards them (107). In chapter II, we isolated two
endolysins, ElyAl and ElyA2, from two prophages, Ab105-1phi and Ab105-
2phi, presents in the genome of the clinical strain Abl105 GEIH-2010
(GenBank Umbrella Bioproject PRINA422585) (14). The sequence analysis
of both endolysins showed that both were lysozymes and belonged to the
GH108-PG3 family, but despite their similarity, ElyA2 did not show any
muralytic activity, on the contrary to ElyAl1 which demonstrate muralytic

activity against different strains and species of gram-negative bacteria
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belonging to the ESKAPE group. The endolysin ElyAl showed a wide host
range against A. baumannii and P. aeruginosa clinical strains and a lesser
host range against K. pneumoniae clinical strains. This host range specificity
in endolysins depends on its cell wall binding domains (CBDs). The ability of
binding to the cell wall of CBD is usually wider than the host ranges of the
phage from which it is isolated and covers a great number of strains and
species, usually the entire bacterial genus (107, 281-283). However, there is
not a consensus of CBDs influence on the endolysin activity. Some lysins
have been reported to require a CBD for complete lytic activity (284-288),
whereas others are similar or even more active when the binding domain is
removed (289-292).

Endolysins are generally more effective against gram-positive than gram-
negative bacteria because the outer membrane of gram-negative bacteria
provides a functional layer to defend the microorganisms against endolysin
activity (86). Overcoming this protective barrier is the main challenge in
designing endolysin-based treatments in gram-negative bacteria, and outer
membrane destabilizing agents as EDTA can be used (293). Thus, in this
case, the muralytic activity was measured in the presence of EDTA, but the
use of this agent in therapy is only limited to topic treatment (293). In order to
solve this problem, we developed a strategy combining the ElyAl endolysin
with an antibiotic capable of disturbing the stability and increasing the
permeability of the outer membrane, the colistin, as its use in combination
with endolysins was previously described in A. baumannii (294). The
positively charged molecules of colistin interact with the negatively charged
lipopolysaccharide of the outer membrane, causing damage and
destabilization of it, even leading to cell death (295). The disadvantage of
using colistin is related to its nephrotoxicity and/or neurotoxicity in clinical
practice (295, 296). In our study, we observed in vitro and in vivo an
important reduction in the colistin MIC when the combination was assayed in
A. baumannii, P. aeruginosa and K. pneumoniae in those strains which were
sensitive to colistin. However, when the combination was tested in those
strains which were resistant to colistin did not show any antimicrobial activity.

This could be due to the type of colistin resistance mechanisms, like the
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alterations to reduce the fluidity of lipopolysaccharide, reducing of porin
pathways or capsule formation (297); all related to decreasing the outer

membrane permeability and thus would impede the endolysin mechanism.

Finally, the efficiency of the combination of ElyAl and colistin as a
therapeutic strategy was demonstrated in vivo with a significant increase in
the survival of the G. mellonella larvae. Also, two mice models were done, a
skin infection model and a lung model, and in both cases, a significant
reduction in the CFU counts was obtained when the mice were treated with

this combination.

Phage therapy is a successful strategy to combat bacterial infections but the
knowledge of the interactions between phages and their bacterial host is
important in order to improve this therapy. The coexistence of bacteria and
phages, also in form of prophages, drives coevolution in both organisms that
determine its behaviour and relation, and therefore their response in a phage
therapy (200).

One of the consequences of this interaction between them is the appearance
of phage resistance mechanisms in bacteria. The importance of known the
interactions of phage-bacteria and the emergence of avoidance bacterial
mechanisms to the phage infection is crucial in order to use routinely phage
therapy against MDR pathogens.

In chapter Il we describe the phage resistant genes present in bacteria and
their evolution in 18 metagenome sequences of clinical clone ST-2 of A.
baumannii isolated from the “lIl Spanish Multicenter Study GEIH-REIPI
Acinetobacter baumannii 2000-2010” (Umbrella Bioproject PRINA422585)
(251, 298). The technology of WGS has been used to support wet laboratory
techniques to undercover the insights of the phage resistance and general
phage-bacteria interactions in the last years (299-302). NGS has already
been implemented in several routine microbiological healthcare laboratory
workflows as a powerful tool to type pathogens, reveal the presence of
antimicrobial resistance, viral-associated genes and discover relevant
mechanisms for the bacterial phenotype (303, 304). In this scenario, we

identified a wide variety of phage resistance genes in the ST-2 clone of the
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two 2000 and 2010 collections of A. baumannii strains. We also found a
slightly higher proportion of phage resistance genes in the 2010 collection in
comparison to the 2000 collection. This could be explained through the
constant evolution of bacteria due to the HGT (305). The anti-phage defence
systems have been discovered to be regularly clustered in bacterial genomes
(306). We detect a higher percentage of genes belonging to GI's in the 2010
strains in contrast to the 2000 strains, confirming the evolutive pressure of
the bacteria to the phage infection (307).

Following the study of prophages and their interactions with bacteria, in the
IV chapter, we perform a study of the prophages present in clinical strains of
the CF clone CC274 of P. aeruginosa, that belongs to the high-risk clone ST-
274, which is one of the most widespread clones in clinical populations (308,
309). In the last few years, whole-genome sequencing has been turned into a
useful tool for diagnosis and clinical research (310). Combined with a wide
number of bioinformatic tools, the search for prophages and prophage-
related elements should be a very profitable tool to depict and predict
important factors for clinical strains such as genomic diversity, phylogeny,
resistance mechanisms or virulence factors (269, 311, 312). In a study done
in CF patients infected by P. aeruginosa Liverpool epidemic strain (LES)
James et al., demonstrated that temperate prophages regulate bacterial
density in vivo (313). Moreover, in these LES strains, competitive fitness has
been proved to be influenced by temperate phages killing phage-susceptible
competitors (314). Temperate phages LES¢2 and LES¢p4 have been proved
to have a role in the host fithess advantage and polylysogeny in these strains
(315).

In the P. aeruginosa CC274 clone, we identified 4 complete prophage
regions in the 24 isolates: 3 of them belonged to the filamentous phage
genus of Inovirus and the other one to Siphovirus. Prophages have been
demonstrated to allow the host survival in diverse environmental conditions
during infection and colonization, also developing a role in the evolution of
different bacterial pathogens (206, 268). They usually contain genes that
confer themselves a selective advantage in a bacterial community (e.g.

immunity or anti-CRISPR genes), and genes that confer an advantage to its
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host and therefore to the phage, these are genes that involved bacterial
mechanisms (e.g. bacterial persistence or biofilm formation) and/or virulence-
related genes (316). Within these selective advantages, one disadvantage to
consider related to the phage therapy by lytic phages is the mechanisms of
immunity against secondary phage infections (or superinfection exclusion)

conferred by the prophages (271).

In P. aeruginosa, filamentous phages have been demonstrated to influence
the pathogenicity infection in patients with cystic fibrosis, even they were
founded in clinical strains with high resistance to antibiotics (317).
Homologues of the filamentous phage Pf4 are widespread through P.
aeruginosa isolates. They have been associated with superinfective forms in
mature biofilms, increasing bacterial virulence (318). Secor et al.
demonstrated that filamentous phages help biofilm formation in CF isolates
because they aggregate around the cell assembling a liquid crystalline
structure (319). High concentrations of filamentous phage will lead to form a
liquid crystal due to the alignment caused by steric forces between phage
particles. This liquid crystalline biofilm matrix provides P. aeruginosa with
higher transmissibility in CF patients allowing biofilms to better tolerate

desiccation and also a protection against aminoglycoside antibiotics (265).

From the three Inovirus-type prophages identified in the CC274 clone, one
was different to those previously described, as it contained two genes that
provide a competitive advantage, a putative toxin/antitoxin (TA) system and a
methyltransferase (Pf8_ST274-AUS411, Gb accession number: MN710383).
TA systems function in prophages remain unclear, but they may give a
selective advantage to prophages in maintaining bacterial genomes in host
evolution at different environments, as they are usually found near mobile
genetic elements responsible for much of the laterally transferred DNA in
bacteria (320-322). Methyltransferases in bacteriophages are a defence
mechanism against the restriction-modification (RM) gene complex, thus
overcoming the bacterial phage-resistance system (323), conferring a
selective advantage to prophages (324).

139



Bacteriophages and host interact in a close way, regulating different
mechanisms from each other, thus, previous studies have shown a possible
relationship between quorum sensing (QS) and bacteriophage. Hgyland-
Kroghsbo et al.,, demonstrated that the QS system participates in the
regulation of the host phage susceptibility in E. coli, playing a key role in
bacterium-phage coevolution in natural environments (254). LuxR-type
receptors, which have been found encoded on phage genomes, bind to the
AHL produced by the host bacterium, being involved in gene expression and
regulation of the density status of their bacterial hosts (325). Lopez et al.
proved the parallel molecular evolution in clinical strains of A. baumannii of
functional QS systems and the acquisition of prophages between 2000 and
2010 (326). Besides, lysogenic bacteriophages select QS-efficient P.
aeruginosa hosts, applying a selective pressure in mixed populations with the
goal of conserving the bacterial QS system (257). Also, when the QS
stimulates the increase in the cell surface, the number and the density of the
bacteriophage specific receptors are increased, and therefore so is the
bacteriophage adsorption rate (327). We identified a Siphovirus, the
prophage AUS531phi (Gb accession number MN585195) which contains the
bci gene. We demonstrated the QS relationship with the bci gene checking
its increased expression in presence of two QS inducers, as well as the
repressive role of this gene in QS-related genes to favour the infection by
AUS531phi temperate phage. Moreover, the infection with the phage
AUS531phi with the bci gene increases three virulence factors controlled by
QS in P. aeruginosa: swarming motility, biofilm and pyocyanin production,

which can have a role in the survival of the bacteria under stress conditions.

Altogether, the presence of both types of phages in P. aeruginosa clinical
isolates from CF patients may influence the survival rate in lung infections,
improving their chance of being infected by temperate phages which confer
them evolutionary benefits (328). It has been shown that pathogenic strains
bear a larger proportion of phage-related genes than non-pathogenic strains
(260). Whole-genome sequence data enable researchers the identification of
prophages and cryptic prophage elements, thus exposing the wide range of

phage-related factors which influence bacterial infection (54, 258, 259, 329).
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These factors are crucial to the evolution, virulence and resistance of the
bacterial hosts in clinical populations (206). Taking into consideration the
prophage presence may be crucial in fighting pathogenic bacteria in clinical
environments through diverse strategies. For example, it is important to
identify the external genetic reservoirs that prophages are and what is their
effect on the bacterial ecology. Another example, these prophages, in a lytic
phage therapy context, could be the insertion of the bci gene to improve the
infection in potential therapy phages.

In this thesis, prophages are showed as crucial in bacterial infections in a
two-way manner: their capacity of infection and specificity in clinical strains
make them an option to consider for phage therapy through lysogenic to lytic
conversion and as a natural resource of endolysins. Furthermore, it is
important to consider the phage resistance appearance in clinical strains and
that they could be important elements to consider in clinical infections such

as infections in CF patients, as well as their relationship with the QS system.
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Chapter |

1. The Acinetobacter baumannii temperate phage Abl05-2phi was
transformed into the lytic phage Ab105-2phiACI. The antimicrobial
activity of this mutant lytic phage was confirmed against an A.
baumannii culture and biofilm.

2. The strategy of combining Iytic phage Abl05-2phiACI and
carbapenem antibiotics (imipenem and meropenem) improve the
antimicrobial activity of both components against clinical A. baumannii
in two ways: reducing the phage-resistance and restoring the

sensitivity to antibiotics.

Chapter Il

1. ElyAl is an endolysin belonging to the lysozyme family GH108-PG3,
with a broad spectrum of muralytic activity against clinical strains of
the bacterial pathogens: A. baumannii, P. aeruginosa and some
clinical strains of K. pneumoniae. This makes this endolysin a good
candidate to be used in antimicrobial therapy.

2. ElyA2 is an endolysin of the lysozyme family G108-PG3, highly similar
to ElyAl but no antimicrobial activity was detected in this case.

3. The combination of ElyAl with colistin was shown to be a useful
antimicrobial strategy both in vitro and in vivo, allowing the access of
the endolysin to the peptidoglycan in gram-negatives and reducing the
colistin MIC.

Chapter Il

1. Phage-resistance genes in ST-2 A. baumannii clinical strains present
a higher presence in the 2010 strains in comparison to 2000 strains.
Furthermore, in the 2010 strains phage resistance genes exhibit a

higher percentage in GI's thus confirming the evolutive pressure.
Chapter IV

1. Pf8 inovirus is a new type of filamentous phage that was founded in a

clinical strain of P. aeruginosa from a cystic fibrosis patient. This
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phage is characterized by the presence of a putative toxin/antitoxin
system and a methyltransferase which may have a role in chronic lung
infections by P. aeruginosa.

2. The siphovirus phage AUS531phi contains the bci gene, a gene that
favours the infection of the phage and controls the QS of the strain

AUS531 of P. aeruginosa.
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Supplementary material chapter Il

Strains Ceftazidi | Imipene | Meropen | Tobramy | Amikac | Ciprofloxa | Colisti
me? m? em? cin? in? cin? n2

GMAO >128 4 16 <2 <2 >64 <0.5

A.bauman 01

it PONO | >128 8 8 8 <2 >64 1
01
AUS5 3 2 0.75 1 6 0.125 1

P.aerugino 31

sa AUS6 >256 >32 >32 24 >256 16 0.25
01

K.pneumo KP16 >16 >16 >16 >8 >32 >2 1

niae KP17 1 16 8 <i <4 <0.06 1

TABLE S1. 2MIC concentrations (mg/L)
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SUPPLEMENTARY MATERIAL

Ab33_ | Ab49_ | AbS4_ | Ab76_ | Ab103_ | Ab104_ | Abl05_ | Abl21_ | Ab122_ | Ab155_ | Ab158_ | 161_ | Abl66_ | Ab169_ | Ab175_ | Abl77_ | Ab183_ | Abl92_
GEIH- GEIH- GEIH- GEIH- GEIH- GEIH- GEIH- GEIH- GEIH- GEIH- GEIH- GEIH- GEIH- GEIH- GEIH- GEIH- GEIH- GEIH-
2010 | 2010 | 2010 | 2010 | 2010 | 2010 | 2010 | 2010 | 2010 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000
ABI 11 9 11 12 11 11 12 12 10 11 8 11 5 11 11 9 11 11
TA 35 35 32 31 32 32 35 33 33 32 32 30 26 36 36 29 36 36
RM 50 54 46 48 53 53 40 53 46 36 44 48 40 42 42 28 42 42
CRISPR
e 1 0 1 0 2 2 0 1 1 0 0 1 0 0 0 0 0 0
NEW 75 69 68 59 64 63 59 61 62 57 60 58 54 63 67 52 66 63
Total
s 3988 3861 3946 3908 3922 3947 3923 3936 3875 3759 3898 3864 3674 3745 3785 2811 3899 3688
Table 1. Absolute number of each phage resistance genes group in 18 genomes of A. baumannii clinical strains.
Ab33_ | Ab49_ | Ab54_ [ Ab76_ | Ab103_ [ Ab104_ | Ab105_ | Ab121_ [ Ab122_ | Ab155_ [ Ab158_ [ Ab161_ | Ab166_ | Ab169_ | Ab175_ [ Ab177_ [ Ab183_ | Ab192_
GEIH- GEIH- GEIH- GEIH- GEIH- GEIH- GEIH- GEIH- GEIH- GEIH- GEIH- GEIH- GEIH- GEIH- GEIH- GEIH- GEIH- GEIH-
2010 | 2010 | 2010 | 2010 | 2010 | 2010 | 2010 | 2010 | 2010 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000
ABI 1 1 1 1 1 2 3 2 1 2 1 0 0 1 1 2 2 1
TA 5 6 4 2 3 5 7 4 3 4 5 5 0 5 10 0 4 2
RM 26 26 25 18 27 23 12 26 23 12 19 21 16 18 20 9 11 22
CRISPR
e 1 0 1 0 2 2 0 1 1 0 0 1 0 0 0 0 0 0
NEW 10 9 9 8 6 9 10 10 11 8 8 5 3 6 5 5 0 7
Total
genesin| 43 42 40 29 39 41 32 43 39 26 33 32 19 30 36 17 25 33
GIs
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O ndmero de infeccidns nosocomiais esta incrementando debido ao
crecemento das bacterias con multiple resistencia aos antibioticos,
incrementando o tempo de estadia no hospital e a mortalidade. Dentro das
familias que causan este tipo de infeccidns encontranse Acinetobacter

baumannii e Pseudomonas aeruginosa.

Os fagos son a entidade biol6xica con maior presenza na Terra, mantendo
un rol esencial preservando o equilibrio microbioléxico. Frederick Twort foi a
primeira persoa que os describiu en 1915 e Félix D’'Hérelle o primeiro en
observar o seu potencial terapéutico en 1917. Sen embargo, mentres que en
occidente a opcion para tratar infeccibns causadas por bacterias foron os
antibiéticos, a terapia de fagos sé utilizouse histéricamente no leste de
Europa, especialmente nos paises que formaban parte da antiga URSS.
Debido a emerxencia mundial que supofien as bacterias multirresistentes,
asi como o estancamento ao crear novos antibioticos eficaces contra elas, a
terapia de fagos propuxose como alternativa para tratar infecciosn agudas e

cronicas.

Os fagos poden experimentar dous tipos de ciclos despois da infeccion: litico
e lisoxénico. No ciclo litico, o fago utiliza a maquinaria celular para replicarse
e poder sair lisando a célula. No lisoxénico, os fagos lisoxénicos ou
temperados insertan o seu DNA no cromosoma hdéspede gracias &s
integrasas. Unha vez integrado no xenoma, o fago (cofiecido como profago
neste estado) pode permanecer integrado por xeracions, pero pode cambiar
a ciclo litico en calquer momento grazas a un proceso chamado inducion,
que pode ocorrer de forma espontanea ou debido a que a bacteria esta

sometida a condicidons non favorables de estrés.

A terapia de fagos pode aplicarse de diferentes maneiras dependendo do
tipo de infeccién e para poder aproveitar as sdas vantaxes e superar as suas
desventaxas. Os fagos utilizaronse solos ou en cécteles de fagos, tamén
combinando unha terapia de fagos con antibidticos para evitar as limitacions
da terapia de fagos como, por exemplo, a aparicion de resistencias aos
fagos. Ademds, conseguironse aillar e utilizar endolisinas, que son as

proteinas que utilizan os fagos para lisar e sair da bacteria, como terapia
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antimicrobiana eficaz baixo certas condicions ambientais tanto en bacterias

gram-positivas como en gram-negativas.

Ademas de ser utilizados coma terapia, o estudio de fagos no ambiente
bacteriano é importante & hora de cofecer as interaccions que ten coa célula
e as suas posteriores consecuencias. Unha delas, que tamén supén o
principal problema para a utilizacion da terapia de fagos, é a aparicion de
variantes bacterianas resistentes aos fagos. As resistencias aos fagos poden
darse de diferentes formas de adaptacién, como poden ser a mutacién dos
receptores que os fagos utilizan para adherirse & celula ou ben a adquisicién
de mecanismos con diferentes formas de interrumpir a infeccién: inhiben a
adsorcion do fago, bloquean a inxeccion do DNA, cortan o DNA inxectado,
inhiben a replicacién, interfiren no empaquetamento das proteinas virais ou
incluso provocan o suicidio celular para evitar a propagacion de fago as
células adyacentes. Un dos sistemas mais caracteristicos debido & sua

inmunidade adaptativa é o sistema CRISPR-Cas.

O quoérum sensing (QS) é un mecanismo polo cal a bacteria regula a sta
expresion xenética en resposta a densidade celular. Demostrou ser un
interesante obxectivo terapéutico en bacterias multirresistentes como, por
exemplo, no bloqueo das suas sinais especificas para previr a formacién de
biofilm. A relacién entre o QS e a infeccién por fagos estudiouse nestes

altimos anos en diversos organismos como en P. aeruginosa.

Nesta tese doctoral estudiaronse os fagos lisoxénicos e a sua relacion con
bacterias multirresistentes, tanto as stas aplicacions potenciais como terapia
transformando un fago lisoxénico nun litico ou utilizando as suas endolisinas;
como as suas interaccions coa bacteria, ben sea producindo a aparicion de

resistencias contra os fagos ou interactuando coa rede QS.

No capitulo 1 desenvolveuse unha estratexia que pode expandir a
disponfibilidade dos fagos utilizados na terapia de fagos obtendo un fago
litico mutado dun lisoxénico, ademais de caracterizar a sua actividade
antimicrobiana tanto s6 como combinado sinerxisticamente con antibioticos.
O fago lisoxénico Ab105-2phi, identificado na cepa da coleccién do “lI
Estudio Nacional de A. baumannii GEIH-REIPI 2000-2010" (Umbrella
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Bioproject PRINA422585) Ab105 GEIH-2010, foi transformado nun fago
litico delecionando o xene do represor Cl, que regula a fase lisoxénica dos
fagos. O fago resultante foi observado mediante microscopia electronica de
transmision (TEM) mostrando a mesma estructura do tipo “Siphoviridae”
como o fago sen a mutacion. Tamén caracterizouse o0 seu rango de hospede
ou “host range”, que afectaba a un 25% das cepas testadas, asi como a sua
eficiencia de plaqueo ou “efficiency of plating”, que era a mais elevada para
a cepa Ab177_GEIH-2000. Por iso, e ademais por non ter fagos completos
no seu xenoma, a cepa Ab177_ GEIH-2000 foi seleccionada para probar o
tempo de adsorcion do fago, que foi 12 minutos; calcular a curva de
crecemento ou “one-step growth curve”, que revelou un periodo de latencia
de 30 minutos e o numero de virions producidos por célula ou “burst size”,
que foi sobre 32 + 2 UFP ou Unidade Formadora de Placas por célula

infectada.

Unha vez caracterizado, estudiouse a actividade antimicrobiana do fago. A
actividade contra biofilm mostrou una gran reduccién na cantidade de
biomasa producida pola célula. As curvas de infeccion obtidas co fago
lisoxénico sen a mutacién en comparaciéon co fago mutado Ab105-2phiACI
confirmaron a natureza litica do fago mutado observando un decrecemento
drastico nas células infectadas co fago mutado. Sen embargo, si que se
observou un recrecemento despois de 5 horas debido a aparicion de
variantes resistentes aos fagos. Por iso, redixose o ratio de aparicion de
variantes case 1 log nas UFC ou Unidade Formadora de Colonias
resistentes ao fago infectando co fago litico mutado Ab105-2phiACI en
combinacion cos antibidticos meropenem, imipenem e doxiciclina.
Posteriormente, desenvolvimos un ensaio de norte bacteriana en presencia
do fago a tres diferentes MOI’s ou Multiplicidades de Infeccion (MOI=0.1, 1y
10) e tres antibidticos (meropenem, imipenem Yy doxiciclina) a dous
diferentes CMI’'s o Concentracion Minima Inhibitoria (CMI's= 1/4 y 1/8).
Observouse unha reduccion no numero de UFCs despois de 6 horas para
todas as combinacions de meropenem e imipenem, pero non para doxiclina,
co fago (entre 4 e 8 log de diferencia en UFC/mL), demostrando un efecto

sinerxistico. Este efecto mantivose despois de 24 horas cando a
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concentracion dos antibiéticos carbapenémicos foi de CMI=1/4 con MOI=10
no caso de meropenem y de MOI=1, 10 no caso de imipenem, cunha

reduccion de alrededor de 6 log UFC/mL en cada caso.

Finalmente, realizouse un ensaio de supervivencia en Galleria mellonella,
onde o ratio de supervivencia foi maior cando as larvas que eran infectadas
coa cepa Ab177_GEIH-2000 foron tratadas coa combinacion de meropenem
ou imipenem co fago Ab105-2phiACI. Sen embargo, s foi estadisticamente

diferente (p < 0.05) coa combinacién con imipenem.

No capitulo 2, identificaronse e caracterizaron dous endolisinas, ElyAl e
ElyA2 in vitro e in vivo contra cepas clinicas de patdéxenos multirresistentes.
Ademais, determinouse a actividade antimicrobiana dunha delas, ElyAl, en
combinacion co antibiotico colistina. Estas duas endolisinas foron
identificadas da secuencia xendémica dos fagos temperados en A. baumannii
Ab105-1 phi e Ab105-2 phi, respectivamente. As secuencias dos respectivos
profagos estan presentes no xenoma da cepa Abl05 GEIH-2010 illada na
coleccion do “Il Estudo Nacional de A. baumannii GEIH- REIPI 2000-2010”
( Umbrella Bioproject PRJINA422585). Ambas endolisinas foron clasificadas
como lisozimas (N- acetylmuramidasas) cun dominio C-terminal que se
corresponde coa familia glicosido hidrolasa 108 e cun dominio de unién a

peptidoglucano PG3 no N-terminal.

Despois de clonar e purificar as endolisinas, caracterizouse a sua actividade
muralitica. No caso da endolisina ElyAl foi necesaria a desestabilizacién da
membrana externa con EDTA para que a endolisina puidese actuar sobre o
seu obxectivo no peptidoglucano. A elevada actividade muralitica desta
encima estableceuse a pH=8.5 e a 37° C. No caso de ElyA2 non se
observou actividade, ainda que si efecto agregativo das células

probablemente debido a un mecanismo celular de tension.

Os ensaios de actividade antibacteriana de ElyAl mostraron un amplo
espectro de actividade: alta actividade contra 25 cepas clinicas de A.
baumannii, actividade variable contra 25 cepas clinicas de P. aeruginosa e
baixa actividade contra 13 de 17 cepas clinicas de Klebsiella pneumoniae.

Como a endolisina ElyAl non era capaz de superar a membrana externa, a
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sua actividade antimicrobiana foi caracterizada en combinacion con colistina,
que € un antibiotico polipéptido que altera a membrana externa. Primeiro,
determinaronse as CMI’ s naquelas cepas clinicas coa maior e menor
susceptibilidade & endolisina. Despois, fixose unha curva de mortalidade nas
cepas en cuxa CMI a colistina sufriu polo menos unha reducion 4 veces
menor. Ao engadir ElyAl, a reducion na Ml de colistina en 4 de 6 cepas (2
de A. baumannii e unha de cada P. aeruginosa e K. pneumoniae). Na outra
cepa analizada de P. aeruginosa, observouse unha reducién na CMI 2
veces menor, mentres que na outra de K. pneumoniae non se detectou
ningunha reducion. Estes resultados indican unha accién sinerxistica entre a

colistina e a endolisina ElyAl en todas as cepas sensibles a colistina.

Ademais, a actividade antimicrobiana desta combinacion de ElyAl e colistina
ensaiouse in vivo en larvas de Galleria mellonella e modelos murinos de
infeccién pulmonar e pel. Os resultados in vivo confirmaron os resultados
obtidos in vitro: a supervivencia de G. mellonella era maior cando era
tratada cunha combinacion de colistina e ElyAl. No caso dos ratos, o
reconto de bacteria foi significativamente reducido naqueles animais tratados
coa combinacién de ElyAl e colistina en ambos os modelos.

No capitulo 3, estudaronse os sistemas de resistencia aos fagos en 18
xenomas de cepas clinicas, especialmente aqueles relacionados co sistema
CRISPR- Cas, de 18 xenomas de cepas clinicas A. baumannii pertencentes
ao clon ST-2 entre os anos 2000 e 2010 da coleccion “Il Estudo Nacional de
A. baumannii GEIH- REIPI 2000-2010” (Umbrella  Bioproject
PRJINA422585). 9 xenomas pertencian a coleccion do ano 2000 e 9 & do
2010.

Nestes xenomas detectouse in silico a presenza de xenes putativamente
asociados a resistencia contra fagos relacionados con sistemas abortivos de
infeccion (Abi), sistemas toxina-antitoxina (TA), sistemas restricion-
modificacion (R-M), sistema CRISPR-Cas e con outros sistemas
recentemente caracterizados (ex. Zorya, Thoeris, Shedu ou Gabija, cuxa
funcibn en A. baumannii esta ainda por determinar). Atopouse unha

presenza lixeiramente maior destes xenes nas cepas do ano 2010 en
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relacion as do 2000. Ademais, detectouse a stUa presenza en illas xenémicas

(IG’ s) nun maior cociente nas do 2010 que nas do 2000.

Buscaronse os sistemas CRISPR-Cas seguindo o protocolo marcado por
Shmakov con certas modificacions, debido & falta de resultados nos
xenomas estudados utilizando as ferramentas de procura de sistemas
CRISPR-Cas mais cofiecidas. Atoparonse 40 arrays potenciais de CRISPR
en 17 das 18 cepas. Ademais, localizaronse 705 proteinas cuxa funcién

poderia estar relacionada cos sistemas CRISPR- Cas.

No ultimo e capitulo 4 da tese, analizaronse e caracterizaronse os profagos
presentes no xenoma de 24 cepas clinicas de P. aeruginosa pertencentes
ao clon internacional de fibrose quistica (FQ) ST274-CC274. Identificaronse
dous novos profagos, un inovirus e un siphovirus; este Ultimo cun xene,
chamado bci, nunca antes descrito en fagos e que esta relacionado coa
habilidade do fago para infectar. Ademais, tamén se analizou a sua relacion

coa rede QS.

A analise xendmica dos 24 illados clinicos de P. aeruginosa revelaron a
presenza de 4 profagos completos en 3 dos illados. 3 deles pertencian ao
xénero de fagos filamentosos Inovirus, un grupo de fagos que promoven a
formacién de biofilm en P. aeruginosa nos pulméns de pacientes con FQ.
Dous dos Inovirus identificados eran similares aos Inovirus pf4 e pf5 de P.
aeruginosa. O terceiro, presente na cepa AUS411, caracterizouse como un
Inovirus novo. Por ultimo, o cuarto era un profago do tipo Siphovirus

presente na cepa clinica AUS531.

O novo fago Inovirus identificado no illado AUS411 designouse como
pf8_ST274- AUS411 (pf8) (Gb: MN710383). A analise xendémica mostrou
unha gran homoloxia nas proteinas do Inovirus pf4, pero tres proteinas eran
caracteristicas deste fago: un moddulo putativo toxina-antitoxina e unha
metiltransferasa. O Siphovirus identificado na cepa clinica AUS531
denominouse AUS531 phi (Gb: MN585195) e a andlise da sua secuencia
revelou a presenza dunha proteina denominada Bci (Bacteriophage Control
Infection, denominada asi polo control de infeccion do bacteriéfago que

exerce), que posue un rol regulatorio do QS. Ambos fagos temperados, pf8
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da cepa AUS411 e AUS531phi da cepa AUS531, observaronse mediante
TEM confirmando a aparencia filamentosa do Inovirus pf8 e a aparencia
cunha cola longa non contractil e unha capside icosaédrica do Siphovirus
AUS531.

Analizouse o rol da proteina Bci na interaccion do fago AUS531phi e a
bacteria. Para iso, se delecion6 o xene bci obtendo unha cepa mutante
AUS531Abci. A cepa foi cultivada en presenza de mitomicina e o profago,
sen o xene bci, sendo inducida e extraendo asi o fago mutante: AUS531
phiAbci. A cepa mutada, AUS531Abci infectouse co fago sen mutar e
mutado para analizar o seu efecto na expresion dos xenes relacionados co
QS, a sua curva de infeccion, motilidade e secrecién de biofilm e piocianina.
Os resultados demostraron que o xene bci incrementa a habilidade do
bacteriofago para infectar P. aeruginosa regulando a rede QS, diminuindo a
expresion dos 4 xenes seleccionados (LasR, RhIR, QscR e PgsR) cando a
cepa mutante AUS531Abci foi infectada co fago sen mutar AUS531phi. A
capacidade de infeccion do fago AUS531phi comparouse na curva de
infeccion, sendo maior cando o fago levaba o xene bci, demostrando a
relacion deste xene coa regulacion de diferentes factores de virulencia na
bacteria, asi como unha reducion na motilidade e un incremento na

produciéon de biofilm e secrecion de piocianina.

Por tanto, pédese concluir que o xene bci presente no fago AUS531phi xoga
un rol na habilidade infectiva deste fago regulando a rede QS e factores de
virulencia (como piocianina e motilidade) do hospede. Son necesarios mais
estudos para elucidar o rol do fago pf8 do tipo Inovirus e os seus putativos

sistema toxina/antitoxina e metiltransferasa.

Ao longo desta tese doutoral, os profagos mostraronse cruciais nas
infeccions bacterianas dunha forma dobre: a stUa capacidade de infeccién e
especificidade en cepas clinicas fanos unha opcidén para considerar para a
terapia de fagos converténdoos de lisoxénicos a liticos, como mostramos no
capitulo 1, e sendo unha fonte natural de endolisinas, como mostramos no
capitulo 2. Ademais, é importante considerar a resistencia aos fagos e a sua

forma practica de evitala, neste caso combinando ambos os tratamentos con
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antibioticos. Tanto a procura de mecanismos de resistencias como a
caracterizacion dos profagos xa presentes e a suUa interaccién coa propia
bacteria na infeccion a través de sistemas como o QS, nos capitulos 3 e 4
respectivamente, son consideracions a ter en conta para poder ter unha

terapia eficaz.
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El nimero de infecciones nosocomiales esta incrementando debido al
crecimiento de las bacterias con multiple resistencia a antibidticos,
incrementando el tiempo de estancia en el hospital y la mortalidad. Dentro de
las familias que causan este tipo de infecciones se encuentran Acinetobacter

baumannii y Pseudomonas aeruginosa.

Los fagos son la entidad biolégica con mayor presencia en la Tierra,
manteniendo un rol esencial preservando el equilibrio microbioldgico.
Frederick Twort fue la primera persona que los describié en 1915 y Félix
D’Hérelle el primero en observar su potencial terapéutico en 1917. Sin
embargo, mientras que en occidente la opcion para tratar infecciones
causadas por bacterias fueron los antibioticos, la terapia de fagos solo se ha
utilizado histéricamente en el este de Europa, especialmente en los paises
que formaban parte de la antigua URSS. Debido a la emergencia mundial
que suponen las bacterias multirresistentes, asi como el estancamiento al
crear nuevos antibioticos eficaces contra ellas, la terapia de fagos se ha

propuesto como alternativa para tratar infecciones agudas y cronicas.

Los fagos pueden experimentar dos tipos de ciclos después de la infeccion:
litico y lisogénico. En el ciclo litico, el fago utiliza la maquinaria celular para
replicarse y poder salir lisando la célula. En el lisogénico, los fagos
lisogénicos o temperados insertan su DNA en el cromosoma huésped
gracias a las integrasas. Una vez integrado en el genoma, el fago (conocido
como profago en este estado) puede permanecer integrado por
generaciones, pero puede cambiar a ciclo litico en cualquier momento
gracias a un proceso llamado induccion, que puede ocurrir de forma
espontanea o debido a que la bacteria estd sometida a condiciones no

favorables de estrés.

La terapia de fagos puede aplicarse de diferentes maneras dependiendo del
tipo de infeccibn y para poder aprovechar sus ventajas y superar sus
desventajas. Los fagos se han utilizado solos o en cocteles de fagos,
también combinando una terapia de fagos con antibidticos para evitar las
limitaciones de la terapia de fagos como, por ejemplo, la apariciéon de

resistencias a los fagos. Ademas, se han conseguido aislar y utilizar
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endolisinas, que son las proteinas que utilizan los fagos para lisar y salir de
la bacteria, como terapia antimicrobiana eficaz bajo ciertas condiciones

ambientales tanto en bacterias gram-positivas como en gram-negativas.

Ademas de ser utilizados como terapia, el estudio de los fagos en el
ambiente bacteriano es importante a la hora de conocer las interacciones
que tiene con la célula y sus posteriores consecuencias. Una de ellas, que
también supone el principal problema para la utilizacion de la terapia de
fagos, es la aparicion de variantes bacterianas resistentes a los fagos. Las
resistencias a los fagos pueden darse de diferentes formas de adaptacion,
como pueden ser la mutacién de los receptores que los fagos utilizan para
adherirse a la célula o bien la adquisicion de mecanismos con diferentes
formas de interrumpir la infeccién: inhiben la adsorcion del fago, bloquean la
inyecciéon del DNA, cortan el DNA inyectado, inhiben la replicacion,
interfieren en el empaquetamiento de las proteinas virales o incluso
provocan el suicidio celular para evitar la propagacion del fago a las células
adyacentes. Uno de los sistemas mas caracteristicos debido a su inmunidad

adaptativa es el sistema CRISPR-Cas.

El quérum sensing (QS) es un mecanismo por cual la bacteria regula su
expresion genética en respuesta a la densidad celular. Ha demostrado ser
un interesante objetivo terapéutico en bacterias multirresistentes como, por
ejemplo, en el bloqueo de sus sefales especificas para prevenir la formacion
de biofilm. La relacién entre el QS y la infeccién por fagos ha sido estudiada

estos Ultimos afios en diversos organismos como en P. aerugonisa.

En esta tesis doctoral se han estudiado los fagos lisogénicos y su relacion
con bacterias multirresistentes, tanto sus aplicaciones potenciales como
terapia transformando un fago lisogénico en uno litico o utilizando sus
endolisinas; como sus interacciones con la bacteria, bien sea produciendo la

aparicion de resistencias contra los fagos o interactuando con la red QS.

En el capitulo 1 se desarrolld6 una estrategia que puede expandir la
disponibilidad de los fagos utilizados en la terapia de fagos obteniendo un
fago litico mutado de uno lisogénico, ademas de caracterizar su actividad

antimicrobiana tanto solo como combinado sinergisticamente con
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antibioticos. El fago lisogénico Abl05-2phi, identificado en la cepa de la
coleccion del “Il Estudio Nacional de A. baumannii GEIH-REIPI 2000-2010”
(Umbrella Bioproject PRINA422585) Ab105 GEIH-2010, fue transformado
en un fago litico delecionando el gen del represor Cl, que regula la fase
lisogénica de los fagos. ElI fago resultante fue observado mediante
microscopia electrénica de transmision (TEM) mostrando la misma
estructura del tipo “Siphoviridae” como el fago sin la mutacion. También se
caracterizé su rango de huésped o “host range”, que afectaba a un 25% de
las cepas testadas, asi como su eficiencia de plaqueo o “efficiency of
plating”, que era la mas elevada para la cepa Ab177_GEIH-2000. Por ello, y
ademas por no tener fagos completos en su genoma, la cepa Abl177_GEIH-
2000 fue seleccionada para probar el tiempo de adsorcion del fago, que fue
12 minutos; calcular la curva de crecimiento o “one-step growth curve”, que
revelé6 un periodo de latencia de 30 minutos y el nimero de viriones
producidos por célula o “burst size”, que fue sobre 32 + 2 UFP o Unidad
Formadora de Placas por célula infectada.

Una vez caracterizado, se estudio la actividad antimicrobiana del fago. La
actividad contra biofilm mostr6 una gran reduccién en la cantidad de
biomasa producida por la célula. Las curvas de infeccion obtenidas con el
fago lisogénico sin la mutacién en comparacion con el fago mutado Ab105-
2phiACI confirmaron la naturaleza litica del fago mutado observando un
decrecimiento drastico en las células infectadas con el fago mutado. Sin
embargo, si que se observo un recrecimiento después de 5 horas debido a
la aparicién de variantes resistentes a los fagos. Por ello, se redujo el ratio
de aparicién de variantes casi 1 log en las UFC o Unidad Formadora de
Colonias resistentes al fago infectando con el fago litico mutado Ab105-
2phiACI en combinacién con los antibiéticos meropenem, imipenem vy
doxiciclina. Posteriormente, desarrollamos un ensayo de muerte bacteriana
en presencia del fago a tres diferentes MOI's o Multiplicidades de Infeccion
(MOI= 0.1, 1 y 10) y tres antibioticos (meropenem, imipenem y doxiciclina) a
dos diferentes CMI’'s o Concentracion Minima Inhibitoria (CMI's= 1/4 y 1/8).
Se observo una reduccion en el nimero de UFCs después de 6 horas para

todas las combinaciones de meropenem e imipenem, pero no para
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doxiciclina, con el fago (entre 4 y 8 log de diferencia en UFC/mL),
demostrando un efecto sinergistico. Este efecto se mantuvo después de 24
horas cuando la concentracion de los antibidticos carbapenémicos fue de
CMI=1/4 con MOI=10 en el caso de meropenem y de MOI=1, 10 en el caso
de imipenem, con una reduccion de alrededor de 6 log UFC/mL en cada

caso.

Finalmente, se realiz6 un ensayo de supervivencia en Galleria mellonella,
donde el ratio de supervivencia fue mayor cuando las larvas que eran
infectadas con la cepa Abl77_GEIH-2000 fueron tratadas con la
combinacion de meropenem o imipenem con el fago Ab105-2phiACI. Sin
embargo, solo fue estadisticamente diferente (p < 0.05) con la combinacion

con imipenem.

En el capitulo 2, se identificaron y caracterizaros dos endolisinas, EIlyAl y
ElyA2 in vitro e in vivo contra cepas clinicas de patdégenos multirresistentes.
Ademas, se determing la actividad antimicrobiana de una de ellas, ElyAl, en
combinacion con el antibiotico colistina. Estas dos endolisinas fueron
identificadas de la secuencia gendmica de los fagos atemperados en A.
baumannii Ab105-1phi y Ab105-2phi, respectivamente. Las secuencias de
los respectivos profagos estan presentes en el genoma de la cepa
Ab105_ GEIH-2010 aislada en la coleccion del “Il Estudio Nacional de A.
baumannii GEIH-REIPI 2000-2010” (Umbrella Bioproject PRINA422585).
Ambas  endolisinas  fueron clasificadas como  lisozimas  (N-
acetylmuramidasas) con un dominio C-terminal que se corresponde con la
familia glicésido hidrolasa 108 y con un dominio de union a peptidoglucano

PG3 en el N-terminal.

Después de clonar y purificar las endolisinas, se caracteriz6 su actividad
muralitica. En el caso de la endolisina ElyAl fue necesaria la
desestabilizacion de la membrana externa con EDTA para que la endolisina
pudiese actuar sobre su objetivo en el peptidoglucano. La elevada actividad
muralitica de esta enzima se establecié a pH=8.5 y a 37°C. En el caso de
ElyA2 no se observé actividad, aunque si efecto agregativo de las células

probablemente debido a un mecanismo celular de estrés.
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Los ensayos de actividad antibacteriana de ElyAl mostraron un amplio
espectro de actividad: alta actividad contra 25 cepas clinicas de A.
baumannii, actividad variable contra 25 cepas clinicas de P. aeruginosa y
baja actividad contra 13 de 17 cepas clinicas de Klebsiella pneumoniae.
Como la endolisina ElyAl no era capaz de superar la membrana externa, su
actividad antimicrobiana fue caracterizada en combinacion con colistina, que
es un antibidtico polipéptido que altera la membrana externa. Primero, se
determinaron las CMI's en aquellas cepas clinicas con la mayor y menor
susceptibilidad a la endolisina. Después, se hizo una curva de mortalidad en
las cepas en cuya CMI a colistina sufri6 al menos una reduccion 4 veces
menor. Al afadir ElyAl, la reduccion en la CMI de colistina en 4 de 6 cepas
(2 de A. baumannii y una de cada P. aeruginosa y K. pneumoniae). En la
otra cepa analizada de P. aeruginosa, se observo una reducciéon en la CMI 2
veces menor, mientras que en la otra de K. pneumoniae no se detectd
ninguna reduccion. Estos resultados indican una accion sinergistica entre la

colistina y la endolisina ElyAl en todas las cepas sensibles a colistina.

Ademas, la actividad antimicrobiana de esta combinacién de EIlyAl y
colistina se ensay0 in vivo en larvas de Galleria mellonella y modelos
murinos de infeccion pulmonar y piel. Los resultados in vivo confirmaron los
resultados obtenidos in vitro: la supervivencia de G. mellonella era mayor
cuando era tratada con una combinacién de colistina y ElyAl. En el caso de
los ratones, el recuento de bacteria fue significativamente reducido en
aguellos animales tratados con la combinacién de ElyAl y colistina en

ambos modelos.

En el capitulo 3, se estudiaron los sistemas de resistencia a los fagos en 18
genomas de cepas clinicas, especialmente aquéllos relacionados con el
sistema CRISPR-Cas, de 18 genomas de cepas clinicas A. baumannii
pertenecientes al clon ST-2 entre los afios 2000 y 2010 de la coleccion “li
Estudio Nacional de A. baumannii GEIH-REIPI 2000-2010" (Umbrella
Bioproject PRINA422585). 9 genomas pertenecian a la coleccion del afo
2000y 9 a la del 2010.
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En estos genomas se detecto in silico la presencia de genes putativamente
asociados a resistencia contra fagos relacionados con sistemas abortivos de
infeccion (Abi), sistemas toxina-antitoxina (TA), sistemas restriccion-
modificacion (R-M), sistema CRISPR-Cas y con otros sistemas
recientemente caracterizados (ej. Zorya, Thoeris, Shedu o Gabija, cuya
funcidbn en A. baumannii esta todavia por determinar). Se encontré6 una
presencia ligeramente mayor de estos genes en las cepas del afio 2010 en
relacion a las del 2000. Ademas, se detectd su presencia en islas gendmicas

(IG’s) en un mayor ratio en las del 2010 que en las del 2000.

Se buscaron los sistemas CRISPR-Cas siguiendo el protocolo marcado por
Shmakov con ciertas modificaciones, debido a la falta de resultados en los
genomas estudiados utilizando las herramientas de basqueda de sistemas
CRISPR-Cas mas conocidas. Se encontraron 40 arrays potenciales de
CRISPR en 17 de las 18 cepas. Ademas, se localizaron 705 proteinas cuya

funcién podria estar relacionada con los sistemas CRISPR-Cas.

En el ultimo y capitulo 4 de la tesis, se analizaron y caracterizaron los
profagos presentes en el genoma de 24 cepas clinicas de P. aeruginosa
pertenecientes al clon internacional de fibrosis quistica (FQ) ST274-CC274.
Se identificaron dos nuevos profagos, un inovirus y un siphovirus; este ultimo
con un gen, llamado bci, nunca antes descrito en fagos y que esta
relacionado con la habilidad del fago para infectar. Ademas, también se

analizo su relacion con la red quérum sensing (QS).

El analisis gendmico de los 24 aislados clinicos de P. aeruginosa revelaron
la presencia de 4 profagos completos en 3 de los aislados. 3 de ellos
pertenecian al género de fagos filamentosos Inovirus, un grupo de fagos que
promueven la formacion de biofilm en P. aeruginosa en los pulmones de
pacientes con FQ. Dos de los Inovirus identificados eran similares a los
Inovirus pf4 y pfS de P. aeruginosa. El tercero, presente en la cepa AUS411,
se caracterizO como un Inovirus nuevo. Por ultimo, el cuarto era un profago

del tipo Siphovirus presente en la cepa clinica AUS531.

El nuevo fago Inovirus identificado en el aislado AUS411 se design6 como
pf8_ ST274-AUS411 (pf8) (Gb: MN710383). El analisis genbmico mostré una
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gran homologia en las proteinas del Inovirus pf4, pero tres proteinas eran
caracteristicas de este fago: un moddulo putativo toxina-antitoxina y una
metiltransferasa. El Siphovirus identificado en la cepa clinica AUS531 se
denomin6é AUS531phi (Gb: MN585195) y el analisis de su secuencia revelo
la presencia de una proteina denominada Bci (Bacteriophage Control
Infection, denominada asi por el control de infeccién del bacteriéfago que
ejerce), que posee un rol regulatorio del QS. Ambos fagos temperados, pf8
de la cepa AUS411 y AUS531phi de la cepa AUS531, se observaron
mediante TEM confirmando la apariencia filamentosa del Inovirus pf8 y la
apariencia con una cola larga no contractil y una cépside icosaédrica del
Siphovirus AUS531.

Se analizé el rol de la proteina Bci en la interaccion del fago AUS531phiy la
bacteria. Para ello, se delecion6 el gen bci obteniendo una cepa mutante
AUS531Abci. La cepa fue cultivada en presencia de mitomicina y el profago,
sin el gen bci, siendo inducida y extrayendo asi el fago mutante:
AUS531phiAbci. La cepa mutada, AUS531Abci, se infectdé con el fago sin
mutar y mutado para analizar su efecto en la expresion de los genes
relacionados con el QS, su curva de infeccién, motilidad y secrecién de
biofilm y piocianina. Los resultados demostraron que el gen bci incrementa la
habilidad del bacteriéfago para infectar P. aeruginosa regulando la red QS,
disminuyendo la expresion de los 4 genes seleccionados (LasR, RhIR, QscR
y PgsR) cuando la cepa mutante AUS531Abci fue infectada con el fago sin
mutar AUS531phi. La capacidad de infeccibn del fago AUS531phi se
comparé en la curva de infeccién, siendo mayor cuando el fago llevaba el
gen bci, demostrando la relacion de este gen con la regulacién de diferentes
factores de virulencia en la bacteria, asi como una reduccién en la motilidad

y un incremento en la produccion de biofilm y secrecion de piocianina.

Por lo tanto, se puede concluir que el gen bci presente en el fago AUS531phi
juega un rol en la habilidad infectiva de este fago regulando la red QS vy
factores de virulencia (como piocianina y motilidad) del huésped. Son
necesarios mas estudios para elucidar el rol del fago pf8 del tipo Inovirus y

Sus putativos sistema toxina/antitoxina y metiltransferasa.
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A lo largo de esta tesis doctoral, los profagos se han mostrado como
cruciales en las infecciones bacterianas de una forma doble: su capacidad
de infeccion y especificidad en cepas clinicas los hacen una opcién a
considerar para la terapia de fagos convirtiéendolos de lisogénicos a liticos,
como mostramos en el capitulo 1, y siendo una fuente natural de
endolisinas, como mostramos en el capitulo 2. Ademas, es importante
considerar la resistencia a los fagos y su forma préctica de evitarla, en este
caso combinando ambos tratamientos con antibiéticos. Tanto la busqueda
de mecanismos de resistencias como la caracterizacion de los profagos ya
presentes y su interaccién con la propia bacteria en la infeccion a través de
sistemas como el QS, en los capitulos 3 y 4 respectivamente, son

consideraciones a tener en cuenta para poder tener una terapia eficaz.
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