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The task of choosing the appropriate classifier for a given scenario is not an easy-to-solve question. First,
there is an increasingly high number of algorithms available belonging to different families. And also
there is a lack of methodologies that can help on recommending in advance a given family of algorithms
for a certain type of datasets. Besides, most of these classification algorithms exhibit a degradation in the
performance when faced with datasets containing irrelevant and/or redundant features. In this work we
analyze the impact of feature selection in classification over several synthetic and real datasets. The
experimental results obtained show that the significance of selecting a classifier decreases after applying
an appropriate preprocessing step and, not only this alleviates the choice, but it also improves the results
in almost all the datasets tested.

� 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Classification is a type of supervised learning that aims at
extracting models from a set of training data that are able to iden-
tify to which set of predefined categories a new test data belongs.
This task has many applications and, together with clustering, is an
example of the more general problem of pattern recognition, being
essential to data analytics and machine learning. The data
instances (e.g. a patient potentially having cancer) used by the
classification algorithms for learning are described by feature vec-
tors of measurable properties of the instance (e.g., several tumor
markers can be substances found in the blood, urine, stool, other
bodily fluids, or tissues of the patient). The model constructed aims
at making predictions of the class variable known as the class (e.g.,
the patient has/has not cancer) using one or more of the other fea-
tures, which can be either categorical or numeric. To summarize,
classification aims to learn the relationship between a set of fea-
ture variables and a target variable of interest, also named
response variable, e.g. whether the patient has a benign or a malig-
nant tumor.

There are a number of classification models that can be used for
a given problem, such as logistic regression, decision trees, support
vector machines, random forest, multilayer perceptrons or Naive-
Bayes to name just a few (see [2,1,31]). Nevertheless, for a given
dataset there are only a few indications that one can follow to
know in advance which classifier will obtain the best results. There
have been several works that have studied the relationship
between the performance of several classifiers and the complexity
measures of the datasets used (overlapping of the classes, shape of
the decision boundary, linear separability, etc.), such as in
[18,33,30]. However, as each complexity measure by definition
also depends on the characteristics of the dataset as the number
of features and instances, it may well happen that two datasets
with very different characteristics can present the same metric
value, and when the same classifier is used for both, the accuracies
obtained are not related at all. Thus, the common way to proceed is
to test several classifiers over a suite of several datasets, in order to
select the ones that behave the best. Still, if the collection of data-
sets varies (is enlarged or reduced), the best classifier might
change, and this is the basis of the No-Free-Lunch theorem, that
is, the best classifier will not be the same for all the datasets
[44]. Aiming at shedding some light in this problem, the authors
in Fernández-Delgado et al. [12] carried out an exhaustive evalua-
tion in which 179 classifiers from 17 different families were tested
over a large collection of 121 datasets, with different sample sizes,
number of features and number of classes. They concluded that the
classifiers most likely to obtain the best results were Random For-
est and Support Vector Machines. Later on, another study by Wain-
berg et al. [43] showed that the results obtained by the previous
authors Fernández-Delgado et al. [12] were biased by the lack of
a held-out test set and the exclusion of trials with errors, calling
into question that conclusion.

In this paper, we aim at a different direction. Our goal is to try to
establish if the application of an adequate preprocessing step using
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feature selection might alleviate the decision on which classifier is
the most appropriate. In other words, we would like to check if the
use of the appropriate features would cause different classifiers to
obtain similar results, as a consequence of working on higher qual-
ity data. The rationale of this idea is that the data collected con-
tains usually some level of noise, and feature selection can help
removing those noisy and irrelevant features [4] and help classi-
fiers to obtain better results. To show just a few examples, decision
trees, such as C4.5, or instance-based methods, such as kNN,
degrade their performance when faced with many irrelevant fea-
tures. In Langley and Iba [27] the authors showed that the number
of training samples needed to produce a predetermined level of
performance for instance-based learning increases exponentially
with the number of irrelevant features. Nevertheless, algorithms
such as Naive Bayes are robust with respect to irrelevant features,
degrading their performance very slowly when more irrelevant
features are added [24]. However, their performance deteriorates
quickly when redundant features are added, even if they are rele-
vant to the concept. Thus, researchers use feature selection meth-
ods to reduce the number of input variables of the dataset with the
aim of retaining those most useful for the model in order to accu-
rately predict the target variable [13]. Hence a new question arises,
regarding the effect that feature selection has over classification in
the sense that if the application of an adequate preprocessing step
using feature selection can attenuate the relevance of the decision
of selecting the best classification algorithm. In order to do this, we
have studied the impact of the process over the accuracy of the
classifier using a suite of 10 synthetic and 30 real datasets.

The rest of the paper is organized as follows: Section 2 provides
some information on relevant previous works on feature selection
and their influence on classification, emphasizing the main aims of
our study. Sections 3 and 4 provide the description of the different
feature selection techniques and the description of classifiers and
the synthetic and real datasets employed in the study, respectively.
Section 5 details the experimental study carried out over several
real and synthetic datasets and the results obtained, including sev-
eral case studies in order to analyze whether parameter tuning
affects the results obtained, as well as if our conclusions hold when
different classifiers (beside the ones already employed in the
experiments) are tested. Finally, Section 6 contains our concluding
remarks and proposals for future research.
2. Background

The first research works in feature selection date back to the
1960 [20]. It was in the 1990s when notable advances were made
in the field with the aim of solving machine learning problems and,
nowadays, it is acknowledged to play a crucial role in reducing the
dimensionality of real problems, with the added benefit of enhanc-
ing interpretability [5]. Feature selection has attracted interest in
processes such as clustering or regression, but most of the pub-
lished works are related to classification problems.

The success of feature selection applications is mainly based on
the benefits that it implies for classification problems, since some-
times using less features improves the classification performance.
Several works have reviewed the most widely used feature selec-
tion methods in the last years. Molina et al. [32] assessed the per-
formance of fundamental feature selection algorithms in a
controlled scenario, taking into account dataset relevance, irrele-
vance and redundancy. Saeys et al. [38] created a basic taxonomy
of classical feature selection techniques, discussing their use in
bioinformatics applications, as well as Bolón-Canedo et al. [6]
which reviewed feature selection for microarray data. Other works
evaluate the performance of feature selection methods on syn-
thetic data, such as [19,4]. Brown et al. [9] presented a unifying
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framework for information theoretic feature selection, bringing
almost two decades of research into heuristic filter criteria under
a single theoretical umbrella. The advent of Big Data and the neces-
sity of dealing with thousands (or even millions) of features has
posed tremendous challenges for feature selection researchers, as
studied in [5,46,29].

However, although several works studied the different feature
selection methods, their adequacy to be applied to different prob-
lems, and even which feature selection methods are more appro-
priate to use in conjunction with a given classifier, there are no
attempts to study if provided that the best features are selected,
the choice of classifier is not so critical. Our hypothesis is that,
when a classifier is fed with data of enough quality (i.e. after
removing the irrelevant or redundant features), there would be a
slight difference in the behavior of different state-of-the-art classi-
fiers. If our hypothesis is true, this finding will open the door to put
more emphasis on the data curation phase, instead of relying on
complex (and often highly computationally expensive) classifiers.
3. Feature selection techniques

Feature selection methods have received a great deal of atten-
tion in the classification literature. Broadly, they can be divided
into [14]: (i) filters, which are independent of the induction algo-
rithm and establish the importance of the features by using metrics
such as mutual information or statistics such as Chi2; (ii) wrappers,
which use the induction algorithm accuracy to determine the
importance of subsets of features; and (iii) embedded methods,
which perform the selection of features during the training process
of the induction algorithm. In addition to this, feature selection
methods can also be divided into univariate methods (when they
compute the relevance of a single feature with respect to the pre-
dictive class); and multivariate (when they take into account the
interactions among subsets of features). Since wrapper and embed-
ded methods interact with the classifier, we opted for filter meth-
ods. Besides, filter methods are a common choice in the new Big
Data scenario, mainly due to their low computational cost com-
pared to wrapper or embedded methods.

Filter methods evaluate the goodness of data subsets by observ-
ing only intrinsic data characteristics and evaluating a single fea-
ture or subset against the class label. Below we describe the
seven filters used in our experimental study, where two of the fea-
ture selection methods are univariate (Mutual Information Max-
imisation and Information Gain) and the other five (Correlation-
based Feature Selection, INTERACT, ReliefF, Joint Mutual Informa-
tion and minimum Redundancy Maximum Relevance) are multi-
variate methods:

� Correlation-based Feature Selection (CFS) is a simple multi-
variate filter algorithm that ranks feature subsets according to
a correlation-based heuristic evaluation function [16]. This
function is biased towards subsets containing features that are
highly correlated with the class and uncorrelated with each
other. Irrelevant features with low correlation with the class
are ignored. Redundant features are screened out as they would
be highly correlated with one or more of the remaining features.

� The INTERACT (INT) algorithm is based on symmetrical uncer-
tainty and it also includes the consistency contribution [47]. It
consists of two main parts. In the first part, the features are
ranked in descending order based on their symmetrical uncer-
tainty values. In the second part, features are evaluated one
by one starting from the end of the feature ranking. If the con-
sistency contribution of a feature is less than an established
threshold, the feature is removed, otherwise it is selected.
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� Information Gain (IG) filter evaluates the features according to
their information gain and considers a single feature at a time
[17]. It provides an orderly classification of all features, and then
a threshold is required to select a certain number of them
according to the order obtained.

� ReliefF algorithm (RelF) [25], an extension of the original Relief
[23], adds the ability of dealing with noisy, incomplete and mul-
ticlass datasets. The key idea of this algorithm is to estimate fea-
tures according to how well their values distinguish among the
instances that are near to each other. This method may be
applied in all situations, has low bias, includes iteration among
features and may capture local dependencies which other
methods miss.

� Mutual Information Maximisation (MIM) [28] ranks the fea-
tures by their mutual information score, and selects the top k
features, where k is decided by some predefined need for a cer-
tain number of features or some other stopping criterion.

� Joint Mutual Information (JMI) [45] is another feature selec-
tion method based on mutual information, and it adopts a
new criterion to evaluate the candidate features. JMI chooses
the feature that has the maximum cumulative summation of
joint mutual information with the selected features in each step
and adds it to the subset S until the number of selected features
reaches k.

� The minimum Redundancy Maximum Relevance (mRMR)
[34] feature selection method selects features that have the
highest relevance with the target class and are also minimally
redundant, i.e. it selects features that are maximally dissimilar
to each other. Both optimization criteria (maximum-relevance
and minimum-redundancy) are based on mutual information.

4. Materials and methods

Seven different feature selection methods are tested and com-
pared in this work in order to draw useful conclusions. Their
behavior will be tested according to the classification error
obtained by five different classifiers over 10 synthetic and 30 real
datasets.

4.1. Classifiers

Five different classifiers, each belonging to a different family,
were used as tested for analyzing the effects of the seven feature
selection algorithms. The classifiers employed were: two linear
(naive Bayes and Support Vector Machine using a linear kernel)
and three nonlinear (C4.5, k-Nearest Neighbor and Random Forest).
All five classifiers were executed using the Weka [15] tool, employ-
ing default values for their parameters.

� Naive Bayes (NB) is a simple probabilistic classifier [37] based
on applying Bayes’ theorem with strong (naive) independence
assumptions. This classifier assumes that the presence or
absence of a particular feature is unrelated to the presence or
absence of any other feature, given the class variable.

� Support Vector Machine (SVM) is a learning algorithm, used
for classification, regression and other tasks, which constructs
a hyperplane or set of hyperplanes in a high —or finite— dimen-
sional space [42]. Intuitively, good separation is achieved by the
hyperplane with the greatest distance to the nearest training
data point of any class, since in general, the larger the margin,
the lower the generalization error of the classifier.

� C4.5 was developed by Quinlan [36] as an extension of the ID3
algorithm (both are based on decision tree concepts). A decision
tree classifies a pattern by means of a descending filtering until
is found a leaf, that points to the corresponding classification.
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� k-Nearest Neighbor (k-NN) is a classification strategy that is an
example of a ‘‘lazy learner” [2]. An object is classified by major-
ity vote of its neighbors and is assigned to the most common
class among its k nearest neighbors. In this work, k ¼ 3.

� Random Forest [7] consists of a combination of tree classifiers
where each classifier is generated using a random vector sam-
pled independently from the input vector, and each tree casts
a unit vote for the most popular class to classify an input.

4.2. Datasets

In order to evaluate empirically the effect that feature selection
has over classification (in the sense that if the application of an
adequate preprocessing step using feature selection can attenuate
the relevance of the decision of selecting the best classification
algorithm), we employed 10 synthetic datasets and 30 real data-
sets, where 17 of them are microarray datasets. The features within
each dataset have a variety of characteristics: some are binary/dis-
crete, and some are continuous. Continuous features were dis-
cretized, using an equal-width strategy in 5 bins, while features
already with a categorical range were left untouched.

4.2.1. Synthetic datasets
The datasets chosen for this study (Table 1) try to cover differ-

ent problems: increasing number of irrelevant features, redun-
dancy, noise, alteration of the inputs, nonlinearity of the data etc.
These factors complicate the task of the feature selection methods,
which are very affected by them. Besides, SD datasets have a signif-
icantly higher number of features than samples, which implies an
added difficulty for the correct selection of the relevant features.

� CorrAL-100. The CorrAL [21] dataset has six binary features (i.e.,
f 1; f 2; f 3; f 4; f 5; f 6) and its class value is ðf 1 ^ f 2Þ _ ðf 3 ^ f 4Þ. Fea-
ture f 5 is irrelevant and f 6 is correlated to the class label by
75%. The correlated feature is redundant if the four relevant fea-
tures are selected and, besides, it is correlated with the class
label by 75%, so if one applies a classifier after the feature selec-
tion process, a 25% of error will be obtained. CorrAL-100 [22]
was constructed by adding 93 irrelevant binary features to the
previous CorrAL dataset.

� XOR-100. XOR-100 [22] has 2 relevant binary features and 97
irrelevant binary features (randomly generated). Features f 1
and f 2 are correlated with the class value with XOR operation
(i.e. class equals f 1 � f 2).

� Parity3 + 3. The parity problem is a classic problem where the
output is f ðx1; . . . ; xnÞ ¼ 1 if the number of xi ¼ 1 is odd and
f ðx1; . . . ; xnÞ ¼ 0 otherwise. The Parity3 + 3 dataset is a modified
version of the original parity dataset. The target concept is the
parity of three bits. It contains 12 features among which 3 are
relevant, another 3 are redundant (repeated) and other 6 are
irrelevant (randomly generated).

� Monk3. The MONK’s problems [41] rely on an artificial robot
domain, in which robots are described by six different attribu-
ted (x1; . . . ; x6). The learning task is a binary classification task.
The logical description of the class of the third problem (Monk3)
is the following: (x5 ¼ 3 ^ x4 ¼ 1 _ ðx5 – 4 _ x2 – 3Þ. Among the
122 samples, 5% are misclassifications, i.e., noise in the target.

� Madelon. The Madelon dataset [14] is a 2 class problem origi-
nally proposed in the NIPS’2003 feature selection challenge.
The relevant features are situated on the vertices of a five-
dimensional hypercube. Five redundant features were added,
obtained by multiplying the useful features by a randommatrix.
Some of the previously defined features were repeated to create
10 more features. The other 480 features are drawn from a
Gaussian distribution and labeled randomly. This dataset pre-



Table 1
Summary of the synthetic datasets. It shows the number of samples (#sam.), the number of features (#feat.), the relevant features (rel-feat.) and the number of classes (#cl.), as
well as the presence of correlation (#corr.), noise and no linearity. Gi means that the feature selection method must select one feature within the i-th group of features.

Dataset #sam. #feat. rel-feat. Corr. Noise No linear #cl.

CorrAL-100 32 99 1–4 U 2
XOR-100 50 99 1–2 U 2
Parity3 + 3 64 12 1–3 U 2
Monk3 122 6 2,4,5 U 2
Madelon 2400 500 1–5 U U 2
Led-25 50 24 1–7 U 10
Led-100 50 99 1–7 U 10
SD1 75 4020 G1;G2 3
SD2 75 4040 G1 � G4 3
SD3 75 4060 G1 � G6 3
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sents high dimensionality both in number of features and in
number of samples and the data were distorted by adding noise,
flipping labels, shifting and rescaling.

� The LED problem. The LED problem [8] is a simple classification
task that consists of, given the actived LEDs on a seven seg-
ments display, identifying the digit that the display is repre-
senting. Thus, the classification task to be solved is described
by seven attributes and ten possible classes available
(C ¼ 0;1;2;3;4;5;6;7;8;9). A 1 is an attribute which indicates
that the LED is active, and a 0 indicates that it is not active.
Two versions of the LED problem will be used: the first one,
Led25, adding 17 irrelevant features (with random binary val-
ues) and the second one, Led100, adding 92 irrelevant
attributes.

� SD1, SD2 and SD3. These three synthetic datasets [48] are chal-
lenging problems because of their high number of features
(around 4000) and the small number of samples (75), besides
of a high number of irrelevant attributes. SD1, SD2 and SD3
are three-class datasets with 75 samples (each containing 25
samples). Each synthetic dataset consists of both relevant and
irrelevant features. The relevant features in each dataset are
generated from a multivariate normal distribution using mean
and covariance matrixes. Besides, 4000 irrelevant features are
added to each dataset, where 2000 are drawn from a normal
distribution of Nð0;1Þ and the other 2000 are sampled with a
uniform distribution U½�1;1�.

4.2.2. Real datasets
In order to obtain significant conclusions about the effect of fea-

ture selection on classification, we also used 30 real datasets. 13
datasets were downloaded from the UCI repository [3], with the
restriction of having at least 50 features, and also 17 microarray
datasets were used due to their high dimensionality [33]. Tables
2 and 3 profile the main characteristics of the datasets used in this
research in terms of the number of samples, features and classes.

5. Experiments

In this section, the results obtained after applying seven differ-
ent feature selection methods over ten synthetic and 30 real data-
sets will be presented. While two of the feature selection methods
Table 2
Characteristics of the 13 real datasets. It shows the number of samples (#sam.), features (

Dataset #sam. #feat. #cl.

arrhythmia 452 279 13
conn-bench-sonar 208 60 2
gisette 7000 5000 2
hill-valley 606 100 2
low-res-spect 531 100 9
molec-biol-promoter 106 57 2
molec-biol-splice 3190 60 3
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return a feature subset (CFS and INTERACT), the other five (IG,
ReliefF, MIM, JMI and mRMR) are ranker methods, so a threshold
is mandatory in order to obtain a final subset of features. In this
work we have opted for retaining the top 10%, 20% and log2ðnÞ
[40] of the most relevant features of the ordered ranking, where
n is the number of features in a given dataset. In the case of SD
and microarray datasets, due to the mismatch between dimension-
ality and sample size, the thresholds selected the top 5%, 10% and
log2ðnÞ features, respectively. To estimate the error rate we com-
puted a 3� 5-fold cross validation (i.e. 3 repetitions of a cross val-
idation with 5 folds), including both feature selection and
classification steps in a single cross-validation loop, as recom-
mended in Kuncheva et al. [26] (see Fig. 1).

In order to check if the importance of choosing a specific classi-
fier decreases after applying a good preprocessing step, we ana-
lyzed the standard deviation of the classification error obtained
by the five classifiers in average. We consider that a lower value
of standard deviation represents a lower influence of the classifier
selected. The rationale of this idea is the following: using directly
the datasets with all features, there will probably be classifiers that
exhibit a good performance, while others will perform poor. In this
case, the standard deviation in the suite of classifiers might be
high. However, using feature selection as preprocessing step will
feed best quality inputs to the classifiers and thus the standard
deviation of the suite will be lower. This will prove a lower influ-
ence on the choice of the appropriate classifier, enhancing the need
for a previous feature selection.

5.1. Dealing with synthetic datasets

The first step to test the effectiveness of a feature selection
method should be on synthetic data, since the knowledge of the
optimal features and the chance to modify the experimental condi-
tions allows to draw more useful conclusions.

To explore the statistical significance of our classification
results, we analyzed the standard deviation by using a Friedman
test with the Nemenyi post hoc test. Fig. 2 presents the critical dif-
ferent diagrams, introduced by Demšar [11], where groups of
methods that are not significantly different (at a ¼ 0:10) are con-
nected. The top line in the critical difference diagram is the axis
on which we plot the average ranks of methods. The axis is turned
#feat.) and classes (#cl.).

Dataset #sam. #feat. #cl.

optdigits 5620 64 10
ozone 2536 72 2
semeion 1593 256 10
sonar 208 60 2
splice 3175 60 3
USPS 9298 256 10



Table 3
Characteristics of the 17 microarray datasets. It shows the number of samples (#sam.), features (#feat.) and classes (#cl.).

Dataset #sam. #feat. #cl. Dataset #sam. #feat. #cl.

9-tumors 60 5726 9 gli85 85 22283 2
11-tumors 174 12533 11 leukemia-1 72 5327 3
brain 21 12625 2 leukemia-2 72 11225 3
brain-tumor-1 90 5920 5 lung-cancer 203 12600 5
brain-tumor-2 50 10367 4 ovarian 253 15154 2
CLL-SUB-111 111 11340 3 smk 187 19993 2
CNS 60 7129 2 SRBCT 83 2308 4
colon 62 2000 2 TOX-171 171 5748 4
DLBCL 47 4026 2

Fig. 1. Diagram of the protocol for feature selection. Boxes represent inputs and
outputs; and circles represent procedures. S is the selected subset of features; Error
refers to the classification error predicted through cross-validation for the classifier
C, and F is the feature selection method chosen. This process is repeated three times.
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so that the lowest (best) ranks are to the right since we perceive
the methods on the right side as better. As we are dealing with syn-
thetic datasets, the relevant features of each dataset are known
(Table 1). Thus, firstly we compared the results obtained by the
classifiers over the original datasets (All feats), i.e. without feature
selection, and then the datasets with the relevant features (Rele-
vant). As can be seen in Fig. 2(a), the classifiers performed better
on average over the datasets with only the relevant features but
with no statistical significance over the classifier using the original
data. However, these results might be obscured by the fact that
three nonlinear problems were tested: XOR-100, Parity3 + 3 and
Madelon. Then, for these datasets, the classification errors obtained
CD

12

1.5 Relevant1.5All feats

CD

12

1.2 Relevant1.8All feats

Fig. 2. Critical difference diagram showing the difference in terms of standard
deviation between the error obtained by the five classifiers over the ten synthetic
datasets.
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by the linear classifiers (naive Bayes and SVM, which cannot solve
non-linear problems) are not taken into account in Fig. 2(b). As a
result, statistical significance appeared now between the two
approaches, thus supporting our initial hypothesis.

In Fig. 2 we have used the features that we already know are
relevant. However, it might well be that the different feature selec-
tion algorithms are not able to identify all of them correctly. Thus,
we have applied all the feature selection methods with different
thresholds over the 10 synthetic datasets. Then the five classifiers
were applied, and the standard deviation of the suite was obtained,
as shown in Table 4. It can be seen that for all datasets and feature
selection methods, the standard deviation is most of the times con-
siderably lower (at least for one of the thresholds for each feature
selection algorithm) than for the case of using the classifiers with
all features.

Finally, we analyzed if the application of feature selection
improves classification accuracy. Fig. 3 compared the performance
of the feature selection methods over the five different classifiers.
For ranker methods (IG, RelF, MIM, mRMR and JMI), the results
with the best threshold (the one that achieves the lowest misclas-
sification) are shown. It can be seen that, although in average fea-
ture selection methods do not achieve results which are not
statistically significant different with respect to using all features,
the performance obtained is better, and with fewer features.

5.2. Dealing with real datasets

In order to check if the results obtained on synthetic data can be
extrapolated to real world problems, 30 real datasets were chosen.
Firstly, we analyzed if the application of an adequate preprocessing
step using feature selection alleviates the decision on which classi-
fier is the most appropriate. Therefore, Table 5 shows the standard
deviation of the classification errors obtained by the five classifiers.
As can be seen, for all datasets and feature selection methods, the
standard deviation is most of the times considerably lower than for
the case when no feature selection was performed, showed in the
last row and labeled as ‘‘All feats”.

Once we have been reconfirmed that the use of the appropriate
features causes different classifiers to obtain similar results, we
proceed to analyze if the application of feature selection improves
the classification performance. Thus, the same five classifiers as
above were employed to compute the classification error. As can
be seen in Fig. 4 for the seven feature selection methods—only
the results with the best threshold (the one that achieves the low-
est misclassification) are shown for rankers—, using the whole set
of features is not significantly better than using the reduced data-
sets obtained by the feature selectors, which is a good result
because feature selection has the added benefits of producing sim-
pler and more understandable models, increasing explainability,
and reducing storage requirements. Moreover, there are three fil-
ters that achieved better results on average. The worst results were
obtained by the univariate methods, Information Gain and MIM,
which ignore feature dependencies.



Table 4
Standard deviation of the classification errors obtained by the five classifiers over each of the ten synthetic datasets. For feature selection methods that require a threshold, the
option to keep 5=10% is indicated by ‘�10’, the option to stay with 10=20% is indicated by‘ �20’, and the option ‘�log’ refers to use log2. Lower standard deviations obtained by
the filters methods versus the ‘All feats’ approach are highlighted in bold.

CorrAL XOR Parity Monk3 Madelon Led-25 Led-100 SD1 SD2 SD3 Average

CFS 0.91 1.02 1.20 7.10 2.54 7.61 8.06 4.09 2.75 2.39 3.77

INT 1.58 1.02 1.20 7.10 2.14 7.85 8.02 1.65 1.88 2.87 3.53

IG-10 2.20 2.69 1.58 0.41 5.71 0.89 6.11 1.47 1.99 4.29 2.73
IG-20 1.83 2.14 2.11 0.41 7.04 4.84 14.55 4.67 1.06 1.98 4.06
IG-log 2.46 1.76 7.09 7.02 4.17 4.84 8.39 3.49 5.19 5.40 4.98

RelF-10 5.22 7.06 0.30 0.70 2.59 0.89 6.37 4.97 8.39 3.04 3.95
RelF-20 6.29 5.39 0.30 0.70 4.95 4.84 14.61 4.09 6.93 3.71 5.18
RelF-log 4.72 3.08 2.12 6.49 3.58 4.84 6.42 4.19 0.80 3.64 3.99

MIM-10 6.04 3.79 0.00 0.41 4.32 0.89 7.02 3.89 5.18 6.54 3.81
MIM-20 4.63 4.07 2.24 0.41 5.94 4.84 14.66 2.41 5.75 6.84 5.18
MIM-log 6.73 1.39 2.63 6.40 4.24 4.84 5.81 4.68 2.75 2.00 4.15

mRMR-10 6.18 3.36 0.00 0.41 6.31 0.89 8.62 2.58 3.52 4.56 3.64
mRMR-20 4.55 4.07 2.24 0.41 5.77 4.84 14.32 3.71 6.12 6.80 5.28
mRMR-log 4.25 3.29 2.88 6.40 3.35 4.84 5.71 2.08 3.21 2.28 3.83

JMI-10 3.89 0.67 0.00 0.41 2.73 0.89 8.07 3.79 3.78 3.75 2.80
JMI-20 5.59 3.33 1.78 0.41 4.75 4.84 15.53 2.58 2.84 5.20 4.69
JMI-log 2.82 3.71 1.69 6.25 4.24 4.84 5.49 3.28 2.10 1.51 3.59

All feats 4.75 1.76 14.44 9.05 10.74 14.38 24.54 4.65 5.99 6.10 9.64

CD

8 7 6 5 4 3 2 1

3.9 IG-log
3.95 INT
4.05 CFS

4.4 MIM-204.6RelF-log

4.6JMI-20

4.7mRMR-20

5.8All feats

Fig. 3. Critical difference diagrams showing the average classification error ranks
after applying feature selection over the 10 synthetic datasets. For filters methods
that require a threshold, the option to keep 5=10% is indicated by ‘�10’, the option
to keep with 10=20% is indicated by‘ �20’, and the option ‘�log’ refers to use log2.
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5.2.1. Dealing with high dimensional datasets
Microarray technology is used to collect information from tis-

sue and cell samples regarding gene expression differences that
could be useful for diagnosing diseases [33]. The classification of
this type of data has been viewed as a particular challenge for
machine learning researchers, mainly due to the mismatch
between dimensionality and sample size. The existence of many
features relative to few samples means that false positives findings
due to chance are very likely in terms of both identifying relevant
genes and building predictive models [35]. Moreover, several stud-
ies have demonstrated that most of the genes measured in a DNA
microarray experiment do not actually contribute to efficient sam-
ple classification. To avoid this ‘‘curse of dimensionality”, feature
selection is advisable so as to identify the specific genes that
enhance classification accuracy.

Following the same study as for the previous datasets, and try-
ing to establish if the application of feature selection might allevi-
ate the decision on which classifier is the most appropriate, Table 6
shows the standard deviation of the classification errors obtained
by the five classifiers over the 17 microarray datasets. It can be
seen again that, for all microarray datasets and feature selection
methods, the standard deviation is most of the times considerably
lower (at least for one of the thresholds for each ranker method)
than for the case of using the classifiers with all features (All feats).

Finally, we compared the classification accuracy achieved by
the seven feature selection methods over the five different classi-
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fiers. Fig. 5 shows that, except for JMI filter, the results obtained
by all the feature selection methods are significantly better than
the results obtained over the version using all the features of the
dataset. This reflects the importance of feature selection on high
dimensional datasets.
5.3. Case studies

So far we have proven that our hypothesis holds and the fact of
using an adequate feature selection method alleviates the choice of
the classifier. However, there are other specific aspects that can
influence our results, such as the effects of parameter tuning, the
choice of kernel in SVMs, or the use of classifiers for which feature
selection is not typically applied. We will try to shed light on these
issues in the following subsections:
5.3.1. Case study I: The influence of parameter tuning
In machine learning problems, it is generally necessary to set

the parameters used by the classification algorithms in order to
achieve the best possible model and, consequently, the best results.
Experiments show a substantial decrease in error when the right
parameters are used. However, there is an associated problem in
adjusting the hyperparameters of most machine learning methods.
This parameter tuning involves a high computational cost or even
the risk of relying on assumptions that may bias the results. In
order to analyze the possible effect of parameter tuning on our
hypothesis, we consider two of the previously used classifiers, k-
Nearest Neighbor and C4.5.
5.3.1.1. k-Nearest Neighbor classifier. In our previous experiments, a
standard value of k ¼ 3 was set for k-Nearest Neighbor classifier,
avoiding even numbers to prevent ties and k ¼ 1 for triviality. In
this case study, we vary the number of neighbors with values 3,
5, 7, 9 and 11. The datasets used are those described in Table 2,
and the standard deviation of the suite of the five classifiers was
obtained, as shown in Table 7. It can be seen that, regardless of
the number of neighbors set in kNN, the standard deviation is con-
siderably lower than for the case of using the classifiers with all
features.



Table 5
Standard deviation of the classification errors obtained by the five classifiers for the real datasets tested. For feature selection methods that require a threshold, the option to keep
10% is indicated by ‘�10’, the option to stay with 20% is indicated by‘ �20’, and the option ‘�log’ refers to use log2. Lower standard deviations obtained by the filters methods
versus the ’All feats’ approach are highlighted in bold.

arrhythmia conn-
bench-
sonar

gisette hill-
valley

low-res-
spect

molec-biol-
prometer

molec-
biol-splice

optdigits ozone semeion sonar splice USPS Average

CFS 1.80 3.84 1.07 1.63 2.60 3.05 10.26 3.84 8.16 5.21 4.63 8.56 3.87 4.50

INT 1.35 4.36 2.93 1.52 2.94 3.50 10.45 3.53 7.97 3.47 4.76 8.81 4.11 4.59

IG-10 1.78 2.18 2.04 1.97 2.16 2.93 4.95 3.12 10.44 2.22 2.93 3.07 6.56 3.57
IG-20 2.52 5.59 1.80 1.11 3.17 3.36 6.38 3.81 10.06 3.03 4.23 4.42 5.59 4.24
IG-log 1.84 2.18 1.90 1.02 1.99 2.93 4.95 3.12 9.27 1.01 2.93 3.07 6.43 3.28

RelF-10 2.41 3.62 3.10 1.91 3.24 3.05 3.93 3.24 12.08 1.84 2.02 2.17 6.39 3.77
RelF-20 3.67 4.75 2.58 3.43 3.23 4.41 6.33 4.11 14.64 3.52 4.31 4.47 5.22 4.97
RelF-log 0.33 3.62 2.71 2.13 3.24 3.05 3.93 3.24 10.60 1.88 2.02 2.17 6.12 3.46

MIM-10 2.49 2.09 2.08 1.22 1.87 3.10 4.95 3.10 11.02 2.22 2.21 3.07 6.28 3.52
MIM-20 2.98 4.67 1.84 2.06 3.06 3.94 6.38 3.79 10.70 3.03 4.57 4.46 5.59 4.39
MIM-log 1.57 2.09 1.90 1.30 2.10 3.10 4.95 3.10 9.61 1.01 2.21 3.07 6.63 3.28

mRMR-10 2.85 2.48 1.75 1.51 2.62 4.20 4.91 2.18 6.07 1.69 2.01 3.03 4.34 3.05
mRMR-20 2.89 4.68 1.76 2.66 2.92 4.13 6.33 3.85 10.70 3.15 4.48 4.42 5.61 4.43
mRMR-log 2.55 2.48 0.92 1.69 2.18 4.20 4.91 2.18 4.94 0.47 2.01 3.03 3.35 2.69

JMI-10 2.52 3.30 1.87 2.20 2.47 4.30 4.91 3.19 4.86 1.70 1.98 3.03 4.52 3.14
JMI-20 2.54 3.83 1.63 3.68 3.61 3.78 6.39 3.94 8.16 2.72 4.21 4.36 4.57 4.11
JMI-log 2.66 3.30 2.63 1.77 2.10 4.30 4.91 3.19 3.93 0.39 1.98 3.03 3.97 2.94

All feats 4.52 5.90 2.35 3.52 3.56 7.05 13.47 4.07 11.36 6.90 6.38 9.53 7.64 6.63

CD

8 7 6 5 4 3 2 1

3.0769 JMI-20
3.6154 CFS
4.3846 INT
4.6923 mRMR-204.6923All feats

4.8462RelF-20

5.1538MIM-20

5.5385IG-20

Fig. 4. Critical difference diagrams showing the average classification error ranks
after applying feature selection over the 13 real datasets. For filters methods that
require a threshold, the option to keep 10% is indicated by ‘�10’, the option to keep
with 20% is indicated by‘ �20’, and the option ’-log’ refers to use log2.
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5.3.1.2. C4.5 classifier. The decision tree classifier selected was J48
[36], an improved version of the C4.5 classification algorithm,
which has several parameters but only two of which influence
the amount of pruning: the pruning confidence (C) and the mini-
mum number of instances per leaf (M). The pruning confidence
defines, for each pruning operation, the probability of error in
the hypothesis for which the deterioration due to this operation
is significant. The lower this value, the more pruning operations
allowed. For previous experiments, we employed the default
parameters C ¼ 0:25 and M ¼ 2 for C4.5 classifier. In this case
study, the settings used were: C (0.1, 0.25 and 0.5) and M (2 and
10), that is, a total of six different combinations of parameters for
each real dataset (Table 2). The standard deviation of the classifica-
tion errors obtained by the five classifiers is shown in Table 8. As
can be seen, regardless of the values taken by the parameters C
and M in C4.5 the classifier, the standard deviation is lower than
for the case when no feature selection was performed (All feats).
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In light of these results, it seems that parameter tuning does not
have any influence on our hypothesis, since—regardless of the val-
ues taken by the parameters in kNN and C4.5 classifiers—a lower
standard deviation of the classification error is achieved by the dif-
ferent classifiers when feature selection is performed.
5.3.2. Case study II: The choice of kernel in SVM classifiers
In application to classification problems, SVMs can produce

models with different kinds of decision borders—it depends on
the parameters used (especially on the kernel type). Thus, the bor-
ders can be linear or highly nonlinear. A nonlinear kernel allows to
solve nonlinear problems, but at the expense of being more com-
putationally demanding. In this case of study, in addition to the
SVM with linear kernel already used in previous experiments, a
Gaussian Radial Basis Function (RBF) with values C ¼ 1 and
c ¼ 0:01 was applied on the SVM classifier [10]. Since SVMs were
initially constructed to solve binary classification problems, and
to avoid the possible different strategies to deal with multiclass
problems, the datasets used are those binary datasets described
in Table 2.

Table 9 shows the standard deviation of the classification errors
obtained by the six classifiers—the five previously used classifiers
plus SVM with the Gaussian kernel—over the six binary real data-
sets. It can be seen that, for all real datasets and feature selection
methods, the standard deviation is (at least for one of the thresh-
olds for each ranker method) lower than for the case of using the
classification algorithms with all features. Thus, it is confirmed
again that the application of an adequate feature selection method
can attenuate the relevance of the decision of selecting the best
classifier, regardless of the kernel type.
5.3.3. Case study III: Intrinsic extracted features vs. selected features
Neural networks, and deep learning algorithms in general, have

the capability of automating feature extraction (the extraction of
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Fig. 5. Critical difference diagrams showing the average classification error ranks
after applying feature selection over the 17 microarray datasets. For filters methods
that require a threshold, the option to keep 5% is indicated by ‘�5’, the option to
keep with 10% is indicated by‘ �10’, and the option ‘�log’ refers to use log2.
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representations) from the data. The representation is learned
through the data which is fed directly into deep nets without
human knowledge. Thus, in this case study, we include a Multi-
layer Perceptron among the classification algorithms in order to
evaluate if, also for this neural network, using feature selection
as preprocessing step can attenuate the relevance of the decision
of selecting the best classification algorithm.

Multilayer Perceptron (MLP) is a feed forward artificial neural
network model that maps sets of input data onto a set of appro-
priate outputs [39]. The MLP is also known as the initial deep
architecture, and it can structure a more efficient model on sep-
arating non-linear problems. The experimental setup considers
the real datasets described in Table 2, except Gisette, due to its
space complexity (7000 samples and 5000 features). Table 10
shows the results in terms of the standard deviation of the clas-
sification errors obtained by the six classifiers—the five previ-
ously used classifiers plus MLP—over the 12 real datasets. As
can be seen, for all the datasets and filter methods, the standard
deviation is considerably lower than for the case when no feature
selection was performed, confirming our hypothesis.
6. Conclusions

Feature selection has been widely used as a preprocessing step
that reduces the dimensions of a problem and in some cases it
even improves classification accuracy. Although the benefits of
feature selection in a plethora of applications have been widely
proved in the literature, in this work we aim to go one step fur-
ther and check our hypothesis that, provided that the best fea-
tures are selected, the choice of the best classifier is not so
critical. In particular, for testing this hypothesis, we expected to
have little variation among the different classification errors
obtained by different classifiers when using the right features.

Thus, in this paper, we analyzed the effect of this preprocess-
ing task on the classification performance over several synthetic
and real datasets. In light of the results, we can conclude that:
(i) the choice of a classifier is less critical if we apply a good fea-
ture selection method before the classification task and (ii) fea-
ture selection not only alleviates the choice but also improves
the predictive accuracy and reduces the complexity of machine
learning models, specially on high dimensional datasets. Besides,
and concerning the different feature selection methods, CFS
appears to be the best performing filter regardless of the nature
of the dataset. We think that the results of this paper will open
the door to put more effort on the data curation stages, since it
remained demonstrated that improving data quality is highly rel-
evant for obtaining good performance in subsequent learning
stages. Furthermore, having good quality data has the potential



Table 7
Standard deviation of the classification errors obtained by the five classifiers—with different number of k neighbors for k NN classifier—over the 13 real datasets. Lower standard
deviations obtained by the filters methods versus the ‘All feats’ approach are highlighted in bold.

k ¼ 3 k ¼ 5 k ¼ 7 k ¼ 9 k ¼ 11

CFS 4.614 4.537 4.497 4.436 4.441

INT 4.724 4.615 4.565 4.503 4.496

IG-10 3.475 3.580 3.596 3.619 3.675
IG-20 4.323 4.292 4.330 4.351 4.306
IG-log 3.444 3.601 3.621 3.648 3.688

RelF-10 3.814 3.865 3.941 3.988 4.058
RelF-20 4.821 4.734 4.826 4.819 4.831
RelF-log 3.532 3.607 3.672 3.690 3.710

MIM-10 3.577 3.654 3.657 3.675 3.713
MIM-20 4.408 4.396 4.398 4.466 4.448
MIM-log 3.407 3.518 3.525 3.560 3.607

mRMR-10 2.939 2.899 2.897 2.924 2.948
mRMR-20 4.313 4.296 4.296 4.366 4.341
mRMR-log 2.698 2.680 2.668 2.693 2.709

JMI-10 3.116 3.059 3.077 3.078 3.137
JMI-20 4.063 3.971 3.970 3.910 3.921
JMI-log 2.917 2.919 2.909 2.921 2.942

All feats 6.367 6.314 6.066 6.049 6.086

Table 8
Standard deviation of the classification errors obtained by the five classifiers—with different values of C and M parameters for C4.5 classifier—over the 13 real datasets. Lower
standard deviations obtained by the filters methods versus the ‘All feats’ approach are highlighted in bold.

C ¼ 0:1 C ¼ 0:1 C ¼ 0:25 C ¼ 0:25 C ¼ 0:5 C ¼ 0:5
M ¼ 2 M ¼ 10 M ¼ 2 M ¼ 10 M ¼ 2 M ¼ 10

CFS 4.656 4.985 4.628 4.985 4.627 5.025

INT 4.695 4.981 4.669 4.974 4.690 5.014

IG-10 3.464 3.627 3.443 3.624 3.444 3.631
IG-20 4.268 4.501 4.303 4.478 4.307 4.520
IG-log 3.451 3.546 3.402 3.539 3.390 3.548

RelF-10 3.811 3.939 3.813 3.923 3.796 3.914
RelF-20 4.869 5.193 4.856 5.177 4.871 5.184
RelF-log 3.536 3.576 3.527 3.566 3.541 3.556

MIM-10 3.568 3.815 3.544 3.827 3.505 3.796
MIM-20 4.459 4.733 4.497 4.692 4.484 4.652
MIM-log 3.365 3.547 3.351 3.560 3.314 3.531

mRMR-10 3.008 3.247 2.979 3.252 2.969 3.256
mRMR-20 4.318 4.585 4.351 4.544 4.335 4.504
mRMR-log 2.714 2.874 2.669 2.873 2.642 2.882

JMI-10 3.101 3.306 3.045 3.274 3.030 3.237
JMI-20 4.035 4.274 4.049 4.269 4.046 4.282
JMI-log 2.884 2.999 2.842 2.984 2.831 2.972

All feats 6.471 6.758 6.437 6.753 6.430 6.782
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of avoiding the use of more complex classifiers, which usually
come with high computational costs.

While the initial findings are promising, further research is nec-
essary. As future research, we plan to study in depth whether,
when analyzing the standard deviation, the ranker methods that
obtain a higher value are those with a higher threshold, possibly
due to the fact that choosing a higher number of features entails
more variability.
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Table 9
Standard deviation of the classification errors obtained by the five classifiers plus SVM with Gaussian kernel over each of the six binary real datasets. Lower standard deviations
obtained by the filters methods versus the ‘All feats’ approach are highlighted in bold.

conn-bench-sonar gisette hill-valley molec-biol-promoter ozone sonar Average

CFS 4.80 18.17 2.09 2.74 7.51 4.61 6.65

INT 4.08 18.15 2.09 2.68 7.49 3.87 6.39

IG-10 3.22 19.02 1.02 2.49 10.45 2.21 6.40
IG-20 5.12 19.10 0.85 2.68 9.22 4.37 6.89
IG-log 3.22 2.49 0.94 2.49 9.20 2.21 3.42

RelF-10 4.00 18.85 2.27 2.24 11.08 1.83 6.71
RelF-20 4.68 19.02 2.69 3.13 14.52 4.14 8.03
RelF-log 4.00 3.98 2.01 2.24 9.64 1.83 3.95

MIM-10 2.23 19.00 1.46 3.31 10.76 1.97 6.46
MIM-20 4.66 19.13 2.15 3.01 9.60 4.13 7.12
MIM-log 2.23 2.52 1.27 3.31 9.61 1.97 3.48

mRMR-10 3.00 19.11 1.52 3.30 5.08 2.86 5.81
mRMR-20 4.69 19.13 2.59 3.40 9.62 4.17 7.27
mRMR-log 3.00 2.51 1.95 3.30 4.03 2.86 2.94

JMI-10 2.53 19.09 2.62 4.05 4.39 1.84 5.75
JMI-20 4.39 19.16 2.79 3.38 7.40 4.02 6.85
JMI-log 2.53 3.17 1.20 4.05 3.52 1.84 2.72

All feats 5.48 18.81 2.75 4.26 10.31 6.60 8.04

Table 10
Standard deviation of the classification errors obtained by the five classifiers plus the Multilayer Perceptron for the 12 real datasets tested. Lower standard deviations obtained by
the filters methods versus the ’All feats’ approach are highlighted in bold.

arrhythmia conn-bench-
sonar

hill-
valley

low-res-
spect

molec-biol-
prometer

molec-biol-
splice

optdigits ozone semeion sonar splice USPS Average

CFS 1.60 3.11 0.88 3.16 2.81 9.41 3.35 7.39 5.15 4.30 7.74 3.88 4.40

INT 1.13 3.99 0.94 3.37 3.23 9.29 3.14 7.46 3.76 3.96 7.78 3.69 4.31

IG-10 1.71 1.54 1.33 2.64 2.89 4.39 2.73 9.22 1.67 2.58 2.88 6.05 3.30
IG-20 2.74 4.18 0.93 3.61 4.17 5.78 3.36 9.61 3.01 3.63 4.02 5.14 4.18
IG-log 2.07 1.54 1.14 2.54 2.89 4.39 2.73 8.82 0.89 2.58 2.88 5.55 3.17

RelF-10 2.70 2.87 2.16 3.73 2.38 3.60 2.77 11.07 1.65 2.26 2.06 6.04 3.61
RelF-20 3.21 4.17 2.09 3.95 4.14 5.81 3.74 13.64 3.44 3.76 4.14 4.83 4.74
RelF-log 0.81 2.87 2.16 3.82 2.38 3.60 2.77 9.57 1.84 2.26 2.06 5.68 3.32

MIM-10 2.41 1.85 1.40 1.90 3.15 4.39 2.69 10.33 1.67 2.06 2.90 5.96 3.39
MIM-20 2.72 3.97 2.07 3.48 3.42 5.80 3.36 9.79 3.01 3.60 4.07 5.18 4.21
MIM-

log
1.90 1.85 0.95 2.05 3.15 4.39 2.69 9.15 0.89 2.06 2.90 6.02 3.17

mRMR-
10

1.95 2.39 1.50 3.03 3.29 4.32 2.23 5.70 1.48 1.89 2.89 3.94 2.88

mRMR-
20

2.66 3.88 2.09 3.43 3.40 5.70 3.40 9.78 2.95 3.52 4.09 5.18 4.17

mRMR-
log

2.44 2.39 1.31 2.61 3.29 4.32 2.23 4.89 0.35 1.89 2.89 3.04 2.64

JMI-10 2.50 2.40 1.93 3.20 3.07 4.35 2.65 4.45 1.67 2.03 2.91 4.17 2.94
JMI-20 1.96 3.82 3.41 3.88 2.89 5.70 3.48 7.36 2.57 3.47 4.06 4.36 3.91
JMI-log 2.29 2.40 1.88 2.68 3.07 4.35 2.65 3.66 0.38 2.03 2.91 3.83 2.68

All feats 4.26 5.19 3.80 4.39 4.54 12.22 3.69 10.21 6.80 5.89 8.54 7.27 6.40
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