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Abstract
Polycyclic aromatic hydrocarbons (PAHs) in atmospheric particulate matter have adverse effects on human health, yet 
total PAH concentrations should overestimate the toxicity compared to the bioavailable amount of PAHs. To explore this 
hypothesis, we measured PAHs oral bioavailability in vitro in particulate matter with aerodynamic diameter lower than 10 µm 
 (PM10) using a test that mimics the human digestive system. This assay combines the use of simulated gastrointestinal fluids 
and a dialysis membrane to simulate intestinal absorption. Results show that oral PAH bioavailability was below 5%, with 
fluorene, anthracene, acenaphthene and phenanthrene as the most bioavailable PAHs. Data suggest no carcinogenic risk of 
oral bioavailable  PM10-bound PAHs following a health risk assessment via inhalation-ingestion by using benzo(a)pyrene-
equivalent carcinogenic concentration and hazard indexes. To our best knowledge, this is the first research study of in vitro 
oral bioavailability estimation of  PM10-associated PAHs.

Keywords Oral bioavailability · Polycyclic aromatic hydrocarbons · Particulate matter · Physiologically based extraction · 
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Introduction

Inhalation of atmospheric particulate matter represents a 
significant exposure pathway for humans. Several studies 
have associated particulate matter exposure with an increase 
in morbidity and mortality due to its negative outcomes on 
human health, being particulate matter with aerodynamic 
diameter ≤ 10 µm  (PM10) and ≤ 2.5 μm  (PM2.5) the most 
studied particulate matter fractions due to their potential 
to penetrate and deposit in different regions of respiratory 
system after inhalation (Burnett et al. 2018). Also, particle-
bound pollutants are thought to have a key role in adverse 
health effects of particulate matter, which can be get into the 
body by means of inhalation (Galvão et al. 2018). Among 

PM-bound pollutants, polycyclic aromatic hydrocarbons 
(PAHs) are a well-known group of compounds widely stud-
ied because of their high ubiquity in environmental samples 
and their adverse effects on human health (Abdel-Shafy 
and Mansour 2016). PAHs occurrence in particulate matter 
fractions has been attributed mainly as a result of organic 
materials combustion (Mesquita et al. 2014). Nevertheless, 
considering total particle-bound pollutant concentrations 
provides an overestimation of their toxicity and a non-real-
istic evaluation of the exposition and health risk assessment. 
In order to improve risk assessment, it is also important to 
consider how pollutants are assimilated by exposed people. 
In recent years, scientific community has been focused on 
the pollutant fraction that can be dissolved in biological flu-
ids (i.e. bioaccessible fraction) and the fraction that diffuse 
across biological membranes to reach systemic circulation 
once dissolved (i.e. bioavailable fraction), to address a more 
realistic evaluation. For this purpose, different methodolo-
gies have been described in the literature to perform bioac-
cessibility/bioavailability estimation, distinguishing between 
in vivo methods and in vitro methods (using synthetic body 
fluids and physiological human conditions) to assess the 
maximum concentration of pollutant that can be dissolved 
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(bioaccessible fraction), in combination with absorption 
sinks, semi-permeable dialysis membranes or cultured cells 
models to assess fraction of pollutant bioavailable (i.e. enters 
the blood stream) (Miller et al. 1981; Ruby et al. 1999; Kas-
tury et al. 2017). In vivo methods may be unethical, expen-
sive and impractical for large scale testing (Nemmar et al., 
2013). On contrary, in vitro assays offer an attractive alterna-
tive to in vivo assays, due to the simplicity, rapidity, easy-
control, low cost, high precision and reproducibility (Kas-
tury et al. 2017). However, there is standardization shortage, 
which results in important differences in body fluid composi-
tions and physiological human extraction conditions.

After air inhalation during breathing, particles come into 
the body and are deposited in different regions of respira-
tory depending on the particle properties (mainly the size) 
(Kastury et al. 2017). Concerning the deposition, particles 
with aerodynamic diameter < 2.5 µm are more likely to reach 
the alveolar region of lungs (where pollutants might be dis-
solved into lung fluids and absorbed to blood (inhalation 
bioavailability), while particles with aerodynamic diameter 
in the range of 2.5–10 µm are deposited in tracheobronchial 
region, which could be subjected to mucociliary clearance 
and expelled by coughing/sneezing or ingested. Those par-
ticles conducted to the gastrointestinal tract could be an 
important absorption pathway of particle-bound pollutants 
(oral bioaccessibility/bioavailability). Several oral in vitro 
bioaccessibility approaches have been applied mainly for 
metal(oid)s in particulate matter (Falta et al. 2008; Mukhtar 
and Limbeck 2011; Uzu et al. 2011; Hu et al. 2012; Puls 
et al. 2012; Sysalová et al. 2014; Mohr et al. 2017; Kastury 
et al. 2018; Nie et al. 2018; Gao et al. 2018) and indoor/out-
door dust (Turner and Simmonds 2006; Turner and Ip 2007; 
Turner and Hefzi 2010; Turner 2011; Boisa et al. 2014; 
Bradham et al. 2014; Huang et al. 2014a, b; Patinha et al. 
2015; Goix et al. 2016; Padoan et al. 2017) samples. How-
ever, in vitro oral bioaccessibility studies of organic pollut-
ants in particulate matter were not found in the literature, 
while there were some studies applied to indoor/outdoor 
dust and soils for organic compounds, i.e. PAHs (Tang et al. 
2006; Kang et al. 2011; Collins et al. 2013; Li et al. 2015; 
Kademoglou et al. 2018a), organophosphate flame retard-
ants (Quintana et al. 2017), semi-volatile organic compounds 
(Raffy et al. 2018), polychlorinated biphenyls (Wang et al. 
2013) and polybrominated diphenyl ethers (Yu et al. 2011; 
Kademoglou et al. 2018b; Gao et al. 2019b). The stringent 
analytical requirements (target pollutants enrichment, due 
to the low levels; and pollutant isolation from the synthetic 
fluids matrix) for organic pollutant quantification in bioac-
cessible/bioavailable fractions might explain the scare infor-
mation. Regarding in vitro oral bioavailable studies, in vitro 
physiologically based extraction test methodology developed 
by Miller et al. (Miller et al. 1981) was extensively used 
because of showing well correlations for metals with in vivo 

studies. According to the literature, some researches have 
based on this methodology (with some modifications) to 
assess metal(oid)s oral bioavailability in foods (Wolfgor 
et al. 2002; Haro-Vicente et al. 2006; Moreda-Piñeiro et al. 
2013, 2015a), while it was recently applied to  PM10 samples 
(Moreda–Piñeiro et al. 2019).

Thus, the main objective of this research is the novel 
application and validation of an in vitro physiologically 
based extraction test, based on the use of a dialysis mem-
brane to simulate the intestinal absorption (Miller et al. 
1981; Moreda–Piñeiro et al. 2019), to assess the oral bio-
availability of PAHs in  PM10. Furthermore, the exposure and 
health risk assessment based on total and oral bioavailable 
contents of PAHs obtained were estimated and discussed.

Experimental

PM10 sample collection

An automatic high-volume sampler DIGITEL DHA-80 
(Hegnau, Switzerland) was used to samples collection at an 
urban site of A Coruña city (northwest of Spain). Descrip-
tion of the sampling site was previously reported (Moreda-
Piñeiro et al. 2015b). Atmospheric particulate matter was 
collected on Ahlstrom Munksjö MK360 (Falun, Sweden) 
quartz fibre filters, 150 mm of diameter, at 30  m3  h−1 for 
24 h, 00:00 to 23:59 (Coordinated Universal Time), from 1st 
January to 31st December 2015 according to the European 
Norm 12,341 (EN 12,341:2015) (UNE 2015).

Due to the low PAHs levels expected in oral bioavailable 
fractions and limited  PM10 filter amounts, monthly pooled 
samples (total filter area of 8.5  cm2) were made by combin-
ing one portion (0.28  cm2) of each daily  PM10 sample col-
lected during each month. Monthly  PM10 mass ranged from 
0.69 mg (September) to 1.0 mg (March).

In vitro oral bioavailability procedure

In vitro oral PAHs bioavailable fractions were obtained fol-
lowing the methodology as described in the Supplementary 
Material.

Total and oral bioavailable PAHs extraction 
and quantification procedures

Procedures for PAHs extraction and quantification in bio-
available fractions and in  PM10 samples are summarized in 
Supplementary Material; details for validation procedures 
(Tables S1-3) are also shown in this section.
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Exposure and health risk assessment and benzo(a)
pyrene‑equivalent carcinogenicity

Human health risk assessment of target  PM10-associated 
PAHs via inhalation-ingestion was performed basing on 
United States Environmental Protection Agency’s (USEPA) 
Inhalation Dosimetry Methodology (as described in Supple-
mentary Material) considering three scenarios (residents in 
the studied area (scenario I); residents working outside the 
studied area (scenario II); and workers not living in the area 
(scenario III), Table S4) (USEPA 2009, 2014; Hernández-
Pellón et al. 2018).

Carcinogenicity of  PM10-associated PAHs relatively to 
benzo(a)pyrene-equivalent toxic concentration was cal-
culated as described in Supplementary Material (USEPA 
1993).

Results and discussion

PM10 concentration levels and total PAH content

The daily  PM10 mass concentrations ranged between 3 and 
57 µg  m−3. There is only two samples that exceed the daily 
limit value of 50 µg  m−3 set by the European Commission, 
which cannot exceed more than 35 times per year (Directive 
2008/50/EC) (EU 2008). Despite this, the annual mean  PM10 
concentration corresponds to 20 µg  m−3, which is below the 
annual mean value of 40 µg  m−3 set in the European Direc-
tive. The monthly average  PM10 mass concentrations ranged 
between 17 µg  m−3 (September) and 26 µg  m−3 (March).

Monthly average PAHs concentrations obtained are 
shown in Figure S1, while detailed information is given in 
supporting material (Table S5). The contribution of each 
PAH to the Σ16PAHs (Figure S1) was dominated by benzo(e)
pyrene (19–27%), chrysene (13–19%), benzo(b)fluoran-
thene + benzo(j)fluoranthene (8–20%) and indene(1,2,3-cd)
pyrene (9–15%), while low contribution was achieved for 
volatile PAHs (mainly dominating the gas phase), such as 
naphthalene, anthracene, acenaphthene and fluorene (< 2%). 
The carcinogenic PAHs (benzo(b)fluoranthene + benzo(j)
fluoranthene, chrysene, indene(1,2,3-cd)pyrene, benzo(a)
pyrene, benzo(k)fluoranthene, benzo(a)anthracene and 
dibenzo(a,h)anthracene) concentrations (ΣcPAHs) and 
non-carcinogenic PAHs (acenaphthene, fluorene, phenan-
threne, anthracene, fluoranthene, pyrene, benzo(e)pyrene, 
benzo(ghi)perylene) concentrations (ΣncPAHs) represented 
45–59% and 41–55% of PAHs, respectively. The average 
annual concentration of benzo(a)pyrene (628 pg  m−3) is 
lower than the annual limit set in 1000 pg  m−3 according 
to European Directive 2004/107/EC (EU 2004). Monthly 
average PAHs contents demonstrated high variation from 
month to month (Table  S5 and Figure S1), due to the 

heterogeneousness of atmospheric particles  (PM10 sources). 
In general, PAHs concentrations found in samples are 
according previous studies reported near the area. Regarding 
season variability, monthly average PAH profiles exhibited 
during cold season are higher than during the hot season due 
to the increasing emissions from domestic heating. Moreo-
ver, presence of heavier PAHs such as benzo(a)anthracene, 
benzofluoranthenes (benzo(k)fluoranthene, benzo(j)fluoran-
thene and benzo(b)fluoranthene), benzopyrenes (benzo(a)
pyrene and benzo(e)pyrene) and indene(1,2,3-cd)pyrene 
might be associated with combustion sources such as vehic-
ular emissions and biomass combustion (López-Mahía et al. 
2003).

In vitro oral PAH bioavailable concentrations 
and oral bioavailability ratios in  PM10

Monthly average PAHs concentrations (pg  m−3) 
found were very low, within the ranges phenan-
threne (< 0.21–3.4) > chrysene (0.25–2.6) > pyrene 
(< 0.05–2.9) > f luorene (< 0.5–2.2) > f luoranthene 
(< 0.1–3.6) > benzo(e)pyrene (< 0.02–1.3) > acenaphthene 
(< 0.10–0.97) > naphthalene (< 0.11–0.95) > benzo(a)anthra-
cene (< 0.03–0.27) > benzo(k)fluoranthene (< 0.02–0.14). 
Oral bioavailable concentrations of anthracene, benzo(b)
f luoranthene + benzo(j)f luoranthene, benzo(a)pyr-
ene, benzo(ghi)perylene, dibenzo(a,h)anthracene and 
indene(1,2,3-cd)pyrene were found lower than limits of 
quantification. Furthermore, oral bioavailable carcinogenic 
PAHs plus non-carcinogenic PAHs concentrations repre-
sented 17–35% and 64–82% of the total oral bioavailable 
PAHs content, respectively. Results of monthly average 
PAH oral bioavailable concentrations as well as total carci-
nogenic PAHs and total non-carcinogenic PAHs are given 
in Table S6, while oral monthly average PAH bioavailability 
ratios  (Bav, expressed as percentage), calculated using the 
following formula, are shown in Fig. 1:

where [PAH]oral bioavailable fraction is the monthly average PAH 
concentration obtained after in vitro oral bioavailability (pg 
 m−3) and [PAH]total content is the total monthly average PAH 
concentration (pg  m−3).

Oral PAHs bioavailability percentages obtained for each 
PAH were below 5% (Fig. 1). As shown in the graph, flu-
orene offered the highest monthly average oral bioavail-
ability ratio ± standard deviation (2.8 ± 2.1%), followed by 
anthracene (1.4 ± 1.1%), acenaphthene (1.2 ± 1.7%) and 
phenanthrene (0.71 ± 0.67%). Regarding fluoranthene, 
pyrene, benzo(a)anthracene, chrysene, benzo(e)pyrene, 
benzo(b)fluoranthene + benzo(j)fluoranthene, benzo(k)

(1)B
av
(%) =

[PAH]
oralbio available fraction

[PAH]
total content

× 100
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fluoranthene, benzo(a)pyrene, dibenzo(a.h)anthracene, 
benzo(ghi)perylene and indene(1,2,3-cd)pyrene, bioavail-
ability percentages obtained were below 0.5%. Naphtha-
lene dialyzability percentages were not assessed because 
naphthalene concentrations in most of the dialysate frac-
tions extracts were lower than limit of quantification. 
The low percentages obtained show that a low amount of 
 PM10-bound inhaled PAHs could be available in the blood 
through intestinal absorption. Although 4–6 ring-con-
densed PAHs (benzo(e)pyrene, chrysene, indene(1,2,3-cd)
pyrene and benzo(b)fluoranthene + benzo(j)fluoranthene) 
were the most predominant in monthly  PM10 samples (con-
sidering total concentrations), the highest bioavailability 
ratios were obtained for 3 ring-condensed PAHs (fluorene, 
anthracene, acenaphthene and phenanthrene). This trend 
might be attributed to an increasing hydrophobicity (as 
increasing the condensed ring number) that obstructs 
PAHs mobilization from  PM10 to biological simulated 
fluids (aqueous based), as published for other simulated 
fluids (Li et al. 2019; Sánchez-Piñero et al. 2021). Fur-
thermore, the different chemical composition (different 

particulate matter sources) of  PM10 samples could explain 
the high standard deviation of monthly average oral bio-
availability ratios.

There are no oral  PM10-bounded PAHs bioavailability 
data in the literature. Therefore, oral bioavailability ratios 
obtained in this study will be compared with oral bioaccessi-
ble ratios found in the literature. Although there are different 
bioaccessibility protocols reported in the literature to assess 
oral bioaccessible fractions of PAHs in soil (Tang et al. 
2006; Collins et al. 2013; Li et al. 2015; Gao et al. 2019a) 
and indoor dust (Kang et al. 2011) samples, oral bioavail-
able ratios shown in Fig. 1 are lower than those previously 
published for bioaccessibility ratios. Oral PAHs bioacces-
sibility ratios in air conditioning filter dust, ranging from 2 to 
17% (Kang et al. 2011), and soil, ranging from 3.9 to 54.9% 
(Tang et al. 2006), were assessed using a physiologically 
based extraction test. Within this context, the lower values 
obtained in this study might be attributed to the inclusion 
of a dialysis membrane filled with aqueous buffer solution, 
which hinders the capture of  PM10-released PAHs (Fig. 1). 
Furthermore, several in vitro bioaccessibility approaches for 
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Fig. 1  Monthly averaged oral bioavailability of polycyclic aromatic 
hydrocarbons (PAH), showing  the inverse relationship between the 
PAHs bioavailability ratios and their hydrophobicity.  Acenaphthene, 
Ace; fluorene, Fl; phenanthrene, Phe; anthracene, Ant; fluoran-
thene, Ft; pyrene, Pyr; benzo(a)anthracene, BaA; chrysene, Chry; 
benzo(e)pyrene, BeP; benzo(b)fluoranthene + benzo(j)fluoran-
thene, BbF + BjF; benzo(k)fluoranthene, BkF; benzo(a)pyrene, BaP; 

dibenz(a,h)anthracene, DBahA; benzo(g,h,i)perylene, BghiP; and 
indeno(1,2,3-cd)pyrene, IP)(acenaphthene, Ace; fluorene, Fl; phenan-
threne, Phe; anthracene, Ant; fluoranthene, Ft; pyrene, Pyr; benzo(a)
anthracene, BaA; chrysene, Chry; benzo(e)pyrene, BeP; benzo(b)
fluoranthene + benzo(j)fluoranthene, BbF + BjF; benzo(k)fluoran-
thene, BkF; benzo(a)pyrene, BaP; dibenz(a,h)anthracene, DBahA; 
benzo(g,h,i)perylene, BghiP; and indeno(1,2,3-cd)pyrene, IP
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organic compounds involved the use of sorption sinks (i.e. 
silicone sheet (Gao et al. 2019b), Tenax TA® absorption 
sink (Li et al. 2015; Kademoglou et al. 2018b) and acti-
vated carbon sink (Collins et al. 2013)) to capture pollut-
ants as the same time they are released from matrix. The 
addition of a silicone sheet as sorption skin was observed to 
increase PAH bioaccessibility ratios up 44 − 67% (Gao et al. 
2019b). In addition, activated carbon and Tenax TA® were 
used as sorption skins, increasing bioaccessibility ratios up 
to 16–31% in contaminated soils (Li et al. 2015) and up to 
15–75% in spiked soil samples (Collins et al. 2013). Accord-
ing to the results obtained in the present study, the values 
are even much lower than those reported when including 
a sorption sink. Nevertheless, the inclusion of a sorption 
sink could create a sorption gradient higher than reality that 
might lead to overestimation.

Human health risk assessment of PM10‑bound PAHs

Human health risk assessment was performed based on 
the  inhalation dosimetry methodology for different sce-
narios and benzo(a)pyrene-equivalent carcinogenic con-
centrations approach, both models proposed by USEPA. 

Total and oral bioavailable PAH concentrations in monthly 
pooled  PM10 samples were used for health risk assessment. 
Limit of quantification/2 criterion was considered for con-
centration values below limits of quantification. Exposure 
concentrations, carcinogenic risk and carcinogenic hazard 
index were evaluated for  PM10-associated PAHs in the area 
studied. Maximum values of exposure concentrations esti-
mated for each scenario are shown in Table 1, while car-
cinogenic risk and carcinogenic hazard index maximum 
values are shown in Table 2. Regarding exposure concentra-
tions values, benzo(e)pyrene and fluoranthene are the most 
exposed PAHs for all scenarios considering total and oral 
bioavailable PAH concentrations, respectively. The highest 
exposure concentrations values were obtained for the most 
conservative scenario (scenario I for adults), with values 
of 2790 (total PAH concentrations) and 3.4 (oral bioavail-
able PAH concentrations) pg  m−3 for benzo(e)pyrene and 
fluoranthene, respectively. Furthermore, estimated carcino-
genic risks do not exceed the acceptable threshold lifetime 
cancer risk 1.0 ×  10−6 set by USEPA, being benzo(a)pyrene 
the PAH that showed the highest values for all scenarios 
considering both total and oral bioavailable PAH concentra-
tions. Maximum carcinogenic hazard index values estimated 

Table 1  Maximum values estimated for exposure concentrations 
(pg  m−3) of polycyclic aromatic hydrocarbons (PAH) for the differ-
ent scenarios, considering total and oral bioavailable concentrations. 
Naphthalene, Naph; acenaphthene, Ace; fluorene, Fl; phenanthrene, 
Phe; anthracene, Ant; fluoranthene, Ft; pyrene, Pyr; benzo(a)anthra-
cene, BaA; chrysene, Chry; benzo(e)pyrene, BeP; benzo(b)fluoran-
thene + benzo(j)fluoranthene, BbF + BjF; benzo(k)fluoranthene, BkF; 
benzo(a)pyrene, BaP; dibenz(a,h)anthracene, DBahA; benzo(g,h,i)

perylene, BghiP; and indeno(1,2,3-cd)pyrene, IP)(naphthalene, Naph; 
acenaphthene, Ace; fluorene, Fl; phenanthrene, Phe; anthracene, Ant; 
fluoranthene, Ft; pyrene, Pyr; benzo(a)anthracene, BaA; chrysene, 
Chry; benzo(e)pyrene, BeP; benzo(b)fluoranthene + benzo(j)fluoran-
thene, BbF + BjF; benzo(k)fluoranthene, BkF; benzo(a)pyrene, BaP; 
dibenz(a,h)anthracene, DBahA; benzo(g,h,i)perylene, BghiP; and 
indeno(1,2,3-cd)pyrene, IP

PAHs Scenario I Scenario II Scenario III

Adults Children Total Oral bioavailable Total Oral bioavailable

Total Oral bioavailable Total Oral bioavailable

Naph 81.3 0.91 24.4 0.27 40.7 0.46 24.2 0.27
Ace 109 0.93 32.6 0.28 54.4 0.46 32.4 0.28
Fl 46.6 2.1 14.0 0.62 23.3 1.0 13.9 0.62
Phe 332 3.3 99.7 0.97 166 1.6 98.9 0.97
Ant 98.0 0.25 29.4 0.075 49.0 0.12 29.2 0.074
Ft 1710 3.4 513 1.0 855 1.7 509 1.0
Pyr 1200 2.8 359 0.83 598 1.4 356 0.83
BaA 201 0.075 60.2 0.023 100 0.038 59.7 0.022
Chry 586 0.70 176 0.21 293 0.35 174 0.21
BeP 2790 1.2 836 0.36 1390 0.60 829 0.36
BbF + BjF 604 0.021 181 0.0062 302 0.010 180 0.0061
BkF 171 0.039 51.3 0.012 85.5 0.020 50.9 0.012
BaP 264 0.021 79.3 0.0062 132 0.010 78.6 0.0061
DahA 112 0.0021 33.5 0.0006 55.9 0.0010 33.3 0.0006
BghiP 1130 0.0096 340 0.0027 566 0.0048 337 0.0029
IP 390 0.0014 117 0.0004 195 0.0007 116 0.0004
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for each scenario do not exceed the cumulative cancer risk 
set in 1.0 ×  10–4, showing values of 3.3 ×  10–7 (total PAH 
concentrations) and 2.1 ×  10–11 (oral bioavailable PAH con-
centrations) for scenario I (adults). Then, no carcinogenic 
risk was found for  PM10-associated PAHs in the studied area.

Health risk assessment based on benzo(a)pyrene-equiv-
alent carcinogenic concentrations was also performed. 
Benzo(a)pyrene-equivalent values obtained varied from 
2100 to 5610 pg  m−3 and 0.17 to 1.4 pg  m−3 considering 
total and oral bioavailable PAH concentrations, respectively. 
Benzo(a)pyrene-equivalent concentrations exceeded the 
guideline value of 1.0 ng  m−3 for benzo(a)pyrene (Directive 
2004/107/EC) (EU 2004) when total PAH concentrations 
were used. However, no exceedances of benzo(a)pyrene limit 
value were observed when oral bioavailable PAH concen-
trations were used. In addition, lifetime cancer risk values 
estimated considering total and oral bioavailable PAH con-
centrations are shown in Fig. 2a–b, respectively. Attending 
to the graphs, all monthly average  PM10 samples exceeded 
the acceptable carcinogenic risk limit of 1.0 ×  10–6 for indi-
vidual carcinogens when total PAH concentrations are con-
sidered (Fig. 2a). Nevertheless, none of them exceeded the 
cumulative cancer risk (1.0 ×  10–4) for multiple carcinogens 
(USEPA 2001; Davie-Martin et al. 2017). Furthermore, life-
time risk calculated basing on oral bioavailable concentra-
tions were much lower than the acceptable carcinogenic risk 
limit of 1.0 ×  10–6 (Fig. 2b). Additionally, benzo(a)pyrene-
equivalent concentrations approach offered slightly higher 
values than carcinogenic hazard index as a result of consid-
ering a high number of PAHs in risk calculation.

Estimated life cancer risk values assessed using total PAH 
concentrations are higher (by a factor of  104) than values 
achieved using oral bioavailable PAH concentrations. This 
great difference could be resulted in an overestimation of 

cancer risks when considering total concentrations instead 
of using bioaccessible/bioavailable concentrations. Within 
this context, many authors have already reported the neces-
sity to consider bioaccessibilities and bioavailabilities on 
exposure and health risk models, providing a more realistic 
assessment (Huang et al. 2014b, 2018; Kastury et al. 2018; 
Raffy et al. 2018; Gao et al. 2018; Moreda-Piñeiro et al. 
2019). In addition, it is important to point out that our health 
risk assessment could be overestimated even using oral bio-
available concentrations because of not considering other 
parameters such as  PM10 deposition in different lung regions 
and clearance rates.

Conclusion

The present study describes a novel in vitro methodology 
for oral bioavailable  PM10-associated PAHs estimation that 
encompasses a first in vitro physiologically based extrac-
tion test using gastrointestinal fluids in combination with a 
dialysis membrane to simulate intestinal absorption, which 
would provide a better understanding of how substances can 
interact with organisms. Also, procedure for the analysis of 
PAHs in oral  PM10 bioavailable fractions was successfully 
validated, offering a simple, sensitive and accurate method-
ology to bioavailable PAHs quantification.

Applicability of the proposed method has been demon-
strated by the analysis of a set of  PM10 samples. Oral bio-
available ratios of investigated PAHs were found to be below 
5%, showing that a low amount of  PM10-bound PAHs could 
be available through intestinal absorption after inhalation. 
Among them, fluorene was found to be the most orally bioa-
vailable, followed by anthracene, acenaphthene and phenan-
threne (averaged bioavailable ratios of 2.8%, 1.4%, 1.2% and 

Table 2  Maximum carcinogenic risk for polycyclic aromatic hydro-
carbons, (PAH) and carcinogenic hazard index  (HIc) values esti-
mated for each scenario, considering total and oral bioavailable 
concentrations. Benzo(a)anthracene, BaA; chrysene, Chry; benzo(b)
fluoranthene + benzo(j)fluoranthene, BbF + BjF; benzo(k)fluoran-

thene, BkF; benzo(a)pyrene, BaP; dibenz(a,h)anthracene, DBahA; 
and indeno(1,2,3-cd)pyrene, IP)(benzo(a)anthracene, BaA; chrysene, 
Chry; benzo(b)fluoranthene + benzo(j)fluoranthene, BbF + BjF; 
benzo(k)fluoranthene, BkF; benzo(a)pyrene, BaP; dibenz(a,h)anthra-
cene, DBahA; and indeno(1,2,3-cd)pyrene, IP

PAHs Scenario I Scenario II Scenario III

Adults Children Total Oral bioavailable Total Oral bioavailable

Total Oral bioavailable Total Oral bioavailable

BaA 1.2 ×  10–8 4.5 ×  10–12 3.6 ×  10–9 1.4 ×  10–12 6.0 ×  10–9 2.3 ×  10–12 3.6 ×  10–9 1.4 ×  10–12

Chrysene 3.5 ×  10–10 4.2 ×  10–13 1.1 ×  10–10 1.3 ×  10–13 1.8 ×  10–10 2.1 ×  10–13 1.0 ×  10–10 1.3 ×  10–13

BbF + bjF 6.6 ×  10–8 2.3 ×  10–12 2.0 ×  10–8 6.8 ×  10–13 3.3 ×  10–8 1.1 ×  10–12 2.0 ×  10–8 6.7 ×  10–13

BkF 1.0 ×  10–9 2.4 ×  10–13 3.1 ×  10–10 7.1 ×  10–14 5.1 ×  10–10 1.2 ×  10–13 3.1 ×  10–10 7.1 ×  10–14

BaP 1.6 ×  10–7 1.2 ×  10–11 4.8 ×  10–8 3.7 ×  10–12 7.9 ×  10–8 6.2 ×  10–12 4.7 ×  10–8 3.7 ×  10–12

DahA 6.7 ×  10–8 1.2 ×  10–12 2.0 ×  10–8 3.7 ×  10–13 3.4 ×  10–8 6.2 ×  10–13 2.0 ×  10–8 3.7 ×  10–13

IP 2.3 ×  10–8 8.2 ×  10–14 7.0 ×  10–9 2.5 ×  10–14 1.2 ×  10–8 4.1 ×  10–14 7.0 ×  10–9 2.5 ×  10–14

HIc 3.3 ×  10–7 2.1 ×  10–11 9.9 ×  10–8 6.3 ×  10–12 1.6 ×  10–7 1.1 ×  10–11 9.8 ×  10–8 6.4 ×  10–12
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0.71%, respectively), while carcinogenic PAHs (benzo(b)
fluoranthene + benzo(j)fluoranthene, chrysene, indene(1,2,3-
cd)pyrene, benzo(a)pyrene, benzo(k)fluoranthene, benzo(a)
anthracene and dibenzo(a,h)anthracene) offered the lowest 
oral bioavailabilities (bioavailable ratios below 0.5%). More-
over, bioavailability percentages were observed to decrease 
when the number of condensed PAHs rings increases, which 
might be attributed to the increase in PAHs hydrophobicity 
as reported for other simulated biological fluids.

Furthermore, carcinogenic hazard index values and life-
time cancer risks based on benzo(a)pyrene-equivalent toxic 
concentrations by using oral bioavailable concentrations did 
not exceed cumulative cancer risk (1.0 ×  10–4) set by USEPA, 
suggesting no carcinogenic risk was found to oral bioavail-
able PAHs in  PM10-bound samples studied. However, a brief 

comparison among carcinogenic hazard index values using 
both total and bioavailable concentrations was performed, 
which resulted in an overestimation (by an average factor 
of almost  104) of  PM10-associated risks PAHs. Attending 
to this, inclusion of biovailabilities in human health risk 
assessment models would be a step towards a more realistic 
assessment, as well as the development of pollutants’ bio-
availability-based regulations that achieve the combination 
of pollutants limit levels safe for humans and ecosystems 
together with a realistic management of resources.

Finally, future efforts should be focused on the stand-
ardization of in vitro bioavailability methods so as to obtain 
more comparable data, as well as the suitability of including 
bioavailabilities and other biologically relevance parameters 
(such as deposition in lung regions and clearance rates) in 
current risk assessment models and toxicology studies.
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