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Abstract: Due to the continuous development in the field of Next Generation Sequencing (NGS)
technologies that have allowed researchers to take advantage of greater genetic samples in less time,
it is a matter of relevance to improve the existing algorithms aimed at the enhancement of the quality
of those generated reads. In this work, we present a Big Data tool implemented upon the open-source
Apache Spark framework that is able to execute validated error-correction algorithms at an improved
performance. The experimental evaluation conducted on a multi-core cluster has shown significant
improvements in execution times, providing a maximum speedup of 9.5 over existing error correction
tools when processing an NGS dataset with 25 million reads.
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1. Introduction

In recent years, the development of effective and fast techniques for processing large
volumes of genetic data has gained relevance due to the need of counting on these reads for
the evolution of biology-related scientific fields. As a direct consequence of this necessity,
new approaches to solve this problem have been presented throughout the last decade
under the name of Next Generation Sequencing (NGS) [1]. However, even though these
technologies are able to read amounts of genetic samples that are orders of magnitude
larger than the previous alternatives [2], they still do not have an insignificant error rate
for their generated reads. Hence, multiple algorithms have been proposed in the literature
to correct these mistakes in the samples and make up higher quality reads. Among them,
CloudEC [3] is a Big Data tool built upon the Apache Hadoop framework [4] that is able to
perform corrections to genetic datasets by running multiple steps of alignments of the input
samples, and replacing the bases with the lowest qualities of all those aligned samples with
another representations of higher quality.

At the same time, significant progress has also been made in the Big Data field, where
for many years some of the main approaches were based on the MapReduce paradigm [5],
a programming model proposed by Google that defines multiple programmable and non-
programmable phases to decouple the data transformation logic from the communication
and load distribution tasks. However, some alternatives have also been proposed with this
goal in mind, as it is with the Apache Spark framework [6], that are able to relieve both
the data scientists and Big Data developers from directly operating with the MapReduce
framework and allow them to tackle with a higher-level API. Moreover, this programming
interface also comes with some optimizations not usually found in another technologies,
such as the lazy computational model and the usage of the main memory for storing the
data instead of secondary storage.

In this context, it makes sense to develop a new tool aimed at solving the compu-
tational challenges introduced when correcting large NGS datasets, taking advantage of
Apache Spark to improve the performance of existing error correction algorithms.
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2. Development

With this work, we are proposing a parallel tool able to process input FASTQ reads,
an extended unaligned sequence format, also supporting the specific format internally
used by CloudEC. The overall workflow of the tool can be decomposed in the six phases
shown in Figure 1, which basically consist of: two mandatory stages at the beginning and
the end of the pipeline to preprocess the input and format the output, respectively; two
error correction phases that implement different algorithms each one; and, finally, two
filtering stages that are able to tag the input reads with auxiliary information for the error
correction phases. This processing pipeline is also used in the original CloudEC tool, which
has served as the underlying baseline for our Spark-based implementation.

Figure 1. The six phases of the error correction tool.

For the development of our proposal, the baseline tool have been redesigned and
reimplemented from scratch by replacing the Hadoop framework with Apache Spark.
Since the error correction algorithms implemented by CloudEC are based on the alignment
of nucleotide subsequences from the input reads, it is expected to significantly improve
performance given the ability of Spark to store this temporary alignment data in the main
memory instead of on a disk.

3. Experimental Evaluation

To determine the performance improvements provided by our proposal over the
original CloudEC tool, the experimental evaluation has been carried out on the Pluton
cluster of the Computer Architecture Group. In particular, the cluster nodes used in the
experiments consist of two Intel Xeon E5-2660 octa-core processors at 2.2 GHz (i.e., 16 cores
per node), 64 GiB of main memory, and one 1 TiB local SATA disk intended for intermediate
data storage during the executions.

In order to provide reproducible results, the datasets used in the experiments have
been obtained from SRA [7], an open repository for genomic reads. In particular, this
evaluation has been conducted using two public datasets in FASTQ format whose specific
features are shown in Table 1.

Table 1. Tag, SRA accessor identifier and features of the public datasets used in the experiments.

Tag Identifier Number of Sequences Sequence Length

D1 SRR034509 10,353,618 202 bp
D2 SRR4291508 25,232,347 100 bp

Regarding software settings, the evaluation was undertaken with Spark 2.3.4 and
Hadoop 2.9.2. Additionally, all the experiments were executed using OpenJDK 1.8.0_242.
Finally, the length of the k-mers (i.e., the length of the subsequences that were used for the
alignment tasks) has been set to 24 (k = 24) for both tools to ensure a fair comparison.
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4. Results and Conclusions

Table 2 provides the execution times of our tool and the speedups over CloudEC
for both datasets when using different number of nodes. These results show that our
implementation significantly outperforms CloudEC for all the scenarios under evaluation.
The maximum speedups are obtained when using 13 nodes: 2.8× and 9.5× for D1 and D2
datasets, respectively. Note that the speedups obtained are clearly higher for D2, which
contains twice as many reads as D1 (see Table 1), showing the benefits of our tool when
processing more compute-intensive datasets. Moreover, the scalability is improved when
compared to CloudEC, as can be noted by the fact that the speedups increase monotonically
with the number of nodes.

Table 2. Results of the performance evaluation of our tool. The execution times are shown in seconds
for each dataset and number of cluster nodes. The speedup provided by our tool over CloudEC is
shown in parentheses.

Dataset 5 Nodes 9 Nodes 13 Nodes

D1 4865 (2.4×) 1885 (2.6×) 1113 (2.8×)
D2 7473 (5.8×) 2484 (8.2×) 1511 (9.5×)

Overall, these results are very encouraging, proving that the Spark-based implementa-
tion is able to handle realistically sized NGS datasets, providing results in bounded times
that are even lower than the execution times of another tools of the state of the art.
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