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Abstract: The analysis of the retinal vasculature represents a crucial stage in the diagnosis of several
diseases. An exhaustive analysis involves segmenting the retinal vessels and classifying them into
veins and arteries. In this work, we present an accurate approach, based on deep neural networks, for
the joint segmentation and classification of the retinal veins and arteries from color fundus images.
The presented approach decomposes this joint task into three related subtasks: the segmentation
of arteries, veins and the whole vascular tree. The experiments performed show that our method
achieves competitive results in the discrimination of arteries and veins, while clearly enhancing the
segmentation of the different structures. Moreover, unlike other approaches, our method allows for
the straightforward detection of vessel crossings, and preserves the continuity of the arterial and
venous vascular trees at these locations.
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1. Introduction

The analysis of the retinal vasculature represents a crucial stage in the diagnosis of sev-
eral diseases, such as diabetes, age-related macular degeneration (AMD) and glaucoma [1].
This is due to the presence of these diseases causing changes in the retinal vessels. An
exhaustive analysis of the retinal vasculature involves segmenting the vascular tree and
classifying their vessels into veins and arteries. Despite its utility, this type of analysis is
rarely applied in clinical practice, as performing it manually is arduous, and often leads to
partly subjective results. For this reason, several automatic methods have been proposed.
Early methods addressed these tasks into two sequential steps [2]. However, this approach
causes the classification results to be highly conditioned by the segmentation results. To
overcome this issue, the current state of the art (SOTA) addresses both tasks as a single
multi-class semantic segmentation problem [3–6].

In this work, we present an accurate approach, based on deep neural networks, for the
joint segmentation and classification of the retinal arteries and veins (JSCAV) from color
fundus images. This approach, differently to SOTA, decomposes the joint task into three
subtasks: the segmentation of arteries, veins and the whole vascular tree. In the following
sections, we discuss this approach and its associated advantages.

2. Materials and Methods

The current SOTA formulates the JSCAV task as a single multi-class semantic segmen-
tation problem. However, this approach leads to incomplete segmentation maps for veins
and arteries, and does not directly provide vasculature segmentation maps.
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As an alternative, we present an approach that decomposes the joint task into three
segmentation subtasks [7]. Each of these subtasks addresses the segmentation of one of
three classes of interest: arteries, veins and the whole vascular tree. To implement this
multi-segmentation (MS) approach, a deep neural network is trained end-to-end using
a novel loss function: BCE3. This loss function computes the loss as the sum of the
individual segmentation losses of the aforementioned classes. Each individual loss is
computed as the binary cross-entropy (BCE) between the predicted probability map and
the manually annotated segmentation map. This setting allows for the intuitive handling
of vessel crossings, and directly provides precise and complete segmentation maps of the
various vascular trees. It also allows for the direct detection of vessel crossings through the
element-wise product of the predicted artery and vein maps.

To train and evaluate the networks in the JSCAV task, we employed the publicly
available RITE dataset [8], which is composed of 40 color fundus images and their corre-
sponding arteries, veins and vasculature segmentation masks. To facilitate training of the
networks, we used the image preprocessing technique specified in [3], as well as online
data augmentation. To validate our method, a U-Net network [9] was trained, using both
the traditional and the MS approaches.

3. Results and Conclusions

Figure 1 shows an example of an RITE retinography and its arteries, veins, vessels
and crossings segmentation maps predicted by a model trained using the MS approach.
Figure 2 shows the details of the arteries, veins and vessels segmentation maps of the same
retinography predicted by a model trained using the MS and the traditional approaches.

Figure 1. Example segmentation maps predicted by a model trained using the MS approach. From
left to right: arteries, veins, vessels and crossings.
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Figure 2. Examples of arteries, veins and vessels probability maps (in RGB) predicted by the models
trained using the MS and the traditional approaches.

The ablation study performed in the RITE dataset shows that our method provides an
adequate performance, especially in the segmentation of the different structures. Notably,
the MS approach achieves a mean accuracy of 89.24 ± 0.73 in the classification of arteries
and veins, and an AUC-ROC of 98.33 ± 0.04 in the segmentation of vessels; for its part, the
traditional approach achieves 88.78 ± 0.53 and 98.07 ± 0.04, respectively.

In addition, the comparison with the SOTA works in the same dataset, depicted in
Figure 3, clearly demonstrates that the presented method achieves competitive results
in the discrimination of arteries and veins, while significantly enhancing the vascular
segmentation.
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Figure 3. ROC curves in the RITE dataset for the MS approach along with the point representations
of the SOTA approaches for artery/vein classification (left) and vascular segmentation (right).

Therefore, the presented deep multi-segmentation method allows for the detection of
more vessels and to better segment the different structures, while achieving competitive
classification results. Furthermore, unlike previous approaches, the method allowsfor the
straightforward detection of vessel crossings, as well as preserving the continuity of the
arterial and venous vascular trees at these locations (see Figure 2).
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