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Abstract: In this paper, we illustrate that inaccurate knowledge can be efficiently implemented in
a quantum environment. For this purpose, we analyse the correlation between certainty factors
and quantum probability. We first explore the certainty factors approach for inexact reasoning from
a classical point of view. Next, we introduce some basic aspects of quantum computing, and we
pay special attention to quantum rule-based systems. In this context, a specific use case was built:
an inferential network for testing the behaviour of the certainty factors approach in a quantum
environment. After the design and execution of the experiments, the corresponding analysis of the
obtained results was performed in three different scenarios: (1) inaccuracy in declarative knowledge,
or imprecision, (2) inaccuracy in procedural knowledge, or uncertainty, and (3) inaccuracy in both
declarative and procedural knowledge. This paper, as stated in the conclusions, is intended to pave
the way for future quantum implementations of well-established methods for handling inaccurate
knowledge.

Keywords: quantum computing; artificial intelligence; certainty factors; inaccurate reasoning;
quantum rule-based systems

1. Introduction

The field of Artificial Intelligence (AI) is usually divided into two opposing points of
view: on the one hand, we have the Symbolic AI, which focuses on a symbolic representa-
tion of the world and then uses logic and search to solve problems, and on the other hand,
we have the subsymbolic AI that does not use explicit high-level symbols and relies on
mathematical equations to solve problems. Inside the subsymbolic approach, we can find
the connectionist models, that aim to build networks of simple interconnected units that
aim to simulate the functioning of the human brain [1]. The subsymbolic field includes the
Machine Learning (ML) disciplines, which focus on constructing computer systems that
automatically improve through experience. It also includes the study of the fundamental
statistical, computational, information and theoretic laws behind these learning systems [2].

The field of Quantum Computing has proven to be better than classical computers at
solving certain types of problems. For example: algebraic computational problems, such as
the Shor algorithm [3]; optimization and simulation tasks, such as simulated annealing;
database search, such as the Grover’s search algorithm [4]; or sampling problems, such as
the Markov Chain Monte Carlo methods. In general, we can say that the advantage that
quantum computation offers is the exploitation of an exponentially large quantum state
space through controllable entanglement and interference [5].

Since ML models and applications deal with massive parallel processing of high-
dimensional data, it seems obvious that quantum computers can be an advantage when
designing ML algorithms. Thus, a new field called Quantum Machine Learning (QML) has
emerged, where quantum algorithms have been defined for ML tasks that exhibit quantum
speedups [6–9].
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However, the field of symbolic AI seems not to have benefited greatly from the
existence of quantum computers. There are some suggestions: for example, since there are
algorithms developed to solve pattern matching problems, that is, the search for certain
types of patterns in certain search spaces (e.g., the search for substrings in long text sources
such as [10,11]) that are inspired in Grover’s search algorithm [4]; it has been suggested to
use quantum pattern matching to perform pattern matching of rule-based systems [12].

A more promising line for incorporating quantum computation into symbolic AI is to
use the probabilistic nature of quantum systems to represent imprecision and uncertainty.
Reasoning with inaccurate knowledge is one of the fundamental problems of symbolic
AI [13]. Broadly speaking, we can consider that the origin of inaccurate knowledge is related
to one or more of the following causes [14]: (1) the available information is incomplete,
(2) the available information is incorrect, (3) the information we use is inaccurate, (4) the
real world is not deterministic, (5) the lack of agreement between experts in the same field
is frequent, and (6) the knowledge model contains inaccurate information.

One of the first successful models to deal with uncertainty was the Certainty Factors
model proposed by Shortliffe and Buchanan (S.B.) [15] that shook the foundations of the,
at that moment, incipient world of artificial intelligence. The Shortliffe and Buchanan
model of certainty factors is ad hoc in nature and therefore lacks a strong theoretical basis.
However, this model was immediately accepted due to its easy understanding and the
quality of the results obtained after its application. In any case, it appears that, despite its
ad hoc nature, probabilities are in the core of this certainty factors [16].

Later approaches to model inexact knowledge include fuzzy models [17] based on
fuzzy sets, the evidential theory of Dempster and Shafer [18], and the Bayesian networks
(or belief networks) [19] that combine graph theory and probability theory.

Although the certainty factors model is independent of the technology, the real fact
is that, at present, we can start thinking on taking advantage of quantum systems and
consider specific applications of quantum computing (Q.C.), since we currently are in the
noisy intermediate-scale quantum (NISQ) era [20]. In this context, the question is [21]:
Could we use actual quantum computing (which is intrinsically probabilistic) to investigate
the probabilistic nature of certainty factors for reasoning with inaccurate knowledge?

Although this paper is strongly based on what we have already published in [13],
the major novelty of this work is to show how a well-established method [15] for dealing
with inaccurate knowledge can be implemented and studied from a quantum viewpoint.

In this context, a specific use case was built: an inferential network for testing the
behaviour of the certainty factors approach in a quantum environment. After the design
and execution of the experiments, the corresponding analysis of the obtained results is
performed in three different scenarios: (1) inaccuracy in declarative knowledge, or impreci-
sion, (2) inaccuracy in procedural knowledge, or uncertainty, and (3) inaccuracy in both
declarative and procedural knowledge.

We hope this paper paves the way for future quantum implementations of well-
established, traditional methods for handling inaccurate knowledge.

2. The Certainty Factors Model

The basic ideas of the certainty factors model can be summarized in the following
points [15]: (a) given a hypothesis that is being considered, the evidential strength of a state-
ment should be represented by two different measures: the Measure of Increasing Belief,
MB(h, e), and the Measure of Increasing Disbelief, MD(h, e); (b) MB(h, e) and MD(h, e)
are dynamic indexes that represent increments associated with new evidence; (c) if h is a
hypothesis, and e is an evidence, the same evidence e cannot simultaneously increase belief
and disbelief in h; (d) MB(h, e) represents an increase in belief in the hypothesis h given
the new evidence e; and (e) MD(h, e) represents an increase in disbelief in the hypothesis h
given the new evidence e.
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Now, let p(h) be the a priori probability of h and let p(h/e) be the probability of h
after e. Note that p(h) is a probability, and p(h/e) is a conditional probability. With these
assumptions, we can identify the following cases:

• If p(h/e) > p(h), then there is an increase in the probability of the hypothesis h after
e. In this case: MB(h, e) > 0, MD(h, e) = 0, and MB(h, e) is defined as follows:

MB(h, e) =
p(h/e)− p(h)

1− p(h)
(1)

According to this expression, MB(h, e) represents a relative increase in the likelihood
of the hypothesis h after evidence e.

• If p(h) > p(h/e), then there is a decrease in the probability of the hypothesis h after e.
In this case: MB(h, e) = 0, MD(h, e) > 0, and MD(h, e) is defined as follows:

MD(h, e) =
p(h)− p(h/e)

p(h)
(2)

According to this expression, MD(h, e) represents a relative increase in the negation
of the likelihood of the hypothesis h after evidence e.

• If p(h/e) = p(h), then either the new evidence e is independent of the hypothesis
h or there is no knowledge about an eventual causal relationship between h and e.
In this case:

MB(h, e) = MD(h, e) = 0 (3)

In addition to MB(h, e) and MD(h, e), Shortliffe and Buchanan define a third index,
the Certainty Factor, CF(h, e), which combines the two previous measures according to
the expression:

CF(h, e) = MB(h, e)−MD(h, e) (4)

The above formula is a formal equation since the same evidence cannot simultaneously
increase belief and disbelief about the same hypothesis. Shortliffe and Buchanan proposed
this certainty factor to facilitate the comparison between evidential strengths of alternative
hypotheses related with the same evidence. According to their definitions, the ranges of
each measure are:

0 ≤ MB(h, e) ≤ 1 ; 0 ≤ MD(h, e) ≤ 1 ; −1 ≤ CF(h, e) ≤ 1 (5)

Since all these indexes are based on probabilities, one could expect that they would
behave as probabilities, but this could be not necessarily true.

According to Shortliffe and Buchanan, one of the weakest points of probabilistic
models is the fact that the same evidence supports, simultaneously, a given hypothesis and
its negation. This is a consequence of the mathematical consistency of probabilistic models,
which forces that:

p(h/e) + p(¬h/e) = 1 (6)

Following the arguments of Shortliffe and Buchanan, the certainty factors are not
complementary to the unit as probabilities do. In fact, CF(h, e) = −CF(¬h, e). Assume
that p(h/e) > p(h)—the same result is obtained if we consider that p(h/e) < p(h)—then:

p(h/e) > p(h)→ CF(h, e) = MB(h, e)→ MD(h, e) = 0 (7)

MB(h, e) =
p(h/e)− p(h)

1− p(h)
(8)

p(h/e) + p(¬h/e) = 1 ; p(h) + p(¬h) = 1 (9)

CF(h, e) = MB(h, e) =
p(h/e)− p(h)

1− p(h)
(10)
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CF(h, e) =
1− p(¬h/e)− 1 + p(¬h)

p(¬h)
=

p(¬h)− p(¬h/e)
p(¬h)

(11)

CF(h, e) = MD(¬h, e) = −CF(¬h, e)→ CF(h, e) = −CF(¬h, e) (12)

Going a little bit deeper, the following question arises: how should an expert handle
the certainty factors? For the specific case of a single piece of evidence, the answer is clear,
as shown in these scenarios: (a) the expert indicates a value greater than zero and less than
or equal to one, if the evidence in question supports the hypothesis, (b) the expert indicates
a value less than zero but greater than or equal to minus one, if the evidence in question
goes against the hypothesis, and (c) the expert indicates a value equal to zero, if he or she
considers that the evidence found is independent of the considered hypothesis.

Another issue appears when there are several independent pieces of evidence pointing
to the same hypothesis. In this case, we are talking about the combination of different pieces
of evidence that are related to the same hypothesis. We can formulate this situation in the
following terms: assume we have a set of rules, all of them with the same conclusion, each
of them weighted with a different certainty factor. In addition, assume that E = [e1, e2, ..., en]
is all the evidence we have. What is the resulting certainty factor for the hypothesis h given
all the evidence E? That is, what is the value of CF(h, E)?

e1
CF(h,e1)−−−−→ h

e2
CF(h,e2)−−−−→ h

. . .

en
CF(h,en)−−−−→ h

(13)

In this case, each evidence [e1, e2, . . . , en] affects, in a different manner, to the veracity
of the hypothesis under consideration. The problem is to find an adequate formulation
that allows us to evaluate:

CF(h, E) ; E = [e1, e2, . . . , en] (14)

Shortliffe and Buchanan propose the following approach for the combination of two
pieces of evidence that refer to the same hypothesis. The formulation in terms of certainty
factors is as follows:

• If CF(h, e1) > 0 and CF(h, e2) > 0, then:

CF(h, e1 ∧ e2) = CF(h, e1) + CF(h, e2)− CF(h, e1)× CF(h, e2) (15)

• If CF(h, e1) < 0 and CF(h, e2) < 0, then:

CF(h, e1 ∧ e2) = CF(h, e1) + CF(h, e2) + CF(h, e1)× CF(h, e2) (16)

• If CF(h, e1)× CF(h, e2) < 0, then:

CF(h, e1 ∧ e2) =
CF(h, e1) + CF(h, e2)

1−min{|CF(h, e1)|, |CF(h, e2)|}
(17)

This way of combining evidence referring to the same hypothesis is associative, and
when there are more than just two pieces of evidence, the combination of the different
pieces of evidence can be considered in any order without affecting the final result.

Now, suppose the following inferential circuit:

e1
CF(e2,e1)−−−−−→ e2

CF(h,e2)−−−−→ h (18)
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How do we calculate CF(h, e1)? We now face a problem of propagation of uncertainty.
To solve it, Shortliffe and Buchanan propose the following equation:

CF(h, e1) = CF(h, e2)×max{0, CF(e1, e2)} (19)

This approach refers exclusively to the propagation of pure uncertainty, but it can also
happen that input data are imprecise. There is a subtle difference between imprecision and
uncertainty. Thus, while imprecision is a property associated with declarative knowledge
(and therefore static), uncertainty is related to the evidential strength of causal relationships.
For example: what should we conclude about h, if instead of having e1 we have ε1, where
ε1 looks like e1 but is not exactly e1? In this context, Shortliffe and Buchanan propose a
formulation that treats imprecision as uncertainty. To do this, they modify the previous
inferential circuit (Equation (18)) as follows:

ε1
CF(e1,ε1)−−−−−→ e1

CF(e2,e1)−−−−−→ e2
CF(h,e2)−−−−→ h (20)

Now, in order to calculate CF(h, ε1), the inaccurate knowledge—taking into account
that CF(e1, ε1) is the imprecision associated to e1—is propagated as follows:

CF(h, ε1) = CF(h, e1)×max{0, CF(e1, ε1)} (21)

A final aspect related to the propagation of inaccurate knowledge is related to the
logical combination of evidence. In production systems, rule antecedent clauses are usually
nested through the logical operators {AND, OR, NOT}. In this context, Shortliffe and
Buchanan propose the use of the minimum to evaluate the logical clause AND and the
maximum to evaluate the logical clause OR.

As an example, consider the following rule, with the AND operator represented by
the ∧ symbol and the OR operator represented by the ∨ symbol:

IF: e1 ∧ (e2 ∨ e3) THEN: h with CFrule = x ; −1 ≤ x ≤ 1 (22)

The antecedent of this rule is Eantecedent = e1 ∧ (e2 ∨ e3). However, in a real problem,
we usually have imprecise evidences ε rather than categorical evidences e. Therefore,
the evidence we have is Eactual = [ε1, ε2, ε3], which is the evidence that modifies the
antecedent of the rule. In this case, our problem is to find CF(h, Eactual):

CF(h, Eactual) = CFrule ×max{0, CF(Eantecedent, Eactual)} =
= CFrule ×max{0, CF(e1 ∧ (e2∨ e3), [ε1, ε2, ε3])} =
= CFrule ×max{0, min{CF(e1, ε1)max{CF(e2, ε2), CF(e3, ε3)}}}

(23)

This is the whole formulation of Shortliffe and Buchanan Certainty Factors Model,
which serves as a basis for our work.

We chose this model to base this work for several reasons: (1) historically, the proposal
of Shortliffe and Buchanan has had a great impact in the field of inaccurate reasoning; thus,
we consider it a good starting point for our work on a quantum implementation of inaccu-
rate reasoning, since we aim to model imprecision and uncertainty; (2) while the certainty
factors model is not explicitly probabilistic, it is based on probabilities, and therefore we
consider it interesting to study how this classical model compares to a quantum approach
and its probabilistic nature; and (3) although it is not as popular as it was, there is still
relevant work on certainty factors, such as [22–25].

To this we want to add, as is more thoroughly explained in [26], that there exists a
correlation between certainty factors and probabilities, which can lead to similarities with
Bayesian belief-networks models, since both apply similar concepts. In this paper, certainty
factors are just the employed model to compare and analyse the results obtained.
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3. An Overview of Quantum Computing

In Quantum Computing, the information unit is the qubit. The qubit is a vector of
a Hilbert space represented, in the Dirac notation, by a column matrix (Equation (24)) in
such a way that a bit 0 corresponds to a ket 0 and a bit 1 corresponds to a ket 1 [27].

bit 0 = {0} → ket 0 = |0〉 =
(

1
0

)
; bit 1 = {1} → ket 1 = |1〉 =

(
0
1

)
(24)

However, quantum systems can be in coherent superposition, which means that a
quantum system can be simultaneously in the states ket 0 and ket 1. To describe this
peculiarity, we need a state function, ψ, that verifies the following restrictions [28]:

|ψ〉 =
(

α
β

)
= α|0〉+ β|1〉 ; α, β ∈ C ; |α|2 + |β|2 = 1 (25)

Note that the 1-qubit |ψ〉 is built from the parameters α and β, which are the amplitudes
of the state function. In addition, note that α and β are defined as complex numbers, which
means that they have phase information, which allows one to perform rotations. This
aspect is treated later when we implement inaccurate knowledge.

A direct consequence of Heisenberg’s indeterminacy principle [29] is that when we
observe (or measure) a given qubit in superposition, said qubit loses its quantum properties
and collapses, irreversibly, in classical bits with a given probability.

A big difference between classical computing and quantum computing is related to
the nature of logical gates. While quantum gates are bijective because they are unitary
transformations, logical gates in general are not [30]. The most important consequence
of this property of quantum gates is that quantum states cannot be copied [27]. Unlike
conventional logic gates, which can operate from n-bits to m-bits, quantum gates must
operate from n-qubits to n-qubits, and they are reversible. The reversibility of quantum
gates is a consequence of the unitary nature of the corresponding operators. Each quantum
gate of n-qubits can be represented by a unitary matrix of dimension 2n × 2n, where the
transformation performed by the quantum gate is accomplished by its associated matrix
operator. Taking into account the description of the transformation that a quantum gate
performs on the elements of the basis space, the unitary matrix associated with it is obtained
from the following procedure [31]:

• The rows of the matrix correspond to the basis vectors of the input;
• The columns of the matrix correspond to the basis vectors of the output;.
• The position (j, i) of the matrix corresponds to the coefficient of the j basis vector

output in relation to the i basis vector input.

Quantum gates that operate on a single qubit or 1-qubit systems (one input qubit
and one output qubit) have associated 2× 2 matrices. We now see how we can operate
with some of these gates. We start with the identity gate, I (Figure 1), which, although its
behaviour does not modify the state of the input qubit, serves to illustrate the procedure
for constructing the associated unitary matrix. Table 1 represents the truth table of the I
gate, and Table 2 illustrates the associated unitary matrix of the I operation.

|x⟩ IDENTITY |x⟩

Figure 1. Quantum representation of the Identity operation.
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Table 1. Truth table of the Identity operation.

Input Output

|0〉 |0〉
|1〉 |1〉

Table 2. Unitary matrix associated to the truth table of the Identity operation.

|0〉 |1〉
|0〉 1 0
|1〉 0 1

The behaviour of the unitary matrix of the I gate is as follows:

I|0〉 =
(

1 0
0 1

)(
1
0

)
=

(
1
0

)
= |0〉 ; I|1〉 =

(
1 0
0 1

)(
0
1

)
=

(
0
1

)
= |1〉 (26)

Similar to the identity gate I is the negation gate, N, usually described in quantum
computing as the X gate, which is as follows:

N = X =

(
0 1
1 0

)
(27)

N|0〉 =
(

0 1
1 0

)(
1
0

)
=

(
0
1

)
= |1〉 ; N|1〉 =

(
0 1
1 0

)(
0
1

)
=

(
1
0

)
= |0〉 (28)

Finally, the Hadamard gate, H, transforms a 1-qubit into a superposition of the
elements of the basis {|0〉, |1〉}. The description and transformations that Hadamard’s gate
performs are illustrated below:

H =
1√
2

(
1 1
1 −1

)
; H|0〉 = |0〉+ |1〉√

2
; H|1〉 = |0〉 − |1〉√

2
(29)

Tensor products are used to build more complex systems of qubits. For example, we
can build 2-qubit systems from the tensor product two 1-qubit systems. A 2-qubit system
|x〉|y〉 = |x, y〉 = |xy〉 is constructed as |x〉 ⊗ |y〉. Therefore, if we consider the vectors of
the basis for 1-qubit {|0〉, |1〉}, it follows that:

|0〉 ⊗ |0〉 = |0〉|0〉 = |0, 0〉 = |00〉 =
(

1
0

)
⊗
(

1
0

)
=


1
0
0
0

 (30)

|0〉 ⊗ |1〉 = |0〉|1〉 = |0, 1〉 = |01〉 =
(

1
0

)
⊗
(

0
1

)
=


0
1
0
0

 (31)

|1〉 ⊗ |0〉 = |1〉|0〉 = |1, 0〉 = |10〉 =
(

0
1

)
⊗
(

1
0

)
=


0
0
1
0

 (32)

|1〉 ⊗ |1〉 = |1〉|1〉 = |1, 1〉 = |11〉 =
(

0
1

)
⊗
(

0
1

)
=


0
0
0
1

 (33)
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Therefore, the vectors of the basis for 2-qubit systems are {|00〉, |01〉, |10〉, |11〉}, and the
matrices that perform unitary transformations in 2-qubit systems must be matrices of di-
mension 4× 4. Similarly, the vectors of the basis for 3-qubit systems are {|000〉, |001〉, |010〉,
|011〉, |100〉, |101〉, |110〉, |111〉}, and the matrices that perform unitary transformations in
3-qubit systems must be matrices of dimension 8× 8.

In the context of 2-qubit systems, we mention the CN gate (Controlled-Not), that
negates the second qubit if the first qubit is |1〉. Table 3 represents the truth table of the
CN gate, and Table 4 illustrates the associated unitary matrix of the CN operation. Clearly,
the

∣∣Boutput
〉

of a CN gate can be interpreted as the output of an XOR gate with inputs∣∣Ainput
〉

and
∣∣Binput

〉
; however, the device is not the same since the gate CN generates two

outputs instead of one.

Table 3. Truth table of the CN operation.

Input A Input B Output A Output B

|0〉 |0〉 |0〉 |0〉
|0〉 |1〉 |0〉 |1〉
|1〉 |0〉 |1〉 |1〉
|1〉 |1〉 |1〉 |0〉

Table 4. Unitary matrix associated to the truth table of the CN operation.

|00〉 |01〉 |10〉 |11〉
|00〉 1 0 0 0
|01〉 0 1 0 0
|10〉 0 0 0 1
|11〉 0 0 1 0

Finally, in the context of 3-qubit systems, we mention the CCN gate (Controlled-
Controlled-NOT, or Toffoli gate), that negates the third qubit when the first qubit is |1〉 and
second qubit is |1〉. Table 5 illustrates the associated unitary matrix of the CCN operation.

Table 5. Unitary matrix associated to the truth table of the CCN operation.

|000〉 |001〉 |010〉 |011〉 |100〉 |101〉 |110〉 |111〉
|000〉 1 0 0 0 0 0 0 0
|001〉 0 1 0 0 0 0 0 0
|010〉 0 0 1 0 0 0 0 0
|011〉 0 0 0 1 0 0 0 0
|100〉 0 0 0 0 1 0 0 0
|101〉 0 0 0 0 0 1 0 0
|110〉 0 0 0 0 0 0 0 1
|111〉 0 0 0 0 0 0 1 0

An interesting question is that with the quantum gates N, CN, and CCN we can
reproduce, in a probabilistic way, the behaviour of any conventional logical gate. If we also
want to explore all the possibilities, we have to use H gates to set the state of the system in
coherent superposition.

The simulation of conventional logical gates in a quantum environment can be per-
formed through quantum circuits. Quantum circuits consist of quantum lines and quantum
operations to perform the calculations, and conventional lines where the output qubits col-
lapse after being measured. Following these lines, we illustrate some particular examples:

• Quantum simulation of the classical NOT gate:
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Figure 2 illustrates the quantum circuit for simulating a classical NOT gate, in which
only one quantum line q0 is necessary to perform the calculations and only one
conventional line c1 is necessary to record the result of the measurements. Gate H
places the system in a state of superposition, and gate

⊕
is a quantum NOT.

q0 : H

c : /
1

0

Figure 2. Quantum circuit for the NOT operation.

After the measurement, we have close to 50% of bits 0 and close to 50% of bits 1, which
is what we expected. Figure 3 shows the outputs obtained after running the program
1000 times in the IBM quantum simulator [32].

520

480

0 100 200 300 400 500 600 700 800 900 1000

1

0

Frequency

M
ea
su
re
m
en

t o
ut
co
m
e

NOT Operation

Figure 3. Results for the NOT operation.

• Quantum simulation of the AND gate:
Figure 4 illustrates the quantum circuit for simulating a classical AND gate, in which
three quantum lines are necessary to perform the calculations, and only one conven-
tional line is necessary to record the result of the operations. In this case, we measure
the three qubits in order to illustrate the inputs and the outputs of the gate, where
c0 is the result, and c1 and c2 are the inputs. Gates H place the system in a state of
superposition, and gate CCN is a quantum AND.

q0 : H •
q1 : H •
q2 :

c : /
3

2 1 0

Figure 4. Quantum circuit for the AND operation.

After the measurement, we have close to 25% for each of the possible outcomes, which
is what we expected. Figure 5 shows the outputs obtained after running the program
1000 times in the IBM quantum simulator [32].
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Figure 5. Results for the AND operation.

• Quantum simulation of the OR gate:
Figure 6 illustrates the quantum circuit for simulating a classical OR gate, in which
three quantum lines are necessary to perform the calculations, and only one conven-
tional line is necessary to record the result of the operations. In this case, we measure
the three qubits in order to illustrate the inputs and the outputs of the gate, where
c0 is the result, and c1 and c2 are the inputs. Gates H place the system in a state of
superposition, and the set of gates CCN, CN, and CN is a quantum OR.

q0 : H • •
q1 : H • •
q2 :

c : /
3

2 1 0

Figure 6. Quantum circuit for the OR operation.

After the measurement, we have close to 25% for each of the possible outcomes, which
is what we expected. Figure 7 shows the outputs obtained after running the program
1000 times in the IBM quantum simulator [32].
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Figure 7. Results for the OR operation.

These examples are used in the next section to illustrate the implementation of the
Certainty Factors Model for dealing with inaccurate knowledge in a quantum environment.

Before delving into that implementation, we want to clarify that this work does not
look for quantum speedups for the time being. The focus of this work is to model impreci-
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sion and uncertainty by the means of quantum computing and see if we find a coherent
and consistent model, which are compared to the classical approach of certainty factors.

This work is only theoretical still, and we will work on practical applications that will
allow us to analyse whether this approach provides an improvement or not in comparison
to its classical counterpart.

4. Correlating Certainty Factors with a Quantum Environment

In a previous paper [13], we defined a general-purpose method for dealing with
inaccuracy in quantum rule-based systems. Quantum rule-based systems are defined as
quantum circuits that implement knowledge in the form of production rules. This permits
to investigate the a priori probability given rules and facts, assuming that rules are true
(CFrule = 1) and facts are true (CF(e, ε) = 1). In that case, inaccuracy comes from the
propagation of the knowledge through the inferential network. A big difference between
the original article and the procedure we are going to present is that, according to the
model of Shortliffe and Buchanan, both declarative knowledge and procedural knowledge
can be inaccurate; so apart from the inaccuracy introduced by the inferential network itself,
we should be able to analyse the effects of imprecision and uncertainty in the behaviour of
a well-established inaccurate knowledge management model.

4.1. A Classical Example

Assume the following set of rules {R1, R2, R3} and the following set of facts {A, B,
C, D, E}, such that for each rule there is a CFRule ∈ {−1, 1} and for each fact there is a
CFFact ∈ {−1, 1}. The specific rules are:

• R1: A ∧ B
CFR1−−→ X

• R2: X ∨ C
CFR2−−→ Y

• R3: Y ∧ (D ∨ E)
CFR3−−→ H

Note that in this case there is neither uncertainty (since rules are categorically true
or categorically false) nor imprecision (since facts are categorically true or categorically
false). However, inaccuracy appears spontaneously when propagating actual knowledge
through the inferential network, and this inaccuracy is the a priori probability that we can
expect given all possible cases that can be defined if H is our target.

Figure 8 illustrates the classical inferential circuit that can be built from the abovemen-
tioned rules and facts.

AND

AND

OR

OR

Figure 8. A classical inferential circuit with AND and OR operations.

The classical application of the Certainty Factors Model for investigating the a priori
probability of hypothesis H yields to the following results:

CF(H) = CFR3 ×max({0, min({CF(Y), max({CF(D), CF(E)})})}) (34)

CF(Y) = CFR2 ×max({0, max({CF(X), CF(C)})}) (35)

CF(X) = CFR1 ×max({0, min({CF(A), CF(B)})}) (36)
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Given that X, Y, and H are obtained through propagation, and in order to obtain the a
priori probability of H, we only need to set the values −1 or 1 for the facts A, B, C, D, and
E, which implies the need to investigate 25 possibilities. The same applies for the rules R1,
R2, and R3, which implies to investigate 23 possibilities. This results in a total of 28 cases to
study. When performing this, the following results were obtained:

p(H = FALSE) = 0.895 ; p(H = TRUE) = 0.105 (37)

As previously mentioned, we can design a quantum circuit to resolve the same
problem as above. Figure 9 illustrates the quantum inferential circuit equivalent to the
classical inferential circuit shown in Figure 8.

q0 : H •
q1 : H •
q2 : •
q3 : H •
q4 : • •
q5 : H • •
q6 : •
q7 : H •
q8 : •
q9 : H • •
q10 : H • •
q11 : •
q12 : •
q13 : H •
q14 :

c : /
1

0

Figure 9. The quantum version of the classical inferential circuit described above.

Note that the architecture of Figure 9 is a quantum representation of an intelligent
rule-based system, by means of which we can conclude something about the hypothesis
H. In any case—since we work in superposition (H gates)—the results are probabilistic.
In fact, if we run this program 1000 times on the IBM quantum simulator [32], we obtain
the following results:

p(H = FALSE) = 0.892; p(H = TRUE) = 0.108 (38)

These results were obtained considering that the facts are categorically true or cate-
gorically false; therefore, there is no imprecision. Furthermore, we have not considered
uncertainty in causal relationships. Table 6 shows comparative results obtained with the
classical approach and the quantum approach.

Table 6. Comparison between the results of the a priori probability of the hypothesis H with the
classical method and the quantum approach.

Certainty Factors Model Quantum Approach

P(H = FALSE) 0.895 0.892
P(H = TRUE) 0.105 0.108

As expected, results of Table 6 show strong agreement between the behaviour of both
classical and quantum models.
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4.2. Introducing Quantum Inaccuracy

The next step is to define a quantum method for dealing with imprecision in facts
and with uncertainty in rules, in order to evaluate the inaccuracy of the hypothesis H in a
real situation.

On the one hand, to define a general procedure capable of representing any degree
of inaccuracy, it would be convenient to have a single quantum gate that, considering all
the restrictions imposed by quantum mechanics, brings us closer to the world of analogic
information. Our proposal starts with the Bloch sphere (Figure 10), which, in quantum
mechanics, is a geometric representation of the pure state space of a two-level quantum
system [33].

x

y

z

φ

θ

1

0

ψ

Figure 10. The Bloch sphere.

On the other hand, we already mentioned that quantum transformations are carried
on by the means of unitary matrices that must be hermitian. Therefore, we assume that
inaccuracy can be obtained from a unitary matrix that operates on a specific state of the
quantum system. In this context, we introduce matrix M(δ), defined as follows:

M(δ) =

(
cos(δ) sin(δ)
sin(δ) −cos(δ)

)
(39)

This matrix is clearly hermitic and unitary, since M(δ)M†(δ) = I. The input angle δ
ranges from values between 0 and π/2, so that, when the state of the system has an associ-
ated value of δ = 0, the statement is completely false, and when δ = π/2, the statement is
completely true. There is a direct correlation between the angle δ and the angle θ of the
Bloch sphere (Equation (40)); therefore, the angle δ is no more than a rotation along the
Z axis.

δ =
θ

2
(40)

Note that when θ = 0 or θ = π, there is not inaccuracy, since we have pure qubital
states. In any other case, there is inaccuracy in the state function. According to this:

• δ = 0→ θ = 0→ state is |0〉 → the associated statement is false;
• δ = π/2→ θ = π → state is |1〉 → the associated declaration is true;
• 0 < δ < π/2 → 0 < θ < π → state is in superposition→ we are in a situation of

coherent superposition, and the associated statement is neither true nor false, or—in
an equivalent way—it is true and false simultaneously.

Finally, we need to establish the relationship between angle δ and the certainty factors.
First, we must normalise the certainty factors so that they range from 0 to 1 rather than
from −1 to 1. For this, we propose the following equation:

CFnorm(h, e) =
CF(h, e) + 1

2
(41)
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With the normalized certainty factors, the relationship between CFs and angle δ is as
follows:

δ = CF× π

2
(42)

With this approach, we model the inaccurate knowledge in quantum rule-based
systems, in which certainty factors are normalized.

5. Experimentation and Results

With the above ideas in mind, let us go back to the quantum inferential circuit of
Figure 9. This inferential circuit is used to model: (a) imprecision, (b) uncertainty, and (c)
both imprecision and uncertainty simultaneously.

In the following subsections, we show each of the experiments and their results (S.B.
for the Shortliffe and Buchanan classical model, Q.C. for the quantum computing approach),
which are discussed in depth in the next section.

These experiments were carried out using the myQLM [34] quantum framework of
Atos, a partner of the NEASQC project [35].

We structured each of them according to the following scheme:

• The circuit is designed according to the case we are testing;
• The data that are employed in the test are defined;
• The results for the classical (Shortliffe and Buchanan, S.B.) and quantum (Quantum

Computing, Q.C.) approaches are obtained;
• The results are compared in order to find a possible correlation. Both the regression

functions (dotted line) and the coefficients of determination (R2) are shown in the
figures of each experiment.

5.1. Experiment 1: Inaccuracy in Declarative Knowledge (Imprecision)

If we want to test our model for dealing with imprecision, Figure 9 has to be modified
as shown in Figure 11.

q0 : M(δ) •
q1 : M(δ) •
q2 : •
q3 : X •
q4 : • •
q5 : M(δ) • •
q6 : •
q7 : X •
q8 : •
q9 : M(δ) • •
q10 : M(δ) • •
q11 : •
q12 : •
q13 : X •
q14 :

c : /
1

0

Figure 11. The quantum inferential circuit modified for the imprecision experiment.

The Hadamard gates of quantum lines q0, q1, q5, q9, and q10 were replaced by M(δ)
gates, so as to configure inaccurate inputs. The Hadamard gates of quantum lines q3, q7,
and q13 were substituted by X gates, in order to set the causal relationships of the rules
totally true (no uncertainty).

Table 7 illustrates the input data that allow us to compare the classical approach and
the quantum approach for dealing with imprecision and the results obtained after running
both the classical and quantum inferential circuits.
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Figure 12 illustrates the results obtained for the imprecision experiment and shows
a high level of correlation between classical and quantum approaches, which follows a
polynomial distribution.

Table 7. Inputs and outputs for the imprecision experiment.

Input Output

CF(A) CF(B) CF(C) CF(D) CF(E) S.B. Q.C.

1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.950 0.750 0.950 0.950 1.000 0.950 0.997
0.900 0.125 0.900 0.900 1.000 0.900 0.979
0.850 0.125 0.850 0.850 1.000 0.850 0.949
0.800 0.375 0.800 0.800 1.000 0.800 0.933
0.750 1.000 0.750 0.750 1.000 0.750 0.978
0.700 0.500 0.700 0.700 0.750 0.700 0.842
0.650 0.750 0.650 0.650 0.875 0.650 0.892
0.600 1.000 0.600 0.600 1.000 0.600 0.894
0.550 0.625 0.550 0.550 0.750 0.550 0.726
0.500 1.000 0.500 0.500 0.125 0.500 0.386
0.450 0.375 0.450 0.450 0.750 0.450 0.463
0.400 0.125 0.400 0.400 1.000 0.400 0.348
0.350 0.875 0.350 0.350 1.000 0.350 0.476
0.300 1.000 0.300 0.300 1.000 0.300 0.385
0.250 0.500 0.250 0.250 0.500 0.250 0.138
0.200 1.000 0.200 0.200 0.375 0.200 0.072
0.150 1.000 0.150 0.150 0.750 0.150 0.094
0.100 1.000 0.100 0.100 0.500 0.100 0.024
0.050 0.375 0.050 0.050 0.500 0.050 0.004
0.000 1.000 0.000 0.000 0.500 0.000 0.000

y = − 2.6737 x3 + 3.5463 x2 + 0.103 x − 0.0098
R² = 0.9578

− 0.2
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0.4

0.6

0.8
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1.2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Classical vs Quantum Imprecision

Figure 12. Plot of the results obtained for the imprecision experiment.

5.2. Experiment 2: Inaccuracy in Procedural Knowledge (Uncertainty)

If we want to test our model for dealing with uncertainty, Figure 9 has to be modified
as shown in Figure 13.
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q0 : X •
q1 : X •
q2 : •
q3 : M(δ) •
q4 : • •
q5 : X • •
q6 : •
q7 : M(δ) •
q8 : •
q9 : X • •
q10 : X • •
q11 : •
q12 : •
q13 : M(δ) •
q14 :

c : /
1

0

Figure 13. The quantum inferential circuit modified for the uncertainty experiment.

The Hadamard gates of quantum lines q3, q7, and q13 were replaced by M(δ) gates,
so as to configure inaccurate rules. The Hadamard gates of quantum lines q0, q1, q5, q9,
and q10 were substituted by X gates, in order to set the veracity of the facts totally true (no
imprecision).

Table 8 illustrates the input data that allow us to compare the classical approach and
the quantum approach for dealing with uncertainty and the results obtained after running
both the classical and quantum inferential circuits.

Figure 14 illustrates the results obtained for the uncertainty experiment and shows a
high level of correlation between classical and quantum approaches, that follow a polyno-
mial distribution.

Table 8. Inputs and outputs for the uncertainty experiment.

Input Output

CFR1 CFR2 CFR3 S.B. Q.C.

1.000 1.000 1.000 1.000 1.000
0.950 0.950 0.950 0.902 0.988
0.900 0.900 0.900 0.810 0.953
0.850 0.850 0.850 0.722 0.893
0.800 0.800 0.800 0.640 0.817
0.750 0.750 0.750 0.562 0.734
0.700 0.700 0.700 0.490 0.619
0.650 0.650 0.650 0.423 0.516
0.600 0.600 0.600 0.360 0.435
0.550 0.550 0.550 0.303 0.322
0.500 0.500 0.500 0.250 0.240
0.450 0.450 0.450 0.203 0.157
0.400 0.400 0.400 0.160 0.102
0.350 0.350 0.350 0.122 0.075
0.300 0.300 0.300 0.090 0.057
0.250 0.250 0.250 0.062 0.030
0.200 0.200 0.200 0.040 0.016
0.150 0.150 0.150 0.022 0.000
0.100 0.100 0.100 0.010 0.001
0.050 0.050 0.050 0.003 0.000
0.000 0.000 0.000 0.000 0.000
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y = − 2.0506 x3 + 2.5197 x2 + 0.5203 x − 0.0106
R² = 0.9985

− 0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Classical vs Quantum Uncertainty

Figure 14. Plot of the results obtained for the uncertainty experiment.

5.3. Experiment 3: Inaccuracy in Declarative and Procedural Knowledge (Imprecision and Uncertainty)

If we want to test our model for dealing with imprecision and uncertainty simultane-
ously, Figure 9 has to be modified as shown in Figure 15.

q0 : M(δ) •
q1 : M(δ) •
q2 : •
q3 : M(δ) •
q4 : • •
q5 : M(δ) • •
q6 : •
q7 : M(δ) •
q8 : •
q9 : M(δ) • •
q10 : M(δ) • •
q11 : •
q12 : •
q13 : M(δ) •
q14 :

c : /
1

0

Figure 15. The quantum inferential circuit modified for the imprecision and uncertainty experiment.

The Hadamard gates of quantum lines q0, q1, q5, q9, and q10 were replaced by M(δ)
gates, so as to configure inaccurate inputs. The Hadamard gates of quantum lines q3, q7,
and q13 were substituted by M(δ) gates so as to configure inaccurate rules.

Table 9 illustrates the input data that allow us to compare the classical approach and
the quantum approach for dealing with imprecision and uncertainty simultaneously and
the results obtained after running both the classical and quantum inferential circuits.

Figure 16 illustrates the results obtained for the imprecision and uncertainty exper-
iment and shows a high level of correlation between classical and quantum approaches,
following a polynomial distribution.
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Table 9. Inputs and outputs for the imprecision and uncertainty experiment.

Input Output

CF(A) CF(B) CF(C) CF(D) CF(E) CFR1 CFR2 CFR3 S.B. Q.C.

1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.950 0.750 0.950 0.950 1.000 0.950 0.950 0.950 0.857 0.992
0.900 0.125 0.900 0.900 1.000 0.900 0.900 0.900 0.729 0.933
0.850 0.125 0.850 0.850 1.000 0.850 0.850 0.850 0.614 0.858
0.800 0.375 0.800 0.800 1.000 0.800 0.800 0.800 0.512 0.749
0.750 1.000 0.750 0.750 1.000 0.750 0.750 0.750 0.422 0.707
0.700 0.500 0.700 0.700 0.750 0.700 0.700 0.700 0.343 0.540
0.650 0.750 0.650 0.650 0.875 0.650 0.650 0.650 0.275 0.461
0.600 1.000 0.600 0.600 1.000 0.600 0.600 0.600 0.216 0.326
0.550 0.625 0.550 0.550 0.750 0.550 0.550 0.550 0.166 0.204
0.500 1.000 0.500 0.500 0.125 0.500 0.500 0.500 0.125 0.091
0.450 0.375 0.450 0.450 0.750 0.450 0.450 0.450 0.091 0.074
0.400 0.125 0.400 0.400 1.000 0.400 0.400 0.400 0.064 0.040
0.350 0.875 0.350 0.350 1.000 0.350 0.350 0.350 0.043 0.028
0.300 1.000 0.300 0.300 1.000 0.300 0.300 0.300 0.027 0.006
0.250 0.500 0.250 0.250 0.500 0.250 0.250 0.250 0.016 0.002
0.200 1.000 0.200 0.200 0.375 0.200 0.200 0.200 0.008 0.000
0.150 1.000 0.150 0.150 0.750 0.150 0.150 0.150 0.003 0.000
0.100 1.000 0.100 0.100 0.500 0.100 0.100 0.100 0.001 0.000
0.050 0.375 0.050 0.050 0.500 0.050 0.050 0.050 0.000 0.000
0.000 1.000 0.000 0.000 0.500 0.000 0.000 0.000 0.000 0.000

y = − 1.0934 x3 + 0.5798 x2 + 1.5171 x − 0.0256
R² = 0.9922
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Classical vs Quantum Inaccuracy

Figure 16. Plot of the results obtained for the imprecision and uncertainty experiment.

6. Discussion

The main objective of this work was to check whether classical inaccurate knowledge
can be implemented on a quantum architecture. For this, we chose a classical model
for management of inexact knowledge, as the Certainty Factors Model of Shortliffe and
Buchanan is. Said model, apparently without a clear theoretical basis, makes use of the
principles of probability, both in the form of total probabilities and conditional probabilities,
which in any case are subjective in nature.

Our work does not pretend to be an extension or revision of certainty factors per se
but rather a new treatment of inaccurate reasoning through quantum computing. Certainty
factors are used to compare our work to a previous classical model of inaccurate reasoning.

Given that we are in an age in which quantum computing is a fertile and current field
of research and development, the fundamental question was to investigate whether the
supposedly probabilistic behaviour of the certainty factors can be simulated by means of a
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quantum theory based on the quantum circuit model. In this sense, three different situations
were considered: (1) inaccuracy in declarative knowledge, which we call imprecision,
(2) inaccuracy in procedural knowledge that we call uncertainty, and (3) imprecision and
uncertainty together.

For this, a use case consisting of an inferential circuit was designed that was im-
plemented according to a classical philosophy and according to a quantum philosophy.
The results obtained clearly show that there is a correlation between the results of the
classical model and the results of the quantum model. In addition, not only is there a corre-
lation, but this correlation is high, which results in striking. This may be a consequence
of the ad hoc nature of the model of certainty factors, which is why we cannot confirm
the strict probabilistic nature of this model. However, the great correlation between the
results obtained for the classical and quantum approaches allows us to suspect that, indeed,
the concept of probability underlies the concept of the certainty factor. We make this claim
since quantum computing is inherently probabilistic.

Moreover, the plot of the results shows a clear similarity to the sigmoid function,
which is widely used in other fields of Artificial Intelligence, such as Machine Learning,
for example, in order to model the transmission of knowledge in support vector machines
or neural networks [36]. Thus, while it may be too early to assert the following statement,
we think that this new quantum approach could be useful for the sake of knowledge
transmission through inferential circuits, although we need to work further in the subject
in order to make a clear statement about this hypothesis.

Analysing each of the scenarios, we verify that when we only use imprecision, the cor-
relation coefficient between both models is 0.9578, which allows us to suspect that indeed
classical imprecision and quantum imprecision can become extrapolated. If we analyse
the second of the scenarios, in which we only consider uncertainty, we find a polynomial
correlation coefficient of 0.9985, which represents a qualitative and quantitative leap that
almost allows us to affirm that said correlation is more than a suspicion. Analysing the
two scenarios separately, the largest deviations are obtained with imprecision rather than
uncertainty. When we analyse the third scenario, that is, considering both imprecision
and uncertainty, the polynomial correlation coefficient is 0.9922, which, being high, is
located between the two previous extreme cases. This is undoubtedly due to the fact that
imprecision penalises uncertainty; therefore, we can deduce that the hybrid model behaves
as expected.

Regarding the future work, we consider that the approach we presented here could
take advantages from quantum tools, such as instantaneous quantum polynomial (IQP)
circuits [37]. However, this work is reserved for following publications, since it would be
out of the scope of this paper.

In addition, in the context of artificial intelligence and inaccurate knowledge, it could
be interesting to develop a quantum implementation of other models of inexact knowledge
treatment, such as fuzzy models [17], the evidential theory of Dempster and Shafer [18],
or the Bayesian networks [19]. Some work has already been conducted in this area, and the
results seem promising. For example, Nabadan [38] suggested the algebraic connections
between classical logic and its generalizations, such as fuzzy logic and quantum logic,
and Vourdas [39] proposed an interpretation of quantum probabilities as Dempster–Shafer
probabilities and Borujeni et al. developed a quantum circuit representation of Bayesian
networks [40].
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