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Abstract

This dissertation mainly deals with the problem of bandwidth selection in the con-

text of nonparametric density and regression estimation for samples of very large

size. Some bandwidth selection methods have the disadvantage of high computa-

tional complexity. This implies that the number of operations required to compute

the bandwidth grows very rapidly as the sample size increases, so that the compu-

tational cost associated with these algorithms makes them unsuitable for samples of

very large size. In the present thesis, this problem is addressed through the use of

subagging, an ensemble method that combines bootstrap aggregating or bagging with

the use of subsampling. The latter reduces the computational cost associated with

the process of bandwidth selection, while the former is aimed at achieving significant

reductions in the variability of the bandwidth selector. Thus, subagging versions

are proposed for bandwidth selection methods based on widely known criteria such

as cross-validation or bootstrap. When applying subagging to the cross-validation

bandwidth selector, both for the Parzen–Rosenblatt estimator and the Nadaraya–

Watson estimator, the proposed selectors are studied and their asymptotic properties

derived. The empirical behavior of all the proposed bandwidth selectors is shown

through various simulation studies and applications to real datasets.





Resumen

Esta disertación aborda principalmente el problema de la selección de la ventana en

el contexto de la estimación no paramétrica de la densidad y de la regresión para

muestras de gran tamaño. Algunos métodos de selección de la ventana tienen el

inconveniente de contar con una elevada complejidad computacional. Esto implica

que el número de operaciones necesarias para el cálculo de la ventana crece muy

rápidamente a medida que el tamaño muestral aumenta, de manera que el coste

computacional asociado a estos algoritmos los hace inadecuados para muestras de

gran tamaño. En la presente tesis, este problema se aborda mediante el uso del sub-

agging, un método de aprendizaje conjunto que combina el bootstrap aggregating o

bagging con el uso de submuestreo. Este último reduce el coste computacional asoci-

ado al proceso de selección de la ventana, mientras que el primero tiene como objetivo

conseguir reducciones significativas en la variabilidad del selector de la ventana. Aśı,

se proponen versiones subagging para métodos de selección de la ventana basados

en criterios ampliamente conocidos, como la validación cruzada o el bootstrap. Al

aplicar subagging al selector de la ventana de tipo validación cruzada, tanto para el

estimador de Parzen–Rosenblatt como para el estimador de Nadaraya–Watson, se

estudian los selectores propuestos y se derivan sus propiedades asintóticas. El com-

portamiento emṕırico de todos los selectores de la ventana propuestos se muestra

mediante varios estudios de simulación y aplicaciones a conjuntos de datos reales.





Resumo

Esta disertación aborda o problema da selección da ventá no contexto da estimación

non paramétrica da densidade e da regresión para mostras de gran tamaño. Algúns

métodos de selección da ventá teñen o inconveniente de contar cunha alta complex-

idade computacional. Isto implica que o número de operacións necesarias para o

cálculo da ventá crece moi rápidamente a medida que aumenta o tamaño muestral,

polo que o coste computacional asociado a estes algoritmos fainos inadecuados para

mostras de gran tamaño. Na presente tese, este problema abórdase mediante o uso

do subagging, un método de aprendizaxe conxunta que combina o bootstrap aggre-

gating ou bagging co uso de submostraxe. Este último reduce o custo computacional

asociado ao proceso de selección da ventá, mentres que o primeiro ten como obx-

ectivo conseguir reducións significativas na variabilidade do selector da ventá. Aśı,

propóñense versións subagging para métodos de selección da ventá baseados en cri-

terios amplamente coñecidos, como a validación cruzada ou o bootstrap. Ao aplicar

subagging ao selector da ventá de tipo validación cruzada, tanto para o estimador

de Parzen–Rosenblatt como para o estimador de Nadaraya–Watson, estúdanse os

selectores propostos e deŕıvanse as súas propiedades asintóticas. O comportamento

emṕırico de todos os selectores da ventá propostos móstrase mediante varios estudos

de simulación e aplicacións a conxuntos de datos reais.





Preface

The scope of this dissertation is the nonparametric estimation of density and regres-

sion functions. In particular, the focus is on the problem of bandwidth selection for

the Parzen–Rosenblatt and Nadaraya–Watson estimators, mainly in the context of

samples of very large size. Dealing with very large sample sizes, in conjunction with

the fact that some of the most popular and widely used bandwidth selection meth-

ods have high computational complexity, make the adaptation of such bandwidth

selection methods to the context of large sample sizes an imperative task.

The dissertation is structured as follows: in Chapter 1 the line of research followed

in this dissertation is put in context and the motivations behind it are presented.

Chapter 2 provides an introduction to the field of nonparametric density and re-

gression estimation, with special emphasis on the problem of bandwidth selection. In

addition, bootstrap, bagging and subagging techniques are described and discussed,

highlighting their applicability in the context of bandwidth selection.

Chapter 3 is devoted to the application of bagging in the process of bandwidth

selection for the kernel density estimator. The classical results concerning cross-

validation as a bandwidth selection method are presented. Then, a bagging version

of this selector is described and its asymptotic properties are derived. In addi-

tion, bagging selectors are proposed for an error criterion other than cross-validation

(bootstrap), as well as for situations where the rate of convergence to zero of the op-

timal bandwidth is not known, or where taking into account the second order terms

of the optimal bandwidth may seem desirable. Finally, the empirical behavior of the

techniques studied throughout the chapter is shown by means of simulation studies

and applications to real datasets.

Chapter 4 deals with the application of bagging for the selection of the bandwidth
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of the Nadaraya–Watson estimator. The first part of the chapter presents the clas-

sical results on the cross-validation bandwidth selector, which are further developed

for the second part of the chapter, that deals with the application of bagging to the

cross-validation selector. In this second part, the bagging selector of the bandwidth

of the Nadaraya–Watson estimator is described and its asymptotic properties are

derived. As in the previous chapter, practical behavior of the techniques proposed

and studied throughout the chapter is shown through various simulation studies and

an application to a real dataset.

Concluding remarks, as well as a glimpse on future lines of work are provided in

Chapter 5.

In addition, the proofs of the lemmas, theorems, corollaries and other results

presented throughout the dissertation are included in the corresponding appendices.

Specifically, the proofs of the results concerning Chapter 3 are included in Appendices

A and B, while the proofs of the results regarding Chapter 4 are included in Appendix

C. Also, manuals for the baggedcv (Barreiro-Ures et al., 2019) and baggingbwsel

(Barreiro-Ures et al., 2021b) R packages developed, among others, by the author of

this dissertation, are included in Appendices D and E, respectively.

Finally, in the sections focused on the numerical application of the techniques

proposed throughout the dissertation, whenever calculations have been performed in

parallel, they have been carried out using an Intel Core i5-8600K 3.6GHz CPU.
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Chapter 1

Motivation

The amount of data around the world is increasing every second, as is the speed

at which it is generated and the sources from which it comes. Additionally, data

can be structured, unstructured, in motion or stored. Big Data contains valuable

knowledge, capable of transforming a business through analytical techniques (Busi-

ness Analytics). By applying these techniques to this wide variety of data a clearer

picture of the business and the variables that affect it can be obtained. Currently,

in the statistical-computational literature there are proposals for the application of

computational techniques based on the construction of parallel executable algorithms

on CPU or GPU, generally through cluster computing platforms such as Hadoop or

Spark (Meng et al., 2015). On the other hand, subsampling-based methods such as

leveraging (Ma and Sun, 2015) and algorithms that allow the application of bootstrap

in the context of large sample sizes were proposed (Kleiner et al., 2012). Further-

more, Farrash (2016) studied the application of ensemble methods in Big Data and,

in particular, the selection of the size of the subsamples generated by these methods.

It is worth mentioning the proposals of Politis and Romano (1994) and Politis

et al. (1999) to combine the use of the bootstrap method and subsampling. In

particular, Politis and Romano (1994) show, under minimal assumptions, the good

behavior of the bootstrap method when considering resamples of a size smaller than

that of the original sample.

In the context of nonparametric density estimation, there are proposals based on

the bootstrap aggregating or bagging technique for the selection of the bandwidth of

1



2 Chapter 1. Motivation

the Parzen–Rosenblatt density estimator (Hall and Robinson, 2009). In the case of

regression estimation, it will be of interest to consider modifications of the Nadaraya–

Watson proxy estimator similar to those proposed in Barbeito (2020) in order to

facilitate the theoretical analysis of new methods inspired by the use of subsampling

and bagging in the context of density estimation.

The main objective of the thesis is the proposal, study and application of com-

putationally efficient estimation techniques, mainly in the context of Big Data, and

in particular when working with very large sample sizes. Special importance is given

to the problem of bandwidth selection in the context of nonparametric density and

regression estimation. Both in the context of density and regression estimation, the

thesis focuses on the theoretical and practical study of bandwidth selectors based on

cross-validation and bootstrap criteria and the use of bagging. The thesis project is

framed within the thematic of the research project entitled “Flexible statistical infer-

ence for complex, large-volume, high-dimensional data” (code MTM2017-82724-R),

financed by the Ministry of Economy and Competitiveness.

The objectives of this doctoral thesis are focused on two aspects: methodological

and computational. When formulating most of the new proposed techniques, the

aim is to follow the guidelines of other simpler (or more particular) models were

such techniques have already been established. For instance, one could start from

well-known bandwidth selection methods such as cross-validation or bootstrapping.

Since these methods are very computationally expensive, their adaptation to the

context of large sample sizes could be done by using subsampling. However, the

major difficulty lies in proving that these procedures work as expected or behave

adequately compared to other existing ones. Both issues are addressed by trying to

obtain asymptotic properties of the estimators, by carrying out simulation studies

and by applying the proposed methods to real data and comparing the results with

those obtained by other existing methods. In general, as a consequence of these

analyses, either the proposed method behaves as expected, or we obtain indications

as to why this is not the case (the causes of non-optimal behavior may appear even

when the method works acceptably well). Thus, in many cases there exists the pos-

siblity of modifying the proposed method in order to improve its behavior (such as

bias correction or changes in the resampling process in bootstrap methods). The
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importance of computer simulation studies, which truly are “test laboratories” for

statistical methods, should be emphasized at this point. Simulation studies allow us

to assess the performance of the proposed methods independently of the theoretical

analysis, and with much less effort. Thus, these studies could provide clues that

justify the rejection of certain proposals or, on the contrary, positive results that

encourage further theoretical study of the methods in question. Regarding the com-

putational aspects of the different objectives of the thesis, R software (R Core Team,

2021) is used to carry out the relevant simulation studies (an invaluable complement

to methodological deepening). This software is made available to the international

statistical (and, in general, scientific) community through the CRAN of R project.

Taking into account the high computational demand of classical statistical methods

for large sample sizes, an important aspect is the optimization of the algorithms to

be implemented for the use of the techniques to be studied in the thesis. Most of the

methods proposed throughout the thesis are included in the baggedcv (Barreiro-Ures

et al., 2019) and baggingbwsel (Barreiro-Ures et al., 2021b) R packages.



Chapter 2

Introduction

This chapter is intended to provide an introduction to the field of nonparametric den-

sity and regression estimation, with special emphasis on the problem of bandwidth

selection (Wand and Jones, 1995). In addition, bootstrap and bagging techniques are

described and discussed, highlighting their applicability in the context of bandwidth

selection.

2.1 Density estimation

Density estimation studies the relationship between the values a certain random

variable can take and their probability, the latter being almost always unknown in

practice. In other words, density estimation encompasses all those methods whose

purpose is the estimation of the underlying density function of a random variable.

These methods, in turn, can be classified into two broad groups: parametric and

nonparametric density estimation methods. Parametric methods are based on the

assumption that the underlying density function belongs to a certain parametric fam-

ily of functions depending on some parameters, so that the problem of estimating the

density is reduced to the estimation of these parameters. Nonparametric methods,

on the other hand, do not impose such constraints, but try to estimate the under-

lying density from the data itself, which makes this group of methods more flexible

than their parametric counterpart. A particular class of nonparametric methods is

that of kernel methods (Silverman, 1986), which seek to estimate the density func-

4



2.1. Density estimation 5

tion as a locally weighted average, using a kernel function as a weighting function.

Aside from the kernel function, these methods are highly dependent on the choice

of a free parameter called the bandwidth or smoothing parameter which determines

the amount of smoothing performed by the estimator, which in turn determines the

trade-off between the bias and the variance of the estimator. The problem of band-

widh selection is therefore crucial and intrinsic to kernel methods. Multiple ways

of addressing it have been proposed and studied over time, these including cross-

validation (Rudemo, 1982; Bowman, 1984; Hall and Marron, 1987), bootstrapping

(Cao, 1993) or plug-in methods (Sheather and Jones, 1991).

In this section, the kernel density estimator is presented and the problem of

selecting its bandwidth is addressed. We will mainly focus on the cross-validation

bandwidth selector, a perfect candidate for the application of bagging1 due to its high

variability (Park and Marron, 1990) and review its well known theoretical properties.

Although they will not be studied theoretically, different techniques for bandwidth

selection other than cross-validation, such as bootstrapping2, will also be discussed.

2.1.1 Kernel density estimation

Let us begin by considering a sample of size n, X1, . . . , Xn, where the observations

are independent and identically distributed to the continuous random variable X,

whose probability density function is denoted by f . Instead of assuming that the

underlying density function belongs to a certain parametric family of functions, as

parametric methods do, nonparametric density estimation methods do not impose

such a restriction on f , but rather aim to capture the main features of f from the

data itself. This allows us to state that, in general, nonparametric methods have

greater flexibility when compared to their parametric competitors. To illustrate this

point we have simulated a sample of size 104 drawn from a normal mixture density

fNM(x) =
3∑
i=1

wi
1

σi
φ

(
x− µi
σi

)
,

1The bagging technique will be discussed in detail in Section 2.4.
2The bootstrap method will be discussed in detail in Section 2.3.
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where φ(x) = 1√
2π
e−

x2

2 denotes the standard normal density function and the vectors

of means, variances and weights are given by

NM: µ = (5, 6, 8), σ2 = (1, 0.5, 1), w = (0.2, 0.5, 0.3).

Figure 2.1 shows the parametric (log-normal, gamma and Weibull) fits as well as

the kernel density estimate obtained for the simulated sample. As we can see, the

kernel density estimator is the only one that manages to capture the most important

features of the underlying density. Moreover, as can be observed in Figure 2.2, which

shows a Gamma fit as well as a nonparametric estimate for a sample of size 104 drawn

from a Gamma distribution, the nonparametric estimate can still keep up with the

parametric estimate even when the latter’s assumptions on the target density hold.

2 4 6 8 10
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Figure 2.1: Parametric and nonparametric fits for density NM. The target density
(dashed black line), the log-normal (red), gamma (green) and Weibull (light blue)
fits as well as the kernel density estimate with bandwidth h = 0.183 (dark blue) are
shown.

Before discussing the kernel density estimator in detail, we will discuss what

could be considered the simplest method for estimating a density function, namely

the histogram. The reason for starting with the histogram is that the kernel density

estimator can be considered a generalization of what is usually referred to as the
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Figure 2.2: Gamma fit (red line) and kernel density estimate (dark blue line) for a
sample of size 104 drawn from a gamma distribution (dashed black line).

moving histogram. The idea of the histogram is to aggregate the observations in

intervals of the form [a, b). Then, for every x ∈ [a, b] the estimate of f(x) would be

1

n(b− a)

n∑
i=1

1[a,b)(Xi),

where 1S(·) denotes the indicator function of the set S, that is,

1S(x) =

1, if x ∈ S

0, if x /∈ S

In more detail, given an origin x0 and a bandwidth h > 0, let us define the

constant-length intervals (also called bins) Ij = [xj, xj+1], with xj = x0 + hj and

j ∈ Z. Then, the histogram at a point x such that x ∈ Ij can be defined as

f̂hist(x;x0, h) =
1

nh

n∑
i=1

1Ij(Xi). (2.1)
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Note that the choice of the parameter h has a significant impact on the behavior

of the histogram defined in (2.1), as Figure 2.3 illustrates. There, histograms with

different number of bins are shown for a sample of size n = 5000 drawn from the

following mixture density (Marron and Wand, 1992):

D1: (claw density) with parameters µ = (0,−1,−0.5, 0, 0.5, 1),

σ = (1, 0.1, 0.1, 0.1, 0.1, 0.1) and w = (0.5, 0.1, 0.1, 0.1, 0.1, 0.1).
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Figure 2.3: Target density (top left) and histograms built with 10 (top right), 50
(bottom left) and 250 (bottom right) bins for a sample of size 5000 drawn from
density D1.

The idea of the moving histogram (also called the näıve density estimator) arose

in order to remedy the problem of the histogram’s dependence on the origin, x0.

This is achieved by making the previously defined intervals dependent on the point

x at which the estimator is to be evaluated. In other words, given a bandwidth h > 0

the moving histogram at a point x can be defined as

f̂MH(x;h) =
1

2nh

n∑
i=1

1(x−h,x+h)(Xi),
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which can be rewritten as

f̂MH(x;h) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
, (2.2)

where K(u) = 1
2
1(−1,1)(u) is the uniform density function for the interval (−1, 1).

The kernel density estimator can be thought of as a generalization of the moving

histogram defined in (2.2) such that the function K is not limited to the uniform

density but rather it can be chosen from a wide range of density functions. Thus, the

kernel density estimator or Parzen-Rosenblatt estimator (Parzen, 1962; Rosenblatt,

1956) has the following expression:

f̂h(x) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
, (2.3)

where K is usually assumed to be a symmetric kernel function, that is, a non-negative

function such that K(x) = K(−x) and

∞∫
−∞

K(x) dx = 1.

There is a wide range of possible kernel functions, including, among others, the

Gaussian, uniform, triangular or Epanechnikov kernel functions (see Table 2.1 and

Figure 2.4 for more information on these and other kernel functions). Using the

notation Kh(u) = 1
h
K(u/h), then (2.3) can be rewritten as

f̂h(x) =
1

n

n∑
i=1

Kh(x−Xi),

so that f̂h(x) can be interpreted as a locally weighted average, with K being the

weighting function and where h > 0 controls the influence that the observations

which are close to x have on the estimate. Thus, it is easy to see the important

role that the parameter h, usually called the bandwidth or smoothing parameter,

plays in f̂h, and how making a good choice of the bandwidth is crucial to obtaining

a good density estimate. In fact, the choice of the kernel function is of secondary
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importance compared to the problem of bandwidth selection (Wand and Jones, 1995),

as illustrated in Figure 2.5.

Let us now denote by g1 ∗ g2 the convolution of the functions g1 and g2, that is,

(g1 ∗ g2)(x) =

∞∫
−∞

g1(u)g2(x− u) du.

Due to the aforementioned importance of selecting an appropriate bandwidth

for (2.3), we are faced with the need to find a suitable optimality criterion for the

bandwidth. In order to do so, one must study the properties of the kernel density

estimator. The bias and variance of (2.3) have been studied by several authors and

their expressions are well known (Parzen, 1962), namely:

E
[
f̂h(x)

]
− f(x) = (Kh ∗ f) (x)− f(x),

var
[
f̂h(x)

]
=

1

n

{[
(Kh)

2 ∗ f
]

(x)− (Kh ∗ f)2 (x)
}

Therefore, the mean squared error of f̂h(x) can be written as

MSE
[
f̂h(x)

]
=

1

n

{[
(Kh)

2 ∗ f
]

(x)− (Kh ∗ f)2 (x)
}

+ [(Kh ∗ f) (x)− f(x)]2 . (2.4)

Name K(x) Support

Gaussian 1√
2π
e−

x2

2 R
Uniform 1

2
[−1, 1]

Triangular 1− |x| [−1, 1]
Epanechnikov 3

4
(1− x2) [−1, 1]

Quartic 15
16

(1− x2)2 [−1, 1]

Triweight 35
32

(1− x2)3 [−1, 1]

Table 2.1: Commonly used univariate kernel functions.

Note that (2.4) is not a random variable since it does not depend on the sample.

However, it still depends on the particular value of x, and so (2.4) cannot work as a

global optimality criterion. An oft-used criterion for defining an optimal bandwidth
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Figure 2.4: Gaussian (black), uniform (red), triangular (green), Epanechnikov (dark
blue), quartic (light blue) and triweight (pink) kernel functions.

is based on mean integrated squared error or MISE, defined as

Mn(h) = E


∞∫

−∞

[
f̂h(x)− f(x)

]2
dx

 ,

that is, an integrated version of (2.4). Suppose that f has two continuous derivatives.

As shown by, for example, Silverman (1986), the minimizer, hn0, of Mn(h) with

respect to h is asymptotic to

hna = C0n
−1/5 (2.5)

as n→∞, where

C0 =

[
R(K)

µ2(K)2R(f ′′)

]1/5
, (2.6)
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Figure 2.5: Left panel: kernel density estimates considering h = 0.2 and different ker-
nel functions, namely Gaussian (black), Epanechnikov (red) and triangular (green).
Right panel: kernel density estimates considering a Gaussian kernel and different
values for the bandwidth, namely h = 0.05 (black), h = 0.2 (red) and h = 0.8
(green).

with R(g) =
∫
g(x)2 dx and µj(g) =

∫
xjg(x) dx (j = 0, 1, . . . ), provided that these

integrals exist finite. Ideally, one would use hn0 as a bandwidth in (2.3), but of course

hn0 depends on f and so this is not feasible. However, it can be estimated and to

that effect numerous bandwidth selection methods, these including cross-validation

(Rudemo, 1982; Bowman, 1984; Hall and Marron, 1987), bootstrap (Cao, 1993) and

plug-in (Sheather and Jones, 1991) methods, have been proposed and studied over

time. In the following section, we will focus on the study of the leave-one-out cross-

validation criterion and the asymptotic properties of the cross-validation selector for

the bandwidth of the Parzen-Rosenblatt estimator defined in (2.3).

2.1.2 Cross-validation method for bandwidth selection

Cross-validation is a rough-and-ready method of model selection that predates an

early exposition of the method by Stone (1974). In its simplest form, cross-validation

consists of dividing one’s dataset into two parts, using one part to build one or more
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models, and then predicting the date in the second part with the models so-built.

In this way one can objectively compare the predictive ability of different models.

The leave-one-out version of cross-validation is somewhat more involved. It excludes

one datum from the dataset, fits a model from the remaining observations, uses this

model to predict the datum left out, and then repeats this process for all the data.

While leave-one-out cross-validation is a very useful method, due in no small part

to its wide applicability, it does have its drawbacks. In the context of smoothing

parameter selection for function estimation, it has been regarded skeptically for many

years owing to its large variability; see, e.g., Park and Marron (1990). A number of

modified versions of cross-validation have been proposed in an effort to produce more

stable smoothing parameter selectors. These include partitioned cross-validation

(Marron, 1987; Bhattacharya and Hart, 2016), proposals of Stute (1992) and Feluch

and Koronacki (1992), smoothed cross-validation (Hall et al., 1992), one-sided cross-

validation (Hart and Yi, 1998; Mart́ınez-Miranda et al., 2011), a bagged version

of cross-validation (Hall and Robinson, 2009; Barreiro-Ures et al., 2021a), indirect

cross-validation (Savchuk et al., 2010) and DO-validation (Mammen et al., 2011).

The cross-validation criterion is derived from the expression of the integrated

squared error or ISE of f̂h,

ISE
(
f̂h

)
=

∞∫
−∞

[
f̂h(x)− f(x)

]2
dx,

which is a random variable and can be rewritten as

ISE
(
f̂h

)
= R(f̂h)− 2

∞∫
−∞

f̂h(x)f(x) dx+R(f). (2.7)

Note that the third summand in (2.7), R(f), does not depend on the bandwidth

and can therefore be ignored when constructing the cross-validation criterion. Now,

it can be easily shown that the first summand, R(f̂h), is equal to R(K)/(nh) while

the second summand,
∫
f̂hf , can be interpreted as the expected value of f̂h. A näıve
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way of estimating the latter would be to replace it by

1

n

n∑
i=1

f̂h(Xi).

However, by estimating the second summand in this way we would be using the

same sample both to construct f̂h and to estimate the summand in question. This

would be problematic as it would lead to overfitting, thus producing an inconsistent

empirical optimality criterion. Thus, the leave-one-out cross-validation or least-

squares cross-validation criterion can be written as (Scott and Terrell, 1987)

CV (h) =
R(K)

nh
− 2

n

n∑
i=1

f̂
(−i)
h (Xi), h > 0, (2.8)

where f̂
(−i)
h is a kernel estimate computed with the n − 1 observations other than

Xi, that is,

f̂
(−i)
h (x) =

1

n− 1

n∑
j=1
j 6=i

Kh (x−Xj) , i = 1, . . . , n.

It is easily shown that CV (h) is an unbiased estimator of Mn(h)−R(f) for each

h > 0 (Scott and Terrell, 1987). In turn, (2.8) admits the following expression (Scott

and Terrell, 1987):

CV (h) =
R(K)

nh
+

2

n2h

∑∑
i<j

(K ∗K − 2K)

(
Xi −Xj

h

)
.

It seems natural then to estimate hn0 by ĥn, the minimizer of CV (h). Hall and

Marron (1987) show that3

n1/10

(
ĥn − hn0
hn0

)
d→ Z, (2.9)

3Hereinafter, the notation Zn
d→ Z (Zn

p→ Z) will be used to denote the fact that the sequence
of random variables, Zn, converges in distribution (probability) to the random variable Z.
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where Z is normally distributed with mean 0. The good news here is that the relative

error (ĥn − hn0)/hn0 converges to 0 in probability as n→∞. The bad news is that

the rate of convergence is very slow, n−1/10, which confirms the large variability of

cross-validation alluded to previously.

Apart from cross-validation, there are many other bandwidth selection methods

for the kernel density estimator. Some of them are described below.

2.1.3 Other bandwidth selection methods

Pseudo-likelihood cross-validation

Inspired by the leave-one-out device, Habbema et al. (1974) proposed estimating

the optimal bandwidth by means of the maximum likelihood procedure, that is, by

maximizing

L(h) =
n∏
i=1

f̂
(−i)
h (Xi),

where f̂
(−i)
h denotes the Parzen-Rosenblatt estimator constructed without the i-th

observation. Despite its apparent appeal, the pseudo-likelihood bandwidth has a

major drawback (Broniatowski et al., 1989), namely its bad behavior when working

with heavy-tailed densities.

Smoothed cross-validation

Despite its name, the smoothed cross-validation selector has more to do with the

bootstrap bandwidth selectors than with cross-validation (see Cao et al., 1994). This

bandwidth selector was proposed in Hall et al. (1992) and is based on the bias-

variance decomposition of the MISE:

Mn(h) =

∫
var
[
f̂h(x)

]
dx+

∫ {
E
[
f̂h(x)

]
− f(x)

}2

dx.

As we have already seen, the dominant term of the variance, R(K)/(nh), does

not depend on f , while the dominant term of the bias does. Thus, the smoothed
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cross-validation method proceeds by estimating the squared-bias term by

B̂(h; g) =

∫ {[∫
Kh(x− y)f̂g(y) dy

]
− f̂g(x)

}2

dx,

where g > 0 is a pilot bandwidth. Then, the smoothed cross-validation bandwidth

can be defined as

ĥSCV,n = arg min
h>0

[
R(K)

nh
+ B̂(h; g)

]
.

The smoothed cross-validation bandwidth has been shown to have better rates

of convergence than the ordinary, least-squares cross-validation bandwidth. In par-

ticular, for certain choices of g, Jones et al. (1991) show that

ĥSCV,n − hn0
hn0

= Op

(
n−1/2

)
,

which is a much better rate than the well-known n−1/10 rate of least-squares cross-

validation.

Direct plug-in bandwidth

While some bandwidth selectors, such as those based on cross-validatory criteria,

try to directly estimate the optimal bandwidth, hn0, plug-in bandwidth selectors

aim to estimate the asymptotically optimal bandwidth, hna, defined in (2.5). That

is, plug-in bandwidth selectors address the problem of estimating

hna = C0n
−1/5

by replacing the constant C0, which was defined in (2.6), by an estimate, C0, leading

to

ĥn,dpi = Ĉ0n
−1/5. (2.10)

The bandwidth selector defined by (2.10) is usually called the direct plug-in

bandwidth. Note that the only unknown term in C0 is R(f ′′) so it is necessary
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to address the issue of estimating integrated squared density derivatives, that is,

functionals of the form R
[
fk)
]
. Let us start by noting that

R
[
fk)
]

=

∫
fk)(x)2 dx

can be expressed as (Wand and Jones, 1995)

R
[
fk)
]

= (−1)k
∫
f 2k)(x)f(x) dx

under sufficient differentiability assumptions on f . Thus, we can limit ourselves to

the study of functionals of the form

ψk =

∫
fk)f(x) dx. (2.11)

The fact that

ψk = E
[
fk)(X)

]
motivates estimating (2.11) by (Wand and Jones, 1995)

ψ̂k,g =
1

n2

n∑
i=1

n∑
j=1

Lk)g (Xi −Xj), (2.12)

where g is usually referred to as the pilot bandwidth, L is a symmetric kernel function

of order t (that is, a kernel function whose first non-zero moment has degree t) and

both g and L can be different from h and K, respectively. Again, the choice of g

has a significant effect on the behavior of the estimator defined in (2.12) and for this

reason and under certain regularity conditions an expression for the optimal value

of the pilot bandwidth is provided in Wand and Jones (1995), namely,

g0,k =

[
t!L(k)(0)

−µt(L)ψk+tn

]1/(k+t+1)

.

However, when estimating (2.11) by means of ψ̂k,g0,k we are again confronted
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with the problem of estimating a higher order functional, namely ψk+t. Naturally,

if we wanted to estimate this new functional by means of ψ̂k+t,g0,k+t
then we would

need to select a new pilot bandwidth, whose optimal expression will in turn de-

pend on another functional of an even higher order, and this process would continue

indefinitely. The usual way to solve this problem is to stop the process after a pre-

determined number of steps and, in the last step, to estimate the corresponding

functional by means of an automatic estimation which generally involves imposing

some type of parametric assumptions on f , typically a normal scale final step.

Normal scale bandwidth

The normal scale bandwidth selector is probably the simplest bandwidth selection

method as it is based on the assumption that the underlying density, f , is a normal

with variance σ2. In this case, the asymptotically optimal bandwidth defined in (2.5)

can be expressed as

hna =

[
8π1/2R(K)

3µ2(K)2n

]1/5
σ.

The normal scale bandwidth, ĥn,NS, simply replaces σ by an estimate, σ̂, leading

to

ĥn,NS =

[
8π1/2R(K)

3µ2(K)2n

]1/5
σ̂,

where σ is usually estimated by means of the sample standard deviation, sn, or the

standardised interquartile range,

σ̂IQR =
F−1n (0.75)− F−1n (0.25)

Φ−1(0.75)− Φ−1(0.25)
,

where Φ denotes the cumulative distribution function of the standard normal and,

hence, Φ−1 denotes its quantile function. When K is the Gaussian kernel and σ is

estimated by

σ̂ = min{sn, σ̂IQR},
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then the normal scale bandwidth is usually referred to as the rule-of-thumb band-

width, which can be expressed as

ĥn,RT =

(
4

3n

)1/5

σ̂.

Although the normal scale bandwidth selector provides a fast and automatic way

of selecting the bandwidth of the kernel density estimator, it is well known that it

leads to oversmoothed estimates when f deviates from normality. This is illustrated

in Figure 2.6, where the kernel density estimates with bandwidths chosen by direct

plug-in and rule-of-thumb methods and obtained for a sample of size n = 5000

drawn from the mixture density D1 are shown. As we can see, while the direct

plug-in selector (h = 0.081) produces an adequate estimate that captures the most

important features of the target density, the rule-of-thumb bandwidth (h = 0.17)

leads to an oversmoothed estimate.
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Figure 2.6: Target density (dashed black line) and kernel density estimates consider-
ing the direct plug-in (solid red line) and rule-of-thumb bandwidth (solid green line)
for a sample of size n = 5000 drawn from density D1.
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Bootstrap bandwidth

Consider a sample of size n, X1, . . . , Xn. Under the assumption that h → 0 and

nh → ∞, it is well known (Parzen, 1962) that the Parzen-Rosenblatt estimator,

f̂h(x), has the following limit distribution,

√
nh
[
f̂h(x)− f(x)

]
d→ N(b0, v0),

where

b0 =
1

2
c
5/2
0 µ2(K)f ′′(x),

v0 = R(K)f(x),

c0 =

[
R(K)f(x)

µ2(K)2f ′′(x)2

]1/5
.

If we were interested in approximating the sampling distribution of the previous

statistic, the bootstrap resampling plan would be as follows (Cao, 1990):

Step 1. Consider a pilot bandwidth, g, and compute f̂g from the original sample.

Step 2. Draw bootstrap resamples of size n, X∗1 , . . . , X
∗
n from a population whose den-

sity function is given by f̂g. This can be done as follows:

(a) Generate a sample of size n, U1, . . . , Un, where Ui is drawn from a discrete

uniform distribution defined in {1, . . . , n}, for every i ∈ {1, . . . , n}.

(b) Generate a sample of size n, Z1, . . . , Zn, where Zi is drawn from the

density function K, for every i ∈ {1, . . . , n}.

(c) For every i ∈ {1, . . . , n}, define X∗i = XUi
+ gZi.

Step 3. Construct the bootstrap version of the Parzen-Rosenblatt estimator, f̂ ∗h , where

f̂ ∗h(x) =
1

nh

n∑
i=1

K

(
x−X∗i
h

)
.

Step 4. Approximate the sampling distribution of
√
nh
[
f̂h(x)− f(x)

]
by the resam-

pling distribution of
√
nh
[
f̂ ∗h(x)− f̂g(x)

]
.
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The resampling plan above does not aim at selecting the bandwidth for the kernel

density estimator. However, it is still valid to bootstrap estimate the MISE function

and provide a selector for the bandwidth of the Parzen–Rosenblatt estimator. Thus,

if instead of the sampling distribution of f̂h, we are actually interested in the MISE

of f̂h, the resampling procedure would consist of repeating steps 1–3 above and

replacing step 4 with the following:

Step 4. Define the bootstrap version of the MISE as

M∗
n(h; g) = E∗

{∫ [
f̂ ∗h(x)− f̂g(x)

]2
dx

}
, (2.13)

where E∗ denotes the fact that the previous expectation is evaluated for a ran-

dom variable belonging to the bootstrap population and whose density function

is given by f̂g, that is, E∗ denotes the expectation in the resampling mechanism,

conditionally on the original sample.

It should be noted that the bootstrap version of the MISE depends on the original

sample but not on the resamples, and since all the terms that appear in (2.13) are

known, it is not really necessary to draw any resample and approximate (2.13) by

Monte Carlo. Cao (1993) gives a closed expression for (2.13),

M∗
n(h; g) = V ∗n (h; g) +B∗n(h; g), (2.14)

where

V ∗n (h; g) = n−1h−1R(K) + n−3
n∑
i=1

n∑
j=1

[(Kh ∗Kg) ∗ (Kh ∗Kg)] (Xi −Xj),

B∗n(h; g) = n−2
n∑
i=1

n∑
j=1

[(Kh ∗Kg −Kg) ∗ (Kh ∗Kg −Kg)] (Xi −Xj).

Furthermore, if we assume that K is the Gaussian kernel and using the fact that

Kh1 ∗Kh2 is the density function of a normally distributed random variable with zero

mean and variance given by h21 + h22 for any h1, h2 > 0, then (2.14) can be rewritten
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as

M∗
n(h; g) =

R(K)

nh
− 1

n3

n∑
i=1

n∑
j=1

K√
2h2+2g2

(Xi −Xj)

+
1

n2

n∑
i=1

n∑
j=1

[
K√

2h2+2g2
(Xi −Xj)

− 2K√
h2+2g2

(Xi −Xj) +K√
2g2

(Xi −Xj)
]
.

Since the problem of choosing the pilot bandwidth is closely linked to that of

estimating the curvature of f , a sensible optimality criterion for the pilot bandwidth

would be

g0 = arg min
g>0

E

{[∫
f̂ ′′g (x)2 dx−

∫
f ′′(x)2 dx

]2}
. (2.15)

Cao (1993) also provides an expression for the dominant term of the solution of

the minimization problem defined by (2.15),

g0 =

[
R (K ′′)

nµ2(K)R (f ′′′)

]1/7
+ o

(
n−1/7

)
.

Thus, we can directly calculate the bootstrap MISE bandwidth, h∗n0, by minimiz-

ing (2.14), that is,

h∗n0 = arg min
h>0

[V ∗n (h; g0) +B∗n(h; g0)] . (2.16)

2.2 Regression estimation

Regression analysis studies the relationship between an independent random vari-

able or explanatory variable, X, and a dependent random variable or response, Y .

The relationship between these variables is encapsulated in the regression function,

m(x) = E (Y | X = x), whose estimation is often the main task in regression analy-

sis. In this regard, most statistical methods for estimating m can be classified into

two categories depending on their assumptions on m: parametric and nonparamet-
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ric regression methods. Parametric methods are based on the assumption that the

unknown regression function belongs to a certain parametric family of functions, de-

pending on some parameters, and, therefore, the problem of estimating m is reduced

to estimating these parameters. On the other hand, nonparametric methods do not

assume any parametric form for the relationship between the variables, but rather

estimate it from the data itself, which makes them more flexible than parametric

methods. A particular class of nonparametric methods that are of interest to us is

that of kernel regression methods, which seek to estimate m as a locally weighted

average, using a kernel function as a weighting function. As in the case of kernel

density estimation (see Section 2.1.1), these methods are highly dependent on the

choice of a free parameter called bandwidth or smoothing parameter which deter-

mines the amount of smoothing performed by the estimator, which in turn determines

the trade-off between the bias and the variance of the estimator. The problem of

bandwidth selection is therefore crucial and intrinsic to kernel methods and multiple

ways of addressing it have been proposed and studied over time, these including

cross-validation (Härdle et al., 1988), bootstrapping (Cao and González-Manteiga,

1993) or plug-in methods (Ruppert et al., 1995).

2.2.1 Kernel regression estimation

Let X = {(X1, Y1), . . . , (Xn, Yn)} be a sample of size n, with (X1, Y1), . . . , (Xn, Yn)

independent and identically distributed to the two-dimensional random variable

(X, Y ), drawn from the nonparametric regression model

Y = m(X) + ε,

where m(x) = E (Y | X = x) denotes the regression function and ε denotes the error

term, which in turn satisfies the following conditions:

E (ε | X = x) = 0,

E
(
ε2 | X = x

)
= σ2(x).

Analogously to what was presented in Section 2.1.1, which was dedicated to ker-
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nel density estimation, kernel regression methods attempt to estimate the unknown

regression function without imposing parametric constraints on m. Depending on

the type of design, that is, depending on whether we are working in the context of

fixed or random design, different types of kernel regression methods have been pro-

posed and studied in the literature. In the case of fixed design, it is worth mentioning

the Priestley-Chao estimator (Priestley and Chao, 1972) and the Gasser-Müller esti-

mator (Gasser and Müller, 1979). Under the assumption of random design (although

these methods can also be applied to the fixed design case), a particular and widely

used class of kernel regression methods is that of local polynomial kernel estimators

(Stone, 1977; Cleveland, 1979; Fan, 1992), which estimate m(x) by locally fitting a

d-th degree polynomial to the sample via weighted least squares. In other words, at

a given point x these methods estimate m(x) by fitting the polynomial

Pd(u) = β0 + β1(u− x) + · · ·+ βp(u− x)d

to the sample and weighing the i-th observation, (Xi, Yi), by Kh(Xi−x), that is, the

weight of the i-th observation depends on the proximity of Xi to x, which in turn is

measured by the rescaled kernel Kh. Thus, the vector of estimates, (β̂0, . . . , β̂d), can

be obtained as

(β̂0, . . . , β̂d) = arg min
(β0,...,βd)

n∑
i=1

[Yi − Pd(Xi)]
2Kh (Xi − x) .

Then, the local polynomial kernel estimate of degree d at x can be defined as

m̂h(x; d) = β̂0.

The Nadaraya–Watson estimator or local constant estimator (Nadaraya, 1964;

Watson, 1964) is a particular case of the local polynomial kernel estimator which

corresponds to d = 0, that is, fitting 0-degree polynomials or local constants. The
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Nadaraya–Watson estimator admits the following expression:

m̂h(x; 0) =

n∑
i=1

Kh (x−Xi)Yi

n∑
i=1

Kh (x−Xi)
, (2.17)

where h > 0 denotes the bandwidth and K denotes the kernel function. For the

sake of simplicity, in what follows the Nadaraya–Watson estimator will be denoted

by m̂h. On the other hand, the local linear estimator, which corresponds to the case

d = 1 can be expressed as

m̂h(x; 1) = e′1
(
X ′
x,1Wx,hXx,1

)−1
X ′
x,1Wx,hY ,

where Y = (Y1, . . . , Yn)′, Wx,h = diag [Kh(X1 − x), . . . , Kh(Xn − x)], ej is a column

vector having 1 in its j-th entry and zeros elsewhere and

Xx,d =


1 X1 − x . . . (X1 − x)d

...
...

...
...

1 Xn − x . . . (Xn − x)d

 .
As in the case of density estimation, the value of the bandwidth is of great

importance since it determines the amount of smoothing performed by the estimator

and therefore heavily influences its behavior, as illustrated in Figure 2.7. Hence, we

are faced with the problem of bandwidth selection.

Optimal bandwidths ofter refer to smoothing parameter values that minimize

some error criterion function. These functions are typically expected loss, in some

sense. When the aim is predicting the response variable, Y , given the value of the

explanatory variable, X, it is natural to consider expectations conditionally on the

observed explanatory sample, (X1, . . . , Xn). However, our focus is on estimating the

regression function on its own. Thus an unconditional expected loss view is adopted.

Of course, there exist arguments in favor of both type of criteria. More details on

this issue can be found in Köhler et al. (2014).

Taking this comment into account, a possible (global) criterion for optimality is

that of the mean integrated squared error or MISE which, in the case of regression
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estimation, is defined as

Mn;d(h) = E

{∫
[m̂h(x; d)−m(x)]2 f(x) dx

}
, (2.18)

where f denotes the marginal density function of the explanatory variable, X. The

bandwidth that minimizes (2.18) is called the MISE bandwidth and is denoted by

hn0;d, that is,

hn0;d = arg min
h>0

Mn;d(h). (2.19)

In the case of the Nadaraya-Watson estimator, the MISE function and its mini-

mizer are denoted by Mn(h) and hn0, respectively. Although the same notation was

used in Section 2.1.1 on kernel density estimation, we will keep it anyway since there

will be no possibility of confusion in any case.

The MISE bandwidth depends on m and f and since in practice both of these

functions are almost always unknown, hn0 cannot be directly calculated. How-

ever, it can be estimated and to that effect numerous bandwidth selection methods,

these including cross-validation (Härdle et al., 1988), bootstrap (Cao and González-

Manteiga, 1993) and plug-in (Ruppert et al., 1995) methods, have been proposed

and studied over time. In the following section the leave-one-out cross-validation

selector for the bandwidth of the kernel regression estimator is described.

2.2.2 Cross-validation method for bandwidth selection

Cross-validation is a method that provides an optimality criterion for the selection

of the bandwidth of the kernel regression estimator, m̂h(x; d), which works as an

empirical analogue of the MISE and so it allows us to estimate hn0;d. While in the

case of density estimation the cross-validation criterion is based on the integrated

squared error or ISE, in the case of regression estimation the cross-validation criterion

seeks to minimize the prediction error of our estimator. In this sense, it would seem

intuitive to try to find the bandwidth that minimizes the residual sum of squares of
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Figure 2.7: Local constant (left) and local linear (right) estimators for a sample of
size 5000 drawn from the model Y = m(X) + ε, with X drawn from a Beta(3,3)
distribution, ε drawn from a N(0,0.3) distribution and m(x) = x sin(2πx) (thick
dashed gray line). A Gaussian kernel was considered and both estimators are plotted
considering different values for the bandwidth, namely h = hn0 (continuous black
line), h = hn0/2 (dashed red line) and h = 2hn0 (dotted blue line). Note that the
value of hn0 is different for the local constant and local linear estimators.

the corresponding estimator, given by

n∑
i=1

[m̂h(Xi; d)− Yi]2 . (2.20)

However, a bandwidth selector based on the minimization of (2.20) would lead to

overfitting since, in the expression of the residual sum of squares, the same sample,

X , is used both to estimate m and to check the goodness-of-fit of m̂h(·; d). To avoid

this problem, the cross-validation criterion proposes a modification of (2.20) so that

the prediction error at Xi is estimated by the kernel regression estimator constructed

without the i-th observation, (Xi, Yi). Therefore, in the context of regression esti-
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mation the leave-one-out cross-validation function can be defined as

CVn(h; d) =
1

n

n∑
i=1

[
m̂

(−i)
h (Xi; d)− Yi

]2
,

where m̂
(−i)
h (·; d) denotes the kernel regression estimator constructed using X\{(Xi, Yi)},

that is, leaving out the i-th observation. Hence, the cross-validation bandwidth,

ĥCV,n;d, can be defined as the bandwidth that minimizes CVn(·; d), that is,

ĥCV,n;d = arg min
h>0

CVn(h; d).

In the case of the Nadaraya–Watson estimator, the following notation will be

used:

CVn(h) =
1

n

n∑
i=1

[
m̂

(−i)
h (Xi)− Yi

]2
, (2.21)

ĥCV,n = arg min
h>0

CVn(h). (2.22)

As in the case of the kernel density estimator, there are a multitude of bandwidth

selection methods for the local polynomial kernel regression estimator other than

cross-validation. Some of them are described below.

2.2.3 Other bandwidth selection methods

Rule-of-thumb bandwidth

Similarly to the normal scale bandwidth discussed in the case of kernel density esti-

mation, the so-called rule-of-thumb bandwidth selector proposed in Fan and Gijbels

(1996) offers a quick and automatic way to select the bandwidth of the local poly-

nomial kernel estimator. For the sake of simplicity, we will describe this bandwidth

selector for the local linear estimator. In this case, the asymptotically optimal band-

width admits the following expression,

hna =

[
R(K)

∫
σ2(x) dx

µ2(K)2θ22n

]1/5
, (2.23)
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where

θ22 =

∫
m′′(x)2f(x) dx.

Fan and Gijbels (1996) propose to replace the unknown quantities in (2.23) by

parametric ordinary least squares estimates. Specifically, they suggest fitting a quar-

tic polynomial,

Pq(x) =
4∑
i=0

αix
i,

to the sample and estimate its parameters by ordinary least squares. Then, m′′(x)

can be estimated by

P̂ ′′q (x) = 2α̂2 + 6α̂3x+ 12α̂4x
2

and so

θ̂22 =
1

n

n∑
i=1

P̂ ′′q (Xi)
2,

where we have used the fact that

θ22 = E
[
m′′(X)2

]
.

As for the other unknown quantity in (2.23), namely the integrated conditional

variance, it is estimated by assuming homoscedasticity and replacing σ2 by

σ̂2
q =

1

n− 5

n∑
i=1

[
Yi − P̂q(Xi)

]2
.

Furthermore, if one assumes that the conditional variance function is zero outside

the support of X, then the integrated conditional variance can be estimated by

[
X(n) −X(1)

]
σ̂2
q ,
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where X(k) denotes the k-th order statistic. In this case, the resulting bandwidth is

called the rule-of-thumb bandwidth and admits the following expression,

ĥn,RT =

{
R(K)

[
X(n) −X(1)

]
σ̂2
q

µ2(K)2θ̂22n

}1/5

.

Direct plug-in bandwidth

As in kernel density estimation, the main idea of plug-in bandwidth selectors is to

replace the unknown terms appearing in the expression of the asymptotically optimal

bandwidth which, in the case of the local linear estimator, is given by (2.23). As

previously mentioned, the only unknown quantities in (2.23) are the density-weighted

curvature of m,

θ22 =

∫
m′′(x)2f(x) dx

and the integrated conditional variance,∫
σ2(x) dx.

The properties of functionals of the form

θst =

∫
ms)(x)mt)(x)f(x) dx, s, t ≥ 0, s+ t even

were studied in Ruppert et al. (1995), where they propose to estimate θ22 by

θ̂22,g =
1

n

n∑
i=1

m̂′′g(Xi; 3), (2.24)

where

m̂
s)
h (x; d) = s!e′s+1

(
X ′
x,dWx,hXx,d

)−1
X ′
x,dWx,hY , s = 0, . . . , d

and g is called the pilot bandwidth. Ruppert et al. (1995) also show that the optimal

value of g, in the sense of minimizing the conditional asymptotic mean squared error
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of (2.24), admits the following expression under the assumptions that the errors are

homoscedastic with common variance σ2 and the support of the density function f

is [a, b]:

gAMSE = C2(K)

[
σ2(b− a)

|θ24|n

]1/7
,

where the quantity C2(K) only depends on the kernel function K and is defined in

Ruppert et al. (1995). As for the common variance σ2, Ruppert et al. (1995) propose

to estimate it by

σ̂2
λ =

1

ν

n∑
i=1

[Yi − m̂λ(Xi; 1)]2 , (2.25)

where

ν = n− 2
n∑
i=1

wii +
n∑
i=1

n∑
j=1

w2
ij

and

wij = e′1
(
X ′
Xi,1

WXi,λXXi,1

)−1
X ′
Xi,1

WXi,λej .

Ruppert et al. (1995) show that the bandwidth that minimizes the conditional

asymptotic mean squared error of (2.25) verifies

λAMSE = C3(K)

[
σ4(b− a)

θ222n
2

]1/9
,

where the quantity C3(K) only depends on the kernel function K and is defined in

Ruppert et al. (1995). As usual in plug-in methods, other unknown terms appear in

the expression of the optimal pilot bandwidth, in this case of the form θst. Therefore,

the process of selecting the optimal pilot bandwidth must stop at some point. This is

done by estimating the corresponding functional, θst, by some automatic estimation

method, typically a normal scale final step.
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Bootstrap bandwidth

An alternative to the bandwidth selection methods reviewed so far would be to

approximate the Mn(h) function itself by resampling. Cao and González-Manteiga

(1993) proposed a resampling plan to approximate the sampling distribution of the

Nadaraya-Watson estimator. The main idea of this resampling plan can be used

to select the bandwidth of the Nadaraya-Watson estimator by minimizing a certain

bootstrap version of the MISE. The resampling plan is as follows:

Step 1. Select a pilot bandwidth, g > 0.

Step 2. Draw bootstrap samples, X ∗ = {(X∗1 , Y ∗1 ), . . . , (X∗n, Y
∗
n )}, from the distribution

function

F̂ (x, y) =
1

n

n∑
i=1

1Sy(Yi)

x∫
−∞

Kg(u−Xi) du,

where Sy = {Yj ∈ {Y1, . . . , Yn} | Yj ≤ y}. In order to do this, generate a sample

of size n, U1, . . . , Un, where Ui is drawn from a discrete uniform distribution

defined in {1, . . . , n}, for every i = 1, . . . , n. Also, generate a sample of size

n, Z1, . . . , Zn, where Zi is drawn from the density K, for every i = 1, . . . , n.

Then, define

X∗i = XUi
+ gZi, i = 1, . . . , n.

Finally, simulate Y ∗i , i = 1, . . . , n, from the discrete distribution defined in

{Y1, . . . , Yn} that assigns to each Yi probability wi, with

wi =
Kg(X

∗
i −Xi)

n∑
j=1

Kg(X∗i −Xj)
, i = 1, . . . , n.

Step 3. Consider the Nadaraya–Watson estimator constructed with the bootstrap sam-
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ple X ∗ = {(X∗1 , Y ∗1 ), . . . , (X∗n, Y
∗
n )},

m̂∗h(x) =

n∑
i=1

Kh(x−X∗i )Y ∗i

n∑
i=1

Kh(x−X∗i )
.

Step 4. Repeat the previous steps B times and estimate Mn(h) by a Monte Carlo

approximation of

M∗
n(h; g) = E∗

{∫
[m̂∗h(x)− m̂g(x)]2 f̂g(x) dx

}
.

Step 5. Repeat Steps 1–4 for a large number of values of h and define the bootstrap

bandwidth as

h∗n0 = arg min
h>0

M∗
n(h; g). (2.26)

When defining the bootstrap bandwidth, other resampling plans could be consid-

ered instead of the one described above. For example, instead of just smoothing the

explanatory variable, a fully smoothed bootstrap could be considered by modifying

Step 2 above so that the resamples are now drawn from the distribution

F̃g(x, y) =
1

n

n∑
i=1

y∫
−∞

Kg(v − Yi) dv
x∫

−∞

Kg(u−Xi) du.

On the other hand, although the previous plan mimics heteroscedasticity, if the

data was indeed heteroscedastic, it would make sense to consider the resampling plan

known as wild bootstrap (Wu, 1986; Härdle and Marron, 1991).

2.3 Bootstrapping

Resampling refers to a class of statistical methods whose main idea is to generate

new samples from one’s own data with the objective of drawing certain conclusions
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about a population parameter or sample statistic. Resampling methods, among

which bootstrapping (Efron, 1979), jackknife (Quenouille, 1949; Tukey, 1958) and

permutation tests (Fisher, 1935) should be highlighted, have multiple applications

such as estimating the precision of a sample statistic, hypothesis testing or model

validation.

Bootstrapping is a resampling method that allows us to estimate the sampling

distribution of a certain statistic. This is done by assuming that the sample at hand

is representative of the population from which it was drawn and sampling with re-

placement from the sample itself. In this way, we are imitating the original sampling

process but with the advantage of working with a new, fully known (bootstrap)

population. A simple version of the bootstrap method, generally known as näıve

bootstrap, consists of drawing the resamples from the empirical distribution func-

tion, but this approach is known to fail in several situations. A more elaborate way

to carry out the resampling process is that of the smooth bootstrap, in which the

bootstrap population is not characterized by the empirical distribution function, but

instead by a smooth estimate of the unknown density function. In particular, the

resamples would belong to a population whose density function is given by a kernel

estimate of the unknown density function, namely f̂g, where g is often referred to

as the pilot bandwidth. Of course, this way of proceeding depends largely on the

choice of g and, therefore, it is necessary to establish some optimality criterion for

the pilot bandwidth.

In more detail, let X be a simple random sample of size n drawn from a popu-

lation whose distribution function is given by F and suppose that we are interested

in making inference about some population parameter θ = θ(F ). To do so, it is

necessary to know the sampling distribution of a certain statistic R(X , F ), which in

many cases can take the form

R(X , F ) = θ(Fn)− θ(F ),

where Fn denotes the empirical distribution function of X . Naturally, the sampling

distribution of R(X , F ) is almost always unknown. The bootstrap approach starts

by replacing F with an estimate, F̂ . From F̂ and conditionally to the sample X we

can draw resamples of size n, X ∗, which are usually called bootstrap samples. The
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idea of the bootstrap method then lies in approximating the sampling distribution

of R(X , F ) by the resampling distribution or bootstap distribution of

R(X ∗, F̂ ) = θ(F ∗n)− θ(F̂ ),

where F ∗n denotes the empirical distribution of the bootstrap sample, X ∗. Again, the

bootstrap distribution of R(X ∗, F̂ ) is usually not computable in practice and must

be approximated by Monte Carlo.

As an example, let us imagine that we have a sample of size n, X = (X1, . . . , Xn),

drawn from a N(µ, σ2) and we are interested in approximating the bias of the sample

mean by means of the näıve bootstap. Then we have

θ(F ) = µ =

∫
x dF (x),

θ(Fn) = X̄n =
1

n

n∑
i=1

Xi =

∫
x dFn(x),

θ(F ∗n) = X̄∗n =
1

n

n∑
i=1

X∗i =

∫
x dF ∗n(x)

and so we want to approximate the sampling distribution of

R(X , F ) = X̄n − µ

by the bootstrap distribution of

R(X ∗, Fn) = X̄∗n − X̄n.

In this case we can apply the central limit theorem to obtain the distributions of

both R(X , F ) and R(X ∗, Fn), namely

R(X , F )
d' N(0, σ2/n),

R(X ∗, Fn)
d' N(0, s2n/n),

where s2n denotes the sample variance. Figure 2.8 shows the sampling distribution

of R(X , F ) and the bootstrap distribution of R(X ∗, Fn) along with a Monte Carlo
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approximation of the latter for a sample of size n = 1000 drawn from a N(0, 1).
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Figure 2.8: The sampling distribution of X̄n−µ (red) and the bootstrap distribution
of X̄∗n − X̄n (black) for a sample of size n = 1000 drawn from a N(µ, σ2) with µ = 0
and σ2 = 1 are shown. A Monte Carlo approximation of the bootstrap distribution
of X̄∗n−X̄n constructed with 104 bootstrap samples is also shown, using a histogram.

2.4 Bagging

Ensemble methods (Opitz and Maclin, 1999) are a family of techniques that combine

the estimates or predictions of several base estimators or base models with the ob-

jective of producing a new estimator or predictor with better statistical properties.

One of the most popular and widely used ensemble methods is bootstrap aggregat-

ing (Breiman, 1996a), also known as bagging, which is a resampling technique whose

main purpose is to reduce the variability of a given base estimator. It is best suited

for high-variance low-bias estimators. In the case of estimators which are nonlinear

in the observations, such as decision trees or neural networks, it has been shown

(Friedman and Hall, 2007) that bagging can lead to substantial reductions in the
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variability of these estimators. This fact motivates us to study the application of

bagging to the cross-validation bandwidth selector, a statistic that is not linear in

the observations and has a high variability.

More precisely, let X denote a sample of size n drawn from the distribution P ,

ĥ = ĥ(X ) a base selector of the optimal bandwidth, hn0, and

ĥA = EP

[
ĥ (X )

]
the “aggregated bandwidth” (following the notation of Breiman, 1996a), where EP

denotes the expectation over all samples of size n drawn from the distribution P .

Then we have that

EP

{[
hn0 − ĥ(X )

]2}
= h2n0 − 2hn0ĥA + EP

[
ĥ(X )2

]
≥

{
EP

[
hn0 − ĥ(X )

]}2

= h2n0 − 2hn0ĥA + ĥ2A

=
(
hn0 − ĥA

)2
,

where we have used the fact that E [Z2] ≥ E [Z]2 for any random variable Z. In

other words, the squared error of the aggregated bandwidth, ĥA, is lower than that

of the base selector, ĥ, and the difference between the two depends on how unequal

the two sides of

EP

[
ĥ(X )2

]
≥
{

EP

[
ĥ(X )

]}2

are, that is, the larger varP [ĥ(X )] (or, in the sense of Breiman, 1996b, the more un-

stable) the base selector, the greater the decrease in squared error by the aggregated

bandwidth. However, while the aggregated bandwidth depends on the distribution,

P , from which X was drawn, the bagging selector, ĥbag, actually depends on the dis-

tribution PX which assigns mass 1/n to each observation belonging to X (although

smooth estimates of P may be considered). In other words, the bagging bandwidth
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is defined as

ĥbag = EPX

[
ĥ(X ∗)

]
,

that is, ĥbag is the bootstrapped version of ĥA.

Moreover, there is a point between maximum instability and maximum stability

at which ĥbag stops improving on ĥ in terms of error and, in fact, starts to under-

perform the base selector.

More generally, given a sample of size n, X , and denoting by θ̂n = θ̂n(X ) the

base estimator, the bagging procedure can be summarized as follows:

Step 1. Generate a bootstrap sample of size n, X ∗, by sampling with replacement from

X .

Step 2. Compute the bootstrap estimate, θ̂∗n(X ∗).

Step 3. Define the bagged estimate as

θ̂n,bag = E∗
[
θ̂∗n(X ∗)

]
, (2.27)

where E∗ denotes the expectation over all the bootstrap samples of size n drawn

with replacement from X .

It should be noted that sometimes the bagged estimate defined in Step 3 above

cannot be computed in practice and we must resort to a Monte Carlo approximation.

In this case, once Steps 2 and 3 above have been repeated B times, the bagged

estimate would be approximated by

1

B

B∑
i=1

θ̂∗n(X ∗i ),

where X ∗i denotes the i-th bootstrap sample. If θ̂n is an estimator of a certain

population parameter θ then it follows immediately from (2.27) that

θ̂n,bag − θ = θ̂n − θ +
[
E∗
(
θ̂∗n

)
− θ̂n

]
.
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Thus, it seems reasonable to think that, in some situations, the bagging estimator

may turn out to be more biased than θ̂n. However, the rationale for bagging is

that this increase in bias is offset by an even greater reduction in variance. This

phenomenon is illustrated in Figure 2.9, where 500 samples of size n = 100 were

generated from a normal mixture density with µ = (0, 0), σ = (1, 0.1) and w =

(0.1, 0.9) as vectors of means, standard deviations and weights, respectively. For

each simulated sample, the standard leave-one-out cross-validation bandwidth, ĥ,

and a smoothed bagged version of it, ĥbag, were computed. The latter was computed

using 100 resamples drawn from a smooth estimate of the underlying density, namely

f̂g, that is, the kernel density estimator with bandwidth g = ĥ. It is clear from

Figure 2.9 that the bagged estimator has a significantly lower variability than the

standard, non-bagged estimator. In fact, the relative reduction in variance achieved

by the bagged estimator with respect to the non-bagged estimator (59.7%) more

than offsets the relative increase in bias (238%), thus achieving a 53.6% reduction in

mean squared error.
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Figure 2.9: Sampling distribution of ĥ/hn0 (left panel) and kernel density estimates
of ĥ (right panel), where ĥ denotes the ordinary leave-one-out cross-validation band-
width (left boxplot, red line) and a smoothed bagged version of it (right boxplot,
black line). Both were approximated by 500 samples of size n = 100 generated from
a normal mixture density with µ = (0, 0), σ = (1, 0.1) and w = (0.1, 0.9) as vectors
of means, standard deviations and weights, respectively. For each simulated sam-
ple, the bagged estimator was computed using 100 resamples drawn from a smooth
estimate of the underlying density.

Bagging has become a widely used technique especially in the field of machine
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learning and multiple variants of the method (see, for example, Bühlmann and Yu,

2002) have been proposed over time such as bootstrap robust aggregating (bragging),

subsample aggregating (subagging) and BagBoosting. One such variant of particular

interest to us is subagging, which uses subsampling to achieve reductions not only

in the variability of the estimator but also in computational time. Given a sample

of size n, X , and a base estimator, θ̂n = θ̂n(X ), subagging proceeds as follows:

Step 1. Randomly draw a subsample of size r < n, X ∗, by sampling without replace-

ment4 from X .

Step 2. Compute the subsample estimate, θ̂∗r(X ∗).

Step 3. Define the subagging estimate as

θ̂n,SB(r) =

(
n

r

)−1 ∑
(i1,...,ir)∈I

θ̂∗r
[
X(i1,...,ir)

]
, (2.28)

where I is the set of r-tuples whose elements in {1, . . . , n} are all distinct and

X(i1,...,ir) denotes the subsample of size r made up of the elements in X whose

indices are i1, . . . , ir.

The subagging estimate defined in (2.28) averages the values of the subsample

estimates obtained for the
(
n
r

)
possible subsamples of size r generated by sampling

without replacement from X .

Furthermore, given a sample (X1, . . . , Xn), a base estimator θ̂n = θ̂n(X1, . . . , Xn)

which is symmetric in the data and assuming that r ≤ n and E|θ̂∗r(X1, . . . , Xr)|2 <
∞, Bühlmann and Yu (2002) prove that the subagging estimator defined in (2.28)

satisfies:

E
[
θ̂n,SB(r)

]
= E

[
θ̂∗r(X1, . . . , Xr)

]
,

var
[
θ̂n,SB(r)

]
≤ r

n
var
[
θ̂∗r(X1, . . . , Xr)

]
.

In other words, the subagging estimator, θ̂n,SB(r), has the same bias as the corre-

sponding subsample estimator, θ̂∗r , while the ratio of the variance of the subagging

4Sampling without replacement makes sense because we are interested in selecting random sub-
sets from the data rather than mimicking the original sampling mechanism (bootstrapping).
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estimator to that of the subsample estimator is bounded by r/n. Thus, the smaller

r is with respect to n, the greater the possible reduction in variability achieved by

the subagging estimator.

The subagging technique has the potential to obtain not only improvements in

the variability of certain estimators but also significant reductions in computational

time due to the use of subsampling. Therefore, the use of subagging is especially

convenient in the context of bandwidth selection for both the Parzen–Rosenblatt

and Nadaraya–Watson estimators. Naturally, the use of bagging in conjunction with

binning5 can provide even greater reductions in computation time. Hereinafter, the

terms bagging and subagging will be used interchangeably to refer to the latter,

unless otherwise specified.

5Binning is a pre-processing technique that consists of discretizing the data so that the observa-
tions that lie in a certain interval or bin are replaced by a value representative of that bin, usually
its midpoint.
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Chapter 3

Bagging bandwidth selection for

the Parzen–Rosenblatt estimator

Kernel density estimation and the crucial problem of bandwidth selection were de-

scribed in Section 2.1.1. In addition, the usefulness of bagging when working with

highly variable estimators was discussed in Section 2.4. Thus, this chapter is devoted

to the theoretical and empirical study of the bagged cross-validation bandwidth se-

lector for the kernel density estimator defined in (2.3). The asymptotic properties of

the proposed bandwidth selector are obtained and its better performance is shown,

in terms of both rates of convergence and computational agility, with respect to the

ordinary cross-validation bandwidth selector. Finally, the behavior of the proposed

bagged bandwidth is illustrated by means of various simulation studies as well as

by applications to real datasets. Many of the results presented in this chapter are

included in Barreiro-Ures et al. (2021a).

3.1 Bagging cross-validation bandwidth selection

Let us denote by X1, . . . , Xn a sample of size n whose observations are independent

and identically distributed with density f . Consider a random sample of size r < n,

X∗1 , . . . , X
∗
r , drawn without replacement from X1, . . . , Xn. This subsample is used to

calculate a leave-one-out cross-validation bandwidth, ĥr. Assuming that f has two

43
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continuous derivatives, a rescaled version of ĥr,

h̃r =
( r
n

)1/5
ĥr,

is a reasonable estimator of the optimal MISE bandwidth, hn0, for (2.3). Indeed,

one can write

ĥr = hr0 + op
(
r−1/5

)
= C0r

−1/5 + op
(
r−1/5

)
,

where hr0 denotes the optimal MISE bandwidth for a sample of size r, and so

h̃r = C0n
−1/5 + op

(
n−1/5

)
= hn0 + op

(
n−1/5

)
.

Bagging consists of repeating the resampling independently N times, leading to

N rescaled bandwidths, h̃r,1, . . . , h̃r,N . The bagging bandwidth is then defined to be

ĥ(r,N) =
1

N

N∑
i=1

h̃r,i. (3.1)

This approeach was proposed and studied by Hall and Robinson (2009), although

they focused on the unpractical case of N =∞.

It is worth mentioning that an alternative approach is to apply bagging to the

cross-validation curves, wherein one averages the cross-validation curves from N

independent resamples of size r, finds the minimizer of the average curve, and then

rescales the minimizer as before. The asymptotic properties of the two approaches

are equivalent, but we prefer bagging the bandwidths since doing so does not require

as much communication between resamples and allows for parallel computing.

3.1.1 Asymptotic results

In this section, the asymptotic properties of the bagged bandwidth defined in (3.1)

will be derived and discussed. In particular, we will obtain asymptotic expressions

for the bias and variance of the bagging bandwidth (3.1). Hall and Robinson (2009)

studied this selector only in the case N = ∞. Unfortunately, the expression they
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gave for the variance of (3.1), when N = ∞, is in error. We will provide a correct

expression for this variance (see Appendix B), and, more importantly, will study the

case of finite N , since there is an important interplay between the values of r and

N . Obviously, in practice it is not possible to use N = ∞, and indeed there is a

computational motivation for limiting the size of N . We will show that if N is, for

example, of order n, then the rate of convergence of the variance to 0 is different

than in the case N = ∞. This is a new result that does not arise from the method

of proof used in Hall and Robinson (2009).

Regarding the bias of the bagging bandwidth (3.1), it is clear that

E
[
ĥ(r,N)

]
= E

[
(r/n)1/5ĥr

]
.

Therefore, we wish to know the bias of (r/n)1/5ĥr as an estimator of hn0. We

have

E
[
(r/n)1/5ĥr

]
− hn0 = Brescale(r, n) + (r/n)1/5BCV(r),

where

Brescale(r, n) = (r/n)1/5hr0 − hn0 and BCV(r) = E
(
ĥr

)
− hr0.

This bias due to rescaling, Brescale(r, n), is well-understood. In fact, Marron

(1987) shows that

Brescale(r, n) = µrescaler
−2/5n−1/5 + o

(
r−2/5n−1/5

)
,

where

µrescale =
R(K)3/5R(f ′′′)µ4(K)

20R(f ′′)8/5
.

Hall and Robinson (2009) also provide an expression for Brescale(r, n), although

their rate is in error.

The other bias component, BCV, is the bias inherent to cross-validation itself. In
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establishing (2.9), Hall and Marron (1987) write

ĥn − hn0 = ξn + en, (3.2)

where E(ξn) = 0 and en = op(ξn), and hence BCV(n) is lost in the term en. Doing so

is acceptable in the case of ordinary cross-validation because of the fact that var(ξn)

is so large. In the case of bagging, however, when var
[
ĥ(r,N)

]
becomes sufficiently

small, one should no longer ignore BCV(r), although this seems to be what both

Marron (1987) and Hall and Robinson (2009) did.

In Appendix A, as part of the proof of the theorem stated below, we prove that

n2/5en converges in distribution to a random variable with the following mean:

µCV = −
8R(f)

∫
V(u)W (u) du

25R(K)8/5R(f ′′)2/5
, (3.3)

where V and W are functions determined completely by K with
∫
V(u)W (u) du =

0.1431285 in the case of the standard normal kernel.

The asymptotic bias and variance of (3.1) are stated in Theorem 3.1, whose proof

is included in Appendix A. The following assumptions are needed:

A1 As n→∞, r →∞, r = o(n) and N tends to a positive constant or ∞.

A2 K is a symmetric and twice differentiable density function and, without loss of

generality, with variance 1.

A3 As u→∞, both K(u) and K ′(u) are o [exp (−a1ua2)] for positive constants a1

and a2.

A4 The first three derivatives of f exist and are bounded and continuous.

Theorem 3.1 Under assumptions A1–A4, the asymptotic bias of the bagged band-

width defined in (3.1) is

E
[
ĥ(r,N)

]
− hn0 = r−1/5n−1/5

(
µCV + µrescaler

−1/5)+ o
(
r−1/5n−1/5

)
(3.4)
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and its asymptotic variance is

var
[
ĥ(r,N)

]
= A0C

2
0r
−1/5n−2/5

[
1

N
+
( r
n

)2]
(3.5)

+ o

(
r−1/5n−2/5

N
+ r9/5n−12/5

)
,

where C0 and A0 are constants given in (2.6) and (A.9), respectively.

Theorem 3.2 From Theorem 3.1 and its proof it follows that the asymptotic distri-

bution of the bagged bandwidth (3.1) satisfies

r1/10n1/5√
1
N

+
(
r
n

)2 [ĥ(r,N)− hn0
]

d−→ N(0, A0C
2
0).

In particular, if we assume that r = o
(
n/
√
N
)

, then

r1/10n1/5
√
N
[
ĥ(r,N)− hn0

]
d−→ N(0, A0C

2
0).

From (3.5), one could intuitively state that the optimal value of N is, precisely,

N =∞. However, there are computational reasons for limiting the value of N and, of

course, in practice it is not possible to generate an infinite number of subsamples. In

addition, the way in which the subsampling process was carried out imposes an upper

bound on the value of N , namely,
(
n
r

)
. This is because

(
n
r

)
is precisely the maximum

number of distinct subsamples of size r that one could generate by sampling without

replacement from a sample of size n.

From (3.1), it is interesting to observe that at N = ∞, the asymptotic variance

of the bagged bandwidth is completely determined by the covariance between band-

widths for two different resamples. Furthermore, to first order, as derived in Bhat-

tacharya and Hart (2016), the asymptotic correlation between bagged bandwidths

from different resamples is independent of f and equal to (r/n)2. This correlation is

smaller when r is smaller, which is due to the fact that two resamples will usually

have fewer data values in common when r is smaller. In fact, taking N = ∞ yields
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the approximation

var
[
ĥ(r,∞)

]
= A0C

2
0r

9/5n−12/5 + o
(
r9/5n−12/5

)
, (3.6)

which matches precisely one of the two summands in expression (13) of Hall and

Robinson (2009). It can be shown that the other summand, rather than being the

dominant term, as claimed in Hall and Robinson (2009), is actually negligible in

comparison to (3.6) (see Appendix B for more information).

It is easily verified that the choice of r that minimizes the main term of (3.5) is

asymptotic to n/(3
√
N). Therefore, if N = n, say, then the fastest rate at which

var
[
ĥ(r,N)

]
/h2n0 can converge to 0 is n−11/10. In contrast, when N = ∞, the rate

of convergence of var
[
ĥ(r,∞)

]
/h2n0 can be arbitrarily close to n−2 by allowing r to

increase sufficiently slowly with n. This makes it clear that the properties of the

bagged bandwidth are profoundly affected by how many resamples are taken, and

hence it is not a good idea to analyze the bagged bandwidth by setting N =∞.

It is remarkable how much stability bagging can provide. Whether N is ∞ or

merely tending to ∞, var
[
ĥ(r,N)

]
/h2n0 can converge to 0 faster than the usual

parametric rate of n−1. This is in stark contrast to the extremely slow rate of n−1/5

for ordinary cross-validation. Unfortunately, this extreme stability cannot be fully

taken advantage of since the bagged bandwidth is more biased than the ordinary

cross-validation bandwidth. The largest reductions in variance are associated with

small values of r, but it turns out that small r yields the largest bias.

As can be observed in (3.4), the bias source, BCV, that has been ignored to

date is actually of a larger order than the rescaling bias. This and the fact that

µCV < 0 suggest that the bagged bandwidth would tend to be smaller than the

optimal bandwidth hn0. However, our experience in numerous simulations is that

the bagged bandwidth actually tends to be larger than hn0. The explanation for this

phenomenon is simple: µrescale > 0 and µrescale is larger than |µCV| in every case we

have checked. Indeed, we have not found a case where µrescale/|µCV| is less than 2,

and it appears that there is no limit to how large this ratio can be.

Table 3.1 provides the constants µrescale and µCV for several densities. Two pat-

terns are apparent here: (i) the heavier the tail of the density, the more dominant is
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the rescaling bias, and (ii) rescaling bias is more dominant for multimodal mixtures

of normals than for the normal itself. It is worth noting that the ratio µrescale/µCV is

invariant to location and scale, and hence the values of rcrit (defined as the smallest

resample size at which the asymptotic mean of the bagged bandwidth is not larger

than the optimal MISE bandwidth, hn0) for any normal, logistic or Cauchy distribu-

tion are the same as in Table 3.1. Except in the case of the Beta(5, 5) and normal

densities, the values of rcrit are very large, especially considering (as we shall subse-

quently see) that a good choice for r is usually much smaller than n. So, in spite of

what the asymptotics suggest, it will often be the case that the bagged bandwidth is

larger on average than the optimal bandwidth. This is a classic case of asymptotics

not “kicking in” until the sample size is extremely large.

Density µrescale µCV rcrit
Beta(5, 5) 0.06554 −0.03070 45
Standard normal 0.44565 −0.18216 88
Standard logistic 0.92556 −0.25787 596
Bimodal mixture of two normals 0.31898 −0.05856 4795
Standard Cauchy 1.24349 −0.09793 330, 154
Claw 0.22774 −0.00766 > 107

Table 3.1: Bias constants and critical r (rcrit) for the Gaussian kernel. The claw
density (Marron and Wand, 1992) is a symmetric mixture of six normals and has
five modes.

3.1.2 Choosing an optimal subsample size

In practice, an important step of our approach is, for fixed n and N , choosing the

optimal subsample size, r0. This optimal parameter can be selected by minimizing

the asymptotic mean squared error of ĥ(r,N), as a function of r:

AMSE
[
ĥ(r,N)

]
= A0C

2
0r
−1/5n−2/5

[
1

N
+
( r
n

)2]
(3.7)

+ r−2/5n−2/5
(
µCV + µrescaler

−1/5)2 .
Since µrescale, µCV, A0 and C0 are unknown, we propose the following method to
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estimate

r0 = arg min
r>1

AMSE
[
ĥ(r,N)

]
.

1. Consider s subsamples of size t < n, drawn without replacement from the

original sample of size n.

2. For each of these subsamples, fit a normal mixture model. To select the number

of components of the mixture, the EM algorithm initialized by hierarchical

model-based agglomerative clustering is used. Then, the optimal model is

selected using the BIC. In practice, this process is performed employing the R

package mclust (see Scrucca et al. (2016)).

3. Use R(f̂i), R(f̂ ′′i ) and R(f̂ ′′′i ) to estimate A0, C0, µCV and µrescale, where f̂i

denotes the density function of the normal mixture fitted to the i-th subsample.

Denote these estimates by Â0,i, Ĉ0,i, µ̂CV,i and µ̂rescale,i.

4. Compute the bagged estimates of the unknown constants, that is,

D̂ =
1

s

s∑
i=1

D̂i,

where D̂i can be Â0,i, Ĉ0,i, µ̂CV,i or µ̂rescale,i, and obtain ÂMSE
[
ĥ(t, N)

]
by

plugging these bagged estimates into (3.7).

5. Finally, estimate r0 by

r̂0 = arg min
r>1

ÂMSE
[
ĥ(r,N)

]
.

Regarding the selection of s and t in Step 1, we have performed some empirical

tests and observed that the estimation of hn0 by ĥ(r̂0, N) is quite robust to the values

of these parameters. In particular, values of s ≈ 50 and t ≈ 0.01n have provided, in

general, good results.
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3.1.3 Simulation studies

To test the behavior of the bagged cross-validation bandwidth (3.1), some simula-

tion studies were performed considering different density functions, sample sizes (n),

subsample sizes (r) and number of subsamples (N). We present the results obtained

for two normal mixture densities6, although similar results were obtained for other

densities. Let µ = (µ1, . . . , µk), σ = (σ1, . . . , σk) and w = (w1, . . . , wk) denote the

mean, standard deviation and weight vectors, respectively, of a mixture with density

function

f(x) =
k∑
i=1

wiφµi,σi(x),

where φµi,σi denotes the density function of a N(µi, σ
2
i ), i = 1, . . . , k. In addition to

density D1, already defined in Section 2.1.1, the following density was considered:

D2: (mixture of two normals) with parameters µ = (0, 1.5), σ = (1, 1/3) and w =

(0.75, 0.25).

In this experiment, 1000 samples of size n = 105 were simulated from the previous

densities and the bagged, ĥ(r,N), and standard leave-one-out cross-validation, ĥn,

bandwidths were computed. The bagged bandwidths were calculated using N = 500

subsamples and considering four values for the size of the subsamples, r, including

the optimal values, r0 = 13081 and r0 = 20326, for densities D2 and D1, respectively.

For each sample, we also computed the estimated r0 using the algorithm presented in

Subsection 3.1.2 with values s = 50 and t ∈ {500, 1000, 5000}. The Gaussian kernel

was used throughout the study. Furthermore, the R (R Core Team, 2021) package

baggedcv (Barreiro-Ures et al., 2019), developed by the author of this dissertation,

was employed to carry out the simulations.

To compute the different cross-validation bandwidths involved in this simulation

(ĥn and ĥr,i, i = 1, . . . , N), the R function bw.ucv was employed. This function

uses a binned implementation and, therefore, it is extremely fast. However, when

the number of bins, nb, is significantly smaller than the sample size, bw.ucv has

6Since the densities considered in this section are normal mixtures, the exact value of the optimal
MISE bandwidth, hn0, was employed.
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the disturbing tendency to choose the very smallest bandwidth allowed. This is

illustrated in Listing 3.1, where we show the output of the bw.ucv function applied

to a sample of size n = 106 drawn from a standard normal and the number of bins set

to its default value of nb = 1000. In this case, the true cross-validation bandwidth is

approximately 0.06, while bw.ucv returned a much smaller value (the lower bound

of the search interval).

set . seed (1 )

x = rnorm(10ˆ6)

bw . ucv (x , lower=0.001 ,upper=1)

[ 1 ] 0 .001045393

Warning message :

In bw . ucv (x , lower = 0.001 , upper = 1) :

minimum occured at one end o f the range

Listing 3.1: Bad behavior of bw.ucv when using the default number of bins

For some densities, bw.ucv works fine with nb being relatively small with re-

spect to the sample size. However, for more complex (heavy-tailed, multimodal, ...)

densities, nb needs to be quite close to the sample size for bw.ucv to give sensi-

ble results. This limits the computational gain that binned cross-validation could

in principle achieve. Even when nb is equal to the sample size, bw.ucv returns a

wrong value in a small proportion of cases. In spite of this, in practice, we recom-

mend using bw.ucv with nb close to the sample size. Taking this suggestion into

account, if nb = r at the subsample level for ĥ(r,N), we found that the average of

the bagged bandwidths obtained using bw.ucv is usually quite close to the results

obtained employing the more accurate non-binned version of ĥ(r,N). Moreover, by

using bw.ucv in the implementation of ĥ(r,N), its runtime can be significantly re-

duced, being even somewhat shorter than the time needed for the computation of the

binned cross-validation bandwidth, specially for large sample sizes and certain values

of r and N . This can be observed in Table 3.2, which shows the computing time

for binned standard cross-validation and the bagged bandwidth selector for different

values of n, r and N . For ĥ(r,N), we considered nb = r at the subsample level and

the code was run in parallel using the function bagcv from the R package baggedcv

(Barreiro-Ures et al., 2019). In the case of binned standard cross-validation, the
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number of bins was also set equal to n to provide a fair comparison of both methods.

As we can see, the bagged bandwidth can achieve a significant reduction in comput-

ing time with respect to binned standard cross-validation for samples of considerable

size.

Bagged CV
r = 1000 r = 5000 r = 10, 000

n bw.ucv( · , nb=n) N = 500 N = 500 N = 500
105 3.1 1.1 2.0 4.3
106 367 1.3 2.2 4.4

Table 3.2: CPU elapsed time (seconds) for binned leave-one-out cross-validation and
the bagged bandwidth selector. Computing time for bagged cross-validation depends
on r, N and the number of CPU cores employed.

In addition to the substantial reduction in computing time, the bagged cross-

validation bandwidth showed greater statistical precision. This can be observed in

Figure 3.1, where the sampling distributions of log(ĥn/hn0) and log[ĥ(r,N)/hn0], for

different values of r, for models D2 (left panel) and D1 (right panel) are presented.

Specifically, we considered, for D2, the values of r: 5000, 13081 (r0), 20000, and r̂0

computed with s = 50 and t = 500, 1000, 5000, while, for D1, the values of r employed

were: 5000, 20326 (r0), 25000, and r̂0 computed with s = 50 and t = 500, 1000, 5000,

using the function mopt from the R package baggedcv. It is clear that the bagged

bandwidth achieves an important reduction in the mean squared error with respect to

the standard leave-one-out cross-validation selector. Namely, the bagged bandwidth

with r = r0 produced a mean squared error which is 95.3% and 92.2% lower than

that of the standard leave-one-out cross-validation bandwidth for models D2 and

D1, respectively. This significant reduction is also observed (in general) when using

r = r̂0 for each simulated sample. In that case, for t = 1000 (t = 5000), the mean

squared error reduction with respect to standard leave-one-out cross-validation is

95.9% (95.9%) for model D2 and 92.3% (93.5%) for model D1. Additionally, Figure

3.2 shows the sampling distribution of ISE[ĥ(r,N)]/ISE(ĥn) for both models and the

same values of r considered in Figure 3.1. In this case, outliers were omitted in order

to be able to appreciate the differences between the various boxplots. The means of

ISE[ĥ(r,N)]/ISE(ĥn) for the combinations of r and N and densities considered in
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Figure 3.2 and the proportion of values of ĥ(r,N) whose ISE is lower than that of

ĥn are shown in Table 3.3.
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Figure 3.1: Sampling distribution of log
(
ĥ/hn0

)
, with ĥ denoting the leave-one-out

cross-validation (green) and the bagged bandwidths for different values of r. For the
bagged bandwidths, we considered N = 500 and r ∈ {5000, 13081 (red), 20000, r̂0
(blue)}, for density D2 (left panel); and r ∈ {5000, 20326 (red), 25000, r̂0 (blue)},
for density D1 (right panel). The two white boxes correspond, from left to right, to
r = 5000 and 20000, for D2 (left panel); and to r = 5000 and 25000, for D1 (right
panel). The three blue boxes correspond, from left to right, to t = 500, 1000, 5000.
Red dotted lines are plotted at values 0.9 and 1.1 for reference.

The mean squared error of the bagged bandwidth using r = r̂0 may be larger

than the one for leave-one-out cross-validation for density D1 using t = 500 (left

blue boxplot on the right panel in Figure 3.1). These results are somewhat mis-

leading because the final behavior of the kernel density estimator with the bagged

bandwidth selector (denoted by ĥ, for simplicity) is still very good in this setting.

The distribution of ĥ is biased upward, and there are numerous extremely large val-

ues of ĥ. However, it turns out that even the largest of these bandwidths produce

very effective density estimates, as observed in Figure 3.3. Consider, for example,

log(ĥ/hn0) = 1, which means that ĥ ' 2.72hn0. In Figure 3.3 we provide the claw
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Figure 3.2: Sampling distribution of ISE(ĥ)/ISE(hn0), with ĥ denoting the bagged
bandwidths for different values of r. For the bagged bandwidths, we considered
N = 500 and r ∈ {5000, 13081 (red), 20000, r̂0 (blue)}, for density D2 (left panel);
and r ∈ {5000, 20326 (red), 25000, r̂0 (blue)}, for density D1 (right panel). The two
white boxes correspond, from left to right, to r = 5000 and 20000, for D2 (left panel);
and to r = 5000 and 25000, for D1 (right panel). The three blue boxes correspond,
from left to right, to t = 500, 1000, 5000.

density and two kernel estimates from a sample of size 105. The bandwidths of the

two estimates are hn0 = 0.031 and 2.72hn0 ' 0.084. The kernel estimate with larger

bandwidth captures the five modes and has better tail behavior than the estimate

based on the MISE bandwidth. Figure 3.3 illustrates the fact that integrated squared

error (ISE) loss is not always ideal. One might well prefer an estimate with larger

than optimal ISE, as long as it captures all the important features of the underlying

density and is smoother than the ISE optimal estimate.

In Figure 3.4, the sampling distribution of r̂0/r0 is shown. It can be observed

that the mean squared error of r̂0 is reduced as t increases. Furthermore, the bias

of the estimator depends on the complexity of the target density. For small values

of t, in spite of the high variability of r̂0, the sampling distribution of the bagged

bandwidth, considering r = r̂0, is virtually unchanged with respect to the case r = r0
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Means
Density B1 B2 B3 B4 B5 B6

D2 0.98533 0.98505 0.98512 0.98448 0.98428 0.98537
D1 0.99624 0.99594 0.99530 1.23742 0.99539 0.99494

Proportions
Density B1 B2 B3 B4 B5 B6

D2 0.606 0.603 0.609 0.590 0.593 0.590
D1 0.584 0.622 0.637 0.461 0.604 0.599

Table 3.3: Means of ISE[ĥ(r,N)]/ISE(ĥn) for the combinations of r and N and
densities considered in Figure 3.2 and proportion of values of ĥ(r,N) whose ISE is
lower than that of ĥn. Bi refers to the i-th boxplot in order of appearance in Figure
3.2.

for densities that are not very complex, such as D2. For more complex densities,

such as D1, the effect that the variability of r̂0 has on the bagged bandwidth is more

noticeable for small values of t, translating into a more biased bandwidth. More

importantly, when we compare the errors in Figure 3.4 and Figure 3.1, it is clear

that there is a large range of values for r around its optimal value, r0, such that the

effect the error of r̂0 has on the sampling distribution of ĥ(r̂0, N) is very small.

3.2 Bagging bootstrap bandwidth

Due to its quadratic complexity, computing the bootstrap bandwidth defined in

(2.16) can become too computationally expensive very quickly as the sample size

increases. A possible solution to this problem is to consider a subagged version of

the bootstrap bandwidth and to take advantage of the computational benefits of

working with subsamples of size r < n rather than with the entire sample of size n.

Note that, as in the case of cross-validation, (2.14) is a second-order U -statistic and

hence the situation we are dealing with is very similar to the one studied in Section

2.1.2. To compute the subagged bootstrap bandwidth we propose the following

procedure:

Step 1. Independently generate N subsamples of size r < n by sampling without re-
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Figure 3.3: Claw density (black line) and kernel estimates (red and blue lines). The
kernel estimates are computed from a sample of size 105. The red estimate uses the
MISE optimal bandwidth of 0.031 and the blue one uses bandwidth 0.084.

placement from X1, . . . , Xn.

Step 2. For i ∈ {1, . . . , N}, estimate the optimal pilot bandwidth, g0, for example by

fitting a mixture of normals to the corresponding subsample7. Denote these

estimates by ĝ0,1, . . . , ĝ0,N .

Step 2. For each of the subsamples, compute the bootstrap bandwidths

h∗r0,i = arg min
h>0

[
V ∗r,i(h; ĝ0,i) +B∗r,i(h; ĝ0,i)

]
, i = 1, . . . , N.

Step 3. Compute the bagged bandwidth as the mean of the rescaled bootstap band-

widths,

ĥ∗(r,N) =
1

N

( r
n

)1/5 N∑
i=1

h∗r0,i.

It should be noted that in the case of the bootstrap bandwidth, bagging has less

7For this purpose, the function Mclust from R package mclust was employed.
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Figure 3.4: Sampling distribution of r̂0/r0, with r̂0 denoting the estimator of the
optimal subsample size, r0, as defined in Section 3.1.2, for densities D1 (left panel)
and D2 (right panel). The values chosen for the parameters of the estimator were
s = 50 and (from left to right) t ∈ {500, 1000, 5000}. Red dotted lines are plotted at
values 0.9 and 1.1 for reference.

room for improvement in terms of variance reduction when compared to the cross-

validation bandwidth. Specifically, while ĥn−hn0 converged to a normal distribution

with zero mean and constant variance at the rate n−3/10, in the case of the bootstrap

bandwidth Cao (1993) showed that h∗n0 − hn0 converges to a normal distribution

with zero mean and constant variance at a faster rate, namely n−39/70, where h∗n0

denotes the bootstrap bandwidth defined in (2.16). In this sense it is clear that the

cross-validation bandwidth selector is a much better candidate for the application

of bagging than the bootstrap bandwidth precisely because of the higher variability

of the former. This implies that in the case of the subagged bootstrap bandwidth,

little can be expected from the use of subagging in terms of variance reduction,

and its benefits are expected to be purely computational. Hence, the number of

subsamples, N , may be kept at moderate to low values and the size of the subsamples,

r, should be chosen according to the cost, as a loss in statistical precision, that

the user is willing to pay. To illustrate the effect r has on the computing time,

Figure 3.5 shows the observed CPU elapsed time for both the ordinary bootstrap
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bandwidth and its subagged version as a function of the sample size, n, which took

the values n = 104, 105, 106. Both bootstrap bandwidths were computed employing

the hboot bag function from the baggingbwsel R package. In accordance with the

above, a low and fixed value of N was considered, namely N = 25. The size of the

subsamples, r, was chosen as r = np, with p = 0.5, 0.6, 0.7, 0.8, 0.9.
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Figure 3.5: CPU elapsed time (seconds) for ordinary and bagged bootstrap band-
widths as a function of the sample size, n = 104, 105, 106. Variables are shown in
logarithmic scale. For the subagged bootstrap bandwidth, the value of N was set to
N = 25 and the subsample size, r, was chosen as r = np, with p = 0.5 (triangle point
up), 0.6 (plus), 0.7 (cross), 0.8 (diamond), 0.9 (triangle point down). A binned imple-
mentation of the bandwidth selectors was considered, using 0.1n bins for the ordinary
bootstrap bandwidth (circle) and 0.1r bins for the subagged bootstrap bandwidth.

Now, to assess the loss in statistical precision due to the use of subagging, we

simulated samples of size n = 105 from different density functions. In addition to

the density mixtures D1 and D2, defined in Sections 2.1.1 and 3.1.3, respectively, we

considered the mixture density D3, with parameters µ = 0, σ = 1 and w = 1, which

corresponds to the density of the standard normal. Densities D3, D2 and D1 can

be seen as representing low, medium and high “complexity” densities, respectively.

Figure 3.6 shows the sampling distribution of ĥ/hn0 and Mn(ĥ)/Mn(hn0), with ĥ

denoting both the ordinary bootstrap bandwidth and the subagged bootstrap band-

width, for densities D1, D2 and D3. The number of subsamples was set to N = 1
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and the size of the subsamples was chosen as r = np, with p = 0.5, 0.6, 0.7, 0.8, 0.9.

From Figures 3.5 and 3.6 and as a rule-of-thumb, one may conclude that a sensible

choice of r, in the sense of offering a certain balance between statistical precision

and computational agility, would be r = n0.7. As for the number of subsamples, N ,

as argued above, it should be kept at low values given the already low variability of

the bootstrap bandwidth selector.
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Figure 3.6: Sampling distribution of ĥ/hn0 (left panels) and Mn(ĥn)/Mn(hn0) (right
panels), with n = 105 and ĥ denoting both the ordinary bootstrap bandwidth
(first boxplots) and the subagged bootstrap bandwidth (second to last boxplots),
for densities D3 (top), D2 (center) and D1 (bottom). The number of subsamples
was set to N = 1 and the size of the subsamples was chosen as r = np, with
p = 0.5, 0.6, 0.7, 0.8, 0.9. The case p = 1 corresponds to the ordinary bootstrap
bandwidth. For density D1, the case p = 0.5 was omitted because the bandwidths
obtained were too large and altered the scale of the plots.
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3.3 Bagging when the asymptotics of the optimal

bandwidth are unknown

So far we have applied bagging under the assumption that the rate of convergence

to zero of the optimal bandwidth is known. Specifically, it made sense for the band-

widths obtained for each subsample of size r to be rescaled by a factor (r/n)1/5

precisely because we knew that, asymptotically, the optimal bandwidth tends to

zero at the rate n−1/5. However, there may be cases when this assumption does

not hold and rescaling the bandwidths by a factor (r/n)1/5 may lead to inconsistent

estimators. For instance, one may be dealing with some overly complex estimator

for which asymptotic theory has not yet been developed. For this kind of situations

where the rate of convergence to zero of the optimal bandwidth is unknown, we have

come up with a modified version of the usual bagging procedure that addresses the

problem of how to rescale the bandwidths from a regression analysis perspective.

Let us begin by assuming that, asymptotically, the optimal bandwidth, which in

this case we will denote by hn1, converges to zero at the rate n−p1 , that is,

hn1 = p0n
−p1 + o

(
n−p1

)
, (3.8)

where both p0 and p1 > 0 are unknown constants. We may linearize (3.8) by tak-

ing logarithms, and so it would be sensible to approach the problem from a linear

regression perspective. That is, we could consider the following linear regression

model,

Y = β0 + β1Z,

where Z = log(n), Y = log(h̄n) and h̄n denotes some selector for hn1. Thus, the

problem of estimating p0 and p1 is equivalent to estimating β0 and β1. In fact, if we

denote by β̂0 and β̂1 our estimates of β0 and β1, then

p̂0 = eβ̂0 ,

p̂1 = −β̂1.
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Thus, in this case the bagging bandwidth could be defined according to the

following scheme:

Step 1. Consider a grid of subsample sizes, r1, . . . , rs, with ri < n for i ∈ {1, . . . , s}.

Step 2. For each i ∈ {1, . . . , s}, compute bandwidth selectors for hri1. Denote these

selectors by h̄r1 , . . . , h̄rs .

Step 3. Solve the ordinary least-squares problem given by

(
β̂0, β̂1

)
= arg min

(β0,β1)

s∑
i=1

[
log(h̄ri)− β0 − β1 log(ri)

]2
.

Step 4. Estimate hn1 by

ĥn1 = p̂0n
−p̂1 , (3.9)

where p̂0 = eβ̂0 and p̂1 = β̂1.

Naturally, the fact that in this case we are estimating an additional parameter,

namely p1, will cause the variability of the bagging estimator to be greater than that

of the case in which the rate of convergence to zero of the optimal bandwidth is

known, thus making it difficult to produce improvements in statistical precision with

respect to the ordinary, non-bagged estimator. However, improvements in compu-

tation time are still possible, although they may not be as significant as in the case

in which p1 is known given that it is necessary to consider a grid of subsample sizes

large enough to carry out the regression and prevent the estimation error of p̂1 from

being too large.

To test the behavior of the generalized bagging bandwidth defined in (3.9), 1000

samples of size n = 105 drawn from densities D1, D2 and D3 were simulated. Figure

3.7 shows the sampling distribution of ĥn/hn0, ĥ(r,N)/hn0 and ĥn1/hn0. For ĥ(r,N),

the value of r was set at r = 3000. To compute ĥn1, the function hsss dens() from

the R package from baggingbwsel was employed, and the subsample sizes were

selected as (1000, 2000, 3000) and (5000, 7500, 104). For both bagging selectors, the

number of subsamples was set at N = 100. As can be seen, ĥn1 cannot compete with
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ĥ(r,N) in terms of statistical precision, the former showing a behavior very similar

to that of ĥn. However, as already mentioned, the strength of ĥn1 lies in its capacity

to obtain bandwidths for selectors that may be too complex and whose asymptotic

properties are not known. Moreover, ĥn1 can still outperform the standard cross-

validation bandwidth selector in terms of computational agility.
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Figure 3.7: Sampling distribution of ĥ/hn0 for 1000 samples of size n = 105 drawn
from densities D3 (left panel), D2 (center panel) and D1 (right panel), where ĥ
denotes both the standard cross-validation bandwidth (red), the bagging bandwidth
(green) defined in (3.1) and the generalized bagging bandwidth (blue) defined in
(3.9). For ĥ(r,N), the value of r was set at r = 3000. For ĥn1, the subsample sizes
were selected as (1000, 2000, 3000) and (5000, 7500, 104). For both bagging selectors,
the number of subsamples was set at N = 100.

3.4 Bagging with higher-order terms

So far we have only considered the dominant term of the optimal bandwidth when

applying bagging and that is why it made sense to rescale the bandwidths obtained

for each subsample of size r by a factor (r/n)1/5. That is, we limited ourselves to

working with

hn0 = C0n
−1/5 + o

(
n−1/5

)
,
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where the constant C0 was defined in (2.6). The disadvantage of proceeding in this

way is that, unless the subsamples are of a sufficient size, the behavior of the band-

widths obtained for them may diverge from what the asymptotics tell us. However,

it is not unreasonable to think that by taking into account the second-order term of

the optimal bandwidth, considering subsamples of smaller size may become feasible.

In other words, we plan to work with the first and second order terms of the optimal

bandwidth,

hn0 = C0n
−1/5 + C1n

−3/5 + o
(
n−3/5

)
, (3.10)

and, therefore, we are forced to modify the bagging procedure accordingly. Note that

it is not necessary to know the terms that appear in the expression of the constant

C1, which depends on the first and second order terms of the bias as well as the first

and third order terms of the variance (the second-order term of the variance does

not depend on the bandwidth). This is due to the fact that it is not necessary to

estimate C1 when applying bagging but instead we only need to know the order of

the term it accompanies, namely n−3/5. To apply bagging in this situation, it will not

be enough to consider a single subsample size but instead we will need two, which

we will denote by r1 < n and r2 < n. This is due to the fact that two unknown

terms appear in (3.10), namely C0 and C1, and so we will need to solve a system of

two equations. In particular, this system of linear equations is given byhr10 = C0r
−1/5
1 + C1r

−3/5
1 ,

hr20 = C0r
−1/5
2 + C1r

−3/5
2 .

(3.11)

Its solution is given in Proposition 3.1.

Proposition 3.1 The solution of the system of linear equations given by (3.11) is

C0 =
hr10r

3/5
1 − hr20r

3/5
2

r
2/5
1 − r2/52

,

C1 =
hr10r

1/5
1 − hr20r

1/5
2

r
−2/5
1 − r−2/52

.
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Now, if we denote by ĥ(r1, N) and ĥ(r2, N) the bagged cross-validation band-

widths computed from N subsamples of size r1 and r2, respectively, then our band-

width selector based on (3.10) can be defined as

ĥ(r1, r2, N) = Ĉ0n
−1/5 + Ĉ1n

−3/5, (3.12)

where

Ĉ0 =
ĥ(r1, N)r

3/5
1 − ĥ(r2, N)r

3/5
2

r
2/5
1 − r2/52

,

Ĉ1 =
ĥ(r1, N)r

1/5
1 − ĥ(r2, N)r

1/5
2

r
−2/5
1 − r−2/52

.

The bandwidth selector defined in (3.12) can also be generalized to the case

studied in Section 3.3, where we assumed that the asymptotic properties of the

optimal bandwidth are unknown. To do so, let us start by considering k subsample

sizes, r1, . . . , rk, of each of which we have generated N subsamples. Let us also denote

by ĥ(ri, N) the bagged cross-validation bandwidth computed from the N subsamples

of size ri, with i ∈ {1, . . . , k}. Now, let us assume that, asymptotically, the optimal

bandwidth, hn2, verifies

hn2 = p0n
−p1 + q0n

−q1 + o
(
n−q1

)
, (3.13)

where p0, p1, q0 and q1 are unknown positive constants and p1 < q1 so that p0n
−p1

and q0n
−q1 define the first and second order terms of hn1, respectively. Let us now

consider the nonlinear regression model

h̄n = β0n
−β1 + β2n

−β3 ,

where h̄n denotes some selector for the optimal bandwidth. Then, if we define

(
β̂0, β̂1, β̂2, β̂3

)
= arg min

(β0,β1,β2,β3)

k∑
i=1

[
ĥ(ri, N)− β0r−β1i − β2r−β3i

]2
,
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the bagged selector based on (3.13) would be

ĥ(r1, r2, N) = β̂0n
−β̂1 + β̂2n

−β̂3 .

To test the behavior of the generalized bagging bandwidth defined in (3.12) and

compare it with that of the bagging bandwidth defined in (3.1), 500 samples of

size n = 104 drawn from the Claw density were simulated. Figure 3.8 shows the

sampling distribution of ĥ(r1, r2, N)/hn0, which was computed using tss dens(),

and ĥ(r,N)/hn0. For the former, subsample sizes were selected as r = np, with p =

0.7, 0.8, 0.9. For the latter, subsample sizes were selected as (r1, r2) = (np, nq), with

p = (0.5, 0.6, 0.7, 0.8, 0.6, 0.7) and q = (0.6, 0.7, 0.8, 0.9, 0.8, 0.9). For both selectors,

the number of subsamples was set at N = 100. These results are not too encouraging

for the generalized bagging bandwidth, as no improvement in statistical precision is

observed with respect to the bagging bandwidth defined in (3.1).

3.5 Real data examples

To show the performance of the proposed bagged bandwidth selector, firstly, we

considered the public dataset “On-Time: Reporting carrier On-Time Performance”8

corresponding to the year 2017. In particular, we were interested in the variable

ArrDelay, which measures the difference in minutes between the scheduled and ac-

tual arrival time (note that early arrivals show negative numbers). Since the values

are reported in integer numbers of minutes, the dataset contains many ties and in

order to avoid problems when performing cross-validation9, we decided to remove

the ties by jittering the data. In particular, we worked with the sample of size

n = 5, 579, 346 which results from adding a random sample of size n, drawn from

a continuous uniform distribution defined on the interval (−0.5, 0.5), to the original

dataset.10

To estimate the optimal subsample size, r0, for the bagged bandwidth and con-

8The dataset is available at https://www.transtats.bts.gov/Fields.asp?gnoyr_VQ=FGJ
9The presence of many ties in the data usually causes the estimator to undersmooth, and this

phenomenon becomes more severe as the sample size increases, if one keeps the percentage of ties
constant.

10This way one can safely assume that the jittered sample comes from a continuous distribution.

https://www.transtats.bts.gov/Fields.asp?gnoyr_VQ=FGJ
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Figure 3.8: Sampling distribution of ĥ/hn0 for 500 samples of size n = 104 drawn
from density D1, where ĥ denotes both the bagging bandwidth (red) defined in (3.1)
and the generalized bagging bandwidth (green) defined in (3.12). For the former,
subsample sizes were selected as r = np, with p = 0.7, 0.8, 0.9. For the latter, sub-
sample sizes were selected as (r1, r2) = (np, nq), with p = (0.5, 0.6, 0.7, 0.8, 0.6, 0.7)
and q = (0.6, 0.7, 0.8, 0.9, 0.8, 0.9). For both selectors, the number of subsamples was
set at N = 100.

sidering N = 100 subsamples, we used the procedure described in Section 3.1.2. In

particular, using t = 1000 and s = 500 yielded the estimate r̂0 = 272, 222. The

process of estimating r0 with those parameters took 32 seconds. Then, our esti-

mated bandwidth was ĥ(r,N) = ĥ(272222, 100) = 0.490, the calculation of which

took 63 seconds. It should also be noted that the calculation of both r̂0 and ĥ(r,N)

were executed in parallel. Figure 3.9 shows the kernel density estimates obtained

when considering the bagged bandwidth and the bandwidth produced by the R

function bw.ucv(·), using the same number of bins and search interval as in the

case of the bagged bandwidth, that is, h = ĥ(r̂0, 100) and h = bw.ucv(·, nb=1e5,

lower=0.01, upper=1). As we can see, even with those parameters bw.ucv sim-

ply returns the lower bound of the search interval thus producing a heavily under-
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smoothed estimate of the underlying density.
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Figure 3.9: Kernel density estimates with bandwidths h = ĥ(r̂0, N = 100) (left) and
h = bw.ucv(·, nb=1e5, lower=0.01, upper=1) (right).

Computing the standard cross-validation bandwidth for the whole sample is not

an option due to the enormous time it would require, even with a binned imple-

mentation, as in the case of the R function bw.ucv (note that for this function to

produce sensible results the number of bins must be very close to n, as previously

discussed). Therefore, to predict the value of the cross-validation bandwidth for the

original sample size, n, and also the time required for its computation, we used ap-

propriate regression models. We repeated these experiments considering binned and

non-binned cross-validation bandwidths. The predicted cross-validation bandwidth

for the whole sample is practically identical whether or not one uses binning, with a

large enough number of bins, and hence we just describe the experiment when using

a binned implementation. Nevertheless, the predicted time is obviously much higher

when binning is not used. Specifically, we selected 100 subsamples of sizes 557, 5579

and 55, 793 from the whole dataset. For each size and subsample, we computed

the binned version of the leave-one-out cross-validation bandwidth (see Figure 3.10).

Finally, we considered following the parametric regression model:

Yi = β0n
β1
i , (3.14)
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where ni ∈ {557, 5579, 55793} and Yi ∈ {1.352, 2.129, 3.606} denotes the mean of the

binned cross-validation bandwidth using the subsamples of size ni. Taking logarithms

in (3.14) we get a linearized version of (3.14),

log Yi = log β0 + β1 log ni,

which can be seen as a linear regression model with parameters log β0 (intercept)

and β1 (slope). We obtained the following least-squares estimates for the parameters

of model (3.14):

β̂0 = 13.69,

β̂1 = −0.213.

557 5579 55793

1
2

3
4

5

ĥ C
V,

 m

Subsample size (r)

Figure 3.10: Boxplots of ĥr for subsamples of size r ∈ {557, 5579, 55793}.

With these values of β̂0 and β̂1, the predicted value of the leave-one-out cross-

validation bandwidth for the original sample size is ĥn = 0.501, very close to the value

produced by the bagged bandwidth, ĥ(r,N) = ĥ(272222, 100) = 0.490. Figure 3.11

shows the fitted values for the nonlinear model defined in (3.14). Analogously, we

considered a model similar to the one described in (3.14) to predict the time required

to compute a binned version of the ordinary cross-validation bandwidth for the orig-
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inal sample. Fitted values for the model are shown in Figure 3.12. As previously, we

employed the R function bw.ucv with nb (number of bins) equal to the correspond-

ing sample size to compute the different cross-validation bandwidths. In this case

and under the same notation as in (3.14), we considered ni ∈ {5579, 55793, 557934}
and Yi ∈ {0.0102, 0.959, 103.08}, with Yi now denoting the elapsed time (in seconds)

needed to compute bw.ucv(·, nb=ni), that is, the binned cross-validation bandwidth

for a sample of size ni with the number of bins set to ni. Again, using the same

notation as in (3.14), we obtained the following estimates for the model parameters:

β̂0 = 3.14× 10−10,

β̂1 = 2.002.
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Figure 3.11: Fitted values for the regression model defined in (3.14). White dots
correspond to the observations used to fit the model.

This means that the time needed to compute the binned cross-validation band-

width for the original sample is predicted to be approximately 2.8 hours. Anal-

ogously, we repeated the experiment to predict the time required to compute a

non-binned leave-one-out cross-validation bandwidth for the whole sample and this

predicted time turned out to be 5.1 years. Fitted values for the model are shown in

Figure 3.13.
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Figure 3.12: Fitted values for the regression model that relates the elapsed time
needed to compute the binned cross-validation bandwidth to the sample size. White
dots correspond to the observations used to fit the model.

The techniques discussed in this chapter were also applied to a dataset related

to the current COVID-19 pandemic. This dataset consists of a sample of size n =

105, 235 which contains the age and the hospitalization time of people infected with

COVID-19 in Spain from January 1, 2020 to December 20, 2020. Due to the high

number of ties present in the data and in order to avoid problems when performing

cross-validation, we decided to remove the ties by jittering the data. The actual

age differs from the observed age, rounded down to years, by an amount that is in

the interval (0, 1). Thus, it is reasonable to model this difference between actual

and observed age using the uniform distribution in the interval (0, 1). On the other

hand, the hospitalization time was calculated as the difference between the day of

discharge and the day of admission to the hospital. The specific time of discharge

and admission would be obtained by adding uniform variables, with support in the

interval (0, 1), to each of the two dates. In particular, three independent random

samples of size n, U1, U2 and U3, drawn from a continuous uniform distribution

defined on the interval (0, 1), were generated. Then U1 was added to the original

“age” sample and U2 − U3 to the original “hospitalization time” sample. For both

of these samples, kernel density estimates were computed using different methods of
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Figure 3.13: Fitted values for the regression model that relates the elapsed time
needed to compute the standard non-binned cross-validation bandwidth to the sam-
ple size. White dots correspond to the observations used to fit the model.

bandwidth selection, namely, ordinary cross-validation, bagged cross-validation and

bagged bootstrap (this bandwidth selector will be described below). These estimates

are shown in Figure 3.14. In order to avoid boundary effects and alleviate the effect

of outliers, both samples were first transformed by means of the Box-Cox family:

Tage(x) =
x1.4

1.4
,

Ttime(y) =
y0.1

0.1
.

Let us denote these transformed samples by Xage = (X1, . . . , Xn) and Ytime =

(Y1, . . . , Yn). The bandwidths, hage and htime, were then computed for these trans-

formed samples and finally the results were detransformed and returned to their

original scale by means of the kernel density estimators

f̂age(x) =
1

nhage

n∑
i=1

x0.4φ

(
x1.4/1.4−Xi

hage

)
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and

f̂time(y) =
1

nhtime

n∑
i=1

x−0.9φ

(
x0.1/0.1− Yi

htime

)

The subagged bootstrap bandwidths obtained for the transformed samples rela-

tive to the age of people hospitalized after being infected with COVID-19 and the

hospitalization time were, respectively, ĥ∗(r,N) = 7.47 and ĥ∗(r,N) = 0.098. In

both cases, the number of subsamples was set to N = 100, the size of the sub-

samples was chosen as r = bn0.7c = 3277 and the number of bins used to compute

the bandwidths was b0.1rc = 327. As for the other bandwidth selectors, the values

obtained for the transformed sample relative to the age (hospitalization time) were,

respectively for the ordinary and bagging cross-validation bandwidths, ĥn = 0.8

(0.072) and ĥ(r,N) = ĥ(3277, 100) = 5.96 (0.087). For comparative purposes, direct

plug-in bandwidths were also computed for the two transformed samples and their

values turned out to be ĥn,dpi = 5.91 (0.086).
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Figure 3.14: Histograms and kernel density estimates for the age (left panel) and
hospitalization time (right panel) of people infected with COVID-19 in Spain from
January 1, 2020 to December 20, 2020. For the kernel density estimates, the ordinary
cross-validation (dashed green), bagged cross-validation (dotted blue) and bagged
bootstrap bandwidth (solid red) were considered.



Chapter 4

Bagging bandwidth selection for

the Nadaraya–Watson estimator

Kernel regression estimation and the crucial problem of bandwidth selection were

presented in Section 2.2.1. In addition, the usefulness of bagging when working with

highly variable estimators was discussed in Section 2.4. Thus, this Chapter is devoted

to the theoretical and empirical study of the bagged cross-validation bandwidth selec-

tor for the Nadaraya–Watson estimator defined in (2.17). First, the hitherto ignored

second-order asymptotics of the ordinary cross-validation selector of the bandwidth

of the Nadaraya–Watson estimator is studied, this being necessary to proceed with

the theoretical analysis of the bagged bandwidth. Then, the asymptotic properties

of the proposed bagged bandwidth selector are obtained and its better performance

is shown, in terms of both rates of convergence and computational agility, in relation

to the ordinary cross-validation bandwidth selector. Finally, the behavior of the pro-

posed bagged bandwidth is illustrated by means of various simulation studies as well

as by an application to a real dataset related to the current COVID-19 pandemic.

4.1 Cross-validation bandwidth selection

Before moving on to the study of the asymptotic properties of the cross-validation

bandwidth defined in (2.22), it would be of interest to take a closer look at the cross-

validation function defined in (2.21) in order to elucidate its relationship with the

74
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MISE and other error criteria.

Consider a sample X = {(X1, Y1), . . . , (Xn, Yn)} drawn from the nonparametric

regression model outlined at the beginning of Section 2.2.1. Let (X0, Y0) be an

observation independent of the sample X and drawn from the same distribution.

We are interested in studying the following error criteria and finding their most

appropriate empirical analogues:

E
{

[m(X0)− m̂h(X0)]
2} , (4.1)

E
{

[Y0 − m̂h(X0)]
2} , (4.2)

where the estimator m̂h was constructed using the sample X . We have that

E
{

[m(X0)− m̂h(X0)]
2} = E

(
E
{

[m(X0)− m̂h(X0)]
2 | X

})
= E

{∫
[m(x)− m̂h(x)]2 f(x) dx

}
= Mn(h),

where we have used the law of iterated expectations, which states that, for any two

random variables Z1 and Z2 defined on the same probability space, it is satisfied that

E (Z1) = E [E (Z1 | Z2)] .

Thus, we have that the MISE is an equivalent error criterion to the one defined

in (4.1), which may be interpreted as the (out-of-sample) mean squared estimation

error of m̂h. On the other hand, the error criterion given by (4.2) can be seen as

the mean squared prediction error of m̂h. In addition, both error criteria are closely

related. Indeed, using E (Y 2
0 | X0) = m(X0)

2 + σ2(X0) and E (Y0 | X0) = m(X0), we

have:

E
{

[Y0 − m̂h(X0)]
2} = E

(
E
{

[Y0 − m̂h(X0)]
2} | X , X0

)
= E

[
E
(
Y 2
0 | X0

)
− 2m̂h(X0)E (Y0 | X0) + m̂h(X0)

2
]

= E
[
m(X0)

2 + σ2(X0) + [m̂h(X0)−m(X0)]
2 −m(X0)

2
]

= Mn(h) +

∫
σ2(x)f(x) dx.
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Thus, both criteria have the same minimizer since the difference between the two

is given by the expected value of the conditional variance,
∫
σ2f , which does not

depend on the bandwidth.

Among the possible empirical analogues of (4.1) and (4.2) are, respectively, the

mean average squared estimation error (MASEE) and the mean average squared

prediction error (MASPE), given by

MASEE(h) = E

{
1

n

n∑
i=1

[m̂h(Xi)−m(Xi)]
2

}
, (4.3)

MASPE(h) = E

{
1

n

n∑
i=1

[m̂h(Xi)− Yi]2
}
. (4.4)

Note that

E

{
1

n

n∑
i=1

[m(Xi)− Yi]2
}

= E
{

[m(X1)− Y1]2
}

= E
(
ε21
)

= E
[
E
(
ε21 | X1

)]
= E

[
σ2(X1)

]
=

∫
σ2(x)f(x) dx.

Then, after a few simple calculations we obtain

MASPE(h) = MASEE(h) + E

{
1

n

n∑
i=1

[m(Xi)− Yi]2
}

+ 2E

{
1

n

n∑
i=1

[m̂h(Xi)−m(Xi)] [m(Xi)− Yi]

}
= MASEE(h) +

∫
σ2(x)f(x) dx

+ 2E

{
1

n

n∑
i=1

[m̂h(Xi)−m(Xi)] [m(Xi)− Yi]

}
,

while

E
{

[Y0 − m̂h(X0)]
2} = Mn(h) +

∫
σ2(x)f(x) dx,
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where we have used the fact that

E
{

[Y0 −m(X0)]
2} =

∫
σ2(x)f(x) dx

and

E {[Y0 −m(X0)] [m(X0)− m̂h(X0)]}

= E (E {[m(X0)− m̂h(X0)] [Y0 −m(X0) | X0,X ]}) = 0.

Note that (4.3) and (4.4) are not suitable empirical analogues of (4.1) and (4.2),

respectively, since in (4.3) and (4.4) the same sample, X , is used in both the construc-

tion of the estimator m̂h and the evaluation of the fit, thus not correctly mimicking

(4.1) and (4.2). With the above in mind, let us now define leave-one-out versions of

the criteria given in (4.3) and (4.4),

M̃ASEE(h) = E

{
1

n

n∑
i=1

[
m̂

(−i)
h (Xi)−m(Xi)

]2}
,

M̃ASPE(h) = E

{
1

n

n∑
i=1

[
m̂

(−i)
h (Xi)− Yi

]2}
,

where m̂
(−i)
h denotes the Nadaraya–Watson estimator constructed without the i-th

observation, that is,

m̂
(−i)
h (x) =

n∑
j=1
j 6=i

Kh (x−Xj)Yj

n∑
j=1
j 6=i

Kh (x−Xj)
.
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Now we have

M̃ASPE(h) = M̃ASEE(h) + E

{
1

n

n∑
i=1

[m(Xi)− Yi]2
}

+ 2E

{
1

n

n∑
i=1

[
m̂

(−i)
h (Xi)−m(Xi)

]
[m(Xi)− Yi]

}
= M̃ASEE(h) +

∫
σ2(x)f(x) dx, (4.5)

since

E

{
1

n

n∑
i=1

[
m̂

(−i)
h (Xi)−m(Xi)

]
[m(Xi)− Yi]

}

= E

(
E

{
1

n

n∑
i=1

[
m̂

(−i)
h (Xi)−m(Xi)

]
[m(Xi)− Yi] | X−i

})

= E

{
1

n

n∑
i=1

[
m̂

(−i)
h (Xi)−m(Xi)

]
E [m(Xi)− Yi | Xi]

}
= 0,

where X−i = {(X1, Y1), . . . , (Xi−1, Yi−1), Xi, (Xi+1, Yi+1), . . . , (Xn, Yn))} and we have

used the fact that

E [m(Xi)− Yi | Xi] = 0, i = 1, . . . , n.

The result shown in (4.5) is valid for the case where the bandwidth is not random,

but rather it was fixed in advance and therefore does not depend on the sample. How-

ever, since our main goal is to study the properties of the cross-validation bandwidth

selector, we are interested in knowing whether expression (4.5) still approximately

holds for the case where the bandwidth of the Nadaraya-Watson estimator is random.
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In particular, we conjecture that

E

{
1

n

n∑
i=1

[
m̂

(−i)
ĥCV,n

(Xi)− Yi
]2}

= E

{
1

n

n∑
i=1

[
m̂

(−i)
ĥCV,n

(Xi)−m(Xi)
]2}

+ ECV + o(1), (4.6)

where ECV denotes the expected value of the conditional variance function, that is,

ECV =

∫
σ2(x)f(x) dx.

To get an idea of the validity of expression (4.6), we have considered samples

of size n ∈ {100, 1000, 20000} drawn from models M1, M2 and M3, which will be

defined in Section 4.4, and considered, for each of the simulated samples, the cross-

validation bandwidth when constructing the Nadaraya–Watson estimator. Table 4.1

shows the relative error (RE), defined as

RE =

E

{
1
n

n∑
i=1

[
m̂

(−i)
ĥCV,n

(Xi)− Yi
]2}
− E

{
1
n

n∑
i=1

[
m̂

(−i)
ĥCV,n

(Xi)−m(Xi)
]2}
− ECV

ECV
,

for each of the sample sizes and models considered. As can be seen, the results are

consistent with expression (4.6).

M1 M2 M3
n = 100 -1.35 -2.17 -3.02
n = 1000 0.44 0.39 0.63
n = 20000 0.097 0.097 0.10

Table 4.1: Relative error (RE) for n ∈ {100, 1000, 20000} and models M1, M2 and
M3. Values are shown multiplied by 100.

Thus, the close connection between the MISE and cross-validation criteria follows

from the fact that minimizing M̃ASPE(h) = E [CVn(h)] is equivalent to minimizing

M̃ASEE(h), the latter being an empirical analogue of Mn(h).

The idea behind the cross-validation bandwidth selector in kernel regression was

briefly discussed in Section 2.2.2. Now, in order to derive the asymptotic properties
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of (2.22) as an estimator of (2.19), studying certain moments of (2.21) and its deriva-

tives will be required. However, the fact that the Nadaraya–Watson estimator has a

random denominator makes this a very difficult task. To overcome this problem, it

is useful to rewrite the Nadaraya–Watson estimator as

m̂h(x) = A+B + C +D + E + F, (4.7)

where

A =
â

e
,

B =
a(e− ê)

e2
,

C =
(â− a)(e− ê)

e2
,

D =
a

e

(e− ê)2

e2
,

E =
â− a
e

(e− ê)2

e2
,

F =
â

ê

(e− ê)3

e3

and

a = m(x)f(x),

e = f(x),

â =
1

n

n∑
i=1

Kh (x−Xi)Yi,

ê =
1

n

n∑
i=1

Kh (x−Xi) .

Expression (4.7) splits m̂h(x) as a sum of five ratios with no random denominator

plus an additional term, F , which has a random denominator. However, both E

and F are negligible with respect to the other terms. Thus, one may consider the

unobservable, modified version of the Nadaraya–Watson estimator given by m̃h(x) =
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A+B + C +D, that is:

m̃h(x) = m(x) +
1

n2f(x)2

n∑
j=1

n∑
k=1

Kh (x−Xj) [Yj −m(x)]

[2f(x)−Kh (x−Xk)] , (4.8)

which can be seen as a quadratic approximation of m̂h(x), where the terms E and

F are omitted due to their “cubic negligibility”. Moreover, (4.8) does not define an

estimator but a theoretical approximation of (2.17). This decomposition of m̂h(x) is

in turn inspired by a similar approach proposed in Barbeito (2020). There, a linear

approximation of the Nadaraya–Watson estimator was considered and so only the

terms A and B were taken into account, leading to the simpler expression

m̄h(x) = m(x) +
1

nf(x)

n∑
i=1

Kh (x−Xi) [Yi −m(x)] . (4.9)

Following this approach, (4.8) could be used to define a theoretical approximation

of the MISE function defined in (2.18), namely

M̃n(h) =

∫
{E [m̃h(x)]−m(x)}2 f(x) dx+

∫
var [m̃h(x)] f(x) dx.

The bandwidth that minimizes M̃n(h) is denoted by h̃n0. On the other hand,

(4.8) can also be used to define a modified version of the cross-validation criterion,

C̃V n(h) =
1

n

n∑
i=1

[
m̃

(−i)
h (Xi)− Yi

]2
, (4.10)

where m̃
(−i)
h denotes the leave-one-out version of (4.8) without the i-th observation,

that is,

m̃
(−i)
h (x) = m(x) +

1

(n− 1)2f(x)2

n∑
j=1
j 6=i

n∑
k=1
k 6=i

Kh (x−Xj) [Yj −m(x)]

[2f(x)−Kh (x−Xk)] .
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The bandwidth that minimizes (4.10) is denoted by h̃CV,n. Using Taylor expan-

sions, we can obtain the following approximation:

h̃CV,n − h̃n0 ≈ −C̃V
′
n(h̃n0)− M̃ ′

n(h̃n0)

M̃ ′′
n(h̃n0)

+

[
C̃V

′
n(h̃n0)− M̃ ′

n(h̃n0)
] [
C̃V

′′
n(h̃n0)− M̃ ′′

n(h̃n0)
]

M̃ ′′
n(h̃n0)2

, (4.11)

where the second term of (4.11) is negligible with respect to the first one and is

assumed not to contribute to the bias and the variance of h̃CV,n. Since the first-order

terms of E[C̃V
k)

n (h)] and M̃
k)
n (h) coincide for every k ≥ 1, we need to calculate the

second order terms of both E[C̃V
′
n(h̃n0)] and M̃ ′

n(h̃n0) in order to analyze the bias of

the modified cross-validation bandwidth. As for the variance of the modified cross-

validation bandwidth, calculating the first order term of var[C̃V
′
n(h̃n0)] is enough,

and so it is useful to work with the simpler, linear approximation of m̂h(x) given by

(4.9).

4.1.1 Asymptotic results

The asymptotic bias and variance of the cross-validation bandwidth minimizing

(4.10) are derived in this section. For this, some previous lemmas are proved. The

following asumptions are needed:

B1. K is a symmetric and differentiable kernel function.

B2. For every j = 0, . . . , 6, the integrals µj(K), µj(K
′) and µj(K

2) exist and are

finite.

B3. The functions m and f are eight times differentiable.

B4. The function σ2 is four times differentiable.

Lemma 4.1 provides expressions for the first and second order terms of both the

bias and the variance of (4.8).
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Lemma 4.1 Under assumptions B1–B4, the bias and the variance of the modified

version of the Nadaraya–Watson estimator defined in (4.8) satisfy:

E [m̃h(x)]−m(x) = µ2(K)

[
1

2
m′′(x) +

m′(x)f ′(x)

f(x)

]
h2

+

{
µ4(K)

[
1

24
m4)(x) +

1

6

m′′′(x)f ′(x)

f(x)
+

1

4

m′′(x)f ′′(x)

f(x)

+
1

6

m′(x)f ′′′(x)

f(x)

]
− µ2(K)2

f ′′(x)

f(x)

[
1

4
m′′(x) +

m′(x)f ′(x)

f(x)

]}
h4

+ O
(
h6 + n−1

)
and

var [m̃h(x)] = R(K)σ2(x)f(x)−1n−1h−1

+

{
µ2(K

2)f(x)−2
[
ϕ3(x) +

1

2
m(x)2f ′′(x)− 2ϕ1(x)m(x)f(x)

]

− R(K)µ2(K)σ2(x)f(x)−2f ′′(x)

}
n−1h

+ O(n−1h2 + n−2h−2 + n−3h−3).

Assuming that

B1 = µ2(K)2
∫ [

1

2
m′′(x) +

m′(x)f ′(x)

f(x)

]2
f(x) dx,

V1 = R(K)

∫
σ2(x) dx,

B2 = 2µ2(K)

∫ [
1

2
m′′(x) +

m′(x)f ′(x)

f(x)

]{
µ4(K)

[
1

24
m4)(x) +

1

6

m′′′(x)f ′(x)

f(x)

+
1

4

m′′(x)f ′′(x)

f(x)
+

1

6

m′(x)f ′′′(x)

f(x)

]
− µ2(K)2

f ′′(x)

f(x)

[
1

4
m′′(x) +

m′(x)f ′(x)

f(x)

]}
f(x) dx

and

V2 =

∫ {
µ2(K

2)f(x)−2
[

1

2
f ′′(x)σ2(x) +m′(x)2f(x) +

1

2
σ2′′(x)f(x) + f ′(x)σ2′(x)

]
− R(K)µ2(K)σ2(x)f(x)−2f ′′(x)

}
f(x) dx
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exist finite, then, it follows from Lemma 4.1 that

M̃n(h) = B1h
4 + V1n

−1h−1 +B2h
6 + V2n

−1h+O
(
h8 + n−1h2 + n−2h−2 + n−3h−3

)
.

Lemma 4.2 provides expressions for the first and second order terms of both the

expectation and variance of C̃V
′
n(h).

Lemma 4.2 Let us define

A1 = 12µ2(K)µ4(K)

∫
f(x)−1

[
1

24
m(4)(x)f(x) +

1

6
m′′′(x)f ′(x) +

1

4
m′′(x)f ′′(x)

+
1

6
m′(x)f ′′′(x)

] [
1

2
m′′(x)f(x) +m′(x)f ′(x)

]
dx

− 6µ2(K)3
∫
f ′′(x)f(x)−2

[
1

2
m′′(x)f(x) +m′(x)f ′(x)

]2
,

A2 = µ2

(
K2
) ∫

f(x)−1
{

1

2
f ′′(x)σ2(x) + f ′(x)(σ2)′(x) + f(x)

[
1

2
(σ2)′′(x) +m′(x)2

]}
dx−R(K)µ2(K)

∫
σ2(x)f ′′(x)f(x)−1 dx,

R1 = 32R(K)2µ2(K)2
∫
σ2(x)f(x)−1

[
1

4
m′′(x)2f(x)2 +m′(x)m′′(x)f(x)f ′(x)

+ m′(x)2f ′(x)2
]
dx,

R2 = 4µ2

[
(K ′)2

] ∫
σ2(x)2 dx.

Then, under assumptions B1–B4, and assuming that B1, V1, A1, A2, R1 and R2

exist finite:

E
[
C̃V

′
n(h)

]
= 4B1h

3 − V1n−1h−2 + A1h
5 + A2n

−1 +O
(
h7 + n−1h2

)
,

var
[
C̃V

′
n(h)

]
= R1n

−1h2 +R2n
−2h−3 +O

(
n−1h4 + n−2h−1

)
.

Finally, Theorem 4.1, which can be derived from (4.11), Lemma 4.1 and Lemma

4.2, provides asymptotic expressions for the bias and variance of the cross-validation

bandwidth minimizing (4.10).

Theorem 4.1 Under the assumptions of Lemma 4.2 and assuming that B2 and V2
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exist finite, the asymptotic bias and variance of the bandwidth that minimizes (4.10)

are:

E
(
h̃CV,n

)
− h̃n0 = Bn−3/5 + o

(
n−3/5

)
,

var
(
h̃CV,n

)
= V n−3/5 + o

(
n−3/5

)
,

where

B =
6B2C

5
0 + V2 − A1C

5
0 − A2

12B1C2
0 + 2V1C

−3
0

,

V =
R1C

2
0 +R2C

−3
0(

12B1C2
0 + 2V1C

−3
0

)2 .
Corollary 4.1 Under the assumptions of Theorem 4.1, the asymptotic distribution

of the bandwidth that minimizes (4.10) is

n3/10
(
h̃CV,n − h̃n0

)
d−→ N(0, V ),

where the constant V was defined in Theorem 4.1.

Remark 4.1 Although the results presented so far involve only the modified cross-

validation bandwidth, defined as the bandwidth that minimizes (4.10), it seems rea-

sonable to think that these asymptotic results also apply to the standard cross-validation

bandwidth defined in (2.22), this being the rationale behind the decomposition of

the Nadaraya–Watson estimator proposed in (4.7). Despite the lack of a rigorous

demonstration in this regard, the equation below allows us to assess how fast the two

bandwidths approach each other as the sample size increases. Thus, under suitable

assumptions, it can be proved that

h̃CV,n − h̃n0 = ĥCV,n − hn0 +Op

(
n−2/5

)
.

Moreover, since h̃n0 − hn0 = O
(
n−4/5

)
, it follows that

h̃CV,n = ĥCV,n +Op

(
n−2/5

)
.



86 Chapter 4. Bagging bandwidth selection for the Nadaraya–Watson estimator

4.2 Bagging cross-validation in kernel regression

estimation

Although the cross-validation method studied in the previous section is very useful

when selecting bandwidths in nonparametric regression, it has the disadvantage of

having a high computational cost when the sample size is even moderately large.

This problem can be partially circumvented by using bagging in the bandwidth se-

lection procedure. In this section, we explain how bagging may be applied to the

cross-validation bandwidth selector in the context of nonparametric regression. Ad-

ditionally, the asymptotic properties of the proposed bagged bandwidth are derived.

Apart from the obvious reduction in computing time, we will see that the bagged

cross-validation bandwidth also presents better theoretical properties than the stan-

dard, non-bagged cross-validation selector.

Let X = {(X1, Y1), . . . , (Xn, Yn)} be a simple random sample of size n drawn

from the nonparametric regression model specified in Section 2.2.1 and let X ∗ =

{(X∗1 , Y ∗1 ), . . . , (X∗r , Y
∗
r )} be a random sample of size r < n drawn without replace-

ment from X . This subsample is used to calculate a cross-validation bandwidth,

ĥCV,r. A rescaled version of ĥCV,r, namely (r/n)1/5ĥCV,r, can be seen as a feasible

estimator of the optimal MISE bandwidth, hn0, for m̂h. Bagging consists of re-

peating the resampling independently N times, leading to N rescaled bandwidths,

(r/n)1/5ĥCV,r,1, . . . , (r/n)1/5ĥCV,r,N . The bagging bandwidth is then defined as:

ĥ(r,N) =
1

N

( r
n

)1/5 N∑
i=1

ĥCV,r,i. (4.12)

Although the same notation was used for the bagging cross-validation selector

(see equation (3.1)) for the bandwidth of the kernel density estimator, we will keep

it since there will be no possibility of confusion.

As pointed out in Chapter 3, in the case of kernel density estimation, both the

asymptotic properties and the empirical behavior of this type of bandwidth selector

have already been studied in Hall and Robinson (2009) for N =∞ and generalized

in Barreiro-Ures et al. (2021a), where the asymptotic properties of the bandwidth se-

lector are derived for the more practical case of a finite N . Furthermore, as discussed
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in Section 3.1, an alternative approach is to apply bagging to the cross-validation

curves, wherein one averages the cross-validation curves from N independent re-

samples of size r, finds the minimizer of the average curve, and then rescales the

minimizer as before. The asymptotic properties of the two approaches are equiva-

lent, but we prefer bagging the bandwidths since doing so does not require as much

communication between resamples and allows for parallel computing.

Following the same ideas employed in the previous section, a modified version

of (4.12) can be defined. This modified bagging bandwidth uses modified cross-

validation (see (4.10)) bandwidths h̃CV,r,i instead of ĥCV,r,i, for i = 1, . . . , N , and it

is given by

h̃(r,N) =
1

N

( r
n

)1/5 N∑
i=1

h̃CV,r,i. (4.13)

In the next section, asymptotic expressions for the bias and variance of the bag-

ging bandwidth defined in (4.13), as well as its limit distribution, are obtained when

considering the Nadaraya-Watson estimator. From these results and considering

Remark 4.1, it seems reasonable that similar results for (4.12) should be obtained.

4.2.1 Asymptotic results

Expressions for the bias and the variance of (4.13) are given in Theorem 4.2. In

addition to assumptions B1–B4, assumption A1, stated in Section 3.1.1 will also be

necessary.

Theorem 4.2 Under assumptions B1–B4 and A1, the bias and variance of the

bagged cross-validation bandwidth defined in (4.13) verify

E
[
h̃(r,N)

]
− h̃n0 = (B + C1)r

−2/5n−1/5 + o
(
r−2/5n−1/5

)
,

var
[
h̃(r,N)

]
= V r−1/5n−2/5

[
1

N
+
( r
n

)2]
+ o

(
r−1/5n−2/5

N
+ r9/5n−12/5

)
,

where the constants B and V were defined in Theorem 4.1 and the constant C1 is

defined in (C.42).
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Corollary 4.2 Under assumptions B1–B4 and A1, the asymptotic distribution of

the bagged cross-validation bandwidth defined in (4.13) is

r1/10n1/5√
1
N

+
(
r
n

)2 [h̃(r,N)− h̃n0
]

d−→ N(0, V ),

where the constant V was defined in Theorem 4.1. In particular, if we assume that

r = o
(
n/
√
N
)

, then

r1/10n1/5
√
N
[
h̃(r,N)− h̃n0

]
d−→ N(0, V ).

Using Remark 4.1, it could be proved that similar results to those in Corollary 4.2

hold when considering ĥ(r,N)−hn0 instead of h̃(r,N)− h̃n0. It should be noted that,

while ĥCV,n − hn0 converges in distribution to a normal distribution with zero mean

and constant variance at the rate n−3/10, this result can be improved through the

use of bagging and letting r and N tend to infinity at adequate rates. For example,

if both r and N were to tend to infinity at the rate
√
n then ĥ(r,N) − hn0 would

converge in distribution at the rate n−1/2, which is indeed a faster rate of convergence

than n−3/10.

4.3 Choosing an optimal subsample size

Analogously to what was pointed out in Section 3.1.2 in the case of the bagging

cross-validation bandwidth selector for the kernel density estimator, an important

step of our approach is, for fixed values of n and N , choosing the optimal subsample

size, r0. A possible optimality criterion, considering the modified bandwidths, could

be to select the value of r that minimizes the main term of the variance of h̃(r,N).

In this case we would get

r
(1)
0 =

n

3
√
N
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and the the variance of the bagging bandwidth would converge to zero at the rate

var
{
h̃
[
r
(1)
0 , N

]}
∼ n−3/5N−9/10,

which is a faster rate of convergence than that of the standard cross-validation band-

width. In particular,

var
{
h̃
[
r
(1)
0 , N

]}
var
(
h̃CV,n

) ∼ N−9/10.

The obvious drawback of this criterion is that it would not allow any improvement

in terms of computational agility since the complexity of the algorithm would be the

same as in the case of standard cross-validation, O(n2), which makes this choice

of r0 incompatible with very large sample sizes. Another possible criterion for the

selection of r0 would be to minimize the asymptotic mean squared error (AMSE) of

h̃(r,N), as a function of r,

AMSE
[
h̃(r,N)

]
= (B + C1)

2r−4/5n−2/5 + V r−1/5n−2/5
[

1

N
+
( r
n

)2]
. (4.14)

Since B, C1 and V are unknown, we propose the following method to estimate

r0 = arg min
r>1

AMSE
[
h̃(r,N)

]
.

Step 1. Consider s subsamples of size p < n, drawn without replacement from the

original sample of size n.

Step 2. For each of these subsamples, obtain an estimate, f̂ , of the marginal density

function of the explanatory variable (through kernel density estimation, for

example) and an estimate, m̂, of the regression function (for instance by fitting

a polynomial whose degree could be chosen by some criterion such as the AIC

or BIC). Do the same for the required derivatives of both f and m.

Step 3. Use the estimates obtained in the previous step to compute the constants

B[i], C
[i]
1 and V [i] for each subsample, where i ∈ {1, . . . , s} denotes the i-th
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subsample.

Step 4. Compute the bagged estimates of the unknown constants, that is,

B̂ =
1

s

s∑
i=1

B[i],

Ĉ1 =
1

s

s∑
i=1

C
[i]
1 ,

V̂ =
1

s

s∑
i=1

V [i],

and obtain ÂMSE
[
h̃(r,N)

]
by plugging these bagged estimates into (4.14).

Step 5. Finally, estimate r0 by

r̂0 = arg min
r>1

ÂMSE
[
h̃(r,N)

]
.

Additionally, if we assume that r = o
(
n/
√
N
)

, then we would have

r
(2)
0 =

[
−4(B + C1)

2

V
N

]5/3
and the rate of convergence to zero of the AMSE of the bagging bandwidth would

be

AMSE
{
h̃
[
r
(2)
0 , N

]}
∼ n−2/5N−4/3.

Hence,

AMSE
{
h̃
[
r
(2)
0 , N

]}
AMSE

(
h̃CV,n

) ∼ n1/5N−4/3,

and this ratio would tend to zero as long as N tends to infinity at a rate faster

than n3/20. Furhtermore, if we let N = n3/20 and r = r
(2)
0 then the computational
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complexity of the algorithm would be O
(
n13/20

)
, much lower than that of standard

cross-validation. In fact, by selecting r0 this way, the complexity of the algorithm

will only equal that of standard cross-validation when N tends to infinity at the rate

n6/13.

4.4 Simulation studies

The behavior of the leave-one-out cross-validation bandwidths is evaluated by simu-

lation in this section. To that end, the following regression models were considered:

M1: Y = m(X) + ε, m(x) = 2x, X ∼ Beta(3, 3), ε ∼ N(0, 0.12),

M2: Y = m(X) + ε, m(x) = sin(2πx)2, X ∼ Beta(3, 3), ε ∼ N(0, 0.12),

M3: Y = m(X) + ε, m(x) = x+ x2 sin(8πx)2, X ∼ Beta(3, 3), ε ∼ N(0, 0.12),

whose regression functions are plotted in Figure 4.1. The Gaussian kernel was used

to compute the Nadaraya–Watson estimator throughout this section. Moreover, to

reduce computing times in the simulations, we used binning to select the ordinary

and bagged cross-validation bandwidths.

In a first step, we empirically checked how close the bandwidths that minimize the

MISE of (4.8) and (2.17) are. For this, we simulated 100 samples of sizes 1000 and

5000 from models M1, M2 and M3 and computed the corresponding MISE curves for

the standard Nadaraya–Watson estimator and for its modified version, given in (4.8).

Figure 4.2 shows, for the previous models and each of the considered sample sizes,

the MISE curves for (4.8) and the standard Nadaraya–Watson estimator. As it can

be observed, the bandwidth that minimizes the MISE of (4.8) and the MISE of the

standard Nadaraya–Watson estimator appear to be quite close even for moderately

small sample sizes. Naturally, the distance between the minima of both curves

tends to zero as the sample size increases. On the other hand, Figure 4.3 shows the

standard and modified cross-validation bandwidths (using the standard and modified

version of the Nadaraya–Watson estimator, respectively) obtained for samples of sizes

ranging from 600 to 5000 drawn from model M2. It can be seen that both bandwidth

selectors provide similar results, which in turn get closer as n increases.
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Figure 4.1: Regression function of models M1 (black), M2 (red) and M3 (green).

In a second step, we checked how fast the statistic Sn = n3/10
(
ĥCV,n − hn0

)
approaches its limit distribution (the optimal MISE bandwidth was approximated

by Monte Carlo simulations). Figure 4.4 shows the sampling distribution of both the

standard cross-validation bandwidth, hCV,n, and the statistic Sn = n3/10
(
ĥCV,n − hn0

)
,

considering values of n between 50 and 5000 and samples drawn from model M2.

Figure 4.4, in conjunction with Figure 4.5, which shows the kernel density estimates

of Sn for each value of n considered, confirm the result reflected in Corollary 4.1,

since the sampling distribution of Sn seems to tend to a normal distribution with

zero mean and constant variance.

In the next part of the study, we focused on empirically analyzing the performance

of the bagged cross-validation bandwidth ĥ(r,N), defined in (4.13) and computed

using the bagreg function from package baggingbwsel, for different values of n, r

and N . Figure 4.6 shows the sampling distribution of ĥ/hn0, where ĥ denotes either

the ordinary or the bagged cross-validation bandwidth. For this, 1000 samples of

size n = 105 from models M1, M2 and M3 were generated, considering in the case

of ĥ(r,N) the values r ∈ {100, 500, 1000, 5000, 10000} and N = 25. For all three
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Figure 4.2: MISE curve for the standard Nadaraya–Watson estimator (black line)
and its quadratic approximation (red line), defined in (4.8), with their minima (black
and red points, respectively). First row: model M1, second row: model M2, third
row: model M3. First column: n = 1000, second column: n = 5000.

models, it is observed how the squared bias and variance of the bagging bandwidth

decrease as the subsample size increases and how its mean squared error seems to

stabilize for values of r close to 5000. Moreover, the behavior of the bagging selector

turns out to be quite positive even when considering subsample sizes as small as

r = 100, perhaps excluding the case of model M3 for which the variance of the

bagging bandwidth is still relatively high for r = 100, although it undergoes a rapid

reduction as the subsample size increases slightly.

The effect that r has on the mean squared error of the bagged bandwidth is also il-

lustrated in Table 4.2, which shows the ratio of the mean squared errors of the bagged

bandwidth and the ordinary cross-validation bandwidth, MSE
[
ĥ(r,N)

]
/MSE

(
ĥCV,n

)
,

for all three models.
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Figure 4.3: Cross-validation bandwidths using the standard Nadaraya–Watson es-
timator (x-axis) and its modified version (y-axis) for samples of sizes ranging from
600 to 5000 drawn from model M2.

Apart from the better statistical precision of the cross-validation bandwidths

selected using bagging, another potential advantage of this approach is the reduction

in computing time, especially when working with large sample sizes. To analyze this

issue, Figure 4.7 shows the CPU elapsed times for the computation of the ordinary

and bagged cross-validation bandwidths as a function of the sample size (n). Both

variables are shown on a logarithmic scale. In the case of the bagging selector,

three different subsample size values, r, depending on n were considered: r = n0.7,

r = n0.8 and r = n0.9. Calculations were performed in parallel. Different sample sizes,

n ∈ {5000, 28750, 52500, 76250, 105}, and a fixed number of subsamples, N = 25,
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Figure 4.4: Sampling distribution of the standard cross-validation bandwidth (left),
ĥCV,n, and sampling distribution of n3/10(ĥCV,n−hn0) (right), for samples drawn from
model M2 and considering values of n between 50 and 5000.

Model
M1 M2 M3

Subsample size (r) MSE ratio
100 0.47 1.47 2.16
500 0.32 1.06 0.33

1, 000 0.26 0.80 0.23
5, 000 0.19 0.30 0.17
10, 000 0.16 0.22 0.16

Table 4.2: Ratio of the mean squared errors of the bagged and the ordinary cross-
validation bandwidth for models M1–M3. Different values of r and N = 25 were
considered for a sample size of n = 105.

were used. In this experiment, binning techniques were employed using a number

of bins of 0.1n for standard cross-validation and 0.1r in the case of bagged cross-

validation. The time required to compute the bagged cross-validation bandwidth

was measured considering the three possible growth rates for r, mentioned above.

Fitting an appropriate model, these CPU elapsed times could be used to predict

the computing times of the different selectors for larger sample sizes. Considering

Figure 4.7, the following log-linear model was used:

T (n) = αnβ, (4.15)
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Figure 4.5: Kernel density estimates of Sn = n3/10(ĥCV,n − hn0), for n ranging from
50 to 5000 and samples drawn from model M2. The limit distribution of Sn is shown
in red.

where T (n) denotes the CPU elapsed time as a function of the original sample size

(n). In the case of the bagged cross-validation bandwidths, there is a “fixed time”,

corresponding to the time required for the setting up of the parallel socket cluster.

This time, which does not depend on n, r or N , but only on the CPU and the number

of cores used in the parallelization, was estimated to be 0.79. Using this value, the

corrected CPU elapsed times obtained for the bagged bandwidths, T − 0.79, were

employed to fit the log-linear model (4.15) estimating α, β > 0 by least squares and,

subsequently, to make predictions. Table 4.3 shows the predicted CPU elapsed time

for ordinary and bagged cross-validation for large sample sizes. Although we should

take these predictions with caution, the results in Table 4.3 serve to illustrate the

important reductions in computing time that bagging can provide for certain choices

of r and N , especially when working with very large sample sizes.

Next, the influence of the number of subsamples (N) in the computing times of

the bagged badwidths was studied. Similarly to Figure 4.7, Figure 4.8 shows the CPU

elapsed times for computing the cross-validation bandwidths (standard and bagged).

For the bagging method, the number of subsamples (N) was selected depending on

the original sample size (n) by N =
√
n. The growth rates used for r are the same

as in the case of Figure 4.7.

It should also be stressed that although the quadratic complexity of the cross-

validation algorithm is not so critical in terms of computing time for small sample
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Figure 4.6: Sampling distribution of ĥCV,n/hn0 (first boxplot on each panel) and

ĥ(r,N)/hn0 (second to sixth boxplots on each panel) for models M1 (left panel),
M2 (central panel) and M3 (right panel), where the considered subsample sizes are
r ∈ {100, 500, 1000, 5000, 104} and the number of subsamples is N = 25. The original
sample size is n = 105. Dashed lines are plotted at values 0.9 and 1.1 for reference.

sizes, even in these cases, the use of bagging can still lead to substantial reductions

in mean squared error of the corresponding bandwidth selector with respect to the

one selected by ordinary cross-validation. In order to show this, 1000 samples from

model M1 of sizes n ∈ {50, 500, 5000} were simulated and the ordinary and bagged

cross-validation bandwidths for each of these samples were computed. In the case

of the bagged cross-validation bandwidth, both the size of the subsamples and the

number of subsamples were selected depending on n, choosing r = N = 4
√
n. Figure

4.9 shows the sampling distribution of ĥ/hn0, where ĥ denotes either the ordinary or

bagged cross-validation bandwidth. In the three scenarios, it can be observed that

the considerable reductions in variance produced by bagging more than offset the

slight increases in bias, thus obtaining significant reductions in mean squared error

with respect to the ordinary cross-validation bandwidth selector. Specifically, the

relative reductions in mean squared error achieved by the bagged bandwidth turned

out to be 69.3%, 90.1% and 93.8% for n = 50, n = 500 and n = 5000, respectively.

This experiment was repeated for models M2 and M3, obtaining similar results.
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Figure 4.7: CPU elapsed time (seconds) as a function of the sample size of standard
cross-validation (solid line-circles) and bagged cross-validation. Both variables are
shown on a logarithmic scale. A fixed number of subsamples was used, N = 25.
Three growth rates for r were considered, namely, r = n0.7 (dashed line-triangles),
r = n0.8 (dotted line-pluses) and r = n0.9 (dashed-dotted line-crosses).

Finally, it would also be of interest to check by means of simulations the validity of

the results presented in Theorem 4.1. That is, we want to empirically check whether

the rates of convergence to zero of the bias and variance of the ordinary cross-

validation bandwidth, ĥCV,n, are both asymptotic to n−3/5. We start by assuming

Sample size (n)
106 107 108

Method Computing time
Standard CV 6 hours 24 days 7 years
Bagged CV (r = n0.7, N = 25) 40 seconds 25 minutes 16 hours
Bagged CV (r = n0.8, N = 25) 16 minutes 17 hours 45 days
Bagged CV (r = n0.9, N = 25) 3 hours 11 days 2 years

Table 4.3: Predicted CPU elapsed time for the standard and the bagging cross-
validation method using three different choices for the subsample size.
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Figure 4.8: CPU elapsed time (seconds) as a function of the sample size of standard
cross-validation (solid line-circles) and bagged cross-validation. Both variables are
shown on a logarithmic scale. The number of subsamples grows with n at the rate
N =

√
n. Three growth rates for r were considered, namely, r = n0.7 (dashed line-

triangles), r = n0.8 (dotted line-pluses) and r = n0.9 (dashed-dotted line-crosses).

that

E
(
ĥCV,n − hn0

)
≈ η0n

−η1 , (4.16)

var
(
ĥCV,n

)
≈ ζ0n

−ζ1 , (4.17)

for certain constants η0, ζ0 and η1, ζ1 > 0. By taking logarithms in (4.16) and (4.17)

we get

log
[
E
(
ĥCV,n − hn0

)]
≈ log(η0)− η1 log(n), (4.18)

log
[
var
(
ĥCV,n

)]
≈ log(ζ0)− ζ1 log(n). (4.19)

From (4.18) and (4.19) it would seem natural to consider the following linear

regression models,

Zb,i = Cb + rbWi, (4.20)

Zv,i = Cv + rvWi, (4.21)
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Figure 4.9: Sampling distribution of ĥ/hn0, where ĥ denotes either the ordinary or
bagged cross-validation bandwidth, for samples of size n = 50 (left panel), n = 500
(central panel) and n = 5, 000 (right panel) drawn from model M1. The values of r
and N were chosen as r = N = 4

√
n. Dashed lines are plotted at values 0.9 and 1.1

for reference.

where

Wi = log(ni),

Zb,i = log
[
E
(
ĥCV,ni

− hni0

)]
,

Zv,i = log
[
var
(
ĥCV,ni

)]
.

Once models (4.20) and (4.21) have been fitted to {Wi, Zb,i}Ti=1 and {Wi, Zv,i}Ti=1,

respectively, and thus obtained the estimates Ĉb, Ĉv, r̂b and r̂v for the parameters of

both models, the final estimators are

η̂0 = eĈb ,

ζ̂0 = eĈv ,

η̂1 = −r̂b,

ζ̂1 = −r̂v.

To implement this procedure, we simulated T = 100 samples of size ni, with

ni ∈ {104, 5× 104, 105, 1.5× 105}, drawn from model M2. These samples were then
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used to fit the linear models described in (4.20) and (4.21) (see Figure 4.10). Thus,

the estimates obtained for the rates of convergence to zero of the bias and variance

of the cross-validation bandwidth were

η̂1 = 0.66,

ζ̂1 = 0.59,

which are coherent with the rate of convergence to zero of both the bias and variance

of the cross-validation bandwidth being asymptotic to n−3/5 = n0.6, as stated in

Theorem 4.1. Furthermore, the divergence between the theoretical convergence rates

and the estimates is more than likely due to (i) Monte Carlo approximation error, (ii)

the fact that the sample sizes considered may not have been large enough and (iii) the

fact that a binned implementation of the cross-validation bandwidth was considered

and a moderate number of bins (2000) were used to compute the bandwidth for each

sample.
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Figure 4.10: Log-linear fits for the bias (left) and variance (right) of the cross-
validation bandwidth. 100 samples of sizes 104, 5 × 104, 105 and 1.5 × 105 were
simulated from model M2.
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4.5 Application to COVID-19 data

We shall now proceed to illustrate the performance of the techniques studied in the

previous sections by applying them to a real dataset related to the current COVID-

19 pandemic. This dataset, which contains the age (the explanatory variable) and

the hospitalization time (the response variable) of people infected with COVID-19 in

Spain from January 1, 2020 to December 20, 2020, was described and preprocessed

as indicated in Section 3.5. The data was jittered as follows:

# xx : raw ’ age ’ data

# yy : raw ’ h o s p i t a l i z a t i o n time ’ data

set . seed (1 )

no i s e1 = sample ( runif (1 e6 , 0 , 1 ) , n , replace=FALSE)

n t i e s = sum(duplicated ( no i s e1 ) )

t i e s = which(duplicated ( no i s e1 ) )

no i s e1 = c ( no i s e1 [− t i e s ] , runif ( n t i e s , 0 , 1 ) )

no i s e2 = sample ( runif (1 e6 , 0 , 1 ) , n , replace=FALSE)

n t i e s 2 = sum(duplicated ( no i s e2 ) )

t i e s 2 = which(duplicated ( no i s e2 ) )

no i s e2 = c ( no i s e2 [− t i e s 2 ] , runif ( n t i e s2 , 0 , 1 ) )

no i s e3 = sample ( runif (1 e6 , 0 , 1 ) , n , replace=FALSE)

n t i e s 3 = sum(duplicated ( no i s e3 ) )

t i e s 3 = which(duplicated ( no i s e3 ) )

no i s e3 = c ( no i s e3 [− t i e s 3 ] , runif ( n t i e s3 , 0 , 1 ) )

x = xx + no i s e1 # j i t t e r e d ’ age ’ data

y = yy + no i s e2 − no i s e3 # j i t t e r e d ’ h o s p i t a l i z a t i o n time ’ data

Figure 4.11 shows scatterplots for the complete sample as well as for three ran-

domly chosen subsamples of size 1000.

To compute the standard cross-validation bandwidth using binning, the number

of bins was set to 10, 000, that is, roughly 10% of the sample size. The value of the

bandwidth thus obtained was 1.84 and computing it took 72 seconds. For the bagged

bandwidth, 10 subsamples of size 30, 000 were considered. Binning was used again for

each subsample, fixing the number of bins to 3000. The calculations associated with
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Figure 4.11: Full COVID-19 sample (top left panel) and three randomly chosen
subsamples of size 1000.

each subsample were performed in parallel using 5 cores. The value of the bagged

bandwidth was 1.52 and its computing time was 33 seconds. Both the ordinary

and bagging cross-validation bandwidths can be computed as follows, using the R

packages sm and baggingbwsel:

# x : j i t t e r e d age v a r i a b l e ( numeric )

# y : j i t t e r e d h o s p i t a l i z a t i o n time v a r i a b l e ( numeric )

sm .mod : : h . s e l e c t (x , y , lower=log ( 0 . 1 ) , upper=log ( 2 ) , method=”cv” ,

poly . index=0, nbins=10000) # Ordinary , non−bagged CV bandwidth

baggingbwsel : : bagreg (x , y , r =30000 , s=10, h0=0.1 , h1=2, nb=3000 ,

ncores=5) # Bagging CV bandwidth

Actually, we had to employ a modified version of the sm package, sm.mod, so that

it was possible to pass the limits of the search interval as arguments to the h.select

function. Figure 4.12 shows the Nadaraya–Watson estimates with both standard

and bagged cross-validation bandwidths. For comparative purposes, the local lin-
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ear estimate with direct plug-in bandwidth Ruppert et al. (1995) is also shown. As

can be seen, the Nadaraya–Watson estimator with standard cross-validation band-

width produces a slightly smoother estimate than the one obtained with the bagged

bandwidth, the latter being almost indistinguishable from the local linear estimate

computed with direct plug-in bandwidth. One can conclude that the expected time

that a person infected with COVID-19 will remain in hospital increases non-linearly

with age for people under approximately 70 years. This trend is reversed for peo-

ple aged between 70 and 100 years. This could be due to the fact that patients in

this age group are more likely to die and, therefore, end the hospitalization period

prematurely. Finally, the expected hospitalization time grows again very rapidly

with age for people over 100 years of age, although this could be caused by some

boundary effect, since the number of observations for people over 100 years old is

very small, specifically 155, which corresponds to roughly 0.15% of the total number

of observations. In order to avoid this possible boundary effect, the estimators were

also fitted to a modified version of the sample in which the explanatory variable was

transformed using its own empirical distribution function. The transformation of

the explanatory variable was carried out as follows:

# xx : raw ’ age ’ v a r i a b l e

sxx = sort ( xx )

xxx = ecd f ( sxx ) ( sxx )

jumps = c ( xxx [ 1 ] , d i f f ( e cd f ( sxx ) (unique ( sxx ) ) ) )

jumps . amp = NULL

for ( i in 1 : length (unique ( sxx ) ) )

{
jumps . amp [which( sxx==unique ( sxx ) [ i ] ) ] = jumps [ i ]

}

# J i t t e r i n g the new samples :

set . seed (1 )

xxx j i t = xxx + runif (n , 0 , jumps . amp)

yyy = yy [ order ( xx ) ]

y yy j i t = yyy + runif (n) − runif (n)

The resulting estimators are shown in Figure 4.13, where the explanatory variable
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was returned to its original scale by means of its empirical quantile function.
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Figure 4.12: Kernel regression estimations for the COVID-19 data. The Nadaraya-
Watson estimator with standard cross-validation bandwidth (dashed red line) and
bagged cross-validation bandwidth (solid black line) as well as the local linear esti-
mator with plug-in bandwidth (dotted blue line) are shown.

Finally, the same procedure was followed to estimate the expected time in hospital

but splitting the patients by gender, as shown in Figure 4.14. This figure shows that

the expected time in hospital is generally shorter for women, except for ages less

than 30 years or between 65 and 85 years. Anyhow, the difference in mean time

in hospital for men and women never seems to exceed one day. In Figure 4.14,

only the Nadaraya–Watson estimates computed with the bagged cross-validation

bandwidths (h = 0.03 for men and h = 0.028 for women) are shown. Both the

Nadaraya–Watson estimates with standard cross-validation bandwidths (h = 0.028

for men and h = 0.023 for women) and the local linear estimates with direct plug-

in bandwidths produced very similar and graphically indistinguishable results from

those shown in Figure 4.14.
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Figure 4.13: Kernel regression estimations for the COVID-19 data. To eliminate
boundary effects, the explanatory variable was transformed by means of the empirical
distribution function and then returned to its original scale by means of the empirical
quantile function. The Nadaraya-Watson estimator with standard cross-validation
bandwidth (dashed red line) and bagged cross-validation bandwidth (solid black line)
as well as the local linear estimator with plug-in bandwidth (dotted blue line) are
shown.

4.6 Bagging bootstrap bandwidth

As in the case of kernel density estimation and similarly to Section 3.2, the ap-

plication of bagging to the bootstrap bandwidth selector for the Nadaraya–Watson

estimator is considered.

Step 1. Select a pilot bandiwdth, g, and consider the Nadaraya–Watson estimator, m̂g,

of m.

Step 2. Compute the model residuals

ε̂i = Yi − m̂g(Xi), i ∈ {1, . . . , n}.

Step 3. Generate a sample of size n, U1, . . . , Un, where Ui is drawn from a discrete

uniform distribution defined in {1, . . . , n} for every i ∈ {1, . . . , n}. Define the
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Figure 4.14: Kernel regression estimations for the COVID-19 data by gender, remov-
ing boundary effects. The Nadaraya–Watson estimators with bagged cross-validation
bandwidths are shown for male (solid line) and female (dashed line) patients.

bootstrap responses by

Y ∗i = m̂g(Xi) + ε̂Ui
.

Step 4. Consider the Nadaraya–Watson estimator constructed with the bootstrap sam-

ple {(X1, Y
∗
1 ), . . . , (Xn, Y

∗
n )}, that is,

m̂∗h(x) =

n∑
i=1

Kh (x−Xi)Y
∗
i

n∑
i=1

Kh (x−Xi)
.

Step 5. Repeat the previous steps B times and approximate Mn(h) by

M∗
n(h; g) = E∗

{∫
[m̂∗h(x)− m̂g(x)]2 f̂g(x) dx

}
. (4.22)

Step 6. Repeat Steps 1–5 for a large number of values of h and define the bootstrap
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bandwidth as

h∗n0 = arg min
h>0

M∗
n(h; g). (4.23)

It is now straightforward to consider the bagging version of the bootstrap band-

width defined in (4.23), namely:

Step 1. Independently generate N subsamples of size r < n by sampling without re-

placement from (X1, Y1), . . . , (Xn, Yn).

Step 2. For i ∈ {1, . . . , N}, select a pilot bandiwdth, gi.

Step 3. For each of the subsamples, compute h∗r0,i = arg min
h>0

M∗
r (h; gi), where M∗

n(h; g)

was defined in (4.22). Denote these bandwidths by h∗r0,1, . . . , h
∗
r0,N .

Step 4. Compute the bagged bandwidth as the mean of the rescaled bootstrap band-

widths,

ĥ∗(r,N) =
1

N

( r
n

)1/5 N∑
i=1

h∗r0,i.

Unlike in the case of the bootstrap bandwidth selector for the kernel density

estimator, the problem of pilot bandwidth selection has not been studied for the

bootstrap bandwidth selector defined in (4.23).
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Chapter 5

Conclusions and future work

Chapter 3 was devoted to analyzing the problem of bandwidth selection for the

kernel density estimator defined in (2.3) using a bagging approach. In Section 3.1,

the asymptotic properties of a bagged cross-validation bandwidth were studied in the

case of a finite number of subsamples. The main results were established in Theorems

3.1 and 3.2. The former provides asymptotic expressions for the bias and variance

of the proposed bagging cross-validation bandwidth, and its limit distribution is

given in the latter. An automatic method for selecting the size of the subsamples

based on the minimization of the mean squared error of the bagging cross-validation

bandwidth was also proposed. The practical behavior of the bagging bandwidth

was shown through different simulation studies and applications to real datasets.

This bandwidth selector is an alternative to standard cross-validation, and it is able

to achieve a large reduction in mean squared error due to a decrease in variance

that greatly offsets its increase in bias. Furthermore, because of using subsampling,

computing time can be significantly reduced with respect to using binned standard

cross-validation. In the remaining sections of Chapter 3, other versions of the bagging

bandwidth selector were proposed for certain types of scenarios: Section 3.2 includes

a bagging bootstrap selector. Section 3.3 deals with situations where the rate of

convergence to zero of the optimal bandwidth is not known, while Section 3.4 focuses

on cases where it might be useful to incorporate second order terms in the bagging

mechanism.

Although our proposed bandwidth selectors are mainly based on cross-validation

110
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or bootstrapping, bagged versions of other bandwidth selection methods, such as

plug-in, can be considered. While both cross-validation and bootstrap approaches

try to estimate hn0, plug-in bandwidths are estimators of the asymptotically optimal

bandwidth, hn, and hence only the estimation of R(f ′′) is required. It is worth noting

that there is a clear similarity between the three methods. Both cross-validation

(Scott and Terrell, 1987) and bootstrap (Cao, 1993) bandwidths are the minimizers

of criteria of the form ∑
(i,j)∈I

Hnhg(Xi −Xj) +
R(K)

nh
, (5.1)

where I ⊂ {1, . . . , n} × {1, . . . , n} and Hnhg is a function which may depend on the

sample size, n, the bandwidth, h, and a pilot bandwidth, g. Note that g plays a

role only in the bootstrap criterion. Although plug-in bandwidths are not solutions

to a minimization problem, the non-parametric estimation of R(f ′′) using a pilot

bandwidth, g, requires working with a U -statistic like the one given in (5.1), which

would only depend on n and g. Due to the non-linearity of (5.1) with respect to the

observations, it stands to reason that a bagged implementation of this method could

reduce its variability, as in the case of cross-validation.

Chapter 4 focused on the problem of selecting the bandwidth for the Nadaraya–

Watson estimator, defined in (2.17) in a random-design regression model. The

asymptotic properties of the cross-validation bandwidth selector, h̃CV,n (the mini-

mizer of (4.10)), based on the theoretical approximation of the Nadaraya–Watson

proposed in (4.8) were studied in Section 4.1. The main results were established in

Theorem 4.1 and Corollary 4.1. While the former provides asymptotic expressions

for the bias and variance of h̃CV,n, the limit distribution of h̃CV,n is given in the

latter. Furthermore, in Remark 4.1 some reasons were offered as to why it would be

expected that the asymptotic results mentioned above should also apply to the stan-

dard cross-validation bandwidth selector defined in (2.22). A more rigorous proof of

this seemingly sensible intuition would be a line of future work to be considered.

In Section 4.2, a bagging cross-validation bandwidth selector for the Nadaraya–

Watson estimator was proposed and its empirical behavior and asymptotic properties

were subsequently studied. The main results were established in Theorem 4.2 and
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Corollary 4.2. The former provides asymptotic expressions for the bias and variance

of the proposed bagging cross-validation bandwidth, and its limit distribution is given

in the latter. An interesting line of future work would involve the study of a bagging

cross-validation bandwidth selector, analogous to the one defined in (4.13), for the

local linear estimator. The main reason for studying such a bandwidth selector lies in

the well-known fact that the local linear estimator has better statistical properties

than the Nadaraya–Watson estimator (e.g., the local linear estimator is generally

less biased and performs better at the boundary regions than the Nadaraya–Watson

estimator). On the other hand, optimal pilot bandwidth choice for the bootstrap

bandwidth selector defined in (2.26) remains to be studied. This would be a previous

and necessary step to obtain the asymptotic properties of (2.26).

In addition to those already mentioned, other future lines of research to consider

are the following: (i) extension of the proposed techniques to the case of multidimen-

sional or dependent data, (ii) extension of the proposed techniques to bandwidth se-

lection in classification problems, (iii) application of bagging to problems other than

bandwidth selection, (iv) optimization of the code developed from the techniques

proposed throughout the thesis, and (v) Python implementation of the proposed

techniques (Python has an API for Apache Spark called PySpark which allows for

parallel computing, very useful when dealing with large datasets or highly complex

models).
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Appendix A

Proofs of the results of Chapter 3

To prove Theorem 3.1, we establish one lemma in advance.

Lemma A.1 Under assumptions A1–A4,

n1/5CV ′′′
(
h̃n

)
= op(1),

where h̃n is a bandwidth between the cross-validation bandwidth ĥn and the MISE

minimizer hn0.

Proof of Lemma A.1 First, we write

n1/5CV ′′′(h̃n) = α1 + α2, (A.1)

with

α1 = n1/5CV ′′′(hn0)

and

α2 = n1/5
[
CV ′′′(h̃n)− CV ′′′(hn0)

]
.

To prove Lemma A.1 it is sufficient to show that α1 = op(1) and α2 = op(1). In

order to study the term α1, we first consider the asymptotic MISE of the Parzen–

Rosenblatt estimator of the density function. It is well known that if K is a second
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order symmetric kernel function and considering that K has variance 1, as stated in

Assumption A2, the MISE is:

Mn(h) =
R(K)

nh
+

1

4
h4R(f ′′) + o

[
(nh)−1 + h4

]
,

and hence

M ′′′
n (h) = −6R(K)

nh4
+ 6hR(f ′′) + o

[
(nh4)−1 + h

]
.

Since

−6R(K)

nh4na
+ 6hnaR(f ′′) = 0,

where hna denotes the bandwidth minimizing the asymptotic MISE, it follows im-

mediately that n1/5M ′′′
n (hn0) converges to zero. Now, we can write

n1/5CV ′′′(hn0) = n1/5M ′′′
n (hn0) + n1/5ηn,

where ηn = CV ′′′(hn0)−M ′′′
n (hn0). Thus, to prove that α1 = op(1), it is sufficient to

prove that

ηn = op
(
n−1/5

)
,

or, by Markov’s inequality, that

n2/5var [CV ′′′(hn0)] = o(1).

It is easy to prove that, for every r ≥ 1,

CV r)(h) = M r)
n (h) +

1

n(n− 1)

∑
i 6=j

γ̄
r)
nh(Xi −Xj), (A.2)
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where

γn(u) =
n− 1

n
K ∗K(u)− 2K(u),

γnh(u) = γn(u/h)/h,

γ̄nh(u) = γnh(u)− E [γnh(X1 −X2)] ,

γ̄
r)
nh(u) =

dr

dhr
γ̄nh(u).

Therefore,

var [CV ′′′(h)] =
1

n2(n− 1)2

n∑
i,j,k,l=1
i 6=j
k 6=l

cov [Ψ3(Xi −Xj),Ψ3(Xk −Xl)] ,

where

Ψ3(u) =
d3

dh3
γnh(u) = −

[
6

h4
γn(u/h) +

18u

h5
γ′n(u/h) +

9u2

h6
γ′′n(u/h) +

u3

h7
γ′′′n (u/h)

]
.

Counting the different possible cases, we get

var [CV ′′′(h)] =
1

n2(n− 1)2
{4n(n− 1)(n− 2)cov [Ψ3(X1 −X2),Ψ3(X1 −X3)]

+ 2n(n− 1)var [Ψ3(X1 −X2)]} .

Let us now define Ψ̃3(u) as the function such that Ψ3(u) = Ψ̃3(u/h)/h. Conse-

quently,

Ψ̃3(u) = − 1

h3
[
6γn(u) + 18uγ′n(u) + 9u2γ′′n(u) + u3γ′′′n (u)

]
.

We shall now proceed to compute µj

(
Ψ̃3

)
, for j = 0, 2, 4, 6, and µj

(
Ψ̃2

3

)
, for

j = 0, 2, since we will need these quantities later on. Note that µj

(
Ψ̃3

)
= 0 for

every odd j, since Ψ̃3 is symmetric.

For j = 0,

µ0

(
Ψ̃3

)
= − 1

h3
[6µ0(γn) + 18µ1(γ

′
n) + 9µ2(γ

′′
n) + µ3(γ

′′′
n )] .
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Using integration by parts and the fact that µ0(K) = µ0(K ∗K) = 1, we get

µ0(γn) = −n+ 1

n
,

µ1(γ
′
n) =

n+ 1

n
,

µ2(γ
′′
n) = −2

n+ 1

n
,

µ3(γ
′′′
n ) = 6

n+ 1

n
,

and hence

µ0

(
Ψ̃3

)
= 0.

Now,

µ2

(
Ψ̃3

)
= − 1

h3
[6µ2(γn) + 18µ3(γ

′
n) + 9µ4(γ

′′
n) + µ5(γ

′′′
n )] .

Partial integration and the equality µ2(K ∗K) = 2µ2(K) give

µ2(γn) = −2µ2(K)

n
,

µ3(γ
′
n) =

6µ2(K)

n
,

µ4(γ
′′
n) = −24µ2(K)

n
,

µ5(γ
′′′
n ) =

120µ2(K)

n
,

and, therefore,

µ2

(
Ψ̃3

)
= 0.

We have

µ4

(
Ψ̃3

)
= − 1

h3
[6µ4(γn) + 18µ5(γ

′
n) + 9µ6(γ

′′
n) + µ7(γ

′′′
n )] .

Using integration by parts and the fact that µ4(K ∗K) = 2µ4(K) + 6µ2(K)2, we
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get

µ4(γn) = 6µ2(K)2 − 2µ4(K)/n,

µ5(γ
′
n) = −30µ2(K)2 + 10µ4(K)/n,

µ6(γ
′′
n) = 180µ2(K)2 − 60µ4(K)/n,

µ7(γ
′′′
n ) = −1260µ2(K)2 + 420µ4(K)/n,

and, therefore,

µ4

(
Ψ̃3

)
=

144µ2(K)2

h3
+O

(
1

nh3

)
.

Finally,

µ6

(
Ψ̃3

)
= − 1

h3
[6µ6(γn) + 18µ7(γ

′
n) + 9µ8(γ

′′
n) + µ9(γ

′′′
n )] .

Using integration by parts and the fact that µ6(K∗K) = 2µ6(K)+30µ2(K)µ4(K),

we get

µ6(γn) = 30µ2(K)µ4(K) +O

(
1

n

)
,

µ7(γ
′
n) = −210µ2(K)µ4(K) +O

(
1

n

)
,

µ8(γ
′′
n) = 1680µ2(K)µ4(K) +O

(
1

n

)
,

µ9(γ
′′′
n ) = −15120µ2(K)µ4(K) +O

(
1

n

)
, .

and so

µ6

(
Ψ̃3

)
=

3600µ2(K)µ4(K)

h3
+O

(
1

nh3

)
.
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Analogously, it can be proved that

µ0

(
Ψ̃2

3

)
= O

(
1

h6

)
,

µ2

(
Ψ̃2

3

)
= O

(
1

h6

)
.

On the other hand,

var [Ψ3(X1 −X2)] = I1 − I22

and

cov [Ψ3(X1 −X2),Ψ3(X1 −X3)] = I3 − I22 ,

where

I1 =

∫
Ψ2

3 ∗ f(x)f(x) dx,

I2 =

∫
Ψ3 ∗ f(x)f(x) dx

and

I3 =

∫
Ψ3 ∗ f(x)2f(x) dx.

Simple algebra and Taylor expansions give

I1 =
1

h

∫∫
Ψ̃3(u)2f(x)

[
f(x) +

h2u2

2
f ′′(ζ)

]
dx du

=
1

h

{
µ0

(
Ψ̃2

3

)
R(f) +O

[
h2µ2

(
Ψ̃2

3

)]}
= O

(
1

h7

)
,

I2 =

∫∫
Ψ̃3(u)f(x)

[
h4u4

4!
f (4)(x) +

h6u6

6!
f (6)(ζ)

]
dx du

=
h4

24
µ4

(
Ψ̃3

)
R(f ′′) +O

[
h6µ6

(
Ψ̃3

)]
= 6µ2(K)2R(f ′′)h+O

(
h3
)
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and

I3 =

∫∫
f(x)

[∫
1

h
Ψ̃3

(
x− y
h

)
f(y) dy

]2
dx

=

∫
f(x)

[
6µ2(K)2f (4)(x)h+O

(
h3
)]2

dx

= 36µ2(K)4
∫
f (4)(x)2f(x) dx h2 +O

(
h4
)
.

Therefore,

var [Ψ3(X1 −X2)] = O

(
1

h7

)
and

cov [Ψ3(X1 −X2),Ψ3(X1 −X3)] = Lh2 +O
(
h4
)
,

where

L = 36µ2(K)4
[∫

f (4)(x)2f(x) dx−R(f ′′)2
]
.

Consequently,

var [CV ′′′(h)] = O

(
1

n2h7
+
h2

n

)
(A.3)

and

var [CV ′′′(hn0)] = O
(
n−3/5

)
.

Therefore, as required,

var [CV ′′′(hn0)] = o(n−2/5)

and so α1 = op(1).
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To handle the term α2 in (A.1), we write

α2 = n1/5
[
CV ′′′(h̃n)− CV ′′′(hn0)

]
= n1/5(h̃n − hn0)CV (4)(hn), (A.4)

where hn is an intermediate value between h̃n and hn0. The results of Hall and

Marron (1987) imply that h̃n − hn0 = Op

(
n−3/10

)
. Thus, in view of (A.4), to prove

α2 = oP (1) it is sufficient to show that

n−1/10 sup
h∈I(hn,hn0)

|CV 4)(h)| = op(1),

where I(hn, hn0) is the interval with endpoints hn and hn0.

Let a be arbitrarily small but fixed, and such that an−1/5 < hn0 < a−1n−1/5.

Without loss of generality, we suppose that CV (h) is minimized over a finite set In

having equally spaced points on the interval (an−1/5, a−1n−1/5). It is assumed that

the number of points in In is n2/5−d, where 0 < d < 1/5. Let h∗n be the minimizer of

Mn(h) over In. Then optimizing CV over In suffices since h∗n−hn0 is of order n−3/5+d,

implying that this source of error is smaller than n−2/5 and hence negligible for the

current argument. It is enough to show that n−1/10 maxh∈In |CV 4)(h)| converges in

probability to 0. Since

|CV 4)(h)| ≤ |CV 4)(h)− En(h)|+ |En(h)|,

where En(h) = E
[
CV 4)(h)

]
, it suffices to show that

lim
n→∞

n−1/10 max
h∈In
|En(h)| = 0

and

n−1/10 max
h∈In
|CV 4)(h)− En(h)| = op(1).
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For any ε > 0, we have

P

[
n−1/10 max

h∈In
|CV 4)(h)− En(h)| ≥ ε

]
≤ P

[⋃
h∈In

{
n−1/10|CV 4)(h)− En(h)| ≥ ε

}]
≤

∑
h∈In

P
[
n−1/10|CV 4)(h)− En(h)| ≥ ε

]
≤

∑
h∈In

var
[
CV 4)(h)

]
n1/5ε2

≤ n1/5−d

ε2
max
h∈In

var
[
CV 4)(h)

]
.

Let us now obtain uniform bounds for the expectation and variance of CV 4)(h).

It is straightforward to prove that

En(h) = M4)(h) ∼ 6µ2(K)2R(f ′′) + 24R(K)n−1h−5

and, since hn0 ∼ hna = C0n
−1/5, we have that En(hn0) ∼ D, for some constant

D > 0. On the other hand, since In ⊂ [an−1/5, a−1n−1/5], we get

max
h∈In

E
[
CV (4)(h)

]
= O(1). (A.5)

To obtain a uniform bound for the variance, long and tedious calculations can be

performed to get a similar expression to (A.3), but for the fourth derivative:

var
[
CV 4)(h)

]
= O

(
1

n2h9

)
.

Using again hn0 ∼ C0n
−1/5 and In ⊂ [an−1/5, a−1n−1/5], we obtain

max
h∈In

var
[
CV 4)(h)

]
= O

(
n−1/5

)
. (A.6)

Using expressions (A.5) and (A.6), it now follows that

max
h∈In

n−1/10|CV 4)(h)| = op(1),
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thus completing the proof of Lemma A.1.

Proof of Theorem 3.1 The variance of the bagged bandwidth is:

var
[
ĥ(r,N)

]
=

1

N
var
(
h̃r,1

)
+
N − 1

N
cov

(
h̃r,1, h̃r,2

)
. (A.7)

The work of Hall and Marron (1987) provides an approximation to the variance

of h̃r,1:

var
(
h̃r,1

)
h2n0

= A0r
−1/5 + o

(
r−1/5

)
, (A.8)

where

A0 =
8R(V)R(f)µ2(K)4/5

25R(K)9/5R(f ′′)
, (A.9)

the function V is defined in Bhattacharya and Hart (2016) and only depends on the

kernel K. Bhattacharya and Hart (2016) derived the following approximation to the

second term in (A.7):

cov
(
h̃r,1, h̃r,2

)
= var

(
h̃r,1

)( r
n

)2
+ o

(
r9/5n−12/5

)
. (A.10)

Plugging (A.8) and (A.10) into (A.7), when N is either fixed or tending to ∞
with n, then,

var
[
ĥ(r,N)

]
∼ A0C

2
0r
−1/5n−2/5

[
1

N
+
( r
n

)2]
.

Regarding the bias of ĥ(r,N), as explained in Subsection 3.1.1, we only have to

focus on deriving the bias inherent to cross-validation itself. Let ĥn be the ordinary

cross-validation bandwidth for a sample of size n. Using the fact that CV ′(ĥn) = 0,

a Taylor expansion gives

ĥn − hn0 = −CV
′(hn0)

CV ′′(hn)
,
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for hn between ĥn and hn0. Now expand 1/CV ′′(hn) in a Taylor series about ∆ =

M ′′
n(hn0), yielding

ĥn − hn0 = −CV
′(hn0)

∆
+
CV ′(hn0)[CV

′′(hn)−∆]

∆̂2
,

where ∆̂ is between CV ′′(hn) and M ′′
n(hn0). Using the notation in (3.2), ξn =

−CV ′(hn0)/∆ and

en =
CV ′(hn0)[CV

′′(hn)−∆]

∆̂2
.

The random variable −CV ′(hn0)/∆ has mean 0 and is Op

(
n−3/10

)
, as shown by

Hall and Marron (1987). We will show that n2/5en
d→ Y , where E(Y ) = µCV <

0, with µCV given in (3.3), and var(Y ) > 0. Indeed, this will establish the first

order bias of ĥn as an estimator of hn0. Using results of Hall and Marron (1987),

n4/5∆̂2 p→ E2 > 0, where E is the limit of n2/5M ′′
n(hn0) as n → ∞. It is sufficient

then to consider

n6/5CV ′(hn0)[CV
′′(hn)−∆] = n6/5CV ′(hn0)[CV

′′(hn0)−∆ + δn], (A.11)

where δn = CV ′′(hn)− CV ′′(hn0). Now,

δn = (hn − hn0)CV ′′′
(
h̃n

)
,

where h̃n is between hn and hn0. From Hall and Marron (1987), we know that

CV ′(hn0) = Op

(
n−7/10

)
and hn − hn0 = Op

(
n−3/10

)
. It follows that

n6/5CV ′(hn0)δn = Op(1)n1/5CV ′′′
(
h̃n

)
.

Considering Lemma A.1, in equation (A.11) we just need to investigate

n6/5CV ′(hn0) [CV ′(hn0)−∆] .
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Hall and Marron (1987) showed that

n7/10CV ′(hn0)
d→ N(0, σ2

1).

As shown in Bhattacharya and Hart (2016), hn0 [CV ′′(hn0)−∆] is identical in

structure to CV ′(hn0), and hence

n7/10hn0 [CV ′′(hn0)−∆] ∼ C0

√
n [CV ′′(hn0)−∆]

d→ N(0, σ2
2).

Using the Cramér-Wold device (Cramér and Wold, 1936), it follows that

√
n
[
n1/5CV ′(hn0), CV

′′(hn0)−∆
]

converges in distribution to a bivariate normal random variable (Y1, Y2) with mean

vector 0 and some covariance matrix Σ, not defined here for the sake of brevity.

Using Theorem B., p. 124 of Serfling (1980), we have

n6/5CV ′(hn0) [CV ′′(hn0)−∆]
d→ Y1Y2,

where (Y1, Y2) are bivariate normal with mean vector 0 and covariance matrix Σ.

Bhattacharya and Hart (2016) show that E(Y1Y2) is

−8R(f)R(f ′′)4/5

R(K)4/5

∫
V(u)W (u) du,

where

V(u) = K ∗K(u)−K ∗ L(u)−K(u) + L(u),

W (u) = 3K ∗K(u) + L ∗ L(u)− 5K ∗ L(u) +K ∗H(u)− 2K(u) + 3L(u)−H(u),

L(u) = −uK ′(u)

and

H(u) = −uL′(u).
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Also, taking into account that (Bhattacharya and Hart, 2016)

M ′′
n(hn0) ∼ 5R(K)2/5R(f ′′)3/5n−2/5,

the limiting expectation of n2/5(ĥn − hn0) is

E(Y1Y2)

E2
= µCV = −

8R(f)
∫
V(u)W (u) du

25R(K)8/5R(f ′′)2/5
,

which completes the proof.

Proof of Theorem 3.2 The asymptotic normality of the statistic of interest, namely

n3/10
[
ĥ(r,N)− hn0

]
, can be derived from the method of proof of Theorem 3.1. Fur-

thermore, the mean and the variance of the asymptotic distribution of this statistic

are an immediate consequence of Theorem 3.1.

Proof of Proposition 3.1 Multiplying the two equations in (3.11) by r
−3/5
1 and

subtracting them we get

hr11r
−3/5
2 − hr21r

−3/5
1 = C0

(
r
−1/5
1 r

−3/5
2 − r−3/51 r

−1/5
2

)
and then

C0 =
hr11r

3/5
1 − hr21r

3/5
2

r
2/5
1 − r2/52

.

Similarly, multiplying the two equations in (3.11) by r
−1/5
2 and substracting them

yields

hr11r
−1/5
2 − hr21r

−1/5
1 = C1

(
r
−3/5
1 r

−1/5
2 − r−1/51 r

−3/5
2

)
and so

C1 =
hr11r

1/5
1 − hr21r

1/5
2

r
−2/5
1 − r−2/52

.



Appendix B

Corrigendum to Theorem 1 of Hall

and Robinson (2009)

In this Appendix we show that the approximation for the variance of the bagging

bandwidth studied in Hall and Robinson (2009) is in error. A correct expression for

this variance and the corresponding proof is provided.

The bagged bandwidth studied in Hall and Robinson (2009), ĥbagg, corresponds

to the case where N = ∞, that is, ĥbagg = ĥ(r,∞), following the notation adopted

in Section (3.1). From (3.5) it follows that

var
(
ĥbagg

)
= A0C

2
0r

9/5n−12/5 + o
(
r9/5n−12/5

)
, (B.1)

which exactly matches the second term given in equation (13) of Hall and Robinson

(2009). However, it is claimed in that paper that the dominant term would be of

order r4/5n−7/5. We will prove that this last statement is wrong and that in fact the

dominant term is precisely the one given in (B.1).

It can be easily proven that, for a sample of size n, we have

CV (h) = Mn(h)−R(f) + S(h), (B.2)

where S(h) = S1(h) + S2(h). Furthermore, using the same notation as in Hall and

137



138 Appendix B. Corrigendum to Theorem 1 of Hall and Robinson (2009)

Robinson (2009):

S1(h) =
2

n

n∑
i=1

{
1− n−1

h2

∫
δiµ−

1

h

[
µ(Xi) +

∫
Kif − 2

∫
µf

]}
,

S2(h) =
2

n(n− 1)

∑∑
1≤i<j≤n

(
1− n−1

h2

∫
δiδj −

2

h
δij

)
,

where

Ki(x) = K

(
x−Xi

h

)
,

µ(x) = E [Ki(x)] ,

δi(x) = Ki(x)− µ(x),

δij = Ki(Xj)− µ(Xj)−
∫
Kif +

∫
µf.

From (B.2) it follows that, for any k ∈ N,

var
[
CV k)(h)

]
= var

[
Sk)(h)

]
.

More importantly, finding the variance of the cross-validation bandwidth, whether

bagged or ordinary, boils down to finding var [S ′(h)]. From (A.2) it follows that

var [S ′(h)] =
1

n4h2
var

[∑
i 6=j

H(Xi −Xj)

]
, (B.3)

where H(u) = γe,h(u) + u (γe,h)
′ (u), γe,h(u) = γe(u/h)/h and γe(u) = n

n−1γn(u). Let

us now define H̃(u) = γe(u) + uγ′e(u), so we have that H(u) = H̃h(u). Collecting

similar cases and doing straightforward calculations we get

var

[∑
i 6=j

H(Xi −Xj)

]
= 4n(n− 1)(n− 2)Cb + 2n(n− 1)Cc, (B.4)

where Cb = cov [H(X1 −X2), H(X1 −X3)] and Cc = var [H(X1 −X2)]. These terms
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can be further decomposed into

Cb = Cb1 − C2
b2 (B.5)

and

Cc = Cc1 − C2
b2, (B.6)

where

Cb1 =

∫
H ∗ f(x)2f(x) dx,

Cc1 =

∫
H2 ∗ f(x)f(x) dx

and

Cb2 =

∫
H ∗ f(x)f(x) dx.

Using the fact that H̃ is symmetric, µ0

(
H̃
)

= 0, µ2

(
H̃
)

= 4µ2(K)/(n− 1) and

µ4

(
H̃
)
, µ6

(
H̃
)

= O(1), we have

Cb2 =

∫∫
1

h
H̃

(
x− y
h

)
f(y)f(x) dx dy

=

∫∫
H̃(u)f(x− hu)f(x) dx du

=

∫∫
H̃(u)

[
f(x)− huf ′(x) + · · · − h5u5

5!
f (5)(x) +

h6u6

6!
f (6)(x̄)

]
f(x) dx du

=

∫
f(x)

[
h2

2
µ2

(
H̃
)
f ′′(x) +

h4

4!
µ4

(
H̃
)
f (4)(x) +O

(
h6
)]

dx

= O

(
h2

n
+ h4

)
,
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and, therefore,

C2
b2 = O

(
h4

n2
+ h8 +

h6

n

)
. (B.7)

For the term Cb1,

Cb1 =

∫
f(x)

[∫
1

h
H̃

(
x− y
h

)
f(y) dy

]2
dx

=

∫
f(x)

[∫
H̃(u)f(x− hu) du

]2
dx

=

∫
f(x)

[
1

4
µ2(K)2f (4)(x)h4 +O

(
h6
)]2

dx

=

∫
f(x)

[
1

16
µ2(K)4f (4)(x)2h8 +O

(
h10
)]

dx

= O

(
h4

n2
+ h8 +

h6

n

)
. (B.8)

The term Cc1 can be handled in a similar way,

Cc1 =
1

h2

∫∫
H̃

(
x− y
h

)2

f(y)f(x) dx dy

=
1

h

∫∫
H̃(u)2f(x− hu)f(x) dx du

=
1

h

∫∫
H̃(u)2f(x)

[
f(x)− huf ′(x) +

h2u2

2
f ′′(x̃)

]
dx du

=
R(f)R

(
H̃
)

h
+O (h) , (B.9)

where we have used the fact that µ1

(
H̃2
)

= O (1).

Plugging (B.7), (B.8) and (B.9) into (B.5) and (B.6) yields, respectively,

Cb = O

(
h4

n2
+ h8 +

h6

n

)
, (B.10)

Cc =
R(f)R

(
H̃
)

h
+O (h) . (B.11)
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Now, plugging (B.10) and (B.11) into (B.4) and then into (B.3), and using the

fact that

2R(f)R
(
H̃
)

= A3 +O
(
n−1
)
,

we get

var [S ′(h)] = A3
1

n2h3
+O

(
1

n2h

)
, (B.12)

where A3 is defined on p. 183 of Hall and Robinson (2009). Equation (B.12) is

completely consistent with the results obtained in Hall and Marron (1987) and Scott

and Terrell (1987). Now, taking variance in equation (A2) of Hall and Robinson

(2009) and plugging (B.12) into that expression yields (B.1). Equation (B.12) is

enough to show that expression (A3) of Hall and Robinson (2009) is wrong, which

in turn explains the error in their equation (13) regarding the variance of the bagged

bandwidth. Nonetheless, we will provide an asymptotic expression for var [S ′1(h)],

since that is where the error in Hall and Robinson (2009) comes from.

From the definition of Vnh(Xi) and S1(h) given on p. 184 of Hall and Robinson

(2009), it is easy to show that

Vnh(X1) =
(
1− n−1

)
z̃
(h)
1 − T̃

(h)
1 ,

where

z̃
(h)
1 = Kh ∗Kh ∗ f(X1)−

∫
Kh ∗ f(x)2 dx

and

T̃
(h)
1 = 2

[
Kh ∗ f(X1)−

∫
Kh ∗ f(x)f(x) dx

]
.

Let us define the functions ν and η:

ν(x) = K(x) + xK(x)
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and

η(x) = K ∗K(x) + x(K ∗K)′(x).

Then, we have that

d

dh
T̃

(h)
1 = −1

h
νh ∗ f(X1)

and

d

dh
z̃
(h)
1 = −1

h
{ηh ∗ f(X1)− E [ηh ∗ f(X1)]} .

Therefore,

d

dh
Vnh(X1) =

1

h
{τh ∗ f(X1)− E [τh ∗ f(X1)]} ,

where

τ(x) = 2K(x) + 2xK ′(x)− n− 1

n
[K ∗K(x) + x(K ∗K)′(x)] .

We have that

var

[
d

dh
Vnh(X1)

]
=

1

h

{
E
[
τh ∗ f(X1)

2
]
− E [τh ∗ f(X1)]

2} .
It is easy to show that

µ0(τ) = 0,

µ2(τ) = − 4

n
µ2(K),

µ4(τ) = − 8

n
µ4(K) + 24

n− 1

n
µ2(K)2,

µ6(τ) = −12

n
µ6(K) + 180

n− 1

n
µ2(K)µ4(K).
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Using standard calculations, it is easy to prove that

E [τh ∗ f(X1)] =

∫∫
τ(u)f(x)f(x− hu) dx du

=

∫∫
τ(u)f(x)

[
f(x)− huf ′(x) + · · · − h7u7

7!
f (7)(x)

+
h8u8

8!
f (8)(x̃)

]
dx du

= −h
2

2
µ2(τ)R(f ′) +

h4

24
µ4(τ)R(f ′′)− h6

6!
µ6(τ)R(f ′′′) +O

(
h8
)
.

Therefore,

E [τh ∗ f(X1)]
2 =

h4

4
µ2(τ)2R(f ′)2 − h6

24
µ2(τ)µ4(τ)R(f ′)R(f ′′)

+
h8

242
µ4(τ)2R(f ′′)2 +

h8

6!
µ2(τ)µ6(τ)R(f ′)R(f ′′′) +O

(
h10
)
.

On the other hand,

E
[
τh ∗ f(X1)

2
]

=

∫∫∫
τ(u)f(x− hu)τ(v)f(x− hv)f(x) dx du dv

=

∫∫∫
τ(u)τ(v)f(x)

[
f(x)− huf ′(x) + · · ·+O

(
h10
)]

[
f(x)− hvf ′(x) + · · ·+O

(
h10
)]
dx du dv

=
h4

4
µ2(τ)2J2 +

h6

24
µ2(τ)µ4(τ)J3 +

h8

6!
µ2(τ)µ6(τ)J4 +

h8

242
µ4(τ)2J1

+ O
(
h10
)
,

where

J1 =

∫
f (4)(x)2f(x) dx,

J2 =

∫
f(x)f ′′(x)2 dx,

J3 =

∫
f(x)f ′′(x)f (4)(x) dx,

J4 =

∫
f(x)f ′′(x)f (6)(x) dx.
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So, we have that

var

[
d

dh
Vnh(X1)

]
=

h2

4
µ2(τ)2

[
J2 −R(f ′)2

]
+
h4

24
µ2(τ)µ4(τ) [J3 +R(f ′)R(f ′′)]

+
h6

6!
µ2(τ)µ6(τ) [J4 −R(f ′)R(f ′′′)] +

h6

242
µ4(τ)2

[
J1 −R(f ′′)2

]
+ O

(
h8
)
.

Finally, since

var [S ′1(h)] =
4

n
var

[
d

dh
Vnh(X1)

]
,

it follows that

var [S ′1(h)] = 4µ2(K)4
[
J1 −R(f ′′)2

] h6
n

+O

(
h8

n

)
.

This, in conjunction with (B.12), proves that var [S ′1(h)] is negligible with respect

to var [S ′2(h)] and, in particular, that var [S ′1(h)] cannot be asymptotic to A2 h
2/n as

claimed in Hall and Robinson (2009).
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Proofs of the results of Chapter 4

Proof of Lemma 4.1 Recall that

m̃h(x) = A+B + C +D,

where A, B, C and D were defined in Section 4.1. Let us start by defining

ϕ1(x) = f(x)−1
[

1

2
m′′(x)f(x) +m′(x)f ′(x) +

1

2
m(x)f ′′(x)

]
,

ϕ2(x) = f(x)−1
[

1

24
m4)(x)f(x) +

1

6
m′′′(x)f ′(x) +

1

4
m′′(x)f ′′(x) +

1

6
m′(x)f ′′′(x)

+
1

24
m(x)f 4)(x)

]
,

ϕ3(x) =
1

2
f ′′(x)

[
m(x)2 + σ2(x)

]
+ f(x)

[
m(x)m′′(x) +m′(x)2 +

1

2
σ2′′(x)

]
+ f ′(x)

[
2m(x)m′(x) + σ2′(x)

]
.
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E

[
1

n

n∑
i=1

Kh(x−Xi)Yi

]
= E [Kh(x−X1)Y1] = E [Kh(x−X1)E (Y1 | X1)]

= E [Kh(x−X1)m(X1)]

=

∫
Kh(x− x1)m(x1)f(x1) dx1

=

∫
K(u)m(x− hu)f(x− hu) du

= m(x)f(x) + h2µ2(K)f(x)ϕ1(x) + h4µ4(K)f(x)ϕ2(x)

+ O(h6).

Therefore,

E(A) = m(x) + h2µ2(K)ϕ1(x) + h4µ4(K)ϕ2(x) +O(h6). (C.1)

Also,

E

[
1

n

n∑
i=1

Kh(x−Xi)

]
= E [Kh(x−X1)] =

∫
Kh(x− x1)f(x1) dx1

=

∫
K(u)f(x− hu) du

= f(x) +
1

2
h2µ2(K)f ′′(x) +

1

24
h4µ4(K)f 4)(x) +O(h6)

and hence

E(B) = −m(x)

f(x)

[
1

2
h2µ2(K)f ′′(x) +

1

24
h4µ4(K)f 4)(x)

]
+O(h6). (C.2)

To compute E(C), we start by expanding the followign expectation:

E
[
Y1Kh(x−X1)

2
]

= E
[
m(X1)Kh(x−X1)

2
]

=

∫
Kh(x− x1)2m(x1)f(x1) dx1

= h−1
∫
K(u)2m(x− hu)f(x− hu) du = R(K)m(x)f(x)h−1

+ hµ2(K
2)f(x)ϕ1(x) + h3µ4(K

2)f(x)ϕ2(x) +O(h5).
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We now obtain some asymptotic expressions for some of the terms in E(C):

E(âê) = E

[
n−2

n∑
i=1

n∑
j=1

YiKh(x−X1)Kh(x−Xj)

]
= n−2

{
nE
[
Y1Kh(x−X1)

2
]

+ n(n− 1)E [Y1Kh(x−X1)Kh(x−X2)]}

= n−1E
[
Y1Kh(x−X1)

2
]

+
n− 1

n
E [Y1Kh(x−X1)] E [Kh(x−X1)]

= R(K)m(x)f(x)n−1h−1 +m(x)f(x)2

+ h2µ2(K)

[
1

2
f ′′(x)m(x)f(x) + f(x)2ϕ1(x)

]
+ h4

[
1

24
µ4(K)f 4)(x)m(x)f(x)

+ µ4(K)f(x)2ϕ2(x) +
1

2
µ2(K)2f ′′(x)f(x)ϕ1(x)

]
+O(h6 + n−1).

Therefore,

E(C) = −R(K)m(x)f(x)−1n−1h−1 − 1

2
h4µ2(K)2f ′′(x)f(x)−1ϕ1(x)

+ O(h6 + n−1). (C.3)

To deal with E(D), we proceed in a similar way:

E
[
Kh(x−X1)

2
]

=

∫
Kh(x− x1)2f(x1) dx1 = h−1

∫
K(u)2f(x− hu) du

= R(K)f(x)h−1 +
1

2
hµ2(K

2)f ′′(x) +
1

24
h3µ4(K

2)f 4)(x) +O(h5),

E
(
ê2
)

= E

[
n−2

n∑
i=1

n∑
j=1

Kh(x−Xi)Kh(x−Xj)

]
= n−2

{
nE
[
Kh(x−X1)

2
]

+ n(n− 1)E [Kh(x−X1)Kh(x−X2)]}

= n−1E
[
Kh(x−X1)

2
]

+
n− 1

n
E [Kh(x−X1)]

2

= R(K)f(x)n−1h−1 + f(x)2 + h2µ2(K)f ′′(x)f(x)

+ h4
[

1

12
µ4(K)f 4)(x)f(x) +

1

4
µ2(K)2f ′′(x)2

]
+O(h6 + n−1),
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and, hence,

E(D) = R(K)m(x)f(x)−1n−1h−1 +
1

4
h4µ2(K)2f ′′(x)2m(x)f(x)−2

+ O
(
h6 + n−1

)
. (C.4)

Adding (C.1), (C.2), (C.3) and (C.4) we get

E [m̃h(x)]−m(x) = µ2(K)

[
1

2
m′′(x) +

m′(x)f ′(x)

f(x)

]
h2

+

{
µ4(K)

[
1

24
m4)(x) +

1

6

m′′′(x)f ′(x)

f(x)
+

1

4

m′′(x)f ′′(x)

f(x)

+
1

6

m′(x)f ′′′(x)

f(x)

]
− µ2(K)2

f ′′(x)

f(x)

[
1

4
m′′(x) +

m′(x)f ′(x)

f(x)

]}
h4

+ O
(
h6 + n−1

)
.

Regarding the variance of m̃h(x) = A+B + C +D, we have

var [m̃h(x)] = var(A) + var(B) + var(C) + var(D) + 2 [cov(A,B)

+ cov(A,C) + cov(B,C) + cov(A,D) + cov(B,D)

+ cov(C,D)] . (C.5)

The following second order moment will be needed to handle some of the variance

and covariance terms:

E
[
Y 2
1 Kh(x−X1)

2
]

= E
[
Kh(x−X1)

2E
[
Y 2
1 | X1

]]
= E

{
Kh(x−X1)

2E
[
(m(X1) + ε1)

2 | X1

]}
= E

{[
m(X1)

2 + σ2(X1)
]
Kh(x−X1)

2
}

=

∫
Kh(x− x1)2

[
m(x1)

2 + σ2(x1)
]
f(x1) dx1

= h−1
∫
K(u)2

[
m(x− hu)2 + σ2(x− hu)

]
f(x− hu) du

= R(K)
[
m(x)2 + σ2(x)

]
f(x)h−1 + µ2(K

2)ϕ3(x)h+O(h3).

Therefore,



149

var(â) = n−2var

[
n∑
i=1

YiKh(x−Xi)

]
= n−1var [Y1Kh(x−X1)]

= n−1
{

E
[
Y 2
1 Kh(x−X1)

2
]
− E [Y1Kh(x−X1)]

2}
= R(K)

[
m(x)2 + σ2(x)

]
f(x)n−1h−1 −m(x)2f(x)2n−1

+ µ2(K
2)ϕ3(x)n−1h+O

(
n−1h2

)
and

var(A) = R(K)
[
m(x)2 + σ2(x)

]
f(x)−1n−1h−1 −m(x)2n−1

+ µ2(K
2)ϕ3(x)f(x)−2n−1h+O

(
n−1h2

)
. (C.6)

On the other hand,

var(ê) = n−2var

[
n∑
i=1

Kh(x−Xi)

]
= n−1var [Kh(x−X1)]

= n−1
{

E
[
Kh(x−X1)

2
]
− E [Kh(x−X1)]

2}
= R(K)f(x)n−1h−1 − f(x)2n−1 +

1

2
µ2(K

2)f ′′(x)n−1h+O(n−1h2)

and so

var(B) = R(K)m(x)2f(x)−1n−1h−1 −m(x)2n−1

+
1

2
µ2(K

2)m(x)2f(x)−2f ′′(x)n−1h+O(n−1h2). (C.7)

Straightforward calculations lead to

cov(â, ê) = n−2
n∑
i=1

n∑
j=1

cov [YiKh(x−Xi), Kh(x−Xj)]

= n−1cov [Y1Kh(x−X1), Kh(x−X1)]

= n−1
{

E
[
Y1Kh(x−X1)

2
]
− E [Y1Kh(x−X1)] E [Kh(x−X1)]

}
= R(K)m(x)f(x)n−1h−1 −m(x)f(x)2n−1

+ µ2(K
2)ϕ1(x)f(x)n−1h+O

(
n−1h2

)
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and hence

cov(A,B) = −R(K)m(x)2f(x)−1n−1h−1 +m(x)2n−1

− µ2(K
2)ϕ1(x)m(x)f(x)−1n−1h+O

(
n−1h2

)
. (C.8)

Now,

cov [Y1Kh(x−X1), Y1Kh(x−X1)Kh(x−X2)]

= var [Y1Kh(x−X1)] E [Kh(x−X1)]

= R(K)
[
m(x)2 + σ2(x)

]
f(x)2h−1 −m(x)2f(x)3

+

{
µ2(K

2)ϕ3(x)f(x) +
1

2
R(K)µ2(K)

[
m(x)2 + σ2(x)

]
f(x)f ′′(x)

}
h

+ O
(
h2
)

and

cov [Y1Kh(x−X1), Y2Kh(x−X2)Kh(x−X1)]

= cov [Y1Kh(x−X1), Kh(x−X1)] E [Y1Kh(x−X1)]

= R(K)m(x)2f(x)2h−1 −m(x)2f(x)3 +
[
µ2(K

2)ϕ1(x)m(x)f(x)2

+ R(K)µ2(K)ϕ1(x)m(x)f(x)2
]

+O
(
h2
)
.

Therefore,

cov(â, âê) = n−3
n∑
i=1

n∑
j=1

n∑
k=1

cov [YiKh(x−Xi), YjKh(x−Xj)Kh(x−Xk)]

= n−1 {cov [Y1Kh(x−X1), Y1Kh(x−X1)Kh(x−X2)]

+ cov [Y1Kh(x−X1), Y2Kh(x−X2)Kh(x−X1)]}+O
(
n−1h2

)
= R(K)

[
2m(x)2 + σ2(x)

]
f(x)2n−1h−1 − 2m(x)2f(x)3n−1

+

{
µ2(K

2)ϕ3(x)f(x) +
1

2
R(K)µ2(K)

[
m(x)2 + σ2(x)

]
f(x)f ′′(x)

+ µ2(K
2)ϕ1(x)m(x)f(x)2 +R(K)µ2(K)ϕ1(x)m(x)f(x)2

}
n−1h

+ O
(
n−1h2

)
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and

cov(A,C) = −R(K)µ2(K)

{
1

2

[
m(x)2 + σ2(x)

]
f(x)−2f ′′(x)

+ ϕ1(x)m(x)f(x)−1
}
n−1h+O

(
n−1h2

)
. (C.9)

Some auxiliary covariances are needed:

cov [Kh(x−X1), Y1Kh(x−X1)Kh(x−X2)]

= cov [Kh(x−X1), Y1Kh(x−X1)] E [Kh(x−X1)]

= R(K)m(x)f(x)2h−1 −m(x)f(x)3 +
[
µ2(K

2)ϕ1(x)f(x)2

+
1

2
R(K)µ2(K)m(x)f(x)f ′′(x)

]
h+O

(
h2
)
,

cov [Kh(x−X1), Y2Kh(x−X2)Kh(x−X1)]

= var [Kh(x−X1)] E [Y1Kh(x−X1)]

= R(K)m(x)f(x)2h−1 −m(x)f(x)3 +

[
1

2
µ2(K

2)m(x)f(x)f ′′(x)

+ R(K)µ2(K)ϕ1(x)f(x)2
]
h+O

(
h2
)
.

Hence,

cov(ê, âê) = n−3
n∑
i=1

n∑
j=1

n∑
k=1

cov [Kh(x−Xi), YjKh(x−Xj)Kh(x−Xk)]

= n−1 {cov [Kh(x−X1), Y1Kh(x−X1)Kh(x−X2)]

+ cov [Kh(x−X1), Y2Kh(x−X2)Kh(x−X1)]}

+ n−2cov
[
Kh(x−X1), Kh(x−X1)

2Y1
]

= 2R(K)m(x)f(x)2n−1h−1 − 2m(x)f(x)3n−1 +
[
µ2(K

2)ϕ1(x)f(x)2

+
1

2
µ2(K

2)m(x)f(x)f ′′(x) +
1

2
R(K)µ2(K)m(x)f(x)f ′′(x)

+ R(K)µ2(K)ϕ1(x)f(x)2
]
n−1h+O

(
n−1h2 + n−2h−2

)
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and

cov(B,C) = R(K)µ2(K)

[
1

2
m(x)2f(x)−2f ′′(x) + ϕ1(x)m(x)f(x)−1

]
n−1h

+ O
(
n−1h2 + n−2h−2

)
. (C.10)

Another covariance term is needed:

cov [Y1Kh(x−X1), Kh(x−X1)Kh(x−X2)]

= cov [Y1Kh(x−X1), Kh(x−X1)] E [Kh(x−X1)]

= R(K)m(x)f(x)2h−1 −m(x)f(x)3

+
[
µ2(K

2)ϕ1(x)f(x)2

+
1

2
R(K)µ2(K)m(x)f(x)f ′′(x)

]
h+O

(
h2
)
.

Therefore,

cov(â, ê2) = n−3
n∑
i=1

n∑
j=1

n∑
k=1

cov [YiKh(x−Xi), Kh(x−Xj)Kh(x−Xk)]

= 2n−1cov [Y1Kh(x−X1), Kh(X −X1)Kh(x−X2)]

+ O
(
n−1h2 + n−2h−2

)
= 2R(K)m(x)f(x)2n−1h−1 − 2m(x)f(x)3n−1 +

[
2µ2(K

2)ϕ1(x)f(x)2

+ R(K)µ2(K)m(x)f(x)f ′′(x)]n−1h+O
(
n−1h2 + n−2h−2

)
and

cov(A,D) = R(K)µ2(K)m(x)2f(x)−2f ′′(x)n−1h+O
(
n−1h2 + n−2h−2

)
. (C.11)
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The following covariance is also needed:

cov [Kh(x−X1), Kh(x−X1)Kh(x−X2)]

= var [Kh(x−X1)] E [Kh(x−X1)]

= R(K)f(x)2h−1 − f(x)3 +

[
1

2
µ2(K

2)f(x)f ′′(x)

+
1

2
R(K)µ2(K)f(x)f ′′(x)

]
h+O

(
h2
)
.

Hence,

cov(ê, ê2) = n−3
n∑
i=1

n∑
j=1

n∑
k=1

cov [Kh(x−Xi), Kh(x−Xj)Kh(x−Xk)]

= 2n−1cov [Kh(x−X1), Kh(x−X1)Kh(x−X2)] +O
(
n−1h2 + n−2h−2

)
= 2R(K)f(x)2n−1h−1 − 2f(x)3n−1 +

[
µ2(K

2)f(x)f ′′(x)

+ R(K)µ2(K)f(x)f ′′(x)]n−1h+O
(
n−1h2 + n−2h−2

)
and

cov(B,D) = −R(K)µ2(K)m(x)2f(x)−2f ′′(x)n−1h+O
(
n−1h2 + n−2h−2

)
. (C.12)

Hence,

var(âê) = R(K)
[
4m(x)2 + σ2(x)

]
f(x)3n−1h−1 − 4m(x)2f(x)4n−1

+
{
µ2(K

2)ϕ3(x)f(x)2 +R(K)µ2(K)
[
2m(x)2 + σ2(x)

]
f(x)2f ′′(x)

+ 4R(K)µ2(K)ϕ1(x)m(x)f(x)3 + 2µ2(K
2)ϕ1(x)m(x)f(x)3

+
1

2
µ2(K

2)m(x)2f(x)2f ′′(x)

}
n−1h+O

(
n−1h2 + n−2h−2 + n−3h−3

)
and

var(C) = O
(
n−1h2 + n−2h−2 + n−3h−3

)
. (C.13)

The remaining variances and covariances are not explicitly calculated because

they are clearly negligible with respect to n−1h. In particular, var(D) and cov(C,D)
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are O (n−1h2 + n−2h−2 + n−3h−3).

Therefore, plugging (C.6)-(C.13) into (C.5) yields

var [m̃h(x)] = R(K)σ2(x)f(x)−1n−1h−1 +

{
µ2(K

2)f(x)−2
[
ϕ3(x) +

1

2
m(x)2f ′′(x)

− 2ϕ1(x)m(x)f(x)]−R(K)µ2(K)σ2(x)f(x)−2f ′′(x)
}
n−1h

+ O
(
n−1h2 + n−2h−2 + n−3h−3

)
.

Proof of Lemma 4.2 For the sake of simplicity, we will denote by “Z(h, n)
2
=” the

second order terms of a function Z(h, n). For example, if Z(h, n) = a0 +a1h+a2h
3 +

o(h3), for some constants a0, a1 and a2, then we would denote Z(h, n)
2
= a1h.

If we define

α1(u) = K(u) + uK ′(u),

α1h(u) = h−1α1

(u
h

)
,

Γ1(u, v) = 2K(u)K(v) +K(u)K ′(v)v +K(v)K ′(u)u,

Γ1h(u, v) = h−1Γ1

(u
h
,
v

h

)
β1(u, v) = K(u)K(v) +K(u)K ′(v)v,

β1h(u, v) = h−1β
(u
h
,
v

h

)
,

then C̃V
′
n(h) can be expressed as follows:

C̃V
′
n(h) =

2

n

n∑
i=1

{
m(Xi)− Yi +

1

(n− 1)4hf(Xi)4

n∑
j=1
j 6=i

n∑
k=1
k 6=i

n∑
l=1
l 6=i

n∑
s=1
s 6=i

Kh (Xi −Xj)

[Yj −m(Xi)] [2f(Xi)−Kh (Xi −Xk)] [Yl −m(Xi)][
−2f(Xi)α1h (Xi −Xl) + h−1Γ1h (Xi −Xl, Xi −Xs)

]}

and so

E
[
C̃V

′
n(h)

]
=

2

(n− 1)4h
E

[
n∑
j=2

n∑
k=2

n∑
l=2

n∑
s=2

(
Λj

11 + Λjk
12

) (
Λl

21 + Λls
22

)]
, (C.14)
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where

Λj
11 = 2f(X1)

−3Kh (X1 −Xj) [Yj −m(X1)] ,

Λjk
12 = −f(X1)

−4Kh (X1 −Xj)Kh (X1 −Xk) [Yj −m(X1)] ,

Λl
21 = −2f(X1)α1h (X1 −Xl) [Yl −m(X1)] ,

Λls
22 = h−1Γ1h (X1 −Xl, X1 −Xs) [Yl −m(X1)] .

We have

E

(
n∑
j=2

n∑
k=2

n∑
l=2

n∑
s=2

Λj
11Λ

l
21

)
= (n− 1)2

[
(n− 1)E

(
Λ2

11Λ
2
21

)
+ (n− 1)(n− 2)E

(
Λ2

11Λ
3
21

)]
. (C.15)

Now,

E
(
Λ2

11Λ
2
21

)
= −4E

{
f(X1)

−2Kh (X1 −X2)α1h (X1 −X2) [Y2 −m(X1)]
2}

= −4E
(
f(X1)

−2Kh (X1 −X2)α1h (X1 −X2)
{
σ2(X2)

+ [m(X2)−m(X1)]
2})

= −4h−1
∫∫

f(x1)
−1K(u)α1(u)

{
σ2(x1 − hu)

+ [m(x1 − hu)−m(x1)]
2} f(x1 − hu) dx1du

2
= −4h−1

∫∫
f(x1)

−1K(u)α1(u)h2u2f(x1)ϕ4(x1) dx1du

= 2µ2

(
K2
)
h

∫
ϕ4 (C.16)
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and

E
(
Λ2

11Λ
3
21

)
= −4E

{
f(X1)

−2Kh (X1 −X2)α1h (X1 −X3) [Y2 −m(X1)]

[Y3 −m(X1)]}

= −4E
{
f(X1)

−2Kh (X1 −X2)α1h (X1 −X3) [m(X2)−m(X1)]

[m(X3)−m(X1)]}

= −4

∫∫∫
f(x1)

−1K(u)α1(v) [m(x1 − hu)−m(x1)]

[m(x1 − hv)−m(x1)] f(x1 − hu)f(x1 − hv) dx1dudv

2
= −4

∫∫∫
f(x1)

−1K(u)α1(v)h6
(
u2v4 + u4v2

)
f(x1)

2ϕ6(x1)ϕ7(x1)

dx1dudv

= 24µ2(K)µ4(K)h6
∫
ϕ6ϕ7f, (C.17)

where

ϕ4(x) = f(x)−1
{

1

2
f ′′(x)σ2(x) + f ′(x)σ2′(x) + f(x)

[
1

2
σ2′′(x) +m′(x)2

]}
,

ϕ6(x) = f(x)−1
[

1

24
m4)(x)f(x) +

1

6
m′′′(x)f ′(x) +

1

4
m′′(x)f ′′(x) +

1

6
m′(x)f ′′′(x)

]
,

ϕ7(x) = f(x)−1
[

1

2
m′′(x)f(x) +m′(x)f ′(x)

]
,

and we have used the fact that∫
K(u)α1(u)ui du =

1− i
2

µi
(
K2
)
,∫∫

K(u)α1(v)uivj dudv = −jµi(K)µj(K).

Then, plugging (C.16) and (C.17) into (C.15) we get:

E

(
n∑
j=2

n∑
k=2

n∑
l=2

n∑
s=2

Λj
11Λ

l
21

)
2
= 2µ2

(
K2
)
n3h

∫
ϕ4 + 24n4h6

∫
ϕ6ϕ7f

+ O
(
n2h+ n3h6

)
. (C.18)
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We have

E

(
n∑
j=2

n∑
k=2

n∑
l=2

n∑
s=2

Λjk
12Λ

l
21

)
= (n− 1)

{
(n− 1)(n− 2)(n− 3)E

(
Λ23

12Λ
4
21

)
+ (n− 1)(n− 2)

[
E
(
Λ22

12Λ
3
21

)
+ E

(
Λ23

12Λ
2
21

)
+ E

(
Λ23

12Λ
3
21

)]}
+ o

(
n3h+ n4h6

)
. (C.19)

Now,

E
(
Λ23

12Λ
4
21

)
= 2E

{
f(X1)

−3Kh (X1 −X2)Kh (X1 −X3)α1h (X1 −X4)

[Y2 −m(X1)] [Y4 −m(X1)]}

= 2

∫∫∫∫
f(x1)

−2K(u)K(v)α1(w) [m(x1 − hv)−m(x1)]

[m(x1 − hw)−m(x1)] f(x1 − hu)f(x1 − hv)f(x1 − hw)

dx1dudvdw

2
= 2

∫∫∫∫
f(x1)

−2K(u)K(v)α1(w)h6
[
(w4v2 + w2v4)f(x1)

3

ϕ6(x1)ϕ7(x1) + w2u2v2
1

2
f ′′(x1)f(x1)

2ϕ7(x1)
2

]
f(x1 − hu)

f(x1 − hv)f(x1 − hw) dx1dudvdw

= −2h6
[
6µ2(K)µ4(K)

∫
ϕ6ϕ7f + µ2(K)3

∫
ϕ2
7f
′′
]
, (C.20)

E
(
Λ22

12Λ
3
21

)
= 2E

{
f(X1)

−3Kh (X1 −X2)
2 α1h (X1 −X3) [Y2 −m(X1)]

[Y3 −m(X1)]}

= 2h−1
∫∫∫

f(x1)
−2K(u)2α1(v) [m(x1 − hu)−m(x1)]

[m(x1 − hv)−m(x1)] f(x1 − hu)f(x1 − hv) dx1dudv
2
= O

(
h3
)
, (C.21)
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E
(
Λ23

12Λ
2
21

)
= 2E

{
f(X1)

−3Kh (X1 −X2)α1h (X1 −X2)Kh (X1 −X3)

[Y2 −m(X1)]
2}

= 2h−1
∫∫

f(x1)
−2K(u)α1(u)K(v)

{
σ2(x1 − hu)

+ [m(x1 − hu)−m(x1)]
2} f(x1 − hu)f(x1 − hv) dx1dudv

2
= 2h−1

∫∫∫
f(x1)

−2K(u)α1(u)K(v)h2
[
u2f(x1)

2ϕ4(x1)

+ v2
1

2
σ2(x1)f(x1)f

′′(x1)

]
dx1dudv

= h

[
1

2
R(K)µ2(K)

∫
σ2f ′′f−1 − µ2

(
K2
) ∫

ϕ4

]
(C.22)

and

E
(
Λ23

12Λ
3
21

)
= 2E

{
f(X1)

−3Kh (X1 −X2)Kh (X1 −X3)α1h (X1 −X3)

[Y2 −m(X1)] [Y3 −m(X1)]}

= 2h−1
∫∫∫

f(x1)
−2K(u)K(v)α1(v) [m(x1 − hu)−m(x1)]

[m(x1 − hv)−m(x1)] f(x1 − hu)f(x1 − hv) dx1dudv
2
= O

(
h3
)
, (C.23)

where we have used the fact that∫∫∫
K(u)K(v)α1(w)uivjwk dudvdw = −kµi(K)µj(K)µk(K),∫∫

K(u)2α1(v)uivj dudv = −jµi
(
K2
)
µj(K),∫∫

K(u)α1(u)K(v)uivj dudv =
1− i

2
µi
(
K2
)
µj(K).
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Then, plugging (C.20), (C.21), (C.22) and (C.23) into (C.19) we get

E

(
n∑
j=2

n∑
k=2

n∑
l=2

n∑
s=2

Λjk
12Λ

l
21

)
2
= −2n4h6

[
6µ2(K)µ4(K)

∫
ϕ6ϕ7f + µ2(K)3

∫
ϕ2
7f
′′
]

+ n3h

[
1

2
R(K)µ2(K)

∫
σ2f ′′f−1

− µ2

(
K2
) ∫

ϕ4

]
. (C.24)

We have

E

(
n∑
j=2

n∑
k=2

n∑
l=2

n∑
s=2

Λj
11Λ

ls
22

)
= (n− 1)2(n− 2)(n− 3)E

(
Λ2

11Λ
34
22

)
+ (n− 1)2(n− 2)

[
E
(
Λ2

11Λ
23
22

)
+ E

(
Λ2

11Λ
32
22

)
+ E

(
Λ3

11Λ
22
22

)]
+ o

(
n3h+ n4h6

)
. (C.25)

Now,

E
(
Λ2

11Λ
34
22

)
= 2h−1E

{
f(X1)

−3Kh (X1 −X2) Γ1h (X1 −X3, X1 −X4)

[Y2 −m(X1)] [Y3 −m(X1)]}

= 2

∫∫∫∫
f(x1)

−2K(u)Γ1(v, w) [m(x1 − hu)−m(x1)]

[m(x1 − hv)−m(x1)] f(x1 − hu)f(x1 − hv)f(x1 − hw)

dx1dudvdw

2
= 2

∫∫∫∫
f(x1)

−2K(u)Γ1(v, w)h6
[
(u2v4 + u4v2)f(x1)

3ϕ6(x1)ϕ7(x1)

+ w2u2v2
1

2
f ′′(x1)f(x1)

2ϕ7(x1)
2

]
dx1dudvdw

= −h6
[
12µ2(K)µ4(K)

∫
ϕ6ϕ7f + 4µ2(K)3

∫
ϕ2
7f
′′
]
, (C.26)
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E
(
Λ2

11Λ
23
22

)
= 2h−1E

{
f(X1)

−3Kh (X1 −X2) Γ1h (X1 −X2, X1 −X4)

[Y2 −m(X1)]
2}

= 2h−1
∫∫∫

f(x1)
−2K(u)Γ1(u, v)

{
σ2(x1 − hu)

+ [m(x1 − hu)−m(x1)]
2} f(x1 − hu)f(x1 − hv) dx1dudv

2
= 2h−1

∫∫∫
f(x1)

−2K(u)Γ1(u, v)h2
[
u2f(x1)

2ϕ4(x1)

+ v2
1

2
σ2(x1)f

′′(x1)f(x1)

]
dx1dudv

= −h
[
µ2

(
K2
) ∫

ϕ4 +
3

2
R(K)µ2(K)

∫
σ2f ′′f−1

]
, (C.27)

E
(
Λ2

11Λ
32
22

)
= 2h−1E

{
f(X1)

−3Kh (X1 −X2) Γ1h (X1 −X3, X1 −X2)

[Y2 −m(X1)] [Y3 −m(X1)]}

= 2h−1f(x1)
−2K(u)Γ1(v, u) [m(x1 − hu)−m(x1)]

[m(x1 − hv)−m(x1)] f(x1 − hu)f(x1 − hv) dx1dudv
2
= O

(
h3
)

(C.28)

and

E
(
Λ3

11Λ
22
22

)
= 2h−1E

{
f(X1)

−3Kh (X1 −X3) Γ1h (X1 −X2, X1 −X2)

[Y2 −m(X1)] [Y3 −m(X1)]}

= 2h−1f(x1)
−2K(u)Γ1(v, v) [m(x1 − hu)−m(x1)]

[m(x1 − hv)−m(x1)] f(x1 − hu)f(x1 − hv) dx1dudv
2
= O

(
h3
)
, (C.29)
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where we have used the fact that∫∫∫
K(u)Γ1(v, w)uivjwk dudvdw = (−k − j)µi(K)µj(K)µk(K),∫∫

K(u)Γ1(u, v)uivj dudv =
1− i− 2j

2
µi
(
K2
)
µj(K),

Γ1(u, v) = Γ1(v, u),∫∫
K(u)Γ1(v, v)uivj dudv = (1− j)µi(K)µj

(
K2
)
.

Then, plugging (C.26), (C.27), (C.28) and (C.29) into (C.25) we get

E

(
n∑
j=2

n∑
k=2

n∑
l=2

n∑
s=2

Λj
11Λ

ls
22

)
2
= −n4h6

[
12µ2(K)µ4(K)

∫
ϕ6ϕ7f

+ 4µ2(K)3
∫
ϕ2
7f
′′
]
− n3h

[
µ2

(
K2
) ∫

ϕ4

+
3

2
R(K)µ2(K)

∫
σ2f ′′f−1

]
. (C.30)

We have

E

(
n∑
j=2

n∑
k=2

n∑
l=2

n∑
s=2

Λjk
12Λ

ls
22

)
= (n− 1)(n− 2)(n− 3)(n− 4)E

(
Λ23

12Λ
45
22

)
+ (n− 1)(n− 2)(n− 3)

[
E
(
Λ22

12Λ
34
22

)
+ E

(
Λ23

12Λ
24
22

)
+ E

(
Λ23

12Λ
42
22

)
+ E

(
Λ32

12Λ
24
22

)
+ E

(
Λ32

12Λ
42
22

)
+ E

(
Λ34

12Λ
22
22

)]
+ o

(
n3h+ n4h6

)
. (C.31)



162 Appendix C. Proofs of the results of Chapter 4

Now,

E
(
Λ23

12Λ
45
22

)
= −h−1E

{
f(X1)

−4Kh (X1 −X2)Kh (X1 −X3)

Γ1h (X1 −X4, X1 −X5) [Y2 −m(X1)] [Y4 −m(X1)]}

= −
∫
· · ·
∫
f(x1)

−3K(u)K(v)Γ1(w, z) [m(x1 − hu)−m(x1)]

[m(x1 − hw)−m(x1)] f(x1 − hu)f(x1 − hv)f(x1 − hw)f(x1 − hz)

dx1dudvdwdz

2
= −

∫
· · ·
∫
f(x1)

−3K(u)K(v)Γ1(w, z)h
6
[
(u4w2 + u2w4)f(x1)

4

ϕ6(x1)ϕ7(x1) + (u2w2v2 + u2w2z2)
1

2
f(x1)

3f ′′(x1)ϕ7(x1)
2

]
dx1dudvdwdz

= h6
[
6µ2(K)µ4(K)

∫
ϕ6ϕ7f + 3µ2(K)3

∫
ϕ2
7f
′′
]

(C.32)

and

E
(
Λ23

12Λ
24
22

)
= −h−1E

{
f(X1)

−4Kh (X1 −X2)Kh (X1 −X3)

Γ1h (X1 −X2, X1 −X4) [Y2 −m(X1)]
2}

= −
∫∫∫∫

f(x1)
−3K(u)K(v)Γ1(u,w)

{
σ2(x1 − hu)

+ [m(x1 − hu)−m(x1)]
2} f(x1 − hu)f(x1 − hv)f(x1 − hw)f(x1 − hz)

dx1dudvdw

2
= −h−1

∫∫∫∫
f(x1)

−3K(u)K(v)Γ1(u,w)h2
[
(v2 + w2)

1

2
f(x1)

2σ2(x1)

f ′′(x1) + u2f(x1)
3ϕ4(x1)

]
dx1dudvdw

=
1

2
h

[
R(K)µ2(K)

∫
σ2f ′′f−1 + µ2

(
K2
) ∫

ϕ4

]
, (C.33)

where we have used the fact that∫∫∫∫
K(u)K(v)Γ1(w, z)u

ivjwkzl dudvdwdz = (−k − l)µi(K)µj(K)µk(K)µl(K),∫∫∫
K(u)K(v)Γ1(u,w)uivjwk dudvdw =

1− i− 2k

2
µi
(
K2
)
µj(K)µk(K).



163

Also, it is straightforward to see that

E
(
Λ22

12Λ
34
22

)
,E
(
Λ23

12Λ
42
22

)
,E
(
Λ32

12Λ
24
22

)
,E
(
Λ32

12Λ
42
22

)
,E
(
Λ34

12Λ
22
22

) 2
= O

(
h3
)
. (C.34)

Then, plugging (C.32), (C.33) and (C.34) into (C.31) we get

E

(
n∑
j=2

n∑
k=2

n∑
l=2

n∑
s=2

Λjk
12Λ

ls
22

)
2
= n4h6

[
6µ2(K)µ4(K)

∫
ϕ6ϕ7f + 3µ2(K)3

∫
ϕ2
7f
′′
]

+
1

2
n3h

[
R(K)µ2(K)

∫
σ2f ′′f−1

+ µ2

(
K2
) ∫

ϕ4

]
. (C.35)

Finally, plugging (C.18), (C.24), (C.30), and (C.35) into (C.14) yields:

E
[
C̃V

′
n(h)

]
2
= h5

[
12µ2(K)µ4(K)

∫
ϕ6ϕ7f − 6µ2(K)3

∫
ϕ2
7f
′′
]

+ n−1
[
µ2

(
K2
) ∫

ϕ4 −R(K)µ2(K)

∫
σ2f ′′f−1

]
,

which, considering the definitions of ϕ4, ϕ6 and ϕ7 given above, matches the second

order terms of E
[
C̃V

′
n(h)

]
given in Lemma 4.2. Regarding the first order terms of

E
[
C̃V

′
n(h)

]
and as already mentioned, it is well known that these coincide with the

main term of M̃ ′
n(h).

As for the variance of C̃V
′
n(h), recall that we are only interested in obtaining its

first-order terms. Thus, instead of working with the quadratic approximation of m̂h,

namely m̃h, defined in (4.8), we can employ the simpler, linear approximation of m̂h,

denoted by m̄h and defined in (4.9). This linear approximation of the Nadaraya-

Watson estimator was already proposed in Barbeito (2020) and it can be expressed

as

m̄h(x) = m(x) +
1

nf(x)

n∑
i=1

Kh (x−Xi) [Yi −m(x)] .
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Let us now define

CV n(h) =
1

n

n∑
i=1

[
m̄

(−i)
h (Xi)− Yi

]2
,

Pij =
Yi −m(Xi)

f(Xi)
[Yj −m(Xi)]α1h(Xi −Xj),

Qijk = f(Xi)
−2[Yj −m(Xi)][Yk −m(Xi)]β1h(Xi −Xj, Xi −Xk).

Then,

var
[
CV

′
n(h)

]
=

4

n2(n− 1)4h2

n∑
i=1

n∑
j=1
j 6=i

n∑
k=1
k 6=i

n∑
l=1

n∑
r=1
r 6=l

n∑
s=1
s 6=l

Cijklrs,

where

Cijklrs = cov (Pij, Plr)− h−1cov (Pij, Qlrs)− h−1cov (Plr, Qijk) + h−2cov (Qijk, Qlrs) .

By counting the possible cases and using C122345 = C123455 = 0, we get

var
[
C̃V

′
n(h)

]
=

4

n2(n− 1)4h2
[n(n− 1)(n− 2)(n− 3)(n− 4)(n− 5)C123456

+ n(n− 1)(n− 2)(n− 3)(n− 4) (C123145 + 2C123415 + 2C123451

+ 2C123455 + C123425 + 2C123452 + C123453)

+ n(n− 1)(n− 2)(n− 3) (2C122134 + C123124 + 2C123142 + C123143

+ 2C122314 + C123214 + 2C123412 + 2C123314 + 2C123413 + 2C122341

+ 2C123421 + C123341 + 2C123431 + C122344 + C123423 + C123432

+ 2C123411 + 2C122324 + 2C122342)

+ n(n− 1)(n− 2) (C122322 + C122133 + C123123 + C123132 + C123213

+ 2C123312 + C123321 + 2C122311 + 2C123211 + 2C123311 + 2C123122

+ +2C123322 + 2C122132 + 2C122312) + n(n− 1) (C122122 + C122211)] .

Among the previous covariances, it can be argued that the only ones that con-

tribute to the dominant term of var
[
C̃V

′
n(h)

]
are C123145, C123245, C123425 and C123124.
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Before we continue and with the intention of facilitating the calculations of the four

Cijklrs that we need, let us obtain general expressions for each of the summands that

make up Cijklrs. Since

E (Pij | Xi, Xj, Xl, Xr, Yj, Yr) = 0

and

cov (Yi −m(Xi), Yl −m(Xl) | Xi, Xl) = δilσ
2(Xi),

then

cov (Pij, Plr) = E [cov (Pij, Plr | Xi, Xj, Xl, Xr, Yj, Yr)]

= E
{
f(Xi)

−1f(Xl)
−1α1h(Xi −Xj)α1h(Xl −Xr)[Yj −m(Xi)]

[Yr −m(Xl)]cov (Yi −m(Xi), Yl −m(Xl) | Xi, Xl)}

= δilE
{
f(Xi)

−2α1h(Xi −Xj)α1h(Xi −Xr)[Yj −m(Xi)]

[Yr −m(Xi)]σ
2(Xi)

}
.

Let us now consider the covariance

cov (Pij, Qlrs) = E
{
f(Xi)

−1f(Xl)
−2α1h(Xi −Xj)β1h(Xl −Xr, Xl −Xs)

[Yi −m(Xi)][Yj −m(Xi)][Yr −m(Xl)][Ys −m(Xl)]} .

If r, s 6= i it is clear that cov (Pij, Qlrs) = 0. Now, for the cases r = i and s = i

(both cases imply i 6= l), let us define

t =

s, if r = i

r, if s = i
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and note that

cov [Yi −m(Xi), Yi −m(Xl) | Xi, Xl]

= cov [εi, εi +m(Xi)−m(Xl) | Xi, Xl]

= var (εi | Xi) + cov [εi,m(Xi)−m(Xl) | Xi, Xl]

= σ2(Xi).

Then, using the law of total covariance:

cov (Pij, Qlrs) = E
{
f(Xi)

−1f(Xl)
−2α1h(Xi −Xj)β1h(Xl −Xr, Xl −Xs)

[Yj −m(Xi)][Yt −m(Xl)]cov [Yi −m(Xi), Yi −m(Xl) | Xi, Xl]}

= E
{
f(Xi)

−1f(Xl)
−2α1h(Xi −Xj)β1h(Xl −Xr, Xl −Xs)

[Yj −m(Xi)][Yt −m(Xl)]σ
2(Xi)

}
.

Finally,

cov (Qijk, Qlrs)

= E [cov (Qijk, Qlrs | Xi, Xj, Xk, Xl, Xr, Xs)]

+ cov [E (Qijk | Xi, Xj, Xk, Xl, Xr, Xs) ,E (Qlrs | Xi, Xj, Xk, Xl, Xr, Xs)]

= E
(
f(Xi)

−2f(Xl)
−2β1h(Xi −Xj, Xi −Xk)β1h(Xl −Xr, Xl −Xs)

cov {[Yj −m(Xi)][Yk −m(Xi)], [Yr −m(Xl)]

[Ys −m(Xl)] | Xi, Xj, Xk, Xl, Xr, Xs})

+ cov [E (Qijk | Xi, Xj, Xk, Xl, Xr, Xs) ,E (Qlrs | Xi, Xj, Xk, Xl, Xr, Xs)] .

Note that, if {j, k} ∩ {r, s} = ∅, then

cov {[Yj −m(Xi)][Yk −m(Xi)], [Yr −m(Xl)]

[Ys −m(Xl)] | Xi, Xj, Xk, Xl, Xr, Xs}

= 0.
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Now, regarding the term C123245, since 1 6= 2 and 4, 5 6= 1, we have

cov (P12, P24) = cov (P12, Q245) = 0

and

cov (P24, Q123) = E
{
f(X2)

−1f(X1)
−2α1h(X2 −X4)β1h(X1 −X2, X1 −X3)

[Y4 −m(X2)][Y3 −m(X1)]σ
2(X2)

}
= E

{
f(X2)

−1f(X1)
−2α1h(X2 −X4)β1h(X1 −X2, X1 −X3)

[m(X4)−m(X2)][m(X3)−m(X1)]σ
2(X2)

}
=

∫∫∫∫
f(x2)

−1f(x1)
−2α1h(x2 − x4)β1h(x1 − x2, x1 − x3)

[m(x4)−m(x2)][m(x3)−m(x1)]f(x1)f(x2)f(x3)f(x4)

dx1dx2dx3dx4

Making the following changes of variable,
x4 = x2 − hu4
x3 = x1 − hu3
x2 = x1 − hu2

and using the fact that∫∫∫
α1(u4)β1(u2, u3)u

i
4u

j
2u

k
3 du4du2du3 = ikµi(K)µj(K)µk(K) = 0

⇐⇒ i = 0 or k = 0 or (i, j or k is an odd number),
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we obtain that

cov (P24, Q123)

= h

∫∫∫∫
f(x1)

−1α1(u4)β1(u2, u3)[m(x1 − hu2 − hu4)−m(x1 − hu2)]

[m(x1 − hu3)−m(x1)]σ
2(x1 − hu2)f(x1 − hu3)

f(x1 − hu2 − hu4) dx1du2du3du4

= h

∫∫∫∫
f(x1)

−1α1(u4)β1(u2, u3)u
2
4u

2
3h

4

[
1

4
m′′(x1)

2σ2(x1)f(x1)
2

+ m′(x1)
2σ2(x1)f

′(x1)
2 +m′(x1)m

′′(x1)σ
2(x1)f(x1)f

′(x1)
]
dx1du2du3du4

+ O
(
h7
)

= 4µ2(K)2h5
∫
f(x)−1σ2(x)

[
1

4
m′′(x)2f(x)2 +m′(x)2f ′(x)2

+ m′(x)m′′(x)f(x)f ′(x)] dx+O
(
h7
)
,

Since {2, 3} ∩ {4, 5} = ∅,

cov (Q123, Q245)

= cov
{
f(X1)

−2β1h(X1 −X2, X1 −X3)[m(X2)−m(X1)]

[m(X3)−m(X1)], f(X2)
−2β1h(X2 −X4, X2 −X5)[m(X4)−m(X2)]

[m(X5)−m(X2)]}

= E
{
f(X1)

−2f(X2)
−2β1h(X1 −X2, X1 −X3)β1h(X2 −X4, X2 −X5)

[m(X2)−m(X1)][m(X3)−m(X1)][m(X4)−m(X2)][m(X5)−m(X2)]}

− E
{
f(X1)

−2β1h(X1 −X2, X1 −X3)[m(X2)−m(X1)][m(X3)−m(X1)]
}2

= O
(
h10
)
.

Therefore,

C123245 = −4µ2(K)2h4
∫
f(x)−1σ2(x)

[
1

4
m′′(x)2f(x)2 +m′(x)2f ′(x)2

+ m′(x)m′′(x)f(x)f ′(x)] dx+O
(
h6
)
. (C.36)
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Regarding the term C123425, since 1 6= 4, 2, 3 6= 4 and 2, 5 6= 1, then

cov (P12, P42) = cov (P12, Q425) = cov (P42, Q123) = 0.

We have that

h2
∫
· · ·
∫
f(x1)

−2f(x4)
−2β1h(x1 − x2, x1 − x3)β1h(x4 − x2, x4 − x5)

[m(x3)−m(x1)][m(x5)−m(x4)]
{
σ2(x2) + [m(x2)−m(x1)][m(x2)−m(x4)]

}
f(x1)f(x2)f(x3)f(x4)f(x5)dx1dx2dx3dx4dx5

= h2
∫
· · ·
∫
f(x1)

−1f(x1 − hu2 + hu4)
−1β1(u2, u3)β1(u4, u5)

[m(x1 − hu3)−m(x1)][m(x1 − hu2 + hu4 − hu5)−m(x1 − hu2 + hu4)]{
σ2(x1 − hu2) + [m(x1 − hu2)−m(x1)][m(x1 − hu2)−m(x1 − hu2 + hu4)]

}
f(x1 − hu2)f(x1 − hu3)f(x1 − hu2 + hu4 − hu5)dx1du2du3du4du5

= 4R(K)2µ2(K)2h6
∫
σ2f(x)−1

[
1

4
(m′′)2f 2 +m′m′′ff ′ + (m′)2(f ′)2

]
+O

(
h8
)

where we have made the following change of variables,

x2 = x1 − hu2
x3 = x1 − hu3
x4 = x2 + hu4

x5 = x2 − hu5

and used the fact that∫∫∫∫
β1(u2, u3)β1(u4, u5)u

i
2u

j
3u

k
4u

l
5 du2du3du4du5 = jlµi(K)µj(K)µk(K)µl(K) = 0

⇐⇒ j = 0 or l = 0 or (i, j, k or l is an odd number).

Therefore,

C123425 = 8R(K)2µ2(K)2h4
∫
σ2f(x)−1

[
1

4
(m′′)2f 2 +m′m′′ff ′ + (m′)2(f ′)2

]
+ O

(
h6
)
. (C.37)
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As for the term C123124, since 2, 4 6= 1 and 2, 3 6= 1, then

cov (P12, Q124) = cov (P12, Q123) = 0.

We have that

cov (P12, P12) = E
{
f(X1)

−2α1h(X1 −X2)
2σ2(X1)

[
(m(X2)−m(X1))

2 + σ2(X2)
]}

= h−1
∫∫

f(x1)
−1α1(u)2σ2(x1)

{
σ2(x1 − hu)

+ [m(x1 − hu)−m(x1)]
2} f(x1 − hu) dx1du

= µ2

[
(K ′)2

]
h−1

∫
(σ2)2 +O (h) ,

where we have used the fact that∫
α1(u)2ui du = −iµi(K2) + µi+2

[
(K ′)2

]
= 0 ⇐⇒ i is odd.

On the other hand,

cov (Q123, Q124)

= E
(
f(X1)

−4β1h(X1 −X2, X1 −X3)β1h(X1 −X2, X1 −X4)

[m(X3)−m(X1)][m(X4)−m(X1)]
{
σ2(X2) + [m(X2)−m(X1)]

2
})

− E
{
f(X1)

−2β1h(X1 −X2, X1 −X3)[m(X2)−m(X1)]

[m(X3)−m(X1)]}2

= O
(
h5
)
.

Therefore,

C123124 = µ2

[
(K ′)2

]
h−1

∫
(σ2)2 +O (h) . (C.38)
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Using similar arguments and calculations we get

C123145 = 4µ2(K)2h4
∫
f−1σ2

[
1

4
(m′′)2f 2 + (m′)2(f ′)2 +m′m′′ff ′

]
+ O

(
h6
)
. (C.39)

Finally, considering (C.36), (C.37), (C.38) and (C.39) we obtain the main term

of the variance of C̃V
′
n(h) given in Lemma 4.2.

Proof of Theorem 4.1 From equation (4.11), it follows that, up to first order,

E
(
h̃CV,n

)
− h̃n0 =

M̃ ′
n(h̃n0)− E

[
C̃V

′
n(h̃n0)

]
M̃ ′′

n(h̃n0)
, (C.40)

var
(
h̃CV,n

)
=

var
[
C̃V

′
n(h̃n0)

]
M̃ ′′

n(h̃n0)2
. (C.41)

Since the first-order terms of M̃ ′
n(h̃n0) and E

[
C̃V

′
n(h̃n0)

]
coincide, we must con-

sider the second-order terms of M̃ ′
n(h̃n0) and E

[
C̃V

′
n(h̃n0)

]
for the bias of h̃CV,n, while

for the variance, it will suffice to consider the first-order term of var
[
C̃V

′
n(h̃n0)

]
.

Therefore, to proof Theorem 4.1, we only have to plug the results of Lemma 4.1 and

Lemma 4.2 into (C.40) and (C.41).

Proof of Corollary 4.1 Using the Cramér–Wold device (Cramér and Wold, 1936)

and an argument similar to that followed in the proof of Theorem 3.1, the asymptotic

normality of the statistic of interest, namely n3/10
(
h̃CV,n − h̃n0

)
, can be derived.

The expressions for the mean and the variance of the asymptotic distribution of this

statistic are an immediate consequence of Theorem 4.1.

Sketch of the proof of Remark 4.1 We shall begin the sketch of the proof by

showing that it stands to reason that the following expressions hold:

Mn(h)− M̃n(h) = O
(
h8 + n−1h2 + n−2

)
,

CVn(h)− C̃V n(h) = Op

(
h6 + n−1/2h7/2 + n−1

)
,

h̃n0 − hn0 = O
(
n−4/5

)
.
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Recall that the Nadaraya–Watson estimator, m̂h, and its quadratic approxima-

tion, m̃h, can be expressed as

m̂h(x) = T + E + F,

m̃h(x) = T,

where T = A + B + C + D and A,B,C,D,E and F were defined in Section 4.1.

From the proof of Lemma 4.1 and the fact that

E
[
Y1Kh(x−X1)

3
]

= O
(
h−2
)
,

E
(
âê2
)

= E

[
n−3

n∑
i=1

n∑
j=1

n∑
k=1

YiKh(x−Xi)Kh(x−Xj)Kh(x−Xk)

]
= n−3

{
nE
[
Y1Kh(x−X1)

3
]

+ n(n− 1)E
[
Y1Kh(x−X1)Kh(x−X2)

2
]

+ 2n(n− 1)E
[
Y1Kh(x−X1)

2Kh(x−X2)
]

+ n(n− 1)(n− 2)E [Y1Kh(x−X1)Kh(x−X2)Kh(x−X3)]}

= 3R(K)m(x)f(x)2n−1h−1 +m(x)f(x)3

+
[
µ2(K)m(x)f(x)2f ′′(x) + µ2(K)ϕ1(x)f(x)3

]
h2

+

[
1

4
µ2(K)2m(x)f(x)f ′′(x)2 + µ4(K)f(x)3ϕ2(x)

+ µ2(K)2f(x)2ϕ1(x)f ′′(x)
]
h4 +O

(
h6 + n−1

)
it follows that

E(E) = O
(
h6 + n−1

)
,

var(E) = O
(
n−1h7

)
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and the same could be said of F . Then,

{E [m̂h(x)]−m(x)}2 = {E [m̃h(x)]−m(x) + E (E + F )}2

= {E [m̃h(x)]−m(x)}2 + E (E + F )2

+ 2E (E + F ) {E [m̃h(x)]−m(x)}

= {E [m̃h(x)]−m(x)}2 +O
(
h8 + n−1h2 + n−2

)
,

where we have used the fact that both E (E) and E (F ) are O (h6 + n−1) and

E [m̃h(x)]−m(x) = O
(
h2
)
.

Also,

var [m̂h(x)] = var [m̃h(x)] + var (E + F ) + 2cov [m̃h(x), E + F ]

= var [m̃h(x)] +O
(
n−1h3

)
,

where we have used the fact that both var (E) and var (F ) are O (n−1h7) and

var (E + F ) = var (E) + var (F ) + 2cov (E,F )

≤ var (E) + var (F ) + 2
√

var (E) var (F )

= O
(
n−1h7

)
,

cov [m̃h(x), E + F ] ≤
√

var [m̃h(x)] var (E + F ) = O
(
n−1h3

)
.

Thus, it follows that

Mn(h) = M̃n(h) +O
(
h8 + n−1h2 + n−2

)
.

To avoid confusion, the functions E and F will be denoted below by En(x) and

Fn(x), respectively, to indicate the fact that E and F depend on n and x. Now,

there exist functions αE, βE and γE such that

E [En(x)] = αE(x)h6 + βE(x)n−1 + o
(
h6 + n−1

)
,

var [En(x)] = γE(x)n−1h7 + o
(
n−1h7

)
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and so

E
[
En(X1)

2
]

= E
{

E
[
En(X1)

2 | X1

]}
= E

{
E [En(X1) | X1]

2 + var [En(X1) | X1]
}

= E
{[
αE(X1)h

6 + βE(X1)n
−1 + o

(
h6 + n−1

)]2
+ γE(X1)n

−1h7

+ o
(
n−1h7

)}
= h12

∫
α2
Ef + n−2

∫
β2
Ef + n−1h7

∫
(2αEβE + γE) f

+ o
(
h12 + n−1h7 + n−2

)
determines the order in probability of E(X1)

2 due to E(X1)
2 being a random variable

that only takes positive values.

Since similar results can be obtained for E [F (X1)
2] and E [E(X1)F (X1)] (using

the Cauchy–Schwarz inequality), it can be stated that

E

{
1

n

n∑
i=1

[
m̂

(−i)
h (Xi)− m̃(−i)

h (Xi)
]2}

= E

{
1

n

n∑
i=1

[En−1(Xi) + Fn−1(Xi)]
2

}
= E

{
[En−1(X1) + Fn−1(X1)]

2}
= E

[
En−1(X1)

2 + Fn−1(X1)
2 + 2En−1(X1)Fn−1(X1)

]
= Op

(
h12 + n−1h7 + n−2

)
.

Then, since the random variable 1
n

n∑
i=1

[
m̂

(−i)
h (Xi)− m̃(−i)

h (Xi)
]2

only takes posi-

tive values, its order in probability is given by its expected value and, hence,

1

n

n∑
i=1

[
m̂

(−i)
h (Xi)− m̃(−i)

h (Xi)
]2

= Op

(
h12 + n−1h7 + n−2

)
.
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Therefore, using the Cauchy–Schwarz inequality,

CVn(h)− C̃V n(h) =
1

n

{
n∑
i=1

[
m̂

(−i)
h (Xi)− Yi

]2
−

n∑
i=1

[
m̃

(−i)
h (Xi)− Yi

]2}

=
1

n

n∑
i=1

[
m̂

(−i)
h (Xi)− m̃(−i)

h (Xi)
] [
m̂

(−i)
h (Xi) + m̃

(−i)
h (Xi)− 2Yi

]
≤

{
1

n

n∑
i=1

[
m̂

(−i)
h (Xi)− m̃(−i)

h (Xi)
]2

1

n

n∑
i=1

[
m̂

(−i)
h (Xi) + m̃

(−i)
h (Xi)− 2Yi

]2}1/2

= Op

(
h6 + n−1/2h7/2 + n−1

)
,

where we have used

1

n

n∑
i=1

[
m̂

(−i)
h (Xi) + m̃

(−i)
h (Xi)− 2Yi

]2
= Op (1) .

Proceeding in a similar manner, albeit with more tedious calculations, it can be

argued that

CV ′n(h∗n)− C̃V
′
n(h∗n) = Op

(
n−4/5

)
,

for any bandwidth h∗n that tends to zero at the optimal rate n−1/5.

Finally, by means of a Taylor expansion we have

0 = M ′
n(hn0) = M ′

n(h̃n0) +M ′′
n(h̄n0)

(
hn0 − h̃n0

)
,

for some h̄n0 between hn0 and h̃n0. Then, using the fact that M̃ ′
n(h̃n0) = 0,

M ′
n(h̃n0) = M̃ ′

n(h̃n0) +O
(
n−6/5

)
= O

(
n−6/5

)
and

M ′′
n(h̄n0) = L0n

−2/5 + o
(
n−2/5

)
,
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for some constant L0, we have

hn0 − h̃n0 = − M ′
n(h̃n0)

M ′′
n

(
h̄n0
) = O

(
n−4/5

)
.

Now, a Taylor expansion yields

0 = CV ′n(ĥCV,n) = CV ′n(h̃CV,n) + CV ′′n (h∗)
(
ĥCV,n − h̃CV,n

)
,

for some h∗ between ĥCV,n and h̃CV,n. Note that

M̃ ′′
n(h∗)− M̃ ′′

n(C0n
−1/5) = M̃ ′′′

n (h∗∗)
(
h∗ − C0n

−1/5) = op
(
n−2/5

)
,

for some h∗∗ between h∗ and the asymptotically optimal bandwidth, C0n
−1/5, where

we have used M̃ ′′′
n (h∗∗) = Op

(
n−1/5

)
and h∗−C0n

−1/5 = op
(
n−1/5

)
. Then, since the

order in probability of C̃V
′′
n(h∗) is given by its expected value, that is, the main term

of M̃ ′′
n(h∗), we have:

C̃V
′′
n(h∗) = L0n

−2/5 + op
(
n−2/5

)
.

Consequently,

ĥCV,n − h̃CV,n = −CV
′
n(h̃CV,n)

CV ′′n (h∗)
=

Op

(
n−4/5

)
L0n−2/5 + op (n−2/5)

= Op

(
n−2/5

)
,

where we have used the fact that C̃V
′
n(h̃CV,n) = 0 and so

CV ′n(h̃CV,n) = C̃V
′
n(h̃CV,n) +Op

(
n−4/5

)
= Op

(
n−4/5

)
.

Moreover, since hn0 − h̃n0 = O
(
n−4/5

)
, we can also write

ĥCV,n − hn0 = h̃CV,n − h̃n0 +Op

(
n−2/5

)
.
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Proof of Theorem 4.2 If we define

C1 = − 6B2C
5
0 + V2

12B1C2
0 + 2V1C

−3
0

, (C.42)

then we have

h̃r0 = C0r
−1/5 + C1r

−3/5 + o
(
r−3/5

)
,( r

n

)1/5
h̃r0 = C0n

−1/5 + C1r
−2/5n−1/5 + o

(
r−2/5n−1/5

)
and ( r

n

)1/5
h̃r0 − h̃n0 = C1

(
r−2/5n−1/5 − n−3/5

)
+ o

(
r−2/5n−1/5 + n−3/5

)
= C1r

−2/5n−1/5 + o
(
r−2/5n−1/5

)
,

where we have used the fact that r = o(n). Therefore,

E
[
h̃(r,N)

]
− h̃n0 = E

[( r
n

)1/5
h̃CV,r,1

]
− h̃n0

=
( r
n

)1/5
E
(
h̃CV,r,1 − h̃r0

)
+

[( r
n

)1/5
h̃r0 − h̃n0

]
= (B + C1)r

−2/5n−1/5 + o
(
r−2/5n−1/5

)
.

Regarding the variance, we have

var
[
h̃(r,N)

]
=

1

N

( r
n

)2/5 [
var
(
h̃CV,r,1

)
+ (N − 1)cov

(
h̃CV,r,1, h̃CV,r,2

)]
(C.43)

and

cov
(
h̃CV,r,1, h̃CV,r,2

)
≈M ′′

r

(
h̃r0

)−2
cov

[
C̃V

′
1(h̃r0), C̃V

′
2(h̃r0)

]
, (C.44)

where

C̃V
′
q(h) =

2

r(r − 1)2h

∑
i,j,k∈Iq
j,k 6=i

[
Aijα1h(Xi −Xj)− h−1Bijkβ1h(Xi −Xj, Xi −Xk)

]
,
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for q ∈ {1, 2}, I1, I2 ∼ U(P) and P = {I ⊂ {1, . . . , n} | #I = r}.
Now,

cov
[
C̃V

′
1(h), C̃V

′
2(h)

]
= cov

{
E
[
C̃V

′
1(h) | I1, I2

]
,E
[
C̃V

′
2(h) | I1, I2

]}
+ E

{
cov

[
C̃V

′
1(h), C̃V

′
2(h) | I1, I2

]}
= E

{
cov

[
C̃V

′
1(h), C̃V

′
2(h) | I1, I2

]}
since E

[
C̃V

′
q(h) | I1, I2

]
, for q ∈ {1, 2}, does not depend on I1, I2 and is therefore

not random.

On the other hand,

cov
[
C̃V

′
1(h), C̃V

′
2(h) | I1, I2

]
=

4

r2(r − 1)4h2

∑
i,j,k∈I1
l,s,t∈I2
j,k 6=i
s,t 6=l

cov [Aijα1h(Xi −Xj)

− h−1Bijkβ1h(Xi −Xj, Xi −Xk), Alsα1h(Xl −Xs)

− h−1Blstβ1h(Xl −Xs, Xl −Xt)
]
. (C.45)

Following the proof of Lemma 4.2, we need only count the number of cases

associated with C123124 and C123425. If we define M = # (I1 ∩ I2), which, recall, is a

random variable, then the number of times C123124 and C123425 appear in (C.45) is

C123124 : M(M − 1)(r2 − 4r −M) = M2r2 + o
(
M2r2

)
, (C.46)

C123425 : M2r3 + o
(
M2r3

)
.

Plugging (C.46) into (C.45) we get

cov
[
C̃V

′
1(h), C̃V

′
2(h) | I1, I2

]
=

4

r2(r − 1)4h2
(
C123124M

2r2 + C123425M
2r3
)

+ Z,

where Z = op (C123124M
2r−4 + C123425M

2r−3).
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To compute the expected value of the previous term we proceed by computing:

E
(
M2 | I1

)
= E


[∑
i∈I1

1I2(i)

]2
| I1


= E

[∑
i∈I1

∑
j∈I1

1I2(i)1I2(j) | I1

]
=

∑
i∈I1

∑
j∈I1

P(i, j ∈ I2 | I1)

= rP(1 ∈ I2) + r(r − 1)P(1 ∈ I2)2

= r
r

n
+ r(r − 1)

r2

n2

=
r2 [n+ r(r − 1)]

n2

= E
(
M2
)
,

where 1I2(·) denotes the indicator function of I2 and we have used the fact that

1I2(i) ∼ Ber(r/n). Therefore,

cov
[
C̃V

′
1(h), C̃V

′
2(h)

]
= R1(n

−1r−1h2 + rn−2h2) +R2n
−2h−3

+ O
(
n−2h−1 + n−1r−1h4 + n−2rh4

)
and

cov
[
C̃V

′
1(h̃r0), C̃V

′
2(h̃r0)

]
= R1C

2
0(n−1r−7/5 + n−2r3/5) +R2C

−3
0 n−2r3/5

+ O
(
n−1r−9/5 + n−2r1/5

)
. (C.47)

Now, plugging (C.47) into (C.44) we get

cov
(
h̃CV,r,1, h̃CV,r,2

)
= V n−2r7/5 +Wn−1r−3/5 +O

(
n−2r + n−1r−1

)
, (C.48)

where

W =
R1C

2
0(

12B1C2
0 + 2V1C

−3
0

)2 .
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Finally, plugging (C.48) into (C.43) yields

var
[
h̃(r,N)

]
= V r−1/5n−2/5

[
1

N
+
( r
n

)2]
+ o

(
r9/5n−12/5

)
.

Proof of Corollary 4.2 The result is obtained immediately from Corollary 4.1 and

Theorem 4.2.
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Appendix D

R package baggedcv

This appendix includes the documentation concerning the R package baggedcv, de-

veloped, among others, by the author of this dissertation. This R package implements

the bagging version of the cross-validation bandwidth selector for the kernel density

estimator (bagcv), studied in Section 3.1. In addition, a function (mopt) is also in-

cluded to select the optimal size of the subsamples, as seen in Section 3.1.2.
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Package ‘baggedcv’
July 26, 2019

Type Package

Title Bagged Cross-Validation for Kernel Density Bandwidth Selection

Version 1.0

Date 2019-07-03

Author Daniel Barreiro Ures, Jeffrey D. Hart, Ricardo Cao, Mario Francisco-Fernandez

Maintainer Daniel Barreiro Ures <daniel.barreiro.ures@udc.es>

Description Bagged cross-validation for bandwidth selection
in kernel density estimation (Hall and Marron (1987) <doi:10.1007/BF00363516>). This band-
width selector can achieve greater statistical precision than standard cross-validation while be-
ing computationally fast.

License GPL-3

Encoding UTF-8

Imports parallel, foreach, doParallel, mclust, kedd, stats

RoxygenNote 6.1.1

NeedsCompilation no

Repository CRAN

Date/Publication 2019-07-26 07:50:02 UTC

R topics documented:
bagcv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
mopt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

bagcv Bagged CV bandwidth selector

Description

Bagged CV bandwidth selector
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Usage

bagcv(x, r, s, h0, h1, nb = r, ncores = parallel::detectCores())

Arguments

x Vector. Sample.

r Positive integer. Size of the subsamples.

s Positive integer. Number of subsamples.

h0 Positive real number. Range over which to minimize, left bound.

h1 Positive real number. Range over which to minimize, right bound.

nb Positive integer. Number of bins to use in the bw.ucv function.

ncores Positive integer. Number of cores with which to parallelize the computations.

Details

Bagged cross-validation bandwidth for kernel density estimation.

Value

Bagged CV bandwidth.

Examples

set.seed(1)
x <- rnorm(10^6)
bagcv(x, 5000, 100, 0.01, 1, 5000, 2)

mopt Estimation of the optimal subsample size for bagged CV

Description

Estimation of the optimal subsample size for bagged CV

Usage

mopt(x, N, r = 1000, s = 100, ncores = parallel::detectCores())

Arguments

x Vector. Sample.

N Positive integer. Number of subsamples for the bagged bandwidth.

r Positive integer. Size of the subsamples.

s Positive integer. Number of subsamples.

ncores Positive integer. Number of cores with which to parallelize the computations.
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Details

Estimates the optimal size of the subsamples for the bagged CV bandwidth selector.

Value

Estimate of the optimal subsample size.

Examples

set.seed(1)
x <- rt(10^5, 5)
mopt(x, 500, 500, 10, 2)



Appendix E

Rcpp package baggingbwsel

This appendix includes the documentation concerning the Rcpp package baggingbwsel,

developed, among others, by the author of this dissertation. This Rcpp package is an

extension of the previous package, baggedcv, to the case of nonparametric regression

estimation, when considering the Nadaraya–Watson estimator. All the techniques

studied in Chapters 3 and 4 are implemented in the package.
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Type Package
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Version 1.0

Date 2021-07-08

Description Bagging bandwidth selection methods for the Parzen-Rosenblatt and Nadaraya-
Watson estimators. These
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computationally fast. See Barreiro-Ures et al. (2020) <doi:10.1093/biomet/asaa092> and
Barreiro-Ures et al. (2021) <arXiv:2105.04134>.

License GPL-3

Encoding UTF-8
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Imports Rcpp (>= 1.0.3), parallel, doParallel, kedd, stats, sm,
nor1mix, rgl, rpanel, tkrplot, misc3d

LinkingTo Rcpp

RoxygenNote 7.1.1

NeedsCompilation yes

Author Daniel Barreiro-Ures [aut, cre],
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Ricardo Cao [aut],
Mario Francisco-Fernandez [aut]
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Repository CRAN

Date/Publication 2021-07-12 07:20:02 UTC
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baggingbwsel-package A short title line describing what the package does

Description

A more detailed description of what the package does. A length of about one to five lines is recom-
mended.

Details

This section should provide a more detailed overview of how to use the package, including the most
important functions.

Author(s)

Your Name, email optional.

Maintainer: Your Name <your@email.com>

References

This optional section can contain literature or other references for background information.

See Also

Optional links to other man pages

Examples

## Not run:
## Optional simple examples of the most important functions
## These can be in \dontrun{} and \donttest{} blocks.

## End(Not run)
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bagcv Bagged CV bandwidth selector for Parzen-Rosenblatt estimator

Description

Bagged CV bandwidth selector for Parzen-Rosenblatt estimator

Usage

bagcv(x, r, s, h0, h1, nb = r, ncores = parallel::detectCores())

Arguments

x Vector. Sample.

r Positive integer. Size of the subsamples.

s Positive integer. Number of subsamples.

h0 Positive real number. Range over which to minimize, left bound.

h1 Positive real number. Range over which to minimize, right bound.

nb Positive integer. Number of bins.

ncores Positive integer. Number of cores with which to parallelize the computations.

Details

Bagged cross-validation bandwidth selector for the Parzen-Rosenblatt estimator.

Value

Bagged CV bandwidth.

Examples

set.seed(1)
x <- rnorm(10^6)
bagcv(x, 5000, 100, 0.01, 1, 1000, 2)
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bagreg Bagged CV bandwidth selector for Nadaraya-Watson estimator

Description

Bagged CV bandwidth selector for Nadaraya-Watson estimator

Usage

bagreg(x, y, r, s, h0, h1, nb = r, ncores = parallel::detectCores())

Arguments

x Covariate vector.

y Response vector.

r Positive integer. Size of the subsamples.

s Positive integer. Number of subsamples.

h0 Positive real number. Range over which to minimize, left bound.

h1 Positive real number. Range over which to minimize, right bound.

nb Positive integer. Number of bins to use in cross-validation.

ncores Positive integer. Number of cores with which to parallelize the computations.

Details

Bagged cross-validation bandwidth selector for the Nadaraya-Watson estimator.

Value

Bagged CV bandwidth.

Examples

set.seed(1)
x <- rnorm(10^5)
y <- 2*x+rnorm(1e5,0,0.5)
bagreg(x, y, 1000, 10, 0.01, 1, 1000, 2)
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hboot_bag Bagging bootstrap bandwidth selector for Parzen-Rosenblatt estima-
tor

Description

Bagging bootstrap bandwidth selector for Parzen-Rosenblatt estimator

Usage

hboot_bag(
x,
m = n,
N = 1,
nb = 1000L,
g,
lower,
upper,
ncores = parallel::detectCores(logical = FALSE)

)

Arguments

x Vector. Sample.

m Positive integer. Size of the subsamples.

N Positive integer. Number of subsamples.

nb Positive integer. Number of bins.

g Positive real number. Pilot bandwidth.

lower Positive real number. Range over which to minimize, left bound.

upper Positive real number. Range over which to minimize, right bound.

ncores Positive integer. Number of cores with which to parallelize the computations.

Details

Bagging bootstrap bandwidth selector for the Parzen-Rosenblatt estimator.

Value

Bagged CV bandwidth.

Examples

set.seed(1)
x <- rnorm(10^5)
hboot_bag(x, 5000, 10, 1000, lower=0.001, upper=1, ncores=2)
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hsss_dens Generalized bagging CV bandwidth selector for Parzen-Rosenblatt es-
timator

Description

Generalized bagging CV bandwidth selector for Parzen-Rosenblatt estimator

Usage

hsss_dens(x, r, s, nb = r, h0, h1, ncores = parallel::detectCores())

Arguments

x Vector. Sample.

r Positive integer. Size of the subsamples.

s Positive integer. Number of subsamples.

nb Positive integer. Number of bins.

h0 Positive real number. Range over which to minimize, left bound.

h1 Positive real number. Range over which to minimize, right bound.

ncores Positive integer. Number of cores with which to parallelize the computations.

Details

Generalized bagging cross-validation bandwidth selector for the Parzen-Rosenblatt estimator.

Value

Bagged CV bandwidth.

Examples

set.seed(1)
x <- rnorm(10^5)
hsss_dens(x, 5000, 100, 1000, 0.001, 1, 2)
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mopt Estimation of the optimal subsample size for bagged CV bandwidth
for Parzen-Rosenblatt estimator

Description

Estimation of the optimal subsample size for bagged CV bandwidth for Parzen-Rosenblatt estimator

Usage

mopt(x, N, r = 1000, s = 100, ncores = parallel::detectCores())

Arguments

x Vector. Sample.

N Positive integer. Number of subsamples for the bagged bandwidth.

r Positive integer. Size of the subsamples.

s Positive integer. Number of subsamples.

ncores Positive integer. Number of cores with which to parallelize the computations.

Details

Estimates the optimal size of the subsamples for the bagged CV bandwidth selector for the Parzen-
Rosenblatt estimator.

Value

Estimate of the optimal subsample size.

Examples

set.seed(1)
x <- rt(10^5, 5)
mopt(x, 500, 500, 10, 2)
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tss_dens Second order bagging CV bandwidth selector for Parzen-Rosenblatt
estimator

Description

Second order bagging CV bandwidth selector for Parzen-Rosenblatt estimator

Usage

tss_dens(x, r, s, h0, h1, nb = 1000, ncores = 1)

Arguments

x Vector. Sample.

r Vector. The two subsample sizes.

s Positive integer. Number of subsamples.

h0 Positive real number. Range over which to minimize, left bound.

h1 Positive real number. Range over which to minimize, right bound.

nb Positive integer. Number of bins.

ncores Positive integer. Number of cores with which to parallelize the computations.

Details

Second order bagging cross-validation bandwidth selector for the Parzen-Rosenblatt estimator.

Value

Second order bagging CV bandwidth.

Examples

set.seed(1)
x <- rnorm(10^5)
tss_dens(x, 5000, 10, 0.01, 1, 1000, 2)
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Resumen en español

Se resumen aqúı los estudios desarrollados, aśı como los resultados obtenidos, a lo

largo del peŕıodo de realización de la tesis doctoral. En esta se aborda el prob-

lema de la selección de la ventana en la estimación no paramétrica de las funciones

de densidad y regresión, centrándose en contextos de muestras de gran tamaño.

El coste computacional asociado a algunos de los métodos de selección de la ven-

tana más conocidos como, por ejemplo, aquellos basados en criterios de tipo val-

idación cruzada o bootstrap, los hace inadecuados para contextos de muestras de

gran tamaño. En la tesis, este problema se aborda mediante el uso del subagging,

un método de aprendizaje conjunto que combina el bootstrap aggregating o bag-

ging con el submuestreo. A lo largo de la tesis se proponen versiones subagging de

métodos de selección de la ventana para estimadores tipo núcleo de la densidad y de

la regresión y basados en criterios ampliamente conocidos, como validación cruzada

o el bootstrap. Tanto en el caso del estimador de Parzen–Rosenblatt, en estimación

no paramétrica de la densidad, como en el caso del estimador de Nadaraya–Watson,

en estimación no paramétrica de la regresión, los selectores de la ventana propuestos

se estudian teórica (obtención de expresiones asintóticas para el sesgo, la varianza y

la distribución ĺımite) y emṕıricamente (mediante diversos estudios de simulación y

aplicaciones a conjuntos de datos reales), obteniendo generalmente resultados muy

positivos, tanto en términos de precisión estad́ıstica (disminuciones sustanciales en

el error cuadrático medio y mejores tasas de convergencia) como de agilidad com-

putacional (reducciones drásticas en los tiempos de computación), respecto a sus
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análogos “clásicos”.

Caṕıtulo 1: Motivación

En el primer caṕıtulo de la tesis se expone el tema objeto de estudio y se presentan

las motivaciones que han dado lugar a la investigación desarrollada a lo largo de la

tesis doctoral.

Vivimos en la era del Big Data, y la cantidad de datos que se generan en todo el

mundo aumenta constantemente. Aśı, ofrecer soluciones al problema de la gestión

y procesamiento de cantidades masivas de datos se torna prioritario. Actualmente,

en la literatura estad́ıstico-computacional existen diferentes propuestas dedicadas a

la aplicación de técnicas computacionales basadas en el diseño de algoritmos par-

alelizables en CPU o GPU, por ejemplo mediante plataformas de computación en

clúster como Apache Hadoop o Apache Spark. Por otra parte, existen también prop-

uestas de agilización computacional basadas en el uso de submuestreo y métodos de

aprendizaje conjunto.

En este sentido, el objetivo principal de la tesis es la propuesta, estudio y apli-

cación de técnicas de estimación computacionalmente eficientes en el contexto de

muestras de gran tamaño, otorgando especial importancia al problema de la se-

lección de la ventana en el campo de la estimación no paramétrica de las funciones

de densidad y de regresión.

Caṕıtulo 2: Introducción

En este segundo caṕıtulo de la tesis se pretende introducir al lector en el campo

de la estimación no paramétrica de las funciones de densidad y regresión, haciendo

especial hincapié en el problema de la selección de la ventana de los estimadores de

Parzen–Rosenblatt, en el caso de la densidad, y de Nadaraya–Watson, en el caso

de la regresión. Además de discutir distintos métodos de selección de la ventana,

como los basados en criterios de tipo validación cruzada, plug-in, etc., se ofrece una

introducción al método bootstrap y a las técnicas de aprendizaje conjunto bagging

(bootstrap aggregating) y subagging (subsample aggregating), señalando su aplica-
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bilidad en selección de la ventana. La técnica del subagging, además, juega un papel

central a lo largo de la tesis por su capacidad para aportar mejoras en agilidad com-

putacional y, como se demuestra en caṕıtulos subsiguientes, también en precisión

estad́ıstica.

En particular, este caṕıtulo introductorio se divide en cuatro secciones. La

primera de ellas se dedica a la estimación de la función de densidad, se introduce

al lector en el campo de la estimación tipo núcleo de la densidad, describiendo

el estimador de Parzen–Rosenblatt de la densidad y presentando algunas de sus

propiedades más destacables, aśı como discutiendo algunos de los métodos de se-

lección de la ventana para dicho estimador más conocidos, haciendo énfasis en el

caso del selector de validación cruzada. La segunda sección del caṕıtulo trata la

estimación de la función de regresión, se ofrece una introducción al campo de la esti-

mación tipo núcleo de la regresión, describiendo el estimador de Nadaraya–Watson

de la regresión y presentando algunas de sus propiedades más importantes, y de

nuevo se discuten algunos de los métodos de selección de la ventana de tal estimador

más populares, dando especial importancia al selector de validación cruzada. En la

tercera sección se describe el método de remuestreo conocido como bootstrap y se

ilustra su funcionamiento. En la cuarta y última sección de este caṕıtulo se intro-

duce al lector en el campo de los métodos de aprendizaje conjunto, particularmente

en el método bagging y su variante conocida como subagging, ilustrando su fun-

cionamiento y destacando su aplicabilidad a la hora de abordar el problema de la

selección de la ventana y de reducir la variabilidad de ciertos selectores de la ventana.

Caṕıtulo 3: Selección de la ventana del estimador de Parzen–Rosenblatt

mediante bagging

En el tercer caṕıtulo de la tesis se formaliza la aplicación del subagging al selector

de validación cruzada de la ventana del estimador de Parzen–Rosenblatt, discutiendo

sus similitudes y diferencias respecto a otras propuestas previas existentes en la

literatura. En el caso del selector de validación cruzada, la ventana subagging puede

calcularse como el promedio de las ventanas de validación cruzada reescaladas por

el factor (r/n)1/5 obtenidas para un cierto número de submuestras de tamaño r < n
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(donde n denota el tamaño de la muestra original) generadas a partir de la muestra

original mediante muestreo sin reemplazamiento. El hecho de tener que reescalar las

ventanas se debe a que estas han sido obtenidas para submuestras de tamaño r y a

que la ventana de validación cruzada, al igual que la ventana óptima, tiende a cero

a la tasa n−1/5.

En primer lugar se estudian algunas de las propiedades asintóticas del selector

propuesto, obteniendo expresiones asintóticas para el sesgo y la varianza del selector,

aśı como para la distribución ĺımite del error del selector. Una de las implicaciones

más destacables de estos resultados es que demuestran que el selector subagging

puede presentar una precisión estad́ıstica notablemente superior a la del selector de

validación cruzada estándar. Esta potencial superioridad estad́ıstica se muestra a

través de mejores tasas de convergencia para el error del selector. Además, en este

punto se señala la importancia de no reducir el análisis asintótico del selector prop-

uesto al caso en el que el número de submuestras consideradas es infinito, tal y como

ocurre en Hall and Robinson (2009). Al dar libertad a la tasa de crecimiento del

número de submuestras, como parámetro del selector, se puede mostrar la estrecha

relación que existe entre dicho parámetro y el tamaño de las submuestras. En par-

ticular, se demuestra cómo ciertas elecciones del tamaño y número de submuestras

permite que el error del selector propuesto converja a su distribución ĺımite a la tasa

n−1/2 (donde n denota el tamaño de la muestra original), es decir, más rápidamente

que el error del selector de validación cruzada estándar, que tiende a su distribución

ĺımite a la tasa n−3/10.

Una vez estudiadas las propiedades del selector subagging y mostrada la ı́ntima

relación entre el número y el tamaño de las submuestras consideradas, se propone

un método automático para la selección del tamaño submuestral basado en la mini-

mización del error cuadrático medio estimado del selector.

A continuación, el comportamiento emṕırico del selector propuesto se analiza me-

diante diversos estudios de simulación. En general, los resultados son muy positivos

y dejan patente la capacidad del bagging para reducir la variabilidad del selector

de validación cruzada. En muchos casos, esta drástica reducción en la varianza del

selector subagging domina frente al incremento en sesgo experimentado a causa del

uso de submuestreo, pudiendo obtenerse aśı reducciones significativas en el error
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cuadrático medio del selector, en algunos casos de más del 90% respecto al de va-

lidación cruzada estándar. Además, en lo que respecta al error del estimador de

Parzen–Rosenblatt con ventana subagging, se muestra que el error cuadrático inte-

grado del estimador con ventana subagging fue generalmente menor (el 60% de las

veces en los escenarios considerados) que el error cuadrático integrado del estimador

con ventana de validación cruzada estándar. Más allá de las mejoras en precisión

estad́ıstica, se realizaron también estudios de simulación con el objetivo de mostrar

las ventajas de tipo computacional de emplear subagging.

Aunque el caṕıtulo se centra en la aplicación del subagging al selector de vali-

dación cruzada de la ventana del estimador de Parzen–Rosenblatt, también se de-

scribe la aplicación del subagging a otros selectores de la ventana, como el basado

en el método bootstrap. En este caso, debido al hecho de que el selector bootstrap

es mucho menos variable que el selector de validación cruzada, la capacidad del bag-

ging para obtener mejoras en la precisión estad́ıstica se ve mermada. Sin embargo, el

uso del submuestreo sigue permitiendo reducir significativamente el tiempo de com-

putación a cambio de un ligero aumento en el error cuadrático medio. Además, a

la vista de los resultados obtenidos en diversos estudios de simulación, se ofrece una

regla automática para la elección del tamaño submuestral que permite garantizar un

balance entre precisión estad́ıstica y agilidad computacional.

Además, algunas de las secciones del caṕıtulo se dedican a la generalización del

subagging a situaciones en las que la tasa de convergencia a cero de la ventana óptima

no sea conocida o en las que pudiese resultar de interés incorporar los términos de

segundo orden de la ventana óptima en el mecanismo del subagging. En el primer

caso, cabe destacar la capacidad de obtener selectores de la ventana en situaciones

en las que todav́ıa no se haya desarrollado teoŕıa asintótica y con un coste bastante

modesto en términos de precisión estad́ıstica. En cuanto al segundo caso, los estudios

de simulación parecen indicar que la incorporación de los términos de segundo orden

no permite incrementar la precisión estad́ıstica del selector, al menos en los escenarios

considerados.

Finalmente, se estudia el comportamiento de algunos de los selectores propuestos

aplicándolos a dos conjuntos de datos reales: en el primero de ellos se trata de

estimar la función de densidad del tiempo de demora experimentado en vuelos es-
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tadounidenses durante el año 2017; en el segundo, el objetivo pasa por estimar las

funciones de densidad de la edad y el tiempo de hospitalización de pacientes infec-

tados con COVID-19 en España durante el año 2020.

Caṕıtulo 4: Selección de la ventana del estimador de Nadaraya–Watson

mediante bagging

El cuarto caṕıtulo de la tesis se dedica a la aplicación del subagging al selector

de validación cruzada de la ventana del estimador de Nadaraya–Watson. De manera

análoga a lo visto para el estimador de Parzen–Rosenblatt de la densidad, en el caso

del selector de validación cruzada, la ventana subagging puede calcularse como el

promedio de las ventanas de validación cruzada reescaladas por el factor (r/n)1/5

obtenidas para un cierto número de submuestras de tamaño r < n generadas a

partir de la muestra original mediante muestreo sin reemplazamiento. De nuevo,

la necesidad de reescalar las ventanas se debe a que estas han sido obtenidas para

submuestras de tamaño r y a que la ventana de validación cruzada, al igual que la

ventana óptima, tiende a cero a la tasa n−1/5.

En la primera parte del caṕıtulo se estudian las propiedades asintóticas del se-

lector de validación cruzada estándar. El hecho de que el estimador de Nadaraya–

Watson presenta un denominador aleatorio complica sustancialmente el análisis te-

órico, por lo que se utilizó una aproximación teórica (cuadrática) compuesta por

los términos de primer y segundo orden del estimador de Nadaraya–Watson y que,

además, tiene la ventaja de no presentar un denominador aleatorio. Se obtuvieron

las propiedades asintóticas, tanto de esta aproximación teórica del estimador de

Nadaraya–Watson, como del selector de validación cruzada definido a partir de dicha

aproximación del estimador. Además, se ofrece un bosquejo de demostración que

permite afirmar, con cierto rigor, que los resultados asintóticos obtenidos para el

selector de validación cruzada basado en esta aproximación teórica del estimador de

Nadaraya–Watson podŕıan extenderse al selector de validación cruzada basado en la

versión exacta del estimador.

Una vez conocidas las propiedades del selector de validación cruzada modificado,

es decir, aquel definido a partir de la aproximación del estimador de Nadaraya–
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Watson, la siguiente parte del caṕıtulo se dedica al análisis teórico de la versión

subagging del selector de validación cruzada modificado de la ventana de este esti-

mador. Se estudian algunas de las propiedades asintóticas del selector propuesto,

obteniendo expresiones asintóticas para el sesgo y la varianza del mismo, aśı como

para la distribución ĺımite de su error. Tal y como ocurŕıa en el caṕıtulo anterior,

una de las implicaciones más destacables de estos resultados es que demuestran que

el selector subagging puede presentar una precisión estad́ıstica notablemente supe-

rior a la del selector de validación cruzada estándar. Esta potencial superioridad

estad́ıstica se muestra a través de mejores tasas de convergencia para el error del

selector. Al igual que en el caso de la densidad, el hecho de dar libertad a la tasa

de crecimiento del número de submuestras, como parámetro del selector, permite

mostrar la estrecha relación existente entre dicho parámetro y el tamaño de las sub-

muestras. En particular, se demuestra cómo ciertas elecciones del tamaño y número

de submuestras permite que el error del selector propuesto converja a su distribución

ĺımite a la tasa n−1/2, es decir, más rápidamente que el error del selector de validación

cruzada estándar, que tiende a su distribución ĺımite a la tasa n−3/10.

Una vez estudiadas las propiedades del selector subagging y mostrada la ı́ntima

relación entre el número y el tamaño de las submuestras consideradas, se proponen

distintos criterios de optimalidad para la selección del tamaño submuestral.

A continuación, el comportamiento emṕırico del selector propuesto se analiza

mediante diversos estudios de simulación. En general, tal y como ocurre en el caso

de la densidad, los resultados son muy positivos y dejan patente la capacidad del

bagging para reducir la variabilidad del selector de validación cruzada. En muchos

casos, esta drástica reducción en la varianza del selector subagging domina frente

al incremento en sesgo experimentado a causa del uso de submuestreo, pudiendo

obtenerse aśı reducciones significativas en el error cuadrático medio del selector, en

algunos casos de más del 90% respecto al de validación cruzada estándar. Además

de analizar las mejoras en precisión estad́ıstica, se realizaron también estudios de

simulación con el objetivo de mostrar las enormes ventajas computacionales del uso

de subagging. En este sentido y a modo de ejemplo, se estimó que, frente a los 7

años que requeriŕıa el cálculo de la ventana de validación cruzada estándar para una

muestra de tamaño 108, el cálculo de la ventana subagging solamente necesitaŕıa
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alrededor de 16 horas, para ciertos valores del tamaño submuestral y el número de

submuestras.

El comportamiento emṕırico del selector propuesto también se estudia aplicándolo

al conjunto de datos del COVID-19 ya tratado en el caṕıtulo anterior. En este caso, el

objetivo pasa por estudiar la relación entre la edad y el tiempo de hospitalización ex-

perimentado por los pacientes infectados con COVID-19. De los resultados obtenidos

se deduce que el tiempo de hospitalización esperado crece de forma no lineal para

pacientes de menos de 70 años y que esta tendencia se revierte para pacientes con

edades comprendidas entre los 70 y 100 años, pudiendo deberse esto último al hecho

de que los pacientes de este grupo de edad tienen más probabilidades de fallecer a

causa de la infección y, por lo tanto, finalizar su peŕıodo de hospitalización de manera

prematura. Además, pudo observarse que el tiempo de hospitalización esperado es

generalmente menor en el caso de las mujeres, exceptuando los grupos de edad de

menos de 30 años y de entre 65 y 85 años, aunque esta diferencia en los tiempos de

hospitalización medios de hombres y mujeres no es realmente significativa ya que no

suele ser mayor a un d́ıa.

Aunque el caṕıtulo se centra en la aplicación del subagging al selector de vali-

dación cruzada de la ventana del estimador de Parzen–Rosenblatt, también se de-

scribe la aplicación del subagging al selector bootstrap de la ventana del estimador

de Nadaraya–Watson.

Caṕıtulo 5: Conclusiones y trabajos futuros

En este caṕıtulo se exponen las conclusiones derivadas de la realización de la tesis

y se perfilan futuras ĺıneas de trabajo.

La principal conclusión que se desprende de la tesis es que el uso del subagging a

la hora de abordar el problema de la selección de la ventana permite obtener mejoras

sustanciales tanto en términos de mayor precisión estad́ıstica como de mayor agilidad

computacional, especialmente cuando el subagging se aplica a selectores de la ventana

con una alta variabilidad. Esta doble virtud del subagging lo hace particularmente

interesante cuando se dispone de muestras de gran tamaño. Sin embargo, los estudios

de simulación han mostrado que el uso del subagging pudiera ser aconsejable incluso
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en contextos de muestras de tamaño moderado dada su capacidad para reducir el

error cuadrático medio del selector base.

En cuanto a las posibles ĺıneas de trabajo para el futuro, estas incluyen el es-

tudio del selector subagging de la ventana del estimador local lineal de la función

de regresión, selección de la ventana piloto óptima para el selector bootstrap de la

ventana del estimador de Nadaraya–Watson, extensión de las técnicas propuestas a

los casos multidimensional y de datos dependientes, extensión de las técnicas prop-

uestas a problemas de clasificación o selección de modelos y optimización del código

desarrollado a lo largo de la tesis e incorporado en los paquetes de R baggedcv y

baggingbwsel, ambos publicados en el CRAN. Otra posible ĺınea de trabajo para

el futuro podŕıa pasar por la utilización de plataformas de computación en clúster

como Apache Hadoop o Apache Spark y la traducción del código desarrollado a otros

lenguajes de programación como Python, muy popular entre la comunidad de Ma-

chine Learning. Una de las ventajas del lenguaje Python es que cuenta con una API

(interfaz de programación de aplicaciones) de Apache Spark llamada PySpark que

permite la computación en paralelo, algo de gran utilidad a la hora de tratar con

datos de gran tamaño o modelos con una alta complejidad.

Apéndices

En los apéndices se encuentran las demostraciones de los resultados (teoremas,

lemas, etc.) enunciados en los distintos caṕıtulos de la tesis. En particular, el

Apéndice A recoge las demostraciones de los resultados expuestos en el Caṕıtulo

3, en el Apéndice B se incluye una correción del resultado principal de Hall and

Robinson (2009) y en el Apéndice C se incorporan las demostraciones de los resul-

tados presentados en el Caṕıtulo 4. Por último, los Apéndices D y E contienen la

documentación de los paquetes de R baggedcv y baggingbwsel, respectivamente,

que han sido publicados en el CRAN e incluyen funciones para aplicar buena parte

de las técnicas propuestas a lo largo de la tesis.



204



Bibliography

Barbeito, I. (2020). Exact bootstrap methods for nonparametric curve estimation.

PhD thesis, Universidade da Coruña.

Barreiro-Ures, D., Cao, R., Francisco-Fernández, M., and Hart, J. D. (2021a). Bag-

ging cross-validated bandwidths with application to big data. Biometrika, to ap-

pear.

Barreiro-Ures, D., Hart, J. D., Cao, R., and Francisco-Fernandez, M. (2019).

baggedcv: bagged cross-validation for kernel density bandwidth selection. R package

version 1.0. https://cran.r-project.org/package=baggedcv.

Barreiro-Ures, D., Hart, J. D., Cao, R., and Francisco-Fernández, M. (2021b). bag-

gingbwsel: bagging bandwidth selection in kernel density and regression estimation.

R package version 1.0. https://cran.r-project.org/package=baggingbwsel.

Bhattacharya, A. and Hart, J. D. (2016). Partitioned cross-validation for divide-and

conquer density estimation. arXiv:1609.00065.
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