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Abstract

A control system problem can be viewed as a multi-
objective problem due to the fact that there are
many requirements to be satisfied. Nowadays,
multi-objective optimization deals with this kind of
problem by implementing optimization techniques,
capable of searching for the Pareto set approxi-
mation, hereafter the designer needs to select the
best solution that provides a good trade-off among
the competitve objectives from the Pareto front
approximation. Therefore, in this communica-
tion we address the problem of selecting the best
trade-off between the conflictive objectives, this
stage is called the Multi-Criteria Decision Mak-
ing (MCDM). In this paper we propose to use
the Nash solution as a tuning technique to select
the design alternative to implement on the con-
trol system. This selection is compared with oth-
ers Proportional-Integral (PI) tuning rules on the
literature.

Keywords: Multi-objective Optimization,
Multi-criteria decision making, PID control

1 Introduction

It is well-known that the controller design is a
challenge for the control engineer, satisfying a
set of requirements or constraints such as per-
formance, robustness, control effort usage, reli-
ability and others is not an easy task. Some-
times, the improvement of one objective is at the
expense of worsening another. These kinds of
problems where the designer have to deal with
the fulfillment of multiple objectives are known
as Multi-Objective Problems. Such problems can
be addressed using a simultaneous optimization
of all targets (multi-objective optimization). This
implies to seek for a Pareto optimal solution in
which the objectives have been improved as pos-
sible without giving anything in exchange (select
a design alternative).

There are two different approaches to solve an op-

timization statement for an Multi-objective prob-
lem (MOP) according to [17]; first, the Aggregate
Objective Function (AOF ) where the designer
needs to describe all the trade-off at once and
from the beginning of the optimization process, for
example, the designer can use a weighting vector
to indicate relative importance among the objec-
tive. Secondly, the Generate-First Choose-Later
(GFCL) approach in which the target is to gener-
ate a set of Pareto optimal solutions and then the
designer will select, a posteriori, the most prefer-
able solution according to his/her preferences [16].

In order to generate such set of desirable solutions
in the GFCL approach, the Multi-Objective Opti-
mization (MOO) techniques might be used. Such
techniques generate what is called the Pareto front
approximation, where all the solutions are Pareto
optimal and non-dominated solutions. It is im-
portant to mention that the true Pareto front is
unknown, for this reason MOO techniques search
for a discrete description of the Pareto set capable
of generating a good approximation of the Pareto
front, see Figure 1. Finally when the decision
maker has been provided with a Pareto front ap-
proximation she/he will need to analyze the trade-
off between the competitve objectives and select
the most preferable solution for a particular situ-
ation.

In this paper, we propose the Nash solution as
a MCDM technique to choose a unique point
from the Pareto front approximation. The pa-
per is organized as follows. Section 2 briefly de-
scribes some concepts related to Multi-objective
optimization design whilst Section 3 the bargain-
ing solutions are presented. The Nash Solution as
a technique it is introduced in Section 4. Illustra-
tive examples are in Section 5 and conclusions are
drawn in Section 6.

2 Multi-objective Optimization
Design

In order to incorporate the MOO process into any
engineering design process, a Multi-objective Op-
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Figure 1: Pareto front concept for two objectives.

timization Design (MOOD) procedure should be
carried out [10, 21]. The MOOD procedure have
shown to be a valuable tool for control engineers,
see [20, 22–24]. This procedure allows the de-
signer to be more involved with the design pro-
cess and to evaluate the performance exchange
between the conflicting objectives, the follow step
are needed: i) the MOP definition (objectives, de-
cision variables and constraints), ii) the MOO pro-
cess (search) and iii) the MCDM stage (analysis
and selection). In Figure 2 a general framework is
shown. This procedure would guarantee the possi-
bility of obtaining a desirable trade-off among the
design alternatives or for the trade-off analysis of
the requirements of the controller tuning.

Multi Criteria Decision Making stage

All points within the Pareto front are equally ac-
ceptable solutions. Once the Pareto front approx-
imation is provided, the designer needs to choose
one of those points as the final solution to the
MOP for the implementation phase. Several tools
and methodologies are available, in order to facil-
itate the decision making stage [8, 9, 11, 14, 26], a
review with different techniques for decision mak-
ing analysis can be consulted in [12] and a taxon-
omy to identify the visualizations is presented in
[19].

Somehow, the decision making can be undertaken
by using two different approaches: i) by including
additional criteria such that at the end only one
point from the Pareto front satisfies all of them,
and ii) by considering one point that represents a
fair compromise between all used criteria. From
a controller design point of view, the first option
can be used to improve the control performance by
introducing additional criteria. In other words, as
the MOP establishes the search among the Pareto
front for a compromise among a set of performance

Multi-Objective Problem

(MOP)

Figure 2: A Multi-objective Optimization Design
(MOOD) procedure.

indices, and additional performance (probably of
secondary importance) can be introduced. In this
way, a new optimization problem will start with
the search domain located in the Pareto set in or-
der to find the best solution. The second option
does not introduce more information for the deci-
sion making and a fair point should be selected in
order to represent an appropriate trade-off among
the different considered cost functions. In the con-
text of finding a PID controller tuning rule, this
second option has been preferred because it can
be somehow somehow easily automated. It means
that a single proposal for the controller design will
be the outcome for the MOP. Obviously, the ideal
setup would be to reach the utopia point. How-
ever, the utopia point is normally unattainable
and does not belong to the Pareto front approxi-
mation. This is because it is not possible to op-
timize all individual objective functions indepen-
dently and simultaneously. Thus, it is only possi-
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ble to find a solution that is as close as possible to
the utopia point. Such solution is called the com-
promise solution (CS) and is Pareto optimal. This
approach however, starts from a neither attainable
nor feasible solution. Therefore it is not very prac-
tical as it does not take into account what can be
achieved for each one of the individual objectives
functions. Another procedure to select a fair point
is to use bargaining games [7]. This solution leads
us to a practical procedure for choosing a unique
point from the Pareto front, as it will be seen in
the next section.

3 Bargaining solutions

In a transaction, when the seller and the buyer
value a product differently, a surplus is created. A
bargaining solution is then a way in which buyers
and sellers agree to divide the surplus. There is an
analogous situation regarding a controller design
method that is facing two different cost functions
for a system. When the controller locates the so-
lution on the disagreement point (D), as shown
in Figure 3, there is a way for the improvement of
both cost functions. We can move within the feasi-
ble region towards the Pareto front in order to get
lower values for both cost functions. Let θ∗1 and θ∗2
denote the values for the free parameter vector θ
that achieve the optimal values for each one of the
cost functions f1 and f2, respectively. Let these
optimal values be f∗1 = f1(θ∗1) and f∗2 = f2(θ∗2).
On that basis, the utopia point will have coordi-
nates f∗1 and f∗2 whereas the disagreement point
will be located at (f1(θ∗2), f2(θ∗1)). As the utopia
(U) point is not attainable, we need to analyze
the Pareto front in order to obtain a solution. A
fair point that represents an appropriate trade-off
among the cost functions f1 and f2 is defined by
the coordinates (fPf1 , fPf2 ) = (f1(θPf1 ), f2(θPf2 )),
where the superindex Pf means Pareto front. On
the basis of this formalism, we can identify, in
economic terms the benefit of each one of the
cost functions (buyer and seller) as the differences

f1(θ∗2) − fPf1 and f2(θ∗1) − fPf2 . The bargaining

solution will provide a choice for (fPf1 , fPf2 ) there-
fore a benefit for both f1 and f2 with respect to
the disagreement. It is important to notice that
the problem setup is completely opposite to the
one that generates the compromise solution (CS)
as the closest one to the utopia point.

Formally, a bargaining problem is denoted by a
pair < S; d > where S ∈ R2, d ∈ S represents the
disagreement point and there exists s = (s1, s2)
∈ S such that si < di. In our case, S is the
shaded area shown in Figure 3 delimited by the
Pareto front and its intersection with the axis cor-
responding to the coordinates of the disagreement

point. In Figure 3, different solutions for selecting
a point from the Pareto front can bee seen:

f1

  f2
DS1

Figure 3: Location of the bargaining solutions into
the Pareto front.

1. The disagreement solution (D): it is the so-
lution associated to the disagreement point.
Even, if it is not the preferred solution for
none of the players, it is a well-defined solu-
tion.

2. The dictatorial solution for player 1 (DS1): it
is the point that minimize the cost function
for player 1. The same concept can be applied
to player 2, yielding the dictatorial solution
for player 2 (DS2).

3. The egalitarian solution (ES): This point
coincides with the intersection of the
45◦diagonal line that passes through the dis-
agreement point with the Pareto front.

4. The Kalai-Smorodinsky solution (KS): This
point correspond to the intersection of the
Pareto front with the straight line that con-
nects the utopia and the disagreement point.

5. The Nash Solution (NS): it selects the unique
solution to the following maximization prob-
lem:

max
(fPf

1 ,fPf
2 )

(f1(θ∗2)− fPf1 )(f2(θ∗1)− fPf2 )

s.t. fPf1 ≤ f1(θ∗2)

fPf2 ≤ f2(θ∗1)

In order to illustrate the location of the differ-
ent solutions that can be selected from the Pareto
front, using the bargaining concept can be seen in
Figure 3.

4 Nash Solution

In his pioneering work on bargaining games, Nash
in [15] established a basic two-person bargaining
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framework between two rational players, and pro-
posed an axiomatic solution concept which is char-
acterized by a set of predefined axioms and does
not rely on the detailed bargaining process of play-
ers. Nash proposed four axioms that should be
satisfied by a reasonable bargaining solution:

• Pareto efficiency: none of the players can be
made better off without making at least one
player worse off.

• Symmetry: if the players are indistinguish-
able, the solution should not discriminate be-
tween them. The solution should be the same
if the cost function axis are swapped.

• Independence of affine transformations: an
affine transformation of the cost functions
and of the disagreement point should not al-
ter the outcome of the bargaining process.

• Independence of irrelevant alternatives: if the
solution (fPf1 , fPf2 ) chosen from a feasible set
A is an element of a subset B ∈ A, then
(fPf1 , fPf2 ) must be chosen from B.

Nash proved that, under mild technical conditions,
there is a unique bargaining solution called Nash
bargaining solution satisfying the four previous ax-
ioms. Indeed, by considering the different options
for selecting a point from the Pareto front, the
NS is the only solution that satisfies these four
axioms [15]. In fact, the Nash solution is simul-
taneously utilitarian (Pareto efficient) and egali-
tarian (fair). Also from a MOO point of view, by
maximizing the product, we are maximizing the
area of the rectangle that represents the set of so-
lutions dominated by the NS. Actually, the NS
provides the Pareto front solution that dominates
the larger number of solutions, therefore being ab-
solutely better (that is, with respect to both cost
functions at the same time) than any one of the
solutions of such rectangle. These are the rea-
sons why the NS represents an appropriate choice
for the (semi)-automatic selection of the fair point
from the Pareto front.

5 Comparison Examples

In this section, the previous ideas will be used
to locate well known tuning rules into the Pareto
front and to show how the NS performs compared
to existing tuning rules.

In order to evaluate the performance obtained
with the different tuning methods, the following
standard measures will be used:

• Output performance: the Integrated Abso-
lute Error (IAE ) is the most natural way

to measure performance is by minimizing the
integrated-absolute-error.

IAE :=

∫ ∞
0

|e(τ)|dτ (1)

• Input performance: the Total Variation (TV )
of control action, is a measure of the smooth-
ness of control action [27]. In order to evalu-
ate the manipulated input usage u(t).

TV :=
∞∑
k=1

|u(k + 1)− u(k)| (2)

Therefore, the MOP will be formulated in order to
find the parameters of the PI controller required to
obtain the desired regulatory control performance

min
θc
J(θc) = [JIAE(θc), JTV (θc)] (3)

θc = [Kp, Ti] ,

where Kp is the proportional gain and Ti is the
integral time constant. For the MOO process the
Normal Normalized Constraint algorithm [18] is
implemented, in order to generate the set of op-
timal solutions. Hereafter, the calculation of the
Nash Solution is carried out to select the solution
that offers the best trade-off among the competi-
tive objectives.

Consider the fourth-order controlled processes
proposed as benchmark in [5] and given by the
transfer function:

Pα(s) =
1∏3

n=0(αns+ 1)
, (4)

with α ∈ {0.1, 1.0}.
Using the three-point identification procedure
123c [1] FOPDT models were obtained, whose pa-
rameters are listed in Table 1.

Table 1: Example - Pα(s) FOPDT models.

α Kp T L τo
0.10 1 1.003 0.112 0.112
1.0 1 2.343 1.860 0.794

For comparison purposes the following PI tuning
methods that in some extend considered the con-
trol system robustness into the design procedure
were selected: the Model-Reference Robust Tun-
ing (MoReRT) [2] that uses a model matching ap-
proach for smooth time responses and, at the same
time, ensures a pre-specified, level of robustness
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Ms = {1.4, 1.6, 1.8, 2.0}; the Kappa-Tau (K-T) [3]
that uses an empirical closed-loop dominant pole
design of 2DoF PI controllers for a batch of con-
trolled processes and provides tuning relations for
robustness levels of Ms = 2.0 and Ms = 1.4; the
Simple Internal Model Control (SIMC) [25] that
is an IMC-based tuning for 1DoF PI controllers to
obtain a good trade-off between speed of response,
disturbance rejection, robustness (Ms ≈ 1.59),
and control effort requirements; the Approximated
MIGO (AMIGO) [13] which is based on the loop
shaping MIGO method [6] that maximizes the
controller integral gain for the minimization of the
integrated error to a step load disturbance, sub-
ject to a robustness constraint (Ms = 1.4) for PI
controllers, in particular the revised version of the
AMIGO method in [4] will be used.

IAE

T
V

MoReRT (Ms = 2.0)

MoReRT (Ms = 1.8)

MoReRT (Ms = 1.6)

K-T (Ms = 2.0)

K-T (Ms = 1.4)

AMIGO (Ms = 1.4)

SIMC (Ms ≈ 1.59)

NS

MoReRT (Ms = 1.4)

Figure 4: Pareto front for the process model cor-
responding to α = 0.1.

IAE

T
V

MoReRT (Ms = 1.6)

MoReRT (Ms = 1.4)

MoReRT (Ms = 1.8)

K-T (Ms = 1.4)

SIMC (Ms ≈ 1.59)

NS

K-T (Ms = 2.0)

AMIGO (Ms = 1.4)

MoReRT (Ms = 2.0)

Figure 5: Pareto front for the process model cor-
responding to α = 1.0.

The Pareto fronts corresponding to the process
models corresponding to α = 0.1 and α = 1.0, are
shown in Figures 4 and 5, respectively. These ex-
amples provide a graphical comparison of the per-
formance/robustness trade-off among the tuning

≈

Figure 6: Load disturbance step responses for
Pα=0.1(s).

≈

Figure 7: Load disturbance step responses for
Pα=1.0(s).

rules aforementioned and the Nash Solution (NS).
The achieved time responses when facing a step
load disturbance are shown in Figures 6 and 7. It
can be stated that the controller tuning suggested
by the NS choice improves the time responses in
comparison with the other tuning rules.

Note that the MoReRT, SIMC and K-T (Ms =
2.0) tuning rules are almost located on the Pareto
front, for the process model corresponding to α =
0.1. However, for the second example α = 1.0, it
can be seen that some of the MoReRT and K-T
(Ms = 1.4) tuning rules are located on the Pareto
front. Nevertheless, as it can be observed the NS
is located in the Pareto front and very close to
MoReRT (Ms = 1.6) tuning rule, which means
that the robustness level is Ms ≈ 1.6 (remember
we can assimilate TV to Ms).

6 Conclusions

In this communication, the Nash Solution (NS) [7]
has been analyzed as an automatic way of select-
ing compromise solutions in a Multi-Criteria De-
cision Making problem. The scenario for design of
PI controllers has been taken as a design scenario.
The NS provides an automatic selection and a di-
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rect approach for the choice of one point from the
Pareto front approximation, this will generate a
possibility for tuning a controller that it can gen-
erates better system outputs than existing tuning
methods.
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