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Abstract

This thesis presents new methods for recasting dependency parsing as
a sequence labeling task yielding a viable alternative to the traditional
transition- and graph-based approaches. It is shown that sequence la-
beling parsers provide several advantages for dependency parsing, such
as: (i) a good trade-off between accuracy and parsing speed, (ii) generic-
ity which enables running a parser in generic sequence labeling software
and (iii) pluggability which allows using full parse trees as features to
downstream tasks.

The backbone of dependency parsing as sequence labeling are the en-
codings which serve as linearization methods for mapping dependency
trees into discrete labels, such that each token in a sentence is associ-
ated with a label. We introduce three encoding families comprising: (i)
head selection, (ii) bracketing-based and (iii) transition-based encod-
ings which are differentiated by the way they represent a dependency
tree as a sequence of labels. We empirically examine the viability of
the encodings and provide an analysis of their facets.

Furthermore, we explore the feasibility of leveraging external comple-
mentary data in order to enhance parsing performance. Our sequence
labeling parser is endowed with two kinds of representations. First,
we exploit the complementary nature of dependency and constituency
parsing paradigms and enrich the parser with representations from both
syntactic abstractions. Secondly, we use human language processing
data to guide our parser with representations from eye movements.

Overall, the results show that recasting dependency parsing as se-
quence labeling is a viable approach that is fast and accurate and pro-
vides a practical alternative for integrating syntax in NLP tasks.
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Resumen

Esta tesis presenta nuevos métodos para reformular el análisis sin-
táctico de dependencias como una tarea de etiquetado secuencial, lo
que supone una alternativa viable a los enfoques tradicionales basados
en transiciones y grafos. Se demuestra que los analizadores de etique-
tado secuencial ofrecen varias ventajas para el análisis sintáctico de
dependencias, como por ejemplo (i) un buen equilibrio entre la preci-
sión y la velocidad de análisis, (ii) la genericidad que permite ejecutar
un analizador en un software genérico de etiquetado secuencial y (iii)
la conectividad que permite utilizar el árbol de análisis completo como
características para las tareas posteriores.

El pilar del análisis sintáctico de dependencias como etiquetado se-
cuencial son las codificaciones que sirven como métodos de linealización
para transformar los árboles de dependencias en etiquetas discretas, de
forma que cada token de una frase se asocia con una etiqueta. Intro-
ducimos tres familias de codificación que comprenden: (i) selección de
núcleos, (ii) codificaciones basadas en corchetes y (iii) codificaciones ba-
sadas en transiciones que se diferencian por la forma en que representan
un árbol de dependencias como una secuencia de etiquetas. Examina-
mos empíricamente la viabilidad de las codificaciones y ofrecemos un
análisis de sus facetas.

Además, exploramos la viabilidad de aprovechar datos complementa-
rios externos para mejorar el rendimiento del análisis sintáctico. Dota-
mos a nuestro analizador sintáctico de dos tipos de representaciones. En
primer lugar, explotamos la naturaleza complementaria de los paradig-
mas de análisis sintáctico de dependencias y constituyentes, enriquecien-
do el analizador sintáctico con representaciones de ambas abstracciones
sintácticas. En segundo lugar, utilizamos datos de procesamiento del
lenguaje humano para guiar nuestro analizador con representaciones de
los movimientos oculares.

En general, los resultados muestran que la reformulación del análisis
sintáctico de dependencias como etiquetado de secuencias es un enfoque
viable, rápido y preciso, y ofrece una alternativa práctica para integrar
la sintaxis en las tareas de PLN.
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Resumo

Esta tese presenta novos métodos para reformular a análise sintácti-
ca de dependencias como unha tarefa de etiquetaxe secuencial, o que
supón unha alternativa viable aos enfoques tradicionais baseados en
transicións e grafos. Demóstrase que os analizadores de etiquetaxe se-
cuencial ofrecen varias vantaxes para a análise sintáctica de dependen-
cias, por exemplo (i) un bo equilibrio entre a precisión e a velocidade
de análise, (ii) a xenericidade que permite executar un analizador nun
software xenérico de etiquetaxe secuencial e (iii) a conectividade que
permite empregar a árbore de análise completa como características
para as tarefas posteriores.

O piar da análise sintáctica de dependencias como etiquetaxe secuen-
cial son as codificacións que serven como métodos de linealización para
transformar as árbores de dependencias en etiquetas discretas, de for-
ma que cada token dunha frase se asocia cunha etiqueta. Introducimos
tres familias de codificación que comprenden: (i) selección de núcleos,
(ii) codificacións baseadas en corchetes e (iii) codificacións baseadas en
transicións que se diferencian pola forma en que representan unha ár-
bore de dependencia como unha secuencia de etiquetas. Examinamos
empíricamente a viabilidade das codificacións e ofrecemos unha análise
das súas facetas.

Ademais, exploramos a viabilidade de aproveitar datos complementa-
rios externos para mellorar o rendemento da análise sintáctica. O noso
analizador sintáctico de etiquetaxe secuencial está dotado de dous tipos
de representacións. En primeiro lugar, explotamos a natureza comple-
mentaria dos paradigmas de análise sintáctica de dependencias e cons-
tituíntes e enriquecemos o analizador sintáctico con representacións de
ambas abstraccións sintácticas. En segundo lugar, empregamos datos
de procesamento da linguaxe humana para guiar o noso analizador con
representacións dos movementos oculares.

En xeral, os resultados mostran que a reformulación da análise sin-
táctico de dependencias como etiquetaxe de secuencias é un enfoque
viable, rápido e preciso, e ofrece unha alternativa práctica para inte-
grar a sintaxe nas tarefas de PLN.
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1Introduction

1.1 Motivation

Syntactic parsing has been drawing attention for the past decades
and became an inherent foundation block in the Natural Language Pro-
cessing (NLP) field. Its goal is to automatically determine the syntactic
structure of a sentence. One of the most studied parsing paradigms is
dependency parsing which provides knowledge about the interplay of
dependencies and relationship between words that serve as a useful ab-
straction for representing and processing human language. Employing
syntactic features has been shown to be beneficial for a range of NLP
tasks. Dependency parsing has most recently found application, for in-
stance, in: machine translation (Zhang et al., 2019), question answering
(Cao et al., 2021), semantic role labeling (Strubell et al., 2018), sum-
marization (Song, Zhao, and Liu, 2018), opinion role labeling (Zhang
et al., 2020) or dialogue generation (Zhou et al., 2018).

Recent neural network advances have enabled an efficient syntactic
feature extraction and have provided dependency parsers that yield
very accurate results on certain domains. However, since dependency
parsing is one of the core NLP tasks on which other downstream tasks
rely, there are manifold aspects beyond the accuracy to consider when
combining a parser with other NLP applications. One of the crucial
assets of a dependency parser that emerges in the era of massive data
is the parser’s ability to maintain a good trade-off between the parsing
speed and accuracy in order to mitigate the recurrent bottleneck of
parsing speed that has a negative effect on the pipeline. To do so, one
may leverage the capabilities of neural networks to propose alternative
approaches in dependency parsing based on simpler methods than the
existing ones to improve parser’s computational efficiency while achiev-
ing a competitive accuracy. Additionally, it may be beneficial that a
parser relies on generic methods, so that it can be used as an off-the-
shelf software and benefit from its upstream improvements. Moreover,
a parser may obtain additional gains from leveraging external comple-
mentary data (for instance, data used for training other downstream
sequence labeling tasks) without sacrificing its efficiency and no need
for any additional ad-hoc methods to do so. Hence, this thesis will pay
closer attention to these aspects and state some key questions that we
believe are substantial in the context of further enhancements.

3
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DEPENDENCY PARSING DURING THE NEURAL NET-
WORKS HEYDAY

Traditionally, there have been two dominant approaches in depen-
dency parsing: transition- (Nivre, 2003) and graph-based (McDonald,
Crammer, and Pereira, 2005). These are among the most widely used
while their facets are well-studied. In recent years, artificial neural net-
works seem to have revolutionized the NLP field and many tasks have
excelled due to the powerful neural architectures yielding state-of-the-
art (SOTA) results. Likewise, there have been early attempts to enhance
dependency parsers with the neural network methods (Titov and Hen-
derson, 2007), however neural dependency parsing has become remark-
ably prevalent with the work of Chen and Manning (2014) that suc-
cessfully employed a feed-forward network in a transition-based parser.
Besides achieving great performance, it has been shown that the neural
approach mitigates the manual feature extraction efforts that formerly
used to be crucial and challenging. Thereby, in the light of the capabil-
ities of neural networks, many syntactic parsers became conceptually
simpler than their antecedents. Models with a large feature set (Zhang
and Nivre, 2011) were simplified by relying on a few core features
(Chen and Manning, 2014). Thereafter, as succeeding neural archi-
tectures have been proposed, Bidirectional Long Short Term Memory
Networks (BiLSTM) (Graves and Schmidhuber, 2005) have been shown
to notably suit the dependency parsing task and enabled reducing the
feature engineering efforts even further (Kiperwasser and Goldberg,
2016). Eventually, a minimal set of two features has been shown to
suffice to obtain competitive results (Shi, Huang, and Lee, 2017). For
the past years, the BiLSTM-based parsers obtained SOTA performance
(Kiperwasser and Goldberg, 2016; Dozat and Manning, 2017), although
recently (at the time of writing this thesis in 2021), pointer networks
(Vinyals, Fortunato, and Jaitly, 2015) have been successfully applied to
dependency parsing (Ma et al., 2018; Fernández-González and Gómez-
Rodríguez, 2019) and there has also been a noticeable rise in the use
of transformers (Vaswani et al., 2017) as a promising alternative (Zhou
and Zhao, 2019; Mrini et al., 2019).
Another line of research attempts to recast dependency parsing as

a divergent problem obviating the use of the traditional transition- or
graph-based algorithms, structural features or even the requirement of
the output having a tree structure. For instance, Zhang, Cheng, and
Lapata (2017) define dependency parsing as a head selection task where
the problem is reduced to independently finding the most probable head
for each token in a sentence using BiLSTMs. In the same vein, Li et al.
(2018) propose a sequence to sequence dependency parser that predicts
the relative position of a head for a given word. Furthermore, Spoustová
and Spousta (2010) attempt to recast dependency parsing as a sequence
labeling task, where a dependency tree is represented as a sequence of
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labels and each word is associated with a single label. However, their
approach relies on a non-neural model and achieves inferior accuracy
than the counterpart parsers. Recently, Gómez-Rodríguez and Vilares
(2018) show however that constituency parsing as sequence labeling
can be successfully employed with neural network architectures and
provides a competitive performance.
Hence, the aim of this thesis is to call into question whether in the

age of neural advances, reducing dependency parsing to a sequence la-
beling task enhanced with novel linearization methods may serve as a
viable alternative to notably more complex systems. One of the main
advantages of this approach is that it enables opting for architectural
simplicity that helps increase the computational efficiency of depen-
dency parsing.

RECURRING BOTTLENECK OF PARSING SPEED

The past decades of parsing research gave rise to a myriad of ap-
proaches that have been pushing the boundaries of dependency parsers’
performance. However, it has been often opted for the accuracy gains
rather than the computational efficiency of a parser. This may be par-
ticularly precarious in the context of massive data that is available
today, where the need of efficient parsers emerges since systems that
are computationally expensive may in fact impede feasible and scalable
parsing (Gómez-Rodríguez, 2017). A discrepancy between the accuracy
and the efficiency of a parser may have further negative implications.
For instance, very accurate but inefficient parsers may be intractable for
embedding them in other NLP applications. More particularly, Gómez-
Rodríguez, Alonso-Alonso, and Vilares (2019) show that the difference
in parser’s accuracy used in the sentiment analysis task does not affect
proportionally the performance of the end task while the computational
burden varies among them.
Furthermore, the bottleneck of parsing efficiency is even more promi-

nent in the age of deep neural networks, where dependency parsers in-
creasingly rely on models with large parameter space and that require
costly training entailing a considerable carbon footprint. Lately, consid-
erable attention has been directed towards the environmental concerns
around the computational cost of NLP models (Strubell, Ganesh, and
McCallum, 2019; Schwartz et al., 2019) motivating the attempts of
providing smaller and more efficient models that yield similar accuracy
(Jiao et al., 2020; Wang et al., 2020).

Thus, a question arises whether more attention should be aimed at
proposing dependency parsers that maintain the speed-accuracy equi-
librium. Some parts of this thesis seek to determine whether the dis-
sonance between the parsing accuracy and the speed of dependency
parsers can be overcome by a sequence labeling parser that is based on
a simple and generic approach. Furthermore, this method may also fa-
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cilitate integrating representations from external complementary data.

REPRESENTATIONAL ENRICHMENT FROM COMPLE-
MENTARY DATA

The learning process of a parser does not need to solely rely on data
with dependency annotation. There are numerous types of external
complementary data which provide some notion of word relations in
a sentence and yield syntactic representations beyond those captured
by the dependency grammar. Hence, the aim of our work is to en-
rich the representations acquired by the sequence labeling parser with
complementary data by means of auxiliary tasks in a Multi-Task Learn-
ing (MTL) setup.

An example of complementary data that a dependency parser may
leverage is, for instance, a constituency treebank. Both dependency
(Mel’cuk, 1988) and constituency grammar (Chomsky, 1956) are par-
allel formalisms expressing some notion of syntactic structures. The
former represents a sentence as a tree with head-dependent relation for
each word pair, while in the latter, a constituency tree reflects word re-
lation with respect to the position in the phrasal hierarchy. Hence, they
are likely to contain some complementary syntactic representations that
may enrich both types of parsers. Traditionally, the improvements of
dependency and constituency parsers used to be mostly carried out
independently. There were few attempts of incorporating representa-
tions from both formalisms, however they resulted in arguably complex
parsers (Klein and Manning, 2002; Ren, Chen, and Kit, 2013). Hence,
in this thesis we aim to investigate whether it is feasible to learn depen-
dency and constituency abstractions in order to obtain a more accurate
parser without sacrificing its parsing speed.
Another promising research line is directed towards the use of human

language processing data in the NLP field. Recent work shows that mea-
sures reflecting some human cognitive processes may be beneficial for
NLP tasks (Barrett, 2018; Hollenstein et al., 2019). For instance, a cog-
nitive skill such as reading seems particularly relevant for dependency
parsing, since it provides some insight into how much time a reader
spends on some core parts of the sentence, such as subject etc. Hence,
this thesis also explores the impact of learning eye movement measures
and whether eye-tracking data may improve the performance of our
dependency parser.

1.2 Task definition and contributions

We turn now to the task definition and following the canonical work
of Spoustová and Spousta (2010), recasting dependency parsing as se-
quence labeling consists in associating each token with a discrete label
obtained with a linearization method for dependency tree encoding. To
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make it practical under the neural network setup, we formalise the task
following Gómez-Rodríguez and Vilares (2018).
More formally, given a set of trees T for sentences of length |w|

and a set of categorical labels L, we define an encoding function ψ :
T|w| → L|w| that transforms a tree t ∈ T to a sequence of discrete labels.
Conversely, in order to parse a sentence, a sequence labeling parser pro-
cesses a sentence with |w| tagging actions by predicting for each word
wi a corresponding label li. The predicted sequence of labels can be
then decoded to a dependency tree. Due to non-surjectivity, some of
the labels in the sequence may be erroneously predicted resulting in to-
kens with dislocated or missing heads. In such a case, a postprocessing
step is required in order to ensure a well-formed output tree.
This thesis introduces several enhancements to dependency parsing,

whose scope and contributions can be outlined as follows. We propose:

A sequence labeling parser whose main asset is accurate and fast
dependency parsing.

Several linearization methods that serve as the mainstay of the
dependency parsing as sequence labeling approach enabling en-
coding dependency trees as a sequence of labels. The encodings
are grouped into three families that differ in how they transform a
tree structure into a sequence of labels. The first encoding family
is based on head selection, where the head is encoded in a label
through its absolute or the relative position. The second fam-
ily consists of bracketing-based encodings, in which dependency
arcs are represented as pairs of matching brackets. This includes
methods for increasing coverage of non-projectivity by applying
the property of 2-planarity. The third family is transition-based,
where a label contains a subsequence of transitions retrieved from
the transition-based algorithms, resulting from a unifying theory
of transition-based and sequence labeling parsing.

In-depth analyses of each encoding family in terms of their strengths
and limitations based on the empirical evaluations.

Methods for leveraging complementary data, such as constituency
analysis and eye movement measures in dependency parsing as
sequence labeling by means of auxiliary tasks in a MTL setup.

1.3 Thesis outline

This thesis is divided into four central parts that are based on a col-
lection of published work (Section 1.4).

Part I outlines the topic and the scope of this thesis followed by an
overview of the essential preliminaries to dependency parsing.
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Chapter 1 describes the motivation behind this work and states
the key questions regarding some underexplored aspects in de-
pendency parsing.

Chapter 2 provides preliminary definitions and a description of re-
sources used in dependency parsing, followed by a discussion on
the shift towards neural approaches in dependency parsing. The
chapter concludes with an overview of parsing speeds and neural
methods used in this work.

Part II provides a formalisation of the three encoding families and
includes in-depth analyses based on the evaluations. It also discusses
each encoding with respect to its strengths and limitations.

Chapter 3 introduces a set of encodings belonging to the head
selection family and examines the encodings’ performance and
facets.

Chapter 4 describes the bracketing-based encodings including a vari-
ant that relies on the property of 2-planarity in order to increase
the coverage of non-projectivity. The chapter concludes with an
analysis of strengths and shortcomings of the 1- and 2-planar
encodings.

Chapter 5 presents the transition-based family of encodings ob-
tained using novel methods for mapping transition-based parsers
to sequence labeling parsers.

Part III addresses the use of external complementary data in a se-
quence labeling parser. In particular, it examines the leverage of con-
stituency analyses and eye movement measures learned as auxiliary
tasks in a MTL setup.

Chapter 6 describes a case study where dependency and constituency
representations are learned jointly by a sequence labeling parser.
The two parsing abstractions are used in a two-fold manner. First,
the counterpart paradigm learned as an auxiliary task serves to
improve the performance of the other paradigm and vice versa.
Secondly, the two paradigms are learned as main tasks providing
a single model that is capable of parsing both of them.

Chapter 7 presents a case study where a sequence labeling parser
is enhanced with human language processing data. It examines
whether eye movement measures learned as auxiliary tasks may
be beneficial in dependency parsing.

Final conclusions are drawn in Part IV, where we also allude to poten-
tial directions for the future work on dependency parsing as sequence
labeling.
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2Preliminaries

This chapter gives an overview over the essential concepts that our
work is built on. First, we will recall some definitions of dependency
structure and dependency parsing. Next, we will provide a short de-
scription of the selected dependency treebanks that are used to carry
out our experiments and an outline of the evaluation methods. After-
wards, we will discuss the noticeable shift towards neural approach in
dependency parsing and we will provide a comparison of parsing speeds
of recent neural dependency parsers. Lastly, we will introduce the se-
quence labeling task that consists in assigning a label to each input
token, and multi-task learning that enables a model to learn several
tasks jointly and leverage their shared representations.

2.1 Dependency formalism

Dependency parsing relies on dependency grammar whose theory
is often referred to the work of Tesnière (1959) and Mel’cuk (1988).
Its principles say that the words in a sentence are linked with binary
asymmetric relations and each of such word pairs consists of a head
word governing a dependent word, associated with a certain dependency
relation type. This group of dependencies within a sentence forms a
dependency tree as illustrated in Figure 1. In the parsing literature,
an artificial root node is commonly added as a root of such a tree.
Hence, dependency parsing is a task of assigning automatically such a
dependency structure to any given sentence.

root Every language has its own beauty
w0 w1 w2 w3 w4 w5 w6

root

det nsubj

obj
nmod:poss

amod

Figure 1: An example of a dependency tree.

2.1.1 Dependency tree

More formally, a dependency tree for a sentence w = w1,w2, ...,wn is
a directed graph G = (V ,A), where V = {0...n} stands for tree nodes

11
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while A denotes dependency arcs. The vertex at index 0 represents the
artificial root node that is added to act as a head for the sentence. Each
arc is a triple (h, l, d) ∈ A, where h ∈ V is the index of the head node, l
the dependency type and d ∈ V \ {0} the index of the dependent node,
such that wh

l−→ wd.
A dependency graph forms a valid dependency tree only if it is well-

formed by fulfilling some conditions. Namely, each node has only one
incoming arc, i.e. each word is governed by a single head, and a depen-
dency graph can not contain cycles. These properties can be formalised
as:

single head if wh −→ wd then @wh′ : wh′ −→ wd for wh′ 6= wh

acyclicity if @path: wh → ...→ wd and wd → ...→ wh

On these grounds, the dependency parsing can be defined as a prob-
lem of mapping an input sentence to a dependency graph while pre-
serving the properties described above (Kübler, McDonald, and Nivre,
2009).

2.1.2 Non-projectivity

Some languages are prone to contain syntactic structures in which
dependency arcs happen to be non-projective. Intuitively, this means
that in a given dependency tree there exist arcs that cross each other.
As highlighted in the example from Figure 2, a non-projective arc can
be detected due to the presence of two crossing arcs: from the token
saw to yesterday and from the token person to dog.

root I saw a person yesterday with a dog

Figure 2: An example of a non-projective dependency tree.

More formally, non-projectivity can be determined as follows:

non-projectivity if there are arcs wh −→ wd and wh′ −→ wd′ :
min(h, d) < min(h′, d′) < max(h, d) < max(h′, d′)

Handling non-projectivity in dependency parsing has been shown to
be challenging. As some previous analyses have demonstrated (McDon-
ald and Satta, 2007; Gómez-Rodríguez, 2016), solving non-projectivity
often results in computationally costly algorithms. Since the degree of
non-projectivity varies across languages, some parsers are therefore de-
signed to only support projective trees in order to preserve the efficiency.
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To overcome this shortcoming, one may apply a property of k-planarity
that provides an efficient solution to deal with non-projectivity and that
we will cover in Section 4.1.2.1.

2.2 Dependency treebanks

The emergence of corpora with dependency annotation has been cru-
cial for training and testing data-driven parsers on a range of languages.
They also serve for challenging parser’s capabilities regarding some spe-
cific aspects, for instance, to improve multilingual or low-resource pars-
ing1. Furthermore, some dependency treebanks are enhanced with ad-
ditional annotations coming from e.g. other parsing paradigms (Seddah
et al., 2013) or eye-tracking data (Barrett, Agić, and Søgaard, 2015)
that may provide complementary representations useful for a depen-
dency parser.
In this section, we will outline the common format of dependency

treebanks and we will describe the selected corpora, as well as, the
evaluation metrics used in our work.

2.2.1 CoNNL-X format

Previously, disparity in annotation schemes, evaluation methods or
data splits was posing challenges for a direct comparison of dependency
parsers (Buchholz and Marsi, 2006). Hence, considerable effort has
been put into standardizing the dependency format across languages
giving origin to the CoNNL-X format (Buchholz and Marsi, 2006). In
general, a CoNNL-X file is a text file containing sentences separated by
an empty line and where each token in a sentence consists of 10 fields
delimited by tabs. In recent years, a modified version of it has been
commonly used: the CoNNL-U format that is annotated according to
the Universal Dependencies guidelines (Nivre et al., 2016). Figure 3
shows an exemplary snippet of an annotated sentence in English.

# sent_id = weblog-blogspot.com_marketview_20040611132900_ENG_20040611_132900-0009

# text = The other problem?

1 The the DET DT Definite=Def|PronType=Art 3 det 3:det _

2 other other ADJ JJ Degree=Pos 3 amod 3:amod _

3 problem problem NOUN NN Number=Sing 0 root 0:root SpaceAfter=No

4 ? ? PUNCT . _ 3 punct 3:punct _

Figure 3: An excerpt in CoNNL-U format from the EnglishEWT UD treebank.

Each sentence in the CoNNL-U format2 is preceded with additional
annotation marked with a hash sign, followed by lines corresponding to

1 An overview of previous CoNLL Shared Tasks on dependency parsing is available
at https://www.conll.org/previous-tasks

2 https://universaldependencies.org/format.html
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each word in a given sentence. Such a line starts with a column denoting
the word index (id) in the sentence, counting from 1, its form (form)
and lemma (lemma). Then two fields with Part-of-Speech (PoS) tag
information are provided: upos and xpos, where the former stands for
the Universal PoS tags, while the latter for language-specific ones. Next
column corresponds to morphological features (feats), followed by a
column containing the index of the word’s head (head). If head is 0,
then the head for that word is the artificial root of the sentence. Next,
there is a field describing the dependency relation type (deprel), while
the last columns refer to the head-deprel pairs (deps) and additional
annotations (misc). If for a given field the information is unavailable,
then the field is substituted with an underscore.

2.2.2 English Penn Treebank (PTB)

The English Penn Treebank (Marcus, Marcinkiewicz, and Santorini,
1993) is a licensed English treebank containing a section based on the
Wall Street Journal (WSJ) articles that is commonly used in syntac-
tic parsing. Since this treebank was annotated according to the con-
stituency grammar, it requires a conversion to dependencies using some
external tools. Various consecutive SOTA dependency parsers (Chen
and Manning, 2014; Dyer et al., 2015; Kiperwasser and Goldberg, 2016;
Ma et al., 2018; Fernández-González and Gómez-Rodríguez, 2019) use
the following standard splits: sections 2–21 for training, 23 as the devel-
opment set, and 24 as the test set, and rely on the Stanford Dependency
(SD) conversion (Marneffe, MacCartney, and Manning, 2006) and the
Stanford PoS tagger (Toutanova et al., 2003). We follow this setup in
our experiments in order to provide a comparison of our models against
some existing dependency parsers. It is also worth mentioning that a
common practice is to exclude punctuation from the evaluation when
using this ptb-sd treebank.

2.2.3 Universal Dependencies (UD)

Universal Dependencies (UD) (Nivre et al., 2016) is an open project
addressing the need for multilingual treebanks that are based on a co-
herent annotation scheme across the languages. It is a dynamically
growing project and nowadays, the latest released version (Zeman et
al., 2021) provides a collection of 202 treebanks in 114 languages3, en-
abling to redirect the focus on parsing advances to other languages than
English.
Apart from UD being a useful resource with dependency annotation

across languages, it is also used for developing and testing multilingual
parsers in more real-world settings. For instance, CoNLL Shared Tasks

3 Checked on the 1st of July 2021.
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20174 and 20185 aimed at improving parsing from a raw text to univer-
sal dependencies and resulted in various systems that could be directly
compared on a wide range of UD languages (Kübler, McDonald, and
Nivre, 2009).

In our work, we evaluate the models on a subset of treebanks either
from UDv2.2 (Nivre et al., 2018) or UDv2.4 (Nivre et al., 2019). To en-
sure an evaluation on a representative group of languages, we follow the
criteria for a treebank choice (i.a. typology, treebank size, degree of non-
projectivity, morphological richness) proposed by Lhoneux, Stymne,
and Nivre (2017b) and Anderson and Gómez-Rodríguez (2020a). In the
case of experiments on non-projectivity (see Section 4.3.2), we extract
UD treebanks with the highest percentage of non-projective sentences.
Moreover, in order to liken a more realistic setup as in CoNLL Shared
Tasks, we use UDPipe models (Straka and Straková, 2017) to obtain
the predicted segmentation and tokenization for the selected treebanks.
It is also worth mentioning that it is a standard practice to include
punctuation when evaluating a parser on the UD treebanks.

2.2.4 Evaluation metrics

There are several evaluation metrics to measure the performance of
a dependency parser. The most commonly used are the following:

Unlabeled Attachment Score (UAS): Percentage of cor-
rectly assigned heads.

Labeled Attachment Score (LAS): Percentage of correctly
assigned heads and dependency relations.

Additionally, in the experiments where we examine the improvements
in the coverage of non-projective arcs, we evaluate the parser’s perfor-
mance using:

Precision (P): Percentage of correct non-projective arcs out of
all predicted non-projective arcs.

Recall (R): Percentage of correct non-projective arcs out of all
gold non-projective arcs.

2.3 A shift towards neural dependency
parsing

Traditionally, there have been two prevalent approaches in data-
driven dependency parsing: transition-based (Yamada and Matsumoto,
2003; Covington, 2001; Nivre, 2003) and graph-based (Eisner, 1996;

4 CoNLL 2017 Shared Task: http://universaldependencies.org/conll17/
5 CoNLL 2018 Shared Task: http://universaldependencies.org/conll18/
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McDonald, Crammer, and Pereira, 2005). Generally, these canonical
approaches differ in how a dependency tree is inferred (McDonald and
Nivre, 2011). Namely, in transition-based systems a dependency tree is
greedily constructed based on a sequence of transitions, where for each
time step given some configuration the most optimal transition is opted.
In the graph-based approach, in turn, the highest scored dependency
tree based on the score of its arcs is globally inferred from the set of
all possible trees.6

Recent years have seen a surge of interest in neural networks that
have provided many advances and SOTA results for a range of NLP tasks.
Likewise, transition- and graph-based parsers that formerly were often
based on linear models have been enhanced with the neural network
methods. One of the motivations for the shift to neural dependency
parsing is that these methods implicitly perform an efficient feature
extraction that used to be the bottleneck of the pre-neural dependency
parsers (particularly in transition-based models).

2.3.1 Feature representations

Parser’s decisions are made based on a feature model. For that reason
it is crucial to provide a model with the most useful feature represen-
tations. In the pre-neural transition- and graph-based parsing, models
used to rely on some predefined feature templates (Zhang and Clark,
2008; Zhang and Nivre, 2011). However, as Chen and Manning (2014)
notice such feature representations can be sparse and incomplete, while
their retrieval is also computationally demanding (Vilares and Gómez-
Rodríguez, 2018). With the rise of neural networks methods this could
be overcome by replacing sparse features with their dense representa-
tions and by introducing non-linear feature extractors. Particularly,
Chen and Manning (2014) show that their model based on Multi-Layer
Perceptron (MLP) can successfully learn from a small set of atomic fea-
tures represented as dense vectors, mitigating the need of defining a
large amount of hand-crafted feature representations beforehand. Sub-
sequently, Kiperwasser and Goldberg (2016) show that when substitut-
ing MLP with a BiLSTM architecture, the number of features could be
reduced even further and eventually, Shi, Huang, and Lee (2017) pro-
pose a minimal set of two features that suffices to obtain good parsing
performance.

When it comes to graph-based parsing, a wide range of pre-neural
parsers used to primarily rely on first-order modeling that only con-
siders single arcs, unlike higher-order models that make use of richer
features spanning to grandparent or sibling arcs. The reason for that
is that first-order parsers used to be considerably more efficient even
when handling non-projectivity, however with the limitation of relying

6 A more detailed description of both approaches can be found in Kübler, McDonald,
and Nivre (2009).
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on solely local features. The higher-order parsers, in turn, used to pro-
vide further improvements in accuracy but easily become intractable
with arbitrary non-projectivity (McDonald and Satta, 2007). However,
it has been shown that higher-order parsing is indeed tractable for
projective parsing (Koo and Collins, 2010) and even may support non-
projectivity and be fast when using an approximate inference (Martins,
Almeida, and Smith, 2013). With the shift to neural parsers, Pei, Ge,
and Chang (2015) demonstrate that employing MLP eases learning of
high-order feature combinations. However, it has been later shown that
BiLSTM-based models that rely on the first-order features suffice to ob-
tain a competitive performance (Kiperwasser and Goldberg, 2016) and
even SOTA results when extended with a biaffine attention (Dozat and
Manning, 2017). Newly, it has been shown that with GPU paralleli-
sation capabilities and batching methods, higher-order modeling can
become even more efficient (Zhang, Li, and Zhang, 2020).

2.3.2 Pre-trained and deep contextualized word
representations

With the introduction of neural networks, words became represented
as low-dimensional dense vectors called word embeddings. Nowadays,
neural parsers often rely on word embeddings that were pre-trained
on some external corpora. They are easily pluggable into a parser
and endow it with some initialized word representations leading to per-
formance improvements. The earliest pre-trained word embeddings,
such as: word2vec (Mikolov et al., 2013), GloVe (Pennington, Socher,
and Manning, 2014) or fastText (Bojanowski et al., 2017) are however
static and do not reflect the word order. Hence, other embeddings
have been developed to be more suitable for the syntax-oriented tasks.
For instance, Ling et al. (2015) present structured word embeddings
considering the word order, while Levy and Goldberg (2014) suggest
dependency-based embeddings that define context with respect to the
syntactic dependencies. As a side note, the common use of the pre-
trained word embeddings in parsing has raised a question, to what
extent a parser should be perceived as fully- or semi-supervised, since
the pre-trained word embeddings provide a parser with some external
knowledge. A reader may see remarks on it in the work of Kiperwasser
and Goldberg (2016) and Fernández-González and Gómez-Rodríguez
(2019).

Lately, the deep contextualized word representations have gained
much attention. This type of word representations comes from pre-
trained language models, such as ELMo (Peters et al., 2018) based
on LSTM (Hochreiter and Schmidhuber, 1997) or BERT (Devlin et al.,
2019) enhanced with transformers (Vaswani et al., 2017). The deep
contextualized embeddings are more powerful than the static ones,
since their representations are generated based on the sentential con-
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text in which a given word appears. However, in order to use them
a parser needs to embed the pre-trained model that often consider-
ably increases the parser’s parameter space and complexity. Recently,
syntactic parsers augmented with such models have achieved SOTA re-
sults in both constituency (Kitaev and Klein, 2018; Zhang, Zhou, and
Li, 2020) and dependency parsing (Zhou and Zhao, 2019; Mrini et
al., 2020) generating interest in understanding what structural repre-
sentations the pre-trained models acquire (Hewitt and Manning, 2019;
Tenney et al., 2019). Interestingly, Vilares et al. (2020) show that syn-
tactic parsing can even be reduced to pre-training by only relying on
the vectors from the pre-trained encoders demonstrating that this kind
of models are endowed to some extent with the structural awareness.

2.3.3 Selected neural network architectures

Now we will describe some architectures based on the recurrent neu-
ral networks that are relevant for our work and their previous applica-
tion in dependency parsing.7

RNN Recurrent Neural Networks (Elman, 1990) are descendants of
the feed-forward networks with the ability to encode the input sequen-
tially. More concretely, RNN enables processing of each element in the
sequence conditioning on the previously processed input. Hence, a hid-
den layer at a time step t is a function of the weighted hidden layer
from the previous time step, the weighted input from the current time
step and the bias term which are fed to a non-linear function σ. It can
be defined as:

ht = σ(Uht−1 +Wxt + b) (1)

However, there are some limitations for this kind of recursive archi-
tecture. Since the input sequence may be of an arbitrary length, larger
input sequences may be harder to learn and some information may get
lost. Moreover, it may lead to problems of vanishing or exploding gra-
dients (Pascanu, Mikolov, and Bengio, 2013). In order to tackle this
issue, a variant of RNN has been proposed that we will describe next.

LSTM Long Short-Term Memory networks (Hochreiter and Schmid-
huber, 1997) are enhanced with gates to improve the control of the
information that needs to be preserved or added. Concretely, they are
endowed with the forget, input and output gates that are defined as:

7 A more detailed description of the following neural architectures can be found in
Goldberg (2017) and https://web.stanford.edu/~jurafsky/slp3/.
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ft = σ(Ufht−1 +Wfxt + bf ) (2)
it = σ(Uiht−1 +Wixt + bi) (3)
ot = σ(Uoht−1 +Woxt + bo) (4)

Furthermore, a memory cell ct is introduced to determine how much
information from previous states should be retained and how much new
information should be added to the context. Hence, the current hidden
layer is then computed based on the output gate and the memory cell
passed through a non-linear function. More formally:

gt = tanh(Ught−1 +Wgxt + bg) (5)
ct = ft � ct−1 + it � gt (6)
ht = ot � tanh(ct) (7)

The LSTM architecture has been shown to be well-suited for the
dependency parsing problem. For instance, Dyer et al. (2015) use a
stack LSTM to obtain representations of the entire stack and buffer
and thereby obviate the need of defining features with respect to the
positions of elements on the stack and buffer. Additionally, the authors
make use of embeddings for partly constructed subtrees on the stack
by applying a composition function from recursive neural networks.
Furthermore, Ballesteros et al. (2016) improve the LSTM-based parser
by adding a dynamic oracle.
However, processing an input in the left-to-right fashion constrains

the context to the information coming from the previously processed
elements. Hence, to alleviate this limitation and enhance the context
with the information about the entire sequence, a variant of LSTM has
been proposed that processes the input in both directions.

BiLSTM Bidirectional LSTMs (Graves and Schmidhuber, 2005) en-
able to combine left and right context for an input xi. To do so, one
LSTM processes the input from the beginning of a sequence up to po-
sition i, while the second one processes the input from the end of a
sequence up to position i and the representations from both directions
are then concatenated. The input element is thereby enriched with a
global context based on the entire sequence. It can be formalised as:8

BiLSTM(x1:n, i) = LSTM→(x1:i) ◦LSTM←(xn:i) (8)

One of the first parsers that applies BiLSTMs to transition- and graph-
based systems is the BIST parser (Kiperwasser and Goldberg, 2016), in
which word and PoS tag embeddings for each token are concatenated

8 ◦ denotes a concatenation operator.
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and then passed through BiLSTM layers. Then with the feature function
the selected BiLSTM feature vectors are concatenated and scored using
a non-linear function. The strength of using BiLSTM-based representa-
tions of a token is that they are enhanced with a sentential context.

In the transition-based variant of the BIST parser, four positional fea-
tures are used to score each transition from an arc-hybrid system: the
three top elements on the stack and the top element in the buffer. How-
ever, Shi, Huang, and Lee (2017) show later that even two positional
BiLSTM features suffice. An example of a successor of the transition-
based BIST parser is UUParser (Lhoneux et al., 2017) that i.a. relies
on character-based embeddings instead of PoS tags and uses a swap
transition to support non-projectivity (Lhoneux, Stymne, and Nivre,
2017a).

The graph-based variant of the BIST parser is an arc-factored model.9
BIST parser scores each arc represented as concatenated BiLSTM vec-
tors of a head and modifier using MLP. Dozat and Manning (2017)
enhance this approach by introducing a biaffine attention mechanism
as a scoring function of arcs and labels resulting in a SOTA parser.
Recently, Zhang, Li, and Zhang (2020) extend the biaffine parser with
second-order features showing that a higher-order modeling that earlier
was challenging could be remedied with an efficient batchifying method.
Moreover, the proposed parser yields improvements in accuracy due to
the explicitly encoded second-order features suggesting that this type
of features is not captured implicitly by BiLSTMs in contrast to what
was suggested earlier.

This, in turn, relates to the question of what structural representa-
tions are implicitly encoded by BiLSTMs. Falenska and Kuhn (2019)
demonstrate that BiLSTM-based parsers are able, in fact, to contain
information about some complex syntactic relations. As a result, this
architecture alleviates the need of explicitly defining some syntactic
features since they are already captured by BiLSTMs. Moreover, their
ablation study confirms that the structural context that is encoded by
BiLSTMs implicitly has a direct translation into an improved perfor-
mance of a parser.

BERT Bidirectional Encoder Representations from Transformers (De-
vlin et al., 2019) is a language model containing deep contextualized
representations by relying on transformers (Vaswani et al., 2017). The
model is pre-trained on two unsupervised tasks: next sentence predic-
tion and masked language modelling, where the latter serves to pro-
vide the model with a bidirectional awareness of the context. BERT is
usually used together with a downstream task according to which the
parameters are fine-tuned.

9 Around the same time, an alternative BiLSTM-enhanced graph-based parser was
proposed by Wang and Chang (2016).
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Recently, BERT has become a backbone of many NLP models. Depen-
dency parsers augmented with BERT representations often yield SOTA
results (Zhou and Zhao, 2019) and also has enabled multilingual pars-
ing with a single model (Kondratyuk and Straka, 2019). After a range
of successful applications of BERT, researchers have addressed the ques-
tion of BERT’s syntax awareness (Goldberg, 2019; Hewitt and Man-
ning, 2019; Tenney et al., 2019). For instance, Jawahar, Sagot, and
Seddah (2019) investigate how BERT encodes syntactic representation
in English and observe that the phrasal information is captured in the
lower layers, more complex syntactic features in the middle layers while
deeper layers are needed in order to handle long-distance dependencies.

2.3.4 Non-neural versus neural dependency parsers

The pre-neural transition- and graph-based parsers, such as Malt-
Parser (Nivre et al., 2007) and MSTParser (McDonald, Crammer, and
Pereira, 2005) used to provide a similar accuracy even though they orig-
inate from different paradigms. The analysis of McDonald and Nivre
(2011) showed that one of the main theoretical distinctions between
the two parsers is their inference method and the feature representa-
tions they rely on. Namely, the transition-based parsers exploit much
richer representations based on the entire transition history, while the
graph-based ones solely rely on local features restricted to a single arc
(unless the latter includes more expensive higher-order feature model-
ing). As a consequence, different error types emerge in each system.
For instance, a transition-based parser is more prone to suffer from er-
ror propagation. The reason for that is that it may make a non-optimal
decision due to the reliance on local context, and such a decision may
cause future errors, unlike the graph-based parser that relies on a global
inference. They also have different strengths and weaknesses i.a. the
accuracy of transition-based parsers is higher on short dependency arcs
and sentences, while the graph-based parsers score better on long ones.
Recently, dependency parsers have been advanced with neural net-

work methods which simplify the feature extraction methods and pro-
vide SOTA results. Hence, the canonical approaches became a subject
of reexamination in the context of the neural enhancements. For in-
stance, Lhoneux, Stymne, and Nivre (2017b) provide a comparison of
non- and neural transition-based parsers using the same transition sys-
tem algorithm and show that a neural parser improves accuracy on long
dependencies while the non-neural counterpart still performs slightly
better on short dependencies.

Kulmizev et al. (2019), in turn, investigate the impact of deep contex-
tualized word embeddings on the error types that the transition- and
graph-based parsers commit with a close resemblance to the analysis
done by McDonald and Nivre (2011). They compare the performance
of the extended BiLSTM transition- and graph-based parsers (Kiper-
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wasser and Goldberg, 2016; Lhoneux et al., 2017) against their vari-
ants enhanced with deep contextualized embeddings, such as ELMo
and BERT. The study shows that in general the error patterns for the
graph-based and transition-based parsers relying on the BiLSTM archi-
tecture remain similar to the ones present in the non-neural counter-
parts. However, the BiLSTM graph-based model narrows the accuracy
gap in short dependencies and sentences with respect to the transition-
based parser which, in turn, suffers less from error propagation. Re-
garding transition- and graph-based models that additionally use ELMo
and BERT, it is discernible that their performance becomes even more
similar. The authors conclude that the deep contextualized word em-
beddings enable both parsers to bridge the gap with respect to the
accuracy and the types of errors. In particular, the transition-based
model makes better local decisions and obtains improvements in long
dependencies, while both transition- and graph-based parsers improve
on long sentences.

Previously, combining strengths of the pre-neural transition- and
graph-based parsers has been shown to be beneficial (Nivre and Mc-
Donald, 2008; Zhang and Clark, 2008) since it facilitates finding a
trade-off between rich feature representations and exhaustive search.
Nevertheless, with the emergence of BiLSTMs and pre-trained models,
a distinct error pattern for each approach got blurry. In this context,
Falenska, Björkelund, and Kuhn (2020) examine whether integrating
a transition- and graph-based parser is useful when relying on BiLSTM
representations and deep contextualized embeddings. In general, the
authors conclude that the advantage of combining the two approaches
no longer is reflected in the accuracy.

As an outcome of applying neural methods to dependency parsing
and more efficient feature extraction methods, the traditional division
between transition- and graph-based parsers has faded. It has also be-
come prominent that the parsing advances have been driven to a larger
extent by applying various neural architectures than by the parsing
algorithms themselves. Hence, this enables redirecting the focus on
other aspects of dependency parsing, such as architectural simplicity,
the capability of easily integrating dependency parser in other systems
or parsing speed.

2.4 Parsing speed breakdown

The past decade has seen great improvements in dependency pars-
ing accuracy, however the performance of a parser can seem deceiv-
ing when merely measured in terms of its precision while disregarding
its computational efficiency. Dependency parsers vary with respect to
the trade-off between the speed and accuracy they provide. Therefore,
some of them, even if capable of obtaining SOTA results, may not be apt
for large-scale parsing (Gómez-Rodríguez, 2017) or integration in other
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Parser Reported by Sent/s UAS
CPU GPU

Chen and Manning (2014) Chen and Manning (2014) 654 – 91.80
Ballesteros, Dyer, and Smith (2015) Gómez-Rodríguez (2018) 22.7 – 91.63
Kiperwasser and Goldberg (2016) (T) Strzyz et al. (2019c) 76 – 93.90
Kiperwasser and Goldberg (2016) (G) Strzyz et al. (2019c) 80 – 93.10
Kuncoro et al. (2016) Kuncoro et al. (2016) 20 – 94.26
Dozat and Manning (2017) Dozat and Manning (2017) – 411 95.74
Smith et al. (2018) Anderson and Gómez-Rodríguez (2020a) 42 – 94.63
Ma et al. (2018) Fernández-G and Gómez-R (2019) – 10.24 95.87
Fernández-G and Gómez-R (2019) Fernández-G and Gómez-R (2019) – 23.8 96.04
Zhou and Zhao (2019) Zhou and Zhao (2019) – 158.7 96.09
Anderson and Gómez-Rodríguez (2020a) Anderson and Gómez-Rodríguez (2020a) 96 1153 94.59
Zhang, Li, and Zhang (2020) Zhang, Li, and Zhang (2020) – 400 96.11

Table 1: Overview of parsing speeds for some neural dependency parsers eval-
uated on the ptb-sd test set.

NLP systems. In the context of the latter, Gómez-Rodríguez, Alonso-
Alonso, and Vilares (2019) investigate the impact of parsing speed and
accuracy on sentiment analysis as the end task and argue that more
importance should be attached to parsing efficiency. The reason for
that is that small differences in accuracy between parsers may, in fact,
not be discernible in the performance of the end task, while parsers’
inefficiency has an adverse impact on the entire system.

Furthermore, the need for computationally efficient systems becomes
even more prominent when relying on deep neural networks. Neural
models often require a large parameter space and costly resources for
training. Thus recently, green NLP is generating considerable attention
(Strubell, Ganesh, and McCallum, 2019) and great efforts are under-
taken in order to provide accurate but smaller and faster models (Jiao
et al., 2020; Wang et al., 2020).

In Table 1, we provide an overview of some recent neural dependency
parsers with their inference time (measured on CPU and/or GPU), as
well as the accuracy (UAS). The list is restricted to the parsers whose
parsing speed has been reported. It is also worth noting that this
overview only serves for informative purposes since the speeds are often
measured on different machines and thus are not directly comparable.
Nonetheless, to get some notion about the efficiency of neural parsers,
we select ones that are evaluated on the ptb-sd treebank.

Earlier, some attempts have been made with the purpose of reducing
parsing speed. For instance, Strzyz and Gómez-Rodríguez (2019) pro-
vide some heuristics for reusing partial results automatically from previ-
ously parsed tree substructures, while Vieira and Eisner (2017) propose
a pruning method in order to preserve the speed-accuracy balance in
constituent parsing. Regarding neural dependency parsing, one of the
efficient methods for decreasing the inference time is a teacher-student
distillation technique, where the knowledge from a larger model is in-
jected into a smaller and faster one (Anderson and Gómez-Rodríguez,
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2020a). Furthermore, Strubell and McCallum (2017) suggest a novel
architecture to better leverage the GPU power in dependency parsing.
In this thesis, we propose an approach, where dependency parsing is

recast as sequence labeling task as an attempt of providing a parser that
maintains a good speed-accuracy equilibrium. Our method is promising
since it does not require any traditional parsing algorithms or auxiliary
structures. Additionally, it can be easily integrated with other down-
stream tasks. Hence, now we turn to formulate the sequence labeling
problem.

2.5 Sequence labeling

Sequence labeling is a structured prediction task, where for each
input token a single output label is generated. Hence, an input sentence
w = w1,w2, ...,wn is assigned a sequence of labels [l1, l2, ..., ln] of the
same length coming from a discrete set of labels L.

Traditionally, sequence labeling tasks, such as: PoS tagging, Named
Entity Recognition (NER) or chunking used to rely on pre-neural ma-
chine learning models like Hidden Markov Models (HMM) or Condi-
tional Random Fields (CRF) (Lafferty, McCallum, and Pereira, 2001).
With the rise of neural network methods, sequence labeling models have
been enhanced with i.a. Convolutional Neural Networks (CNN) (Col-
lobert et al., 2011), BiLSTM (Huang, Xu, and Yu, 2015; Ma and Hovy,
2016; Lample et al., 2016) and Gated Recurrent Units (GRU) (Yang,
Salakhutdinov, and Cohen, 2017) mitigating the need of hand-crafted
feature engineering.
Figure 4 illustrates an exemplary neural architecture for sequence

labeling with the objective of predicting a PoS tag for each input token.
As shown in the example, the lowest layers may serve for obtaining
character representations for the input token using recurrent or convo-
lutional neural networks. Furthermore, these representations can be
learned together with word representations and any other selected fea-
ture. A sequence of output labels may be then generated based on
CRF or a softmax in the top layer. An advantage of using CRF as
an inference method is that, unlike softmax, the dependencies between
the output labels are taken into account. The latter however renders
a more efficient inference (Yang and Zhang, 2018) but often results in
lower accuracy.
Since some of the sequence labeling tasks are to some extent related,

it has been shown that a model can benefit from sharing their repre-
sentations during training (Collobert et al., 2011; Yang, Salakhutdinov,
and Cohen, 2016). It is an example of Multi-task learning (MTL) that
we will discuss in the following section.
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Figure 4: An example of a sequence labeling architecture for PoS tagging. The
image is adapted from Yang and Zhang (2018) for the NCRF++
toolkit.

2.6 Multi-task learning

The concept of Multi-task learning (MTL) refers to a method for joint
learning of related tasks, where a model leverages the shared representa-
tions and thereby improves its generalization abilities (Caruana, 1997).
In deep neural networks it is common to deploy it with hard parame-
ter sharing, where the hidden layers are shared across the model while
keeping separate layers for computing output for each task respectively
(Ruder, 2017). This kind of architecture is illustrated in Figure 5.

Moreover, tasks may be defined asmain or auxiliary in the MTL setup.
The distinction between them is that auxiliary tasks serve to improve
the main task by sharing the representations but the actual output of
such additional tasks is disregarded. In this context, some work has
called into question which tasks are most suitable for a joint training
and how to maximize the leverage of such representations (Martínez
Alonso and Plank, 2017; Bingel and Søgaard, 2017; Changpinyo, Hu,
and Sha, 2018; Schröder and Biemann, 2020).

MTL has lately received much attention and is rife among NLP tasks.
In the context of sequence labeling, use of MTL in PoS tagging, NER or
chunking has been investigated (Søgaard and Goldberg, 2016; Plank,
Søgaard, and Goldberg, 2016; Liu, Winata, and Fung, 2020). Some
work also suggests that a syntactic parser may also leverage joint learn-
ing with other taks (Coavoux and Crabbé, 2017; Kankanampati et al.,
2020).



26 preliminaries

Figure 5: Multi-task learning with hard parameter sharing. The image is
adapted from Ruder (2017).

In this thesis, we will apply MTL to dependency parsing as sequence
labeling in order to examine whether it renders further improvements in
our models. The motivation behind using MTL in our approach is two-
fold. Firstly, MTL enables decomposing a label into its atomic elements
and learning them as separate main tasks. An upshot of this is that it
reduces the label sparsity facilitating learnability of label distributions
and it may mitigate the problem of out-of-vocabulary labels at the
test time. Furthermore, the inference time may decrease since instead
of using a single large softmax for all labels, the model will contain
several smaller softmaxes corresponding to each atomic label. Secondly,
MTL facilitates widening our approach by adding auxiliary tasks from
complementary external data. Particularly, we will use this setup to
learn constituency parsing labels and labels retrieved from eye-tracking
data.



Part II

ENCODINGS

The backbone of recasting dependency parsing as sequence
labeling are encodings, which are linearization methods for
representing a dependency tree as a sequence of labels (one
per word). This part describes three encoding families:
(i) head selection, (ii) bracketing-based and (iii) transition-
based encodings, which differ in how label representations
of a dependency tree are retrieved.
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The main trait of this encoding family is that the position of the
word’s head is encoded in the label for that word either directly or in a
relative way that can depend on other linguistic elements in a sentence.
More concretely, we will introduce three encodings belonging to this
family that use the absolute position of the head, relative distance from
the token to the head or the distance with respect to the head’s PoS
tag. In more concrete terms, a label li for a word wi can be generalized
to the form of a tuple li = (ei, ri), where ei encodes the head position,
while ri the dependency relation type for the arc wj

ri−→ wi.

3.1 Encodings

3.1.1 Naive positional encoding

In the naive positional encoding, ei for a word wi stores the absolute
position of its head in the sentence. Hence, the position of the head
wj at index j of a word wi at index i is encoded as xi = j with the
corresponding dependency type for that arc wj

ri−→ wi. An example of
this encoding is illustrated in Figure 6.

root Kyrie ate an apple
0 1 2 3 4

(2,nsubj) (0,root) (4,det) (2,dobj)

root

nsubj

dobj

det

Figure 6: A dependency tree represented with the naive positional encoding.

3.1.2 Relative positional encoding

In the relative positional encoding, in turn, ei captures the posi-
tional difference between the index of the head wj and its dependent
wi. Hence, the head position is defined as j such that xi = j− i and the
dependency type wxi+i

ri−→ wi. An example of such a label assignment
is shown in Figure 7. This encoding method has been used in some
previous work (Li et al., 2018; Kiperwasser and Ballesteros, 2018).

29
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root Kyrie ate an apple
0 1 2 3 4

(+1,nsubj) (-2,root) (+1,det) (-2,dobj)

root

nsubj

dobj

det

Figure 7: A dependency tree represented with the relative positional encoding.

3.1.3 Relative PoS-based encoding

In the relative Part-of-Speech-based encoding, ei is represented as a
tuple (oi, pi) that stores the positional distance (oi) between the head
and the dependent with respect to some particular PoS tag (pi). Hence,
if oi > 0 the head of wi is oi positions to the right considering only words
with the specific PoS tag pi. Conversely, if oi < 0 the head of wi is oi

positions to the left counting words with a PoS tag pi. The correspond-
ing dependency type is assigned for that arc, such that w(oi,pi)

ri−→ wi.
The positional distance to the root is encoded as (-1, root) assuming
that its index position in a sentence is 0. An example of this encoding
is shown in Figure 8 where, for instance, the token Kyrie1 is assigned a
label (+1,V) denoting that its head is the first word to the right (+1)
with the PoS tag V. This method is similar to the one proposed by
Spoustová and Spousta (2010).

root Kyrie ate an apple
0 1 2 3 4

N V D N

(+1,V,nsubj) (-1,ROOT,root) (+1,N,det) (-1,V,dobj)

root

nsubj

dobj

det

Figure 8: A dependency tree represented with the relative PoS-based encod-
ing.

3.2 Decoding

Following Gómez-Rodríguez and Vilares (2018), our encodings can
be shown to be complete since they are capable of representing any
arbitrary tree as a sequence of labels. They are also injective because
each sequence of labels corresponds to only a single dependency tree.
However, they are not surjective, since some labels in the predicted label
sequence may be incorrect and preclude building a dependency tree. In
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order to recover from such erroneous labels, some postprocessing steps
are needed.

In general, the objective of the decoding process is to build a well-
formed dependency tree from a label sequence predicted by a classifier.
However, the predicted head position for a given token may fall outside
the sentence scope or as in the case of the relative PoS-based encoding,
the predicted PoS tag for a certain head may be not present. This
impedes locating the correct head token and thus requires applying
some postprocessing heuristics.

3.2.1 Postprocessing heuristics

We propose a single postprocessing method for all encodings that
guarantees that the output dependency tree is well-formed i.e. each
token is associated with a single head, where one of them is attached
to the root1. In addition, the acyclicity constraint is imposed.

More precisely, we first ensure that there is a token depending on
root (in other words, there is a token in a sentence with a head at index
0). If this is not the case, we search for all tokens with the predicted
dependency relation "root", since it is a good indicator of potential
dependents of root. If candidate tokens are found, we choose the first
one among them, otherwise we select the first token in the sentence as
a dependent of root. All remaining tokens without associated heads
are then forced to be dependent on that token (this can happen for
the reasons mentioned above, e.g. because the predicted head position
falls outside the sentence scope). Finally, we eliminate all cycles in the
resulting tree by attaching the leftmost token involved in the cycle to
the token dependent on root.

3.3 Models and experiments

In this section, we will empirically test each encoding belonging to
the head selection family. In the first experiment, we will examine the
accuracy they yield compared to some previous work. Moreover, we
will analyse the peculiarities they exhibit. In the second experiment,
we will explore the effect of decomposing labels into atomic components
and learning them by the means of MTL.

3.3.1 Performance comparison of the head selection
encodings

We will now compare the encodings in terms of UAS and LAS scores.
Thereafter, we will examine the label set sizes that the encodings gen-

1 We follow the UD framework that requires that every tree has a single root node:
https://universaldependencies.org/u/dep/root.html.
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Figure 9: The baseline architecture used in this work for recasting dependency
parsing as sequence labeling.

erate and their distributions. Finally, we will explore the impact of
using universal and more fine-grained PoS tags on the accuracy of the
relative PoS-based model.

Model Throughout the experiments, we choose NCRF++ as our se-
quence labeling framework (Yang and Zhang, 2018). We model our
task using BiLSTMs (see Section 2.3.3) and we follow the configurations
used in the primary work on constituency parsing as sequence label-
ing (Gómez-Rodríguez and Vilares, 2018). The model consists of two
stacked BiLSTMs layers, where the hidden representations hi from the
last BiLSTM layer are passed through a feed-forward layer and each out-
put label is obtained by applying a softmax function. The input token
is a concatenation of pre-trained word embeddings, character embed-
dings (learned with a char-LSTM layer trained together with the rest
of the network) and PoS tag embeddings.
We optimize the model by minimizing the categorical cross-entropy

loss, i.e. L = −
∑
log(P (yi|hi)). The baseline architecture is illus-

trated in Figure 9, which we will mainly follow in the succeeding experi-
ments. Any deviation will be explicitly specified. The hyperparameters
used in this experiment are detailed in Section A.1.1.
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Setup The experiments are conducted using the English ptb tree-
bank with its common setup (see Section 2.2.2), and following Dyer et
al. (2015) we use the English pre-trained word embeddings introduced
by Ling et al. (2015). Furthermore, we evaluate the models on a rep-
resentative subgroup of languages from UDv2.2: Ancient-GreekPROIEL,
ChineseGSD, CzechPDT, EnglishEWT, FinnishTDT, HebrewHTB,
KazakhKTB and TamilTTB (see Section 2.2.3). For the UD treebanks,
we use the pre-trained word embeddings from Ginter et al. (2017). In
order to test our parser in more real-world settings, we apply UDPipe
with the pre-trained models from the CoNLL18 Shared Task (Straka
and Straková, 2017) to obtain data with predicted segmentation, tok-
enization and PoS tags. The reported speeds (sentences/second) were
measured on a single core of the CPU (Intel Core i7-7700 CPU 4.2
GHz).

Encoding UAS LAS
Li et al. (2018)(sequence labeling) 87.58 83.81
Li et al. (2018) (seq2seq) 89.16 84.99
Li et al. (2018) (seq2seq+beam+subroot) 93.84 91.86
naive-positional 45.41 42.65
rel-positional 91.05 88.67
rel-PoS 93.99 91.76

Table 2: Comparison of the head selection encodings on the ptb development
set.

Accuracy First, we examine the accuracy of the head selection en-
codings in terms of UAS and LAS evaluated on the English ptb develop-
ment set. For comparison, we include the results of sequence labeling
and seq2seq models proposed by Li et al. (2018) that also encode the
head position using the relative positional encoding. The results are
shown in Table 2. In general, the relative PoS-based encoding yields
the highest score among the head selection encodings and is on par with
the best seq2seq model. Although, it is worth mentioning that the lat-
ter relies on a more complex architecture and includes both beam and
subroot decomposition. The results suggest that our sequence label-
ing parser in particular with the relative PoS-based encoding renders a
competitive accuracy compared to more complex models. Among the
head selection encodings, the relative PoS-based encoding doubles the
score of the naive positional encoding, while it also outperforms the
relative positional encoding by almost 3 points of UAS.

Label set size To gain a deeper understanding of the encodings’
facets, we examine the label set size that each encoding generates. In
Table 3 we report both the number of unique labels per encoding and
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the size of each atomic component obtained with a label decomposi-
tion (for instance, the relative PoS-based label can be split into atomic
elements, such as oi, pi and ri).

Encoding #Labels #Atomic labels
o p r

naive-positional 1676 89 – 44
rel-positional 872 99 – 44
rel-PoS 995 33 29 44

Table 3: Label set sizes generated by the head selection encodings on the ptb
dev set. Each label is split into its atomic components, where o stands
for the head positions (integer), p PoS tags and r the dependency
relation types. The size of the latter is always equal for all encodings.

In general, it is discernible that the naive positional encoding gen-
erates almost 1.7x more labels than the relative PoS-based one, while
achieving considerably lower accuracy. A plausible explanation for the
accuracy differences is that it may be more natural to express the syn-
tactic dependencies in terms of relative positions rather than with raw
indices. More intuitively, it seems more appropriate to encode that, for
instance, a determiner is likely to depend on the next word than using
the raw position of the head that constantly varies within a sentence.
Another factor that may have an impact is the architectural choice. For
instance, pointer networks (Vinyals, Fortunato, and Jaitly, 2015) is an
architecture that is apt for operating on absolute positions (Ma et al.,
2018; Fernández-González and Gómez-Rodríguez, 2019), however due
to the contextual nature of BiLSTM, one may presume that a model
based on the relative position encoding may produce better results.

Furthermore, when looking at the sizes of atomic labels, the relative
PoS-based encoding generates overall the smallest number of labels for
expressing the head positions. We will show later how this observation
can be leveraged in practical terms with MTL. In Figure 10, we visu-
alize the label distribution of each encoding with respect to its label
frequency. The relative positional and relative PoS-based encodings
seem to produce a larger number of highly occurring labels, while the
naive encoding generates a longer tail.

In sum, the relative PoS-based encoding yields the best results among
the head selection encodings. However, one of its peculiarities is that
it relies on PoS tags. Hence, we move now to investigate the impact of
PoS tag types on this encoding.

Role of Part-of-Speech tags Treebanks in different languages vary
in the quantity and quality of the PoS tags they contain. This poten-
tially can influence the performance of the relative PoS-based encoding
due do its strong reliance on them. On these grounds, we explore
the sensitivity of the encoding with respect to the universal PoS tags
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Figure 10: Distribution of ranked labels with respect to their occurrences in
the ptb dev set represented in a log-log scale.

(UPoS) and the language-specific ones (XPoS), where the latter is often
more fine-grained, however not always provided for a given language of
interest.
Table 4 shows the accuracy of models trained with the UPoS- and

XPoS-based encoding. In general, the results suggest that models re-
lying on UPoS tags yield better accuracy across the languages by out-
performing XPoS-based models on 5 out of 7 treebanks. A plausible
reason for it may be that the number of unique UPoS tags is often
smaller than XPoS tags. This, in turn, may ensure a more optimal
label set size and thereby allow a more efficient learning. In fact, in
the case of the Czech and Tamil treebanks, it is discernible that a large
XPoS tag set hurts model performance arguably due to the large and
sparse label space they generate. For comparison, the model for the
Czech language relies on 16 unique UPoS tags and generates 1194 la-
bels, while the XPoS-based counterpart operates on 1075 XPoS tags
increasing the label set size more than six times. In contrast, the XPoS-
based models for Ancient Greek and Kazakh languages perform slightly
better than the counterpart, although the label set size based on the
two tag sets does not differ substantially. The Kazakh treebank is also
the smallest one, hence it may not be suitable for generalizations.

2 Hebrew treebank contains equal UPoS and XPoS tags.
3 The scores are based on the test since Kazakh lacks a development set.
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UPoS-based XPoS-based
Treebank UAS LAS #UPoS #Labels UAS LAS #XPoS #Labels
Ancient GreekPROIEL 76.58 71.70 14 514 77.00 72.14 23 570
ChineseGSD 61.01 57.28 15 600 60.98 57.14 37 626
CzechPDT 89.82 87.63 16 1194 88.33 85.46 1075 6928
EnglishEWT 82.22 78.96 17 717 82.05 78.70 50 983
FinnishTDT 80.31 76.39 15 682 80.19 76.28 12 658
HebrewHTB

2 67.23 62.86 16 450 67.23 62.86 16 450
KazakhKTB

3 32.14 17.03 18 408 32.93 17.07 32 423
TamilTTB 73.24 66.51 13 162 59.70 52.57 121 340

Table 4: Performance comparison of models with the relative UPoS- and
XPoS-based encoding on the dev set across several UD languages.
The number of UPoS/XPoS tags and labels refers to the distinct
tags found in the dev set for each language.

Since we aim to examine the encoding in a more real-world setting
where PoS tags (as well as previous steps like segmentation) are pre-
dicted, Table 5 provides some statistics on the prediction accuracy of
UPoS and XPoS tags for the selected languages using UDPipe (Straka
and Straková, 2017)4. It is notable that the prediction accuracy of
PoS tags varies across the languages which may have an impact on the
performance of our models.

Treebank UPoS(%) XPoS (%)
Ancient GreekPROIEL 95.80 96.00
ChineseGSD 84.00 83.80
CzechPDT 98.30 92.80
EnglishEWT 93.50 92.90
FinnishTDT 94.50 95.70
HebrewHTB 80.90 80.90
KazakhKTB 52.00 52.10
TamilTTB 82.20 77.70

Table 5: UDPipe models’ accuracy on UPoS and XPoS prediction for the se-
lected UDv.2.0 languages using raw text.

Next, we compare the accuracy of the PoS-based models against an-
other dependency parser using the predicted data sets. We choose the
transition-based BIST parser (Kiperwasser and Goldberg, 2016) for
comparison since similarly to our approach, it relies on a BiLSTM-based
architecture. Table 6 reports the accuracy and speeds of both parsers
using the PoS tag type that yields the best performance for a given
language based on Table 4.

4 UDPipe statistics are available at https://ufal.mff.cuni.cz/udpipe/1/models
5 Due to lack of pre-trained UDPipe model, the gold data set was used. We did not

use any pre-trained word embeddings.
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Treebank
rel-PoS BIST (transition-based)

PoS type (sent/s) UAS LAS (sent/s) UAS LAS

Ancient GreekPROIEL XPOS 123±1 75.31 70.87 116±4 69.43 64.41
ChineseGSD UPOS 105±0 63.20 59.12 73±1 64.69 60.45
CzechPDT UPOS 125±1 89.10 86.68 94±3 89.25 86.11
EnglishEWT UPOS 139±1 81.48 78.64 120±2 82.22 79.00
FinnishTDT UPOS 168±0 80.12 76.22 127±3 80.99 76.63
HebrewHTB equal PoS 120±0 63.04 58.66 70±1 63.56 58.80
KazakhKTB XPOS 283±3 32.93 17.07 178±5 23.09 12.73
TamilTTB5 UPOS 150±2 71.59 64.00 127±3 75.41 68.58

Table 6: Comparison of the relative PoS-based models against the transition-
based BIST parser in terms of accuracy and speed on the UD-
CoNLL18 test sets.

In general, our sequence labeling parser outperforms BIST parser in
3 out of 8 treebanks in terms of LAS scores and yields higher parsing
speed in all instances. It is also worth noting that our model obtains
better accuracy on the highly non-projective treebank in Ancient Greek.
This is likely to be strongly related to the fact that the relative PoS-
based encoding can fully handle non-projectivity while the variant of
the BIST parser used in the experiment is fully projective.

3.3.2 Further advances using Multi-task learning

As mentioned before, each label can be decomposed into atomic ele-
ments. Hence, in this experiment we want to examine whether learning
such labels using MTL may lead to further improvements in accuracy
and parsing speed of our sequence labeling parser.

Model As shown in the previous experiment, a large label set size
can impede efficient learning due to the sparsity making the classifica-
tion harder. Hence, instead of forcing the model to learn the entire
labels and possibly introducing sparsity, an alternative is to have the
model learn the best combination of the components for each label.
This can be obtained by applying MTL, where each component is de-
fined as a separate task t and the model is optimized by computing loss
as L=

∑
t Lt, where Lt is the partial loss of each subtask t. Figure 11

shows architectures corresponding to each task definition.
More specifically, a label obtained with the relative PoS-based en-

coding can be decomposed into its elements (oi, pi, ri), where each com-
ponent or a combination of them can be learned as a separate task.
The BiLSTM representations are shared across the model and then each
task corresponds to a separate feed-forward layer with a softmax. This
has a practical implication. When learning a label as a single task, we
construct a softmax corresponding to the label set size which in some
cases can be very large and sparse. When decomposing each PoS-based
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Figure 11: Architectures for dependency label learning using MTL. A label
can be defined as a single task or with a label decomposition as
multiple subtasks.

label into subtasks, we construct three softmax with the corresponding
sizes of o, p, r. This, in turn, facilitates the prediction, since not all
components combine and instead of producing a label set size of the
Cartesian product, it results in o+ p+ r. From the theoretical point of
view, models that learn labels as n-tasks, where n > 1, should tackle
the sparsity problem better (by leaving it up to the model to learn the
label combinations) and potentially increase the parsing speed (due to
smaller softmaxes). In such a setup each task is weighted equally. The
hyperparameters are detailed in Section A.1.2.

Setup We train three models that rely on the relative PoS-based
encoding, where labels are learned as one, two or three tasks with
the architectures shown in Figure 11. Unlike the previous experiment,
we add extra labels preceding and following each label sequence for
a given sentence, such as bos (denoting beginning of a sentence) and
eos (end of a sentence), since previous work found it beneficial (Gómez-
Rodríguez and Vilares, 2018). The models are tested on the English
ptb treebank and the speeds are measured on a single core of the CPU.

Accuracy and parsing speed Table 7 shows UAS and LAS scores
obtained by the models with different task assignments. The results
indicate that learning PoS-based labels as two tasks yields the best
results. This corresponds to labels of the form (oi, pi) and (ri), where
the first task captures the relative distance (oi) together with the head’s
PoS (pi), while the second task consists in predicting the dependency
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Model UAS LAS
1-task 93.81 91.59
2-tasks 94.03 91.78
3-tasks 93.66 91.47

Table 7: Comparison of models’ accuracy on the ptb dev set. The models
are based on the relative PoS-based encoding, where the labels are
learned as a single, two and three tasks.

relation type. Intuitively, such a task assignment seems reasonable
since oi and pi are closely related and jointly form an unlabeled arc.
Interestingly, the 3-task model performs worst indicating that learning
combinations of all atomic labels separately is more challenging.
Furthermore, Table 8 shows that the improved accuracy of the PoS-

based encoding learned as two tasks does not come at any additional
computational cost. In fact, it processes a few more sentences per sec-
ond than the counterpart, plausibly due to the use of smaller softmaxes.

Model (sent/s) UAS LAS
1-task 102±6 93.60 91.74
2-tasks 128±11 93.84 91.83

Table 8: Comparison of parsing speed and accuracy of the 1- and 2-task mod-
els based on the relative PoS-based encoding evaluated on the ptb
test set.

Later, we will also show that a sequence labeling parser can further
leverage the MTL approach by including auxiliary tasks retrieved from
complementary data.

3.4 Strengths and limitations

We have presented three encodings that address dependency parsing
as a head selection problem in a sequence labeling setup and we have
analyzed the peculiarities that each of them exhibits. In general, the
encodings differ in the number of labels they generate. Especially, the
naive positional encoding seems to be prone to produce a large label
space compared to the other encodings. This is due to the fact that it
encodes each dependency arc in terms of the head’s absolute position
which highly varies across sentences. As a result, even the same depen-
dency type (for instance each arc between a determiner and a noun)
will be represented by many labels due to the words’ absolute posi-
tional variance. As a consequence, a higher degree of sparsity may be
introduced that equates with a long tail with low frequent labels. This
is mitigated in the two other head selection encodings by capturing the
head position in a relative way. Although the naive positional encoding



40 head selection encodings

provides a very straightforward approach to encode a dependency tree,
it yields significantly less competitive results than its counterparts.

The relative positional encoding, in turn, has been successfully ap-
plied in previous work. One of the assets it offers is a compact repre-
sentation in terms of the smallest number of entire labels. Additionally,
unlike the relative PoS-based encoding, it does not rely on any addi-
tional features but still performs worse than the latter.

The relative PoS-based encoding achieves the highest score among
the head selection encodings showing that this encoding is indeed capa-
ble of obtaining competitive results when relying on a neural network
architecture in contrast to the previous work (Spoustová and Spousta,
2010). The results also suggest that the model based on this encoding
is able to leverage the representations better than the counterpart mod-
els due to its good balance between sparsity and learnability. One of
the restraints, however, is that this encoding requires PoS tags during
parsing. This strong dependence on PoS tags can be perceived as a
limitation since their quality and quantity may vary across languages.
Especially, the issue may arise in the case of low-resource languages,
in which PoS tags may be not available or their prediction accuracy
may be low. In practical terms, it requires verifying the PoS tags for a
given language beforehand, although relying on UPoS tags from the UD
treebanks should provide moderate results for most of the languages.
Moreover, this encoding contradicts the recent findings that question
the utility of PoS tags in dependency parsing (Lhoneux et al., 2017; An-
derson and Gómez-Rodríguez, 2020b). Furthermore, in the context of
efficiency, the need of computing PoS tags may additionally slow down
the parser. Since this encoding achieves the highest performance, we
will use it as a baseline in the next chapters.

3.5 Conclusions

In this chapter, we have presented three encodings belonging to the
family of head selection, where the head can be encoded via its abso-
lute position or the relative distance from the focus word. First, we
have provided a formulation of each encoding and described the de-
coding process including postprocessing methods for incorrect labels.
Furthermore, we have tested the encodings empirically and compared
our models to the related work. Additionally, we have explored vari-
ous facets of each encoding. The first experiment has shown that the
encodings generate varying label set sizes and differ in their label dis-
tribution. Moreover, we have investigated the role of PoS tags in the
relative PoS-based encoding showing that this type of encoding is sen-
sitive to the quality and quantity of the available PoS tags in a given
treebank. In the second experiment we have decomposed each label of
the relative PoS-based encoding into its components and applied MTL,
such that each component or a combination of them was learned as a
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separate task. As a result, the model with the relative PoS-based en-
coding, in which labels were learned as two tasks, performed best while
maintaining the computational efficiency. Finally, we have discussed
the assets and limitations of each encoding.

In the next chapter, we will present an alternative family of encod-
ings that represents dependency arcs in terms of balanced bracketing
elements.
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The bracketing-based family of encodings relates to the work of Yli-
Jyrä (2012) and Yli-Jyrä and Gómez-Rodríguez (2017) and expresses
dependency arcs in terms of balanced bracketing elements, such that
left arcs are represented with pairs of symbols <, /and right arcs with
/, >. Unlike the head selection family that encodes the head position
directly or in a relative way in the label, bracketing-based encodings
generate labels where each of them contains a sequence of bracketing
elements representing incoming and outcoming arcs.

We will present two types of bracketing-based encodings, where the
first one is a relaxed 1-planar encoding, while the second type is a
variant augmented with additional bracketing elements to integrate the
property of 2-planarity that enables encoding non-projective arcs.

4.1 Encodings

4.1.1 Relaxed 1-planar bracketing-based encoding

Each label in the relaxed 1-planar bracketing-based encoding is of the
form li = (ei, ri), where ei holds a sequence of bracketing elements fol-
lowing the regular expression (<)?((\)*|(/)*)(>)?, while ri encodes
the dependency relation. More specifically, the bracketing elements
denote:

< wi−1 has an incoming arc from the right

\ wi has an outgoing arc towards the left. There can be k
copies of this character.

/ wi−1 has an outgoing arc towards the right. There can be
k copies of this character.

> wi has an incoming arc from the left

A left dependency arc from a word wj to wi is encoded by a pair of
brackets (<,\) in the label components ei+1 and ej , while a right arc
from a word wi to wj is captured by a pair of brackets (/,>) in the
label components ei+1 and ej . One may observe that the bracketing
elements < and / are shifted by one position in the label components.
For instance, as shown in Figure 12 the information about the token
Kyrie1 having an incoming arc from the right (<) is encoded in the

43
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root Kyrie ate an apple
0 1 2 3 4

(∅,nsubj) (<\,root) (/,det) (<\>,dobj)

root

nsubj

dobj

det

Figure 12: A dependency tree represented with the baseline 1-planar
bracketing-based encoding. The root node is not explicitly en-
coded in any label in order to ease learning.

label corresponding to the next token ate2. The reason for that is
that such a shifting results in a smaller vocabulary size. Without the
shift, a label could hold any possible combinations of n outgoing left
arcs and n outgoing right arcs making it quadratic in the number of
arcs. This is not the case when assuming projectivity and shifting,
since each word can either have /symbols or / symbols, but not both
(i.e. //), reducing the number of possible labels from quadratic to linear.
However, it is also worth noting that the encoding was initially designed
for supporting only projective trees but later on we discovered that it
is indeed able to encode some non-projective arcs. That is why we call
this 1-planar encoding relaxed, since it covers some crossing arcs.

The encoding can be explained more intuitively based on Figure 12.
For instance, the token apple4 is assigned the label <\> that can be
interpreted as: the previous word an3 has an incoming arc from the
right (<) that matches the outgoing left arc of apple4 (\). Thereby, they
form a left dependency arc (<\). The remaining incoming arc from the
left (>) will be matched with the closest outgoing right arc from one of
the previous words (in this case ate2 is the head). Moreover, the arc
originating from the root node is not explicitly encoded in order to
ease the learning. Later, we will show how the decoding of the labels
is performed using separate stacks corresponding to each arc direction.
As mentioned earlier, this encoding was initially designed to only

support projective trees, however we detected that it is, in fact, able
to cover some non-projective arcs. More concretely, it can preserve
crossing arcs in the opposite directions when using separate stacks that
balance bracketing elements in the same direction independently. Fig-
ure 13 shows an example of a non-projective tree that can be success-
fully encoded and decoded without any loss of information. Contrarily,
in Figure 14, non-projective arcs in the same direction are decoded as
projective ones. This limitation stems from the fact that each opening
bracket is matched with the closest closing bracket precluding match-
ing the non-projective arcs in the same direction correctly. To alleviate
this restricted coverage of non-projectivity, we introduce a variant that
makes use of the property of 2-planarity.
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root w1 w2 w3 w4 w5

root nsubj

dobj

det det

⇓
Encoding

w1 w2 w3 w4 w5

(∅) (//>) (/) (<>) (\>)

⇓
Decoding

root w1 w2 w3 w4 w5

root nsubj

dobj

det det

Figure 13: Encoding and decoding of a non-projective tree with the relaxed
1-planar bracketing-based encoding. Since non-projective arcs (de-
noted with dotted lines) appear in the opposite directions, non-
projectivity can be fully preserved during decoding.

root w1 w2 w3 w4

root nsubj
dobj dobj

⇓
Encoding

w1 w2 w3 w4

(∅) (//>) (/>) (>)

⇓
Decoding

root w1 w2 w3 w4

root nsubj dobj

dobj

Figure 14: Encoding and decoding of a non-projective tree with crossing arcs
in the same directions. Since the relaxed 1-planar bracketing en-
coding is not able to preserve that information, non-projective arcs
are decoded as projective ones.
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4.1.2 2-Planar bracketing-based encoding

We will tackle the restricted coverage of non-projectivity by propos-
ing a variant that makes use of the notion of 2-planarity that has been
earlier explored in the context of dependency parsing (Yli-Jyrä, 2003;
Gómez-Rodríguez and Nivre, 2010; Gómez-Rodríguez and Nivre, 2013).
First, we will introduce the concept of k-planarity followed by the en-
coding definition. Furthermore, we will describe two plane assignment
strategies that can be applied.

4.1.2.1 k-Planarity

A non-projective tree can be often decomposed into a set of sub-
graphs, such that each contains only projective dependencies. This
can be obtained by applying the property of k-planarity, where edges
of a non-projective tree are partitioned into k planes (sets) such that
arcs in the same plane do not cross. More formally, following Gómez-
Rodríguez and Nivre (2013) k-planarity can be defined as:

k-planarity if ∃(G1 = (V ,A1), . . . ,Gk = (V ,Ak)) for k > 1:
A = A1 ∪ . . .∪Ak where arcs ∈ Ak do not cross

However, partitioning arcs into k planes can be often done in a num-
ber of ways. Therefore, it is desirable to find a systematic method
that assures selecting the most optimal partitioning of a dependency
tree. Hence, we propose two alternative plane assignment strategies
for 2-planar dependency trees. The reason for operating on 2 planes is
that, as Gómez-Rodríguez and Nivre (2010) demonstrate, the vast ma-
jority of dependency structures can be projected in a 2-planar manifold.
Moreover, two planes suffice to obtain a good accuracy and efficiency
and using more planes increases the complexity of a parser without pro-
viding considerable accuracy gains (Gómez-Rodríguez and Nivre, 2013).
Now, we will show how the notion of 2-planarity can be embedded in
sequence labeling parsing.

4.1.2.2 2-Planar labeling

In the relaxed 1-planar bracketing-based encoding, a label for each
word represents a sequence of bracketing elements belonging to a set
B = {<, /, /, >} projected on a single plane. In order to augment this
approach with the property of 2-planarity, we introduce a set of "star"
bracketing elements from B∗ = {<∗, /∗, /∗, >∗} denoting membership
to the second plane. Each label can hold elements from both B and
B∗, however during decoding they are placed on separate stacks. Fig-
ure 15 illustrates a non-projective tree encoded with the relaxed 1-
planar bracketing-based encoding and with the 2-planar variants under
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two different plane assignment strategies, which will be explained be-
low. Note that the 1-planar encoding shown in (a) would result in a
truncated tree without crossing arcs after decoding, like in the previous
example in Figure 14, while the 2-planar encodings shown in (b) and
(c) allow us to recover the tree as shown in the picture.

root w1 w2 w3 w4 w5 w6

∅ ///> /> /> > >

(a) Bracketing-based encoding of a non-projective tree cast on a single plane.

root w1 w2 w3 w4 w5 w6

∅ ///> /∗> >∗ > ∅

(b) 2-planar bracketing-based encoding with second-plane-averse greedy plane
assignment.

root w1 w2 w3 w4 w5 w6

∅ /∗//> /∗> />∗ >∗ >

(c) 2-planar bracketing-based encoding with plane assignment based on re-
striction propagation on the crossings graph.

Figure 15: A non-projective tree represented with 1- and 2-planar bracketing-
based encodings. The dotted arcs pertain to the second plane
denoted with * in the label.

As mentioned earlier, there are often multiple ways of assigning arcs
to each plane resulting in various partition schemes. Since the pres-
ence of crossing arcs in dependency treebanks is rather scarce (Ferrer-
i-Cancho, Gómez-Rodríguez, and Esteban, 2018), we define plane as-
signment strategies that will minimize the use of the second plane only
when it is strictly necessary. Thereby, we will diminish the amount of
additional labels with respect to the relaxed 1-planar bracketing-based
encoding in order to avoid sparsity that could impede an efficient label
learning. On these grounds, we introduce two plane assignment strate-
gies in which arcs are traversed from left to right of their right endpoint,
with the shortest arc first for arcs with a common right endpoint.
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4.1.2.3 Second-Plane-Averse greedy plane assignment
strategy

In this strategy, we attempt to assign each arc a primarily to the
first plane P1 provided that no other arc crossing a has already been
assigned to that plane. Otherwise, we project the arc a on the second
plane P2, unless there are arcs crossing a that already lie on the first
and second plane. In the latter case, we do not assign any plane to the
arc a. More formally, this strategy can be described with pseudocode
shown in algorithm 1 and an example of this encoding is illustrated
in (b) in Figure 15. It is worth noting that according to this strategy
the arc w2 → w4 in the figure is projected on the second plane, while
no plane is assigned to the arc w3 → w6, since it would cross arcs
pertaining to both first and second plane. Even though this tree is
indeed 2-planar, the greedy plane assignment strategy is not able to
cover all arcs that in theory can be projected into two planes. Hence,
we will now introduce a second plane assignment strategy that ensures
a complete encoding of 2-planar trees.

Algorithm 1: 2p-greedy
Input: A set of arcs T , and input length n
Result: Two sets (planes) of arcs P1,P2
P1 ← ∅;
P2 ← ∅;
for xr ← 1 to n do

for xl ← xr − 1 downto 0 do
if ∃a ∈ T | a = (xl,xr, l) ∨ a = (xr,xl, l) then

nextArc ← a;
C ← {b ∈ (P1 ∪ P2) | b crosses a};
if C ∩ P1 = ∅ then

P1 ← P1 ∪ {nextArc};
else if C ∩ P2 = ∅ then

P2 ← P2 ∪ {nextArc};
else

do nothing (failed to assign nextArc to a plane);
end

end
end
return P1,P2;

4.1.2.4 Plane assignment strategy based on restriction
propagation on the crossings graph

In the previous strategy, the plane assignment process is performed
greedily, where the scope for forbidding arcs from a plane is restricted



4.1 encodings 49

Algorithm 2: 2p-prop
Input: A set of arcs T , and input length n
Result: Two sets (planes) of arcs P1,P2
function Propagate(Edge sets T ,P1,P2, Edge e, Plane i):

Pi ← Pi ∪ {e};
// e forbidden from plane i
for (e′ ∈ T | e′ crosses e) do

if e′ 6∈ P3−i then
(P1,P2)← Propagate(T ,P1,P2, e′, 3− i);

end
return P1,P2;

P1 ← ∅, P2 ← ∅, P1 ← ∅, P2 ← ∅;
for xr ← 1 to n do

for xl ← xr − 1 downto 0 do
if ∃a ∈ T | a = (xl,xr, l) ∨ a = (xr,xl, l) then

nextArc ← a;
if nextArc 6∈ P1 then

P1 ← P1 ∪ {nextArc};
Propagate(T ,P1,P2,nextArc,2);

else if nextArc 6∈ P2 then
P2 ← P2 ∪ {nextArc};
Propagate(T ,P1,P2,nextArc,1);

else
do nothing (failed to assign nextArc to a plane);

end
end

end
return P1,P2;

to the locally involved crossing arcs with respect to a given arc. This
can lead to suboptimal decisions resulting in leaving out some arcs in
graphs that, in fact, have 2-planar representations.

To assure a full coverage of 2-planar structures, we introduce a plane
assignment strategy based on restriction propagation on the crossings
graph, in which two nodes are linked if their corresponding edges cross
(Gómez-Rodríguez and Nivre, 2013). The idea behind this strategy is
that one may anticipate that the locally involved crossing arcs may
also collide with their neighboring arcs. Thus, the plane restriction
can be propagated to all subsequent crossing arcs originating from a
given arc. Similarly as in the previous strategy, the process proceeds
by trying to assign an arc to the first plane P1 if allowed, otherwise to
the second P2 and if it is not possible, no plane is assigned to that arc.
However, the difference lies in propagating restriction on all involved
arcs. Specifically, assigning an arc to the first plane implies that we
forbid all its crossing arcs from that plane P1, then the neighbors of
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that arcs are forbidden from the second plane P2 and so forth. The
strategy is described with a pseudocode in algorithm 2. As shown in
(c) in Figure 15, this method, unlike the previous strategy, is able to
encode the arc w3 → w6 providing a full coverage of arcs in the tree.

4.1.2.5 Other plane assignment strategies

There are alternative plane assignment strategies which can be ap-
plied instead of averting from using the second plane as in this work.
For instance, one can define a strategy that minimizes switching be-
tween the planes. In other words, instead of continuously attempting
to switch to the first plane, the aim is to hold to the same plane. In
this vein, Gómez-Rodríguez and Nivre (2010) apply a switch-averse
restriction-propagation strategy in a 2-planar transition-based parser.
This strategy is especially useful since it minimizes the number of tran-
sitions. However, this advantage vanishes in the case of dependency
parsing cast as sequence labeling. We have included the switch-averse
strategy in our initial experiments, however it led to slightly worse per-
formance and as a result, we have discarded it. In general, one may
apply any other strategy based on some other preference criteria. In
our approach, we choose the two previously described strategies since
they facilitate keeping the vocabulary size small.

4.2 Decoding

Now we will describe the decoding process for the relaxed 1-planar
bracketing-based encoding and the 2-planar variants.

4.2.1 Relaxed 1-planar bracketing-based decoding

The decoding process of the relaxed 1-planar bracketing-based encod-
ing consists in finding pairs of matching bracketing elements, where the
pairs are of the form (<, /) and (/,>) associated with a left and a right
arc, respectively. Initially, two empty stacks are created: σL and σR

that hold bracketing elements separately according to the arc direction.
We process the output labels in a left-to-right fashion and decompose
them into bracketing elements, such that any < and /are processed in
σL, while / and > in σR.

The decoding proceeds by reading the label for each token. If the
element in the label of a token wi is a left opening bracket (<), we push
it to σL preserving the index i. Once having read a closing bracket ( /)
for the word wj , we associate it with an opening bracket on the top
of the stack σL, which is then popped. In other words, if the most
recently read opening bracket corresponds to the index i, a left-arc is
created from wj to wi−1. For right arcs, an analogous processing takes
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place but in the stack σR. In the case of predicted bracketing elements
not being well-balanced, the outermost elements are discarded. Finally,
we apply the postprocessing heuristics to recover arcs that could not
be successfully decoded due to the incorrect labels (see Section 3.2.1).

4.2.2 2-Planar bracketing-based decoding

Decoding of the 2-planar bracketing-based labels proceeds similarly
as in the 1-planar encoding, where we search for pairs of matching
bracketing elements (<, /) and (/,>) belonging to the first plane. How-
ever, additionally we look for pairs (<*, /*) and (/*,>*) pertaining to
the second plane. Initially, four empty stacks are created, where σL

and σR hold left and right arcs from the first plane, while σ∗L and σ∗R
stacks handle bracketing elements from the second plane. The decod-
ing process continues analogously to the one described above, where
the outermost elements from the unbalanced components in the first or
second plane are removed, followed by the postprocessing steps.

4.3 Analysis

In this section, we will provide an in-depth analysis of the bracketing-
based family of encodings, while the final evaluations of the models will
be provided in the subsequent section. We will first examine the facets
of the relaxed 1-planar bracketing-based encoding, referred to as 1p-
brackets, followed by an analysis of its 2-planar variants, denoted as
2p-greedy and 2p-prop, respectively. Since the relative PoS-based
encoding achieved the best performance among the head selection en-
codings, we select it as our baseline encoding that will serve for com-
parison in the following experiments.

4.3.1 Aspects of the relaxed 1-planar bracketing-based
encoding

The relaxed 1-planar bracketing encoding will be assessed by taking
into account several aspects. First, we will compare the encodings with
respect to the models‘ efficiency. Next, we will examine their label set
sizes and distributions.

4.3.1.1 Model efficiency

In this experiment, we want to explore which sequence labeling model
preserves the most optimal trade-off between the speed and accuracy.
To do so, we will compute the Pareto frontier for the relative PoS-
based and the relaxed 1-planar bracketing-based models with different
hyperparameter combinations.
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Model As previously, the experiment is carried out by relying on
NCRF++ with BiLSTMs, where an entire label is learned as a single
task. The parameter search is performed by altering the number of
hidden layers, their dimensions and presence of character embeddings,
as they influence the speed and accuracy of a model. More specifi-
cally, we test the following models specified in Table 9 with remaining
hyperparameters listed in Section A.1.1.

Model 1 2 3 4 5 6 7 8 9 10
#BiLSTM layers 1 2 2 2 2 2 2 2 3 3
Hidden vector dim. 800 250 250 400 600 800 1000 1200 400 800
Char embeddings X 7 X X X X X X X X

Table 9: Hyperparameter search for model selection.

Setup We train ten models relying on the relative PoS-based encod-
ing and another ten models with the relaxed 1-planar bracketing-based
encoding. We will refer to the the relative PoS-based models as P z

x,y
while to the relaxed 1-planar bracketing-based models as Bz

x,y, where
z denotes whether character embeddings are used, x the number of
BiLSTM layers, while y stands for the word hidden vector dimensions.
We evaluate all models on ptb with its common setup and we measure
the parsing speed in sentences per second on a single core of CPU (Intel
Core i7-7700 CPU 4.2 GHz) and on a GPU (GeForce GTX 1080).
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Figure 16: UAS/speed Pareto frontier for models with the relative PoS-based
and the relaxed 1-planar bracketing-based encodings based on var-
ious hyperparameter combinations. The evaluation is performed
on the ptb dev set.
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Pareto frontier In order to determine the efficiency of the models
in terms of speed and accuracy, we calculate the Pareto frontier. As
shown in Figure 16, we obtain eight models that lie in the frontier pre-
serving the best trade-off between speed (sentences/second processed
on a single core CPU) and UAS score. Among these, three are based on
the relaxed 1-planar bracketing encoding that are located in the center
or below the Pareto frontier. In general, the most efficient models rely
on either 2 or 3 BiLSTM layers and with hidden vector dimensions in the
range 250-800, while the vast majority also uses character embeddings.

4.3.1.2 Label distribution and label set size

Label distribution To gain a deeper understanding of the differ-
ences between the relaxed 1-planar bracketing-based and the relative
PoS-based encodings, we examine their distribution of labels on the
English ptb dev set. More specifically, we look at the distribution of
the first component of each label ei containing the head-related infor-
mation (the relative distance based on the head’s PoS or a sequence of
bracketing elements excluding the components for dependency relation
that have the same size in all encodings). As illustrated in Figure 17,
the bracketing based-encoding tends to generate fewer ei labels than
its counterpart. It is also discernible that the relative PoS-based en-
coding has a longer tail with low frequency labels indicating that the
bracketing-based encoding provides a more compact label vocabulary.

Figure 17: Distribution of label frequency rank of ei with respect to the oc-
currences in the ptb dev set represented in log-log scale.
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Treebank Encoding Task 1 #labels Task 2 #labels
ei ri

rel-PoS 166 27Ancient GreekPerseus 1p-brackets 210 27

ChineseGSD
rel-PoS 201 45
1p-brackets 104 45
rel-PoS 202 51EnglishEWT 1p-brackets 109 51

FinnishTDT
rel-PoS 220 47
1p-brackets 107 47
rel-PoS 162 40HebrewHTB 1p-brackets 107 40

RussianGSD
rel-PoS 169 44
1p-brackets 93 44
rel-PoS 68 31TamilTTB 1p-brackets 49 31

UyghurUDT
rel-PoS 102 44
1p-brackets 58 44
rel-PoS 102 40WolofWTB 1p-brackets 69 40

Table 10: Comparison of label set sizes generated by the relative PoS-based
and bracketing-based encodings considered as two tasks. ei refers
to the head-related label, while ri to the label with the dependency
relation type.

Label set size To extend the analysis to a wider range of languages,
we look at the label set size that both encodings generate on a rep-
resentative subset of UDv2.4 (Nivre et al., 2019) treebanks. Table 10
compares the label set sizes of both encoding types. In general, a similar
pattern emerges, where the bracketing-based encoding is more compact.
More specifically, the relative PoS-based encoding produces on average
roughly 1.5x more labels than its counterpart in the selected treebanks.
As mentioned earlier, the dependency relation labels are identical for
both encodings, hence the labels for the second task are of the same
size.

4.3.2 Aspects of the 2-planar bracketing-based
encodings

Unlike the relative PoS-based encoding, the relaxed 1-planar
bracketing-based encoding is not able to fully encode non-projective
arcs. Hence, to mitigate the limitation of this encoding, we enhance
it with the notion of 2-planarity. In this section, we will examine the
improvements in the coverage of non-projective arcs obtained by the 2-
planar encodings evaluated on a set of highly non-projective treebanks.
Additionally, we will compare their label set size and label coverage at
testing time.
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Model The encodings are learned with a BiLSTM-based model. More
specifically, the 2-planar information is incorporated using MTL, where
a model has three separate output layers: one for predicting labels for
the first plane, another for the second plane and one for the dependency
relation types. All tasks are equally weighted. To ensure a fair compar-
ison against the relaxed 1-planar bracketing-based encoding, we learn
the latter as two tasks corresponding to the labels for the first plane
and dependency relation types. The hyperparameters are detailed in
Section A.1.1.

Setup To test the ability of handling non-projectivity of the 2-planar
encodings, we extract a set of UDv2.4 treebanks (Nivre et al., 2019) that
contain the highest percentage of non-projective sentences. For the
experiment, we discard some treebanks due to the lack of a development
set or a pre-trained UDPipe model, resulting in the following treebanks:
Ancient GreekPerseus, BasqueBDT, HungarianSzeged, PortugueseBosque,
UrduUDTB, AfrikaansAfriBooms, KoreanKaist, DanishDDT, GothicPROIEL
and LithuanianHSE. In addition, we include two control treebanks that
are fully projective: GalicianCTG and JapaneseGSD. Table 11 lists the
selected treebanks with the corresponding percentages of non-projective
sentences and dependencies.

Language % non-projective
sentences

% non-projective
dependencies

Ancient GreekPerseus 63.87 10.14
BasqueBDT 33.17 4.69
HungarianSzeged 27.11 1.97
PortugueseBosque 23.31 1.85
UrduUDTB 22.57 1.32
AfrikaansAfriBooms 22.34 1.62
KoreanKaist 21.70 2.55
DanishDDT 21.50 1.74
GothicPROIEL 17.57 2.53
LithuanianHSE 17.49 1.27
JapaneseGSD 0 0
GalicianCTG 0 0

Table 11: Comparison of non-projective sentences and dependencies (%)
across the selected UD treebanks. JapaneseGSD and GalicianCTG
are fully projective and serve as control treebanks.

Among the selected treebanks, the most non-projective one is An-
cient Greek containing almost 64% non-projective sentences and around
10% non-projective dependencies. However, it is discernible that in the
remaining treebanks the degree of non-projectivity is considerably lower



56 bracketing-based encodings

that may translate into smaller accuracy gains. More detailed statistics
about the selected treebanks, such as the percentage of non-projective
sentences in each data split, are provided in Section B.1.

4.3.2.1 Non-projectivity coverage

Now, we move on to the theoretical upper bound of the 2-planar
encodings by reconstructing the gold training sets. Table 12 shows the
arc coverage percentage obtained by each encoding. In general, both
2-planar encodings provide more than 99% arc coverage from the gold
data sets and as expected, they preserve more non-projective arcs than
the relaxed 1-planar bracketing-based encoding. However, the latter is
still able to moderately reconstruct the data sets, even in such a highly
non-projective treebank as Ancient GreekPerseus (89.53% of coverage
against over 99.2% obtained by the 2-planar variants). It may suggest
that the treebank contains crossing arcs that to a large extent point in
the opposite direction and hence can be handled by this encoding.

When comparing solely the 2-planar encodings based on different
plane assignment strategies, their arc coverage is on par. One could
expect 2p-prop to achieve better performance than 2p-greedy due
to its full coverage of 2-planar trees. However, in some languages there
may be a fraction of trees that are not 2-planar, hence the property
of 2p-prop does not apply and as a result, 2p-greedy may cover in
some cases more trees.

Language 1p-brackets 2p-greedy 2p-prop
Ancient GreekPerseus 89.53 99.27 99.33
BasqueBDT 94.85 99.85 99.62
HungarianSzeged 97.57 99.96 99.98
PortugueseBosque 98.10 99.95 99.88
UrduUDTB 98.68 99.95 99.94
AfrikaansAfriBooms 98.65 99.99 99.99
KoreanKaist 98.42 100.00 100.00
DanishDDT 98.10 99.97 99.96
GothicPROIEL 97.58 99.94 99.98
LithuanianHSE 98.35 99.97 100.00

Table 12: Upper bound for arc coverage percentage of the 1- and 2-planar
encodings on the gold training set across highly non-projective UD
treebanks.

Next, we analyze the precision and recall of sequence labeling pars-
ing models trained to use the 1- and 2-planar bracketing-based encod-
ings. Table 13 reports the precision and recall on non-projective sen-
tences, while Table 14 on non-projective dependencies. The accuracy



4.3 analysis 57

Language 1p-brackets 2p-greedy 2p-prop
P R P R P R

Ancient GreekPerseus 85.74 54.34 86.33 63.85 87.58 66.23
BasqueBDT 69.87 45.80 70.14 52.97 72.77 52.80
HungarianSzeged 37.17 66.98 35.51 71.70 37.80 74.53
PortugueseBosque 52.94 24.77 55.84 39.45 61.64 41.28
UrduUDTB 36.63 36.63 38.10 31.68 39.78 36.63
AfrikaansAfriBooms 40.99 65.35 46.72 63.37 46.94 68.32
KoreanKaist 59.45 49.54 62.24 47.03 62.80 47.03
DanishDDT 45.54 48.57 46.36 48.57 45.37 46.67
GothicPROIEL 50.50 26.42 58.88 32.64 56.00 36.27
LithuanianHSE 34.38 91.67 27.59 66.67 33.33 83.33
Average 51.32 51.01 52.77 51.79 54.40 55.31

Table 13: Precision and recall of the 1- and 2-planar bracketing-based models
on non-projective sentences in the test set.

on non-projective sentences is computed by verifying whether a gold
non-projective sentence is identified by a model as non-projective, dis-
regarding the correctness of its predicted non-projective dependencies.

Language 1p-brackets 2p-greedy 2p-prop
P R P R P R

Ancient GreekPerseus 20.82 10.32 32.40 18.65 31.40 19.16
BasqueBDT 18.41 11.80 28.11 19.83 31.76 20.40
HungarianSzeged 1.57 4.05 3.13 9.25 4.06 10.98
PortugueseBosque 10.87 5.18 14.50 9.84 20.18 11.92
UrduUDTB 3.26 3.92 0.69 0.65 3.41 3.92
AfrikaansAfriBooms 11.04 18.09 13.09 19.15 12.59 18.62
KoreanKaist 28.12 21.68 32.26 21.37 31.06 21.53
DanishDDT 7.66 11.35 12.96 19.86 9.45 13.48
GothicPROIEL 11.11 5.17 19.63 11.03 17.46 11.38
LithuanianHSE 0 0 0 0 1.64 6.25
Average 11.29 9.16 15.68 12.96 16.30 13.76

Table 14: Precision and recall of the 1- and 2-planar bracketing-based models
on non-projective dependencies in the test set.

The results show that both 2-planar encodings perform better than
the 1-planar counterpart when predicting non-projective sentences. On
average, 2p-prop yields the highest precision and recall of all encodings
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suggesting that it conveys representations that facilitate the identifica-
tion of non-projective sentences. Regarding the precision and recall
on the non-projective dependencies, the 2-planar encodings also per-
form on average better than the encoding with arcs projected on a
single plane. Overall, 2p-prop achieves slightly higher averaged preci-
sion and recall than 2p-greedy. Interestingly, LithuanianHSE obtains
very low precision and recall on non-projective dependencies compared
to the other treebanks. However, the treebank statistics from Sec-
tion B.1 show that LithuanianHSE contains a small number of sentences,
which impedes drawing robust conclusions about its general poor per-
formance.

4.3.2.2 Label set size and label coverage

Label set size Furthermore, we investigate the number of atomic
labels per plane that the 2-planar encodings generate on the training
and development data sets compared to the other encodings. We re-
mind that since 2p-greedy and 2p-prop models require an additional
plane, this implies introducing an extra task that contains the "star"
brackets as its output vocabulary. Each task is also augmented with
the special bos and eos labels to mark the beginning and the end of a
sentence. The label set sizes are shown in Table 15.
Language Encoding Task 1 Task 2 Task 3 Language Encoding Task 1 Task 2 Task 3

(1rst plane) (2nd plane) (deprel) (1rst plane) (2nd plane) (deprel)
rel-PoS 166 – 27 rel-PoS 134 – 32
1p-brackets 210 – 27 1p-brackets 89 – 32
2p-greedy 108 37 27 2p-greedy 73 14 32

Ancient
GreekPerseus

2p-prop 109 39 27

KoreanKaist

2p-prop 73 14 32

BasqueBDT

rel-PoS 132 – 32

DanishDDT

rel-PoS 150 – 38
1p-brackets 134 – 32 1p-brackets 128 – 38
2p-greedy 84 25 32 2p-greedy 97 23 38
2p-prop 83 25 32 2p-prop 96 25 38
rel-PoS 128 – 56 rel-PoS 121 – 34
1p-brackets 101 – 56 1p-brackets 114 – 34
2p-greedy 71 19 56 2p-greedy 78 18 34HungarianSzeged

2p-prop 71 21 56

GothicPROIEL

2p-prop 78 19 34

PortugueseBosque

rel-PoS 192 – 43

LithuanianHSE

rel-PoS 89 – 38
1p-brackets 110 – 43 1p-brackets 57 – 38
2p-greedy 88 25 43 2p-greedy 46 11 38
2p-prop 88 27 43 2p-prop 46 12 38
rel-PoS 190 – 27 rel-PoS 77 – 27
1p-brackets 95 – 27 1p-brackets 45 – 27
2p-greedy 80 22 27 2p-greedy 45 3 27UrduUDTB

2p-prop 80 22 27

JapaneseGSD

2p-prop 45 3 27

AfrikaansAfriBooms

rel-PoS 110 – 28

GalicianCTG

rel-PoS 132 – 26
1p-brackets 77 – 28 1p-brackets 82 – 26
2p-greedy 62 15 28 2p-greedy 82 3 26
2p-prop 62 15 28 2p-prop 82 3 26

Table 15: Atomic label set size per plane of the relative PoS-based, 1- and 2-
planar bracketing-based encodings retrieved from the training and
dev set. Each task contains three additional labels: bos, eos and
∅ (empty label).

In general, the bracketing-based encodings require fewer labels in
the majority of the treebanks than the relative PoS-based encoding,
which is in line with the previous analysis. When comparing the 1-
and 2-planar bracketing-based encodings, the latter does not result in
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Task 1
(1st plane)

Task 2
(2nd plane)

Task 3
(deprel)

Language Encoding
Unseen Total %

occ.
Unseen Total %

occ.
Unseen Total %

occ.
rel-PoS 0 (0%) 75 0 − − − 0 (0%) 25 0
1p-brackets 4 (3.39%) 118 0.02 − − − 0 (0%) 25 0
2p-greedy 2 (3.08%) 65 0.01 1 (5.26%) 19 0.01 0 (0%) 25 0

Ancient
GreekPerseus

2p-prop 1 (1.49%) 67 0 0 (0%) 22 0 0 (0%) 25 0
rel-PoS 4 (4.3%) 93 0.02 − − − 0 (0%) 30 0
1p-brackets 2 (2.15%) 93 0.01 − − − 0 (0%) 30 0
2p-greedy 3 (4.35%) 69 0.022 (10.53%) 19 0.01 0 (0%) 30 0

BasqueBDT

2p-prop 3 (4.35%) 69 0.02 2 (10.0%) 20 0.01 0 (0%) 30 0
rel-PoS 6 (7.5%) 80 0.06 − − − 0 (0%) 47 0
1p-brackets 5 (6.1%) 82 0.05 − − − 0 (0%) 47 0
2p-greedy 1 (1.64%) 61 0.01 1 (8.33%) 12 0.01 0 (0%) 47 0

HunagrianSzeged

2p-prop 1 (1.64%) 61 0.01 1 (6.67%) 15 0.01 0 (0%) 47 0
rel-PoS 2 (2.11%) 95 0.03 − − − 0 (0%) 38 0
1p-brackets 0 (0%) 60 0 − − − 0 (0%) 38 0
2p-greedy 0 (0%) 54 0 0 (0%) 14 0 0 (0%) 38 0

PortugueseBosque

2p-prop 0 (0%) 54 0 0 (0%) 14 0 0 (0%) 38 0
rel-PoS 8 (7.69%) 104 0.07 − − − 0 (0%) 24 0
1p-brackets 4 (6.06%) 66 0.03 − − − 0 (0%) 24 0
2p-greedy 3 (5.36%) 56 0.02 0 (0%) 12 0 0 (0%) 24 0

UrduUDTB

2p-prop 3 (5.36%) 56 0.02 0 (0%) 14 0 0 (0%) 24 0
rel-PoS 2 (2.82%) 71 0.02 − − − 0 (0%) 26 0
1p-brackets 4 (6.06%) 66 0.04 − − − 0 (0%) 26 0
2p-greedy 1 (1.92%) 52 0.01 1 (10.0%) 10 0.01 0 (0%) 26 0

AfrikaansAfriBooms

2p-prop 1 (1.89%) 53 0.01 1 (9.09%) 11 0.01 0 (0%) 26 0
rel-PoS 1 (1.11%) 90 0 − − − 1 (3.23%) 31 0
1p-brackets 1 (1.59%) 63 0 − − − 1 (3.23%) 31 0
2p-greedy 0 (0%) 56 0 0 (0%) 8 0 1 (3.23%) 31 0

KoreanKaist

2p-prop 0 (0%) 56 0 0 (0%) 8 0 1 (3.23%) 31 0
rel-PoS 2 (2.25%) 89 0.02 − − − 0 (0%) 34 0
1p-brackets 0 (0%) 72 0 − − − 0 (0%) 34 0
2p-greedy 0 (0%) 63 0 0 (0%) 12 0 0 (0%) 34 0

DanishDDT

2p-prop 0 (0%) 63 0 0 (0%) 12 0 0 (0%) 34 0
rel-PoS 3 (4.11%) 73 0.03 − − − 0 (0%) 31 0
1p-brackets 2 (2.78%) 72 0.02 − − − 0 (0%) 31 0
2p-greedy 1 (1.79%) 56 0.012 (13.33%) 15 0.02 0 (0%) 31 0

GothicPROIEL

2p-prop 1 (1.79%) 56 0.012 (13.33%) 15 0.02 0 (0%) 31 0
rel-PoS 2 (4.17%) 48 0.19 − − − 1 (3.12%) 32 0.09
1p-brackets7 (15.91%) 44 0.66 − − − 1 (3.12%) 32 0.09
2p-greedy 3 (8.11%) 37 0.381 (16.67%) 6 0.091 (3.12%) 32 0.09

LithuanianHSE

2p-prop 3 (8.11%) 37 0.381 (16.67%) 6 0.091 (3.12%) 32 0.09

Table 16: Atomic label coverage of the encodings at testing time. Unseen
denotes the number and percentage of unique labels not seen in the
training and dev set with respect to the total number of unique
labels appearing at the test time (total), while % occ. stands for
occurrences of unseen labels with respect to the occurrences of all
labels in the test set.

an increased label set size even though additional bracketing elements
are introduced. For instance, in the most non-projective treebanks,
such as Ancient Greek and Basque, the 2-planar encodings generate,
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in fact, a smaller label space. This can be explained by the fact that
the 2-planar encodings are likely to contain fewer unique sequences
of bracketing symbols in general due to the distribution of bracketing
elements among two planes.

Label coverage In sequence labeling parsing, the syntactic depen-
dencies are encoded as a finite set of labels based on their presence in
the training and development sets. Hence, it is anticipated that at the
test time, some labels have not been seen during training. To explore
to what extent it occurs, we examine the label coverage of the relative
PoS-based, 1- and 2-planar bracketing-based encodings across various
treebanks. In Table 16 we report the number of unseen labels from the
training and development set, the total number of unique labels and
the percentage of unseen label occurrences with respect to occurrences
of all labels in the test set.

In general, it is discernible that only few labels are unknown at the
test time out of all unique labels. For instance, in the case of 1p-
brackets in Ancient Greek, only 3.39% of unique labels (Task 1) were
not seen during training. This translates into only four unique labels
out of 118 that were unknown to the model at the test time. Moreover,
when exploring how often they actually occur at the test time, they
render solely 0.02% of the occurrences of all labels. Since the unseen
labels are so rare, they presumably do not have a significant impact on
the overall performance of a model.

4.4 Evaluation

In this section, we assess the relaxed 1-planar models in terms of
UAS and LAS scores and their parsing speeds tested in different setups,
followed by the results of the 2-planar variants. We extend the eval-
uation by comparing the bracketing-based family against the relative
PoS-based encoding.

4.4.1 Performance of the relaxed 1-planar
bracketing-based encoding

The aim of this experiment is to compare the performance of the
encodings under various settings. Firstly, we leverage the fact that
the bracketing-based encoding family does not require PoS tags, whose
utility has been questioned in some previous work (Lhoneux et al.,
2017; Anderson and Gómez-Rodríguez, 2020b). Hence, we will compare
the performance of the relative PoS-based and the relaxed 1-planar
bracketing-based encodings when obviating the need of PoS tags as
input features. Secondly, their performance will be examined when
relying on a different neural architecture. Finally, we evaluate the
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sequence labeling models considering their speed and accuracy trade-
off compared to some existing parsers.

Model We use two different sequence labeling encoders. The first
one is based on BiLSTM within the NCRF++ framework as in the pre-
vious experiments, while the second one employs BERT (Devlin et al.,
2019). More specifically, we use its pre-trained models 1. For our mul-
tilingual setup we fine-tune the multilingual BERT (M-BERT:bert-base-
multilingual-cased), unless language-specific models exist. An outline
of our architecture using BERT as the encoder is illustrated in Figure 18.

Figure 18: Sequence labeling model with BERT as encoder. We omit BERT’s
sub-word piece tokenization for simplicity.

Note that in BERT the input tokens are split into sub-words (Word-
Pieces) (Wu et al., 2016) resulting in more sub-words than tokens in
a given sentence. This impedes a direct assignment of a label to its
corresponding token in our approach. To overcome it, we consider the
first sub-word as a token. Moreover, unlike the BiLSTM-based model,
BERT does not use PoS tags as input. Hence, we apply PoS tags only
during decoding of the relative PoS-based labels.
We generate two-task labels for each word wi by retrieving BERT’s

output hidden contextualized vectors hi and using them as input to
two separate feed-forward layers with softmaxes. Both models are opti-
mized by computing the loss as the sum of the categorical cross-entropy
of both tasks. The hyperparameters for the BiLSTM-based models are
detailed in Section A.1.1 and for BERT in Section A.1.3.

Setup In this experiment unlike the previous one, the aim is to
test the overall performance of the relaxed 1-planar encoding without
focusing on non-projectivity. Hence, following Anderson and Gómez-
Rodríguez (2020a) we select a representative subset of UDv2.4 (Nivre
et al., 2019) treebanks: Ancient GreekPerseus, ChineseGSD, EnglishEWT,

1 https://huggingface.co/transformers/pretrained_models.html
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FinnishTDT, HebrewHTB, RussianGSD, TamilTTB, UyghurUDT and
WolofWTB. Moreover, UDPipe (Straka and Straková, 2017) is used
to obtain data with predicted segmentation, tokenization and PoS tags.
In addition, each sentence is augmented with the special bos and eos
symbols. For this setup, we use language-specific BERT models that
are available for some of the selected languages, i.e. English (bert-base-
cased), Chinese (bert-base-chinese) and Finnish (TurkuNLP/bert-base-
finnish-cased-v1) (Virtanen et al., 2019).

As discussed previously, the utility of PoS tags in dependency parsing
has been questioned. That is why we propose an experiment with two
setups for the BiLSTM-based models. In the first one, denoted as PoS+,
we proceed with our basic architecture, where the input vectors are a
concatenation of the pre-trained word embeddings, char and PoS tag
embeddings. In the second setup, in turn, we obviate the use of PoS tag
vectors in the input and they will be only employed for decoding the
labels of the relative PoS-based encoding. We will refer to this setup as
PoS–. We consider this setup since in various circumstances it may not
be desirable to use PoS tags as input features to the model. For instance,
PoS tags may be not available for a given treebank, they may have a
very low prediction accuracy or for a simple reason, some models do not
use PoS tag features as in the case of BERT. Moreover, circumventing
using PoS tags results in a faster pipeline and further simplicity of the
model since there is no need of running a PoS tagger.
In the second experiment, we will test the relative PoS-based and

the relaxed 1-planar bracketing-based encodings when relying on BERT
as encoder, which by default does not use PoS tag vectors as input.

4.4.1.1 Impact of using PoS tags as input features

First, we examine the effect of using PoS tag embeddings as input to
the BiLSTM-based models with the relative PoS-based and the relaxed 1-
planar bracketing encoding. Table 17 shows the accuracy of the models
in the two setups: (i) where PoS tag vectors are used as input (PoS+)
or (ii) are left out (PoS–). In general, the results show that when the
PoS tag vectors are used as input to the model (PoS+), the relative
PoS-based encoding on average outperforms the bracketing-based one
by 0.6% UAS on the test set, which confirms the preliminary results
from the previous experiment on the English ptb treebank. The rela-
tive PoS-based models that use PoS tags as input features consistently
achieve higher scores than the counterpart models across the selected
languages, with the exception of Uyghur, where the bracketing-based
model obtains higher accuracy both on the dev and test set. The largest
discrepancy in the accuracy between the two encodings is prominent
in Ancient Greek with an advantage of the head selection encoding of
4.6% UAS on the test set. The reason for the lower score of the re-
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Split Enc.

Ancient Chinese English Finnish Hebrew Russian Tamil Uyghur Wolof Avg

Greek

UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS

devPoS+
rel-PoS 70.2 61.8 61.6 57.4 82.6 79.0 83.2 79.3 67.4 63.8 84.0 79.6 59.5 52.0 72.6 59.0 77.0 70.5 73.1 66.9

1p-brackets 65.2 57.2 61.8 57.9 82.2 78.6 82.8 79.1 67.1 63.4 83.5 78.9 57.4 50.2 73.1 59.9 76.3 69.7 72.2 66.1

testPoS+
rel-PoS 69.5 60.0 64.4 60.0 82.0 78.5 80.2 74.9 63.0 59.5 82.7 77.3 58.0 49.8 71.5 57.8 76.1 69.6 71.9 65.3

1p-brackets 64.9 56.2 64.2 59.8 81.7 78.3 81.1 76.0 62.1 58.7 82.9 77.9 57.2 49.0 72.0 58.5 75.4 68.8 71.3 64.8

devPoS–
rel-PoS 65.3 58.3 58.8 55.3 80.3 77.1 80.8 77.3 65.3 62.2 81.3 77.4 52.7 41.9 65.7 53.3 73.1 66.3 69.2 63.2

1p-brackets 64.7 57.2 63.8 59.4 83.4 80.0 84.1 80.4 68.7 65.0 84.0 79.7 55.9 45.1 72.1 58.8 75.2 67.4 72.4 65.9

testPoS–
rel-PoS 62.9 55.1 60.3 56.8 78.5 75.3 65.6 59.6 59.7 56.6 79.0 73.8 51.6 40.6 64.9 52.4 72.3 65.6 66.1 59.5

1p-brackets 63.4 54.8 65.3 61.1 82.4 78.9 75.1 67.7 62.3 58.6 81.8 75.8 56.9 42.6 71.0 57.4 75.1 67.2 70.4 62.7

Table 17: Results for the BiLSTM-based models, in which PoS tags are used
as input features (PoS+) or are omitted (PoS–).

laxed 1-planar bracketing-based model is likely due to the high degree
of non-projective sentences present in that treebank.

When analyzing the accuracy of the models without relying on PoS
tags as input (PoS-), the tendency is reversed. The bracketing-based
models outperform the counterpart models on average by 4.3% UAS on
the test set demonstrating the strong dependency of the relative PoS-
based encoding on the input PoS tag vectors. Hence, by any reason PoS
tags are not used as input features, the bracketing-based encoding may
be a favorable option.

4.4.1.2 Impact of using a different architecture

Now, we move on to examine the performance of the encodings when
taking into account a different neural architecture. Specifically, we rely
on a model with BERT as encoder that does not use PoS tags as input fea-
tures. Table 18 compares the encodings for the selected languages with
the available pre-trained models. The results show that the 1-planar
bracketing-based models clearly outperform the relative PoS-based ones
across all languages. On average, the bracketing-based encoding has
an advantage of 5.4% UAS and 4.3% LAS on the test set. This can be
partly explained by the fact that BERT does not use PoS tag features as
input, hence we can observe a similar tendency as in the BiLSTM mod-
els in the PoS– setup. The models that rely on a language-specific
pre-trained BERT, such as Chinese, English and Finnish obtain overall
higher accuracy than the BiLSTM models (PoS–). Conversely, the mod-
els based on M-BERT such as Hebrew, Russian and Tamil achieve lower
accuracy when compared to the BiLSTM-based ones. As observed in
Wu and Dredze (2020), it is not guaranteed that languages supported
with M-BERT perform better than when learned with models that do
not rely on pretraining. This is especially prominent in low-resource
scenarios.
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Split Encoding ChineseGSD EnglishEWT FinnishTDT HebrewHTB RussianGSD TamilTTB Avg
UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS

dev rel-PoS 59.8 57.0 82.3 79.9 82.6 79.7 61.8 58.0 77.6 73.2 43.4 33.6 67.9 63.5
1p-brackets 69.3 65.3 87.2 84.4 88.6 85.1 66.6 61.7 80.6 75.4 49.8 36.8 73.7 68.1

test rel-PoS 61.5 58.8 81.0 78.8 82.6 80.0 56.9 53.1 77.9 73.2 45.2 34.1 67.5 63.0
1p-brackets 70.2 66.5 86.2 83.3 89.4 86.1 62.7 57.9 79.9 74.2 48.9 35.9 72.9 67.3

Table 18: Performance comparison of the relative PoS-based and the relaxed
1-planar bracketing-based encoding using BERT on the languages
with available pre-trained models.

4.4.1.3 Encoding evaluation with gold data

In the previous experiment in the PoS+ setup, the models were
tested on the input sentences with predicted segmentation, tokenization
and PoS tags. In order to gain insight into the impact of the predicted
setup on the encodings and to examine whether some encoding may
suffer more from this setup, we test the BiLSTM-based models on the
gold data. Table 19 shows the upper bound for the relative PoS-based
and relaxed 1-planar bracketing-based encodings that can be obtained
on the gold data. We provide the percentage increase in parenthesis
with respect to the results from Table 17.

Language rel-PoS 1p-brackets
UAS LAS UAS LAS

Ancient GreekPerseus 74.8 (+7.6%) 68.3 (+13.9%) 69.1 (+6.4%) 63.1 (+12.3%)
ChineseGSD 84.9 (+31.8%) 82.0 (+36.7%) 84.2 (+31.1%) 81.2 (+35.8%)
EnglishEWT 89.3 (+8.9%) 86.9 (+10.7%) 88.8 (+8.7%) 86.5 (+10.4%)
FinnishTDT 85.1 (+6.2%) 81.3 (+8.5%) 86.1 (+6.2%) 82.5 (+8.5%)
HebrewHTB 88.2 (+40.1%) 85.4 (+43.7%) 87.5 (+40.9%) 84.7 (+44.3%)
RussianGSD 86.3 (+4.3%) 81.5 (+5.3%) 86.0 (+3.7%) 81.6 (+4.8%)
TamilTTB 76.5 (+31.9%) 68.7 (+37.9%) 73.6 (+28.5%) 66.8 (+36.3%)
UyghurUDT 74.3 (+4.0%) 61.1 (+5.7%) 74.7 (+3.7%) 61.7 (+5.5%)
WolofWTB 86.0 (+13.0%) 81.8 (+17.5%) 85.3 (+13.1%) 80.7 (+17.2%)

Table 19: Performance of the BiLSTM-based models in the PoS+ setup eval-
uated on the test set of UD treebanks with gold segmentation, to-
kenization and PoS tags. In parentheses the percentage increase is
given with respect to the results obtained with the predicted setup.

The results show that the prediction accuracy of the upstream tasks
has a relatively large impact on the models. The greatest gap between
the results on the predicted and gold data is noticeable in Hebrew. In
this case, using the gold data results in a percentage increase of 40.1%
of UAS (rel-PoS) and 40.9% (1p-brackets) followed by Chinese (31.8%
and 31.1%, respectively) and Tamil (31.9% and 28.5%). On average,
the relative PoS-based models have a higher percentage increase on the
gold data set suggesting that these models get penalized more due to
the predicted PoS. This can be explained by their strong reliance on PoS
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tags whose prediction accuracy may vary. For instance, in Chinese the
advantage of PoS-based encoding in UAS with respect to the bracketing-
based one decreases from +0.7 on the gold data set to +0.2 on the
predicted data set. A similar inclination can be observed to a greater
extent in the remaining languages.

4.4.1.4 Comparison of parsers’ speed and accuracy
trade-off

Since one of the key aspects of our approach is to provide a fast and
accurate parser, we will now compare the relative PoS-based and the
relaxed 1-planar bracketing-based models against some existing SOTA
dependency parsers. In particular, we will contrast the systems with
respect to the speed and accuracy trade-off they maintain. To do so, we
select four sequence labeling models based on the Pareto frontier from
Section 4.3.1.1. More specifically, the models are picked across the
span of the frontier: the most accurate one (rel-PoSC

2,800), the fastest
one (1p-brackets2,250) and two that fall in the center (rel-PoS2,250, rel-
PoSC

2,400). Table 20 compares the accuracy and speed of the selected
models against some existing dependency parsers.

Model sent/s UAS LAS
CPU GPU

Kiperwasser and Goldberg (2016) (T) 76±1 – 93.90 91.90
Kiperwasser and Goldberg (2016) (G) 80±0 – 93.10 91.00
Chen and Manning (2014) 654† – 91.80 89.60
Dozat and Manning (2017) – 411† 95.74 94.08
Ma et al. (2018) – 10±0 95.87 94.19
rel-PoS2,250 267±1 777±24 92.95 90.96
rel-PoSC

2,400 165±1 700±5 93.34 91.34
rel-PoSC

2,800 101±2 648±20 93.67 91.72
1p-brackets2,250 310±30 730±53 92.64 90.59

Table 20: Comparison of models on the ptb test set. The symbol † indicates
that the speed comes from the original papers.

In general, the results show that our sequence labeling parsers yield
competitive performance and preserve a good speed/accuracy trade-
off. The most accurate model from the Pareto frontier, rel-PoSC

2,800, is
nearly on par (−0.18 LAS) with the accuracy of the transition-based
BIST parser (Kiperwasser and Goldberg, 2016) while being faster. De-
spite the fact that both parsers rely on the BiLSTM representation, the
sequence labeling parser characterizes its simplicity: it does not depend
on any transition system and circumvents the need of a stack during
training and parsing or a dynamic oracle. The model rel-PoS2,250 which
uses BIST hyperparameters is 3.34x faster than the graph-based BIST
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at minimal cost of accuracy (−0.04 LAS). It is also 3.51x faster at the
cost of −0.94 LAS score compared to the transition-based BIST parser.
1p-brackets2,250 is the fastest among the sequence labeling models, how-
ever at some expense of accuracy.

4.4.2 Performance of the 2-planar bracketing-based
encodings

Next, we evaluate the performance of the 2-planar bracketing-based
encodings in terms of UAS and LAS compared to the other encodings.
Table 21 reports the results of the models on the development and
test sets from a range of highly non-projective treebanks including the
control treebanks. In this evaluation, the predicted PoS tags are not
used as input to the model. The reason for it is that we are interested
in testing the performance of the models in a setup, where PoS tags are
not available for the reasons we discussed earlier. Finally, we will also
explore whether adding a second plane has an impact on the parsing
speed.

Language Encoding dev test Language Encoding dev test
UAS LAS UAS LAS UAS LAS UAS LAS

rel-PoS 65.29 58.27 62.91 55.07 rel-PoS 81.47 78.50 77.25 73.92
1p-brackets 64.70 57.21 63.36 54.80 1p-brackets 84.54 81.54 82.37 79.03
2p-greedy 67.10 59.97 65.90 57.15 2p-greedy 85.01 82.01 82.33 78.91

Ancient
GreekPerseus

2p-prop 67.06 59.84 65.11 56.55

KoreanKaist

2p-prop 84.65 81.73 82.32 79.03

BasqueBDT

rel-PoS 77.48 72.91 75.28 70.19

DanishDDT

rel-PoS 78.28 74.93 77.07 73.45
1p-brackets 80.13 75.37 78.37 72.95 1p-brackets 80.60 76.59 78.25 73.94
2p-greedy 79.98 75.18 78.13 72.63 2p-greedy 80.68 76.80 78.49 74.07
2p-prop 80.44 75.56 78.58 73.08 2p-prop 81.15 77.27 78.87 74.42
rel-PoS 72.58 67.13 66.19 59.32 rel-PoS 65.25 58.58 67.14 59.72
1p-brackets 75.09 69.13 67.80 60.50 1p-brackets 65.26 57.92 66.63 59.02
2p-greedy 75.47 69.33 68.07 60.74 2p-greedy 65.26 58.05 66.84 59.26

HungarianSzeged

2p-prop 75.26 69.05 67.95 60.63

GothicPROIEL

2p-prop 65.29 57.91 66.25 58.41

PortugueseBosque

rel-PoS 87.10 84.28 84.74 81.02

LithuanianHSE

rel-PoS 39.04 26.37 31.05 19.70
1p-brackets 88.88 85.78 86.67 82.44 1p-brackets 40.97 25.63 34.62 19.42
2p-greedy 88.88 85.76 86.51 82.39 2p-greedy 41.34 26.46 35.08 20.45
2p-prop 89.00 85.82 86.52 82.17 2p-prop 44.19 29.03 34.80 21.29
rel-PoS 80.98 75.09 81.18 75.26 rel-PoS 76.60 75.83 74.83 73.96
1p-brackets 84.22 77.23 84.28 77.19 1p-brackets 78.73 77.67 77.34 76.10
2p-greedy 84.01 77.16 84.08 77.19 2p-greedy 78.81 77.78 77.47 76.24

UrduUDTB

2p-prop 83.89 77.30 84.26 77.41

JapaneseGSD

2p-prop 78.81 77.78 77.47 76.24

AfrikaansAfriBooms

rel-PoS 79.00 74.58 78.93 74.65

GalicianCTG

rel-PoS 79.72 76.40 78.36 75.05
1p-brackets 80.77 75.54 79.52 74.86 1p-brackets 80.82 77.35 80.02 76.33
2p-greedy 81.41 76.33 80.13 75.53 2p-greedy 80.90 77.36 79.91 76.32
2p-prop 81.50 76.30 79.96 75.43 2p-prop 80.90 77.36 79.91 76.32

Table 21: Comparison of UAS and LAS (%) obtained by the models relying
on the relative PoS-based, 1- and 2-planar bracketing-based encod-
ings and evaluated on the predicted dev and test set of highly non-
projective treebanks. Japanese and Galician treebanks are fully
projective and serve as the control treebanks.

The results show that the 2-planar bracketing-based encodings out-
perform the 1-planar counterpart in the majority of treebanks. The
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improvements vary across the languages but on average 2p-greedy
increases UAS by 0.4%, while 2p-prop by 0.3% on the test set. Both
encodings improve LAS by 0.4%. However, when taking into consid-
eration the most non-projective treebank, Ancient Greek, 2p-greedy
outperforms 2p-prop by 0.79% UAS and 0.6% LAS. Hence again, the
theoretical advantage in arc coverage of 2p-prop does not seem to be
fully reflected in terms of UAS and LAS. The results suggest that the
greedy plane assignment strategy is presumably easier to learn by the
model.

4.4.2.1 Parsing speed

Moreover, we measure parsing speeds of the 2-planar bracketing-
based models and compare them to the speeds of their counterparts.
As mentioned earlier, enforcing dependency parsers to handle non-
projectivity has often led to increased computational cost. Hence, we
examine how much the extended output vocabulary of the 2-planar
encodings impacts the efficiency of our sequence labeling parser. The
parsing speeds are reported in Table 222.
The results suggest that the parsing speed does not significantly differ

between the 1- and 2-planar models. More specifically, the computation
of an additional softmax to represent the second plane does not seem to
contribute to an extra computational cost, even if it requires handling
an additional output vocabulary. Moreover, it should be noted that
the relative PoS-based encoding requires PoS tags in order to decode
its labels into the dependency trees. This implies that its total parsing
time needs to be augmented with the computation time of a PoS tag-
ging step. For orientation purposes, in Table 23 we provide exemplary
prediction times of pre-trained UDPipe models for PoS tagging.

4.5 Strengths and limitations

When drawing comparisons at the level of the encoding families, the
bracketing-based encodings perform slightly worse than the relative
PoS-based one when PoS tags are used as input features to the model.
However, one of the assets of the bracketing-based encoding family is
that they do not depend on any features, unlike the relative PoS-based
encoding. Hence, it can be an alternative when the use of PoS tags
is not preferable, for instance, when their quality or frequency is low,
they are not available for a given language or one does not desire to
include a PoS tagger in the pipeline. Furthermore, some architectures
may simply not use PoS tag embeddings as input. In fact, when PoS
tags are not used as input features, the bracketing-based models consid-

2 The parsing speeds are measured in sentences per second on a single core of a CPU
(Intel Core i7-8700 CPU 3.2 GHz) and on a GPU (Nvidia TITAN Xp).
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Language Encoding sent/s Language Encoding sent/s
CPU GPU CPU GPU

rel-PoS† 305 1012 rel-PoS† 442 1718
1p-brackets 303 1011 1p-brackets 447 1718
2p-greedy 288 889 2p-greedy 434 1598

Ancient
GreekPerseus

2p-prop 289 886

KoreanKaist

2p-prop 435 1544

BasqueBDT

rel-PoS† 387 1461

DanishDDT

rel-PoS† 279 962
1p-brackets 388 1454 1p-brackets 280 980
2p-greedy 378 1369 2p-greedy 265 841
2p-prop 378 1369 2p-prop 264 832
rel-PoS† 219 802 rel-PoS† 430 1266
1p-brackets 221 797 1p-brackets 429 1269
2p-greedy 212 739 2p-greedy 414 1175

HungarianSzeged

2p-prop 213 750

GothicPROIEL

2p-prop 412 1186

PortugueseBosque

rel-PoS† 242 868

LithuanianHSE

rel-PoS† 239 828
1p-brackets 246 872 1p-brackets 235 769
2p-greedy 236 811 2p-greedy 228 740
2p-prop 237 814 2p-prop 229 730
rel-PoS† 182 625 rel-PoS† 214 663
1p-brackets 186 616 1p-brackets 214 661
2p-greedy 174 544 2p-greedy 206 611

UrduUDTB

2p-prop 175 549

JapaneseGSD

2p-prop 205 616

AfrikaansAfriBooms

rel-PoS† 228 861

GalicianCTG

rel-PoS† 175 752
1p-brackets 228 857 1p-brackets 177 756
2p-greedy 220 805 2p-greedy 170 673
2p-prop 221 805 2p-prop 170 673

Table 22: Comparison of parsing speeds (sent/s) on the test sets averaged over
5 runs and measured on a single core CPU and a GPU. Parsing
speeds with a symbol † denote that the encoding requires an addi-
tional step of computing PoS tags whose time needs to be added.

Language sent/s Language sent/s
Ancient GreekPerseus 567 KoreanKaist 921
BasqueBDT 881 DanishDDT 671
HungarianSzeged 755 GothicPROIEL 861
PortugueseBosque 210 LithuanianHSE 1418
UrduUDTB 45 JapaneseGSD 767
AfrikaansAfriBooms 465 GalicianCTG 366

Table 23: UDPipe tagging speed (in sent/s) on the test sets measured on a
single core CPU.

erably outperform the relative PoS-based encoding in most languages.
Moreover, they have an advantage of generating a more compact label
vocabulary which may ease the label learning.

One of the downsides of the relaxed 1-planar bracketing-based en-
coding is that unlike the PoS-based counterpart, it only partially sup-
ports non-projectivity. More specifically, it is able to solely reconstruct
non-projective arcs in the opposite direction, while arcs in the same
direction are transformed into projective ones.



4.6 conclusions 69

To mitigate this limitation and reduce the gap to the relative PoS-
based encoding, we proposed 2-planar variants. In general, models that
rely on the 2-planar encodings with greedy plane assignment and with
restriction propagation provide almost fully coverage of non-projective
arcs that directly translates into an improved accuracy. The 2-planar
models outperform the relaxed 1-planar models across multiple highly
non-projective treebanks without sacrificing efficiency yielding a useful
alternative to the relative PoS-based encoding.

4.6 Conclusions

In this chapter, we have introduced a new family of encodings that
represents dependency arcs in terms of balanced bracketing elements
with directional awareness. First, we have presented the relaxed 1-
planar bracketing-based encoding and discussed its limitation with re-
spect to the coverage of non-projectivity, which was the main motiva-
tion for introducing variants that rely on the property of 2-planarity.
Then, we have described how 2-planarity can be applied to sequence
labeling parsing. On these grounds, we have proposed two encodings
with different plane assignment strategies. The first strategy assigns
an arc to a plane greedily. More specifically, a crossing arc is placed
on a plane if no other crossing arcs are already assigned to that plane.
The second strategy, in turn, assigns a plane based on restriction prop-
agation on the crossings graph. More specifically, when assigning an
arc to a given plane, all crossing arcs are forbidden from that plane
and the neighbors of the neighbors in the crossings graph are forbidden
from the other plane. Therefore, the latter encoding guarantees a full
coverage of 2-planar trees.

Thereafter, we have tested empirically all encodings and compared
them to the best encoding from the head selection family introduced in
Chapter 3. We have first conducted a set of in-depth analyses focusing
on different assets of the relaxed 1-planar and 2-planar bracketing en-
codings. We have compared efficiency of the sequence labeling models
based on both encoding families that varied in their hyperparameter
combinations. Moreover, we have demonstrated that the bracketing-
based encodings provide a more compact label representation in terms
of label set size compared to the relative PoS-based encoding. We have
also tested the coverage of non-projectivity among the 2-planar variants
and shown that they almost fully handle crossing arcs, and thereby ob-
viating the limitation with respect to the head selection encodings that
are able to fully encode non-projectivity.

Secondly, we have provided an evaluation of the encodings and have
compared the performance of the relaxed 1-planar bracketing-based
and the relative PoS-based encodings in terms of accuracy with respect
to the impact of PoS tags as input features and the use of a differ-
ent architecture. The results have shown that the relative PoS-based
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encoding outperforms the relaxed 1-planar bracketing-based encoding
only when PoS tags are used as input features. The tendency is re-
versed when PoS tags are not applied to the model, as well as when
BERT is used. Furthermore, we have shown that both the 1-planar
bracketing-based and the relative PoS-based models provide a good
speed/accuracy trade-off compared to some existing parsers, proving
that the sequence labeling parsers are efficient. Regarding the 2-planar
bracketing-based encodings, their almost full coverage of non-projective
trees is reflected in the improved accuracy with respect to the relaxed
1-planar encoding in highly non-projective treebanks. Furthermore, ex-
tending the bracketing-based encoding to handle non-projectivity has
been shown to come at almost no additional computational cost.



5Transition-based encodings

In this chapter, we will introduce a set of encodings that rely on
the left-to-right transition-based systems. In order to obtain such en-
codings, we propose a mapping method for representing a sequence of
transitions as a sequence of labels (one per word), where each label cor-
responds to a subsequence of transitions. The contribution is twofold:
firstly, this method enables establishing a theoretical link between the
transition-based and sequence labeling parsing paradigms. Secondly, it
facilitates an automatic derivation of new encodings by exploiting the
existing left-to-right systems that can be applied to a fast and simple
sequence labeling parsing.

We start with defining a generic mapping method applicable to a
range of left-to-right systems, followed by a description of the decoding
process of transition-based labels. Furthermore, we will examine our
approach empirically in terms of accuracy and we will compare and
analyze the facets of encodings derived from different transition-based
systems. Finally, we will discuss the strengths and limitations of this
approach.

5.1 Transition-based systems

A transition system can be represented as an abstract automaton
with finite states linked by transitions, where each state holds a con-
figuration (c) that usually consists of a stack (σ), buffer (β) and a set
of dependency arcs (A). In order to learn to move from one state to
another, such a system is trained to approximate an oracle which is a
function that maps configurations to transitions. The selected transi-
tion is then applied resulting in a new configuration. Hence, a parse of
a sentence w can be obtained by iterating through the states, while con-
secutively applying transitions chosen by the oracle. The path starts
at an initial configuration and eventually terminates in a final config-
uration with an empty buffer. This succession of states is called a
transition sequence.

More formally, following Nivre (2008) a transition system for an in-
put sentence w = w1,w2, ...,wn can be defined as a quadruple S =

(C,T , cs,Ct), where:

C is a set of configurations

T is a set of transitions, where t : C → C

71
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cs is an initialization function that maps the input w to a unique
initial configuration, cs(w) ∈ C

Ct ⊆ C is a set of final configurations

Transition systems
Initial config: cs(w1 . . . wn): ([root], [1...n], ∅)
Final config: Ct = {([], [],A)}

arc-standard
sh (σ, b|β,A)⇒ (σ|b,β,A)
last (σ|s1|s0,β,A)⇒ (σ|s0,β,A∪ {s0 → s1})
rast (σ|s1|s0,β,A)⇒ (σ|s1,β,A∪ {s1 → s0})

arc-eager
sh (σ, b|β,A)⇒ (σ|b,β,A)
lae (σ|s, b|β,A)⇒ (σ, b|β,A∪ {b→ s})

if @k : k → s ∈ A
rae (σ|s, b|β,A)⇒ (σ|s|b,β,A∪ {s→ b})
reduce (σ|s,β,A)⇒ (σ,β,A)

if ∃k : k → s ∈ A
arc-hybrid

sh (σ, b|β,A)⇒ (σ|b,β,A)
lae (σ|s, b|β,A)⇒ (σ, b|β,A∪ {b→ s})
rast (σ|s1|s0,β,A)⇒ (σ|s1,β,A∪ {s1 → s0})

covington (non-projective)
Initial config: cs(w1 . . . wn): ([], [], [root, 1...n], ∅)
Final config: Ct = {(λ1,λ2, [],A)}
shc (λ1,λ2, b|β,A)⇒ (λ1 · λ2|b, [],β,A)
no-arcc (λ1|s,λ2,β,A)⇒ (λ1, s|λ2,β,A)
lac (λ1|s,λ2, b|β,A)⇒ (λ1, s|λ2, b|β,A∪ {b→ s})

if @k : k → s ∈ A (single head)
if @ path s→ ...→ b in A (acyclicity)

rac (λ1|s,λ2, b|β,A)⇒ (λ1, s|λ2, b|β,A∪ {s→ b})
if @k : k → b ∈ A (single head)
if @ path b→ ...→ s in A (acyclicity)

Table 24: Transition operators and configurations in the selected transition-
based systems.

Throughout the years, a wide variety of transition systems have
been proposed. Some of the well-established systems are based on arc-
standard (Fraser, 1989; Nivre, 2004) or arc-eager algorithms (Nivre,
2004) that served as the basis for a manifold of variants, i.a. arc-
hybrid (Kuhlmann, Gómez-Rodríguez, and Satta, 2011), arc-eager with
buffer transitions (Fernández-González and Gómez-Rodríguez, 2012) or
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spinal arc-eager (Ballesteros and Carreras, 2015). Moreover, various
systems were developed to handle non-projectivity (Covington, 2001;
Nivre, 2009; Gómez-Rodríguez and Nivre, 2010) or were based on al-
ternative algorithms (Goldberg and Elhadad, 2010; Sartorio, Satta, and
Nivre, 2013). Since there is a broad spectrum of other transition-based
parsers, we will include a more detailed overview of transition systems
later on in this chapter.

In this work, we primarily focus on four algorithms that, as we will
show in Section 5.2, are left-to-right systems and hence can be applied
in sequence labeling parsers. More concretely, we will use encodings re-
trieved from arc-standard (Fraser, 1989; Nivre, 2004), arc-eager
(Nivre, 2004) and arc-hybrid (Kuhlmann, Gómez-Rodríguez, and
Satta, 2011) systems that are fully projective and fall into the group of
stack-based algorithms (Nivre, 2008), as well as a non-projective Cov-
ington (Covington, 2001) that is a list-based algorithm. In general, a
stack-based configuration is defined as a triple c = (σ,β,A), where the
element σ denotes a stack that holds partially processed tokens, β is a
buffer with the remaining tokens and A is a set of already created arcs.
The non-projective Covington, in turn, operates on list-based config-
urations defined as c = (λ1,λ2,β,A), where λ1 and λ2 are lists with
partially processed tokens. The transition operators and configurations
of the selected systems are detailed in Table 24.
Generally, the stack-based systems differ in how transition operators

are defined and how an action modifies the stack and the buffer. Addi-
tionally, they also may have different preconditions. For instance, the
main distinction between the arc-standard and arc-eager algorithms
is that the latter has an additional transition operator reduce and
the right arc is attempted to be assigned earlier (more eagerly) than in
the arc-standard algorithm. The arc-hybrid system, in turn, is endowed
with a combination of the left-arc defined as in arc-eager and right-
arc as in arc-standard. Moreover, it is also worth noting that among
the algorithms used in this work, solely the variant of the Covington
system is able to handle non-projectivity.
Now, we will define how transition-based systems can be mapped to

sequence labeling parsers using read transitions.

5.2 Mapping transition-based parsers to
sequence labeling parsers

In order to apply transitions in a sequence labeling parser, we need to
find a method for mapping an arbitrary transition sequence generated
by a transition-based system for a sentence of length n to a sequence
of n labels (one per word). To do so, we identify read transitions as
those that read a new token from the input in a left-to-right fashion.
More formally, we define a system S = (C,T , cs,Ct) as a left-to-right
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transition system, if there are read transitions which form a subset of
transitions Ts ⊆ T and which satisfy the following two conditions:

1. There are exactly n read transitions that correspond to a sequence
of transitions t1, . . . , tm for a sentence w1 . . . wn, where t1 needs
to be one of the read transitions.

2. There is a constant value k such that, for each 1 ≤ i ≤ n, compu-
tations with i read transitions result in a partial parse restricted
to w1 . . . wi+k.

This implies that processing an input sentence with n tokens will re-
quire n read transitions. A transition sequence for a given sentence can
be then split using read transitions, such that each of the subsequences
can be assigned to a label for a given token wi. Thus, every complete
computation is of this form:

tr1, t11, . . . , tm1
1 , tr2, t12, . . . , tm2

2 , . . . , trn, t1n, . . . , tmn
n

tri denotes a read transition followed by non-read transitions tji . Thereby,
each ith label is assigned the corresponding subsequence of transitions
tri , t1i , . . . , tmi

i starting with the reading action tri .
More concretely, in the case of the arc-standard, arc-hybrid and the

non-projective Covington algorithms, a transition sequence is split on
the read transition shift that reads tokens from the buffer. Figure 19
illustrates an example of such a split, where each shift initiates a new
label span holding a subsequence of transitions.

Transition sequence: SH
∣∣∣∣ SH LA

∣∣∣∣ SH
∣∣∣∣ SH LA RA RA

⇓
Label sequence: SH SH LA SH SH LA RA RA

w1 w2 w3 w4

Figure 19: An example of a transition sequence corresponding to a sentence
of length n that is split into a sequence of n labels using the read
transition sh (in bold). Vertical lines denote the label boundaries
starting with the read transition.

In the case of the arc-eager system, it has an additional read tran-
sition: the right-arc, since it also shifts a token from the buffer to the
stack. As an example, Figure 20 compares how labels with transition
subsequences are distributed using different transition systems.

Regarding the value of the constant k, in a transition system such as
arc-standard k=0, since words need to be placed on the stack in order to
create dependencies between them. Hence, with i read transitions only
words w1 . . . wi are considered in the partial parse. In the example from
Figure 20, the arc between Kyrie1 and ate2 can be first created after
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two read transitions (SH). In other words, the value of the constant
k is considered as the offset between the number of the applied read
transitions and the number of words that can be parsed in a given
state. Contrarily, in a transition system such as arc-eager k=1, as the
dependencies can be also created by involving the first word in the
buffer. Hence, the words considered for parsing are w1 . . . wi+k. As in
the example, the token Kyrie1 can be assigned as a dependent of ate2
after a single read transition. Moreover, since the transition sequence
in the non-projective Covington algorithm always terminates with a
shift action, we omit it in the representation of the last label.
In Table 25, we provide an overview of some existing transition-based

parsers that we classify with respect to whether they are left-to-right,
what type of read transitions they apply and the value of the constant
k. We show that our mapping can be applied to the majority of the
well-known left-to-right1 transition-based systems and hence they can
be successfully adapted to sequence labeling parsing.

5.3 Decoding

During the decoding process, we start by reading each label corre-
sponding to the input token in a sentence. It is anticipated that some
labels may contain illegal actions that will violate some preconditions of
a certain transition system. For instance, a model may wrongly predict
left-arc in the arc-standard algorithm, when the second top element
on the stack is the syntactic root. Similarly, left-arc may be incor-
rectly predicted in the arc-eager algorithm, when the top element in
the stack already has a head. These actions are forbidden, hence in
such cases we discard them and proceed with the next action in the
sequence.
One of the assets of the transition-based encodings is that they guar-

antee acyclicity and single head constraint. However, since all illegal
actions are discarded due to the precondition violation, some words may
not be assigned any head. To recover from it, we apply the common
postprocessing steps as described in Section 3.2.1. Postprocessing, in
fact, has been recently a tendency in some SOTA parsers that first gen-
erate ill-formed trees that are afterwards postprocessed. For instance,
Dozat and Manning (2017) only ensure a valid output tree at testing
time by applying the MST algorithm to the output of their graph-based
parser.

1 It is worth noting that we consider the left-to-right incrementality at the transition
system level.



5.4 models and experiments 77

Algorithm L2R? Read t. k
Arc-standard (Fraser, 1989; Nivre, 2004) Yes SH 0
Arc-eager (Nivre, 2003) Yes SH, RA 1
Arc-hybrid (Kuhlmann, Gómez-Rodríguez, and Satta, 2011) Yes SH 1
Covington projective (Covington, 2001; Nivre, 2008) Yes SH 0
Covington non-projective (Covington, 2001; Nivre, 2008) Yes SH 0
Easy-first (Goldberg and Elhadad, 2010) No
Attardi (Attardi, 2006) Yes SH 0
Planar (Gómez-Rodríguez and Nivre, 2010) Yes SH 1
2-Planar (Gómez-Rodríguez and Nivre, 2010) Yes SH 1
Arc-eager with buffer transitions (Fernández-G and Gómez-R, 2012) Yes SH 2,3
Swap (Nivre, 2009) No
Swap-hybrid (Lhoneux, Stymne, and Nivre, 2017a) No
Arc-swift (Qi and Manning, 2017) Yes SH, RAk 1
Spinal arc-eager (Ballesteros and Carreras, 2015) Yes SH, RA 1
(Yamada and Matsumoto, 2003) No
(Choi and Palmer, 2011) Yes SH 1
(Choi and McCallum, 2013) Yes No-SH, R-SH 1
Non-monotonic arc-eager (Honnibal, Goldberg, and Johnson, 2013) Yes SH, RA 1
Improved non-monotonic arc-eager (Honnibal and Johnson, 2015) No
Non-monotonic Covington (Fernández-G and Gómez-R, 2017) Yes SH 1
Tree-constrained arc-eager (Nivre and Fernández-González, 2014) No
Non-local Covington (Fernández-G and Gómez-R, 2018) Yes SH 1
Two-register (Pitler and McDonald, 2015) No
Stack-pointer (Ma et al., 2018) No
Left-to-right pointer network (Fernández-G and Gómez-R, 2019) No

Table 25: An overview of some of the existing transition-based parsers based
on the mapping criteria for sequence labeling parsing, such as: being
a left-to-right system (L2R?), containing read transitions, and the
value of the constant k. The latter serves rather as a guide, as k
can vary between parser’s variants.

5.4 Models and experiments

In this section, we will test empirically whether sequence labeling
parsers that rely on encodings derived from transition-based systems
provide a competitive performance in comparison with the head selec-
tion and bracketing-based family. Firstly, we will analyze the facets
of the transition-based encodings and secondly, we will investigate the
overall accuracy of the encodings tested under various setups.

Model We will rely on two different encoders, i.e. BiLSTM and BERT
as in the setup in Section 4.4.1.2. Moreover, following Section 3.3.2,
we apply MTL, where the models output for each input token two la-
bels: one corresponding to the most probable subsequence of transitions
(Task 1) and second one with the dependency relation type (Task 2).
As in Section 4.4.1.1, we also conduct experiments with two setups:
(i) PoS tag vectors are used in the input for the BiLSTM-based models
(denoted as PoS+) and (ii) without PoS tag embeddings (PoS–). We



78 transition-based encodings

remind that BERT-based models do not rely on PoS tags by default.
The architectures are illustrated in Figure 21 and the hyperparameters
for the BiLSTM-based and BERT models are specified in Section A.1.1
and Section A.1.3, respectively.

Figure 21: Architectures for learning transition-based labels as two tasks in
the MTL setup relying on the BiLSTM-based and BERT architec-
tures with (PoS+) and without PoS tag embeddings (PoS-).

Setup As described earlier, we will test our mapping method us-
ing four left-to-right transition-based systems: arc-standard, arc-eager,
arc-hybrid and the non-projective Covington. Following Anderson and
Gómez-Rodríguez (2020a), we test the encodings on a representative
subset of UDv.2.4 languages. More specifically, we select: Ancient
GreekPerseus, ChineseGSD, EnglishEWT, FinnishTDT, HebrewHTB,
RussianGSD, TamilTTB, UyghurUDT and WolofWTB and using UDPipe
(Straka and Straková, 2017) we obtain the predicted segmentation, to-
kenization and PoS tags.

5.4.1 Encodings’ facets

Now, we will perform an analysis of various aspects of the transition-
based encodings. Firstly, we will examine whether their differing defini-
tions of transition operators trigger divergence in the label distribution.
In addition, we will compare the sizes of label sets against those com-
ing from the other families introduced in previous chapters. Secondly,
we will show that sequence labeling parsers obviate the need of using
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stack-based positional features that provide information about the po-
sition of the elements on the stack, and which are crucial for predicting
transitions in transition-based parsers.

Treebank Encoding Task 1Task 2
rel-PoS 166 27
1p-brackets 210 27
arc-standard 46 27
arc-eager 501 27
arc-hybrid 41 27

Ancient GreekPerseus

Covington 3651 27

ChineseGSD

rel-PoS 201 45
1p-brackets 104 45
arc-standard 56 45
arc-eager 817 45
arc-hybrid 54 45
Covington 4846 45
rel-pos 202 51
1p-brackets 109 51
arc-standard 90 51
arc-eager 509 51
arc-hybrid 52 51

EnglishEWT

Covington 2804 51
rel-PoS 220 47
1p-brackets 107 47
arc-standard 77 47
arc-eager 356 47
arc-hybrid 46 47

FinnishTDT

Covington 2185 47
rel-pos 162 40
1p-brackets 107 40
arc-standard 76 40
arc-eager 469 40
arc-hybrid 58 40

HebrewHTB

Covington 2070 40
rel-PoS 160 44
1p-brackets 93 44
arc-standard 65 44
arc-eager 385 44
arc-hybrid 45 44

RussianGSD

Covington 1573 44
rel-PoS 68 31
1p-brackets 49 31
arc-standard 22 31
arc-eager 79 31
arc-hybrid 25 31

TamilTTB

Covington 543 31

UyghurUDT

rel-PoS 102 44
1p-brackets 58 44
arc-standard 20 44
arc-eager 185 44
arc-hybrid 26 44
Covington 1459 44
rel-PoS 102 40
1p-brackets 69 40
arc-standard 69 40
arc-eager 373 40
arc-hybrid 46 40

WolofWTB

Covington 920 40

Table 26: Comparison of sizes of label sets generated by encodings from the
different families based on the training and dev set of the UD tree-
banks. Task 1 corresponds to the labels that encode the arcs and
Task 2 to the dependency relation type.
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5.4.1.1 Label set size

We begin with investigating the number of labels generated by each
transition-based encoding, including those coming from different en-
coding families. Table 26 reports the output label set for each subtask
based on the training and dev set across a subset of UD treebanks. As
observed earlier (see Section 4.3.1.2), the relaxed 1-planar bracketing-
based encoding tends to produce less labels than the relative PoS-based
one. However, when expanding the comparison to the transition-based
encodings, it is easily discernible that the arc-standard and arc-
hybrid models operate on the smallest output vocabulary of all encod-
ings. Interestingly, the arc-eager encoding has a considerably larger
labels space than the counterparts, except the Covington encoding
that results in a greatly outsized output vocabulary which may cause
sparsity issues.

5.4.1.2 Positional features

Transition-based systems can be compared in terms of the number
of positional features they require in order to learn a transition well.
For instance, Shi, Huang, and Lee (2017) propose a minimal feature
set for BiLSTM-based dependency parsers and show that in the arc-
standard model, positional features may be reduced to three: two stack
s0, s1 features and one buffer b0 feature in order to achieve competitive
results. For the arc-eager and arc-hybrid models, in turn, two posi-
tional features suffice: one stack s0 and one buffer b0 feature. Unlike
transition-based systems that learn a transition at a time, a sequence
labeling parser learns labels corresponding to a sequence of transitions
and it only needs to access the first buffer word b0 to assign a label.
In other words, our sequence labeling parser does not use any stack-
based features in its prediction. In Table 27 we compare the accuracy
of both systems, although it only serves for orientation purposes since
they differ in hyperparameter selection.

Model Features arc-standard arc-eager arc-hybrid

Shi et al.

{s2, s1, s0, b0} 93.95±0.12 93.92±0.04 94.08±0.13

{s1, s0, b0} 94.13±0.06 93.91±0.07 94.08±0.05

{s0, b0} 54.47±0.36 93.92±0.07 94.03±0.12

{b0} 47.11±0.44 79.15±0.06 52.39±0.23

Our model {b0} 92.13 93.22 92.66

Table 27: Performance of the sequence labeling models with transition-based
encodings that require a single positional feature b0 compared with
the parser of Shi, Huang, and Lee (2017). The models are evaluated
in UAS (%) on the English ptb dev set.

In general, our sequence labeling parser that obviates the need of the
stack-based positional features yields competitive results, when com-
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paring against the transition-based system that only relies on the b0
feature (for instance, the arc-eager models obtain 92.13% and 47.11%,
respectively). Although, when the transition-based models make use
of the stack-based features, they indeed obtain higher results than the
sequence labeling parser.

5.4.2 Performance comparison of the transition-based
encodings

We contrast the accuracy of the transition-based encodings against
the head selection and bracketing-based encodings in order to obtain
an overall comparison across all encoding families.2 Specifically, we
test the encodings in various setups: when PoS tag embeddings are
used as input or not, and when applied with different encoders. The
reason for that is that in the previous experiments (see Section 4.4.1.1
and Section 4.4.1.2), it has been shown that lack of PoS tags as input
features and use of different architectures may have impact on the
encoding performance revealing under which setup each encoding type
excels most.

5.4.2.1 Impact of using PoS tags as input features

We turn now to the analysis of the results obtained with the BiLSTM-
based models in both PoS+ and PoS– setups. Table 28 provides the
UAS and LAS scores of each encoding across different treebanks along
with their averaged results. In general, the transition-based encodings
achieve comparable results to those of the relative PoS-based and the
1-planar bracketing-based encodings. It is most prominent in the PoS–
setup, where one of the transition-based encodings (arc-eager) even
outperforms the rest of the encodings for some of the treebanks. Nev-
ertheless overall, in the PoS+ setup the relative PoS-based encoding
remains on average the best one, while in the PoS– setup the 1-planar
bracketing-based encoding obtains the highest accuracy. However, in
the latter setup, most of the transition-based models (except for Cov-
ington) also outperform on average the relative PoS-based models.
When contrasting solely the transition-based encodings, one may ob-

serve that the arc-standard, arc-eager and arc-hybrid models
perform similarly with a small advantage of arc-eager. Interestingly,
the latter has a considerably larger label set size than the counterparts,
as shown in Table 26. Covington, in contrast, underperforms in a
range of 1.5−2.1% UAS (avg) with respect to the other transition-based
models on the test sets, for both settings. This may be explained by the

2 For comparison, we only include the relative PoS-based and the relaxed 1-planar
bracketing-based encodings since they provide representative models of each family.
It is also worth mentioning that this work was done in parallel with the work on the
2-planar variants.
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Split Encoding
Ancient Chinese English Finnish Hebrew Russian Tamil Uyghur Wolof Avg
Greek

UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS

devPoS+

rel-PoS 70.2 61.8 61.6 57.4 82.6 79.0 83.2 79.3 67.4 63.8 84.0 79.6 59.5 52.0 72.6 59.0 77.0 70.5 73.1 66.9
1p-brackets 65.2 57.2 61.8 57.9 82.2 78.6 82.8 79.1 67.1 63.4 83.5 78.9 57.4 50.2 73.1 59.9 76.3 69.7 72.2 66.1
arc-standard 62.2 54.7 60.3 56.2 79.9 76.3 79.7 76.0 64.2 60.5 80.0 75.8 57.8 49.7 72.5 59.2 73.0 66.8 69.9 63.9
arc-eager 60.4 52.9 60.9 56.9 80.8 77.3 80.2 76.4 65.4 61.8 81.5 77.4 57.9 50.2 73.2 59.9 74.6 68.0 70.5 64.5
arc-hybrid 62.7 55.2 60.3 56.3 80.5 76.9 80.4 76.7 65.2 61.6 81.1 76.4 58.1 50.5 72.9 59.5 72.9 66.5 70.5 64.4
Covington 64.0 56.0 56.1 52.3 79.6 75.9 80.7 76.6 64.7 61.1 80.0 75.7 53.2 45.7 67.2 55.0 71.7 65.3 68.6 62.6

testPoS+

rel-PoS 69.5 60.0 64.4 60.0 82.0 78.5 80.2 74.9 63.0 59.5 82.7 77.3 58.0 49.8 71.5 57.8 76.1 69.6 71.9 65.3
1p-brackets 64.9 56.2 64.2 59.8 81.7 78.3 81.1 76.0 62.1 58.7 82.9 77.9 57.2 49.0 72.0 58.5 75.4 68.8 71.3 64.8
arc-standard 61.0 52.6 62.9 58.5 79.2 75.8 78.5 73.4 60.3 56.5 79.1 74.2 57.1 48.6 71.5 58.2 72.0 65.7 69.1 62.6
arc-eager 60.4 52.0 63.2 59.0 80.2 76.7 79.0 73.6 61.2 57.6 80.4 75.3 56.2 48.3 71.9 58.7 73.5 67.1 69.6 63.1
arc-hybrid 62.1 53.5 63.2 58.2 79.5 76.1 78.9 74.0 60.4 56.8 79.3 74.4 57.0 48.7 71.3 58.6 72.2 65.7 69.3 62.9
Covington 63.7 54.4 58.3 54.2 78.5 75.0 78.9 73.7 60.2 56.6 79.2 74.0 52.3 44.8 66.4 53.5 69.9 63.8 67.5 61.1

devPoS–

rel-PoS 65.3 58.3 58.8 55.3 80.3 77.1 80.8 77.3 65.3 62.2 81.3 77.4 52.7 41.9 65.7 53.3 73.1 66.3 69.2 63.2
1p-brackets 64.7 57.2 63.8 59.4 83.4 80.0 84.1 80.4 68.7 65.0 84.0 79.7 55.9 45.1 72.1 58.8 75.2 67.4 72.4 65.9
arc-standard 61.6 54.8 61.9 57.6 80.9 77.5 80.7 77.2 65.9 62.6 80.3 76.2 55.0 43.3 71.6 58.2 70.4 63.2 69.8 63.4
arc-eager 60.0 53.2 63.4 59.2 81.9 78.5 81.6 78.2 66.9 63.2 81.7 77.4 56.4 45.5 72.3 58.8 73.4 66.1 70.9 64.4
arc-hybrid 62.3 55.5 62.4 58.1 81.4 78.0 81.3 77.9 66.1 62.6 81.0 76.9 56.3 44.9 71.7 58.1 71.9 64.8 70.5 64.1
Covington 63.7 56.1 57.4 53.5 80.5 76.8 81.8 78.0 66.3 63.0 80.0 75.7 51.1 40.8 67.0 54.1 71.3 63.6 68.8 62.4

testPoS–

rel-PoS 62.9 55.1 60.3 56.8 78.5 75.3 65.6 59.6 59.7 56.6 79.0 73.8 51.6 40.6 64.9 52.4 72.3 65.6 66.1 59.5
1p-brackets 63.4 54.8 65.3 61.1 82.4 78.9 75.1 67.7 62.3 58.6 81.8 75.8 56.9 42.6 71.0 57.4 75.1 67.2 70.4 62.7
arc-standard 59.5 52.0 64.2 59.9 79.3 75.8 73.4 66.4 60.1 56.4 78.6 73.1 53.8 41.3 70.5 56.9 71.1 63.6 67.8 60.6
arc-eager 59.5 51.7 64.5 60.5 80.0 76.6 72.3 64.1 61.1 57.3 79.7 74.0 53.4 41.1 71.6 57.9 72.9 65.2 68.3 60.9
arc-hybrid 60.4 52.5 64.2 59.9 80.1 76.7 74.7 67.5 60.6 57.0 78.6 73.1 53.7 41.7 71.1 57.6 71.5 63.7 68.3 61.1
Covington 62.5 53.5 59.6 55.7 78.6 74.9 73.8 66.6 60.6 57.0 78.2 72.5 48.2 36.6 66.3 53.6 69.2 61.6 66.3 59.1

Table 28: Results for the transition-based encodings with the BiLSTM-based
models, in which PoS tags are used as input (PoS+) or are omitted
(PoS–).

outsized label space. In theory, the former algorithms run in O(n) tran-
sitions per sentence, while Covington has O(n2) transitions that in
our approach are grouped into n labels. In practice, the encoding gen-
erates a considerably larger label set size that may be harder to learn
by the model. On the other hand, Covington outperforms the coun-
terpart transition-based models on the highly non-projective treebank
for Ancient Greek, suggesting that it is especially suitable when deal-
ing with non-projectivity, unlike the fully projective transition-based
encodings. Although, it still performs worse than the relaxed 1-planar
bracketing-based encoding that only partly handles non-projectivity.

5.4.2.2 Impact of using a different architecture

Furthermore, we extend the analysis of the encodings using BERT
(without relying on PoS tag vectors as the input features). The results
are shown in Table 29. Again, the tendencies observed in the PoS–
setup with a BiLSTM-based model remain (see Section 4.4.1.1), where
the 1-planar bracketing-based encoding achieves the highest scores av-
eraged across the languages and outperforms the other encodings on al-
most all treebanks. The arc-standard, arc-eager and arc-hybrid
models perform on par and lie behind the bracketing-based one on
average by 1.8% and 1.9% UAS on the test set. Furthermore, the
non-projective Covington and rel-PoS models have noticeably infe-
rior performance compared to the counterpart encodings. At the ar-
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chitectural level, all encodings achieve higher scores with the mono-
lingual pre-trained models (Chinese, English and Finnish) than with
the BiLSTM-based encoder in the PoS– setup, while the BiLSTM-based
models obtain overall better performance than M-BERT on the remain-
ing treebanks. When looking at the improvements in the accuracy of
BERT with respect to the BiLSTM-based models in the PoS– setup
(with averaged scores of only languages used in the BERT setup), the
arc-standard, arc-eager and arc-hybrid models obtain improve-
ments of 2.9%, 2.6% and 2.4% UAS, respectively. On the other hand,
the non-projective Covington models improve merely by 0.2 indicat-
ing that the latter is harder to learn also with a different architecture,
presumably due to the larger label set size, as discussed previously.

Split Encoding ChineseGSD EnglishEWT FinnishTDT HebrewHTB RussianGSD TamilTTB Avg
UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS

dev

rel-PoS 59.8 57.0 82.3 79.9 82.6 79.7 61.8 58.0 77.6 73.2 43.4 33.6 67.9 63.5
1p-brackets 69.3 65.3 87.2 84.4 88.6 85.1 66.6 61.7 80.6 75.4 49.8 36.8 73.7 68.1
arc-standard 67.9 64.1 85.4 82.6 85.7 82.5 64.4 59.8 77.8 72.7 48.2 35.1 71.6 66.1
arc-eager 67.0 63.2 85.3 82.4 86.8 83.5 64.7 59.6 77.8 72.9 49.7 35.2 71.9 66.1
arc-hybrid 67.0 63.3 85.5 82.8 86.6 83.1 65.2 60.1 78.1 73.4 47.3 34.0 71.6 66.1
Covington 59.7 56.0 81.4 78.8 82.4 79.2 61.9 57.3 73.9 68.9 44.6 31.6 67.3 62.0

test

rel-PoS 61.5 58.8 81.0 78.8 82.6 80.0 56.9 53.1 77.9 73.2 45.2 34.1 67.5 63.0
1p-brackets 70.2 66.5 86.2 83.3 89.4 86.1 62.7 57.9 79.9 74.2 48.9 35.9 72.9 67.3
arc-standard 68.5 64.7 84.0 81.2 86.1 83.1 59.6 54.3 77.6 72.3 51.0 37.3 71.1 65.5
arc-eager 69.2 65.6 83.8 81.2 87.2 83.9 60.2 55.3 77.6 72.4 48.6 36.7 71.1 65.8
arc-hybrid 69.1 65.5 84.1 81.3 86.6 83.6 60.3 55.7 77.5 72.3 48.2 35.6 71.0 65.7
Covington 60.1 56.7 79.7 77.4 83.2 80.2 57.6 52.6 73.1 68.0 46.3 34.0 66.7 61.5

Table 29: Results for the transition-based encodings using BERT as encoder.

5.4.2.3 Encoding evaluation with gold data

In the previous experiments, we evaluated the encodings in real-world
settings, where not only PoS tags but also prior steps like segmenta-
tion and tokenization were predicted. However, the accuracy of such
predicted setup may vary among languages. Table 30 reports the pre-
diction accuracy of UDPipe used in our experiments. Similarly as in
Section 4.4.1.3, we examine the impact of the predicted setup on all
encodings and provide in Table 31 the upper bounds for models on the
gold data sets. We use PoS tags as the input features to the model.

Taken together, the results show that the predicted setup has a rel-
atively large impact on the models. The largest averaged disparity
between the gold and predicted data set can be observed in Hebrew
(40.2% UAS), Chinese (31.5%) and Tamil (29.4%). In the gold setup,
the best performing model in terms of UAS across the selected treebanks
is based on the relative PoS-based encoding (in 7 out of 9 treebanks).
However, the results also suggest that the same encoding has the largest
percentage decrease in the predicted setup. This can be caused due to
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Language Words (%) Sentences (%) UPoS (%)
Ancient
Greek 100.0 98.9 82.2
Chinese 90.0 99.1 84.0
English 99.0 76.3 93.5
Finnish 99.7 88.6 94.3
Hebrew 85.0 99.4 80.5
Russian 99.5 96.2 95.0
Tamil 94.5 97.5 81.3
Uyghur 99.7 82.9 87.9
Wolof 99.2 92.0 91.7

Table 30: Prediction accuracy of UDPipe 1 on UDv2.4 treebanks.

Encoding
Ancient Greek Chinese English

UAS LAS UAS LAS UAS LAS

rel-PoS 74.8 (+7.6%) 68.3 (+13.9%) 84.9 (+31.8%) 82.0 (+36.7%) 89.3 (+8.9%) 86.9 (+10.7%)
1p-brackets 69.1 (+6.4%) 63.1 (+12.3%) 84.2 (+31.1%) 81.2 (+35.8%) 88.8 (+8.7%) 86.5 (+10.4%)
arc-standard 65.1 (+6.7%) 59.6 (+13.4%) 82.8 (+31.6%) 79.9 (+36.6%) 85.7 (+8.2%) 83.4 (+10.0%)
arc-eager 64.3 (+6.4%) 58.6 (+12.6%) 83.7 (+32.4%) 81.1 (+37.4%) 86.6 (+8.0%) 84.2 (+9.8%)
arc-hybrid 66.2 (+6.6%) 60.3 (+12.7%) 83.0 (+31.4%) 80.1 (+36.2%) 86.5 (+8.8%) 84.2 (+10.7%)
Covington 67.9 (+6.6%) 61.6 (+13.2%) 76.3 (+30.8%) 73.4 (+35.4%) 85.1 (+8.5%) 82.8 (+10.4%)
avg (+6.7%) (+13.0%) (+31.5%) (+36.4%) (+8.5%) (+10.3%)

Encoding
Finnish Hebrew Russian

UAS LAS UAS LAS UAS LAS

rel-PoS 85.1 (+6.2%) 81.3 (+8.5%) 88.2 (+40.1%) 85.4 (+43.7%) 86.3 (+4.3%) 81.5 (+5.3%)
1p-brackets 86.1 (+6.2%) 82.5 (+8.5%) 87.5 (+40.9%) 84.7 (+44.3%) 86.0 (+3.7%) 81.6 (+4.8%)
arc-standard 83.1 (+5.9%) 79.6 (+8.5%) 84.2 (+39.7%) 81.4 (+43.9%) 82.2 (+3.9%) 77.9 (+4.9%)
arc-eager 83.9 (+6.2%) 80.0 (+8.6%) 85.6 (+39.8%) 82.6 (+43.6%) 83.7 (+4.1%) 79.2 (+5.2%)
arc-hybrid 83.5 (+5.8%) 80.1 (+8.2%) 85.1 (+40.9%) 82.2 (+44.8%) 82.4 (+4.0%) 78.1 (+5.0%)
Covington 83.5 (+5.8%) 79.7 (+8.1%) 84.0 (+39.5%) 81.1 (+43.3%) 82.2 (+3.8%) 77.8 (+5.1%)
avg (+6.0%) (+8.4%) (+40.2%) (+43.9%) (+4.0%) (+5.0%)

Encoding
Tamil Uyghur Wolof

UAS LAS UAS LAS UAS LAS

rel-PoS 76.5 (+31.9%) 68.7 (+37.9%) 74.3 (+4.0%) 61.1 (+5.7%) 86.0 (+13.0%) 81.8 (+17.5%)
1p-brackets 73.6 (+28.5%) 66.8 (+36.3%) 74.7 (+3.7%) 61.7 (+5.5%) 85.3 (+13.1%) 80.7 (+17.2%)
arc-standard 73.3 (+28.2%) 66.7 (+37.2%) 74.4 (+4.0%) 61.7 (+6.0%) 80.6 (+11.9%) 76.5 (+16.6%)
arc-eager 74.6 (+32.8%) 67.6 (+40.1%) 74.3 (+3.3%) 61.3 (+4.3%) 82.5 (+12.2%) 78.1 (+16.4%)
arc-hybrid 72.8 (+27.7%) 66.0 (+35.5%) 73.6 (+3.2%) 61.5 (+5.0%) 80.8 (+11.9%) 76.5 (+16.5%)
Covington 66.6 (+27.4%) 59.9 (+33.8%) 68.7 (+3.5%) 56.5 (+5.7%) 78.1 (+11.7%) 74.2 (+16.3%)
avg (+29.4%) (+36.8%) (+3.6%) (+5.4%) (+12.3%) (+16.7%)

Table 31: Upper bounds for encodings using the gold segmentation, tokeniza-
tion and PoS tags on the test sets of UD treebanks. In parenthesis
the percentage of increase with respect to the predicted setup is
given.

the strong reliance on PoS tags. Nevertheless, it seems that the predic-
tion accuracy of the upstream tasks in general considerably decreases
the score of the models but the impact is similar across the encodings.

5.5 Strengths and limitations

One of the key advantages of the transition-based encodings is that
they establish a theoretical link between the transition-based and se-
quence labeling parsing. We have shown that our approach can be ap-
plied to a wide range of left-to-right transition-based algorithms, also
beyond the ones used in the experiments. It implies that new encodings
can be easily retrieved from the existing algorithms and used in fast
and simple sequence labeling parsing. An additional strength of this
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approach, although falling outside the scope of this thesis, is that it
can be further extended to transition-based constituent and semantic
parsers.

Furthermore, the theoretical link between these two approaches is
strengthened with the empirical results showing that the transition-
based encodings are learnable and yield comparable performance with
the ones coming from different encoding families. Unlike the relative
PoS-based encoding, they do not rely on any additional features. More-
over, some of them (arc-standard and arc-hybrid) tend to generate
the smallest output vocabulary, ensuring a compact label vocabulary.
However, we observe that transition-based systems that do not run

in O(n) transitions per sentence may considerably expand the output
vocabulary size. This, in turn, may impede effective learning and result
in models with a lower accuracy, as in the case of the Covington algo-
rithm, even though it has an advantage of supporting non-projectivity.

5.6 Conclusions

In this chapter, we have introduced a set of new encodings obtained
automatically from some existing transition-based algorithms. First,
we have shown how transition-based parsers can be cast into sequence
labeling parsers. More specifically, we have established a method to
split the transition sequence based on read transitions in order to map
it into a sequence of labels of the same length as the input sentence.
We have also shown that this method is applicable to a wide range of
existing left-to-right transition-based algorithms.
In the second part of this chapter, we have tested the transition-based

encodings empirically. Firstly, we have investigated their facets. Re-
garding the output vocabulary size, two encodings (arc-standard and
arc-hybrid) have shown to provide very compact representations of
dependency trees. Contrarily, the non-projective Covington seems to
suffer more from the excessive label set size that has a negative impact
on the UAS and LAS scores across various treebanks. Interestingly, the
experiments have shown that the differences across the transition-based
systems, such as transition operators and how they manipulate stack
and buffer, are also prominent in sequence labeling parsing expressed
in terms of label set size and the ease of learning them. Moreover, we
have shown that our approach, unlike the transition-based parsers, does
not require any stack-based features in order to predict the sequence
of transitions.
Furthermore, we have examined the accuracy of the encodings in two

testing settings, where we have used or omitted PoS tag embeddings as
input features. As mentioned before, the reason for defining such setups
is that in certain cases using PoS tags is not preferable. For instance,
they may be not available in the low-resource languages or have low
prediction accuracy. One may also not want to include a PoS tagger
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in the pipeline in order to reduce the computational cost or simply,
the selected architecture does not make use of this type of embeddings,
as in the case of BERT. Regarding the latter, we have included it in
our experiments to investigate the impact of using a different archi-
tecture on encodings. In general, the results have confirmed that the
transition-based models (except covington) obtain comparable per-
formance with the models from the head selection and bracketing-based
families.



Part III

LEVERAGING COMPLEMENTARY
DATA

Further performance enhancements of sequence labeling
parsers can be obtained by leveraging representations from
external complementary data. By means of multi-task learn-
ing (MTL), the models are augmented with representations
coming from (i) constituency trees and (ii) eye-tracking
measures.





6Joint learning of dependency and
constituency representations

In this chapter, we will explore whether complementary data may
enrich representations learned by our sequence labeling parsers. More
specifically, the aim is to further improve the performance of the se-
quence labeling parsers by joint learning of dependency and constituency
paradigms using MTL, while preserving high parsing efficiency. To do
so, we will take advantage of the existing encoding methods for con-
stituency parsing as sequence labeling, proposed by Gómez-Rodríguez
and Vilares (2018), that can be readily integrated with our model.

We will first recall how constituency structures can be represented as
linearized trees. Afterwards, we will propose models in various setups
to leverage the shared representations of both paradigms. Finally, we
will provide empirical results of the models and compare them against
existing parsers.

6.1 Dependency and constituency parsing

We begin with a brief outline of the complementary nature of the two
paradigms and the attempts that have been undertaken at leveraging
both of them in syntactic parsing. Thereafter, we will refer to the
encoding methods in dependency and constituency parsing as sequence
labeling.

6.1.1 Paradigms’ complementarity

A syntactic structure of a sentence can be described in accordance
with the dependency paradigm (Mel’cuk, 1988), such it has been used
in this thesis, but there are also other paradigms to represent the syn-
tactic properties of sentences, for instance in the form of constituents
(Chomsky, 1956). Each representation exhibits some peculiarities and
the information they convey about the syntactic structure of an ar-
bitrary sentence is not equivalent (Kahane and Mazziotta, 2015). In
general, the syntactic analyses with respect to the two paradigms differ
in how they represent the syntactic interplay of the words in a sen-
tence. As explained in Section 2.1, the dependency grammar captures
binary asymmetric relations between word pairs (in terms of a head
and a dependent that are linked with a dependency relation), while in
the constituency grammar, in contrast, words are grouped according

89
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to the phrase hierarchy. Examples of a dependency and constituency
tree are shown in Figure 22 and Figure 23, respectively. When it comes
to the complementary nature of the two paradigms, a dependency tree,
for instance, does not implicitly denote the word’s correspondence to
phrase chunks, while a constituency tree does not contain information
about the dependency relation type between word pairs.

root He has good control .
0 1 2 3 4 5

N V A N P

(+1,V,nsubj) (-1,ROOT,root) (+1,N,amod) (-1,V,dobj) (-1,V,punct)

root

nsubj

dobj

amod

punct

Figure 22: An encoded dependency tree.
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(-2,S, ∅)

J

good
(1,NP, ∅)

V

has
(1,VP, ∅)

NP

N

He
(1,S,NP)

Figure 23: An encoded constituency tree.

In the context of syntactic parsing, the advances of parsers relying on
each formalism are usually kept separately. Hence, many SOTA systems
fall into the group of either dependency or constituency parsing. How-
ever, a few attempts have been made to make parsers benefit from the
complementary representations of the two abstractions to improve their
accuracy. For instance, in one of the pre-deep learning approaches, Ren,
Chen, and Kit (2013) combine dependency and constituency parsing in
order to choose the most plausible parse. To do so, first a probabilis-
tic context free grammar is applied to obtain the n best constituency
trees and then a dependency parser is used to score and re-rank both
types of trees. Alternatively, Klein and Manning (2002) introduce a
factored model that obtains the most optimal parses by first scoring
phrase-structure and lexical dependency trees with separate models
and then combining them. However, these approaches were primar-
ily intended for statistical parsers. Most recently (as at the time of
writing this thesis), the idea of combining the two paradigms revived
and ensemble models based on deep neural architectures have shown
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to provide considerable improvements. For instance, Zhou and Zhao
(2019) obtain SOTA results on both tasks by including the dependency
and constituency representations in the head-driven phrase structure
(hpsg) augmented with representations from BERT and XLNet (Yang
et al., 2019). In the same vein, Mrini et al. (2020) demonstrate that
joint learning of both paradigms by a neural model leads to further
enhancements in accuracy. Similarly, Fernández-González and Gómez-
Rodríguez (2020) show that competitive results can be obtained by
training a single model with dependency and constituency representa-
tion in the MTL setup using the Pointer Network architecture (Vinyals,
Fortunato, and Jaitly, 2015).

6.1.2 Encodings

Now, we will describe the linearization methods of syntactic trees
used in sequence labeling parsing. For completeness, we will formulate
them for both paradigms. It is also worth emphasizing that we will
make use of the relative PoS-based encoding in the experiments, how-
ever any of the proposed encodings can be applied in this framework.

Dependency tree encoding As introduced in Chapter 3, a depen-
dency tree can be represented as sequence of labels for an arbitrary sen-
tence of length |w| by applying a linearization method: Π|w| : Td,|w| →
L
|w|
d . Following the definitions from Section 3.1.3, each label in the rel-

ative PoS-based encoding consists of three components (oi, pi, di) that
encode for a given word wi the relative distance oi to the head’s PoS tag
pi with a dependency relation di. An example of such label assignment
is shown in Figure 22.

Constituency tree encoding Following Gómez-Rodríguez and Vi-
lares (2018), we define a linearization method for constituency trees as:
Φ|w| : Tc,|w| → L

|w|
c . Similarly, each label corresponds to an input token

wi and is composed of three elements (ni, ci,ui). Let ai be the number
of non-terminal ancestors that are shared between the focus word wi

and the following one wi+1. Then, the first component ni is computed
by taking the difference between ai and ai−1, where for a0, a0 = n0.
For instance, as shown in Figure 23, the value of ni in the label for the
token control4 is −2, since the previous word good3 shares three non-
terminal ancestors with control4, while control4 shares one ancestor
with the next token. The difference between these two values results in
−2. The next element ci encodes the lowest level non-terminal symbol
that is shared between wi and wi+1, while ui stands for the leaf unary
chain from ci to wi (if present).
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6.2 Models and experiments

Following the successful application of MTL to a wide range of NLP
tasks (Goot et al., 2021), our study aims at examining whether de-
pendency and constituency sequence labeling parsers may benefit from
joint learning. The purpose of using the complementary representations
of constituency trees in the context of dependency parsing (and vice
versa) can be defined twofold. First, learning constituency labels can
be treated as a weighted auxiliary task (see Section 2.6), where the goal
is to let the model access the constituency representations and thereby
improve the prediction of dependency labels defined as the main task.
In this case, the weights determine the prevalence of constituency rep-
resentations in the model and are adjusted empirically. When treating
constituency label prediction as an auxiliary task, we do not compute
its output labels, since they are not of interest. Additionally, it enables
reducing the prediction time by omitting to execute the corresponding
softmax. Secondly, the prediction of both dependency and constituency
labels may be considered as the main tasks, such that parsing of both
paradigms can be performed with a single model.

6.2.1 Models for learning across representations

In the experiments, we will distinguish between single- and double-
paradigm models. The former only relies on a single parsing paradigm,
while the latter leverages the complementary representations from the
second paradigm either as the auxiliary task or the main task. More
specifically, we define the following models:

Figure 24: Architecture for the single-paradigm, single-task models (s-s) in
dependency and constituency parsing.
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Single-paradigm, single-task models (S-S) In this setup, we
train two separate models corresponding to each of the parsing paradigms.
Every model learns the entire labels as a single task, i.e. a tuple
(oi, pi, di) is learned as a single label for dependency parsing and a
tuple (ni, ci,ui) for constituency parsing. An outline of the architec-
ture is shown in Figure 24.

Single-paradigm, multi-task models (S-MTL) For each paradigm
we train a model, where every label component corresponds to a sep-
arate subtask. In the case of dependency parsing, the partial labels
consist of (oi, pi) and (di), as described in Chapter 3, the relative PoS-
based encoding obtains the best performance when learned as two tasks.
In constituency parsing, we follow Vilares, Abdou, and Søgaard (2019)
and each label is defined as three tasks, i.e. (oi), (pi) and (di). The
loss is computed as L=

∑
t Lt, where Lt is the partial loss from the sub-

task t. As discussed in Section 3.3.2, learning labels in the multi-task
setup has shown to be beneficial for the model and may serve as a
compression method that reduces the output vocabulary and thereby
prevents label sparsity. An example of the architecture is illustrated in
Figure 25.

Figure 25: Architecture for the single-paradigm, multi-task models (s-mtl),
where labels in dependency parsing are learned in a two-task setup,
while in constituency parsing in a three-task setup.

Double-paradigm, multi-task models with auxiliary losses
(D-MTL-AUX) In this setup, the predictions of partial labels for one
parsing paradigm are defined as the main tasks, while the labels of the
counterpart paradigm are considered as auxiliary tasks. The auxiliary
tasks only serve for sharing the representations of the complementary
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Figure 26: Architecture for the double-paradigm, multi-task models with aux-
iliary losses (d-mtl-aux), where the partial dependency labels are
learned as the main tasks and constituency labels as auxiliary tasks.
Analogously, it can be applied for constituency parsing as the main
task.

abstraction and whose output labels are not considered for the end
task. During training, the best model is chosen based on the evaluation
metrics of the main task i.e. LAS score for dependency parsing and F1
score for constituency parsing. The weighting factor for dependency
parsing as an auxiliary task is set to 0.1, while for constituency parsing
0.2. The weighting factors were chosen based on a parameter search in
an interval [0,1] with a step of 0.1. In this setup, the loss is computed
as L=

∑
t Lt +

∑
a βaLa, where La stands for the auxiliary loss and βa

for the weighting factor. We train two such models, where each of them
considers one parsing paradigm as the main task and the counterpart
paradigm as the auxiliary task. An outline of the architecture used for
dependency parsing as the main task is shown in Figure 26.

Double-paradigm, multi-task model (D-MTL) In this model,
all labels are learned as the main tasks with an equal weighting factor.
This setup enables performing dependency and constituency parsing us-
ing a single model. During training the best models are chosen based
on the highest harmonic mean among LAS and F1 scores in order to
prioritize models that are balanced instead of models that sacrifice ac-
curacy in one task to excel in the other. An example of the architecture
is illustrated in Figure 27.

In our approach, the dependency and constituency representations
are leveraged with hard parameter sharing, where hidden layers captur-
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Figure 27: Architecture for the double-paradigm, multi-task model (d-mtl),
where both dependency and constituency labels are learned as main
tasks.

ing both abstractions are shared across the BiLSTM layers. The output
hidden layer representation hi for a given token wi are fed to sepa-
rate feed-forward layers with softmaxes corresponding to each subtask.
For comparison reasons, we include single and multi-task models that
do not contain the representations of the counterpart paradigm. The
hyperparameters for all models are specified in Section A.1.2.

6.2.2 Data

We carry out experiments on two treebanks containing parallel data,
i.e. each sentence is provided with both dependency and constituency
annotations. More specifically, we use the following corpora:

PTB The English Penn Treebank with constituency analyses and
data with Stanford Dependency (SD) conversion for dependency pars-
ing (see a more detailed description in Section 2.2.2).

SPMRL To extend our experiments to a wider range of languages,
we also train and evaluate our models on the spmrl treebanks. The
data comes from the SPMRL 2013 Shared Task1 on parsing morpholog-
ically rich languages (Seddah et al., 2013). spmrl data set includes 9
morphologically rich and typologically diverse languages provided with
both dependency and constituency annotations. In addition, they are
given in gold and predicted format (with predicted segmentation, PoS

1 SPMRL 2013 Shared Task: http://www.spmrl.org/spmrl2013-sharedtask.html
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tags and morphological features). This data set is especially suitable for
our experiments due to the alignment of dependency and constituency
annotations in each treebank and it also enables a direct comparison
of our models against dependency and constituency parsers from the
Shared Task.

Although, during data preparation we observe some discrepancies be-
tween the dependency and constituency versions. For instance, there
are few examples where tokens differ (e.g. the token -LSB- in depen-
dency treebank corresponds to [ in the constituency file). Hence, in or-
der to evaluate MTL models, we select a single token for both paradigms.
Furthermore, the predicted PoS tags also vary in some cases. Figure 28
shows an example of a token fiskalak extracted from the Basque tree-
bank, where the predicted PoS tag for that token in the constituency
treebank is ADJ, while in the dependency treebank it corresponds to
IZE. This kind of discrepancy is challenging especially in the case of
the relative PoS-based encoding that requires uniform PoS tags for the
correct decoding. Additionally, we have also noticed differences in the
predicted morphological features that we use as input features to the
models.

(ADJ##lem=fiskal|AZP=ADJ|KAS=ERG|NUM=S## fiskalak)

19 fiskalak fiskal IZE IZE_ARR KAS=ERG|NUM=S 21 ncsubj _ _

Figure 28: An example of discrepancies in the PoS tag prediction (highlighted
in bold and red) in the dependency and constituency SPMRL
Basque treebank. The first line corresponds to the constituency
annotation for the token fiskalak, followed by a dependency anno-
tation. For the former the predicted PoS tag is ADJ, while for the
latter IZE.

To solve the discrepancies that are problematic for the double-paradigm
models, we make use of only PoS tags and input features coming from
the main task paradigm in the d-mtl-aux models, while in the d-mtl
setup, we train the models twice, each with the corresponding PoS tags
and input features.

6.2.3 Experiments

We carry out several experiments in order to test empirically whether
sequence labeling parsers may benefit from sharing representations of
counterpart analyses. First, we will compare the accuracy obtained
with single- and double-paradigm MTL models and secondly, we will
measure the parsing speeds to test if the augmented models still main-
tain a good trade-off between accuracy and computational efficiency.
Lastly, we will provide a comparison of our models against existing de-
pendency and constituency parsers evaluated on the ptb and spmrl
treebanks.
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6.2.3.1 Model performance

We evaluate the models with the common metrics for each parsing
paradigm. More specifically:

UAS and LAS for dependency parsing, where punctuation is ex-
cluded to provide a homogeneous setup for the ptb and spmrl
data sets.

F1 score for constituency parsing. The bracketing F-score is
used from the original evalb (together with COLLINS.prm) and
eval_spmrl (together with spmrl.prm) official scripts to evalu-
ate constituency trees.

LanguageModel
Dependency

Parsing
Constituency

Parsing Language Model
Dependency

Parsing
Constituency

Parsing
UAS LAS F1 UAS LAS F1

s-s 93.60 91.74 90.82 s-s 88.24 84.54 90.10
s-mtl 93.84 91.83 90.99 s-mtl 88.69 84.54 90.51
d-mtl-aux 94.05 92.01 91.04 d-mtl-aux 88.99 84.95 90.44

English
(PTB)

d-mtl 93.96 91.90 90.51

Hungarian

d-mtl 88.89 84.89 90.72
s-s 86.20 81.70 89.20 s-s 86.47 84.12 82.63
s-mtl 87.42 81.71 90.54 s-mtl 86.78 84.39 82.86
d-mtl-aux 87.19 81.73 90.84 d-mtl-aux 87.00 84.60 82.76

Basque

d-mtl 87.09 81.77 90.50

Korean

d-mtl 86.64 84.34 82.40
s-s 89.13 85.03 79.71 s-s 91.17 85.64 92.59
s-mtl 89.54 84.89 80.40 s-mtl 91.58 85.04 93.17
d-mtl-aux 89.52 84.97 80.39 d-mtl-aux 91.37 85.20 93.36

French

d-mtl 89.45 85.07 80.24

Polish

d-mtl 92.00 85.92 93.52
s-s 91.24 88.79 82.52 s-s 86.49 80.60 82.56
s-mtl 91.54 88.75 83.08 s-mtl 87.22 80.61 85.16
d-mtl-aux 91.58 88.80 82.97 d-mtl-aux 87.24 80.34 85.49

German

d-mtl 91.45 88.67 82.87

Swedish

d-mtl 87.15 80.71 85.38
s-s 82.74 75.08 88.68 s-s 88.36 84.13 86.53
s-mtl 83.42 74.91 91.84 s-mtl 88.89 84.07 87.62
d-mtl-aux 83.90 75.89 91.78 d-mtl-aux 88.98 84.28 87.67

Hebrew

d-mtl 82.60 73.73 91.08

average

d-mtl 88.80 84.11 87.47

Table 32: Performance comparison of single- and double-paradigm models
evaluated on the PTB and SPMRL test sets. The averaged scores
across languages are given in italics.

Accuracy Table 32 reports the accuracy of dependency and con-
stituency models in four setups, i.e. (i) single-paradigm, single-task: s-
s, (ii) single-paradigm, multi-task: s-mtl, (iii) double-paradigm, multi-
task models with auxiliary losses: d-mtl-aux and (iv) double-paradigm,
multi-task: d-mtl. In general, d-mtl-aux models obtain on average
the best performance both in dependency and constituency parsing.
More specifically, when comparing against the baseline s-s, the d-mtl-
aux models provide on average improvements in dependency parsing
of 0.62% uas and 0.15% las, while for constituency parsing the gains
correspond to 1.14% of the F1 score. However, it is also worth noting
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that some MTL models for dependency parsing obtain, in fact, a lower
LAS score than the s-s models (e.g. s-mtl and d-mtl-aux models for
dependency parsing in French). We hypothesize this could be caused
by the fact that the MTL models learn combinations of partial labels
that in some cases may result in a choice of wrong component combi-
nations. The flexibility of combining labels arbitrarily by a model is
in general more beneficial than imposing learning of entire labels that
can be sparse, however it may not hold in some particular cases as in
this one.

When analyzing the complementary data leverage among the depen-
dency and constituency models more in detail, one may observe that
the dependency models based on the d-mtl-aux setup clearly outper-
form the remaining models (in 7 out of 9 treebanks based on the UAS
score). In constituency models, in turn, this tendency is not that preva-
lent. In 4 out of 9 treebanks, the best performance is obtained with
s-mtl models, while in 3 out of 9 with d-mtl-aux models. This sug-
gests that in our setup the dependency parser leverages to a greater
extent learning the counterpart paradigm as the auxiliary task. Fur-
thermore, we notice that the d-mtl models are capable of providing
both dependency and constituency parses but at the expense of lower
accuracy compared to the remaining MTL models. However, overall
they still perform in most languages better than the baseline s-s and
s-mtl models and thereby exposing the general gains of MTL across
dependency and constituency representation.

Model Dependency parsing Constituency parsing
s-s 102±6 117±6

s-mtl 128±11 133±1
d-mtl-aux 128±11 133±1
d-mtl 124±1 124±1

Table 33: Speed in sentences/second on the ptb test set measured on a single
core CPU across 5 runs.

Parsing speed Furthermore, we investigate whether the improved
accuracy of the models augmented with complementary representations
comes at any additional computational cost. The CPU speeds corre-
sponding to each model setup are reported in Table 33. In general, the
results show that the MTL models maintain a good trade-off between
speed and accuracy. This stems partly from the fact that in the case
of d-mtl-aux models, the auxiliary tasks are not computed at testing
time. When it comes to the d-mtl models, they are able to encapsu-
late two parsing paradigms in a single model, while still providing a
comparable speed.
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Overall, the results shows that dependency parsing as sequence label-
ing enables enhancements with complementary data while maintaining
its benefits as high speed and architectural simplicity.

6.2.3.2 Comparison against existing dependency and
constituency parsers

Now, we move on to the comparison of the best performing depen-
dency and constituency models with auxiliary tasks (d-mtl-aux), on
the English PTB test set from Table 32, against some existing parsers.

Model
Dependency

parsing
Constituency

Parsing
UAS LAS F1

Chen and Manning (2014) 91.80 89.60 –
Kiperwasser and Goldberg (2016) 93.90 91.90 –
Dozat and Manning (2017) 95.74 94.08 –
Ma et al. (2018) 95.87 94.19 –
Fernández-G and Gómez-R (2019) 96.04 94.43 –
Zhou and Zhao (2019)(BERT) 97.00 95.43 –
Zhou, Li, and Zhao (2020) (XLNet) 97.23 95.65 –
Mrini et al. (2020) (XLNet) 97.42 96.26 –
Vinyals et al. (2015) – – 88.30
Zhu et al. (2013) – – 90.40
Vilares, Abdou, and Søgaard (2019) – – 91.13
Dyer et al. (2016) – – 91.20
Kitaev and Klein (2018) – – 95.13
Kitaev, Cao, and Klein (2019) – – 95.77
Zhou and Zhao (2019)(BERT) – – 95.84
Zhou, Li, and Zhao (2020) (XLNet) – – 96.33
Mrini et al. (2020) (XLNet) – – 96.38
d-mtl-aux 94.05 92.01 91.04

Table 34: Comparison of the d-mtl-aux models against some existing depen-
dency and constituency models evaluated on the ptb test set.

Overall, the results show that our sequence labeling models yield
good results. Even though they do not yield SOTA results, the main
strength of the sequence labeling parsers is the good trade-off between
speed and accuracy they provide, even when enhanced with comple-
mentary representations.

Next, we contrast our models against dependency and constituency
parsers evaluated on the SPMRL treebanks. The comparison serves
only for orientation purposes since the models differ with respect to
the architecture (including ensemble models) and resources they rely on.
Table 35 reports the accuracy for dependency parsers while Table 36
for constituency parsers.
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Model Basque FrenchGermanHebrewHungarianKorean Polish Swedish average

Nivre et al. (2006) 70.11 77.98 77.81 69.97 70.15 82.06 75.63 73.21 74.62

Ballesteros (2013) 78.58 79.00 82.75 73.01 79.63 82.65 79.89 75.82 78.92

Ballesteros et al. (2015)† 78.61 81.08 84.49 72.26 76.34 86.21 78.24 74.47 78.96

Clergerie (2013) 77.55 82.06 84.80 73.63 75.58 81.02 82.56 77.54 79.34

Björkelund et al. (2013)‡ 85.14 85.24 89.65 80.89 86.13 86.62 87.07 82.13 85.36

d-mtl-aux 84.02 83.85 88.18 74.94 80.26 85.93 85.86 79.77 82.85

Table 35: Comparison of the d-mtl-aux models against other existing depen-
dency parsers evaluated with LAS on the SPMRL test set. The
model denoted with † uses char and PoS tags, while the symbol ‡
indicates an ensemble model.

Model Basque FrenchGermanHebrewHungarianKorean Polish Swedish average

Fernández-González and Martins (2015) 85.90 78.75 78.66 88.97 88.16 79.28 91.20 82.80 84.22

Coavoux and Crabbé (2016) 86.24 79.91 80.15 88.69 90.51 85.10 92.96 81.74 85.66

Björkelund et al. (2013)‡ 87.86 81.83 81.27 89.46 91.85 84.27 87.55 83.99 86.01

Vilares, Abdou, and Søgaard (2019) 90.85 80.40 83.42 92.05 90.38 83.24 93.93 85.54 87.48

Coavoux and Crabbé (2017) 88.81 82.49 85.34 89.87 92.34 86.04 93.64 84.00 87.82

Kitaev and Klein (2018) 89.71 84.06 87.69 90.35 92.69 86.59 93.69 84.35 88.64

D-MTL-AUX 90.84 80.39 82.97 91.78 90.44 82.76 93.36 85.49 87.25

Table 36: Comparison of the d-mtl-aux models against other existing con-
stituency parsers evaluated with F1 on the spmrl test set. The
symbol ‡ indicates an ensemble model.

Again, our sequence labeling parser provides competitive results com-
pared with the ones obtained by the other systems when evaluated on
several morphologically rich languages.

6.3 Conclusions

In this chapter, we have shown how our sequence labeling parser
can be further enhanced with complementary data. At the core of
this study lies the idea of leveraging the complementary nature of con-
stituency and dependency paradigms and to do so, we have used a
MTL hard-sharing architecture with the optional use of auxiliary losses.
More concretely, we have tested models in four setups, i.e. (i) single-
paradigm, single-task (s-s) (ii) single-paradigm, multi-task (s-mtl),
(iii) double-paradigm, multi-task models with auxiliary losses (d-mtl-
aux) and (iv) double-paradigm, multi-task (d-mtl).

In general, the empirical results show that on average the d-mtl-aux
models outperform the baseline s-s by 0.62% of UAS for dependency
parsing and by 1.14% of F1 score for constituency parsing. Further-
more, we have demonstrated that a single model that is able to encap-
sulate both representations also improves the baseline. Finally, we have
shown that the enhanced models come at almost no cost in terms of
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speed and provide a competitive performance compared to the existing
systems.





7Enhancing dependency parsing with
eye-tracking data

During reading, humans pay more attention to certain parts of the
sentence, suggesting that these may correspond to some core elements
of the sentence (Rayner, 1998; Rayner, 2009). Therefore, it can be
beneficial to guide parsers in a human-like manner which words they
should attend to. In this chapter, we will focus on eye-tracking data
that contains measures of eye movements during reading and we will
explore how this kind of complementary data can be leveraged in se-
quence labeling parsing. It is especially appealing due to the fact that
both eye-tracking and sequence labeling parsing work at token level
and therefore can be trained within the same model.

Hence, the core idea is to use eye-tracking measures as gaze features
to provide an auxiliary guidance for our parser only during training.
More specifically, the gaze feature representations will be learned as
auxiliary tasks in the MTL setup and thereby shared across the model.
We will conduct experiments, where the models will be trained in two se-
tups: (i) with parallel data that provides aligned dependency and gaze
information and (ii) with disjoint data that includes non-overlapping
treebanks, where one contains dependency trees with gaze data, while
the other only dependency annotation.

7.1 Use of human language processing data in
NLP

In recent years, data from various sources measuring human behav-
ior and neural processes have become more accessible. As a result,
there has been a growing interest in using recordings of the human eye
and brain activity during cognitive tasks to enhance NLP, e.g. data
from eye-tracking (Barrett et al., 2016; Klerke and Plank, 2019), elec-
troencephalography (EEG) (Zhang et al., 2018) or functional magnetic
resonance imaging (fMRI) (Bingel, Barrett, and Søgaard, 2016; Toneva
and Wehbe, 2019). Some work has sought to explore human language
processing data but still there are some uncertainties around the most
optimal way of leveraging it. Recently, Hollenstein, Barrett, and Bein-
born (2020) have provided some guidelines with respect to the choice
of human language processing data setups and methods for human fea-
ture extraction. In this chapter, we will focus, in particular, on using
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eye movement measures due to its relevance to the dependency parsing
task.

7.1.1 Eye-tracking data

In general, eye-tracking data provides measures of eye movements
that may reflect some cognitive processes. More concretely, one may
monitor the reading process by registering eye movements called sac-
cades. Between these movements, eyes also tend to remain momentarily
still and this action is called fixation. Moreover, around 10− 15% of
eye movements are regressions, where the saccades proceed backward
(Rayner, 1998).

The eye-tracking data has been successfully applied to a range of
NLP tasks, e.g. PoS tagging (Barrett et al., 2016), word embeddings
evaluation (Søgaard, 2016), readability prediction (González-Garduño
and Søgaard, 2017), sentiment analysis (Mishra et al., 2016) or NER
(Hollenstein and Zhang, 2019). We refer the reader to Barrett (2018)
for an extensive review on eye-tracking data for NLP.
Regarding the use of eye-tracking data in the context of dependency

parsing, Barrett and Søgaard (2015) apply gaze features to discrimi-
nate between grammatical functions (e.g. subjects and objects) and
to improve a transition-based dependency parser trained on a struc-
tured perceptron (Collins, 2002; Zhang and Nivre, 2011). However,
the experiments were carried out on a small data set and with rela-
tively low performance. More recently, Lopopolo et al. (2019) explore
the reversed reliance i.e. whether edges of relations produced by a de-
pendency parser may match backward saccades. They conclude that
the results are in line with the view that eye movements in fact may
reflect some syntactic structure.

root But that really was n’t the point .
w0 w1 w2 w3 w4 w5 w6 w7 w8

first fix.dur. 0 0 187 176 176 0 173 0
n fix. 0 0 1 1 1 0 1 0

first pass dur. 0 0 187 176 176 0 173 0

root

cc
nsubj

advmod
cop

neg
punct

Figure 29: An example of a dependency tree with corresponding eye movement
measures extracted from the Dundee treebank.
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7.1.2 Leverage of gaze features

The simplest way of leveraging eye-tracking data in dependency pars-
ing is to use the measures of eye movements that are aligned with a
dependency tree. An example of a dependency tree with gaze measures
is shown in Figure 29. In general, some particular gaze measures are
selected to be used in a NLP task. For instance, Barrett et al. (2016) em-
ploy 22 gaze features for experiments on PoS tagging, while Hollenstein
and Zhang (2019) make use of 17 features for ner. In our approach,
based on an empirical search, we select 12 gaze features that are de-
tailed in Table 37. We follow Barrett et al. (2016) and Hollenstein and
Zhang (2019) and group them into the following subsets:

1. basic group includes features at the word level.

2. early measures reflect early syntactic processing and lexical ac-
cess.

3. late measures reflect late syntactic processing and disambigua-
tion.

4. context group takes into account measures of the surrounding
tokens. In our approach, we restrict this group to the previous
and next words of w.

Gaze features Description

basic

total fix.dur. total fixation duration on a word w
mean fix.dur. mean of all fixation durations on w
n fix. total number of fixations on w
fix.prob. fixation probability on w

early first fix.dur. first fixation duration on w
first pass dur. all fixation durations during the first pass

late n re-fix number of times w being fixated again
re-read prob. probability of w being read again

context

w− 1 fix.dur. fixation duration on the preceding word
w+ 1 fix.dur. fixation duration on the next word
w− 1 fix.prob. fixation probability on the preceding word
w+ 1 fix.prob. fixation probability on the next word

Table 37: The selected gaze features for dependency parsing as sequence la-
beling based on the feature grouping following Barrett et al. (2016).

Various work, that has employed eye-tracking data to NLP, differs in
methods for leveraging the gaze features in their models. One of the
challenges that emerges is that limited or no eye-tracking data is avail-
able at inference time. In previous studies (Barrett and Søgaard, 2015;
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Barrett et al., 2016), it has been suggested that real-time eye-tracking
data may be widely accessible in the near future due to the fact that
a cheap eye-tracking equipment may become ubiquitous in webcams
or smartphones. Although, this seems to be far from guaranteed and
raises privacy concerns (Liebling and Preibusch, 2014). Hence, leverag-
ing eye-tracking data as token-level gaze features may not be practical
in real-world setups, since they are required both during training and
testing.

To alleviate the need of eye-tracking data at inference time, other
methods have been proposed (Barrett and Søgaard, 2015; Hollenstein
and Zhang, 2019) that consist in deriving the gaze features only from
training data. An example of that are type-level aggregated gaze fea-
tures that are retrieved from the vocabulary in the training set. More
specifically, after being aggregated they are contained in a lookup table
and at test time if an input token matches the entry of the lexicon, the
pre-computed gaze values are returned, otherwise the value for that
token will be set up to unknown. It has been shown that models using
the type-level aggregated gaze features perform superiorly to the ones
relying on the token-level features (Barrett et al., 2016; Hollenstein
and Zhang, 2019). However, this approach poses another challenge.
Namely, this type of gaze features is built based on the vocabulary
seen during training, hence they may not be available for all tokens at
testing time. In fact, Hollenstein and Zhang (2019) find out in their
study on ner that 41.09% of the tokens remained unknown at infer-
ence time. To our best knowledge, this method has not been applied
to syntactic parsing.
In an alternative approach, the features are learnt by the model,

such that they have a direct impact on its weights or the acquired
representations (for a more complete overview we refer to Hollenstein,
Barrett, and Beinborn (2020)). For instance, Barrett et al. (2018) use
the eye-tracking data to regularize attention weights in a recurrent
neural network for sequence classification. This method additionally
enables training a model with disjoint data, where eye-tracking data
does not need to overlap with the data for the target task. Further-
more, the gaze features have been successfully leveraged in the MTL
setup for sentence compression and syntactic tagging tasks, where the
gaze predictions are treated as auxiliary tasks (Klerke, Goldberg, and
Søgaard, 2016; Klerke and Plank, 2019).

7.2 Models and experiments

In our study, we will perform experiments in two data setups that
will be introduced below. Then we will show how gaze features can be
leveraged in our sequence labeling framework. Finally, we will analyze
and discuss the empirical results of the models enhanced with the gaze
features.
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7.2.1 Parallel and disjoint data

We will make use of two data setups. The first one provides paral-
lel training data, where dependency and gaze annotations are aligned,
while the second one consists of disjoint, non-overlapping treebanks,
where one of them contains the aligned gaze annotation, while the
second only dependency trees. We motivate the use of disjoint tree-
banks by the fact that when applying gaze features, in particular, to
dependency parsing, it is preferable to be able to train them with an
arbitrary dependency treebank that usually does not contain any gaze
annotation.

Parallel data The Dundee Treebank (Barrett, Agić, and Søgaard,
2015) will serve as the parallel training data. It is based on the English
Dundee Corpus (Kennedy, Hill, and Pynte, 2003) that provides record-
ings of eye movements of ten English-speaking participants reading 20
newspaper articles from The Independent. The Dundee Treebank en-
hances the Dundee Corpus with a syntactic annotation according to the
UD guidelines and thereby enables a straightforward use of eye-tracking
measures in dependency parsing.
We split the data into training, development and test set (80− 10−

10), respectively. The sentences were priorly randomly shuffled and
we ensure that the same sentence coming from the ten participants is
assigned to the same set. Moreover, 40 sentences (4 unique sentences
read by the ten participants) were removed due to incoherence in their
dependency annotation (we observe that some of the dependency trees
were ill-formed), resulting in 23640 sentences in total (2364 unique
sentences).

Disjoint data We use two treebanks as our disjoint training data,
namely ptb and the Dundee Treebank. The former is a commonly used
English dependency treebank that does not provide any gaze informa-
tion (see a more detailed description in Section 2.2.2). Hence, we train
our model on the gaze annotations of the Dundee Treebank and also on
the trees of the ptb. We use a data split of 90− 10− 0 for the Dundee
Treebank, since solely the ptb test set is used at the test time.

7.2.2 Gaze-leveraged sequence labeling parsing

To amplify the benefits of our approach and facilitate the use of
gaze features, we do not require that the gaze information is available
at inference time. The core idea is to inject during training the in-
formation about the human eye movements to the model, so that the
acquired gaze representations help to guide the dependency parser at
testing time. In our experiments, the gaze features are learned with
a BiLSTM-based architecture within the MTL setup, where dependency
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parsing is defined as the main task, while the gaze features are framed
as the auxiliary tasks. The architecture is illustrated in Figure 30. The
dependency and gaze representations are first shared across the model
followed by separate feed-forward layers with softmaxes for predicting
labels for each subtask.

Figure 30: Architecture for learning gaze features in the MTL setup.

For this chapter, we rely on the relative PoS-based encoding which,
as explained in previous chapters, can be learned as two tasks that
consist in: (i) predicting the relative PoS-based position of the head
(oi, pi) and (ii) predicting the dependency relation (di). In the case of
eye-tracking data, we select 12 gaze features divided into four groups
as detailed in Table 37. We leverage them in a twofold manner: (i) only
one of the gaze features is learned as an auxiliary task and (ii) gaze
features belonging to the same group are learned as multiple auxiliary
tasks. It is also worth mentioning that following Hollenstein and Zhang
(2019), we discretize some gaze features. Namely, total fix.dur.,
mean fix.dur., first fix.dur., first pass dur., w− 1 and w+ 1
fix.dur. obtain values as percentile intervals with a bin size of 20,
while the remaining features keep their raw values.

In the parallel setup, the cross-entropy loss is computed as L =

L(o,p) + Ld +
∑

a βaLa, where losses coming from the label predictions
for dependency parsing and the weighted losses from each gaze feature
prediction are added. In the disjoint setup, in turn, for each batch we
randomly pick all samples coming either from the dependency parsing
treebank (ptb) or from the corpus with eye-tracking data (The Dundee
Treebank). More concretely, we pick samples that have not been taken
yet from one of the treebanks and the loss is back-propagated for the
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Gaze features dev set test set
UAS LAS UAS LAS

baseline 85.36 79.40 84.37 78.24

basic

total fix.dur. 85.34 79.35 84.06 77.44
mean fix.dur. 85.21 79.38 84.59 78.70
n fix. 85.32 79.29 83.71 77.57
fix.prob. 85.32 79.57 84.33 77.91
basic feats aux. 85.36 79.57 83.86 77.75

early
first fix.dur. 85.30 79.46 84.64 78.57
first pass dur. 85.50 79.49 84.55 78.39
early feats aux. 85.61 79.57 84.37 78.11

late
n re-fix. 85.52 79.25 83.86 77.91
re-read prob. 85.34 79.57 83.86 77.37
late feats aux. 85.54 79.64 84.10 77.73

context

w− 1 fix.prob. 85.17 79.47 84.26 77.93
w+ 1 fix.prob. 85.36 79.07 84.24 78.06
w− 1 fix.dur. 85.43 79.68 84.50 77.95
w+ 1 fix.dur. 85.39 79.53 84.64 78.30
context feats aux. 85.61 79.72 84.33 78.24

Table 38: Performance of models in the parallel setup evaluated on the Dundee
treebank. The baseline models do not use any gaze features as
auxiliary task(s).

output labels associated to a given treebank. More formally, we define
this loss as: L = τ (L(o,p) + Ld) + (1 − τ )

∑
βauxLaux, where τ is a

binary flag with 1, when the batch holds samples from the dependency
treebank and 0, otherwise. The first term stands for the losses coming
from dependency labels, while the second includes the weighted losses
from each gaze feature label. Each of the auxiliary tasks has a weighting
factor of 0.1. The hyperparameters are detailed in Section A.1.1.

7.2.3 Experiments

Now, we move on to the experiments in order to explore the viability
of our method in terms of accuracy, as well as, to determine which gaze
features contribute most to the improvements of our sequence labeling
parser. We will first examine the performance of the models that rely
on the parallel training data and then on the disjoint data.

Experiment on parallel data We will test the performance of our
parser trained on the Dundee Treebank that provides both dependency
and gaze annotations. We compare models that use gaze features as
auxiliary tasks against the baseline model that only learns dependency
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Gaze features dev set test set
UAS LAS UAS LAS

baseline 93.98 91.67 93.86 91.80

basic

total fix.dur. 93.94 91.60 93.99 91.92
mean fix.dur. 94.12 91.84 93.95 91.82
n fix. 93.97 91.70 93.91 91.87
fix.prob. 93.98 91.71 93.99 91.93
basic feats aux. 94.00 91.69 93.84 91.81

early first fix.dur. 94.07 91.81 93.87 91.80
first pass dur. 93.93 91.58 93.79 91.70
early feats aux. 94.04 91.78 93.96 91.88

late n re-fix. 94.01 91.69 93.87 91.79
re-read prob. 94.03 91.74 93.98 91.89
late feats aux. 93.98 91.58 93.92 91.90

context

w− 1 fix.prob. 94.02 91.65 93.95 91.93
w+ 1 fix.prob. 93.88 91.61 93.89 91.82
w− 1 fix.dur. 94.06 91.65 93.86 91.83
w+ 1 fix.dur. 93.91 91.69 93.89 91.84
context feats aux 93.93 91.63 94.01 91.98

Table 39: Performance of models in the disjoint setup evaluated on the ptb
treebank. The gaze features were learned as auxiliary task(s) from
the disjoint data set (the Dundee treebank).

labels and does not employ any eye-tracking features. The results of
the models evaluated on the Dundee Treebank are shown in Table 38.

In general, the results suggest that the models leverage the respective
gaze features to a varying degree. Particularly, it is prominent that the
models using different gaze features produce inconsistent results with
respect to the development and test set. For instance, the evaluation
on the dev set shows that the features that lead to the greatest im-
provements are those coming from the early and context group learned
as multiple auxiliary tasks (early and context feats aux.). On the
test set, in turn, mean fix.dur. and first fix.dur. provide the
best parsing results, where the former improves LAS by +0.46% and
the latter by +0.33%. However, it is worth noting that the Dundee
treebank is relatively small (∼2k sentences) and thereby it is difficult
to generalize based on the results. Hence, now we move to examine
models on a larger dependency treebank.

Experiment on disjoint data In this setup, we perform exper-
iments with models that are trained on non-overlapping treebanks.
Namely, the Dundee treebank is used to learn both gaze features and
the aligned dependencies, while the ptb treebank provides solely depen-
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dency annotations. However, the models are evaluated on a non-gazed
data set: the ptb treebank. The results are shown in Table 39.

Overall, the results in the disjoint setup indicate that the gains of
using gaze features diminish in comparison with the parallel setup.
When evaluating the parser on the dev set, mean fix.dur. and first
fix.dur. lead to the greatest improvements in the LAS score with
+0.17% and +0.14%, respectively. On the test set, in turn, features
coming from the context group learned as multiple auxiliary tasks im-
prove LAS by +0.18%, followed by fix.prob. and w − 1 fix.prob.
with +0.13%, total fix.dur. with +0.12% and late feats aux.
with +0.10%. The lower gains in this setup can be partly explained
by the fact that PTB outsizes the Dundee Treebank, hence the gaze
signal may be weaker. Perhaps in the disjoint setup, the transfer of
representations coming from non-overlapping treebanks is hindered by
differences in vocabulary and the context they appear in. On the other
hand, the results seem to be more consistent which may be triggered
by using a larger and more representative treebank.

7.3 Conclusions

In this chapter, we have proposed to leverage eye-tracking data in de-
pendency parsing within the sequence labeling framework. Specifically,
we have explored the use of eye movement measures that reflect some
cognitive processes to guide our dependency parser with some sort of
human gaze attention on particular words. Unlike some previous work,
we do not rely on the assumption that the eye-tracking data is avail-
able at inference time. In our approach, the gaze features are learned
as auxiliary tasks in the MTL setup with parallel and disjoint training
data.
The results have shown that models enhanced with the gaze fea-

ture representations obtain modest but positive results providing some
initial attempts in leveraging eye-tracking data in the context of depen-
dency parsing. The evaluation of the models suggests, however, that
grouping and treating gaze features as auxiliary tasks may enhance the
model learning, although the gains remain unstable.
Taken together, our approach offers many advantages. For instance,

the gaze features are included in the models, hence they are not required
during testing facilitating the use of arbitrary treebanks at the test time.
Moreover, due to the architecture any other types of complementary
data can be easily applied in our sequence labeling framework, i.e. ner
or chunking data. No less important is the fact that our parser provides
competitive parsing speed, even when enhanced with complementary
data. Still, there is a room for improvements, for instance in increasing
the generalization capabilities of our model to mitigate the divergence
in the results between the dev and test set. To do so, one may consider
applying other architecture in our framework, e.g. following Barrett
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et al. (2018) eye-tracking data approach could serve to regularize the
attention. However, that would come at some cost to speed.



Part IV

CLOSING REMARKS





8Conclusions

8.1 Discussion and limitations

In this thesis, we have recast dependency parsing as sequence labeling
as an alternative approach to the canonical transition- and graph-based
methods. As stated in the motivation in part i, one of the aims of our
work was to provide a fast and accurate system that (i) relies on generic
methods, such that it can be applied using any sequence labeling soft-
ware and (ii) can be easily integrated with other downstream tasks fa-
cilitating the use of full parse trees as features. To do so, we enhanced
the primary study by Spoustová and Spousta (2010) and made this
technique practical in the neural network settings. Our work was also
motivated by the study of Gómez-Rodríguez and Vilares (2018) that
demonstrated that continuous constituent parsing could be effectively
reduced to a sequence labeling task when training contextualized neu-
ral models (e.g. LSTMs), but not traditional machine learning systems,
such CRF or perceptrons.

In general, our sequence labeling parsers have shown to maintain a
good speed/accuracy trade-off with a conceptually simple architecture
that alleviates the recurring bottleneck of parsing speed. Specifically,
a sequence labeling parser foregoes the need of traditional parsing al-
gorithms or auxiliary structures by replacing them with linearization
methods for transforming a dependency tree into a sequence of labels.
This linearization enables parsing over a sentence of length n into ex-
actly n tagging actions resulting in fast parsing. Furthermore, we have
explored the leverage of external complementary data by a sequence la-
beling parser. It can be especially useful, for instance, in a low-resource
setup, since it facilitates using additional data that can be learned to-
gether in the sequence labeling setups. In particular, we have shown
that our model is capable of exploiting representations coming from
another parsing paradigm, as well as, from human gaze data by means
of MTL.

In part ii, we have introduced three families of encodings that are
the backbone for dependency parsing as sequence labeling, i.e. head se-
lection encodings (Chapter 3), bracketing-based encodings (Chapter 4)
and transition-based encodings (Chapter 5). The main distinction be-
tween the encoding families is the linearization methods they apply.
More concretely, encoding of dependency trees can be defined as a
problem of (i) head selection, (ii) matching well-balanced bracketing
elements and (iii) splitting transitions retrieved from transition-based

115
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systems into subsequences, such that they can be assigned to each to-
ken. In Figure 31 we provide an outline of the proposed encodings with
respect to their family hierarchy. For each encoding, we have provided
a formalisation, followed by a description of the decoding method that
is required in order to transform the predicted sequence of labels into an
output tree. Finally, we have discussed their strengths and limitations.

Figure 31: Encoding hierarchy outline.

In Chapter 3, we have presented the first encoding family based on a
head selection criterion, whose main trait is that it encodes the absolute
position of the head or the relative distance from the dependent to the
head. More specifically, we distinguish (i) the naive positional encoding,
in which each label holds information about the index position of the
head, (ii) the relative positional encoding, which captures the difference
between the index position of the head and the dependent and (iii) the
relative PoS-based encoding, in which each label holds the relative dis-
tance from the dependent to the head considering only words with the
head’s PoS tag. It is worth mentioning that this family can be used to
encode the head according to any word property, for instance, as in the
work of Lacroix (2019). We have carried out a number of experiments
that revealed several characteristics of each head selection encoding.
First of all, the encodings differ in the label space they generate. It
is prominent that the naive positional encoding suffers the most from
label sparsity, which is reflected in a considerably lower accuracy. The
remaining encodings, in turn, provide to a greater extent more compact
tree representations. This can be explained by the fact that the naive
encoding needs to generate a label for each index position, which can
be compressed more efficiently using the relative positions instead. The
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results have also shown that the relative PoS-based encoding yields the
best accuracy, hence we considered it as our baseline for comparison
against other encoding families. However, it is worth noting that this
encoding has a limitation that needs to be considered. Namely, in a
more real-world setup it requires an additional step of computing PoS
tags, which as a result increases the model latency. This also implies
that the performance of this encoding is conditioned on the quality and
quantity of the predicted PoS tags since it may vary across treebanks.
It also contradicts with the recent work that questioned the utility of
PoS tags in dependency parsing (Lhoneux et al., 2017; Anderson and
Gómez-Rodríguez, 2020b).
In Chapter 4, we have presented the bracketing-based family. First,

we introduced the relaxed 1-planar bracketing-based encoding, where
left and right dependency arcs are represented in terms of balanced
pairs of bracketing elements (<,\ and /,>, respectively). The evidence
from our study has proved that this encoding is viable and compact
in terms of the generated labels, although it obtains a slightly lower
accuracy than the relative PoS-based encoding (when PoS tags are
used as input features to the model). Additionally, it has a limita-
tion with respect to the coverage of non-projective arcs. Specifically,
the relaxed 1-planar encoding might be lossy, since it is able to only
encode non-projective arcs in the opposite directions and, as a conse-
quence, crossing arcs in the same direction are decoded as projective
ones. Unlike the head selection encodings that are capable of fully en-
coding non-projective trees, the relaxed 1-planar bracketing-based one
needs to be extended in order to handle non-projectivity. To overcome
this shortcoming, we have proposed a variant that makes use of the
property called 2-planarity. Briefly, non-projectivity may be preserved
almost entirely by partitioning the arcs into two planes, such that arcs
in the same plane do not cross. In the context of dependency pars-
ing as sequence labeling, it can be applied using additional bracketing
elements denoting that they belong to the second plane (<∗, /∗ and
/∗, >∗). In order to assign arcs to one of the two planes, we have de-
fined two strategies: a greedy one that averts from using the second
plane and one based on restriction propagation on the crossings graph.
The latter has a theoretical advantage of guaranteeing a full coverage
of 2-planar trees. The empirical results have shown that the 2-planar
bracketing-based encodings are able to almost fully cover non-projective
arcs, which is also reflected in the improved accuracy on highly non-
projective treebanks. We have found that the 2-planar encodings based
on different plane assignment strategies perform on par in terms of ac-
curacy, even though the strategy based on restriction propagation has
a theoretical advantage. Presumably, this advantage did not translate
into a greater accuracy due to the fact that some dependency trees
possibly were not 2-planar, hence the theoretical advantage could not
be applied. The experiments have shown that the 2-planar variants
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Encoding supports non-proj? external feats? excessive label set size?
naive-positional 3 7 3

rel-positional 3 7 7

rel-PoS 3 3 7

1p-brackets 3/7 7 7

2p-greedy 3 7 7

2p-prop 3 7 7

arc-standard 7 7 7

arc-eager 7 7 7

arc-hybrid 7 7 7

Covington 3 7 3

Table 40: Encodings’ characteristics in terms of supporting non-projectivity,
requiring external features (e.g., computing PoS tags) and generat-
ing an excessive output vocabulary size.

supporting non-projectivity within the sequence labeling approach are
feasible and come at almost no additional cost to parsing speed.

In Chapter 5, we have proposed another encoding family that is based
on the left-to-right transition-based systems. This approach estab-
lishes a theoretical link between the transition- and sequence labeling
paradigms. More concretely, we have devised a theoretical framework
to map transition-based parsers to sequence labeling parsers using the
concept of read transitions to split the transition sequences. Thereby,
such subsequences can be then assigned as labels to each input word.
We have empirically tested our approach by obtaining four transition-
based encodings based on the arc-standard, arc-eager, arc-hybrid and
non-projective Covington algorithms. However, it is worth mentioning
that the proposed method is generic and applicable to a wide range
of left-to-right transition-based systems, also beyond dependency pars-
ing. In general, our study has shown that the transition-based encod-
ings are viable both in terms of the accuracy and parsing speed. The
advantage of this method is that new encodings can be retrieved au-
tomatically from the existing transition-based algorithms. Moreover,
unlike a transition-based parser, the sequence labeling parser with the
transition-based encodings does not rely on stack-based features. Al-
though, we observed that a weak point of systems that do not run in
O(n) (such as the non-projective Covington) is that they may result in
an extensive output vocabulary precluding an efficient learning.

Taken together, the families of encodings differ in how they embed
and represent dependency trees as labels. As a result, they are associ-
ated with miscellaneous facets (whether they handle non-projectivity,
make use of external features, such as PoS tags or generate a large la-
bel space) that need to be considered when trying to select the most
suitable encoding for an arbitrary setup. In Table 40, we provide an
overview of the facets with respect to each encoding. Regarding ac-
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curacy, the relative PoS-based encoding obtains the best performance
across all encodings, but solely in the case of using PoS tags as input
parameters. Since this encoding strongly depends on the PoS tags, its
performance may deteriorate due to their low quality, an inadequate
level of granularity or in the case they are only used for decoding (not
as input features). Hence, other encodings can be a better alterna-
tive if the additional step of computing PoS tags in not preferable, for
instance due to the chosen architecture (such as BERT) that does not
require them or due to the intention of maintaining a low model latency.
If so, the bracketing-based encodings yield the best results. Although,
the transition-based encodings also provide comparable results (except
for the non-projective Covington). When parsing highly non-projective
treebanks, the head selection encodings are able to fully support cross-
ing arcs, while the 2-planar variants of the bracketing-based encoding
almost completely are able to preserve them. The non-projective Cov-
ington, even though it supports non-projectivity, suffers from the exces-
sive output vocabulary resulting in lower accuracy, while the remaining
transition-based encodings only cover projective trees.

In part iii we have covered enhanced training of our sequence label-
ing parser with complementary representations retrieved from external
data. More concretely, we aimed at improving the performance of the
parser by leveraging representations from constituency parsing and eye-
tracking data by means of auxiliary tasks in the MTL setup.

In Chapter 6, we have explored whether the leverage of the com-
plementary nature of dependency and constituency paradigms can be
facilitated with a sequence labeling parser in contrast to the previous
approaches that were more complex. We have tested the feasibility
of this method by learning the representations of the counterpart ab-
stractions as auxiliary tasks. The results have shown that this method
consistently improves the performance of the paradigm of interest. Fur-
thermore, we have demonstrated that dependency and constituency
parsing can be performed by a single model that learns both paradigms
as main tasks at almost no cost in terms of speed.

In Chapter 7, we have investigated the impact of learning another
kind of complementary data, namely eye-tracking data, where at the
core lies the idea of guiding our sequence labeling parser with measures
of eye movements. To do so, gaze features were learned as auxiliary
tasks requiring the eye-tracking data only for training, which is practi-
cal since the human language processing data still is not easily accessi-
ble and collecting it on a large scale raises privacy concerns (Liebling
and Preibusch, 2014). Moreover, we have examined our method in two
data setups: (i) with parallel training data, in which dependency and
gaze annotation are aligned and (ii) disjoint training data, which in
addition contains a non-overlapping treebank with solely dependency
trees. Overall, the empirical results are modest but positive suggest-
ing that learning gaze features as auxiliary tasks may be beneficial for
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sequence labeling parsers. However, based on the results one may not
clearly determine which group or individual features guide the parser
best, since the gains are unstable across the dev and test set, as well as,
between the different data setups. Nevertheless, the findings encour-
age further investigation on the use of eye-tracking data in dependency
parsing.

8.2 Future work

This work presents the first approaches enhancing dependency pars-
ing as a sequence labeling problem, and that have achieved practical
results in terms of speed and accuracy. Our study has revealed that
dependency parsing as sequence labeling is viable and fast. Yet, it still
faces some challenges and there is room for improvement. For instance,
in the context of recent advances of deep neural networks, future work
needs to be carried out to establish whether other neural architectures
beyond BiLSTMs and BERT may boost the performance of sequence la-
beling parsers. For instance, Vilares and Gómez-Rodríguez (2020) have
recently applied vanilla transformers and DistilBERT to discontinuous
constituency parsing as sequence labeling. Furthermore, since one of
the main motivations of recasting dependency parsing as sequence label-
ing is the competitive parsing speed, one may aim at proposing a model
based on some other architecture that yields even better speed up. For
instance, in future work the teacher-student distillation technique may
be explored in the context of sequence labeling parsing, where a pre-
trained language model (e.g. BERT) could be used as the teacher and
a single LSTM as the student (or, even more extreme, a feed-forward
network with very efficient feature extraction).

Regarding the linearization methods, further investigations should
not be limited to the ones proposed in this work. Regarding the head
selection encodings, one may apply any alternative method to encode
the heads (for instance, see the encoding proposed by Lacroix (2019)).
In the relative PoS-based encoding, other properties than PoS tags may
be used for encoding, e.g. morphological features. With respect to
the 2-planar bracketing-based encoding, we have proposed two plane
assignment strategies that minimize the use of the second plane. Al-
though, one may explore other strategies based on different criteria. For
instance, in a similar vein, Anderson and Gómez-Rodríguez (2021) ex-
plore some linguistic criteria for splitting EUD graphs into trees. When
it comes to the transition-based encodings, one may explore other ex-
isting left-to-right transition-based systems to retrieve additional en-
codings beyond these included in the experiments in this thesis. Fur-
thermore, the future work should not be limited to exploring encodings
derived solely from dependency parsers, since our mapping method is
generic and can be also applied to constituent or semantic parsers.
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When it comes to the use of complementary data, future research
should be undertaken in order to establish methods for the most opti-
mal leverage of such data in dependency parsing beyond the use of aux-
iliary tasks in the MTL setup. For instance, more research is needed for
determining how to leverage data that is only available during training
and in the disjoint data setup, since there is a wide range of cognitive
measures that may be beneficial for dependency parsing. Furthermore,
it might be interesting to explore other sources, for instance, with vi-
sual information (Salama and Menzel, 2016) or audio, to direct the
focus on multi-modal dependency parsing as sequence labeling.





Bibliography

Anderson, Mark and Carlos Gómez-Rodríguez (July 2020a). «Distill-
ing Neural Networks for Greener and Faster Dependency Parsing.»
In: Proceedings of the 16th International Conference on Parsing
Technologies and the IWPT 2020 Shared Task on Parsing into En-
hanced Universal Dependencies. Online: Association for Computa-
tional Linguistics, pp. 2–13. doi: 10.18653/v1/2020.iwpt-1.2.
url: https://www.aclweb.org/anthology/2020.iwpt-1.2.

— (Nov. 2020b). «On the Frailty of Universal POS Tags for Neural UD
Parsers.» In: Proceedings of the 24th Conference on Computational
Natural Language Learning. Online: Association for Computational
Linguistics, pp. 69–96. doi: 10.18653/v1/2020.conll-1.6. url:
https://www.aclweb.org/anthology/2020.conll-1.6.

— (2021). «Splitting EUD graphs into trees: A quick and clatty ap-
proach.» In: arXiv preprint arXiv:2106.13155.

Attardi, Giuseppe (June 2006). «Experiments with a Multilanguage
Non-Projective Dependency Parser.» In: Proceedings of the Tenth
Conference on Computational Natural Language Learning (CoNLL-
X). New York City: Association for Computational Linguistics,
pp. 166–170. url: https://www.aclweb.org/anthology/W06-
2922.

Ballesteros, Miguel (Oct. 2013). «Effective Morphological Feature Se-
lection with MaltOptimizer at the SPMRL 2013 Shared Task.»
In: Proceedings of the Fourth Workshop on Statistical Parsing of
Morphologically-Rich Languages. Seattle, Washington, USA: Asso-
ciation for Computational Linguistics, pp. 63–70. url: https://w
ww.aclweb.org/anthology/W13-4907.

Ballesteros, Miguel and Xavier Carreras (July 2015). «Transition-based
Spinal Parsing.» In: Proceedings of the Nineteenth Conference on
Computational Natural Language Learning. Beijing, China: Associ-
ation for Computational Linguistics, pp. 289–299. doi: 10.18653
/v1/K15-1029. url: https://www.aclweb.org/anthology/K15-
1029.

Ballesteros, Miguel, Chris Dyer, and Noah A. Smith (Sept. 2015). «Im-
proved Transition-based Parsing by Modeling Characters instead
of Words with LSTMs.» In: Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing. Lisbon, Portu-
gal: Association for Computational Linguistics, pp. 349–359. doi:
10.18653/v1/D15-1041. url: https://www.aclweb.org/anthol
ogy/D15-1041.

123



124 Bibliography

Ballesteros, Miguel et al. (Nov. 2016). «Training with Exploration Im-
proves a Greedy Stack LSTM Parser.» In: Proceedings of the 2016
Conference on Empirical Methods in Natural Language Processing.
Austin, Texas: Association for Computational Linguistics, pp. 2005–
2010. doi: 10.18653/v1/D16-1211. url: https://www.aclweb.o
rg/anthology/D16-1211.

Barrett, Maria (Oct. 2018). «Improving natural language processing
with human data: Eye tracking and other data sources reflecting
cognitive text processing.» English. PhD thesis. Denmark.

Barrett, Maria, Željko Agić, and Anders Søgaard (2015). «The Dundee
treebank.» In: The 14th International Workshop on Treebanks and
Linguistic Theories (TLT 14).

Barrett, Maria and Anders Søgaard (Sept. 2015). «Using reading be-
havior to predict grammatical functions.» In: Proceedings of the
Sixth Workshop on Cognitive Aspects of Computational Language
Learning. Lisbon, Portugal: Association for Computational Linguis-
tics, pp. 1–5. doi: 10.18653/v1/W15-2401. url: https://www.ac
lweb.org/anthology/W15-2401.

Barrett, Maria et al. (Aug. 2016). «Weakly Supervised Part-of-speech
Tagging Using Eye-tracking Data.» In: Proceedings of the 54th An-
nual Meeting of the Association for Computational Linguistics (Vol-
ume 2: Short Papers). Berlin, Germany: Association for Computa-
tional Linguistics, pp. 579–584. doi: 10.18653/v1/P16-2094. url:
https://www.aclweb.org/anthology/P16-2094.

Barrett, Maria et al. (Oct. 2018). «Sequence Classification with Human
Attention.» In: Proceedings of the 22nd Conference on Computa-
tional Natural Language Learning. Brussels, Belgium: Association
for Computational Linguistics, pp. 302–312. doi: 10.18653/v1/K1
8-1030. url: https://www.aclweb.org/anthology/K18-1030.

Bingel, Joachim, Maria Barrett, and Anders Søgaard (Aug. 2016). «Ex-
tracting token-level signals of syntactic processing from fMRI -
with an application to PoS induction.» In: Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers). Berlin, Germany: Association for Com-
putational Linguistics, pp. 747–755. doi: 10.18653/v1/P16-1071.
url: https://aclanthology.org/P16-1071.

Bingel, Joachim and Anders Søgaard (Apr. 2017). «Identifying benefi-
cial task relations for multi-task learning in deep neural networks.»
In: Proceedings of the 15th Conference of the European Chapter
of the Association for Computational Linguistics: Volume 2, Short
Papers. Valencia, Spain: Association for Computational Linguistics,
pp. 164–169. url: https://www.aclweb.org/anthology/E17-20
26.

Björkelund, Anders et al. (Oct. 2013). «(Re)ranking Meets Morphosyn-
tax: State-of-the-art Results from the SPMRL 2013 Shared Task.»
In: Proceedings of the Fourth Workshop on Statistical Parsing of



Bibliography 125

Morphologically-Rich Languages. Seattle, Washington, USA: Asso-
ciation for Computational Linguistics, pp. 135–145. url: https:
//www.aclweb.org/anthology/W13-4916.

Bojanowski, Piotr et al. (2017). «Enriching Word Vectors with Sub-
word Information.» In: Transactions of the Association for Com-
putational Linguistics 5, pp. 135–146. doi: 10.1162/tacl_a_0005
1. url: https://www.aclweb.org/anthology/Q17-1010.

Buchholz, Sabine and Erwin Marsi (June 2006). «CoNLL-X Shared
Task on Multilingual Dependency Parsing.» In: Proceedings of the
Tenth Conference on Computational Natural Language Learning
(CoNLL-X). New York City: Association for Computational Lin-
guistics, pp. 149–164. url: https://www.aclweb.org/anthology
/W06-2920.

Cao, Qingxing et al. (2021). «Interpretable Visual Question Answering
by Reasoning on Dependency Trees.» In: IEEE Transactions on
Pattern Analysis and Machine Intelligence 43.3, pp. 887–901. doi:
10.1109/TPAMI.2019.2943456.

Caruana, Rich (1997). «Multitask learning.» In: Machine learning 28.1,
pp. 41–75.

Changpinyo, Soravit, Hexiang Hu, and Fei Sha (Aug. 2018). «Multi-
Task Learning for Sequence Tagging: An Empirical Study.» In:
Proceedings of the 27th International Conference on Computational
Linguistics. Santa Fe, New Mexico, USA: Association for Compu-
tational Linguistics, pp. 2965–2977. url: https://www.aclweb.o
rg/anthology/C18-1251.

Chen, Danqi and Christopher Manning (Oct. 2014). «A Fast and Accu-
rate Dependency Parser using Neural Networks.» In: Proceedings
of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP). Doha, Qatar: Association for Computational
Linguistics, pp. 740–750. doi: 10.3115/v1/D14-1082. url: https
://www.aclweb.org/anthology/D14-1082.

Choi, Jinho D. and Andrew McCallum (Aug. 2013). «Transition-based
Dependency Parsing with Selectional Branching.» In: Proceedings
of the 51st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Sofia, Bulgaria: Association
for Computational Linguistics, pp. 1052–1062. url: https://www
.aclweb.org/anthology/P13-1104.

Choi, Jinho D. and Martha Palmer (June 2011). «Getting the Most
out of Transition-based Dependency Parsing.» In: Proceedings of
the 49th Annual Meeting of the Association for Computational Lin-
guistics: Human Language Technologies. Portland, Oregon, USA:
Association for Computational Linguistics, pp. 687–692. url: htt
ps://www.aclweb.org/anthology/P11-2121.

Chomsky, Noam (1956). «Three models for the description of language.»
In: IRE Transactions on information theory 2.3, pp. 113–124.



126 Bibliography

Clergerie, Éric de la (Oct. 2013). «Exploring beam-based shift-reduce
dependency parsing with DyALog: Results from the SPMRL 2013
shared task.» In: Proceedings of the Fourth Workshop on Statistical
Parsing of Morphologically-Rich Languages. Seattle, Washington,
USA: Association for Computational Linguistics, pp. 53–62. url:
https://www.aclweb.org/anthology/W13-4906.

Coavoux, Maximin and Benoît Crabbé (Aug. 2016). «Neural Greedy
Constituent Parsing with Dynamic Oracles.» In: Proceedings of
the 54th Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers). Berlin, Germany: Association for
Computational Linguistics, pp. 172–182. doi: 10.18653/v1/P16-
1017. url: https://www.aclweb.org/anthology/P16-1017.

— (Apr. 2017). «Multilingual Lexicalized Constituency Parsing with
Word-Level Auxiliary Tasks.» In: Proceedings of the 15th Confer-
ence of the European Chapter of the Association for Computational
Linguistics: Volume 2, Short Papers. Valencia, Spain: Association
for Computational Linguistics, pp. 331–336. url: https://www.a
clweb.org/anthology/E17-2053.

Collins, Michael (July 2002). «Discriminative Training Methods for
Hidden Markov Models: Theory and Experiments with Perceptron
Algorithms.» In: Proceedings of the 2002 Conference on Empirical
Methods in Natural Language Processing (EMNLP 2002). Associa-
tion for Computational Linguistics, pp. 1–8. doi: 10.3115/11186
93.1118694. url: https://www.aclweb.org/anthology/W02-10
01.

Collobert, Ronan et al. (2011). «Natural Language Processing (Almost)
from Scratch.» In: Journal of Machine Learning Research 12.76,
pp. 2493–2537. url: http://jmlr.org/papers/v12/collobert1
1a.html.

Covington, Michael A (2001). «A fundamental algorithm for depen-
dency parsing.» In: Proceedings of the 39th annual ACM southeast
conference. Citeseer, pp. 95–102.

Devlin, Jacob et al. (June 2019). «BERT: Pre-training of Deep Bidirec-
tional Transformers for Language Understanding.» In: Proceedings
of the 2019 Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers). Minneapolis, Minnesota:
Association for Computational Linguistics, pp. 4171–4186. doi: 1
0.18653/v1/N19-1423. url: https://www.aclweb.org/antholo
gy/N19-1423.

Dozat, Timothy and Christopher D. Manning (2017). «Deep Biaffine
Attention for Neural Dependency Parsing.» In: 5th International
Conference on Learning Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings. OpenReview.net.
url: https://openreview.net/forum?id=Hk95PK9le.



Bibliography 127

Dyer, Chris et al. (July 2015). «Transition-Based Dependency Parsing
with Stack Long Short-Term Memory.» In: Proceedings of the 53rd
Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers). Beijing, China: Association
for Computational Linguistics, pp. 334–343. doi: 10.3115/v1/P1
5-1033. url: https://www.aclweb.org/anthology/P15-1033.

Dyer, Chris et al. (2016). «Recurrent Neural Network Grammars.» In:
Proceedings of the 2016 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies. San Diego, California: Association for Computational
Linguistics, pp. 199–209. doi: 10.18653/v1/N16-1024. url: http
://www.aclweb.org/anthology/N16-1024.

Eisner, Jason M. (1996). «Three New Probabilistic Models for Depen-
dency Parsing: An Exploration.» In: COLING 1996 Volume 1: The
16th International Conference on Computational Linguistics. url:
https://www.aclweb.org/anthology/C96-1058.

Elman, Jeffrey L (1990). «Finding structure in time.» In: Cognitive
science 14.2, pp. 179–211.

Falenska, Agnieszka, Anders Björkelund, and Jonas Kuhn (July 2020).
«Integrating Graph-Based and Transition-Based Dependency Parsers
in the Deep Contextualized Era.» In: Proceedings of the 16th Inter-
national Conference on Parsing Technologies and the IWPT 2020
Shared Task on Parsing into Enhanced Universal Dependencies.
Online: Association for Computational Linguistics, pp. 25–39. doi:
10.18653/v1/2020.iwpt-1.4. url: https://www.aclweb.org/a
nthology/2020.iwpt-1.4.

Falenska, Agnieszka and Jonas Kuhn (July 2019). «The (Non-)Utility
of Structural Features in BiLSTM-based Dependency Parsers.» In:
Proceedings of the 57th Annual Meeting of the Association for Com-
putational Linguistics. Florence, Italy: Association for Computa-
tional Linguistics, pp. 117–128. doi: 10.18653/v1/P19-1012. url:
https://www.aclweb.org/anthology/P19-1012.

Fernández-González, Daniel and Carlos Gómez-Rodríguez (July 2012).
«Improving Transition-Based Dependency Parsing with Buffer Tran-
sitions.» In: Proceedings of the 2012 Joint Conference on Empirical
Methods in Natural Language Processing and Computational Nat-
ural Language Learning. Jeju Island, Korea: Association for Com-
putational Linguistics, pp. 308–319. url: https://www.aclweb.o
rg/anthology/D12-1029.

— (July 2017). «A Full Non-Monotonic Transition System for Unre-
stricted Non-Projective Parsing.» In: Proceedings of the 55th An-
nual Meeting of the Association for Computational Linguistics (Vol-
ume 1: Long Papers). Vancouver, Canada: Association for Compu-
tational Linguistics, pp. 288–298. doi: 10.18653/v1/P17-1027.
url: https://www.aclweb.org/anthology/P17-1027.



128 Bibliography

Fernández-González, Daniel and Carlos Gómez-Rodríguez (June 2018).
«Non-Projective Dependency Parsing with Non-Local Transitions.»
In: Proceedings of the 2018 Conference of the North American
Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 2 (Short Papers). New Orleans,
Louisiana: Association for Computational Linguistics, pp. 693–700.
doi: 10.18653/v1/N18-2109. url: https://www.aclweb.org/an
thology/N18-2109.

— (June 2019). «Left-to-Right Dependency Parsing with Pointer Net-
works.» In: Proceedings of the 2019 Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and Short Papers).
Minneapolis, Minnesota: Association for Computational Linguis-
tics, pp. 710–716. doi: 10.18653/v1/N19-1076. url: https://ww
w.aclweb.org/anthology/N19-1076.

Fernández-González, Daniel and André F. T. Martins (July 2015). «Pars-
ing as Reduction.» In: Proceedings of the 53rd Annual Meeting of
the Association for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Processing (Volume
1: Long Papers). Beijing, China: Association for Computational
Linguistics, pp. 1523–1533. doi: 10 . 3115 / v1 / P15 - 1147. url:
https://www.aclweb.org/anthology/P15-1147.

Fernández-González, Daniel and Carlos Gómez-Rodríguez (2020). Mul-
titask Pointer Network for Multi-Representational Parsing. arXiv:
2009.09730 [cs.CL].

Ferrer-i-Cancho, Ramon, Carlos Gómez-Rodríguez, and Juan Luis Este-
ban (2018). «Are crossing dependencies really scarce?» In: Physica
A: Statistical Mechanics and its Applications 493, pp. 311–329. issn:
0378-4371. doi: http://dx.doi.org/10.1016/j.physa.2017.10
.048. url: https://doi.org/10.1016/j.physa.2017.10.048.

Fraser, Norman (1989). «Parsing and dependency grammar.» In: UCL
Working Papers in Linguistics 1: University College London. Pp. 296–
319.

Ginter, Filip et al. (2017). CoNLL 2017 Shared Task - Automatically
Annotated Raw Texts and Word Embeddings. LINDAT/CLARIN
digital library at the Institute of Formal and Applied Linguistics
(ÚFAL), Faculty of Mathematics and Physics, Charles University.
url: http://hdl.handle.net/11234/1-1989.

Goldberg, Yoav (2017). Neural Network Methods in Natural Language
Processing. Synthesis lectures on human language technologies. Mor-
gan & Claypool Publishers.

— (2019). Assessing BERT’s Syntactic Abilities. arXiv: 1901.05287
[cs.CL].

Goldberg, Yoav and Michael Elhadad (June 2010). «An Efficient Al-
gorithm for Easy-First Non-Directional Dependency Parsing.» In:
Human Language Technologies: The 2010 Annual Conference of



Bibliography 129

the North American Chapter of the Association for Computational
Linguistics. Los Angeles, California: Association for Computational
Linguistics, pp. 742–750. url: https://www.aclweb.org/anthol
ogy/N10-1115.

Gómez-Rodríguez, Carlos (Dec. 2016). «Restricted Non-Projectivity:
Coverage vs. Efficiency.» In: Comput. Linguist. 42.4, pp. 809–817.
issn: 0891-2017. doi: 10.1162/COLI_a_00267. url: http://dx.d
oi.org/10.1162/COLI_a_00267.

Gómez-Rodríguez, Carlos (Sept. 2018). Proyecto docente e investigador,
plaza 18/037 de Profesor Titular de Universidad.

Gómez-Rodríguez, Carlos, Iago Alonso-Alonso, and David Vilares (2019).
«How important is syntactic parsing accuracy? An empirical evalu-
ation on rule-based sentiment analysis.» In: Artificial Intelligence
Review 52.3, pp. 2081–2097. issn: 1573-7462. doi: 10.1007/s1046
2-017-9584-0. url: https://doi.org/10.1007/s10462-017-9
584-0.

Gómez-Rodríguez, Carlos and Joakim Nivre (July 2010). «A Transition-
Based Parser for 2-Planar Dependency Structures.» In: Proceedings
of the 48th Annual Meeting of the Association for Computational
Linguistics. Uppsala, Sweden: Association for Computational Lin-
guistics, pp. 1492–1501. url: https://www.aclweb.org/antholo
gy/P10-1151.

— (2013). «Divisible Transition Systems and Multiplanar Dependency
Parsing.» In: Computational Linguistics 39.4, pp. 799–845. doi: 1
0.1162/COLI_a_00150. url: https://www.aclweb.org/antholo
gy/J13-4002.

Gómez-Rodríguez, Carlos, Michalina Strzyz, and David Vilares (Dec.
2020). «A Unifying Theory of Transition-based and Sequence La-
beling Parsing.» In: Proceedings of the 28th International Confer-
ence on Computational Linguistics. Barcelona, Spain (Online): In-
ternational Committee on Computational Linguistics, pp. 3776–
3793. url: https://www.aclweb.org/anthology/2020.coling-
main.336.

Gómez-Rodríguez, Carlos and David Vilares (2018). «Constituent Pars-
ing as Sequence Labeling.» In: Proceedings of the 2018 Confer-
ence on Empirical Methods in Natural Language Processing. Brus-
sels, Belgium: Association for Computational Linguistics, pp. 1314–
1324. doi: 10.18653/v1/D18-1162. url: https://www.aclweb.o
rg/anthology/D18-1162.

González-Garduño, Ana Valeria and Anders Søgaard (Sept. 2017). «Us-
ing Gaze to Predict Text Readability.» In: Proceedings of the 12th
Workshop on Innovative Use of NLP for Building Educational Ap-
plications. Copenhagen, Denmark: Association for Computational
Linguistics, pp. 438–443. doi: 10.18653/v1/W17-5050. url: http
s://www.aclweb.org/anthology/W17-5050.



130 Bibliography

Goot, Rob van der et al. (Apr. 2021). «Massive Choice, Ample Tasks
(MaChAmp): A Toolkit for Multi-task Learning in NLP.» In: Pro-
ceedings of the 16th Conference of the European Chapter of the As-
sociation for Computational Linguistics: System Demonstrations.
Online: Association for Computational Linguistics, pp. 176–197.
url: https://www.aclweb.org/anthology/2021.eacl-demos.2
2.

Graves, Alex and Jürgen Schmidhuber (2005). «Framewise phoneme
classification with bidirectional LSTM and other neural network
architectures.» In: Neural networks 18.5-6, pp. 602–610.

Gómez-Rodríguez, Carlos (2017). «Towards fast natural language pars-
ing: FASTPARSE ERC Starting Grant.» In: Procesamiento del
Lenguaje Natural 59.0, pp. 121–124. issn: 1989-7553. url: http
://journal.sepln.org/sepln/ojs/ojs/index.php/pln/artic
le/view/5501.

Hewitt, John and Christopher D. Manning (June 2019). «A Structural
Probe for Finding Syntax in Word Representations.» In: Proceed-
ings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers). Minneapolis, Min-
nesota: Association for Computational Linguistics, pp. 4129–4138.
doi: 10.18653/v1/N19-1419. url: https://www.aclweb.org/an
thology/N19-1419.

Hochreiter, Sepp and Jürgen Schmidhuber (1997). «Long short-term
memory.» In: Neural computation 9.8, pp. 1735–1780.

Hollenstein, Nora, Maria Barrett, and Lisa Beinborn (May 2020). «To-
wards Best Practices for Leveraging Human Language Processing
Signals for Natural Language Processing.» English. In: Proceed-
ings of the Second Workshop on Linguistic and Neurocognitive Re-
sources. Marseille, France: European Language Resources Associa-
tion, pp. 15–27. isbn: 979-10-95546-52-8. url: https://www.aclw
eb.org/anthology/2020.lincr-1.3.

Hollenstein, Nora and Ce Zhang (June 2019). «Entity Recognition at
First Sight: Improving NER with Eye Movement Information.» In:
Proceedings of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Papers). Minneapo-
lis, Minnesota: Association for Computational Linguistics, pp. 1–
10. doi: 10.18653/v1/N19-1001. url: https://www.aclweb.org
/anthology/N19-1001.

Hollenstein, Nora et al. (2019). «Advancing NLP with cognitive lan-
guage processing signals.» In: arXiv preprint arXiv:1904.02682.

Honnibal, Matthew, Yoav Goldberg, and Mark Johnson (Aug. 2013).
«A Non-Monotonic Arc-Eager Transition System for Dependency
Parsing.» In: Proceedings of the Seventeenth Conference on Com-
putational Natural Language Learning. Sofia, Bulgaria: Association



Bibliography 131

for Computational Linguistics, pp. 163–172. url: https://www.a
clweb.org/anthology/W13-3518.

Honnibal, Matthew and Mark Johnson (Sept. 2015). «An Improved
Non-monotonic Transition System for Dependency Parsing.» In:
Proceedings of the 2015 Conference on Empirical Methods in Natu-
ral Language Processing. Lisbon, Portugal: Association for Compu-
tational Linguistics, pp. 1373–1378. doi: 10.18653/v1/D15-1162.
url: https://www.aclweb.org/anthology/D15-1162.

Huang, Zhiheng, Wei Xu, and Kai Yu (2015). Bidirectional LSTM-CRF
Models for Sequence Tagging. arXiv: 1508.01991 [cs.CL].

Jawahar, Ganesh, Benoît Sagot, and Djamé Seddah (July 2019). «What
Does BERT Learn about the Structure of Language?» In: Proceed-
ings of the 57th Annual Meeting of the Association for Computa-
tional Linguistics. Florence, Italy: Association for Computational
Linguistics, pp. 3651–3657. doi: 10.18653/v1/P19- 1356. url:
https://www.aclweb.org/anthology/P19-1356.

Jiao, Xiaoqi et al. (Nov. 2020). «TinyBERT: Distilling BERT for Nat-
ural Language Understanding.» In: Findings of the Association for
Computational Linguistics: EMNLP 2020. Online: Association for
Computational Linguistics, pp. 4163–4174. doi: 10.18653/v1/20
20.findings-emnlp.372. url: https://www.aclweb.org/antho
logy/2020.findings-emnlp.372.

Kahane, Sylvain and Nicolas Mazziotta (July 2015). «Syntactic Poly-
graphs. A Formalism Extending Both Constituency and Depen-
dency.» In: Proceedings of the 14th Meeting on the Mathematics of
Language (MoL 2015). Chicago, USA: Association for Computa-
tional Linguistics, pp. 152–164. doi: 10.3115/v1/W15-2313. url:
https://www.aclweb.org/anthology/W15-2313.

Kankanampati, Yash et al. (Dec. 2020). «Multitask Easy-First De-
pendency Parsing: Exploiting Complementarities of Different De-
pendency Representations.» In: Proceedings of the 28th Interna-
tional Conference on Computational Linguistics. Barcelona, Spain
(Online): International Committee on Computational Linguistics,
pp. 2497–2508. doi: 10.18653/v1/2020.coling-main.225. url:
https://www.aclweb.org/anthology/2020.coling-main.225.

Kennedy, Alan, Robin Hill, and Joël Pynte (2003). «The Dundee cor-
pus.» In: Proceedings of the 12th European conference on eye move-
ment.

Kiperwasser, Eliyahu and Miguel Ballesteros (2018). «Scheduled multi-
task learning: From syntax to translation.» In: Transactions of the
Association for Computational Linguistics 6, pp. 225–240.

Kiperwasser, Eliyahu and Yoav Goldberg (2016). «Simple and Accurate
Dependency Parsing Using Bidirectional LSTM Feature Represen-
tations.» In: Transactions of the Association for Computational
Linguistics 4, pp. 313–327. doi: 10.1162/tacl_a_00101. url:
https://www.aclweb.org/anthology/Q16-1023.



132 Bibliography

Kitaev, Nikita, Steven Cao, and Dan Klein (July 2019). «Multilingual
Constituency Parsing with Self-Attention and Pre-Training.» In:
Proceedings of the 57th Annual Meeting of the Association for Com-
putational Linguistics. Florence, Italy: Association for Computa-
tional Linguistics, pp. 3499–3505. doi: 10.18653/v1/P19-1340.
url: https://www.aclweb.org/anthology/P19-1340.

Kitaev, Nikita and Dan Klein (July 2018). «Constituency Parsing with
a Self-Attentive Encoder.» In: Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics (Volume 1:
Long Papers). Melbourne, Australia: Association for Computational
Linguistics, pp. 2676–2686. doi: 10.18653/v1/P18-1249. url: ht
tps://www.aclweb.org/anthology/P18-1249.

Klein, Dan and Christopher D. Manning (2002). «Fast Exact Infer-
ence with a Factored Model for Natural Language Parsing.» In:
Proceedings of the 15th International Conference on Neural Infor-
mation Processing Systems. NIPS’02. Cambridge, MA, USA: MIT
Press, pp. 3–10. url: http://dl.acm.org/citation.cfm?id=29
68618.2968619.

Klerke, Sigrid, Yoav Goldberg, and Anders Søgaard (June 2016). «Im-
proving sentence compression by learning to predict gaze.» In: Pro-
ceedings of the 2016 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language
Technologies. San Diego, California: Association for Computational
Linguistics, pp. 1528–1533. doi: 10.18653/v1/N16-1179. url: ht
tps://www.aclweb.org/anthology/N16-1179.

Klerke, Sigrid and Barbara Plank (Nov. 2019). «At a Glance: The Im-
pact of Gaze Aggregation Views on Syntactic Tagging.» In: Pro-
ceedings of the Beyond Vision and LANguage: inTEgrating Real-
world kNowledge (LANTERN). Hong Kong, China: Association for
Computational Linguistics, pp. 51–61. doi: 10.18653/v1/D19-64
08. url: https://www.aclweb.org/anthology/D19-6408.

Kondratyuk, Dan and Milan Straka (Nov. 2019). «75 Languages, 1
Model: Parsing Universal Dependencies Universally.» In: Proceed-
ings of the 2019 Conference on Empirical Methods in Natural Lan-
guage Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP). Hong Kong, China:
Association for Computational Linguistics, pp. 2779–2795. doi: 1
0.18653/v1/D19-1279. url: https://www.aclweb.org/antholo
gy/D19-1279.

Koo, Terry and Michael Collins (July 2010). «Efficient Third-Order
Dependency Parsers.» In: Proceedings of the 48th Annual Meeting
of the Association for Computational Linguistics. Uppsala, Sweden:
Association for Computational Linguistics, pp. 1–11. url: http:
//www.aclweb.org/anthology/P10-1001.



Bibliography 133

Kübler, S., R. McDonald, and J. Nivre (2009). Dependency Parsing.
Synthesis lectures on human language technologies. Morgan & Clay-
pool. isbn: 9781598295962.

Kuhlmann, Marco, Carlos Gómez-Rodríguez, and Giorgio Satta (June
2011). «Dynamic Programming Algorithms for Transition-Based
Dependency Parsers.» In: Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Human Language
Technologies. Portland, Oregon, USA: Association for Computa-
tional Linguistics, pp. 673–682. url: https://www.aclweb.org/a
nthology/P11-1068.

Kulmizev, Artur et al. (Nov. 2019). «Deep Contextualized Word Em-
beddings in Transition-Based and Graph-Based Dependency Pars-
ing - A Tale of Two Parsers Revisited.» In: Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP). Hong Kong, China: Association for
Computational Linguistics, pp. 2755–2768. doi: 10.18653/v1/D1
9-1277. url: https://www.aclweb.org/anthology/D19-1277.

Kuncoro, Adhiguna et al. (Nov. 2016). «Distilling an Ensemble of Greedy
Dependency Parsers into One MST Parser.» In: Proceedings of the
2016 Conference on Empirical Methods in Natural Language Pro-
cessing. Austin, Texas: Association for Computational Linguistics,
pp. 1744–1753. doi: 10.18653/v1/D16-1180. url: https://www
.aclweb.org/anthology/D16-1180.

Lacroix, Ophélie (Aug. 2019). «Dependency Parsing as Sequence La-
beling with Head-Based Encoding and Multi-Task Learning.» In:
Proceedings of the Fifth International Conference on Dependency
Linguistics (Depling, SyntaxFest 2019). Paris, France: Association
for Computational Linguistics, pp. 136–143. doi: 10.18653/v1/W1
9-7716. url: https://aclanthology.org/W19-7716.

Lafferty, John D., Andrew McCallum, and Fernando C. N. Pereira
(2001). «Conditional Random Fields: Probabilistic Models for Seg-
menting and Labeling Sequence Data.» In: Proceedings of the Eigh-
teenth International Conference on Machine Learning. ICML ’01.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 282–289.
isbn: 1558607781.

Lample, Guillaume et al. (June 2016). «Neural Architectures for Named
Entity Recognition.» In: Proceedings of the 2016 Conference of
the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies. San Diego, California:
Association for Computational Linguistics, pp. 260–270. doi: 10.1
8653/v1/N16-1030. url: https://www.aclweb.org/anthology
/N16-1030.

Levy, Omer and Yoav Goldberg (June 2014). «Dependency-BasedWord
Embeddings.» In: Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short Pa-



134 Bibliography

pers). Baltimore, Maryland: Association for Computational Lin-
guistics, pp. 302–308. doi: 10.3115/v1/P14-2050. url: https:
//www.aclweb.org/anthology/P14-2050.

Lhoneux, Miryam de, Sara Stymne, and Joakim Nivre (Sept. 2017a).
«Arc-Hybrid Non-Projective Dependency Parsing with a Static-
Dynamic Oracle.» In: Proceedings of the 15th International Con-
ference on Parsing Technologies. Pisa, Italy: Association for Com-
putational Linguistics, pp. 99–104. url: https://www.aclweb.or
g/anthology/W17-6314.

— (2017b). «Old School vs. New School: Comparing Transition-Based
Parsers with and without Neural Network Enhancement.» In: Pro-
ceedings of the 15th International Workshop on Treebanks and Lin-
guistic Theories (TLT15), Bloomington, IN, USA, January 20-21,
2017. Ed. by Markus Dickinson et al. Vol. 1779. CEUR Workshop
Proceedings. CEUR-WS.org, pp. 99–110. url: http://ceur-ws.o
rg/Vol-1779/08delhoneux.pdf.

Lhoneux, Miryam de et al. (Aug. 2017). «From Raw Text to Univer-
sal Dependencies - Look, No Tags!» In: Proceedings of the CoNLL
2017 Shared Task: Multilingual Parsing from Raw Text to Univer-
sal Dependencies. Vancouver, Canada: Association for Computa-
tional Linguistics, pp. 207–217. doi: 10.18653/v1/K17-3022. url:
https://www.aclweb.org/anthology/K17-3022.

Li, Zuchao et al. (Aug. 2018). «Seq2seq Dependency Parsing.» In: Pro-
ceedings of the 27th International Conference on Computational
Linguistics. Santa Fe, New Mexico, USA: Association for Compu-
tational Linguistics, pp. 3203–3214. url: https://www.aclweb.o
rg/anthology/C18-1271.

Liebling, Daniel J and Sören Preibusch (2014). «Privacy considerations
for a pervasive eye tracking world.» In: Proceedings of the 2014
ACM International Joint Conference on Pervasive and Ubiquitous
Computing: Adjunct Publication, pp. 1169–1177.

Ling, Wang et al. (2015). «Two/Too Simple Adaptations of Word2Vec
for Syntax Problems.» In: Proceedings of the 2015 Conference of
the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies. Denver, Colorado: As-
sociation for Computational Linguistics, pp. 1299–1304. doi: 10.3
115/v1/N15-1142. url: https://www.aclweb.org/anthology
/N15-1142.

Liu, Zihan, Genta Indra Winata, and Pascale Fung (July 2020). «Zero-
Resource Cross-Domain Named Entity Recognition.» In: Proceed-
ings of the 5th Workshop on Representation Learning for NLP. On-
line: Association for Computational Linguistics, pp. 1–6. doi: 10
.18653/v1/2020.repl4nlp-1.1. url: https://www.aclweb.org
/anthology/2020.repl4nlp-1.1.

Lopopolo, Alessandro et al. (June 2019). «Dependency Parsing with
your Eyes: Dependency Structure Predicts Eye Regressions During



Bibliography 135

Reading.» In: Proceedings of the Workshop on Cognitive Modeling
and Computational Linguistics. Minneapolis, Minnesota: Associa-
tion for Computational Linguistics, pp. 77–85. doi: 10.18653/v1
/W19-2909. url: https://www.aclweb.org/anthology/W19-290
9.

Ma, Xuezhe and Eduard Hovy (Aug. 2016). «End-to-end Sequence La-
beling via Bi-directional LSTM-CNNs-CRF.» In: Proceedings of
the 54th Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers). Berlin, Germany: Association for
Computational Linguistics, pp. 1064–1074. doi: 10.18653/v1/P1
6-1101. url: https://www.aclweb.org/anthology/P16-1101.

Ma, Xuezhe et al. (July 2018). «Stack-Pointer Networks for Depen-
dency Parsing.» In: Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Pa-
pers). Melbourne, Australia: Association for Computational Lin-
guistics, pp. 1403–1414. doi: 10.18653/v1/P18-1130. url: https
://www.aclweb.org/anthology/P18-1130.

Marcus, Mitchell P, Mary Ann Marcinkiewicz, and Beatrice Santorini
(1993). «Building a large annotated corpus of English: The Penn
Treebank.» In: Computational linguistics 19.2, pp. 313–330.

Marneffe, Marie-Catherine de, Bill MacCartney, and Christopher D.
Manning (May 2006). «Generating Typed Dependency Parses from
Phrase Structure Parses.» In: Proceedings of the Fifth International
Conference on Language Resources and Evaluation (LREC’06). Genoa,
Italy: European Language Resources Association (ELRA). url: h
ttp://www.lrec-conf.org/proceedings/lrec2006/pdf/440_p
df.pdf.

Martínez Alonso, Héctor and Barbara Plank (Apr. 2017). «When is
multitask learning effective? Semantic sequence prediction under
varying data conditions.» In: Proceedings of the 15th Conference
of the European Chapter of the Association for Computational Lin-
guistics: Volume 1, Long Papers. Valencia, Spain: Association for
Computational Linguistics, pp. 44–53. url: https://www.aclweb
.org/anthology/E17-1005.

Martins, André, Miguel Almeida, and Noah A. Smith (Aug. 2013).
«Turning on the Turbo: Fast Third-Order Non-Projective Turbo
Parsers.» In: Proceedings of the 51st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short Papers). Sofia,
Bulgaria: Association for Computational Linguistics, pp. 617–622.
url: https://www.aclweb.org/anthology/P13-2109.

McDonald, Ryan, Koby Crammer, and Fernando Pereira (June 2005).
«Online Large-Margin Training of Dependency Parsers.» In: Pro-
ceedings of the 43rd Annual Meeting of the Association for Compu-
tational Linguistics (ACL’05). Ann Arbor, Michigan: Association
for Computational Linguistics, pp. 91–98. doi: 10.3115/1219840
.1219852. url: https://www.aclweb.org/anthology/P05-1012.



136 Bibliography

McDonald, Ryan and Joakim Nivre (2011). «Analyzing and Integrating
Dependency Parsers.» In: Computational Linguistics 37.1, pp. 197–
230. doi: 10.1162/coli_a_00039. url: https://www.aclweb.or
g/anthology/J11-1007.

McDonald, Ryan and Giorgio Satta (June 2007). «On the Complexity
of Non-Projective Data-Driven Dependency Parsing.» In: Proceed-
ings of the Tenth International Conference on Parsing Technologies.
Prague, Czech Republic: Association for Computational Linguis-
tics, pp. 121–132. url: https://www.aclweb.org/anthology/W0
7-2216.

Mel’cuk, Igor Aleksandrovic (1988). Dependency syntax: theory and
practice. SUNY press.

Mikolov, Tomas et al. (2013). Efficient Estimation of Word Represen-
tations in Vector Space. arXiv: 1301.3781 [cs.CL].

Mishra, Abhijit et al. (Aug. 2016). «Leveraging Cognitive Features for
Sentiment Analysis.» In: Proceedings of The 20th SIGNLL Con-
ference on Computational Natural Language Learning. Berlin, Ger-
many: Association for Computational Linguistics, pp. 156–166. doi:
10.18653/v1/K16-1016. url: https://www.aclweb.org/anthol
ogy/K16-1016.

Mrini, Khalil et al. (2019). Rethinking Self-Attention: Towards Inter-
pretability in Neural Parsing. arXiv: 1911.03875 [cs.CL].

Mrini, Khalil et al. (Nov. 2020). «Rethinking Self-Attention: Towards
Interpretability in Neural Parsing.» In: Findings of the Association
for Computational Linguistics: EMNLP 2020. Online: Association
for Computational Linguistics, pp. 731–742. doi: 10.18653/v1/2
020.findings-emnlp.65. url: https://www.aclweb.org/antho
logy/2020.findings-emnlp.65.

Nivre, Joakim (Apr. 2003). «An Efficient Algorithm for Projective
Dependency Parsing.» In: Proceedings of the Eighth International
Conference on Parsing Technologies. Nancy, France, pp. 149–160.
url: https://www.aclweb.org/anthology/W03-3017.

— (July 2004). «Incrementality in Deterministic Dependency Pars-
ing.» In: Proceedings of the Workshop on Incremental Parsing:
Bringing Engineering and Cognition Together. Barcelona, Spain:
Association for Computational Linguistics, pp. 50–57. url: https
://www.aclweb.org/anthology/W04-0308.

— (2008). «Algorithms for Deterministic Incremental Dependency Pars-
ing.» In: Computational Linguistics 34.4, pp. 513–553. doi: 10.11
62/coli.07-056-R1-07-027. url: https://www.aclweb.org/an
thology/J08-4003.

— (Aug. 2009). «Non-Projective Dependency Parsing in Expected
Linear Time.» In: Proceedings of the Joint Conference of the 47th
Annual Meeting of the ACL and the 4th International Joint Confer-
ence on Natural Language Processing of the AFNLP. Suntec, Singa-



Bibliography 137

pore: Association for Computational Linguistics, pp. 351–359. url:
https://www.aclweb.org/anthology/P09-1040.

Nivre, Joakim and Daniel Fernández-González (June 2014). «Squibs:
Arc-Eager Parsing with the Tree Constraint.» In: Computational
Linguistics 40.2, pp. 259–267. doi: 10.1162/COLI_a_00185. url:
https://www.aclweb.org/anthology/J14-2002.

Nivre, Joakim, Johan Hall, and Jens Nilsson (May 2006). «MaltParser:
A Data-Driven Parser-Generator for Dependency Parsing.» In: url:
http://www.lrec-conf.org/proceedings/lrec2006/pdf/162
_pdf.pdf.

Nivre, Joakim and Ryan McDonald (June 2008). «Integrating Graph-
Based and Transition-Based Dependency Parsers.» In: Proceedings
of ACL-08: HLT. Columbus, Ohio: Association for Computational
Linguistics, pp. 950–958. url: https://www.aclweb.org/anthol
ogy/P08-1108.

Nivre, Joakim et al. (2007). «MaltParser: A language-independent sys-
tem for data-driven dependency parsing.» In: Natural Language
Engineering 13.2, p. 95.

Nivre, Joakim et al. (May 2016). «Universal Dependencies v1: A Multi-
lingual Treebank Collection.» In: Proceedings of the Tenth Interna-
tional Conference on Language Resources and Evaluation (LREC’16).
Portorož, Slovenia: European Language Resources Association (ELRA),
pp. 1659–1666. url: https://www.aclweb.org/anthology/L16-
1262.

Nivre, Joakim et al. (2018). Universal Dependencies 2.2. LINDAT/CLARIN
digital library at the Institute of Formal and Applied Linguistics
(ÚFAL), Faculty of Mathematics and Physics, Charles University.
url: http://hdl.handle.net/11234/1-2837.

— (2019). Universal Dependencies 2.4. LINDAT/CLARIAH-CZ dig-
ital library at the Institute of Formal and Applied Linguistics
(ÚFAL), Faculty of Mathematics and Physics, Charles University.
url: http://hdl.handle.net/11234/1-2988.

Pascanu, Razvan, Tomas Mikolov, and Yoshua Bengio (2013). «On the
difficulty of training recurrent neural networks.» In: International
conference on machine learning. PMLR, pp. 1310–1318.

Pei, Wenzhe, Tao Ge, and Baobao Chang (July 2015). «An Effective
Neural Network Model for Graph-based Dependency Parsing.» In:
Proceedings of the 53rd Annual Meeting of the Association for Com-
putational Linguistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long Papers). Bei-
jing, China: Association for Computational Linguistics, pp. 313–
322. doi: 10.3115/v1/P15-1031. url: https://www.aclweb.org
/anthology/P15-1031.

Pennington, Jeffrey, Richard Socher, and Christopher Manning (Oct.
2014). «GloVe: Global Vectors for Word Representation.» In: Pro-
ceedings of the 2014 Conference on Empirical Methods in Natural



138 Bibliography

Language Processing (EMNLP). Doha, Qatar: Association for Com-
putational Linguistics, pp. 1532–1543. doi: 10.3115/v1/D14-1162.
url: https://www.aclweb.org/anthology/D14-1162.

Peters, Matthew et al. (June 2018). «Deep Contextualized Word Rep-
resentations.» In: Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, Volume 1 (Long Papers). New
Orleans, Louisiana: Association for Computational Linguistics, pp. 2227–
2237. doi: 10.18653/v1/N18-1202. url: https://www.aclweb.o
rg/anthology/N18-1202.

Pitler, Emily and Ryan McDonald (May 2015). «A Linear-Time Tran-
sition System for Crossing Interval Trees.» In: Proceedings of the
2015 Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language Technolo-
gies. Denver, Colorado: Association for Computational Linguistics,
pp. 662–671. doi: 10.3115/v1/N15-1068. url: https://www.acl
web.org/anthology/N15-1068.

Plank, Barbara, Anders Søgaard, and Yoav Goldberg (Aug. 2016). «Mul-
tilingual Part-of-Speech Tagging with Bidirectional Long Short-
Term Memory Models and Auxiliary Loss.» In: Proceedings of the
54th Annual Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers). Berlin, Germany: Association
for Computational Linguistics, pp. 412–418. doi: 10.18653/v1/P1
6-2067. url: https://www.aclweb.org/anthology/P16-2067.

Qi, Peng and Christopher D. Manning (July 2017). «Arc-swift: A Novel
Transition System for Dependency Parsing.» In: Proceedings of the
55th Annual Meeting of the Association for Computational Linguis-
tics (Volume 2: Short Papers). Vancouver, Canada: Association for
Computational Linguistics, pp. 110–117. doi: 10.18653/v1/P17-
2018. url: https://www.aclweb.org/anthology/P17-2018.

Rayner, Keith (1998). «Eye movements in reading and information
processing: 20 years of research.» In: Psychological bulletin 124.3,
p. 372.

— (2009). «The 35th Sir Frederick Bartlett Lecture: Eye movements
and attention in reading, scene perception, and visual search.» In:
Quarterly journal of experimental psychology 62.8, pp. 1457–1506.

Ren, Xiaona, Xiao Chen, and Chunyu Kit (2013). «Combine Con-
stituent and Dependency Parsing via Reranking.» In: Proceedings
of the Twenty-Third International Joint Conference on Artificial
Intelligence. IJCAI ’13. Beijing, China: AAAI Press, pp. 2155–2161.
isbn: 978-1-57735-633-2. url: http://dl.acm.org/citation.cf
m?id=2540128.2540438.

Ruder, Sebastian (2017). «An Overview of Multi-Task Learning in Deep
Neural Networks.» In: CoRR abs/1706.05098. arXiv: 1706.05098.
url: http://arxiv.org/abs/1706.05098.



Bibliography 139

Salama, Amr Rekaby andWolfgang Menzel (2016). «Multimodal graph-
based dependency parsing of natural language.» In: International
Conference on Advanced Intelligent Systems and Informatics. Springer,
pp. 22–31.

Sartorio, Francesco, Giorgio Satta, and Joakim Nivre (Aug. 2013). «A
Transition-Based Dependency Parser Using a Dynamic Parsing
Strategy.» In: Proceedings of the 51st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1: Long Papers).
Sofia, Bulgaria: Association for Computational Linguistics, pp. 135–
144. url: https://www.aclweb.org/anthology/P13-1014.

Schröder, Fynn and Chris Biemann (July 2020). «Estimating the influ-
ence of auxiliary tasks for multi-task learning of sequence tagging
tasks.» In: Proceedings of the 58th Annual Meeting of the Associ-
ation for Computational Linguistics. Online: Association for Com-
putational Linguistics, pp. 2971–2985. doi: 10.18653/v1/2020.a
cl-main.268. url: https://www.aclweb.org/anthology/2020
.acl-main.268.

Schwartz, Roy et al. (2019). «Green AI.» In: CoRR abs/1907.10597.
arXiv: 1907.10597. url: http://arxiv.org/abs/1907.10597.

Seddah, Djamé et al. (Oct. 2013). «Overview of the SPMRL 2013
Shared Task: A Cross-Framework Evaluation of Parsing Morpho-
logically Rich Languages.» In: Proceedings of the Fourth Workshop
on Statistical Parsing of Morphologically-Rich Languages. Seattle,
Washington, USA: Association for Computational Linguistics, pp. 146–
182. url: https://aclanthology.org/W13-4917.

Shi, Tianze, Liang Huang, and Lillian Lee (Sept. 2017). «Fast(er) Exact
Decoding and Global Training for Transition-Based Dependency
Parsing via a Minimal Feature Set.» In: Proceedings of the 2017
Conference on Empirical Methods in Natural Language Processing.
Copenhagen, Denmark: Association for Computational Linguistics,
pp. 12–23. doi: 10.18653/v1/D17-1002. url: https://www.aclw
eb.org/anthology/D17-1002.

Smith, Aaron et al. (Oct. 2018). «82 Treebanks, 34 Models: Universal
Dependency Parsing with Multi-Treebank Models.» In: Proceedings
of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw
Text to Universal Dependencies. Brussels, Belgium: Association for
Computational Linguistics, pp. 113–123. doi: 10.18653/v1/K18-
2011. url: https://www.aclweb.org/anthology/K18-2011.

Søgaard, Anders (Aug. 2016). «Evaluating word embeddings with fMRI
and eye-tracking.» In: Proceedings of the 1st Workshop on Evalu-
ating Vector-Space Representations for NLP. Berlin, Germany: As-
sociation for Computational Linguistics, pp. 116–121. doi: 10.186
53/v1/W16-2521. url: https://www.aclweb.org/anthology/W1
6-2521.

Søgaard, Anders and Yoav Goldberg (Aug. 2016). «Deep multi-task
learning with low level tasks supervised at lower layers.» In: Pro-



140 Bibliography

ceedings of the 54th Annual Meeting of the Association for Com-
putational Linguistics (Volume 2: Short Papers). Berlin, Germany:
Association for Computational Linguistics, pp. 231–235. doi: 10.1
8653/v1/P16-2038. url: https://www.aclweb.org/anthology
/P16-2038.

Song, Kaiqiang, Lin Zhao, and Fei Liu (Aug. 2018). «Structure-Infused
Copy Mechanisms for Abstractive Summarization.» In: Proceedings
of the 27th International Conference on Computational Linguistics.
Santa Fe, New Mexico, USA: Association for Computational Lin-
guistics, pp. 1717–1729. url: https://www.aclweb.org/antholo
gy/C18-1146.

Spoustová, Drahomíra and Miroslav Spousta (2010). «Dependency Pars-
ing as a Sequence Labeling Task.» In: The Prague Bulletin of Math-
ematical Linguistics 94.1, pp. 7–14. url: https://content.scie
ndo.com/view/journals/pralin/94/1/article-p7.xml.

Straka, Milan and Jana Straková (Aug. 2017). «Tokenizing, POS Tag-
ging, Lemmatizing and Parsing UD 2.0 with UDPipe.» In: Proceed-
ings of the CoNLL 2017 Shared Task: Multilingual Parsing from
Raw Text to Universal Dependencies. Vancouver, Canada: Associ-
ation for Computational Linguistics, pp. 88–99. doi: 10.18653/v
1/K17-3009. url: https://www.aclweb.org/anthology/K17-30
09.

Strubell, Emma, Ananya Ganesh, and Andrew McCallum (July 2019).
«Energy and Policy Considerations for Deep Learning in NLP.»
In: Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics. Florence, Italy: Association for Compu-
tational Linguistics, pp. 3645–3650. doi: 10.18653/v1/P19-1355.
url: https://www.aclweb.org/anthology/P19-1355.

Strubell, Emma and Andrew McCallum (Sept. 2017). «Dependency
Parsing with Dilated Iterated Graph CNNs.» In: Proceedings of
the 2nd Workshop on Structured Prediction for Natural Language
Processing. Copenhagen, Denmark: Association for Computational
Linguistics, pp. 1–6. doi: 10.18653/v1/W17-4301. url: https:
//www.aclweb.org/anthology/W17-4301.

Strubell, Emma et al. (Oct. 2018). «Linguistically-Informed Self-Attention
for Semantic Role Labeling.» In: Proceedings of the 2018 Confer-
ence on Empirical Methods in Natural Language Processing. Brus-
sels, Belgium: Association for Computational Linguistics, pp. 5027–
5038. doi: 10.18653/v1/D18-1548. url: https://www.aclweb.o
rg/anthology/D18-1548.

Strzyz, Michalina and Carlos Gómez-Rodríguez (2019). «Speeding up
Natural Language Parsing by Reusing Partial Results.» In: arXiv
1904.03417 [cs.CL]. url: https://arxiv.org/abs/1904.03417.

Strzyz, Michalina, David Vilares, and Carlos Gómez-Rodríguez (July
2019a). «Sequence Labeling Parsing by Learning across Represen-
tations.» In: Proceedings of the 57th Annual Meeting of the Associa-



Bibliography 141

tion for Computational Linguistics. Florence, Italy: Association for
Computational Linguistics, pp. 5350–5357. doi: 10.18653/v1/P1
9-1531. url: https://www.aclweb.org/anthology/P19-1531.

— (Nov. 2019b). «Towards Making a Dependency Parser See.» In:
Proceedings of the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP). Hong Kong,
China: Association for Computational Linguistics, pp. 1500–1506.
doi: 10.18653/v1/D19-1160. url: https://www.aclweb.org/an
thology/D19-1160.

— (June 2019c). «Viable Dependency Parsing as Sequence Labeling.»
In: Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers). Min-
neapolis, Minnesota: Association for Computational Linguistics,
pp. 717–723. doi: 10.18653/v1/N19-1077. url: https://www
.aclweb.org/anthology/N19-1077.

— (Dec. 2020). «Bracketing Encodings for 2-Planar Dependency Pars-
ing.» In: Proceedings of the 28th International Conference on Com-
putational Linguistics. Barcelona, Spain (Online): International Com-
mittee on Computational Linguistics, pp. 2472–2484. url: https:
//www.aclweb.org/anthology/2020.coling-main.223.

Tenney, Ian et al. (2019). What do you learn from context? Probing for
sentence structure in contextualized word representations. arXiv: 1
905.06316 [cs.CL].

Tesnière, L. (1959). Élements de syntaxe structurale. C. Klincksieck.
Titov, Ivan and James Henderson (June 2007). «A Latent Variable

Model for Generative Dependency Parsing.» In: Proceedings of the
Tenth International Conference on Parsing Technologies. Prague,
Czech Republic: Association for Computational Linguistics, pp. 144–
155. url: https://www.aclweb.org/anthology/W07-2218.

Toneva, Mariya and Leila Wehbe (2019). «Interpreting and improving
natural-language processing (in machines) with natural language-
processing (in the brain).» In: Advances in Neural Information Pro-
cessing Systems, pp. 14954–14964.

Toutanova, Kristina et al. (2003). «Feature-Rich Part-of-Speech Tag-
ging with a Cyclic Dependency Network.» In: Proceedings of the
2003 Human Language Technology Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics, pp. 252–
259. url: https://www.aclweb.org/anthology/N03-1033.

Vaswani, Ashish et al. (2017). «Attention is All you Need.» In: Ad-
vances in Neural Information Processing Systems. Ed. by I. Guyon
et al. Vol. 30. Curran Associates, Inc., pp. 5998–6008. url: https:
//proceedings.neurips.cc/paper/2017/file/3f5ee243547dee
91fbd053c1c4a845aa-Paper.pdf.



142 Bibliography

Vieira, Tim and Jason Eisner (2017). «Learning to Prune: Exploring
the Frontier of Fast and Accurate Parsing.» In: Transactions of
the Association for Computational Linguistics 5, pp. 263–278. doi:
10.1162/tacl_a_00060. url: https://www.aclweb.org/anthol
ogy/Q17-1019.

Vilares, David, Mostafa Abdou, and Anders Søgaard (June 2019). «Bet-
ter, Faster, Stronger Sequence Tagging Constituent Parsers.» In:
Proceedings of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Papers). Minneapo-
lis, Minnesota: Association for Computational Linguistics, pp. 3372–
3383. doi: 10.18653/v1/N19-1341. url: https://www.aclweb.o
rg/anthology/N19-1341.

Vilares, David and Carlos Gómez-Rodríguez (Nov. 2018). «Transition-
based Parsing with Lighter Feed-Forward Networks.» In: Proceed-
ings of the Second Workshop on Universal Dependencies (UDW
2018). Brussels, Belgium: Association for Computational Linguis-
tics, pp. 162–172. doi: 10.18653/v1/W18-6019. url: https://ac
lanthology.org/W18-6019.

— (Nov. 2020). «Discontinuous Constituent Parsing as Sequence La-
beling.» In: Proceedings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP). Online: Association
for Computational Linguistics, pp. 2771–2785. doi: 10.18653/v1
/2020.emnlp-main.221. url: https://aclanthology.org/2020
.emnlp-main.221.

Vilares, David et al. (2020). «Parsing as Pretraining.» In: Proceedings
of the Thirty-Fourth AAAI Conference on Artificial Intelligence,
AAAI 2020, New York, NY, USA, February 7-12, 2020. AAAI
Press, pp. 9114–9121. doi: https://doi.org/10.1609/aaai.v34
i05.6446. url: https://aaai.org/ojs/index.php/AAAI/artic
le/view/6446.

Vinyals, Oriol, Meire Fortunato, and Navdeep Jaitly (2015). «Pointer
Networks.» In: Advances in Neural Information Processing Sys-
tems. Ed. by C. Cortes et al. Vol. 28. Curran Associates, Inc.,
pp. 2692–2700. url: https://proceedings.neurips.cc/pape
r/2015/file/29921001f2f04bd3baee84a12e98098f-Paper.pdf.

Vinyals, Oriol et al. (2015). «Grammar as a foreign language.» In: Ad-
vances in neural information processing systems 28, pp. 2773–2781.

Virtanen, Antti et al. (2019). «Multilingual is not enough: BERT for
Finnish.» In: arXiv preprint arXiv:1912.07076.

Wang, Hanrui et al. (July 2020). «HAT: Hardware-Aware Transformers
for Efficient Natural Language Processing.» In: Proceedings of the
58th Annual Meeting of the Association for Computational Linguis-
tics. Online: Association for Computational Linguistics, pp. 7675–
7688. doi: 10.18653/v1/2020.acl-main.686. url: https://www
.aclweb.org/anthology/2020.acl-main.686.



Bibliography 143

Wang, Wenhui and Baobao Chang (Aug. 2016). «Graph-based Depen-
dency Parsing with Bidirectional LSTM.» In: Proceedings of the
54th Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers). Berlin, Germany: Association
for Computational Linguistics, pp. 2306–2315. doi: 10.18653/v1
/P16-1218. url: https://www.aclweb.org/anthology/P16-121
8.

Wu, Shijie and Mark Dredze (July 2020). «Are All Languages Created
Equal in Multilingual BERT?» In: Proceedings of the 5th Work-
shop on Representation Learning for NLP. Online: Association for
Computational Linguistics, pp. 120–130. doi: 10.18653/v1/2020
.repl4nlp-1.16. url: https://aclanthology.org/2020.repl4
nlp-1.16.

Wu, Yonghui et al. (2016). «Google’s neural machine translation sys-
tem: Bridging the gap between human and machine translation.»
In: arXiv preprint arXiv:1609.08144. url: https://arxiv.org/a
bs/1609.08144.

Yamada, Hiroyasu and Yuji Matsumoto (Apr. 2003). «Statistical De-
pendency Analysis with Support Vector Machines.» In: Proceedings
of the Eighth International Conference on Parsing Technologies.
Nancy, France, pp. 195–206. url: https://www.aclweb.org/ant
hology/W03-3023.

Yang, Jie and Yue Zhang (July 2018). «NCRF++: An Open-source
Neural Sequence Labeling Toolkit.» In: pp. 74–79. doi: 10.18653
/v1/P18-4013. url: https://www.aclweb.org/anthology/P18-
4013.

Yang, Zhilin, Ruslan Salakhutdinov, and William W. Cohen (2016).
«Multi-Task Cross-Lingual Sequence Tagging from Scratch.» In:
CoRR abs/1603.06270. arXiv: 1603.06270. url: http://arxiv
.org/abs/1603.06270.

Yang, Zhilin, Ruslan Salakhutdinov, and William W Cohen (2017).
«Transfer learning for sequence tagging with hierarchical recurrent
networks.» In: arXiv preprint arXiv:1703.06345.

Yang, Zhilin et al. (2019). «XLNet: Generalized Autoregressive Pre-
training for Language Understanding.» In: Advances in Neural In-
formation Processing Systems. Ed. by H. Wallach et al. Vol. 32.
Curran Associates, Inc., pp. 5753–5763. url: https://proceedin
gs.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9
ee67cc69-Paper.pdf.

Yli-Jyrä, Anssi Mikael (2003). «Multiplanarity – a Model for Depen-
dency Structures in Treebanks.» In: TLT 2003. Proceedings of the
Second Workshop on Treebanks and Linguistic Theories. Ed. by
Joakim Nivre and Erhard Hinrichs. Vol. 9. Mathematical Modelling
in Physics, Engineering and Cognitive Sciences. Växjö, Sweden:
Växjö University Press, pp. 189–200.



144 Bibliography

Yli-Jyrä, Anssi (2012). «On Dependency Analysis via Contractions and
Weighted FSTs.» In: Shall We Play the Festschrift Game? Essays
on the Occasion of Lauri Carlson’s 60th Birthday. Ed. by Diana
Santos, Krister Lindén, and Wanjiku Ng’ang’a. Berlin, Heidelberg:
Springer Berlin Heidelberg, pp. 133–158. isbn: 978-3-642-30773-7.
doi: 10.1007/978-3-642-30773-7_10. url: https://doi.org/1
0.1007/978-3-642-30773-7_10.

Yli-Jyrä, Anssi and Carlos Gómez-Rodríguez (July 2017). «Generic
Axiomatization of Families of Noncrossing Graphs in Dependency
Parsing.» In: Proceedings of the 55th Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 1: Long Papers). Van-
couver, Canada: Association for Computational Linguistics, pp. 1745–
1755. isbn: 978-1-945626-75-3. url: http://aclweb.org/anthol
ogy/P17-1160.

Zeman, Daniel et al. (2021). Universal Dependencies 2.8.1. url: http:
//hdl.handle.net/11234/1-3687.

Zhang, Bo et al. (July 2020). «Syntax-Aware Opinion Role Labeling
with Dependency Graph Convolutional Networks.» In: Proceed-
ings of the 58th Annual Meeting of the Association for Computa-
tional Linguistics. Online: Association for Computational Linguis-
tics, pp. 3249–3258. doi: 10.18653/v1/2020.acl-main.297. url:
https://www.aclweb.org/anthology/2020.acl-main.297.

Zhang, Meishan et al. (June 2019). «Syntax-Enhanced Neural Ma-
chine Translation with Syntax-Aware Word Representations.» In:
Proceedings of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Papers). Minneapo-
lis, Minnesota: Association for Computational Linguistics, pp. 1151–
1161. doi: 10.18653/v1/N19-1118. url: https://www.aclweb.o
rg/anthology/N19-1118.

Zhang, X. et al. (2018). «Converting Your Thoughts to Texts: Enabling
Brain Typing via Deep Feature Learning of EEG Signals.» In: 2018
IEEE International Conference on Pervasive Computing and Com-
munications (PerCom), pp. 1–10.

Zhang, Xingxing, Jianpeng Cheng, and Mirella Lapata (Apr. 2017).
«Dependency Parsing as Head Selection.» In: Proceedings of the
15th Conference of the European Chapter of the Association for
Computational Linguistics: Volume 1, Long Papers. Valencia, Spain:
Association for Computational Linguistics, pp. 665–676. url: htt
ps://www.aclweb.org/anthology/E17-1063.

Zhang, Yu, Zhenghua Li, and Min Zhang (July 2020). «Efficient Second-
Order TreeCRF for Neural Dependency Parsing.» In: Proceedings
of the 58th Annual Meeting of the Association for Computational
Linguistics. Online: Association for Computational Linguistics, pp. 3295–
3305. doi: 10.18653/v1/2020.acl-main.302. url: https://www
.aclweb.org/anthology/2020.acl-main.302.



Bibliography 145

Zhang, Yu, Houquan Zhou, and Zhenghua Li (2020). «Fast and Accu-
rate Neural CRF Constituency Parsing.» In: Proceedings of IJCAI,
pp. 4046–4053. doi: 10.24963/ijcai.2020/560. url: https://d
oi.org/10.24963/ijcai.2020/560.

Zhang, Yue and Stephen Clark (Oct. 2008). «A Tale of Two Parsers: In-
vestigating and Combining Graph-based and Transition-based De-
pendency Parsing.» In: Proceedings of the 2008 Conference on Em-
pirical Methods in Natural Language Processing. Honolulu, Hawaii:
Association for Computational Linguistics, pp. 562–571. url: htt
ps://www.aclweb.org/anthology/D08-1059.

Zhang, Yue and Joakim Nivre (June 2011). «Transition-based Depen-
dency Parsing with Rich Non-local Features.» In: Proceedings of
the 49th Annual Meeting of the Association for Computational Lin-
guistics: Human Language Technologies. Portland, Oregon, USA:
Association for Computational Linguistics, pp. 188–193. url: htt
ps://www.aclweb.org/anthology/P11-2033.

Zhou, Ganbin et al. (2018). «Tree-Structured Neural Machine for Linguistics-
Aware Sentence Generation.» In: Proceedings of the Thirty-Second
AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th
innovative Applications of Artificial Intelligence (IAAI-18), and the
8th AAAI Symposium on Educational Advances in Artificial Intel-
ligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7,
2018. Ed. by Sheila A. McIlraith and Kilian Q. Weinberger. AAAI
Press, pp. 5722–5729. url: https://www.aaai.org/ocs/index.p
hp/AAAI/AAAI18/paper/view/16567.

Zhou, Junru, Zuchao Li, and Hai Zhao (Nov. 2020). «Parsing All: Syn-
tax and Semantics, Dependencies and Spans.» In: Findings of the
Association for Computational Linguistics: EMNLP 2020. Online:
Association for Computational Linguistics, pp. 4438–4449. doi: 1
0.18653/v1/2020.findings-emnlp.398. url: https://www.acl
web.org/anthology/2020.findings-emnlp.398.

Zhou, Junru and Hai Zhao (July 2019). «Head-Driven Phrase Struc-
ture Grammar Parsing on Penn Treebank.» In: Proceedings of the
57th Annual Meeting of the Association for Computational Lin-
guistics. Florence, Italy: Association for Computational Linguistics,
pp. 2396–2408. doi: 10.18653/v1/P19-1230. url: https://www
.aclweb.org/anthology/P19-1230.

Zhu, Muhua et al. (Aug. 2013). «Fast and Accurate Shift-Reduce Con-
stituent Parsing.» In: Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Pa-
pers). Sofia, Bulgaria: Association for Computational Linguistics,
pp. 434–443. url: https://www.aclweb.org/anthology/P13-10
43.





AModel details

A.1 Model parameters

A.1.1 NCRF++: Setup 1

Hyperparameters Value
Loss cross-entropy
Batch size training:8 test:128
Optimizer Stochastic Gradient Descent (SGD)
Epochs 100
Initial learning rate 0.02
Learning rate decay 0.05
Momentum 0.9
Dropout 0.5
Word embeddings 100
Char embeddings 30
PoS tag embeddings 25
BiLSTM size 800 (400:LSTM→ and 400:LSTM←)
Character hidden vector 50
Bi-LSTM layer 2

Table 41: Hyperparameters for the BiLSTM model in setup 1.

We keep a model that obtains the highest LAS on the development set
during training with exception of the experiments from Section 3.3.1,
Section 4.3.1.1 and Section 4.4.1.4, in which the models are chosen
based on the highest UAS. For experiments with the Penn Treebank
(PTB), we use the word embeddings proposed by Li et al., 2018, while
for UD languages we use the word embeddings from Ginter et al., 2017
for available languages.
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A.1.2 NCRF++: Setup 2

Hyperparameters Value
Loss cross-entropy
Batch size training:8 test:128
Optimizer Stochastic Gradient Descent (SGD)
Epochs 150
Initial learning rate 0.02
Learning rate decay 0.05
Momentum 0.9
Dropout 0.5
Word embeddings 100
Char embeddings 30
Self-defined features emb. 20 1

BiLSTM size 800 (400:LSTM→ and 400:LSTM←)
Character hidden vector 50
Bi-LSTM layer 2

Table 42: Hyperparameters for BiLSTM model in setup 2.

MTL model Weighting factor
2-task D 1
3-task C 1
D with auxiliary task C D: 1 and C: 0.2
C with auxiliary task D C: 1 and D: 0.1
Multi-task C and D 1

Table 43: Weighting factors used for learning representations from dependency
parsing (denoted with D) and constituency parsing (C).

We keep a dependency parser model with the highest LAS score ob-
tained on the dev set during training, while for constituency parsing
we keep a model with the highest F1 score. In case of using both
paradigms as main tasks in the MTL setup, a model is chosen based on
the highest harmonic mean among LAS and F1 scores. In this setup, we
only use pre-trained word embeddings in models trained on the PTB
treebank provided by Li et al., 2018, but not for other languages.

1 In case of the models trained on the PTB treebank, we use PoS tags features with
embeddings size of 25.
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A.1.3 BERT

Hyperparameters Value
Loss cross-entropy
Batch size 8
Epochs 45
Learning rate 10−5

Max.seq.length 400 (510 Russian)

Table 44: Hyperparameters for BERT.

The best model is chosen based on the highest LAS score obtained
on the dev set during training.





BFurther analyses

B.1 Statistics on highly non-projective
treebanks

We provide statistics relevant for the bracketing-based family of en-
codings described in Chapter 4 which are tested on highly non-projective
UDv2.4 treebanks. Table 45 provides the size of treebanks sorted by
the decreasing percentage of non-projective sentences they contain. It
is worth mentioning that we excluded some treebanks due to lack of
pre-trained UDPipe models or a development set.

Language Train Dev Test
Ancient GreekPerseus 11476 (62.77%) 1137 (74.41%) 1306 (64.40%)
BasqueBDT 5396 (33.52%) 1798 (33.48%) 1799 (31.80%)
HungarianSzeged 910 (25.71%) 441 (33.56%) 449 (23.61%)
PortugueseBosque 8328 (23.60%) 560 (19.46%) 477 (22.85%)
UrduUDTB 4043 (23.00%) 552 (23.01%) 535 (18.88%)
AfrikaansAfriBooms 1315 (22.21%) 194 (20.10%) 425 (23.76%)
KoreanKaist 23010 (21.92%) 2066 (22.12%) 2287 (19.15%)
DanishDDT 4383 (21.83%) 564 (21.81%) 565 (18.58%)
GothicPROIEL 3387 (16.77%) 985 (19.09%) 1029 (18.76%)
LithuanianHSE 153 (16.34%) 55 (16.36%) 55 (21.82%)

Table 45: Total number of sentences in the training, development and test
splits for the selected highly non-projective UD treebanks. We pro-
vide the percentage of non-projective sentences in parentheses.

B.2 Impact of the training data size

We examine the effect of training data size on the performance of our
sequence labeling parsers compared to the transition-based bist parser
(Kiperwasser and Goldberg, 2016). Figure 32 illustrates the UAS and
LAS scores obtained by each parser with respect to the percentage of
ptb size used for training. The sequence labeling model relies on the rel-
ative PoS-based encoding with the hyperparameters from Section A.1.1.
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Figure 32: Impact of the ptb data size available for PoS-based models and
BIST parser during training on the UAS and LAS results on the
test set.

In general, the results suggest that our model requires more training
data than the bist parser in order to obtain similar accuracy. This
is most prominent when there is only a small amount of labeled data
available (for instance, when using only 10% of ptb training data).
However, this discrepancy in accuracy diminishes with the increase of
training data.



CResumen largo en español

En esta tesis presentamos nuevos métodos para reformular el análi-
sis sintáctico de dependencias como una tarea de etiquetado secuencial
que puede servir como una alternativa viable a los enfoques basados en
transiciones y grafos. Para ello, proponemos un conjunto de métodos
de codificación que hacen corresponder a cada árbol de dependencias
una secuencia etiquetas discretas, de tal manera que cada palabra de la
oración se asocia con una, y solo una etiqueta. Trabajo previo en este
sentido (Spoustová y Spousta, 2010) ha sugerido que una formulación
del análisis sintáctico como etiquetado secuencial era poco práctica. Sin
embargo, en esta tesis, revisamos y ampliamos estos intentos previos
aprovechando recientes avances en modelos de redes neuronales que pue-
den ser aplicados al procesamiento del lenguaje natural. En relación a
esto, Gómez-Rodríguez y Vilares (2018) han demostrado recientemente
que este tipo de enfoque puede aplicarse con éxito a paradigmas rela-
cionados, como análisis sintáctico de constituyentes, siempre y cuando
se utilicen redes neuronales recurrentes (rnn). En general, este método
puede aplicarse a una amplia gama de arquitecturas neuronales. En
esta tesis nos apoyamos en arquitecturas basadas en BiLSTM y BERT,
que ampliamos con MTL.

Reformular el análisis sintáctico de dependencias como etiquetado
secuencial ofrece varias ventajas. En primer lugar, nuestro analizador
de etiquetado secuencial se basa en una arquitectura conceptualmente
sencilla y prescinde de los algoritmos tradicionales de análisis sintáctico
o de las estructuras auxiliares. Esto, a su vez, contribuye a mitigar el
recurrente problema de la velocidad en el análisis sintáctico. En segundo
lugar, nuestro enfoque tiene otras implicaciones prácticas. Por ejemplo,
este método permite ejecutar un analizador sintáctico en un software
genérico de etiquetado secuencial, y además provee una manera sencilla
de utilizar el árbol de análisis sintáctico completo como entrada a otras
tareas de procesamiento de lenguaje natural.

El pilar del análisis sintáctico de dependencias como etiquetado se-
cuencial son las codificaciones que permiten convertir un árbol de de-
pendencias en una secuencia de etiquetas. La principal contribución de
nuestro trabajo consiste en presentar tres familias de codificaciones que
difieren en la forma de representar un árbol de dependencias. Exami-
namos empíricamente su viabilidad en términos de precisión y analiza-
mos sus facetas. Además, nuestro trabajo explora el aprovechamiento
de datos complementarios externos para aumentar el conocimiento y la
competencia de nuestro analizador sintáctico. Para ello, examinamos
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la capacidad del analizador sintáctico de etiquetado secuencial para
explotar representaciones procedentes de otro paradigma de análisis
sintáctico, así como de datos de movimientos oculares.

C.1 Linealizaciones

Las codificaciones desempeñan un papel fundamental en nuestro enfo-
que, ya que sirven como métodos de linealización que permiten asignar
árboles de dependencias a etiquetas discretas. En concreto, en esta tesis
nosotros trabajamos con tres familias de codificaciones: (i) selección de
núcleos que codifica la posición del núcleo directamente en la etiqueta
o de forma relativa, (ii) corchetes que representa los arcos de dependen-
cias izquierda y derecha en términos de pares equilibrados de elementos
de paréntesis y (iii) transiciones que divide las transiciones recupera-
das de los sistemas basados en transiciones en subsecciones asignadas
a cada palabra. Como resultado, cada familia tiene características dife-
rentes que discutiremos a continuación con el apoyo de los resultados
empíricos obtenidos con modelos basados en estas codificaciones. Ade-
más, cada codificación va acompañada de un método de descodificación
que convierte de nuevo una secuencia de etiquetas predicha en un árbol
de dependencias. Sin embargo, como algunas de las etiquetas predichas
pueden ser erróneas, contribuyendo a crear un árbol malformado, el
método de descodificación debe controlar también esta situación. Para
ello, definimos heurísticas de postprocesado que garantizan que el ana-
lizador sintáctico devuelva un árbol de dependencias acíclico, en el que
cada palabra depende únicamente de un único núcleo.

C.1.1 Codificaciones basadas en selección de núcleos

El Capítulo 3 presenta las codificaciones de selección de núcleos en las
que cada etiqueta para una palabra dada codifica su núcleo utilizando
su posición absoluta en una frase o la distancia relativa entre el núcleo
y el dependiente de acuerdo a distintos criterios. En concreto, en esta
tesis hemos trabajado con tres codificaciones de este tipo.
En primer lugar, aplicamos la codificación posicional naif, donde la

etiqueta de una palabra dada contiene directamente el índice de su
núcleo y la relación de dependencia correspondiente a ese arco. Como
ejemplo, se puede suponer que el núcleo de una palabra w está en el
índice 4 con una relación de dependencia det, por lo que la etiqueta de
la palabra enfocada es de la forma (4, det).
En segundo lugar, utilizamos la codificación posicional relativa, que

codifica la distancia relativa en términos de la posición del índice. Por
ejemplo, una etiqueta (+1, det) en esta codificación denotaría entonces
que la palabra precedente es el núcleo de la palabra enfocada. Esta
codificación se ha utilizado en trabajos anteriores (Li y col., 2018; Ki-
perwasser y Ballesteros, 2018).



C.1 linealizaciones 155

En tercer lugar, proponemos la codificación relativa basada en el eti-
quetado morfológico que codifica la distancia relativa utilizando el eti-
quetado morfológico del núcleo de la palabra. Por ejemplo, una etiqueta
para una palabra w que contenga (+1,N , det) indica que el núcleo es
la primera palabra a la derecha con el etiquetado morfológico N . Esta
codificación es similar a la propuesta por Spoustová y Spousta (2010).

Los resultados de los experimentos sugieren que las codificaciones di-
fieren en el espacio de etiquetas que generan. La codificación posicional
naif es la que sufre mayor dispersión de etiquetas, lo que contribuye a
una precisión considerablemente menor. Por su parte, la codificación
relativa basada en en el etiquetado morfológico consigue la mejor preci-
sión. Sin embargo, el rendimiento de esta codificación está condicionado
por la calidad y la cantidad de los etiquetados morfológicos disponibles
en un corpus. También investigamos si el aprendizaje de esta codifica-
ción puede mejorarse aplicando el aprendizaje multitarea, donde cada
etiqueta se descompone en sus componentes aprendidos como tareas
separadas. Los resultados muestran que el aprendizaje de esta codifi-
cación como dos tareas produce ganancias adicionales en la precisión.
Además, esta codificación se contradice con los recientes hallazgos que
cuestionan la utilidad de los etiquetados morfológicos en el análisis sin-
táctico de dependencias.

C.1.2 Codificaciones basadas en corchetes

En el Capítulo 4 introducimos otra familia de codificaciones que se
basa en corchetes equilibrados. Más en detalle, proponemos la codifi-
cación 1-planar en la que un arco de dependencia izquierdo se codifica
con un par de corchetes (<,\), mientras que un arco de dependencia
derecho se codifica con (/,>). Nuestros experimentos demuestran que
la codificación basada en corchetes 1-planar es viable pero se comporta
ligeramente peor que la codificación relativa basada en el etiquetado
morfológico en el caso de utilizar los etiquetados morfológicos como ca-
racterísticas del modelo. Sin embargo, la tendencia se invierte cuando
no se utilizan etiquetados morfológicos. Esto puede explicarse por el
hecho de que la codificación basada en corchetes no depende de nin-
guna característica. En resumen, los experimentos sugieren que esta
aproximación puede ser una alternativa útil en la ausencia de informa-
ción morfológica para un determinado idioma. Además, la codificación
1-planar no proporciona una cobertura completa de los árboles no pro-
yectivos. En concreto, los arcos que se cruzan en la misma dirección se
descodifican como proyectivos. Esta es una deficiencia con respecto a la
codificación basada en selección de núcleos que soporta completamente
los árboles no proyectivos. Para paliar esta limitación, proponemos una
variante de esta codificación que se basa en una propiedad denominada
2-planaridad.
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En este segundo enfoque los arcos se dividen en dos planos de forma
que los arcos que pertenecen al mismo plano no se cruzan. Para ello,
seguimos dos estrategias de asignación de planos que evitan el uso del
segundo plano siempre que no sea necesario. En la primera estrategia,
asignamos un arco a al primer plano si ningún arco que cruce a tiene
ya asignado el primer plano. En caso contrario, asignamos el segundo
plano siempre que sea posible, es decir, si el arco a cruza arcos asig-
nados a ambos planos, no se asigna a ningún plano. Sin embargo, esta
estrategia puede llevar a decisiones subóptimas en la que no se puede
asignar un plano a un arco aunque el árbol sea realmente 2-planar. Para
garantizar la cobertura completa de los árboles 2-planar, introducimos
una segunda estrategia de asignación de planos. En este segundo caso
cuando un arco se asigna al primer plano, prohibimos ese plano para sus
vecinos (es decir, los arcos que lo cruzan), a continuación prohibimos
el segundo plano para los vecinos de sus vecinos, y así sucesivamente.
Para utilizar las estrategias en el contexto del análisis sintáctico de de-
pendencias como etiquetado secuencial, introducimos un método que
equilibra los corchetes y que codifica los arcos en el segundo plano. Para
ello, ampliamos los elementos de los corchetes con elementos adiciona-
les (B∗ = {<∗, /∗, /∗, >∗}) que denotan la pertenencia al segundo plano.
Los resultados empíricos muestran que las codificaciones 2-planar son
capaces de preservar casi por completo los árboles no proyectivos sin
apenas coste adicional en la velocidad de análisis. Además, ambas co-
dificaciones 2-planar proporcionan mejoras en la precisión con respecto
a la codificación basada en corchetes 1-planar. Hemos comprobado que
las codificaciones 2-planar basadas en diferentes estrategias de asigna-
ción de planos tienen un rendimiento similar en términos de precisión,
aunque la estrategia basada en la propagación de restricciones tiene
una ventaja teórica. Esta ventaja no se tradujo en una mayor precisión,
probablemente debido al hecho de que pocos árboles de dependencias
no podían ser representados en 2 planos.

C.1.3 Codificaciones basadas en transiciones

En el Capítulo 5 describimos la última familia de linealizaciones con
la que trabajamos en esta tesis, que se apoya en los conocidos sistemas
basados en transiciones. Esto permite establecer un vínculo teórico en-
tre el análisis sintáctico basado en transiciones y el etiquetado secuen-
cial. Por lo tanto, el objetivo sería encontrar un mapping o una forma
de transicionar entre ambos paradigmas. Para ello, utilizamos una las
transiciones de lectura para dividir la secuencia de transiciones, donde
cada una de estas subsecciones corresponderá con la etiqueta para un
token dado. Por lo tanto, esto implica que el procesamiento de una frase
con n tokens requerirá n tales transiciones de lectura. En este capítu-
lo, se demuestra que que este método es genérico y puede aplicarse a
una amplia gama de sistemas left-to-right basados en transiciones que



C.2 aprendizaje con datos complementarios 157

proporcionan codificaciones obtenidas automáticamente de los algorit-
mos existentes basados en transiciones. Otra ventaja de este enfoque,
aunque queda fuera del ámbito de esta tesis, es que puede extenderse
fácilmente a los analizadores de constituyentes basados en transiciones
y a los analizadores semánticos.

En este capítulo, también probamos la viabilidad de este enfoque con
varias codificaciones basadas en transiciones, en un conjunto diverso
de lenguas. En particular, probamos la codificación basada sobre los si-
guientes algoritmos de transiciones: arc-standard, arc-eager, arc-hybrid
y Covington no proyectivo. Demostramos que logran una precisión y
una velocidad de análisis sintáctico competitivas. En general, los mo-
delos con codificaciones basadas en arc-standard y arc-hybrid tienden
a generar el menor vocabulario de salida, indicando que generan las
representaciones más compactas dentro de esta familia de linealizacio-
nes. Sin embargo, también observamos que la codificación basada en el
algoritmo no proyectivo de Covington da lugar a una precisión consi-
derablemente menor, a pesar de ser la única codificación que admite la
no proyectividad en nuestros experimentos. Esto puede explicarse por
el hecho de que este algoritmo no se ejecuta en O(n) transiciones por
frase. Por lo tanto, amplía el tamaño del vocabulario impidiendo un
aprendizaje efectivo. Además, mostramos que los modelos con codifi-
caciones basados en transiciones obtienen un rendimiento comparable
con los modelos de la familia basada en la selección de núcleos y en
corchetes.

C.2 Aprendizaje con datos complementarios

En la segunda parte de la tesis, exploramos si el aprendizaje de nues-
tro analizador de etiquetado secuencial puede mejorarse con represen-
taciones complementarias extraídas de los datos externos adicionales,
manteniendo los objetivos iniciales de la tesis de conseguir una buena
velocidad y poder utilizarse de manera genérica por parte de cualquier
sistema de etiquetado secuencial. Más en detalle, en esta tesis trabajare-
mos con representaciones auxiliares procedentes del análisis sintáctico
de constituyentes y los datos de seguimiento ocular. Para el aprendizaje
conjunto, utilizamos el aprendizaje multitarea en el que los datos com-
plementarios se utilizan como tareas auxiliares. Además, cualquier otro
tipo de datos puede aplicarse a nuestro analizador sintáctico siempre
que pueda definirse como etiquetado de secuencias, como por ejemplo
datos de reconocimiento de entidades nombradas o de chunking.
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C.2.1 Aprendizaje conjunto de las representaciones de
dependencia y constituyentes

En el Capítulo 6 investigamos métodos para aprovechar la naturaleza
complementaria del análisis sintáctico de dependencias y de constitu-
yentes mediante el aprendizaje conjunto de sus representaciones. Para
ello, además de nuestro métodos de linearización para análisis el sin-
táctico de dependencias (en concreto, la codificación relativa basada
en el etiquetado morfológico), también usamos la reducción a etiqueta-
do secuencial para análisis sintáctico de constituyentes presentada por
Gómez-Rodríguez y Vilares (2018). Probamos los modelos en cuatro
configuraciones (i) paradigma único, tarea única (s-s) (ii) paradigma
único, multitarea (s-mtl), (iii) paradigma doble, modelos multitarea
con pérdidas auxiliares (d-mtl-aux) y (iv) paradigma doble, multita-
rea (d-mtl). Más concretamente, en la conficuración s-s entrenamos
dos modelos distintos correspondientes a cada uno de los paradigmas
de análisis sintáctico que sirven como modelos de referencia. En s-mtl
para cada paradigma entrenamos un modelo, en el que cada componen-
te de la etiqueta corresponde a una subtarea distinta. En d-mtl-aux
la predicción de etiquetas parciales para un paradigma de análisis sin-
táctico se define como las tareas principales, mientras que las etiquetas
del paradigma homólogo se consideran tareas auxiliares. En d-mtl to-
das las etiquetas se aprenden como tareas principales con un factor de
ponderación igual. Esto implica que el análisis sintáctico de las depen-
dencias y las constituciones se realiza con un único modelo.

Los resultados empíricos muestran que el uso de datos complementa-
rios como tarea auxiliar del paradigma de análisis sintáctico homólogo
(d-mtl-aux) se traduce en una mayor precisión del paradigma de inte-
rés en comparación con un modelo de un solo paradigma (s-s). El enfo-
que en el que ambos paradigmas se aprenden como tareas principales
(d-mtl) resulta en un único modelo que es capaz de encapsular am-
bas representaciones y de predecir tanto las etiquetas de dependencias
como las de constituyentes con una buena precisión. Además, hemos
demostrado que los modelos mejorados con datos complementarios no
tienen casi ningún coste en términos de velocidad y proporcionan un
rendimiento competitivo en comparación con los sistemas existentes.

C.2.2 Uso de datos de seguimiento ocular en el análisis
de dependencias

En el Capítulo 7 exploramos el efecto de utilizar datos de segui-
miento ocular para entrenar nuestro analizador sintáctico. Para ello,
aprovechamos los datos con medidas de los movimientos oculares lla-
mados datos de seguimiento ocular que se han aplicado previamente a
una serie de tareas en el campo de procesamiento de lenguaje natural
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(PLN). La idea principal de utilizar este tipo de datos complementarios
es guiar a nuestro analizador a través de los movimientos oculares.

Dado que los datos de seguimiento ocular proporcionan varias medi-
das de la mirada que pueden utilizarse como características de entrada
para un modelo, seguimos trabajos anteriores (Barrett y col., 2016; Ho-
llenstein y Zhang, 2019) y aplicamos 12 características de la mirada
agrupadas en cuatro subconjuntos. Sin embargo, no es realista esperar
datos de seguimiento ocular para todas las tareas de PLN, por lo tanto,
es importante desarrollar técnicas que puedan explotar esos datos du-
rante el entrenamiento, sin requerirlos en el momento de la inferencia.
Por ello, en nuestro enfoque las características de la mirada se apren-
den como tareas auxiliares durante el entrenamiento, por lo que no son
necesarias en el momento de la evaluación. También proponemos un
método para entrenar nuestro analizador sintáctico en datos paralelos
y disjuntos, ya que el seguimiento ocular todavía no está fácilmente
accesible en los corpus de árboles de dependencias. Los datos parale-
los contienen anotaciones de dependencias y mirada alineados sobre
las mismas oraciones, mientras que los datos disjuntos incluyen datos
adicionales no solapados con anotaciones de dependencia.

En general, los resultados, aunque ofrecen mejoras modestas, pue-
den ser considerados positivos. Sin embargo, los resultados empíricos
muestran que hay una divergencia en los resultados entre el conjunto
de desarrollo y el de test, lo que sugiere que nuestros modelos pueden
carecer de la suficiente capacidad de generalización. Aún así, la prin-
cipal contribución de esta parte de la tesis es investigar la viabilidad
de utilizar características de la mirada para entrenar modelos super-
visados, más concretamente en el contexto del análisis sintáctico de
dependencias como etiquetado secuencial.

C.3 Conclusiones

En el Capítulo 8 ofrecemos una discusión detallada de nuestro enfo-
que y planes de trabajo futuro. En resumen, en esta tesis hemos demos-
trado que el análisis sintáctico de dependencias puede ser reducido a
una tarea de etiquetado secuencial, y que este tipo de aproximación es
un método viable para entrenar modelos supervisados mediante arqui-
tecturas neuronales. Además, este tipo de aproximación ofrece varias
ventajas. Por ejemplo, ofrece un gran equilibrio entre precisión y velo-
cidad. Además, puede aplicarse fácilmente sobre cualquier software de
etiquetado de secuencias y utilizarse eficazmente junto con las tareas
posteriores.

En concreto, en la tesis hemos propuesto y discutido tres familias de
codificaciones basadas en: (i) selección de núcleos, (ii) corchetes y (iii)
transiciones. Basándonos en los resultados empíricos, hemos discutido
sus ventajas y limitaciones. En conjunto, las familias de codificaciones
difieren en la forma en que representan un árbol de dependencias y, en



160 resumen largo en español

consecuencia, se asocian con facetas diversas. En lo que respecta a la
precisión, la codificación relativa basada en el etiquetado morfológico
obtiene el mejor rendimiento, pero únicamente en el caso de utilizar
etiquetas morfológicas como parámetros de entrada. Sin embargo, si
no se desea utilizar los etiquetadores morfológicos debido a su baja
calidad o a la arquitectura del modelo, otras codificaciones son una
mejor alternativa. En el caso de un banco de árboles altamente no
proyectivo, son preferibles las codificaciones basadas en corchetes 2-
planar y la codificación relativa basada en el etiquetado morfológico
que cubre completamente los árboles no proyectivos.

Además, hemos demostrado que este tipo de analizadores sintácticos
de dependencias pueden ser entrenados con datos auxiliares que propor-
cionan información complementaria, con el objetivo de obtener así un
mejor rendimiento en la tarea objetivo. Esto es especialmente práctico
cuando los datos contienen información a nivel de token y, por tanto,
pueden incorporarse fácilmente a nuestro marco. En concreto, hemos
explorado dos tipos de datos complementarios.

En primer lugar, aprendimos las representaciones del análisis sintác-
tico de las dependencias y de las constituciones de forma conjunta. En
este sentido, los experimentos realizados muestran que los modelos de
aprendizaje multitarea sobre estos dos paradigmas, con funciones de
pérdida auxiliares para el análisis de constituyentes, pueden superar a
los modelos que son entrenados únicamente para realizar análisis de
dependencias. Además, también hemos estudiado cómo bajo este para-
digma, los análisis sintácticos de dependencias y constituyentes pueden
ser aprendidos conjuntamente como tareas principales por un único
modelo, sin apenas coste en términos de velocidad y precisión.

En segundo lugar, también hemos utilizado datos de seguimiento ocu-
lar para guiar a nuestros analizadores sintácticos de dependencias con
representaciones de los movimientos oculares. Para ello, los rasgos de
la mirada se aprendieron de nuevo como tareas auxiliares, de manera
que en tiempo de ejecución dichos datos no necesitan ser proporcio-
nados como entrada. Se optó por esta aproximación dado que asumir
que dichos datos oculares están disponibles ampliamente para cualquier
texto de entrada es poco realista. En general, los resultados empíricos
son modestos pero positivos, lo que sugiere que el aprendizaje de ca-
racterísticas de la mirada como tareas auxiliares puede ser beneficioso
para los analizadores sintácticos de etiquetado de secuencias. No obs-
tante, los resultados motivan a seguir investigando sobre el uso de datos
de procesamiento del lenguaje humano en el análisis sintáctico de las
dependencias.

C.3.1 Trabajo futuro

Los estudios futuros deberían tener como objetivo la exploración de
otras arquitecturas de redes neuronales profundas recientes que puedan
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mejorar aún más la precisión del analizador de etiquetado de secuencias
y cerrar la brecha con los analizadores de dependencias más avanzados,
manteniendo el equilibrio entre la velocidad de análisis y la precisión.
En cuanto a los métodos de codificación, las investigaciones futuras
no deberían limitarse a los propuestos en este trabajo. En el caso de
las codificaciones de selección de núcleos, se puede aplicar cualquier
método alternativo para codificar los núcleos, por ejemplo, utilizando
características morfológicas. Con respecto a la codificación basada en
corchetes de 2-planar, hemos propuesto dos estrategias de asignación
de planos que minimizan el uso del segundo plano. Aunque se pue-
den explorar otras estrategias basadas en diferentes criterios. Además,
los algoritmos basados en transiciones existentes ofrecen una serie de
codificaciones prometedoras que pueden obtenerse automáticamente y
aplicarse en el análisis sintáctico del etiquetado de secuencias. Este mé-
todo puede también ampliarse y aplicarse a los sistemas de transiciones
para análisis sintáctico de constituyentes y análisis semántico.

Además, los resultados basados en los datos complementarios son
alentadores, por lo que se necesitan estudios futuros para explorar otros
tipos de datos complementarios que puedan ser beneficiosos en el aná-
lisis sintáctico de dependencias. En el contexto de los datos de segui-
miento ocular, se empiezan a utilizar otros tipos de mediciones en PLN,
como el electroencefalograma (Zhang y col., 2018) o la resonancia mag-
nética funcional (Bingel, Barrett y Søgaard, 2016; Toneva y Wehbe,
2019), y surgen nuevas directrices para maximar los beneficios del uso
de datos de seguimiento ocular (Hollenstein, Barrett y Beinborn, 2020).
Aún así, hay margen de mejora, por ejemplo, en el aumento de la capa-
cidad de generalización de nuestro modelo para mitigar la divergencia
en los resultados entre el conjunto de desarrollo y el de test. Para ello,
se puede considerar la aplicación de otra arquitectura, por ejemplo, si-
guiendo Barrett y col. (2018) los datos de eye-tracking podrían servir
para regularizar la atención. Sin embargo, eso tendría un cierto coste
en cuanto a velocidad.




