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Abstract: In the field of computer security, the possibility of knowing which specific version of an
operating system is running behind a machine can be useful, to assist in a penetration test or monitor
the devices connected to a specific network. One of the most widespread tools that better provides
this functionality is Nmap, which follows a rule-based approach for this process. In this context,
applying machine learning techniques seems to be a good option for addressing this task. The present
work explores the strengths of different machine learning algorithms to perform operating system
fingerprinting, using for that, the Nmap reference database. Moreover, some optimizations were
applied to the method which brought the best results, random forest, obtaining an accuracy higher
than 96%.
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1. Introduction

The aim of operating system (OS) fingerprinting is to identify which family and version
of OS is running behind a device analyzing the network traffic it generates. Knowing the
specific details of the system controlling a machine is interesting in the way that it can
support the detection of unauthorized devices in a network or assist in determining the
vulnerability of a target host. One of the most known and spread tools to perform this task
is Nmap [1], which can carry out active OS detection, as well as XProbe2 [2]. On the other
hand, passive OS detection can be performed with the tool P0f [3].

Traditionally, the way of performing this task is a rule-based approach, followed by
Nmap in its IPv4 analysis [4]. The process can be summed up in three steps: sending
specific probes to the target, recollecting and parsing the responses, executing a set of tests
onto these responses in order to generate a characteristic signature, and finally comparing
that stamp with every single entry of its database of preprocessed signatures in turn.

The main aim of the present project is to develop a PoC of an operating system
fingerprinting model based on the latest Nmap database, analyzing which classical machine
learning algorithms provide better results. In fact, this approach, based on the logistic
regression technique, is already followed by the tool in its IPv6 scan.

2. Materials and Methods

The process followed in this work can be split into two well distinguished phases,
starting with the extraction and preparation of the data in a suitable format for the second
stage, where the training and testing tasks were performed.
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2.1. Dataset Preparation

The OS database of the latest version of Nmap (7.9) [5] was downloaded as the base
point to construct our dataset. This file contained all of the fingerprints gathered by the
community and grouped by Nmap, since 1998, in text format. A specific fingerprint
consists of the collection of the results of the predefined tests that Nmap executes against
the responses received of a particular known OS.

In order to simplify our approach, we filtered those fingerprints by only selecting those
from a group of OS families representing the most widespread systems in use nowadays:
Android, BSD, Linux, Solaris, Windows, iOS, and macOS. All these features represent
different types of information, such as numerical or boolean values, as well as specific
categories. For all these types, a codification keeping the idea of transforming the data to
numerical values was chosen. In this way, the null or absent values were codified as −1.

Besides, a condition between more than one value could be specified, expressed as
a combination of any of these operators: boolean OR, range of values, “more than” or
“less than”. We represented the OR operator as a lineal combination between the possible
values of all the features of a single fingerprint, creating a new row for every alternative
that would have produced less than 100,000 new combinations. On the other hand, the
range operator was represented as a random value generated between both the limits of
the range for every single row of the same fingerprint. The “more than” and “less than”
operators were ignored because of the almost absence of them in the database. In order to
obtain better results in the next stage, some preprocessing of this dataset, such as removing
duplicated values and near zero variance features, was done. This process finished with a
dataset of 264,852 cases and 233 features.

2.2. Machine Learning Modeling

Once we had a suitable dataset that represented, in a simplified manner, the knowledge
of the Nmap database, the modeling process was performed. The first step consisted of
splitting randomly the dataset in a training and test set, following a proportion of 90/10,
respectively, leaving the same number of cases for each class in both groups. The dataset
was imbalanced, as there were not the same number of examples for every OS family. To
fix this, a vector with the class weights was calculated and passed as a parameter to the
training algorithms.

The set of classic machine learning algorithms tested was: Gaussian Naive Bayes
(GNB), linear discriminant analysis (LDA), logistic regression (LR), multilayer perceptron
classifier (MLPC), decision tree (DT), random forest (RF), and bagging classifier (Bag). For
each model created with these methods, the accuracy, precision, recall, and f1-score metrics
were calculated in order to compare them.

In a second improvement phase, a hyperparameter optimization was performed using
the grid search cross validation method. The base algorithm used in this process was the
one which raised the best results in the previous stage. We chose a list of values for a
selection of the available parameters of this method and executed the grid search fitting
three-fold for each candidate.

3. Results and Discussion

The metrics calculated on the models generated during this work (see Table 1) point to
several potential options when it comes to performing fingerprinting of operating systems
with classic machine learning methods. Specifically, the model that was developed more
deeply was RF, since it yielded the best results in the first approach with an accuracy
value of 0.96055. However, all of the tested models, with the exception of GNB and LR,
offered prediction results higher than 90%. In fact, even choosing the RF algorithm in the
second improvement stage because of its results, we could have chosen the LDA method,
as, in terms of complexity, it is much simpler, meaning it could execute the category
prediction faster.
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Table 1. Machine Learning algorithm validation results.

Method Accuracy Precision Recall F1-Score

GaussianNB 0.10764 0.62907 0.10764 0.05814
LinearDiscriminantAnalysis 0.95734 0.96275 0.95734 0.95857

LogisticRegression 0.11013 0.78129 0.11013 0.07955
MLPClassifier 0.93147 0.94640 0.93147 0.91723

DecisionTreeClassifier 0.95216 0.95168 0.95216 0.95185
RandomForestClassifier 0.96055 0.96360 0.96055 0.95844

BaggingClassifier 0.95794 0.96102 0.95794 0.95782

After choosing RF as the best option for this problem, we attempted to improve
its results carrying out some optimizations. The grid search method applied gener-
ated 648 different models, where the concrete parameters of the best generated model
was: bootstrap = False; max_depth = 20; max_features = auto; min_samples_leaf = 1;
min_samples_split = 5; n_estimators = 50. This progress allowed us to get an accuracy
of 0.96096. Besides, some ideas can be concluded from the confusion matrix of this latest
model. In general, the solution responds correctly to the classification of every category, but
it has some problems in distinguishing between Android and Linux, as well as between iOS
and macOS. Taking into account that Android is in its basis a Linux system, and that iOS
and macOS are both the mobile and laptop operating systems of Apple, these results show
that the model is capable of learning the generalizations and main differences between
families of operating systems without being over-fitted to all the specific cases of each
cases.

This work was an initial approach to the problem of fingerprinting operating systems
using machine learning. With restrictions, in terms of execution time and the amount of
computational resources, a simplified dataset was created, and some basic models were
generated. In spite of being a prototype, the obtained results evidence that this kind of
work can be successfully conducted with classical machine learning techniques, with an
acceptable grade of complexity of the process. In this researching line, there are plenty
of improvements and other different approaches that can be performed in order to get
more effective models, such as balancing the dataset, improving the codification of the
features, scaling its values, or attempting to apply autoML or deep learning to the problem.
It is worth mentioning that the code developed during this work is publicly available in
the following GitHub repository: https://github.com/rubenperezudc/osfingerprintingia
(accessed on 25 October 2021).
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