
TRAJECTORY CLUSTERING FOR THE CLASSIFICATION

OF EYE-TRACKING USERS WITH MOTOR DISORDERS

A. Clemotte1, H. Arregui2, M.A. Velasco1, L. Unzueta2, J. Goenetxea2,
U. Elordi2, E. Rocon1, R. Ceres1, J. Bengoechea3, I. Arizkuren3, E. Jauregui3

1 CAR UPM-CSIC, Ctra. Campo Real, km 0.2, 28500, Arganda del Rey, Spain; erocon@csic.es
2 Vicomtech-IK4, Paseo Mikeletegi, 57, 20009, Donostia, Spain; lunzueta@vicomtech.org

3 Irisbond, Paseo Mikeletegi, 57, 20009, Donostia, Spain; e.jauregui@irisbond.com

Abstract

This paper presents a pilot study completed in the
framework of the INTERAAC project. The aim
of the project is to develop a new human-computer
interaction (HCI) solution based on eye-gaze esti-
mation from webcam images for people with motor
disorders such as cerebral palsy, neurodegenerative
diseases, and spinal cord injury that are otherwise
unable to use a keyboard or mouse. In this study,
we analyzed cursor trajectories recorded during the
experiment and validated that users with di�erent
diseases can be automatically classi�ed in groups
based on trajectory metrics. For the clustering,
Ward's method was used. The metrics are based
on speed and acceleration statistics from full �l-
tered tracks. The results show that the participants
can be grouped into two main clusters. The main
contribution of this work is the evaluation of the
clustering techniques applied to eye-gaze trajecto-
ries for the automatic classi�cation of users dis-
eases based on a real experiment carried with the
help of three clinical partners in Spain.

Keywords: Eye-gaze estimation, Motor disor-
der, User-type classi�cation, Trajectory clustering

1 INTRODUCTION

People with neurodegenerative diseases (ND),
spinal cord injury (SCI) or cerebral palsy (CP) are
generally not able to handle standard computer
peripherals (keyboard or mouse) due to their se-
vere motor impairment. These people require al-
ternative communication systems in order to inter-
act with their social environment and ambiance.
The main objective of INTERAAC1 is to develop
a (1) low-cost and (2) multi-platform communica-
tion tool adapted to these three pro�les of motor
disability. As opposed to other video-oculography
systems that are based on infrared cameras, the
developed system will be based on algorithms for
head pose and eye-gaze estimation from webcam
images. INTERAAC faces two main challenges:
(1) developing a cutting edge pointing device that

1http://interaac.esy.es/es/proyecto/

Head pose detection

Eye gaze estimation

Figure 1: Capture of a participant with PC during
a work session in ASPACE-Cantabria.

would outperform current eye-gaze estimation sys-
tems in cost and features and (2) making the solu-
tion accessible to users with severe motor impair-
ments.

The �rst step for the development of such tool is
to group and describe the target population as de-
tailed as possible in terms of their eye, head and
trunk control as well as gaze strategies [3]. This is
especially problematic for INTERAAC due to the
wide range of motor disorders and disability pro-
�les that we can expect to �nd among our users.
Clinical scales such as Manual Ability Classi�ca-
tion System (MACS) [2] have already been asso-
ciated with the performance of people with motor
impairment and traditional computer peripherals
[1] but they are of no use for non-hand-held point-
ing input devices such the eye-gaze estimation sys-
tems. The classi�cation will allow the assessing of
the developed solution with each cluster indepen-
dently. We hypothesized that our participants can
be classi�ed into groups depending on what kind
of strategies they use to interact with the com-
puter, so each group will be a�ected di�erently by
the new development.

The aim of this work is to explore a methodol-
ogy to group a population with a very diverse
pro�le of motor impairments into a manageable
number of descriptive groups or clusters. We hy-
pothesized that our participants can be classi�ed
into two main groups. This paper presents the
preliminary results of an experimental study done
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in three specialized centers for the classi�cation of
users with CP, SCI, and ND based on informa-
tion from cursor velocity and acceleration, when
the cursor is controlled with an eye-tracker. Indi-
rectly, the classi�cation will provide with the main
objectives parameters or metrics that most quan-
tify the performance of the new proposed solution
for each of the impairment clusters.

2 BACKGROUND

There are solutions in the literature that analyze
velocity and accuracy measures as well as cursor
trajectories and other aspects of task performance
in order to classify users.

Gajos et al. [4, 5] worked on the assessment
of users' capabilities in order to create custom
graphical computer interfaces (GUI). They ana-
lyzed pointing, dragging, list selection and multi-
ple clicking and measured aspects such as the wid-
get manipulation time, interface navigation time
or error rate.

Their algorithm used this information for the dy-
namic personalization of the interface based on the
user's preferences [4] or the user's motor skills [5]
by minimizing two cost functions (of ability and
preference).

Hurst et al. [6, 7] assessed pointing performance
in order to develop systems that can automati-
cally adapt to users' current needs in real-world
computing environments. They developed a user's
classi�er that was able to discriminate between ex-
pert or novice users [6] between impaired and non-
impaired users. In the classi�cation process, they
used di�erent metrics to describe movement (the
distance of movement), targeting (e.g. times the
cursor enters the target), clicks (accidental clicks)
and the breaks taken by the user [7].

In contrast to these studies, our approach is a tech-
nique to classify users based on metrics that rely
on the interaction with the computer, in order to
identify patterns, beyond the functional clinical
scales.

3 METHODS

For this study, we designed an experimental pro-
tocol in collaboration with 3 centers specialized in
motor disorders. In the experiments, we asked a
total of 14 participants with severe motor impair-
ments to control the cursor with movements of
their eyes and to complete several series of point-
ing tasks. The locations of the cursor and the
targets on the screen and the participants' point
of gaze were recorded and analyzed.

3.1 Participants

Our clinical partners recruited a total of 14 par-
ticipants with cerebral palsy (6) in ASPACE-
Cantabria, spinal chord injuries (4) in Hospital
Nacional de Paraplégicos de Toledo (HNPT) and
several neuromuscular disorders (4) in ADEMGI.
During the trials, a caregiver and/or therapist as-
sisted the participants if needed. None of the par-
ticipants had vision, hearing or cognitive problems
that might cause a misunderstanding of the task or
prevent them from �nishing it properly. The local
ethical committee gave approval to the study. All
participants were informed beforehand and signed
a written informed consent to participate.

During the following sections the users are identi-
�ed by their type of disease: six users with cere-
bral palsy (CPi), four users with spinal cord in-
juries (SCIi), and 4 with neurodegenerative dis-
eases: one user with ataxia (ATX), one user with
amyotrophic lateral sclerosis (ALS), one user with
multiple sclerosis (MSC) and another one with
neuromuscular disorders (NMD).

3.2 Instruments

The participants used the IRISBOND PRIMMA
eye-tracker2 (IRISBOND, Spain) to translate the
eye-gaze estimation into cursor coordinates. In
order to perform a click action, the participants
had to maintain the cursor within a pre-de�ned
area during a pre-de�ned dwell time.

A webcam recorded the whole work session and 2
inertial measurement units (IMU) registered the
orientations of the participant's head and the com-
puter screen. Thus, this setup allows comparing
the accuracies of new head pose and eye gaze es-
timation techniques to be developed within the
INTERAAC project, with the data registered by
the other devices.

3.3 Procedure

All participants were sitting in their wheelchair
at an optimal distance from the eye-tracker that
guaranteed the best measures (around 60 cm).
The routine of the participants' accommodation
included moving the participant, the screen, and
the eye-tracker, see Figure 1.

At the beginning of the work session, each par-
ticipant went through a calibration process. A
quantitative threshold was established to check
the reliability of the calibration before the execu-
tion of the task. Only participants that exceeded
this level continued with the tests.

2http://www.irisbond.com/productos/irisbond-
primma
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After the calibration, each participant practiced in
a short training session with the `Look to Learn'
software 3 (Sensory Software) in order to get used
to the interface and the rest of the working en-
vironment (screen, camera, etc.). No data was
collected during this phase.

Finally, they were asked to complete a series of
pointing tasks with the FittsStudy software [11].
FittsStudy allowed us to control the size of the
targets, the distances between them and the order
of appearance, i.e. the di�culty of each pointing
task. All the information from the pointing tasks
and gaze estimation was recorded for further anal-
ysis.

In general, the work sessions took approximately
40 minutes. This time includes the preparation
of the participants, the calibration process, possi-
ble repetitions and some breaks between trials to
avoid the apparition of fatigue.

Calibration process

In the calibration, the participants were asked to
look at several targets on the screen (5, 9 or 16
depending on their attention capabilities). The
positions of these targets were known, but their
order of appearance was randomized. As the par-
ticipant looked at these stimuli the eye-tracker es-
timated the spatial relationship of the pupil and
the corneal re�ex.

At the end of the process, the algorithm provided
us with the quality of the calibration. That infor-
mation was used in order decide whether starting
the tests or repeating the whole process (in case
the calibration output was below our threshold,
1.5 degrees).

Pointing task

The proposed test consisted in looking at 4 series
of 10 concentric circles on the screen, as Figure 2
shows. This gives a total of 40 clicks for each
participant. The target circle where participants
should click was di�erentiated by a darker shade
of blue.

In order to control the task di�culty of each series
of circles, we used the concept of index of di�culty
(ID). The Shannon formulation used by MacKen-
zie (1989) represents the ID as:

ID = log2

(
A

W
+ 1

)
(1)

where A is the amplitude of the movement needed

3https://thinksmartbox.com/product/look-to-
learn/

A B C

Figure 2: Representation the pointing tasks. The
sequence A, B, C shows 3 consecutive positions of
the target (dark blue).

Table 1: Sequence of the presets index of di�culty
(ID). The corresponding amplitude of movement
and width of the target is measured in pixels.
Sequence ID (bits) A (px) W (px)
1 1.41 500 300
2 1.80 500 200
3 2.58 500 100
4 3.46 500 50

to reach the target andW is the size of the target.
Fitts' law establishes that there is a linear relation-
ship between the movement time (the time needed
to reach and click on it) and the value of ID ; the
more di�cult the task is, the longer it takes to be
completed.

This index allowed us to set a range of di�culty
between 1.41 and 3.46 bits that would ensure suc-
cessful targeting and that is very similar to the
ranges of di�culty that the participants would
�nd in real-world desktop applications. The val-
ues of ID's were distributed in increasing order,
see Table 1.For each of these ID's we de�ned the
values of A and W. This sequence was repeated
for all participants.

In order to click on the targets, the participants
were asked to complete a dwell time. A click action
is ordered when the dispersion of the cursor posi-
tions in both horizontal and vertical axes during
the last second is below than a preset threshold of
68 px (or 2 cm in the screen). The minimum time
between two consecutive clicks was set to 1 s in or-
der to avoid the rebound e�ect (i.e. the detection
of undesired multiple clicks).

Participants received two kinds of feedback dur-
ing the tasks: whereas the participant had visual
feedback of the cursor position throughout all the
session, failed tasks produced a distinctive sound.

3.4 Methodology for the analysis

Dataset

Tracks can be understood as continuous trajec-
tories sampled at 40ms periods after participants
completed the pointing task. These tracks con-
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sist of the chronologically ordered set of X-Y co-
ordinate pairs from: left eye, right eye, combined
eye (CT, combination between left and right eye)
and, �ltered eye (�ltered trajectory of the CT to
clean out saccades and jumps). The whole testing
produced 14 tracks from di�erences participants:
4 from ADEMGI, 6 from ASPACE and, 4 from
HNPT.

In order to obtain some features of the pointer be-
havior on the screen, instantaneous speed and ac-
celeration are estimated from position di�erentials
captured by the eye-tracking system from �ltered
tracks (FT). The hypothesis is that these speed
and acceleration patterns can be used to classify
di�erent users. In other scenarios, these metrics
are widely used when classifying drivers from their
driving trajectory patterns [8].

Instantaneous speed and acceleration are then
summarized with the following set of statis-
tics: avg(speed), max(speed), median(speed),
max(accel), min(accel) and median(accel). Aver-
age acceleration and minimum speed values equal
0 for the full set of tracks, and thus, are discarded.
These track features are expected to represent the
way each user tackles the eye movement towards
the target point on the screen.

PCA and Clustering

Once each track is characterized by a set of met-
rics, an exploratory analysis of these variables is
done to evaluate their representativeness. The
technique chosen for this task was the Principal
Components Analysis (PCA), which is a statis-
tical procedure for dimensionality reduction. It
uses orthogonal transformation to convert a set of
observations of possibly correlated variables into
a set of values of linearly uncorrelated variables
(principal components). One of the applications of
this dimensionality reduction is representing mul-
tidimensional data in 2-D plots. We decided to
reduce the data to 2 and 3 dimensions and explore
the data produced. We established a threshold of
90% for the PCA algorithm.

The next step is performing the clustering itself,
based on the features that have been proposed.
The objective of the analysis is to discover simi-
lar behaviors among users in order to group them
in clusters. Any clustering algorithm requires a
dissimilarity method for calculating dissimilarities
between trajectories [9]. In our work, Ward's hi-
erarchical agglomerative clustering [10] has been
used comparing two dissimilarity or distance met-
rics (Euclidean and Manhattan distances) in or-
der to evaluate if the clusters obtained, if any, are
consistent in both metrics. To check the quality
of the clusters, from a quantitative point of view,

Table 2: Composition of the three main principal
components (93.3% of variance explained)
Variable PC1 PC2 PC3

Avg. 0.130 -0.668 -0.500
Speed Median 0.480 -0.284 -0.327

Max. -0.465 -0.343 -0.059
Median 0.477 -0.368 -0.347

Accel. Max. -0.500 -0.307 -0.124
Min. 0.243 0.355 -0.389

an additional partitioning around medoid (PAM)
was performed.

4 RESULTS

4.1 Trajectory sample

Figure 3 shows one pointing task, with the trace of
the �ltered track in green and the target in blue,
obtained during a HNPT user test. In addition,
is depicted the velocity and acceleration of this
track. This a sample of a pointing task performed
by one participant. In the speed graph, we can see
that a click took about 200 milliseconds, which is
what usually lasts a saccade.

4.2 PCA Analysis

The PCA analysis shows that using the two �rst
principal components, components are able to ex-
plain 78.3% of variability. A graphical represen-
tation of the di�erent users is given in Figure 4,
showing some subtle group patterns, especially
ASPACE users (CP). Three linearly independent
components are able to explain a signi�cant pro-
portion of the variability of the dataset: 93.3%.
Table 2 explains the contribution of each variable.
With a threshold of 90%, this second reduction to
3 components is acceptable.

4.3 Trajectory clustering

Hierarchical clustering methods have been tested
for the features selected, representing the cluster
classi�cation by a dendrogram. Euclidean and
Manhattan distances are chosen to compare hi-
erarchical clustering results, as shown in Figure 5.
The clusters are not the same but, in both cases,
users with CP are all grouped together. Moreover,
in the second case these users are clearly separated
from rest. In both cases, the existence of two clus-
ters is quite clear.

PAM was performed with parameter k=2 : the
average silhouette width obtained is 0.44 (Man-
hattan) vs 0.37 (Euclidean), which means that a
clustering structure may exist but it is relatively
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Figure 3: A partial track of a HNPT participant.
The amplitude of movement (distance between cir-
cles) is 500 pixels and the target width (diame-
ter of the circles) is 50 pixels. Below the partial
track, speed and acceleration of this movement is
depicted. From the velocity chart we can see that
the click take it to the participant approximately
200millisec.
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found.
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low. The two clusters given by the Manhattan
distance-based PAM di�ers from the agglomera-
tive clustering in only one individual (CP3).

5 CONCLUSION

One of the objectives of the INTERAAAC project
is to discover groups or clusters that could some-
how be related to the diseases of the participants.
The hypothesis is that not all users have the same
strategy to control the computer so that each user
group will be bene�ted di�erently by new devel-
opments.

In this paper, we presented a pilot study of
an automatic user-type classi�cation procedure
based on the analysis of point-of-gaze trajectories
recorded by an eye-tracking system. The tests
were carried out with three di�erent groups of
users, all of them with severe levels of motion dis-
orders. The results showed that, within the 14
users, at least two groups could be deduced where
cerebral palsy and spinal cord injuries were sep-
arated. It was concluded that simple speed and
acceleration metrics of the eye-tracked trajecto-
ries can be used to group users, which would help
in tuning automatically further parameters of the
eye-tracking system and, therefore, improving the
interaction with the computer.

Further work will include: replicating the analysis
with partial tracks between objective points in-
stead of full tracks, evaluating the trajectories to-
gether with inertial measurements given by head-
mounted sensors and, add a metric that measures
the di�erence between the track of each eye.
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